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Introduction

The story-tellers from the Tchockwe people, in Eastern Angola, and Tamil people, in South India, make use of the sona (singular: lusona) drawings (Fig. 1a) to give a better and more attractive description of their stories.

As in the case of many other findings from ethnographic researches (see, for example, Zaslavsky, 1973, for Africa) related to one or more than one of the six mathematical activities (counting, locating, measuring, designing, playing, explaining) that, according to Bishop (1988, 1991), are sufficient and necessary to develop any mathematical theory, the sona drawing attracted the attention of a few mathematics educators. Their aim was not only to observe and describe the specific mathematical knowledge which the story-tellers where making use of, both explicitly and implicitly, but also to investigate the further mathematical notions and concepts that, in such activity, could be seen or deduced. Paulus Gerdes’ investigations on the sona drawings (see, for example, Gerdes, 1999) represent the most significant and precious reference for anybody interested in the relationships between sona and mathematics.

The possible use of this cultural activity, the sona drawing, as a didactical tool for the introduction of some of those mathematical notions and concepts in a school context have been and are still under investigation (see, for example, Gerdes, 1988), even making use of dynamical software for the drawing of the sona (Maffei and Favilli, 2004). The importance of the use of findings from ethnomathematical researches in mathematics education was clearly underlined by Vithal and Skovmose (1997), who stated that among the four research strands in ethnomathematics (historical, anthropological, ethnographical and educational) the educational one “is the unifying strand as it pulls together the other strands”.

However, such a kind of ethnomathematical studies can also give the mathematics researchers, somehow unexpectedly, the opportunity to ask new mathematical questions and to make conjectures of mathematical relevance and interest. As regards the sona drawings, the lecture of Gerdes’ book (1999) makes it possible to ask the following questions:

· where and how is it possible to insert a double-sided mirror in a lusona without changing the number of closed lines that are necessary to include all the points in the grid?

· is there any relation between the position of mirrors that do not change the number of the closed lines and the pattern colouring of the lusona?

In this paper we give a complete answer to these questions. The proofs do not require any advanced mathematical knowledge.
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Figure 1
Before starting to tell his story, the story-teller make (usually on the sand, with a wooden stick) a rectangular grid of equidistant points. Then, while telling the story, he draws a line aiming at embracing all the points of the grid, following different rules in accordance to the story to be told or the motif to be represented. If the line closes and some of the points have not been included, then the story-teller keeps drawing, with the same rules, as many lines as he needs to include all the points of the grid. In Fig.1a, a monolinear plaited-mat design, one of the simplest sona, is shown. It must be said that, depending on the story, the story-teller can enrich the drawing with graphic ornaments and additional (usually external) designs. 

To better understand the rules for the construction of the lusona in Fig. 1a, we can imagine to have a rectangular mirror around the grid of points and a light-ray starting from a point (that belongs to the same line of a row or a column of the grid points) on any side of the rectangle. We then obtain a rectilinear copy of the plaited-mat design (see Fig. 1b), that allows us to describe the rules for the construction of the plaited-mat sona :

· the lines pass through the middle points of the points in the grid, with an angle of 45° with respect to the sides of the rectangle;

· the lines curve only when reflected by the sides of the external rectangular mirror.

As remarked above, in the case of Fig.1 one line is sufficient to include all the points of the grid, even if this is not the case in general. In fact, Gerdes has shown (see, for example, Gerdes, 1999) that the number of closed lines necessary to draw a plaited-mat lusona in an (m,n) grid is the Greatest Common Divisor of m and n.

Mirror curves

Let us now introduce a second class of sona, the so-called chased-chicken paths (see Fig. 2a), representing the trajectory of a wild chicken when pursued (Gerdes, 1999). In this case it is not so easy to find the rules for its drawing. Moreover, it is difficult to decide how many closed lines are necessary to include all the points of the grid. 

Gerdes (1999) has reported also about a third class of sona, the so-called Lion’s stomach design (see Fig. 2b). He showed how the sona in these classes can be obtained by the insertion of double sided mirros in plaited-mat sona. In the particular case of the lion’s stomach designs, only columns of horizontal mirrors can be inserted. In his works, Schlatter (2001a, 2001b) has studied these designs from a combinatorial point of view.

In this paper we present a more general result about the insertion of both vertical and horizontal mirrors in any type of sona.
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Figure 2
To better understand the problem we are concerned about, we introduce the definition of mirror curve, strictly related with the sona designs. 

Following Favilli et al. (2001), we can explain the way a plaited-mat lusona can be drawn by considering a grid of m by n points, introducing a rectangle in the plane with mirror sides and corners at (0,0), (2m,0), (0,2n), (2m,2n), and locating the grid points at (k,l), where k and l are both odd numbers. A light-ray is then emitted at an angle of 45° to the rows of the grid from a point of the external rectangle, so that the ray does not pass through the grid points and is reflected by the sides of the rectangle (in Figg. 3a – 3b we have m=6 and n=5).
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Figure 3
As already said, Gerdes has shown that the number of closed lines needed to include all the points is the Greatest Common Divisor of the number of rows and columns. In the example of Fig. 3, being those numbers co-prime, we need just one closed line. 

Double-sided mirrors with horizontal or vertical orientation may now be placed at any location (i,j) within the box as long as either i or j is even (but not both), that is at the cross points of the line. Now, still being a light-ray emitted at an angle of 45° to the rows of the grid from a point of the external rectangle, the ray is reflected both by the sides of the rectangle and the internal double-sided mirrors (Fig. 4). The closed line obtained after the insertion of one or more mirrors is called mirror curve.
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Figure 4
In Fig.5 it is shown how the beginning of the mirror curve version of the chased-chicken path (starting from the point with coordinates (0,3)) looks like.
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Figure 5
We are now entitled to wonder whether inserting a double-sided mirror the curve still covers all the grid, as in the case of the chased-chicken path, or not.

Let us, first of all, make the following

Remark. A plaited-mat lusona is a m by n lusona without internal mirrors.

and introduce the following

Definition. We say that a mirror is a correct mirror for a lusona if its insertion does not change the number of closed lines needed to cover the entire grid.
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Figure 6
Example. Let us consider a plaited-mat lusona and insert a double-sided mirror at the point (8,3). If we start a light-ray from the point (0,5) then the curve looks like in the Figure 6a when the mirror orientation is vertical and like in the Figure 6b when its orientation is horizontal. In the first case the curve closes before covering the entire grid, while, in the second case, the curve continues and cover the entire grid.

The explanation of this fact is clear if we consider that, once we have fixed a starting point on a side of the external rectangular mirror, a direction and an internal cross point, the path divides in three parts: 

· the initial path, from the starting point to the cross point (dashed line); 

· the central path, beginning and ending at the cross point (continuous line); 

· the ending path, from the cross point back to the starting point (dotted line). 
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Figure 7


In this way, as shown in Fig.7a, whichever the cross point we consider, we have four oriented segment lines (arrows): two of them point outward the cross point, while the two other ones point toward it. If we place a mirror in this cross point and orientate it in such a way that, referring to the original path, at each side of it there are both an outward and an inward arrow, then the central path is cut (see Fig.7b). Viceversa, if the mirror separates, still referring to the original path, the outward arrows from the inward ones, then the path moves first from the initial part to the central one (covered in the opposite direction respect to the original path), and then to the final part (see Fig.7c), thus covering all the grid. 

This fact shows that to insert a correct mirror it is sufficient to know how the inward and outward arrows are placed at each cross point, and then to orientate the mirror in such a way that it separates them. 

A preliminary result, needful to locate the position of any horizontal or vertical correct mirror, is given by the following lemma. 

Lemma. The directions of the parallel segments in the plaited-mat sona alternate (see Fig.8).
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Figure 8


Proof. Let us consider a segment line of the complete path. We have two cases, as shown in Fig. 9. In the first case the light-ray is reflected by two opposite sides of the external rectangular mirror, in the second case the light-ray is reflected by two adjacent sides of the rectangle. In the first case (Fig. 9a), the ordinate of the points of the segment vary from 0 to 2n, thus passing through 2n+1 cross points and intersecting an odd number of orthogonal segments. It follows that the short parallel segments originated by the reflections by the two opposite sides, located at even "distance", have the same direction. In the second case, the light-ray turns of 180° and originates a segment in the opposite direction with respect to the first one. In this case, the central segment passes through an even number of cross points of the grid, and thus intersects an even number of orthogonal segments. The two parallel segments of Fig. 9b, located at odd "distance", have opposite directions. This implies that all parallel segments at even “distance” have the same direction and the segments at odd “distance” have opposite direction. This implies the thesis of the lemma.                                (
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Figure 9
From the lemma we get a simple proof of the following theorem, which gives the criterion to insert a correct mirror in a m by n plaited-mat lusona (with m and n co-prime). 

Theorem 1. Given a plaited-mat lusona, a vertical mirror located in a cross point with coordinates (2i+1,2j) separates the outward arrows in the original path from the inward ones (i.e. it is a correct mirror), while a horizontal mirror separates the arrows correctly when located in a cross point with coordinates (2i, 2j+1).
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Figure 10

	


Proof. Let us consider a cross point A on the left side of the rectangle, with coordinates (0,2i+1) (see Fig. 10a). In this cross point we have just an inward arrow and an outward arrow. By the lemma, at the adjacent cross point B of coordinates (2,2i+1), the direction of the segments depends only on the directions in A. Therefore we observe that, if the outward arrow at A is located below the cross point, at the point B the outward arrows will be located above it and the inward arrows will be located below it, and an horizontal mirror separates the arrows correctly. Analogously, if the outward arrow at A is located above the cross point, the correct orientation is still the horizontal one. 

In a similar way, we can obtain the location of the inward and outward arrows at the cross point C with coordinates (1,2i+2), starting from the direction of the arrows in A. If the outward arrow in A is located above, then the same arrow is an outward arrow below (and on the left) with respect to C. The outward segment below A goes from the left to right, thus the adjacent segment will go from the right to the left, and the second outward arrow in C will be again on the left. It follows that, in this case, a vertical mirror separates the outward arrows from the inward ones.

By repeating the same argument, we can get the correct orientation of each mirror from the adjacent ones, as shown in Fig. 10b, and then the thesis of the theorem. 
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Sona and pattern designs
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Figure 11
In his works, Gerdes (1999) has shown some interesting algebraic properties of the enumeration and colouring of the sona drawings. If we draw unit squares on the grid, the mirror curve with correct mirrors passes exactly once through each of the small squares. This fact allows us to enumerate the squares, and then to assign different colours modulo k. We can also discover, for example, that the aesthetical pleasantness of the chased-chicken lusona is also reflected in the property of being 'magic', that is we get the row sum of the numbers to be constant. In Fig. 11a is shown the numbering of the squares of the chased-chicken lusona, starting from the left-bottom corner, and then, in Fig. 11b, its colouring modulo 2, with black and white squares.

In this section we are interested in exploring the possibility to relate the position of correct mirrors with the pattern colouring of the lusona. In particular we investigate the number of colours necessary to obtain the correct orientation of the mirrors. It is obvious that with three colours we can recognize the direction of the underlying path and then distinguish between the inward and outward arrows, but the following result shows that two colours are suffcient as well.

Theorem 2. If a lusona is coloured modulo 2, then, at each cross point, the colour of the squares with inward arrows differs from the colour of the squares with outward arrows.
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Figure 12
Let us consider a cross point, and the three paths (initial, central and final) related to this cross point (see Fig.12a). If the last square of the initial path, containing an inward arrow, is black, then the following white square (the first of the central path) has an outward arrow. But, the central path being closed, it has an even number of squares. Therefore, if its first square is white then its last square, containing an inward arrow, is black, and the next square (outward arrow) is white again.                                                                                                                 (
From this theorem and the results of the previous section, we get the following corollary:

Corollary 1. At each cross point of a plaited-mat lusona, the black and white squares separate horizontally or vertically.

Furthermore, if a correct mirror has been inserted in a plaited-mat lusona, its location can be easily detected by the following result, illustrated in Fig.13. 
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Figure 13
Proposition. If a single double-sided correct mirror has been inserted in a plaited-mat lusona (Fig. 13a), then its location, in the resulting lusona (Fig. 13b), is at the unique cross point where the colours are separated diagonally.

Proof. The only crosses modified by the insertion of the mirror are those belonging to the central path, where the colours are reversed. Then, we have three classes of crosses: 

· the crosses between the central, the initial and the final paths (exactly where we place the mirror!), 

· the crosses between two segments of the central path, 

· the crosses between a segment of the central path and a segment of the initial or final ones.

In the first case, as shown in Fig.12, the reversed squares are adjacent, and the insertion of the mirror results in the diagonal separation of the colours. 
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Figure 14
In the second case, as shown in Fig. 14, all the colours of the squares are reversed, so the separation will still be horizontal or vertical. 
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Figure 15
In the last case, as shown in Fig. 15, the colours will be reversed only along the diagonal of the cross point where the central path passes through; therefore the colours split will be changed, but still keeping horizontal or vertical.                                                                        ( 

As final result, we obtain that, if the separation between black and white squares change because of the insertion of a mirror in a plaited-mat lusona, then the separation between the inward and outward arrows also changes. This remark represents a simple rule to insert further correct mirrors in the resulting lusona.

Corollary 2. A mirror placed at a cross point of a lusona needs to separate the black and white squares to be correct.
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