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1 Metrisability of manifolds and topological properties

of function spaces

It is an obvious and well known fact that several topological properties that are different in
general may collapse in the presence of additional properties. These additional properties may
be algebraic (e.g., a topological group is metrisable if and only if it is first-countable) or purely
topological. For instance, a large collection of topological properties which are different in
general turns out to be all equivalent to metrisability for topological manifolds(1) [6]. Another
class of important topological objects in which several different topological properties may col-
lapse is that of function spaces. Let Cp(X) and Ck(X) denote the set of real-valued continuous
functions on a topological space X endowed with the topology of pointwise convergence and
with the compact-open topology respectively. In general, Fréchetness implies sequentiality and
sequentiality implies k-ness, but none of these implications can be reversed. However, these
three properties coincide for function spaces like Cp(X) and Ck(X) [16].
In this paper, we show that (not surprisingly) even more properties collapse for function

spaces over a topological manifold. Often more surprising are the new criteria of metrisability
of a manifold that we derive, in terms of the topological properties of the function spaces over
this manifold. Before we state these new criteria, we need to define the notions involved.

Definition 1. A topological space X is

1. metaLindelöf if each open cover has a point-countable open refinement;

2. Cečh-complete if it is a Gδ-subset of a compact space;

3. pseudocomplete provided that it has a sequence 〈Bn〉 of π-bases (B ⊂ 2X is a π-base if
every non-empty open subset of X contains some member of B) such that if Bn ∈ Bn and
Bn+1 ⊂ Bn for each n, then

⋂
n∈ω
Bn 6= ∅;

4. cosmic ([8, page 259]) if it has a countable network, i.e., a countable collection N such
that if x ∈ U with U open then x ∈ N ⊂ U for some N ∈ N ;

5. a σ-space if it has a σ-discrete (that is, a countable union of discrete families) network;

6. a (strong) Σ-space if there exists a σ-locally finite (i.e., countable union of locally finite
families) family F and a cover C by closed countably compact (compact) sets such that
whenever C ∈ C and U is an open set that contains C, there exists F ∈ F such that
C ⊂ F ⊂ U ;

1i.e., a connected, Hausdorff space which is locally homeomorphic to euclidian space.
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7. a q-space if each point admits a sequence of neighbourhoods Qn such that xn ∈ Qn implies
that 〈xn〉 has cluster points;

8. of point-countable type if each point admits a sequence of neighbourhoods Qn such that
every filter that meshes every Qn has cluster points.

9. Fréchet if whenever x ∈ A, there exists a sequence 〈xn〉 in A that converges to x;

10. sequential if sequentially closed and closed sets coincide;

11. a k-space if A ⊂ X is closed whenever A ∩K is closed in K for every compact subset K
of X;

12. ω-tight or has countable tightness if whenever x ∈ A, there exists a countable subset B
of A such that x ∈ B;

13. ω-fan-tight or has countable fan tightness ([2]) if whenever x ∈
⋂
n∈ω
An, there exists finite

sets Bn ∈ An such that x ∈
⋃
n∈ω
Bn;

14. an ℵ0-space ([7, page 493]) provided that it has a countable k-network, i.e. a countable
collection N such that if K ⊂ U with K compact and U open then K ⊂ N ⊂ U for some
N ∈ N ;

15. a ℵ-space ([7, page 493]) provided that it has a σ-locally finite k-network;

16. analytic if it is a continuous image of a Polish space (equivalently of the irrationals with
their usual topology);

17. hemicompact [1, page 486] if there is a sequence 〈Kn〉 of compact subsets such that each
compact subset of X is contained in some Kn;

18. Hurewicz (originally called E* in [10, page 195]) if for each sequence 〈Un〉 of open covers
there is a sequence 〈Vn〉 such that ∪n∈ωVn covers X and Vn is a finite subfamily of Un for
each n ∈ ω.

Even if we primarily focus on spaces of real-valued continuous functions, we also consider
conditions on hyperspace topologies. Let C(X) denote the set of all closed subsets of X. This
set is classically identified with the set of continuous functions from X to the Sierpiński topology
$ (i.e., topology on {0, 1} with ∅, {0, 1} and {0} as open sets), by identifying closed sets with
their characteristic functions. Thus, if C is endowed with the cocompact topology, that admits
the sets {F ∈ C(X) : F ∩K = ∅} for K ranging over every compact subsets of X as a subbase,
we denote by Ck(X, $) the resulting topological space. It is proved in [14] that C(X) endowed
with the upper Kuratowski convergence is first-countable if and only if it is sequential if and
only if it is countably tight if and only if X is hereditarily Lindelöf. But hereditary Lindelöfness
is known to be equivalent to metrisability for a manifold [6]. On the other hand, it is well-
known (e.g. [4]) that the upper Kuratowski convergence and the cocompact topology coincide
for Hausdorff locally compact topological spaces X, in particular for manifolds. This proves
equivalences 1 to 4 in Theorem 2 below and gives the first three criteria of metrisability of a
manifold in terms of topological properties of function spaces.

Theorem 2. Let M be a manifold. The following are equivalent:

1. M is metrisable;
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2. Ck(M, $) is first-countable;

3. Ck(M, $) is sequential;

4. Ck(M, $) is ω-tight;

5. Ck(M) is Polish;

6. Ck(M) is a pseudocomplete σ-space (equivalently is completely metrisable);

7. Ck(M) is second countable;

8. Ck(M) is a q-space (equivalently is metrisable, equivalently contains a dense subset of
point-countable type);

9. Ck(M) is a k-space (equivalently is Fréchet);

10. Ck(M) has countable tightness;

11. Cp(M) has countable fan tightness;

12. Cp(M) has countable tightness;

13. Ck(M) is a ℵ0-space;

14. Ck(M) is cosmic;

15. Cp(M) is cosmic;

16. Ck(M) is analytic;

17. Cp(M) is analytic;

18. Cp(M) is hereditarily separable;

19. Cp(M) (equivalently Ck(X)) is separable.

The following diagrams outline the connections that are true for general function spaces. In
the next section, the dotted arrows are shown to be true when X is a manifold.

3



Ck(X) Polish

Ck(X) completely metrisable
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X submetrisable œ -

[12, Corollary 5.6.2, 5.6.3]
.............
?

To prove the dotted implications in the first diagram, we use:

1. [12, Corollary 5.2.5]. Ck(X) is Polish if and only if X is a hemicompact cosmic k-space.

2. [12, Corollary 4.1.3]. Ck(X) is cosmic if and only if X is an ℵ0-space.

3. [12, Corollary 4.7.2]. Ck(X) is ω-tight if and only if every open k-cover (
2) has a countable

k-subcover.

2A k-cover of X is a collection S of subsets of X such that each compact subset of X lies in some member
of S.
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4. [12, Theorem 5.7.5]. If X is a q-space (in particular a manifold), then Ck(X) is analytic
if and only if Cp(X) is analytic if and only if X is σ-compact metrisable.

To complete the proof of Theorem 2 (and in particular dotted arrows in the two above diagrams),
it remains to show that the following are equivalent for a manifold M :

1. M is hemicompact and cosmic [equivalently Ck(X) is Polish, as a manifold is a k-space];

2. M is metrisable and σ-compact;

3. M is metrisable;

4. every open k-cover of M has a countable k-subcover [equivalently, Ck(X) is ω-tight];

5. M is an ℵ0-space [equivalently Ck(X) is cosmic];

6. M is cosmic [equivalently Cp(X) is cosmic];

7. Mn is Hurewicz, for every n ∈ ω [equivalently Cp(X) is ω-fan-tight];

8. M is Lindelöf;

9. M is submetrisable [equivalently, Cp(X) is separable, equivalently, Ck(X) is separable].

While proving these equivalences in the next section, we actually prove that even more topo-
logical properties that are different in general are all equivalent to metrisability for manifolds.
Hence we obtain both internal and external (in terms of function spaces) new criteria for
metrisability of manifolds.

2 Internal criteria of metrisability

Lemma 3. For a topological space X the following three conditions are equivalent.

(a) X is hemicompact;

(b) There is an increasing sequence 〈Kn〉 of compact subsets of X such that each compact
subset of X is contained in some Kn;

(c) Every k-cover of X has a countable k-subcover.

Proof. (a)⇒(b). If 〈Cn〉 is a sequence of compacta such that each compact subset of X lies
in some Cn, then setting Kn = ∪m≤nCn gives a sequence satisfying (b).
(b)⇒(c). Let S be a k-cover of X and suppose that 〈Kn〉 is a sequence given by (b). For

each n ∈ ω choose Sn ∈ S such that Kn ⊂ Sn. Then {Sn / n ∈ ω} is a countable k-subcover
of S.
(c)⇒(a). Let K consist of all compact subsets of X. Then K is a k-cover of X so has

a countable k-subcover, say {Kn / n ∈ ω}. The sequence 〈Kn〉 satisfies the definition of
hemicompactness.

Lemma 4. Suppose that N is a k-network on the locally compact, regular space X. Then
N̊ = {N̊ / N ∈ N} is also a k-network for X.
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Proof. Let K ⊂ U ⊂ X with K compact and U open. Use local compactness and regularity
to find a finite collection {C1, . . . , Cn} of compact subsets of U whose interiors cover K. As
∪ni=1Ci is a compact subset of U there is N ∈ N such that ∪

n
i=1Ci ⊂ N ⊂ U . Then K ⊂ N̊ ⊂ U .

Lemma 5. Suppose that U is a collection of open subsets of the locally hereditarily separable
space X. If U is point-countable on some dense subset of X then U is point-countable.

Proof. Suppose that U is point-countable on the dense subset D ⊂ X. Let x ∈ X and let
O be an open hereditarily separable neighbourhood of x. Let E be a countable dense subset of
D ∩O; then E is also dense in O.
Choose ϕ : Ux → E, where Ux = {U ∈ U / x ∈ U} so that for each U ∈ Ux we have

ϕ(U) ∈ E ∩ O ∩ U : this is possible as O ∩ U is a non-empty open subset of O so that
E ∩O∩U 6= ∅. Note that for each e ∈ E the set ϕ−1(e) is countable since U is point-countable
at e. As E is also countable it follows that Ux = ∪e∈Eϕ−1(e) is countable.

Proposition 6. Suppose that X is a locally hereditarily separable, locally compact, regular
space which has a k-network which is point-countable on a dense subset of X. Then X has a
point-countable k-network.

Proof. let N be a k-network on X which is point-countable on a dense subset D of X. By
Lemma 4, N̊ is also a k-network on X. Clearly N̊ is point-countable on D so by Lemma 5, N̊
is point-countable.

Theorem 7. All solid arrows in the diagram below represent general implications and the dot-
ted arrows hold provided that X satisfies the extra conditions noted.
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Proof.
σ-compact implies Hurewicz.
We have X = ∪n∈ωKn for a sequence 〈Kn〉 of compact subsets of X. Suppose given a

sequence 〈Un〉 of open covers of X. For each n ∈ ω, Un is an open cover of Kn so has a finite
subcover, say Vn. Then Vn satisfies the requirements.
Every open k-cover has a countable k-subcover implies Lindelöf.
Let U be an open cover of X and let Û consist of all open subsets of X which are finite

unions of members of U . Each compact subset of X is contained in a finite union of members
of U , hence in a single member of Û . Thus Û is an open k-cover of X: let V be a countable
k-subcover. Each member of V is a finite union of members of U , so there is a countable
subcollection W ⊂ U such that each member of V is a finite union of members of W . Then W
is a countable subcover of U .
ℵ0-space implies that every open k-cover has a countable k-subcover.
Let U be an open k-cover of X and N be a countable k-network for X. For each N ∈ N

for which there is U ∈ U with N ⊂ U choose one such U ; call it UN . Then {UN / N ∈ N} is a
countable k-subcover of U .
Cosmic implies Lindelöf.
Let U be an open cover of X and N be a countable network for X. For each N ∈ N for

which there is U ∈ U with N ⊂ U choose one such U ; call it UN . Then {UN / N ∈ N} is a
countable subcover of U .
Lindelöf implies hemicompact under local compactness.
Use local compactness of X to cover X by open sets which are the interiors of compact

sets. Because X is Lindelöf we need only countably many of these open sets to cover X. Thus
we have compact sets {Cn / n ∈ ω} such that X = ∪n∈ωC̊n. Let Kn = ∪m≤nCm. It remains
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to show that each compact subset of X lies in some Kn. Given a compact subset K ⊂ X, as
{C̊n / n ∈ ω} is an open cover of K there is a finite subcover and if n is the largest index
amongst the members of such a finite subcover then K ⊂ Kn.
Second-countable is equivalent to hemicompact ℵ0-space under local compactness.
Assume X is second countable. To obtain a countable k-network, take the family of finite

unions of elements of a countable base. On the hand, a second countable space is Lindelöf, hence
hemicompact if X is moreover locally compact (by the above proof). To prove the converse
(in fact the equivalence), we use a dual proof. By [12, Corollary 4.5.3], X is a hemicompact
ℵ0-space if and only if Ck(X) is second-countable. Moreover, Ck(X) coincides with Cc(X),
the set of real-valued continuous functions on X endowed with the continuous convergence,
provided that X is locally compact [11, Theorem 3.2]. But Cc(X) is second-countable if and
only if X is second-countable [5, Theorem 1].
A regular Fréchet space with a point-countable k-network is metaLindelöf by [9, Proposition

8.6(b)]. By Proposition 6, a regular locally compact and locally hereditarily separable space
with a k-network which is point countable at each point of a dense subset has a point-countable
k-network.
The remaining implications in the diagram follow directly from the definitions.

Corollary 8. Let M be a manifold. The following are equivalent:

1. M is metrisable;

2. M is second-countable;

3. M is a hemicompact ℵ0-space;

4. M is hemicompact;

5. M is an ℵ0-space;

6. M is cosmic;

7. M is an ℵ-space;

8. M has a star-countable k-network;

9. M has a point-countable k-network;

10. M has a k-network which is point-countable at each point of a dense subset;

11. M is metaLindelöf;

12. M is Lindelöf;

13. M is Hurewicz;

14. M is σ-compact;

15. every open k-cover of M has a countable k-subcover.

Proof. A manifold is regular, Fréchet, connected, locally compact, locally hereditarily sep-
arable and locally second-countable. Moreover, it is well-known (see for example [6, Theorem
2]) that a manifold is metrisable if and only if it is Lindelöf.
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In particular, the first eight properties quoted at the end of the first section are equivalent
(including the seventh, because if a manifold M is Hurewicz, it is moreover second-countable,
so that each finite power is also second-countable, hence Hurewicz).
Hence all the properties involved in the above diagram except those in the dotted box are

criteria for metrisability of a manifold. What about these three additional properties?

Definition 9. A topological space X is a Moore space if it is regular and has a development,
i.e., a sequence 〈Un〉 of open covers such that for each x ∈ X the collection {st(x,Un) : n ∈ ω}
forms a neighbourhood basis at x. X has a (regular) Gδ-diagonal if its diagonal is a (regular)
Gδ subset of X ×X (H is a regular Gδ-set in Y if H =

⋂
n Un, where each Un is an open set

containing H). A space X has a G∗δ-diagonal if there exists a sequence 〈Gn〉 of open covers such
that for each x ∈ X, {x} =

⋂
n st(x,Gn).

X is weakly normal provided that for every pair A, B of disjoint closed subsets of X there
is a continuous function f from X to a separable metric space such that f(A) ∩ f(B) = ∅.

It is well-known that each Moore space is a σ-space [7, Theorem 4.5] and that every σ-space
has a G∗δ-diagonal [7, Theorem 4.6]. On the other hand, by [7, Theorem 2.15], a locally compact
and locally connected space (in particular a manifold) with a G∗δ-diagonal is a Moore space.
Hence Moore spaces, σ-spaces and spaces with a G∗δ-diagonal coincide for manifolds. Moreover,
there exists a non metrisable Moore manifold [15, Example 3.7]. Thus, none of the properties
in the dotted box is a general criterion for metrisability of a manifold. However, it is known
from [6] that “normal Moore space” and “weakly normal space with a G∗δ-diagonal” are two
such criteria.

Proposition 10. The following are equivalent for a manifold M .

1. M is metrisable;

2. M is a (weakly) normal Moore space;

3. M is a (weakly) normal σ-space;

4. M is a (weakly) normal space with a G∗δ-diagonal;

5. M has a regular Gδ-diagonal;

6. M is submetrisable.

Proof. The equivalences between the four first points are obvious from the previous discus-
sion while the equivalence between 1 and 5 follows from [7, Theorem 2.15,b)] that states that
a locally compact locally connected space with a regular Gδ-diagonal is metrisable. Finally, a
submetrisable space has a regular Gδ-diagonal [7, p. 430].

Question 11. Now we can ask whether normality combined with the weaker property of (strong)
Σ-space is also equivalent to metrisability for a manifold.

3 Related notions and remarks.

Consider the following stronger variant of fan-tightness. A topological space X has countable
strong fan tightness if whenever x ∈

⋂
n∈ω
An, there exist xn ∈ An such that x ∈ {xn : n ∈ ω}.

In [17], it is shown that Cp(X) has countable strong fan-tightness if and only if X
n has the

following property (called C ′′) for every n ∈ ω: for each sequence 〈Un〉 of open covers there
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is a sequence Vn ∈ 〈Un〉 such that ∪n∈ωVn covers X. As C ′′ is a slight strenghtening of the
Hurewicz property which is equivalent to metrisability for a manifold, property C ′′ (and hence
countable strong fan-tightness of Cp(M)) is a reasonable candidate to be another criterion of
metrisability of a manifold M . However, taking l = 1 in Lemma 12 shows that such a space
does not satisfy property C ′′. Hence, the function space Cp(M) over a metrisable manifold M
need not be (and actually is rarely) of countable strong fan-tightness .

Lemma 12. Let (X, d) be a nontrivial, connected metric space and l ∈ N. Then there is a
sequence 〈Un〉 of open covers such that for any sequence 〈Vn〉, where Vn ⊂ Un and ∪n∈ωVn
covers X, there is n ∈ ω so that |Vn| > l.

Proof. Let (X, d) and l ∈ N be given. Choose two distinct points a, b ∈ X. For each n ∈ ω

let Un = {B

(
x; d(a,b)
2n+2l

)
/ x ∈ X}, an open cover of X. Suppose that Un,1, . . . , Un,l ∈ Un for each

n ∈ ω: we show that {Un,j / n ∈ ω; j = 1, . . . , l} cannot cover X. Suppose to the contrary that
{Un,j / n ∈ ω; j = 1, . . . , l} does cover X. As X is connected there must be x0, . . . , xk ∈ X

such that B

(
xi;

d(a,b)

2ni+2l

)
= Uni,ji for some ni ∈ ω and ji = 1, . . . , l with a ∈ Un0,j0, b ∈ Unk,jk ,

the pairs (ni, ji) are distinct for i = 0, . . . , k, and Uni−1,ji−1 ∩ Uni,ji 6= ∅ for each i = 1, . . . , k.
Then

d(a, b) ≤ d(a, x0) +
k∑
i=1

d(xi−1, xi) + d(xk, b)

<
d(a, b)

2n0+2l
+

k∑
i=1

[
d(a, b)

2ni−1+2l
+
d(a, b)

2ni+2l

]
+
d(a, b)

2nk+2l

= d(a, b)

k∑
i=0

1

2ni+1l

≤ d(a, b)

k∑
i=0

1

2i+1

= d(a, b)

(
1−

1

2k+1

)
< d(a, b).

This contradiction proves that if we select at most l members of each Un then those sets selected
from ∪n∈ωUn collectively do not cover X.

Remark. Note that, if in Theorem 7, we transform the condition that every open k-cover has
a countable k-subcover by only requiring that every open k-cover has a countable subcover we
obtain a condition equivalent to Lindelöfness.
We have some other like failures in the sense that we have conditions which superficially

appear to be weaker than the standard condition, and hence may lead to a weaker criterion
for metrisability of a manifold, but are not weaker at all. Of course in (1) below we could
insist that the subcover be a k-cover, in (2) that the subcovers be lindelöf-subcovers and in (3)
that the refinement be a k-cover but then the resulting conditions, while being stronger than
the standard conditions in general, will be weaker than, for example, hemicompactness so not
really of any interest in the context of manifolds. An ideal open cover is an open cover U such
that any finite union of members of U is a member of U and any open subset of a member of
U is also a member of U .
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Failure 13. For any space X the following hold.

(1) The following are equivalent:

(a) X is Lindelöf;

(b) every open k-cover has a countable subcover;

(c) every ideal open k-cover of X has a countable k-subcover.

(2) The following are equivalent:

(a) X is Lindelöf;

(b) every open lindelöf-cover has a finite subcover;

(c) every open lindelöf-cover has a countable subcover.

(3) X is metaLindelöf ⇐⇒ every open k-cover has a point-countable open refinement.

Proof of (1)(a)⇐⇒(c). The implication (c)⇒(a) may be obtained from the proof of the
non-ideal version of this implication in Theorem 7 above by taking Û to consist of all open
subsets of finite unions of members of U . Conversely suppose that U is an ideal open k-cover
of X and let V be a countable subcover. Let V̂ be the set of all finite unions of members of V .
Then V̂ is still countable, is a subfamily of U and is a k-cover of X.
Proof of (3). ⇒ is trivial, so we concentrate on ⇐. Suppose that U is an open cover of

X. Then Û , which consists of the unions of all finite subfamilies of U , is an open k-cover of
X. Let W be a point-countable open refinement of Û . For each W ∈ W choose ÛW ∈ Û
so that W ⊂ ÛW and then choose UW,1, . . . , UW,nW ∈ U so that ÛW = UW,1 ∪ . . . UW,nW . Let
V = {UW,i ∩W / W ∈ W and i = 1, . . . , nW}. Then V is a point-countable open refinement of
U .
The example below shows that for general topological spaces, 156⇒14 (hence 156⇒4), 156⇒6

(hence 15 6⇒5), 136⇒14 and 136⇒6 (hence 13 6⇒5) in Corollary 8.

Example 14. Let X be ω1 with the co-countable topology. Then X is Hurewicz and every open
k-cover has a countable k-subcover but X is neither σ-compact nor cosmic.

The only compact subsets of X are the finite subsets, so X is not σ-compact.
Let 〈Un〉 be a sequence of open covers of X. Choose any non-empty U0 ∈ U0. As X − U0

is countable, for each n = 1, 2, . . . we can choose Un ∈ Un so that {Un / n = 1, 2, . . . } covers
X − U0. Now set Vn = {Un} to get the sequence 〈Vn〉 as in the definition of Hurewicz.
Let U be an open k-cover of X. For each finite subset F ⊂ X choose non-empty UF ∈ U

and βF ∈ ω1 such that F ⊂ UF and [βF , ω1) ⊂ UF ; the latter follows from co-countability of
UF . Define inductively an increasing sequence 〈αn〉 as follows. Set α0 = 0. Given αn, there
are countably many finite subsets of [0, αn) so {α / α > βF for each finite F ⊂ [0, αn)} is
non-empty; let αn+1 be the least member of this set or αn + 1, whichever is the greater. Let
α = limn→∞ αn. It is claimed that {UF / F is a finite subset of [0, α)} is a countable k-subcover
of U . Indeed, suppose that F is a finite subset of X and set G = F ∩ [0, α). Then there is
n ∈ ω such that G ⊂ [0, αn). As βG < αn+1 < α it follows that F ⊂ G ∪ [α, ω1) ⊂ UG.
X is not cosmic for if N is a network for X then for each α ∈ X there is Nα ∈ N such that

α ∈ Nα ⊂ [α, ω1). If α 6= β then Nα 6= Nβ. Thus N is uncountable.
The next example shows that for general topological spaces 5 6⇒13 (hence 15 6⇒13, 12 6⇒13,

5 6⇒14, 56⇒4, 66⇒13, 66⇒14 and 6 6⇒4) in Corollary 8.
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Example 15. The space P of irrational numbers with the usual topology, which is homeomor-
phic to the product space ωω see [18, Theorem 3.11], is an ℵ0-space but is not Hurewicz.

P second countable, hence an ℵ0-space.
To show that P is not Hurewicz we look at its homeomorph ωω. For each function σ :

{0, 1, . . . , n} → ω set Uσ = {f ∈ ωω / f(i) = σ(i) for all i ≤ n}. Let 〈Un〉 be a sequence of
open covers of ωω defined by Un = {Uσ / σ = {0, 1, . . . , n} → ω}. Suppose that Vn is a finite
subfamily of Un for each n ∈ ω. We show that ∪n∈ωVn does not cover ωω. Inductively construct
a function f : ω → ω. Let f(0) be chosen so that Uf |{0} /∈ V0. If f(i) is defined for each i ≤ n
so that Uf |{0,1,...,i} /∈ Vi then just select f(n + 1) so that Uf |{0,1,...,n+1} /∈ Vn+1. It follows that f
does not lie in the union of all of the members of ∪n∈ωVn.
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