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Abstract

Differential-algebraic equations (DAEs) arise in a variety of applications.
Therefore their analysis and numerical treatment plays an important role
in modern mathematics. This paper gives an introduction to the topic of
DAEs. Examples of DAEs are considered showing their importance for
practical problems. Several well known index concepts are introduced. In
the context of the tractability index existence and uniqueness of solutions
for low index linear DAEs is proved. Numerical methods applied to these
equations are studied.
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Introduction

In this report we consider implicit differential equations

f
(
x′(t), x(t), t

)
= 0 (1)

on an interval I ⊂ R. If ∂f
∂x′ is nonsingular, then it is possible to formally solve

(1) for x′ in order to obtain an ordinary differential equation. However, if ∂f
∂x′ is

singular, this is no longer possible and the solution x has to satisfy certain algebraic
constraints. Thus equations (1) where ∂f

∂x′ is singular are referred to as differential-
algebraic equations or DAEs.
These notes aim at giving an introduction to differential-algebraic equations and
are based on four lectures given by the author during his stay at the University of
Auckland in 2003.
The first section deals with examples of DAEs. Here problems from different kinds of
applications are considered in order to stress the importance of DAEs when model-
ling practical problems.
In the second section each DAE is assigned a number, the index, to measure it’s
complexity concerning both theoretical and numerical treatment. Several index no-
tions are introduced, each of them stressing different aspects of the DAE considered.
Special emphasis is given to the tractability index for linear DAEs.
The definition of the tractability index in the second section gives rise to a detailed
analysis concerning existence and uniqueness of solutions. The main tool is a pro-
cedure to decouple the DAE into it’s dynamical and algebraic part. In section three
this analysis is carried out for linear DAEs with low index as it was established by
März [25].
The results obtained, especially the decoupling procedure, are used in the fourth
section to study the behaviour of numerical methods when applied to linear DAEs.
The material presented in this section is mainly taken from [18].



1 Examples of differential-algebraic equations

Modelling with differential-algebraic equations plays a vital role, among others, for
constrained mechanical systems, electrical circuits and chemical reaction kinetics.
In this section we will give examples of how DAEs are obtained in these fields.
We will point out important characteristics of differential-algebraic equations that
distinguish them from ordinary differential equations.
More information about differential-algebraic equations can be found in [2, 15] but
also in [32].

1.1 Constrained mechanical systems
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Figure 1.1: The mathe-
matical pendulum

Consider the mathematical pendulum in figure 1.1. Let
m be the pendulum’s mass which is attached to a rod
of length l [15]. In order to describe the pendulum in
Cartesian coordinates we write down the potential energy

U(x, y) = mgh = mgl −mgy (1.1)

where
(
x(t), y(t)

)
is the position of the moving mass at

time t. The earth’s acceleration of gravity is given by g,
the pendulum’s height is h. If we denote derivatives of x
and y by ẋ and ẏ respectively, the kinetic energy is given
by

T (ẋ, ẏ) =
1
2
m(ẋ2 + ẏ2). (1.2)

The term ẋ2 + ẏ2 describes the pendulum’s velocity. The constraint is found to be

0 = g(x, y) = x2 + y2 − l2. (1.3)

(1.1)-(1.3) are used to form the Lagrange function

L(q, q̇) = T (ẋ, ẏ)− U(x, y)− λ g(x, y).

Here q denotes the vector q = (x, y, λ). Note that λ serves as a Lagrange multiplier.
The equations of motion are now given by Euler’s equations

d

dt

( ∂L

∂q̇k

)
− ∂L

∂qk
= 0, k = 1, 2, 3.

We arrive at the system

mẍ + 2λx=0,
mÿ −mg + 2λy =0,

g(x, y) = 0.
(1.4)

By introducing additional variables u= ẋ and v= ẏ we see that (1.4) is indeed of the
form (1).
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When solving (1.4) as an initial value problem, we observe that each initial value(
x(t0), y(t0)

)
= (x0, y0) has to satisfy the constraint (1.3) (consistent initialization).

No initial condition can be posed for λ, as λ is determined implicitly by (1.4).

Of course the pendulum can be modeled by the second order ordinary differential
equation

ϕ̈ = −g

l
sinϕ

when the angle ϕ is used as the dependent variable. However for practical problems
a formulation in terms of a system of ordinary differential equations is often not that
obvious, if not impossible.

1.2 Electrical circuits

Modern simulation of electrical networks is based on modelling techniques that allow
an automatic generation of the model equations. One of the techniques most widely
used is the modified nodal analysis (MNA) [7, 8].

1.2.1 A simple example

V C

G

e e1 2

U

Figure 1.2: A simple
circuit

To see how the modified nodal analysis works, con-
sider the simple circuit in figure 1.2 taken from [39].
It consists of a voltage source vV = v(t), a resistor
with conductance G and a capacitor with capacitance
C > 0. The layout of the circuit can be described by

Aa =



−1 1 0

0 −1 1
1 0 −1


 ,

where the columns of Aa correspond to the voltage, resistive and capacitive branches
respectively. The rows represent the network’s nodes, so that −1 and 1 indicate the
nodes that are connected by each branch under consideration. Thus Aa assigns a
polarity to each branch.
By construction the rows of Aa are linearly dependent. However, after deleting one
row the remaining rows describe a set of linearly independent equations, The node
corresponding to the deleted row will be denoted as the ground node. The matrix

A =
( −1 1 0

0 −1 1

)

is called the incidence matrix. It is now possible to formulate basic physical laws
in terms of the incidence matrix A [20]. Denote with i and v the vector of branch
currents and voltage drops respectively and introduce the vector e of node potentials.
For each node the node potential is it’s voltage with respect to the ground node.

• Kirchhoff’s Current Law (KCL):
For each node the sum
of all currents is zero.

}
⇒ Ai = 0

• Kirchhoff’s Voltage Law (KVL):
For each loop the sum
of all voltages is zero.

}
⇒ v = AT e
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For the circuit in figure 1.2 KCL and KVL read

−iV + iG = 0, −iG + iC = 0 (1.5a)

and

vV = −e1, vG = e1 − e2, vC = e2 (1.5b)

respectively. If we assume ideal linear devices the equations modelling the resistor
and the capacitor are

iG = GvG, iC = C
dvc

dt
. (1.5c)

Finally we have

vV = v(t) (1.5d)

for the independent source which is thought of as the input signal driving the system.
The system (1.5) is called the sparse tableau. The equations of the modified nodal
analysis are obtained from the sparse tableau by expressing voltages in terms of
node potential via (1.5b) and currents, where possible, by device equations (1.5c):

−iV + G(e1 − e2)= 0
−G(e1 − e2) + C de2

dt = 0
−e1 = v





⇔



0
C
0





(

0 1 0
)



e1

e2

iV






′

+




G −G −1
−G G 0
−1 0 0







e1

e2

iV


 =




0
0
v


 (1.6)

The MNA equations reveal typical properties of DAEs:

(i) Only certain parts of x = (e1, e2, iV )T need to be differentiable. It is sufficient
if e1 and iV are continuous.

(ii) Any initial condition x(t0) = x0 needs to be consistent, i.e. there is a solution
passing through x0. Here this means that we can pose an initial condition for
e2 or iV only.

For (1.6) it is sufficient to solve the ordinary differential equation

e′2(t) = −C−1G
(
v(t) + e2(t)

)
.

e2(t) can be thought of as the output signal. The remaining components of the
solution are uniquely determined as

e1(t) = −v(t), iV (t) = G
(
e1(t)− e2(t)

)
.

Another important feature that distinguishes DAEs from ordinary differential equa-
tions is that the solution process often involves differentiation rather than integra-
tion. This is illustrated in the next example.
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1.2.2 Another simple example

If we replace the independent voltage in figure 1.2 source by a current source iI = i(t)
and the capacitor by an inductor with inductance L, we arrive at the circuit in figure
1.3. The sparse tableau now reads

−iI + iG = 0, −iG + iL = 0, (1.7a)
vI = −e1, vG = e1 − e2, vL = e2, (1.7b)

iG = GvG, vL = L
diL
dt

, (1.7c)

iI = i(t). (1.7d)

I L

G

e e1 2

I

Figure 1.3: Another simple
circuit

Thus the modified nodal analysis leads to

G(e1 − e2)= i(t)
−G(e1 − e2) + iL = 0

LdiL
dt − e2 = 0

(1.8)

The solution is given by

iL = i(t),

e2 = L
diL
dt

= L
di(t)
dt

,

e1 = e2 + G−1i(t) = L
di(t)
dt

+ G−1i(t),

under the assumption that the current i(t) is differentiable. Notice that all compo-
nent values are fixed. To solve for e2 we need to differentiate the current i.

1.3 A transistor amplifier

We will now present a more substantial example adapted from [6]. Consider the
transistor amplifier circuit in figure 1.4. P. Rentrop has received this example from
K. Glashoff and H.J. Oberle and documented it in [34].
The circuit consists of eight nodes, Ue(t) = 0.1 sin(200πt) is an arbitrary 100 Hz
input signal and e8, the node potential of the 8th node, is the amplified output. The
circuit contains two transistors. We model the behaviour of these semiconductor
devices by voltage controlled current sources

Igate = (1− α) g(egate − esource),
Idrain = α g(egate − esource),
Isource = g(egate − esource)

with a constant α = 0.99, g is the nonlinear function

g : R→ R, v 7→ g(v) = β
(

exp
( v

UF

))
, β = 10−6, UF = 0.026.
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Figure 1.4: Circuit diagram for the transistor amplifier

It is also possible to use PDE models (partial differential equations) to model semi-
conductor devices. This approach leads to abstract differential-algebraic systems
studied in [23, 35, 40].
The modified nodal analysis can now be carried out as in the previous examples.
Consider for instance the second node. KCL implies that

0 = −iC1 − iR1 − iR2 − igate,2

= −C1v
′
C1
− vG1G1 − vG2G2 − (1− α) g

(
e2 − e3

)

= −C1

(
e2 − e1

)′ − e2G1 −
(
e2 − Ub

)
G2 + (α− 1) g

(
e2 − e3

)

= C1

(
e1 − e2

)′ − e2

(
G1 + G2

)
+ UbG2 + (α− 1) g

(
e2 − e3

)
.

Ub = 6 is the working voltage of the circuit and the remaining constant parameters
of the model are chosen to be

G0 = 10−3, Gk = 1
9 · 10−3, k = 1, . . . , 9, Ck = 10−6, k = 1, . . . , 5.

A similar derivation for the other nodes leads to the quasi-linear system

A
(
Dx(t)

)′ = b
(
x(t)

)
(1.9)

with

A =




C1 0 0 0 0
−C1 0 0 0 0

0 −C2 0 0 0
0 0 C3 0 0
0 0 −C3 0 0
0 0 0 −C4 0
0 0 0 0 C5
0 0 0 0 −C5


 ,

D =



−1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 1


 ,

b(x) =




−UeG0+e1G0

−UbG2+e2(G1+G2)−(α−1)g(e2−e3)

−g(e2−e3)+e3G3

−UbG4+e4G4+αg(e2−e3)

−UbG6+e5(G5+G6)−(α−1)g(e5−e6)

−g(e5−e6)+e6G7

−UbG8+e7G8+αg(e5−e6)

e8G9




.

A numerical solution of (1.9) can be calculated using Dassl or Radau5, see [6, 14].
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A mathematically more general version of (1.9) is

A
(
x(t), t

)(
D(t)x(t)

)′ = b
(
x(t), t

)
(1.10)

with a solution dependent matrix A. We identified xi with the node potential ei.
Let us assume that N0(t) = kerA

(
x(t), t

)
D(t) does not dependent on x. We will

follow [16] and investigate (1.10) in more detail. With

f(y, x, t) = A
(
x(t), t

)
y − b

(
x(t), t

)
,

(1.10) can be written as

f
((

D(t)x(t)
)′

, x(t), t
)

= 0. (1.11)

Denote B(y, x, t) = f ′x(y, x, t) and let Q(t) be a continuous projector function onto
N0(t). Calculate

G1(y, x, t) = A(x, t)D(t) + B(y, x, t)Q(t).

For the transistor amplifier (1.11) in figure 1.4 this matrix is always nonsingular. We
want to use this matrix in conjunction with the Implicit Function Theorem to derive
an ordinary differential equation that determines the dynamical flow of (1.10).
Let D(t)− be defined by

DD−D = D, DD− = I5,

D−DD− = D−, D−D = P := I8 −Q.

Ik denotes the identity in Rk and D(t)− is a generalized reflexive inverse of D(t).
For more information on generalized matrix inverses see section 2.3.1 on page 18.
For a solution x of (1.11) define

u(t) = D(t)x(t), w(t) = D(t)−u′(t) + Q(t)x(t).

Observe that A(Dx)′ = ADw and x = Px+Qx = D−Dx+Qx = D−u+Qw. Thus
it holds that

(1.11) ⇔ ADw + b
(
x, t

) ⇔ F (w, u, t) := f
(
Dw, D−u + Qw, t

)
= 0.

Note that

u′ = R′u + Dw,

since Dw = DD−u + DQx = (Ru)′ = u′ − R′u. The mapping F can be studied
without requiring x to be a solution. Let (y0, x0, t0) ∈ R5+8+1, such that

f(y0, x0, t0) = 0.

For w0 = D(t0)−y0 + Q(t0)x0, u0 = D(t0)x0 it follows that

• F (w0, u0, t0) = f
(
y0, x0, t0

)
= 0,

• F ′
w(w0, u0, t0) = G1

(
y0, x0, t0

)
is nonsingular.
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Due to the Implicit Function Theorem there is a % > 0 and a smooth mapping

ω : B%

(
u0, t0

)× I → Rm

satisfying

ω(u0, t0) = w0, F
(
ω(u, t), u, t

)
= 0 ∀ (u, t) ∈ B%

(
u0, t0

)
.

We use ω to define

x(t) = D(t)−u(t) + Q(t)ω(u(t), t), t ∈ I.

where u is the solution of the ordinary differential equation

u′(t) = R′(t)u(t) + D(t)ω
(
u(t), t

)
, u(t0) = D(t0)x0. (1.12)

x is indeed a solution of (1.10), since

f
((

D(t)x(t)
)′

, x(t), t
)

= f
(
u′, D−u + Qω(u, t), t

)
= F

(
ω, u, t

)
= 0.

This example shows that there is a formulation of the problem in terms of an ordinary
differential equation (1.12) as was the case for the mathematical pendulum in the
first example. However, (1.12) is available only theoretically as it was obtained
using the Implicit Function Theorem. Thus we have to deal directly with the DAE
formulation (1.10) when solving the problem. Nevertheless, (1.12) will play a vital
part in analyzing (1.10) and in analyzing numerical methods applied to (1.10).
In section 3 it will be shown how (1.12) can be obtained explicitly for linear DAEs.
Section 4 is devoted to showing that there are numerical methods that, when applied
directly to (1.10), behave as if they were integrating (1.12), given that (1.10) satisfies
some additional properties. In this case results concerning convergence and order of
numerical methods can be transferred directly from ODE theory to DAEs.

1.4 The Akzo Nobel Problem

The last example originates from the Akzo Nobel Central Research in Arnhem, the
Netherlands, and is again taken from [6]. It describes a chemical process in which
two species, FLB and ZLU, are mixed while carbon dioxide is continously added. The
resulting species of importance is ZLA. The reaction equations are given in [5].

2 FLB +
1
2

CO2
k1−→ FLBT + H2O

ZLA + FLB
k2/K−→←−

k3

FLBT + ZHU

FLB + 2 ZHU + CO2
k3−→ LB + nitrate

FLB.ZHU +
1
2

CO2
k1−→ ZLA + H2O

ZLB + ZHU −→←− FLB.ZHU

The last equation describes an equilibrium where the constant

Ks =
[FLB.ZHU]

[FLB] · [ZHU]

plays a role in parameter estimation. Square brackets denote concentrations.
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The chemical process is appropriately described by the reaction velocities

r1 = k1 · [FLB]4 · [CO2]
1
2 ,

r2 = k2 · [FLBT] · [ZHU],

r3 =
k2

K
· [FLB] · [ZLA],

r4 = k3 · [FLB] · [ZHU]2,

r5 = k4 · [FLB.ZHU]2 · [CO2]
1
2 ,

see [6] for details. The inflow of carbon dioxide per volume unit is denoted by Fin

and satisfies

Fin = klA ·
(p(CO2)

H
− [CO2]

)
.

klA is the mass transfer coefficient, H the Henry constant and p(CO2) is the partial
carbon dioxide pressure [6]. It is assumed that p(CO2) is independent of [CO2]. The
various constants are given by

k1 = 18.7, k4 = 0.42, Ks = 115.83,

k2 = 0.58, K = 34.4, p(CO2) = 0.9,

k3 = 0.09, klA = 3.3, H = 737.

If we identify the concentrations [FLB], [CO2], [FLBT], [ZHU], [ZLA], [FLB.ZHU] with
x1, . . . , x6 respectively, we obtain the differential-algebraic equation




1
1

1
1

1
0




x′(t) =




−2r1 +r2 −r3 −r4

−1
2r1 −r4 −1

2r5 +Fin

r1 −r2 +r3

−r2 +r3−2r4

r2−r3 +r5

Ksx1x4 − x6




. (1.13)

This DAE can be analyzed in a similar way as the previous example. The matrix

G1 = AD + BQ =




1 0 0 0 0 0
0 1 0 0 0 0.42x6

√
x2

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 −0.84x6

√
x2

0 0 0 0 0 1




is always nonsingular. Here, A = D = diag(1, 1, 1, 1, 1, 0) was chosen.
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2 Index concepts for DAEs

In the last section we saw that DAEs differ in many ways from ordinary differential
equations. For instance the circuit in figure 1.3 lead to a DAE where a differentiation
process is involved when solving the equations. This differentiation needs to be car-
ried out numerically, which is an unstable operation. Thus there are some problems
to be expected when solving these systems. In this section we try to measure the
difficulties arising in the theoretical and numerical treatment of a given DAE.

2.1 The Kronecker index

Let’s take linear differential-algebraic equations with constant coefficients as a start-
ing point. These equations are given as

Ex′(t) + Fx(t) = q(t), t ∈ I, (2.1)

with E,F ∈ L(Rm). Even for (2.1) existence and uniqueness of solutions is not
apriori clear.

Example 2.1 For the DAE
(

1 0
0 0

)
x′(t) +

(
0 1
0 0

)
x(t) = 0

a solution x = ( x1
x2 ) is given by x2(t) = g(t) and x1(t) = − ∫ t

t0
g(s) ds, where the

function g ∈ C(I,R) can be chosen arbitrarily. ¤

In order to exclude examples like 2.1 we consider the matrix pencil λE+F . The pair
(E,F ) is said to form a regular matrix pencil, if there is a λ such that det(λE+F ) 6=0.
A simultaneous transformation of E and F into Kronecker normal form makes a
solution of (2.1) possible.

Theorem 2.2 (Kronecker [19]) Let (E,F ) form a regular matrix pencil. Then
there exist nonsingular matrices U and V such that

UEV =
(

I 0
0 N

)
, UFV =

(
C 0
0 I

)
,

where N = diag(N1, . . . , Nk) is a block-diagonal matrix of Jordan-blocks Ni to the
eigenvalue 0. ¤

The proof can be found in [9] or [15]. Notice that due to the special structure of
N there is µ ∈ N such that Nµ−1 6= 0 but Nµ = 0. µ is known as N ’s index of
nilpotency. It does not depend on the special choice of U and V .
We solve (2.1) by introducing the transformation

x = V

(
u
v

)
,

(
a(t)
b(t)

)
= Uq(t).

10



Thus (2.1) is equivalent to

UEV (V −1x(t))′ + UFV V −1x(t) = Uq(t)

⇔
(

I 0
0 N

)(
u(t)
v(t)

)′
+

(
C 0
0 I

)(
u(t)
v(t)

)
=

(
a(t)
b(t)

)
. (2.2)

The first equation is an ordinary differential equation

u′(t) + Cu(t) = a(t)

for the u component. The second equation reads

v(t) = b(t)−Nv′(t)

= b(t)−N
(
b′(t)−Nv′′(t)

)
= b(t)−Nb′(t) + N2v′′(t)

= · · · =
µ−1∑

i=0

(−N)ib(i)(t) (2.3)

determining the v component completely by repeated differentiation of the right
hand side b. Since numerical differentiation is an unstable process, the index µ is a
measure of numerical difficulty when solving (2.1).

Definition 2.3 Let (E, F ) form a regular matrix pencil. The (Kronecker) index of
(2.1) is 0 if E is nonsingular and µ, i.e. N ’s index of nilpotency, otherwise.

2.2 The differentiation index

How can definition 2.3 be generalized to the case of time dependent coefficients or
even to nonlinear DAEs? If we consider (2.3) again, it turns out that

v′(t) =
µ−1∑

i=0

(−N)ib(i+1)(t),

meaning that exactly µ differentiations transform (2.2) into a system of explicit
ordinary differential equations. This idea was generalized by Gear, Petzold and
Campbell [4, 10, 11]. The following definition is taken from [15].

Definition 2.4 The nonlinear DAE

f
(
x′(t), x(t), t

)
= 0 (2.4)

has (differentiation) index µ if µ is the minimal number of differentiations

f
(
x′(t), x(t), t

)
= 0,

df
(
x′(t), x(t), t

)

dt
= 0, . . . ,

dµf
(
x′(t), x(t), t

)

dtµ
= 0 (2.5)

such that the equations (2.5) allow to extract an explicit ordinary differential system
x′(t) = ϕ

(
x(t), t

)
using only algebraic manipulations.
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We now want to look at four examples to get a feeling of how to calculate the
differentiation index. We always assume that the functions involved are smooth
enough to apply definition 2.4.

Example 2.5 For linear DAEs with constant coefficients forming a regular matrix
pencil we have differentiation index µ if and only if the Kronecker index is µ. ¤

Example 2.6 Consider the system

x′ = f(x, y) (2.6a)
0 = g(x, y). (2.6b)

The second equation yields

0 =
dg(x, y)

dt
= gx(x, y)x′ + gy(x, y)y′.

If gy(x, y) is nonsingular in a neighbourhood of the solution, (2.6) is transformed to

x′ = f(x, y) (2.6a)

y′ = −gy(x, y)−1gx(x, y)x′ = −gy(x, y)−1gx(x, y)f(x, y) (2.6b’)

and the differentiation index is µ = 1.

The DAE (1.6) modelling the circuit in figure 1.2 is of the form (2.6) with

x = e2, y =
(

e1

iV

)
, f(x, y) =

G

C
(e1 − e2) and g(x, y) =

(
G(e1 − e2)− iV

e1 + vV

)
.

Note that gy(x, y) =
(

G −1
1 0

)
is nonsingular so that (1.6) is an index 1 equation.

¤

Example 2.7 The system

x′ = f(x, y) (2.8a)
0 = g(x) (2.8b)

can be studied in a similar way. (2.8b) gives

0 =
dg(x)

dt
= gx(x)x′ = gx(x)f(x, y) = h(x, y). (2.8b’)

Comparing with example 2.6 we know that (2.8a), (2.8b’) is an index 1 system if
hy(x, y) remains nonsingular in a neighbourhood of the solution. If this condition
holds, (2.8) is of index 2, as two differentiations produce

x′ = f(x, y) (2.8a)

y′ = −hy(x, y)−1hx(x, y)f(x, y)

= −(
gx(x)fy(x, y)

)−1
(
gxx(x)

(
f(x,y),f(x,y)

)
+gx(x)fx(x,y)f(x,y)

)
. (2.8b”)

(2.8b’) defines the “hidden constraint” of the index 2 equation (2.8).

12



The DAE (1.8) modelling the circuit in figure 1.3 can be written as

i′L =
1
L

e2 = f(iL, e2) (2.10a)

0 = iL − iI = g(iL). (2.10b)

The remaining variable e1 is determined by e1 = e2 + G−1iI , where iI is the input
current. (2.10) is of the form (2.8) with x = iL and y = e2. hy(x, y) = gxfy = 1 · 1

L
is nonsingular and the index is 2. ¤

Example 2.8 Finally take a look at the system

x′ = f(x, y) (2.11a)
y′ = g(x, y, z) (2.11b)
0 = h(x). (2.11c)

Differentiation of (2.11c) yields

0 =
dh(x)

dt
= hx(x)x′ = hx(x)f(x, y) = ĥ(x, y) (2.11c’)

and
x′ = ( x

y )′ =
(

f(x,y)
g(x,y,z)

)
= f(x, y) (2.11a) and (2.11b) (2.12a)

0 = ĥ(x, y) = g(x) (2.11c’) (2.12b)

is of the form (2.8) with x = ( x
y ) and y = z. Define

h(x, y) = gx(x)f(x, y)

and compare with (2.8b’) to find that (2.12) is of the index 2 if

hy(x, y) = gx(x)fy(x, y) =
(
ĥx ĥy

) (
fz

gz

)

=
(
hxx(f, ·) + hxfx hxy(f, ·) + hxfy

) (
0
gz

)
= hxfygz

remains nonsingular. This shows that (2.11) is an index 3 system if the matrix
hx(x)fy(x, y)gz(x, y, z) is invertible in a neighbourhood of the solution (x, y, z).
Hidden constraints are given by (2.11c’) but also by

h(x, y) = gx(x)f(x, y) = hxx(f, f) + hxfxf + hxfyg = 0,

which is condition (2.8b’) in terms of the index 2 system (2.12).

Consider again the mathematical pendulum from section 1.1 in the formulation

x′ = u = f1(x, y, u, v)
y′ = v = f2(x, y, u, v)

u′ = − 2
m

λx = g1(x, y, u, v, λ)

v′ = +g − 2
m

λy = g2(x, y, u, v, λ)

0 = x2 + y2 − l2 = h(x, y).

(2.13)

For l > 0 the value h(x,y)f(u,v)gλ = − 4
m(x2 + y2) is always nonsingular so that

(2.13) is an index 3 problem. ¤
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2.3 The tractability index

In definition 2.4 the function f is assumed to be smooth enough to calculate the
derivatives (2.5). In applications this smoothness is often not given. For instance in
circuit simulation input signals are continuous but often not differentiable.
In this section we want to study the tractability index introduced by Griepentrog,
März [13]. In fact we consider the generalization of the tractability index proposed
by März [25]. The idea is to replace the smoothness requirements for the coefficients
by the requirement on certain subspaces to be smooth.
To define the tractability index we introduce linear DAEs with properly stated
leading terms. A second matrix D(t) is used when formulating the DAE as

A(t)
(
D(t)x(t)

)′ + B(t)x(t) = q(t). (2.14)

In contrast to the standard formulation

E(t)x(t)′ + F (t)x(t) = q(t) (2.15)

the leading term in (2.14) precisely figures out which derivatives are actually in-
volved.
The formulation (2.14) was first used in [1] to study linear DAEs and their adjoint
equations. For (2.15) the adjoint equation

(E∗y)′ − F ∗y = p

is of a different type. For the more general formulation (2.14) the adjoint equation
fits nicely into this general form:

D∗(A∗y)′ −B∗y = p.

In this section we consider linear DAEs (2.14) with matrix coefficients

A ∈ C
(
I, L(Rn,Rm)

)
, D ∈ C

(
I, L(Rm,Rn)

)
, B ∈ C

(
I, L(Rm)

)
.

Neither A nor D needs to be a projector function. Note that A(t) and D(t) are
rectangular matrices in general. However, A and D are assumed to be well matched
in the following sense.

Definition 2.9 The leading term of (2.14) is properly stated if

kerA(t)⊕ im D(t) = Rn, t ∈ I,

and there is a continuously differentiable projector function R ∈ C1
(
I, L(Rn)

)
with

im R(t)=imD(t), kerR(t)=kerA(t) t ∈ I.

By definition A(t) and D(t) have a common constant rank if the leading term is
properly stated [25].

Definition 2.10 A function x : I → Rm is said to be a solution of (2.14) if

x ∈ C1
D(I,Rm) = {x ∈ C(I,Rm) |Dx ∈ C1(I,Rn)}

satisfies (2.14) pointwise.

Let us point out that a solution x is a continuous function, but the part Dx : I → Rn

is differentiable.
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We now define a sequence of matrix functions and possibly time-varying subspaces.
All relations are meant pointwise for t ∈ I. Let G0 = AD, B0 = B and for i ≥ 0

Ni = kerGi,

Si = { z ∈ Rm |Biz ∈ imGi } = { z ∈ Rm |Bz ∈ imGi },
Qi = Q2

i , im Qi = Ni, Pi = I −Qi,

Gi+1 = Gi + BiQi,

Bi+1 = BiPi −Gi+1D
−C ′

i+1DP0 · · ·Pi,

Ci+1 = DP0 · · ·Pi+1D
−.





(2.16)

Here, D− : I → L(Rn,Rm) denotes the reflexive generalized inverse of D such that

DD−D = D, D−DD− = D−, DD− = R, D−D = P0. (2.17)

Note that D− is uniquely determined by (2.17) and depends only on the choice of
Q0. Section 2.3.1 contains more details about generalized matrix inverses.

Definition 2.11 The DAE (2.14) with properly stated leading term is said to be a
regular DAE with tractability index µ on the interval I if there is a sequence (2.16)
such that

• Gi has constant rank ri on I,

• Qi ∈ C
(
I, L(Rm)

)
, DP0 · · ·PiD

− ∈ C1
(
I, L(Rn)

)
, i ≥ 0,

• Qi+1Qj = 0, j = 0, . . . , i, i ≥ 0,

• 0 ≤ r0 ≤ · · · ≤ rµ−1 < m and rµ = m.

(2.14) is said to be a regular DAE if it is regular with some index µ.

This index criterion does not depend on the special choice of the projector functions
Qi [28]. As proposed in [24] the sequence (2.16) can be calculated automatically.
Thus the index can be calculated without the use of derivative arrays [27].

Example 2.12 Consider the DAE
(

t
1

) ((−1 t
) (

x1(t)
x2(t)

))′
+

(
1 −t
0 0

) (
x1(t)
x2(t)

)
= 0

taken from [25]. With kerA(t) = {0}, imD(t) = R the leading term is properly
stated. Calculate

G0(t) = A(t)D(t) =
(−t t2

−1 t

)
and N0(t) = { z ∈ R2 | ∃ α ∈ R, z = α ( t

1 ) }

to find that N0(t) ⊂ kerB(t). Independently of the choice of Q0 in (2.16) we have

G1(t) = G0(t) + B(t)Q(t) = G0(t).
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Similarly it follows that Gi(t) = G0(t) for every i ≥ 0. This is not a regular DAE in
the sense of definition 2.11. Note that for every γ ∈ C(I,R) a solution is given by
x(t) = γ(t) ( t

1 ). Solutions are therefore not uniquely determined. This is the case
in spite of the fact that for every t the local matrix pencil λAD + (B + AD′) of the
reformulated DAE

0 = A(t)D(t)x′(t) +
(
B(t) + A(t)D′(t)

)
x(t) =

(−t t2

−1 t

)
x′(t) + x(t)

is regular. ¤

The following lemma shows that definition 2.11 is indeed a generalization of the
Kronecker index, i.e. in the case of constant coefficients, the Kronecker index and
the tractability index for regular DAEs coincide. To show this, define the subspaces

SEF = {z ∈ Rm | F z ∈ im E}, NE = kerE.

for given matrices E, F ∈ L(Rm). Obviously for fixed t ∈ I we have Ni(t) = NGi(t)

and Si(t) = SGi(t)Bi(t) in sequence (2.16).

Lemma 2.13 For matrices E, F ∈ L(Rm) the following statements are equivalent:

1◦ NE ∩ SEF = {0}
2◦ For every projector QE onto NE the matrix E + F QE is nonsingular.

3◦ NE ⊕ SEF = Rm

4◦ (E, F ) form a regular matrix pencil with Kronecker index 1.

Proof: (1◦ ⇒ 2◦) (E + FQE)z = 0 implies QEz ∈ SEF . Since QEz ∈ NE too,
we have QEz ∈ NE ∩ SEF = {0} and QEz = 0. Thus 0 = Ez + FQEz = Ez and
z ∈ NE = imQE . Therefore z = QEz = 0.
(2◦ ⇒ 3◦) GEF = E + FQE is nonsingular. Show that Q∗ = QEG−1

EF F is the
projector onto NE along SEF .
(3◦ ⇒ 4◦) There is exactly one projector Q∗ onto NE along SEF . Since 3◦ ⇒ 1◦ ⇒
2◦, we find Q∗ = Q∗G−1

EF F with GEF = E + FQ∗. Let P∗ = I −Q∗.
Show that λE+F is nonsingular for λ 6∈ spec(P∗G−1

EF F ) so that (E, F ) form a regular
matrix pencil. Due to theorem 2.2 there are nonsingular matrices U, V ∈ GLR(m)
such that

V E U =
(

I
N

)
= Ē, V F U =

(
C

I

)
= F̄ .

It follows that NĒ = ker Ē = U−1NE and SĒF̄ = {z ∈ Rm | F̄ z ∈ im Ē}= U−1SEF

so that

NĒ ∩ SĒF̄ = U−1(NE ∩ SEF ) = {0}. (2.18)

On the other hand

NĒ = {( z1
z2 ) ∈ Rm|z1 = 0, z2 ∈ kerN} and

SĒF̄ = {( z1
z2 ) ∈ Rm| ( C z1

z2

) ∈ im Ē} = {( z1
z2 ) ∈ Rm | z2 ∈ im N},
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meaning that imN ∩ kerN = {0} and N = 0. Thus the Kronecker index is 1.
(4◦ ⇒ 1◦) Kronecker index 1 gives N = 0 and SĒF̄ = {0}, NĒ ∩ SĒF̄ = {0}. Use
(2.18) to see NE ∩ SEF = U(NĒ ∩ SĒF̄ ) = {0}. ¤

As in the previous section we now want to calculate the index of the DAEs modelling
the electrical circuits in figure 1.2 and 1.3.

Example 2.14 For (1.6) we calculate G0 =
(

0 0 0
0 C 0
0 0 0

)
and N0 = R×{0}×R. Choose

Q0 =
(

1 0 0
0 0 0
0 0 1

)
to find that G1 =

( G 0 −1
−G C 0
−1 0 0

)
is nonsingular. For the circuit in figure

1.2 we therefore have index 1. ¤

Example 2.15 Equation (1.8) can be written as



0
0
L





(

0 0 1
)



e1

e2

iL






′

+




G −G 0
−G G 1
0 −1 0







e1

e2

iL


 =




i(t)
0
0


 (1.8’)

leading to G0 =
(

0 0 0
0 0 0
0 0 L

)
, N0 = R × R × {0}. With Q0 =

(
1 0 0
0 1 0
0 0 0

)
it turns out that

G1 =
(

G 0 0
−G G 0
0 −1 L

)
is singular and N1 = { z ∈ R3 | ∃ α ∈ R, z1 = z2 = αL, z3 = α }.

Q1 =
(

0 0 L
0 0 L
0 0 1

)
is a projector onto N1 satisfying Q1Q0 = 0. Finally G2 =

(
G −G 0
−G G 1
0 −1 L

)

is nonsingular. Thus the index is 2. Note that the terms C ′
i+1 dissappear in (2.16)

as Q0 does not depend on t. ¤

Nevertheless, in general the derivatives of Ci+1 appearing in the definition of Bi+1

in sequence (2.16) are necessary in order to determine the index correctly. We will
illustrate this in the next example which can be found in [25] as well.

Example 2.16 The DAE

x′2 = q1 − x1 = f(x1) (2.19a)
x′3 = q2 − (1 + η)x2 − ηt(q1 − x1) = g(x1, x2, x3) (2.19b)
0 = q3 − ηtx2 − x3 = h(x2, x3) (2.19c)

is easily checked to have (differentiation) index 3 as repeated differentiation of (2.19c)
yields

0 = q′3 − q2 + x2

0 = q′′3 − q′2 + q1 − x1

x′1 = q′′′3 − q′′2 + q′1.

The index does not depend on the value of η. We now write (2.19) as



1 0
ηt 1
0 0







(
0 1 0
0 0 1

) 


x1

x2

x3






′

+




1 0 0
0 1 + η 0
0 ηt 1







x1

x2

x3


 =




q1

q2

q3


 (2.19’)
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with a properly stated leading term and calculate the sequence (2.16)

G0 =
(

0 1 0
0 ηt 1
0 0 0

)
, Q0 =

(
1 0 0
0 0 0
0 0 0

)
, G1 =

(
1 1 0
0 ηt 1
0 0 0

)
, Q1 =

(
0 −1 0
0 1 0
0 −ηt 0

)
,

G2 =
(

1 1 0
0 ηt+1 1
0 0 0

)
, Q2 =

(
0 ηt 1
0 −ηt −1
0 ηt(ηt+1) ηt+1

)
, G3 =

( 1 1 0
0 ηt+1 1
0 ηt 1

)
.

Since detG3 = 1, (2.19’) is a regular DAE with index 3 independently of η. However,
if we dropped the terms Ci+1 in (2.16) and defined Gi+1 = Gi + BiQi, Bi+1 = BiPi

with G0 = AD and B0 = B we would obtain

G2 =
(

1 1 0
0 ηt+1+η 1
0 0 0

)
, Q2 = 1

1+η

(
0 ηt 1
0 −ηt −1
0 (ηt+1+η)ηt ηt+1+η

)
, G3 =

( 1 1 0
0 ηt+1+η 1
0 η∗t 1

)
.

detG3 = 1 + η shows that G3 is singular for η = −1. Thus the use of the simpler
version of Bi would lead to an index criterion not recognizing the index properly. ¤

The previous example gives rise to investigating the relationship between Gi and Gi

further. Due to GiPi = Gi the matrix Gi+1 may be written as

Gi+1 =
(
Gi + Bi−1Pi−1Qi

)(
I − PiD

−C ′
iDP0 · · ·Pi−1Qi

)
.

For low indices we thus find

G0 = G0, G1 = G1, G2 = G2

(
I − P1D

−C ′
1DP0Q1

)

with the nonsingular factor I − P1D
−C ′

1DP0Q1. The matrices G2 and G2 have
therefore common rank and we had to choose an index 3 example in 2.16 to show
the necessity of the second term in the definition of Bi+1.

We don’t have to restrict ourselves to linear DAEs (2.14). Nonlinear DAEs

A
(
x(t), t

)(
d(x, t), t

)′ + b
(
x(t), t

)
= 0 (2.20)

can also be considered. For (2.20) the index µ is defined in such a way that all
linearizations along solutions have the same index µ in the sense of definition 2.11.
The index 1 case is studied extensively in [16]. We have already made use of this
approach when investigating the transistor amplifier example in section 1.3. More
information on nonlinear DAEs can be found in [27, 29].

2.3.1 Some technical details

In order to define the sequence (2.16) we introduced the generalized reflexive inverse
D− of D. Here we want to provide a short summary of the properties of generalized
matrix inverses [41].
For a rectangular matrix M ∈ L(Rm,Rn), a matrix M̃ ∈ L(Rn,Rm) is called a
generalized inverse of M if

M̃MM̃ = M̃.
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If the condition

MM̃M = M

holds as well, then M̃ is called a reflexive generalized inverse of M . Observe that
for any reflexive generalized inverse M̃ of M the matrices

(MM̃)2 = MM̃MM̃ = MM̃, (M̃M)2 = M̃MM̃M = M̃M

are projectors. Reflexive generalized inverses are not uniquely determined. Unique-
ness is obtained if we require MM̃ and M̃M to be special projectors. We could, for
instance, require them to be ortho-projectors

(MM̃)T = MM̃, (M̃M)T = M̃M.

In this case M̃ is called the Moore-Penrose inverse of M , often denoted by M+.
In the case of DAEs with properly stated leading terms we appropriated the pro-
jectors P0(t) ∈ L(Rm) and R(t) ∈ L(Rn) to determine D−(t) ∈ Rn,Rm) uniquely.
D−(t) is the reflexive generalized inverse of D(t) defined by

DD−D = D, D−DD− = D−, DD− = R, D−D = P0. (2.21)

If there was another generalized inverse D̃− satisfying (2.21), then

D̃− = D̃−DD̃− = D̃−R = D̃−DD− = P0DD− = D−DD− = D−.

In definition 2.11 the condition

Qi+1Qj = 0, j = 0, . . . , i, i ≥ 0 (2.22)

is required. We will show briefly that the projectors Qi in sequence (2.16) can always
be chosen to satisfy (2.22).
If for a given DAE (2.14) there was an index i∗ such that Ni∗+1 ∩Ni∗ 6= {0}, then
(2.14) would not be a regular DAE as all Gi would be singular. Thus N0∩N1 = {0}
is a necessary condition for a regular DAE and the projector Q1 onto N1 can be
chosen such that N0 ⊂ kerQ1.
For an index i ≥ 1 let the projectors Qj for j = 1, . . . , i satisfy QjQk = 0, k =
0, . . . , j − 1. Then Ni+1 ∩ Ni = {0} implies Ni+1 ∩ Nj = {0} for j = 1, . . . , i and
Qi+1 can be chosen such that N0 ⊕N1 ⊕ · · · ⊕Ni ⊂ kerQi+1.

2.4 Other index concepts

As seen in the previous sections a DAE can be assigned an index in several ways. In
the case of linear equations with constant coefficients all index notions coincide with
the Kronecker index. Apart from that, each index definition stresses different aspects
of the DAE under consideration. While the differentiation index aims at finding
possible reformulations in terms of ordinary differential equations, the tractability
index is used to study DAEs without the use of derivative arrays.
There are several other index concepts available. Here we want to introduce some
of them briefly.
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2.4.1 The perturbation index

The perturbation index was introduced for nonlinear DAEs

f(x′(t), x(t)) = 0 (2.23)

by Hairer, Lubich and Roche in [14]. (2.23) has perturbation index µ along a solution
x on I = [0, T ] if µ is the smallest integer such that, for all functions x̂ having a
defect

f(x̂′(t), x̂(t)) = δ(t),

there exists on I an estimate

‖x̂(t)− x(t)‖ ≤ C
(‖x̂(0)− x(0)‖+ max

0≤ξ≤t
‖δ(ξ)‖+ · · ·+ max

0≤ξ≤t
‖δµ−1(ξ)‖)

whenever the expression on the right-hand side is sufficiently small. Here C denotes
a constant which depends only on f and the length of I.

The perturbation index measures the sensitivity of solutions with respect to pertur-
bations of the given problem [15].

2.4.2 The geometric index

Here we present the geometric index as it is introduced in [38]. Consider the au-
tonomous DAE

f(x′, x) = 0 (2.24)

and assume that M0 = f−1(0) is a smooth submanifold of Rm×Rm. Then the DAE
(2.24) can be written as

(x′, x) ∈ M0.

Each solution has to satisfy x ∈ W0 = π(M0), where π : Rm × Rm → Rm is the
canonical projection onto the second component. If W0 is a submanifold of Rm, then
(x′, x) belongs to the tangent bundle TW0 of W0. In other words

(x′, x) ∈ M1 = M0 ∩ TW0.

M1 is called the first reduction of M0. Iterate this process to obtain a sequence
M0,M1,M2, . . . of manifolds where Mi+1 is the first reduction of Mi and

(x′, x) ∈
⋂

i≥0

Mi.

The geometric index is defined as the smallest integer µ such that Mµ = Mµ+1. This
index notion was introduced in [33] and studied extensively in [31] by Rabier and
Rheinboldt.
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2.4.3 The strangeness index

This index notion is a generalization of the Kronecker index to DAEs

E(t)x′(t) + F (t)x(t) = q(t), t ∈ I ⊂ R, (2.25)

with time-dependent coefficients. It is due to Kunkel and Mehrmann [22]. The
matrices U and V in theorem 2.2 now depend on t, i.e. (2.25) is transformed to

UEV y′ +
(
UFV − UEV ′)y = Uq ⇔ Êy′ + F̂ y = q̂.

The pairs of matrix functions (E,F ) and (Ê, F̂ ) are said to be globally equivalent.
For fixed t ∈ I define matrices T (t), T̂ (t), Z(t) and V (t) such that the column
vectors of T (t), T̂ (t), Z(t) and V (t) span the subspaces kerE(t), imET , kerET and
im(Z(t)T N(t)T (t))⊥, respectively. Use these matrices to define

r(t) = rankE(t), d(t) = r(t)− s(t),

a(t) = rank
(
Z(t)T N(t)T (t)

)
, u(t) = m− r(t)− a(t)− s(t),

s(t) = rank
(
V (t)T Z(t)T N(t)T̂ (t)

)
.

We assume that the functions r, s and a are constant on I. Then (E, F ) is globally
equivalent to the pair




(
0 0 0 0 0
0 Id 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
,




0 F12 0 F14 F15
0 0 0 F24 F25
0 0 Ia 0 0
Is 0 0 0 0
0 0 0 0 0





 = (E1, F1).

The proof can be found in [21]. The value s is called the strangeness of the pair
(E,F ). Denote (E, F ) by (E0, F0) and s0 = s. Similarly we define the strangeness
s1 of the pair (E1, F1). If we repeat the procedure described above, we arrive at a
sequence of globally equivalent pairs (Ei, Fi), i ≥ 0, each having strangeness si. The
strangeness index or s-index is then defined by

µ = min{ i = 0, 1, 2, . . . | si = 0 }.

Relations between the tractability index and the strangeness index are given in [36].
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3 Solvability of linear DAEs
with properly stated leading term

In this section we consider linear differential-algebraic equations

A(t)
(
D(t)x(t)

)′ + B(t)x(t) = q(t), t ∈ I (3.1)

with properly stated leading terms as in definition 2.9. A, B and D are continuous
matrix functions with

D(t) ∈ L(Rm,Rn), A(t) ∈ L(Rn,Rm)

B(t) ∈ L(Rm,Rm), q(t) ∈ Rm

A function x : I → Rm is said to be a solution of (3.1) if

x ∈ C1
D(I,Rm) = {x ∈ C(I,Rm) |Dx ∈ C1(I,Rn)}

satisfies (3.1) pointwise.
As in the previous section we define for t ∈ I pointwise G0 = AD, B0 = B and
for i ≥ 0

Ni = kerGi,

Si = { z ∈ Rm |Biz ∈ imGi } = { z ∈ Rm |Bz ∈ imGi },
Qi = Q2

i , im Qi = Ni, Pi = I −Qi,

Gi+1 = Gi + BiQi,

Bi+1 = BiPi −Gi+1D
−C ′

i+1DP0 · · ·Pi,

Ci+1 = DP0 · · ·Pi+1D
−.





(3.2)

D− is again the reflexive generalized inverse of D from section 2.3.

For completeness we repeat the definition of index µ from the previous section.

Definition 3.1 The DAE (3.1) with properly stated leading term is said to be a
regular DAE with tractability index µ on the interval I if there is a sequence (3.2)
such that

• Gi has constant rank ri on I,

• Qi ∈ C
(
I, L(Rm)

)
, DP0 · · ·PiD

− ∈ C1
(
I, L(Rn)

)
, i ≥ 0,

• Qi+1Qj = 0, j = 0, . . . , i, i ≥ 0,

• 0 ≤ r0 ≤ · · · ≤ rµ−1 < m and rµ = m.

(3.1) is said to be a regular DAE if it is regular with some index µ.

The material presented here is mainly taken from [25], [1] and [26].
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3.1 Decoupling of linear index-1 DAEs

Let (3.1) be a regular index 1 DAE with properly stated leading term. Due to
definition 3.1 the Matrix G1 is nonsingular.

Lemma 3.2 The matrices of sequence (3.2) satisfy

(a) P0 =D−D, P0D
−=D−, DP0 =D, DP0D

−=DD−=R,

(b) RD = DD−D = D,

(c) A = AR = ADD−,

(d) Q0 = G−1
1 BQ0,

(e) P0 = G−1
1 AD,

(f) P0x = P0y ⇔ DP0x = DP0y ⇔
(a)

Dx = Dy.

Proof: (a) and (b) are just the properties of the generalized reflexive inverse
D−. Remember that R ∈ C1

(
I, L(Rn)

)
is the smooth projector function realizing

the decomposition kerA(t)⊕ im D(t) = Rn provided by the properly stated leading
term. kerA = kerR implies (c). G1Q0 =ADQ0+BQ2

0 =BQ0 proves (d). Similarly
G1P0 = ADP0 + BQ0P0 = AD shows (e). For (f) we only have to show “⇐”. If
DP0z = 0 then P0z ∈ kerD = kerAD = kerP0 and thus P0z = 0.
kerD=kerAD holds due to the properly stated leading term. ¤

Let’s assume that x is a solution of the DAE (3.1). Scaling with G−1
1 yields

A
(
Dx

)′ + Bx = q ⇔ G−1
1 A

(
Dx

)′ + G−1
1 Bx = G−1

1 q. (3.3)

Note that

• G−1
1 A

(
Dx

)′ =
(c)

G−1
1 AR

(
Dx

)′ = G−1
1 ADD−(

Dx
)′ =

(e)
P0D

−(
Dx

)′,

• G−1
1 Bx = G−1

1 BP0x + G−1
1 BQ0x =

(d)
G−1

1 BP0x + Q0x.

Thus multiplication of (3.3) by P0 and Q0 from the left shows that

A
(
Dx

)′ + Bx = q ⇔ G−1
1 A

(
Dx

)′ + G−1
1 Bx = G−1

1 q

⇔
{

P0D
−(

Dx
)′ + P0G

−1
1 BP0x = P0G

−1
1 q

Q0G
−1
1 BP0x + Q0x = Q0G

−1
1 q

}

⇔
(f)

{
DP0D

−(
Dx

)′+DP0G
−1
1 BP0x = DP0G

−1
1 q

Q0G
−1
1 BP0x + Q0x = Q0G

−1
1 q

}

⇔
(a)

{
R

(
Dx

)′ + DG−1
1 BP0x = DG−1

1 q

Q0G
−1
1 BP0x + Q0x = Q0G

−1
1 q

}

⇔
(b)

{ (
Dx

)′ −R′Dx+ DG−1
1 BP0x = DG−1

1 q

Q0G
−1
1 BP0x + Q0x = Q0G

−1
1 q

}

⇔
(a)

{ (
Dx

)′ = R′(Dx)−DG−1
1 BD−(Dx) + DG−1

1 q

Q0x = −Q0G
−1
1 BD−(Dx) + Q0G

−1
1 q

}
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Every solution x can therefore be written as

x = P0x + Q0x = D−(Dx) + Q0x = D−(Dx)−Q0G
−1
1 BD−(Dx) + Q0G

−1
1 q

= (I −Q0G
−1
1 B)D−u + Q0G

−1
1 q (3.4)

where u = Dx is a solution of the ODE

u′ = R′u−DG−1
1 BD−u + DG−1

1 q. (3.5)

Definition 3.3 The explicit ordinary differential equation (3.5) is called the inher-
ent regular ODE of the index-1 equation (3.1).

Lemma 3.4 (i) im D is a (time varying) invariant subspace of (3.5).

(ii) (3.5) is independent of the choice of Q0.

Proof:

(i) Because of imD = imR = ker(I −R) multiplication of (3.5) by I −R gives

(I −R)u′ = (I −R)R′u = −(I −R)′Ru

and v = (I −R)u satisfies the ODE v′ = (I −R)′v.
If there is t∗ ∈ I such that u(t∗) = R(t∗)u(t∗) ∈ im D(t∗), then v(t∗) = 0. This
means v(t) = 0 and thus u(t) = R(t)u(t) for every t.

(ii) Let Q̂0 be another projector with im Q̂0 = N0 and let P̂0, D̂− be defined as
in (2.16). Then Ĝ1 = G1(I + Q0Q̂0P0) implies Ĝ−1

1 = (I −Q0Q̂0P0)G−1
1 and

DĜ−1
1 = DG−1

1 . Finally note that

DĜ−1
1 BD̂− =

(a)
DĜ−1

1 BP̂0D
− = DĜ−1

1 BD− −DĜ−1
1 BQ̂0D

−

=
(d)

DG−1
1 BD− −DQ̂0D

− = DG−1
1 BD−. ¤

The decoupling procedure above and lemma 3.4 enable us to prove existence and
uniqueness of solutions for the index 1 DAE (3.1).

Theorem 3.5 Let (3.1) be a regular index 1 DAE. For each d ∈ im D(t0), t0 ∈ I,
the initial value problem

A(t)
(
D(t)x(t)

)′ + B(t)x(t) = q(t), D(t0)x(t0) = d (3.6)

is uniquely solvable in C1
D(I,Rm).

Proof: There is exactly one solution u ∈ C1(I,Rm) of the inherent ODE

u′ = R′u−DG−1
1 BD−u + DG−1

1 q

satisfying the initial condition u(t0) = d. Lemma 3.4 shows that u(t) = R(t)u(t) for
every t. Therefore

x = (I −Q0G
−1
1 B)D−u + Q0G

−1
1 q ∈ C1

D(I,Rm)

is a solution of (3.6) satisfying Dx = u. The decoupling process shows the unique-
ness. ¤
Note that the initial condition D(t0)x(t0) = d for d ∈ imD(t0) can be replaced by
D(t0)x(t0) = D(t0)x0, x0 ∈ Rm.
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3.2 Decoupling of linear index-2 DAEs

We now want to repeat the same argument for linear index 2 differential-algebraic
equations. We assume that (3.1) is an index 2 DAE with properly stated leading
term. Due to definition 3.1 and lemma 2.13 we have N1(t) ⊕ S1(t) = Rm. In this
section we choose Q1 to be the canonical projector onto N1 along S1. Lemma 2.13
also implies Q1Q0 = Q1G

−1
2 B1Q0 = 0 as required in definition 3.1.

For the sequence (3.2) to make sense we have to assume DP1D
− ∈ C1

(
I, L(Rn)

)
.

Then DQ1D
− = −DP1D

− + DD− = −DP1D
− + R is also smooth. Note that

DQ1D
− and DP1D

− are projector functions.

In addition to (a), (b), (c) and (f) from lemma 3.2 we now have

Lemma 3.6

(g) Q1 = Q1G
−1
2 B1,

(h) G−1
2 AD = P1P0,

(i) G−1
2 B = G−1

2 BP0P1 + P1D
−(DP1D

−)′DQ1 + Q1 + Q0,

(j) Q1x = Q1y ⇔ DQ1x = DQ1y,

(k) ΩΩ′Ω = 0 for every projector function Ω ∈ C1
(
I, L(Rn)

)
.

Proof: (g) follows from lemma 2.13, (h) can be proved similar to (e) in lemma
3.2, but (i) is a consequence of B = BP0 + BQ0 = BP0P1 + BP0Q1 + BQ0 and

G2Q0 = BQ0, G2Q1 = B1Q1, BP0Q1 = B1Q1 + G2P1D
−(DP1D

−)′DQ1.

To show (j) assume that DQ1z = 0. Then Q1z ∈ kerD = kerP0 and Q1z = Q2
1z =

Q1P0Q1z = 0.
Finally 0 = (I − Ω)Ω implies 0 = (I − Ω)′Ω + (I − Ω)Ω′ = −Ω′Ω + (I − Ω)Ω′. ¤

In order to decouple (3.1) in the index 2 case we again assume that x is a solution
of the DAE. Since G2 is nonsingular, we find

A
(
Dx

)′ + Bx = q ⇔ G−1
2 A

(
Dx

)′ + G−1
2 Bx = G−1

2 q (3.7)

⇔ P1D
−(

Dx
)′+G−1

2 BP0P1x+P1D
−(DP1D

−)′DQ1x+Q1x+Q0x=G−1
2 q

using (a), (c), (h) and (i). Due to I = P1 + Q1 = P0P1 + Q0P1 + Q1 we can
decouple (3.7) by multiplying with P0P1, Q0P1 and Q1 respectively. (3.1) is therefore
equivalent to the system

P0P1D
−(Dx)′+P0P1G

−1
2 BP0P1x+P0P1D

−(DP1D
−)′DQ1x=P0P1G

−1
2 q, (3.8a)

Q0P1D
−(

Dx
)′ + Q0P1G

−1
2 BP0P1x

+Q0P1D
−(DP1D

−)′DQ1x + Q0x=Q0P1G
−1
2 q, (3.8b)

Q1G
−1
2 BP0P1x + Q1x=Q1G

−1
2 q. (3.8c)
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With (a) and (f) equation (3.8a) takes the form

DP1D
−(

Dx
)′ + DP1G

−1
2 BP0P1x + DP1D

−(DP1D
−)′DQ1x = DP1G

−1
2 q.

Use the product rule of differentiation to find

DP1D
−(

Dx
)′ = (

DP1x
)′ − (

DP1D
−)′(Dx).

On the other hand

DP1D
−(DP1D

−)′DQ1 = (DP1D
−)′DQ1

as (DP1D
−)′DP1P0Q1 = 0, so that (3.8a) is equivalent to

(
DP1x

)′ − (
DP1D

−)′(DP1x) + DP1G
−1
2 BD−(DP1x) = DP1G

−1
2 q. (3.8a’)

A similar analysis involving (g), (j) and (k) from lemma 3.6 yields

−Q0Q1D
−(

DQ1x
)′ + Q0Q1D

−(DQ1D
−)′(DP1x)

+Q0P1G
−1
2 BD−(DP1x) + Q0x = Q0P1G

−1
2 q, (3.8b’)

DQ1x = DQ1G
−1
2 q. (3.8c’)

Each solution x of (3.1) can thus be written as

x = P0x + Q0x = D−Dx + Q0x

= D−(DP1x + DQ1x) + Q0x (3.9)

= KD−u−Q0Q1D
−(DQ1D

−)′u+(Q0P1+P0Q1)G−1
2 q+Q0Q1D

−(DQ1G
−1
2 q)′

where

K = I −Q0P1G
−1
2 B

and u = DP1x satisfies the ordinary differential equation

u′ − (
DP1D

−)′
u + DP1G

−1
2 BD−u = DP1G

−1
2 q.

As in the index 1 case this ODE will be referred to as the inherent regular ODE.

Definition 3.7 The explicit ordinary differential equation

u′ =
(
DP1D

−)′
u−DP1G

−1
2 BD−u + DP1G

−1
2 q (3.10)

is called the inherent regular ODE of the index 2 equation (3.1).

For the index 2 case we now prove the lemma corresponding to lemma 3.4 from the
previous section.

Lemma 3.8 (i) im DP1 is a (time varying) invariant subspace of (3.10).

(ii) (3.10) is independent of the choice of Q0 and thus uniquely determined by the
problem data.
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Proof: To prove (i), carry out a similar analysis as in the proof of lemma 3.4 but
with R replaced by DP1D

−. To see (ii) consider another projector Q̂0 with im Q̂0 =
N0 and the relation Ĝ1 = G1(I + Q0Q̂0P0). The subspaces N̂1 = (I − Q0Q̂0P0)N1

and Ŝ1 = S1 are given in terms of N1 and S1 so that Q̂1 = (I + Q0Q̂0P0)Q1 is the
canonical projector onto N̂1 along Ŝ1. This implies DP̂1D̂

− = DP1D
−. Use the

representation

Ĝ−1
2 =

(
I + Q0P̂0P1P0

)
G−1

2

to see that DP1G
−1
2 and DP1G

−1
2 BD− are independent of the choice of Q0. ¤

As in the previous section we are now able to prove existence and uniqueness of
solutions for regular index 2 DAEs with properly stated leading terms. We make
use of the function space

C1
DQ1G−1

2

(
I,Rm

)
= { z ∈ C(I,Rm) | DQ1G

−1
2 z ∈ C1(I,Rn) }.

Theorem 3.9 Let (3.1) be a regular index 2 DAE with q ∈ C1
DQ1G−1

2

(
I,Rm

)
. For

each d ∈ imD(t0)P1(t0), t0 ∈ I, the initial value problem

A(t)
(
D(t)x(t)

)′ + B(t)x(t) = q(t), D(t0)P1(t0)x(t0) = d (3.11)

is uniquely solvable in C1
D(I,Rm).

Proof: Solve the inherent regular ODE (3.10) with initial value u(t0) = d.
Lemma 3.8 yields u(t) ∈ imD(t)P1(t) for every t and

x = KD−u−Q0Q1D
−(DQ1D

−)′u+(Q0P1+P0Q1)G−1
2 q+Q0Q1D

−(DQ1G
−1
2 q)′

is the desired solution of (3.11). ¤
The initial condition D(t0)P1(t0)x(t0) = d can be replaced by D(t0)P1(t0)x(t0) =
D(t0)P1(t0)x0 for x0 ∈ Rm.

3.3 Remarks

In sections 1.3 and 1.4 we presented examples of nonlinear differential-algebraic
equations f

(
(Dx)′, x, t

)
= 0, where the solution could be expressed as

x(t) = D(t)−u(t) + Q(t)ω(u(t), t), t ∈ I.

u was the solution of

u′(t) = R′(t)u(t) + D(t)ω
(
u(t), t

)
, u(t0) = D(t0)x0 (3.12)

and ω was implicitly defined by

F (ω, u, t) = f
(
Dω, D−u + Qω, t

)
= 0.

The ordinary differential equation (3.12) is thus only available theoretically.
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In this section we made use of the sequence (3.2) established in the context of the
tractability index in order to perform a refined analysis of linear DAEs with properly
stated leading terms. We were able to find explicit expressions of (3.12) for these
equations with index 1 and 2.
This detailed analysis lead us to results about existence and uniqueness of solutions
for DAEs with low index. We were able to figure out precisely what initial conditions
are to be posed, namely D(t0)x(t0) = D(t0)x0 and D(t0)P1(t0)x(t0) = D(t0)P1(t0)x0

in the index 1 and index 2 case respectively.
These initial conditions guarantee that solutions u of the inherent regular ODE (3.5)
and (3.10) lie in the corresponding invariant subspace. Let us stress that only those
solutions of the regular inherent ODE that lie in the invariant subspace are relevant
for the DAE. Even if this subspace varies with t we know the dynamical degree of
freedom to be rankG0 and rankG0 +rankG1−m for index 1 and 2 respectively
[25].
The results presented can be generalized for arbitrary index µ. The inherent reg-
ular ODE for an index µ DAE with properly stated leading term is given in [25].
There it is also proved that the index µ is invariant under linear transformations
and refactorizations of the original DAE and the inherent regular ODE remains
unchanged.
Finally let us point out that we assumed A, D and B to be continuous only. The
required smoothness of the coefficients in the standard formulation

Ex′ + Fx = q (3.13)

was replaced by the requirement on certain subspaces to be spanned by smooth
functions. Namely, the projectors R, DP1D

− and DQ1D
− are differentiable if DN1

and DS1 are spanned by continuously differentiable functions [1].
However, if the DAE

A(Dx)′ + Bx = q (3.14)

is given with smooth coefficients and we orient on C1-solutions, then comparisons
with concepts for (3.13) can be made via

ADx′ + (B −AD′)x = q.

On the other hand, if E has constant rank on I and PE ∈ C1
(
I, L(Rm)

)
is a projector

function onto kerE, we can reformulate (3.13) as

E(PEx)′ + (F − EP ′
E)x = q

with a properly stated leading term.
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4 Numerical methods for linear DAEs
with properly stated leading term

The last part is devoted to studying the application of numerical methods to linear
DAEs of index µ = 1 and µ = 2. From the previous section we know that (3.4) and
(3.9) are representations of the exact the solution, respectively. In fact, it turns out
that (3.4) is just a special cases of (3.9). To see this, observe that for µ = 1 the
matrix G1 is nonsingular so that Q1 = 0, P1 = I and G2 = G1. We therefore treat
index 1 and index 2 equations simultaneously in this section.
We will show how to apply Runge-Kutta methods to DAEs

A(t)
(
D(t)x(t)

)′ + B(t)x(t) = q(t) (4.1)

with properly stated leading terms. Results presented here follow the lines of [17,
18, 26]. Runge-Kutta methods for DAEs are also studied in [14].

When using the s-stage Runge-Kutta method

c A
βT , A = (αij) ∈ L(Rs), c = Ae, β ∈ Rs, e = (1, . . . , 1)T ∈ Rs,

to solve an ordinary differential equation

x′(t) = F
(
x(t), t

)
(4.2)

numerically with stepsize h, an approximation xl−1 to the exact solution x(tl−1) is
used to calculate the approximation xl to x(tl) = x(tl−1 + h) via

xl = xl−1 + h

s∑

i=1

βiX
′
li (4.3a)

where X ′
li is defined by

X ′
li = F

(
Xli, tli

)
, i = 1, . . . , s, (4.3b)

and tli = tl−1 + cih are intermediate timesteps. The internal stages Xi are given by

Xli = xl−1 + h
s∑

j=1

αijX
′
lj . (4.3c)

Observe that (4.3a) and (4.3c) depend on the method and only (4.3b) depends on
the equation (4.2). If the ODE (4.2) is replaced by the DAE

f
(
x′(t), x(t), t

)
= 0

we also replace (4.3b) by

f
(
X ′

li, Xli, tli
)

= 0, i = 1, . . . , s (4.3b’)

in the Runge-Kutta scheme.
The matrix ∂f

∂x′ is singular. Therefore some components of the increments X ′
li need

to be calculated from (4.3c) as seen in the following trivial example.
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Example 4.1 If f(x′, x, t) = x − q(t), then x(t) = q(t). The numerical method
(4.3a), (4.3b’), (4.3c) now reads

xl = xl−1 + h
s∑

i=1

βiX
′
li, q(tli) = Xli = xl−1 + h

s∑

j=1

αijX
′
lj .

This system can be solved if and only if A is nonsingular. ¤

In the following, we always assume A to be nonsingular. This leads to an expression
of X ′

li in terms of Xlj .

Lemma 4.2 Let A = (αij) be nonsingular and A−1 = (α̃ij). Then

Xli =xl−1+h
s∑

j=1

αijX
′
lj , i=1,. . ., s ⇔ X ′

li =
1
h

s∑

j=1

α̃ij(Xlj−xl−1), i=1,. . ., s.

Proof: If ⊗ denotes the Kronecker product and em = (1, . . . , 1)T ∈ Rm then
(

Xl1···
Xls

)
=em⊗xl−1+h(A⊗Im)

(
X′

l1···
X′

ls

)
⇔

(
X′

l1···
X′

ls

)
=

1
h

(A−1⊗Im)
[(

Xl1···
Xls

)
−em⊗xl−1

]
¤

Now consider the linear DAE (4.1) with continuous matrix functions

A(t) ∈ L(Rn,Rm), D(t) ∈ L(Rm,Rn), B(t) ∈ L(Rm,Rm).

and a properly stated leading term.
When applying the numerical scheme (4.3a),(4.3b’),(4.3c) we don’t want to lose the
additional information provided by the properly stated leading term. According to
lemma 4.2 we therefore replace (4.3c) by

[DX]′li =
1
h

s∑

j=1

α̃ij(DljXlj −Dl−1xl−1) (4.3c’)

and solve the system

Ali[DX]′li + BliXli = qli, i = 1, . . . , s (4.3b’’)

for Xli. Here we write Dl−1 = D(tl−1), Dli = D(tli), Ali = A(tli) and so on. Using
this ansatz the output value

xl =xl−1+h
s∑

i=1

βi
1
h

s∑

j=1

α̃ij(Xlj−xl−1)=
(
1−βTA−1e

)
xl−1+

s∑

i=1

s∑

j=1

βiα̃ijXlj

is computed. For RadauIIA methods this expression simplifies considerably.

Definition 4.3 The s-stage RadauIIA method is uniquely determined by requiring
C(s), D(s), cs = 1 and choosing c1, . . . , cs−1 to be the zeros of the Gauss-Legendre
polynomial ps.

For the conditions C(s), D(s) see [3]. The Gauss-Legendre polynomial ps is or-
thogonal to every polynomial of degree less than s. RadauIIA methods are A- and
L-stable and have order p = 2s− 1. The last row of A coincides with βT [3, 15].
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Lemma 4.4 For the s-stage RadauIIA method 1−βTA−1e = 0 holds and the output
value computed by (4.3a), (4.3b’’), (4.3c), (4.3c’) is given by the last stage Xls.

Proof: 1− βTA−1e = 1− Zs(A)A−1e = 1− (0, . . . , 0, 1)e = 0 and

xl =
(
1−βTA−1e

)
xl−1 +

s∑

i=1

s∑

j=1

βiα̃ijXlj =
(
(0, . . . , 0, 1)⊗ Im

) (
Xl1···
Xls

)
= Xls. ¤

To summarize these results we present the following algorithm for solving the DAE
(4.1) using RadauIIA methods.

Algorithm 4.5 Given an approximation xl−1 to the exact solution x(tl−1) and a
stepsize h, solve

Ali[DX]′li + BliXli = qli, i = 1, . . . , s (4.3b’’)

for Xli where [DX]′li is given by

[DX]′li =
1
h

s∑

j=1

α̃ij(DljXlj −Dl−1xl−1). (4.3c’)

Return the output value xl = Xls as an approximation to x(tl) = x(tl−1 + h).

The exact solution x of (4.1) satisfies

x(t) ∈M0(t) = {z ∈ Rm |B(t)z − q(t) ∈ im
(
A(t)D(t)

)} ∀ t.

Since Xli ∈M0(tli) for every i and cs = 1 we have

xl = Xls ∈M0(tls) = M0(tl)

for every RadauIIA method. Thus the RadauIIA approximation satisfies the al-
gebraic constraint and RadauIIA methods are especially suited for solving DAEs
[14, 15].

4.1 Decoupling of the discretized equation

Algorithm 4.5 replaces the DAE

A(Dx)′ + Bx = q (4.1)

by the discretized problem

Ali[DX]′li + BliXli = qli, i = 1, . . . , s. (4.4)

As seen in section 3.2, the analytic solution x of index 1 and index 2 equations (4.1)
can be represented as

x = KD−u−Q0Q1D
−(DQ1D

−)′u+(Q0P1+P0Q1)G−1
2 q+Q0Q1D

−(DQ1G
−1
2 q)′ (4.5)
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where K = I − Q0P1G
−1
2 B and the component u = DP1x satisfies the inherent

regular ordinary differential equation

u′ − (
DP1D

−)′
u + DP1G

−1
2 BD−u = DP1G

−1
2 q. (4.6)

If we applied the Runge-Kutta method directly to the inherent regular ODE, due
to lemma 4.2 we would obtain

1
h

s∑

j=1

α̃ij

(
Ulj−ul−1

)−(
DP1D

−)′
li
Uli +

(
DP1G

−1
2 BD−)

Uli =
(
DP1G

−1
2 q

)
li

(4.7)

for i = 1, . . . , s. Our aim is to show that the Runge-Kutta method, when applied to
(4.1), behaves as if it was integrating the inherent regular ODE (4.6).
We start by repeating the decoupling procedure from section 3.2 for the discretized
equation (4.4). Doing so (4.4) is found to be equivalent to the system

(
DP1D

−)
li
[DX]′li +

(
DP1G

−1
2 BP0P1

)
li
Xli

+(DP1D
−)′liDliQ1,liXli =

(
DP1G

−1
2 q

)
li

−(
Q0Q1D

−)
li
[DX]′li +

(
Q0P1G

−1
2 BP0P1

)
li
Xli

+(Q0P1D
−)li(DP1D

−)′liDliQ1,liXli + Q0,liXli =
(
Q0P1G

−1
2 q

)
li

DliQ1,liXli =
(
DQ1G

−1
2 q

)
li





(4.8)

for i = 1, . . . , s. The decoupled system (4.8) immediately implies the convergence
of RadauIIA methods applied to (4.1) on compact intervals I if the stepsize h tends
to zero [18]. A careful analysis of (4.8) also leads to the main result in this section.

Theorem 4.6 Let (4.1) be an index µ equation, µ ∈ {1, 2}. Let the subspaces
D(·)S1(·) and D(·)N1(·) be constant. Then the difference between the exact solution
and the solution obtained by using a RadauIIA method can be written as

x(tl)−xl = KlD
−
l

(
u(tl)−ul

)

+
(
Q0Q1D

−)
l

{(
DQ1G

−1
2 q

)′
l
− 1

h

k∑

j=0

α̃sj

((
DQ1G

−1
2 q

)
lj
−(

DQ1G
−1
2 q

)
l−1

)}
.

Here ul is exactly the RadauIIA approximation to the solution u(tl) of the inherent
regular ODE (4.6).

Note that 1
h

∑k
j=0 α̃sj

((
DQ1G

−1
2 q

)
lj
−(

DQ1G
−1
2 q

)
l−1

)
is exactly the Runge-Kutta

approximation to
(
DQ1G

−1
2 q

)′
l
. The proof of theorem 4.6 will use the following

lemma.

Lemma 4.7 DP1D
− and DQ1D

− are projector functions satisfying

(i) DS1 = im DP1 = im DP1D
−, DN1 = im DQ1 = im DQ1D

−.

If the subspaces DS1 and DN1 are constant, so that there are constant projectors
V , W onto DS1 and DN1 respectively, then the following relations hold:

(ii) DP1D
−V = V, DP1D

−W = 0, DQ1D
−W = W, DQ1D

−V = 0,

(iii) (DP1D
−)′V =0, (DP1D

−)′W =0 , (DQ1D
−)′W =0, (DQ1D

−)′V =0.
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Proof: DP1D
− and DQ1D

− are projector functions due to lemma 3.2 and 3.6.
The same lemmas imply (i), so that DP1D

−V = V and DQ1D
−W = W hold as

well. These relations together with (i) show (ii). Finally use (ii) to prove (iii) by
noting that V and W are constant projectors and therefore do not depend on t. ¤
Proof of theorem 4.6: The proof will be divided into four parts. In ➀ we
analyze

(
DP1D

−)
li
[DX]′li and

(
Q0Q1D

−)
li
[DX]′li, so that we can find a repre-

sentation of the numerical solution in part ➁. This representation will depend on
Uls = DlsP1,lsXls. In ➂ we show that ul = Uls is exactly the RadauIIA solution of
the inherent regular ODE. The poof will be completed by comparing the analytic
and the numeric solution in part ➃.
➀ Analyze

(
DP1D

−)
li
[Dx]′li and

(
Q0Q1D

−)
li
[Dx]′li

Write Uli = DliP1,liXli and ul−1 = Dl−1P1,l−1xl−1. Then

(
DP1D

−)
li
[Dx]′li =

1
h

(
DP1D

−)
li

s∑

j=1

α̃ij

(
DljXlj −Dl−1xl−1

)

=
1
h

(
DP1D

−)
li

s∑

j=1

α̃ij

(
Ulj + DljQ1,liXlj − ul−1 −

(
DQ1x

)
l−1

)
.

Use lemma 4.7 to see that

(DP1D
−)li(Ulj −ul−1) = (DP1D

−)liV (Ulj −ul−1) = V (Ulj −ul−1) = Ulj −ul−1

and

(DP1D
−)

li
(DljQ1,liXlj−(DQ1x)l−1)=(DP1D

−)
li
W (DljQ1,liXlj−(DQ1x)l−1)=0.

We arrive at

(
DP1D

−)
li
[Dx]′li =

1
h

s∑

j=1

α̃ij

(
Ulj − ul−1

)
.

Similarly, lemma 4.7 implies

(
DQ1D

−)
li
[Dx]′li =

1
h

s∑

j=1

α̃ij

(
DljQ1,liXlj −

(
DQ1x

)
l−1

)
.

Because of
(
Q0Q1D

−)
li

=
(
Q0(Q1P0Q1)D−)

li
=

(
(Q0Q1D

−)(DQ1D
−)

)
li
,

it follows that

(
Q0Q1D

−)
li
[DX]′li =

1
h

(
Q0Q1D

−)
li

s∑

j=1

α̃ij

(
DljQ1,liXlj −

(
DQ1x

)
l−1

)
.
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➁ Obtain a representation of the numerical solution xl

The discretized system (4.8) now reads

1
h

∑s
j=1 α̃ij

(
Ulj − ul−1

)
+

(
DP1G

−1
2 BD−)

li
Uli

+(DP1D
−)′liDliQ1,liXli =

(
DP1G

−1
2 q

)
li

− 1
h

(
Q0Q1D

−)
li

∑s
j=1 α̃ij

(
DljQ1,liXlj −

(
DQ1x

)
l−1

)

+
(
Q0P1G

−1
2 BD−)

li
Uli

+(Q0P1D
−)li(DP1D

−)′liDliQ1,liXli + Q0,liXli =
(
Q0P1G

−1
2 q

)
li

DliQ1,liXli =
(
DQ1G

−1
2 q

)
li





but due to lemma 4.7 this reduces to

1
h

∑s
j=1 α̃ij

(
Ulj − ul−1

)
+

(
DP1G

−1
2 BD−)

li
Uli =

(
DP1G

−1
2 q

)
li

− 1
h

(
Q0Q1D

−)
li

∑s
j=1 α̃ij

(
DljQ1,liXlj −

(
DQ1x

)
l−1

)

+
(
Q0P1G

−1
2 BD−)

li
Uli + Q0,liXli =

(
Q0P1G

−1
2 q

)
li

DliQ1,liXli =
(
DQ1G

−1
2 q

)
li





The numerical solution can thus be written as

xl = Xls = P0,lsXls + Q0,lsXls = D−
ls

(
DlsP1,lsXls + DlsQ1,lsXls

)
+ Q0,lsXls

=
(
I − (Q0P1G

−1
2 B)ls

)
D−

l Uls +
(
P0Q1 + Q0P1

)
l

(
G−1

2 q
)
l

(4.9)

+
1
h

(
Q0Q1D

−)
l

s∑

j=1

α̃sj

((
DQ1G

−1
2 q

)
lj
− (

DQ1G
−1
2 q

)
l−1

)
.

The stage approximations Ulj satisfy the recursion

1
h

∑s
j=1 α̃ij

(
Ulj − ul−1

)
+

(
DP1G

−1
2 BD−)

li
Uli =

(
DP1G

−1
2 q

)
li
. (4.10)

➂ (4.10) is the RadauIIA method applied to the inherent regular ODE

Again, lemma 4.7 implies
(
DP1D

−)′
li
Uli =

(
DP1D

−)′
li
V Uli = 0

in (4.7). This shows that (4.10) and (4.7) coincide. Therefore, and due to cs = 1,
ul = Uls is exactly the Runge-Kutta solution of the inherent regular ODE (4.7).

➃ Compare the analytic and the numeric solution

Use Lemma 4.7 to see, that in (4.5)
(
DQ1D

−)′
l
u(tl) =

(
DQ1D

−)′
l
V u(tl) = 0.

Now the assertion follows by comparing (4.5) and (4.9). ¤
Theorem 4.6 is the central tool in analyzing the behaviour of RadauIIA methods
when applied to DAEs (4.1). In the case of index µ = 1 theorem 4.6 shows that
discretization and the decoupling procedure commute.
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Corollary 4.8 Let the DAE (4.1) be of index 1. Assume that imD(t) is constant.
Then we have for any RadauIIA method

x(tl)− xl = KlD
−
l

(
u(tl)− ul

)
, K = I −Q0G

−1
1 B.

Proof: If the index is 1, we have Q1 = 0 and P1 = I. Thus N1 = {0} and
S1 = Rn. Since imD(t) is constant, the subspaces DS1 and DN1 are constant as
well. We can therefore apply theorem 4.6. ¤

Due to corollary 4.8 the following diagram commutes for index 1 equations with
constant imD.

A(Dx)′ + Bx = q
(4.1)

RadauIIA−−−−−−−−→
discretization

Ali[DX]′li + BliXli = qli

(4.4)
ydecoupling decoupling

y

x = KD−u + Q0G
−1
1 q

u′ + DG−1
1 BD−u = DG−1

1 q
RadauIIA−−−−−−−−→

discretization

xl = KlD
−
l ul + Q0lG

−1
1l ql

1
h

∑k
j=0 α̃ij(Ulj−ul−1)+DlG

−1
1l BlD

−
l ul =DlG

−1
1l ql

If the index is 2, we cannot expect the corresponding diagram to commute. However,
the term

1
h

s∑

j=1

α̃sj

((
DQ1G

−1
2 q

)
lj
−(

DQ1G
−1
2 q

)
l−1

)
= [DQ1G

−1
2 q]′tl

appearing in theorem 4.6 is exactly the RadauIIA approximation to
(
DQ1G

−1
2 q

)′
l

(lemma 4.2) so that

x(tl)− xl = KlD
−
l

(
u(tl)− ul

)
+ Q0lQ1lD

−
l

{(
DQ1G

−1
2 q

)′
l
− [DQ1G

−1
2 q]′tl

}
.

In this sense we have the following statement:

When applying a RadauIIA method to problems of index µ ∈ {1, 2} with constant
subspaces DS1 and DN1, then discretization and decoupling commute.

Definition 4.9 The DAE (4.1) of index µ ∈ {1, 2} is said to be numerically quali-
fied, if

• µ = 1 and im D is constant,

• µ = 2 and DS1, DN1 are constant.
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The commutativity of discretization and the decoupling process is the desired prop-
erty for DAEs since it guarantees a good behaviour of the numerical method. Even
though the numerical method is applied to the DAE directly, it behaves as if it was
integrating the regular inherent ODE (4.6). In this case results concerning conver-
gence on compact intervals I hold automatically. The RadauIIA method applied
to a numerically qualified DAEs is convergent with the same order as for ODEs.
Results obtained for ODEs concerning the reflexion of qualitative behaviour by the
numerical solution can be transferred directly to DAEs using theorem 4.6. More
information about stability preserving integration of index 1 and 2 DAEs can be
found in [17, 18].
However, the representation (4.9) shows that the Runge-Kutta scheme is weakly
unstable when applied to index 2 DAEs. This is due to the inherent differentiation
and becomes apparent for small stepsizes h.
We focused on the application of RadauIIA methods. This restriction is not neces-
sary. All results presented here can be proved in a similar way for BDF methods.
The application of general linear methods to DAEs is currently being studied.

4.2 A numerical example

Consider the index 2 example due to Gear and Petzold [12].
(

0 0
1 η t

)
x′(t) +

(
1 η t
0 1 + η

)
x(t) =

(
e−t

0

)
, η ∈ R constant (4.11)

⇔
{

x1(t) + η t x2(t) = e−t

x′1(t) + η t x′2(t) + (1 + η) x2(t) = 0

}

In [12] it is shown that the BDF method fails completely for η = −1 and is expo-
nentially unstable for all other parameter values −1 < η < −0.5. In [14] (4.11) is
said to pose difficulties to every numerical method.
Numerical results are given in figure 4.1. (4.11) was solved on the interval [0, 3]
using the implicit Euler method, the BDF2-formula and the RadauIIA method with
two stages. The step-size used was h = 10−1.5. The exact solution is given by
x1(t) = (1−η t)e−t and x2(t) = e−t, so that x0 = (1, 1)T is a consistent initial value.
All numerical methods used fail even for moderate values of η due to the exponential
instability.
Consider the following reformulation

(
0
1

) ((
1 η t

)
x(t)

)′ +
(

1 η t
0 1

)
x(t) =

(
e−t

0

)
. (4.12)

(4.12) now has a properly stated leading term and DN1 = R, DS1 = {0} show that
the reformulated problem is numerically qualified. We therefore know discretization
and the decoupling process commute. This means that solving the reformulated
problem yields the correct numerical results as figure 4.2 shows.
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Figure 4.1: Numerical solutions (2. component) of (4.11).
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Figure 4.2: Numerical solutions (2. component) of (4.12).
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