
Obstructions to directed embeddings of Eulerian

digraphs in the plane

C. Paul Bonnington

Department of Mathematics
University of Auckland
Auckland, New Zealand

p.bonnington@auckland.ac.nz

Nora Hartsfield

Department of Mathematics
Western Washington University
Bellingham, WA 98225, U.S.A.

frog@cc.wwu.edu

Jozef Širáň
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Abstract

A 2-cell embedding of an Eulerian digraph in a closed surface is said
to be directed if the boundary of each face is a directed closed walk in
G. We prove Kuratowski-type theorems about obstructions to directed
embeddings of Eulerian digraphs in the plane.

1 Introduction

Unless stated otherwise, all digraphs considered will be connected but may have
loops as well as parallel (that is, multiple) arcs. For any two vertices u and v
of a digraph G, the symbol −→uv will denote the set of all arcs in G that originate
from u and terminate at v (shortly, u → v arcs, or arcs from u to v); −→uu is
simply the set of all loops at u. We sometimes write uv for an arc belonging to−→uv. For an arc a ∈ −→uv, the contraction of a results in the digraph, denoted by
G/a, that is obtained from G by identifying the vertices u and v, discarding a
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Figure 1: A directed planar embedding of an Eulerian digraph.

from the arc set, and forming loops out of all arcs in −→uv and −→vu. If u and v are
distinct vertices, and a and b are arcs of G such that a ∈ −→uv and b ∈ −→vu then
the set {a, b} is called a digon (between u and v). If there is a third arc c �= a, b
between u and v, we say that the digon {a, b} is braced (by c). A pair of parallel
arcs are said to form a bad digon. The justification for the use of the adjective
“bad” will become evident.

A digraph is Eulerian if at each vertex, the indegree and outdegree are
the same. (Eulerian digraphs have a directed closed walk that uses every arc
exactly once.) We say that an Eulerian digraph G is directed planar if G can
be embedded (that is, “drawn” without crossings) in the plane in such a way
that the boundary walk of each face is a directed closed walk in G. (See [1] for a
discussion of directed embeddings of Eulerian digraphs in other surfaces.) Such
an embedding is then called a directed planar embedding of G. For example,
Figure 1 gives the essentially unique directed planar embedding of an Eulerian
digraph with four vertices and eight arcs.

Observe that in a directed planar embedding of an Eulerian digraph, at each
vertex the arcs pointing into the vertex have to alternate with those pointing
out. Further, faces of a directed planar embedding fall into two classes according
to the orientation of their boundary walks (clockwise and counterclockwise).
Equivalently, the faces of a directed embedding can be properly two-coloured –
say, white and black – such that the directed boundary walks of all black (white)
faces are oriented clockwise (counterclockwise).

In the context of directed embeddings it is natural to introduce a partial
order on the set of all Eulerian digraphs in such a way that the order “respects”
the embeddings in some sense. We shall therefore say that an Eulerian digraph
H is a weak minor of an Eulerian digraph G if H can be obtained from G by a
non-empty sequence of the following operations:

• Contraction of an arc.

• Deletion of a loop.

• Discarding a digon.

It is obvious that, in a directed planar embedding of an Eulerian digraph G,
a contraction of any arc a results again in a directed planar embedding of G/a.
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Figure 2: G − {a, b} is directed planar if G is directed planar.

c {a, b}c ⇔

Figure 3: If {a, b} is a braced digon, then G is directed planar if and only if
G − {a, b} is directed planar.

If a directed planar embedding of G contains a loop a then its deletion leads to
a directed planar embedding of G− a (we note that this is true even if the loop
a did not bound a face in the original embedding). In fact, G is directed planar
if and only if G − a is directed planar. For digons, we have a similar situation:

Lemma 1 Let {a, b} denote a digon in an Eulerian digraph G. If G is planar,
then G − {a, b} is planar. Additionally, if {a, b} is braced by an arc c, then
G − {a, b} is directed planar if and only if G is directed planar.

Proof. If G is directed planar, then a directed planar embedding of G − {a, b}
is obtained by reversing (if necessary) the ordering of a subsequence of arcs at
both u and v (see Figure 2.) (This type of operation is sometimes refered to as
a “Whitney 2-flip”.)

Suppose G−{a, b} is directed planar and {a, b} is braced by an arc c. Then
we may introduce the digon {a, b} into the planar embedding by placing it
alongside the arc c while preserving directed planarity (see Figure 3.) �

By the above, we see that directed planarity is preserved under the weak
minor ordering. An Eulerian digraph G is said to be an obstruction to directed
planarity (under the weak minor order) if G does not have a directed planar
embedding yet each of its weak minors does.

It is immediate from Lemma 1 and the discussion preceeding that an ob-
struction G has no loops or braced digons. However G may have parallel arcs
(bad digons) as we will discover.

Before we proceed to the presentation of the obstructions, we rule out an-
other type of substructure from all directed planar digraphs:
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Lemma 2 Suppose G is a Eulerian digraph with a pair of bad digons {uv, uv}
and {wu, wu} meeting a vertex u, where v and w are distinct vertices, and sup-
pose further that u has no other incident arcs (that is, indeg(u) = outdeg(u) =
2). Then G is directed non-planar.

Proof. The arcs incident with u must alternate cyclically (uv, wu, uv, wu). If
G were planar, then the bad digon {uv, uv} would form a closed curve in the
plane. By the Jordan curve theorem, the pair of arcs {wu, wu} must both lie
on the same side on the bad digon {uv, uv}, forcing the four arcs at u to violate
the directed embedding requirement. �

2 An infinite family of obstructions under the

weak minor order

In this section we identify a particular infinite family of obstructions to directed
planarity under the weak minor order. We begin with a number of preliminary
results.

For any digraph G we denote by Ĝ the underlying simple undirected graph
obtained from G by ignoring edge directions and deleting multiple edges and
loops. We say a digraph G is k-connected if Ĝ is k-connected. This definition is
motivated by the observation that a directed planar digraph G has essentially
a unique directed embedding (up to the placement of the loops) if and only if
Ĝ is 3-connected. (Recall that an undirected planar 3-connected graph has a
unique embedding in the plane.)

Lemma 3 Every obstruction under the weak minor order is 3-connected.

Proof. The arguments are routine (in essence the same as when reducing the
classical Kuratowski Theorem to 3-connected graphs, see [4]) and we leave them
to the reader. �

For any s ≥ 2, let Ks
3 denote the digraph on the three vertices u, v, w with

exactly s arcs from u to v, from v to w, and from w to u. (See Figure 4.)
Clearly, Ks

3 is an obstruction under the weak minor order for each s ≥ 2.
Indeed, contraction of any arc yields a directed planar graph with two vertices,
and no digons or loops exist that may be deleted. Lemma 2 implies that K2

3 is
directed non-planar. Figure 5 gives the essentially unique directed embedding
of K2

3 (which is in the torus).
The following lemma implies that the only obstruction with parallel arcs

(bad digons) is Ks
3 , s ≥ 2.

Lemma 4 Let G be an obstruction to directed planarity under the weak minor
order and suppose that G is not Ks

3 , s ≥ 2. Then G is loopless, and for any
pair of adjacent vertices u and v, |−→uv| ≤ 1 and |−→vu| ≤ 1.
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Figure 4: The graph Ks
3 .

Figure 5: K2
3 is directed non-planar

Proof. If there is a braced digon between u and v, then Lemma 1 implies that
G is not an obstruction (that is, not minimal). Hence there is either a single
digon between u and v, or (without loss of generality) |−→uv| = 0. Suppose that
|−→vu| = s ≥ 2. According to Lemma 3 the digraph G − {u, v} is connected,
and hence it contains a spanning tree T . Contraction of the arcs of T yields a
digraph G′ on 3 vertices. After removal of loops and digons from G′ we obtain
the digraph Ks

3 with s ≥ 2, a contradiction.
It follows that |−→uv| ≤ 1 and |−→vu| ≤ 1 for any pair of vertices u, v ∈ G, as

required. �

We now present our first main result.

Theorem 1 Let G be an obstruction under the weak minor order and suppose
that Ĝ is planar. Then G is Ks

3 for some s ≥ 2.

Proof. By Lemma 3, G and Ĝ are 3-connected and hence G has at least three
vertices. If G has exactly three vertices, then it must contain some parallel arcs.
By Lemma 4, G must be Ks

3 for some s ≥ 2. In the following we assume that
G has at least four vertices and derive a contradiction.

Following Thomassen’s proof of Kuratowski’s Theorem from [4], the 3-connected
planar graph Ĝ contains an edge uv whose contraction results in a 3-connected
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graph Ĝ′. By Lemma 4, G either has a single arc between u and v, or the digon
{uv, vu}. Let G′ denote the Eulerian digraph obtained by contracting an arc
between u and v, and removing any resulting loop (when the digon {uv, vu}
exists.) By minimality, G′ is a directed planar Eulerian digraph. It has an
essentially unique directed embedding in the plane.

Let w be the vertex of G′ obtained by the identifying of the vertices u and
v. Our strategy is to expand w back to our arc or digon between u and v, and
show that this yields a directed planar embedding of G, or that G contains a
weak minor that is non-planar. Both situations lead to a contradiction.

Now, since Ĝ′ is 3-connected, the planar embedding of Ĝ′ − w induced by
the unique embedding of Ĝ′ has a face boundary cycle C such that w is incident
with only vertices of C in Ĝ′. Let Pu be a minimal subpath of C that contains all
the neighbours of u. Likewise, let Pv be a minimal subpath of C that contains
all the neighbours of v. By Thomassen’s proof of Kuratowski’s Theorem [4],
we can assume that Pv and Pu are internally disjoint (for otherwise Ĝ would
contain a homeomorph of K3,3.) The paths Pv and Pu may meet at one or both
end-vertices, but no others.

Suppose that Pu and Pv have no vertices in common. We claim that G
has a directed planar embedding. The rotation of the arcs for this embedding
at each of the vertices of G other than u and v is identical to the rotation in
the directed planar embedding of G′. In G′ the arcs that were incident with u
occur consecutively in the rotation at w (since V (Pu) ∩ V (Pv) = ∅. Likewise,
the arcs that were incident with v occur consecutively in the rotation at w. We
order the arcs at u and v according to this order induced by w in G′. At this
point we have a planar embedding of G with the arc or digon between u and v
removed, with the property that every face is a directed walk, except possibly
the face f with u and v on the boundary (see Figure 6.) If the boundary of f
is a directed walk, then u and v must have a digon between them, which can
be easily inserted to give a directed planar embedding of G. Otherwise, the
boundary of f must consist of the union of two directed paths, with only the
vertices u and v in common. It remains to insert the arc between u and v: since
G is Eulerian, the introduction of this arc across face f creates a directed planar
embedding of G.

Now, suppose that Pu and Pv have an end vertex x in common. The method
of proof is similar to that of the above case. However, it is now conceivable that
the rotation of the arcs at x induced by the planar directed embedding of G′

cannot be applied to the arcs at x in G. This situation can only occur when a
single arc a between x and u, and a single arc b between x and v create a digon
in G′ which is “flipped” in the planar embedding of G′. Figure 7 illustrates an
example of this situation. It is worth noting that if either of u or v are joined
to x by a digon, then the rotation at x in G can be made to correspond to the
rotation in G′. Without loss of generality, we assume a = xu (i.e. directed x to
u) and b = vx.

We claim that G is not minimal directed non-planar. Firstly, if all arcs
other than a, b, uv or vu are part of a digon, then C is a directed cycle. In fact,
since G′ is directed planar, C must be directed from x so that subpath Pu of
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Figure 6: G with the arc or digon between u and v removed
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Figure 7: The arcs a and b are flipped
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C is followed by Pv. Now delete all digons except for one at u (to a vertex
x′ ∈ V (Pu)) and one at v (to a vertex x′′ ∈ V (Pv)); we may assume the ends of
these digons do not coincide (see Figure 8).

By 3-connectivity, there is a tree in Ĝ containing all vertices other than x, v
and x′′. Contract all edges of this tree to a vertex u′, and contact the arc vx′′ to
a vertex x′′′. The result is an Eulerian digraph such that |−−→vx′′′|− |−−→x′′′v| = 2, and
|−→u′v| − |−→vu′| = 2. Removing redundant digons at x we obtain a graph satisfying
the hypotheses in Lemma 2, and therefore is directed non-planar. Hence G is
not mimimal, a contradiction.

Hence we now assume (without loss of generality) that there exists a single
arc from v to a vertex x′ �= x in Pv such that all other neighbours of v between
x and x′ in Pv are joined by a digon to v (see Figure 7). Let Q denote the
subpath of Pv from x to x′. By 3-connectivity, there is a tree in Ĝ containing u
and all neighbours of v other than those in Q. Contract all edges of this tree to
a vertex u′, and all edges in Q to a vertex x′′. The result is an Eulerian digraph
such that |−−→vx′′| − |−−→x′′v| = 2, and |−→u′v| − |−→vu′| = 2. Removing redundant digons
at x we obtain a graph satisfying the hypotheses in Lemma 2, and therefore is
directed non-planar. Hence G is not mimimal, a contradiction.

Therefore, we conclude that G contains 3 vertices and is Ks
3 for some s ≥ 2.

�

Lemma 5 Let G be an obstruction under the weak minor order and suppose
that Ĝ is not planar. Then Ĝ is either K5 or a supergraph of K3,3.

Proof. By Kuratowski’s theorem [3], Ĝ contains a subgraph homeomorphic
to K5 or K3,3. If Ĝ contains K5 and has exactly five vertices, then Ĝ = K5.
If Ĝ has more than five vertices, then there exists an arc e in G such that, if
H = G/e, then Ĥ still contains a subdivision of K5 and hence G is not minimal.

If Ĝ contains no K5, then Ĝ contains a subdivision of K3,3. By an argument
similar to that for K5 we may assume that G has exactly six vertices. Since
arc-deletion is not a weak minor operation, Ĝ may be a proper supergraph of
K3,3. �

8



Ω1 Ω2

Ω3 Ω4

Figure 9: Obstructions based on K5

3 The complete set of obstructions under the
weak minor order

Here we present, in the form of figures, the complete set of obstructions under
the weak minor order.

The main result of this section is the following.

Theorem 2 An Eulerian directed graph G has a directed planar embedding if
and only if none of the graphs Ks

3 , s ≥ 2 (Figure 4), Ω1, . . . , Ω4 (Figure 9) and
Θ1, . . . , Θ6 (Figure 10) is a weak minor of G.

Proof. Clearly, if any of the digraphs shown in Figures 4, 9 and 10 is a weak
minor of G, then G has no directed planar embedding.

Hence assume that G has no directed planar embedding. Of all of the weak
minors of G, choose a weak minor M that is minimal. If M̂ is planar, then by
Lemma 1 M̂ = Ks

3 for some s ≥ 2. If M̂ is not planar, then by Lemma 5 M̂ is
either K5 or a supergraph of K3,3. We first consider the case when M̂ = K5.
We show that M is one of Ω1, . . . , Ω4 in Figure 9.

Since M is Eulerian, indegree equals outdegree at each vertex. The simplest
case is when each pair of vertices is joined by a directed digon. Since M̂ is not
planar, M is not directed planar, but every weak minor of M is directed planar.
This is obstruction Ω1 in Figure 9.
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Figure 10: Obstructions based on K3,3
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Next we consider the case where a pair u, v of vertices is joined by a simple
arc uv. Since M is Eulerian, there must be another vertex w that is adjacent
from v by the single arc vw. Continuing in this fashion we see that the arc uv
lies on a directed cycle of single arcs.

If this directed cycle is a triangle and if all other adjacencies are by means
of directed digons, then contracting any arc or deleting any directed digon leads
to a directed planar graph. This is obstruction Ω2 in Figure 9.

There are two other possibilities for a directed cycle containing the arc uv.
If uv lies on a directed quadrangle and all other adjacencies are directed digons,
then we have obstruction Ω3 in Figure 9. The final K5 obstruction is where uv
lies on a directed pentagon and all other adjacencies are directed digons. This
is obstruction Ω4 in Figure 9.

If there are two directed triangles and all other adjacencies are directed
digons, then one of the five vertices lies on both directed triangles. If the
directed triangles are xyz and xuv, contracting the digon between y and u or
the digon between z and v produces two parallel arcs between two vertices (i.e.
a bad digon) and so the resulting digraph is not directed planar. Thus M is not
an obstruction.

The next possibility having the correct degrees is to have a directed triangle
and a directed quadrangle and three digons. If we assume the triangle is directed
xuz and the quadrangle is directed xyzv, then contracting the arc xv produces
a bad digon. And finally if all arcs are simple, then we have two directed
pentagons and they are xyzuv and xuyvz. Again, contracting xz we obtain a
bad digon.

Now suppose that M̂ is a supergraph of K3,3. If M̂ = K3,3 and each ad-
jacency is a digon, then every weak minor of M is directed planar and M is
obstruction Θ1 in Figure 10.

Consider a vertex x of M . If there is a simple arc from x to another ver-
tex, that arc must lie on a directed cycle consisting of simple arcs since M is
Eulerian. If the cycle is a quadrangle and all other adjacencies are digons, then
M is obstruction Θ2 in Figure 10. If the cycle is a hexagon and the remain-
ing three adjacencies are directed digons, assume that the hexagon is xaybzc.
Then contracting the digons xb and yc produces a bad digon. These are all the
possibilities for M Eulerian and M̂ = K3,3.

If M̂ is K3,3 plus one edge, then in M that edge must be a simple arc between
two vertices, since if it were a digon we could delete it and still have a non-planar
digraph. Suppose that the arc is xy and that the other vertex in the partite set
is z. If a, b, c are vertices in the other partite set, what are the possibilities for
M to be Eulerian?

It cannot happen that ax, bx, cx, ya, yb, and yc are all simple arcs. One of
ax, bx, cx must be simple, and one of ya, yb, yc must be simple. Without loss
of generality, assume that ax is simple. We now consider the case when ya is
simple, so that xya is a directed triangle. This forces az to be a digon. If all
adjacencies at b and c are digons, we obtain obstruction Θ3 shown in Figure 10.
If bz or zb is a simple arc, then contracting az and bx or by and az produces a
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a z

y b

Figure 11: M̂ is K3,3 with two additional edges

bad digon. If bx or xb is a simple arc, then contracting by or contracting bz and
az produces a bad digon. If ya is a digon, then za must be a simple arc. Then
one of bz, cz must be a simple arc. Assume that bz is simple. Then yb must be
simple and all other adjacencies are directed digons. This is obstruction Θ4 in
Figure 10.

The next possibility is that M̂ is K3,3 with two additional edges. We first
observe that both must be in the same partite set because if they are in different
sets, there will be a K4 and contracting the arc between the two vertices of M̂
that are not in this K4 results in a K5. We also observe that the additional
adjacencies must be simple arcs or we could delete them and obtain a nonplanar
digraph. The situation then is as depicted in Figure 11. Note also that it cannot
occur that all arcs in Figure 11 are simple, since M is Eulerian.

If ay or ya is simple, contracting az or ax produces a bad digon. The analysis
is analogous if the vertex a is replaced with b or c. Hence all adjacencies between
y and a, b, c must be digons.

If zc is simple, then cx must be simple, and then xyzc is a directed quad-
rangle. Suppose that bz and za, or az and zb, are simple arcs. Then either
contracting by or ay produces a bad digon. Thus az and bz are digons. The
analysis is similar if z is replaced with x, and we conclude that all adjacencies
other than those in the directed quadrangle are digons. This is obstruction Θ5

in Figure 10. A similar argument shows that if zb is a simple arc, then so is
bx and obstruction Θ5 results. The remaining possibility is that za and ax are
simple arcs and the obstruction obtained is still Θ5.

Finally, we consider the case where M̂ is K3,3 plus three edges. In M ,
the three additional adjacencies must be simple arcs and they must form a
directed triangle, since if two of them are adjacent from (or to) the same vertex,
contracting the third leads to a bad digon. (See Figure 12.)

If cz or zc is a simple arc, then contracting cy or cx produces a bad digon. If
az or za is simple, then contracting ay or ax yields a bad digon. An analogous
argument shows that all adjacencies other than the directed triangle xyz must
be digons. This is obstruction Θ6 in Figure 10. �
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Figure 12: M̂ is K3,3 with three additional edges

u v

w

u v

w

Figure 13: Slicing G at v

4 The strong minor order and associated ob-

struction

We now present a further set of minor operations for Eulerian digraphs which
preserve directed planarity.

Slice

Suppose u and v are vertices in an Eulerian digraph G where all out-arcs from
v terminate at u (and no uv arc exists). Let w denote the origin of an arc
wv terminating at v. Let G′ denote the Eulerian digraph obtained from G by
removing one vu arc, wv, and inserting a wu arc. Then we say G′ is obtain
from G by a slice (at v). (See Figure 13.)

H-bowtie

This operation is analogous to to the well-known H-bowtie operation for undi-
rected graphs. Suppose there exists six distinct vertices u1, u2, u, v, v1 and v2

and five digons {u1u, uu1}, {u2u, uu2}, {uv, vu}, {v1v, vv1}, and {v2v, vv2} in
an Eulerian digraph G, such that indeg(u) = indeg(v) = 3. Let G′ denote the
Eulerian digraph obtained from G by removing the digon {uv, vu}, identifying
the vertices u and v and inserting new digons {u1u2, u2u1} and {v1v2, v2v1}.
(See Figure 14.)
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Figure 14: The H-bowtie operation at u and v

v w

u u

v w

Figure 15: Spliting G at u

The remaining two operations pertain to non-separating sets of three ver-
tices.

Split

Suppose {u, v, w} is a non-separating set of three vertices in an Eulerian digraph
G, and that the two digons {uv, vu}, {uw, wu}, and the arc wv exist (but
not vw). Let G′ be the digraph obtained by removing the arcs vu and uw,
introducing a new arcs vw. Then we say that G′ was obtain from G by a split
(at u.) (See Figure 15.)

Triangle deletion

Suppose {u, v, w} is a non-separating set of three vertices in an Eulerian digraph
G, and that the digons {uv, vu}, {uw, wu}, and {wv, vw} exist. Let G′ be the
digraph obtained by removing the arcs vu, uw and wv. Then we say that G′

was obtain from G by removing a triangle. (See Figure 16.)
Refining the weak order by introducing these four additional operations

yields an alternate Kuratowski-type characterisation for directed planarity:

Theorem 3 An Eulerian digraph is directed planar if and only if it does not
contain K2

3 is a strong minor.

Proof. We have already established that any Eulerian digraph containing K2
3

as a weak minor (and hence as a strong minor) is directed non-planar. Further-
more, K2

3 is minimal directed non-planar under the strong minor order since
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v v

uu

w w

Figure 16: Removing a triangle from G

only the arc-contraction, slice, split and triangle deletion operations can be
applied to K2

3 , all resulting in a directed planar graph.
By Theorem 2, a directed non-planar graph contains one of the graphs in

Figures 4, 9 and 10 as a weak minor. It remains to show that all of these graphs
(other than K2

3) reduce to K2
3 under the strong minor order.

Firstly, we note that performing a slice on the graph Ks
3 , s ≥ 3, and deleting

the resulting digon, produces the graph Ks−1
3 . Proceeding inductively, we have

that all graphs Ks
3 , s ≥ 3 reduce to K2

3 under the strong minor order.
Next, applying an H-bowtie operation on any of the obstructions Θ1, Θ2

and Θ4 produces one of the obstructions based on K5. Performing selective
splits on the obstructions based on K5 other than Ω4 can reduce them all to
obstruction Ω4. Executing two more splits on obstruction Ω4 results in a graph
M , such that M̂ = K5 and there are just three digons forming a triangle. Now,
applying the triangle deletion operation on M yields a graph M ′ with single
arcs only and M̂ ′ = K5. Contracting an arc in M ′, deleting a resulting digon,
and contracting out the degree two vertex yields the strong obstruction K2

3 .
Finally, we see that spliting obstruction Θ5 (Θ6 respectively) at a vertex that

is the common neighbour of the ends of a single arc produces the obstruction Θ3

(Θ5). Performing on Θ3 the only possible split results in a digraph based on K3,3

with precisely three non-adjacent digons and a directed 6-cycle. Contracting an
arc in each of the three digons yields K2

3 .
Hence we have shown that all weak minor obstructions Ω1, . . . , Ω4 and

Θ1, . . . , Θ6 reduce to the single stong minor obstruction K2
3 , as required. �

We conclude by mentioning that an alternative structural method for em-
bedding digraphs is to force all in-arcs to appear consecutively in the cyclic
rotation around every vertex. This type of “clustered” embedding of (not nec-
essarily Eulerian) digraphs is the central subject in [5]. There are analogous
characterisations of (clustered) planarity (see [2]) to the ones presented in this
paper.
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