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ABSTRACT. This paper deals with the problem of how to identify mathematics in activity. I offer a method which develops parallel to the mathematical modelling process. We move from outside to deep inside of the practice: first, analysing the finished-work (the activity’s product); then, observing the work-in-progress (the product’s construction process where tools play a great role) and; finally, enquiring about the work-in-purpose (the authors’ product ideas and explanations). Only after taking into account these three crucial stages of the situation it can be stated that mathematical knowledge is involved in the practice and characterize it.

The case will be that of the Torajan woodcarvers of Sulawesi, in Indonesia. It will be shown how they divide a segment into equal parts using a recursive method which doesn’t need the participation of a compass as in the Euclidean solution. As the woodcarver acquires his skill from old practitioners rather than through academic education, the conclusion will be to have found ethnomathematical knowledge.

Introduction

Indonesia is an archipelago spread between continental south east Asia and Australia. The Toraja or Sa’dan Toraja are the native inhabitants of the Sa’dan river highlands, in the island of Sulawesi. Makale, the administrative capital, and Rantepao are the biggest towns, but the Torajan population dwells in uncountable hamlets and villages dotted all around this region. Torajan people speak a local language distinct from the Bahasa Indonesia which has no writing and belongs to the Austronesian linguistic family.

Given its difficult accessibility, the region had remained unknown to the western world until the beginning of the XX century, when the Dutch colonial administration, already in the country for more than two centuries, took control of it. This united local people for defence (Nooy-Palm, 1979) and led to a collective Torajan identity (Bigalke, 1981). The Dutch brought protestant Christianity, schools and modern medicine, but the Toraja maintained their animist beliefs in the ancestors or Aluk to Dolo. Nowadays Toraja land is a Christian island surrounded by Sulawesi’s Muslim sea. 

One of the most characteristic features of Torajan culture is its traditional architecture. Both the traditional family house and the rice-barn are made of wood, without nails and erected upon pillars, the second being a reduced copy of the first. The traditional family house is a microcosmic representation of the Torajan tripartite macrocosm: heaven, earth and underworld (Nooy-Palm, 1988). This conception determines different sections in the house. The underworld is represented in the rectangular space enclosed by the pillars and is reserved for the animals; the earth section is the living one, and the heaven section above is covered with a saddle shaped roof. The traditional house has a supreme significance in Torajan life and is seen more as a social centre than a dwelling. It is difficult to understand the Torajan sense of kinship without  conceiving the traditional house as its system axis (Waterson, 1995).

Traditional house and rice-barn façades are decorated with mostly geometric carved designs. Called Pa’ ssura (as writing) by the Toraja, they express social, religious and cosmogonist conceptions of the world, so becoming a writing to represent Torajan social life and culture (Lumowah, 1985; Nooy-Palm, 1988; Sandarupa, 1986). Hence, woodcarvings are a cultural manifestation of the Toraja people.

Each carving receives a name that distinguishes it from any other. As the house and rice-barn façades are divided in sections, the carvings are made following a structured system that takes the vertical and middle axis of the façade as its axis of symmetry: what is carved on its left side is also carved on its right side. Sometimes two related designs can follow mirror symmetry, one carved as a mirror reflection of the other. This symmetrical regularity conveys to the building order and balance, its final character. Considering that the same carving is exactly repeated in different parts of the same building and in different buildings in different locations, a question arises: how do the artisans achieve such a rigorous target?

Design: a mathematical activity

Regularity and order are common features found in ornamented human products that when observed in nature are often seen as a mark of an ordering mind (Gombrich, 1984). Abstract and geometrical designs may be so often used in ornamentation because they are infrequent in nature, as Boas (1966) and Gombrich (1984) consider, but it could be because abstractions are easier to produce with simpler technology. 

It’s hard to think of any ordered, rigorous, regular, symmetrical and balanced object without a plan to construct it, without an intention of doing it in that way. Can such a plan be traced without mathematics? Bishop (1991) outlined six human activities common to any culture which can be related to mathematics: counting, measuring, localizing, designing, playing, and explaining. Torajan architectural ornamentation comes out from abstractions of natural forms to which culture gives particular meanings. It’s not unreasonable to expect to find some mathematical activity related to the carving process more than in the carving’s product. According to Bishop (1991) the finished product itself is not mathematically important … what is important for us in mathematics education is the plan, the structure, the imagined form, the spatial relation perceived between object and purpose, the abstract form and the abstraction process. But, what is mathematics?

Identifying mathematics: an outstanding problem of Etnomathematics

I write mathematics without capital letters indicating a view that considers it ‘a pan cultural phenomena, that is, existing in all cultures’ (Bishop, 1991:18-19). In this sense, I emphasize its practical and experimental aspect: mathematics is not a series of axioms, theorems and proofs recorded in books belonging to one or another culture. Presented in a traditional way, mathematics seems to be the product of logic applied to a set of axioms taken for granted to produce theorems. Nevertheless, mathematics has an empirical character: ‘mathematics has two faces; it’s the rigorous science of Euclid but it is also something else. Mathematics presented in the Euclidean way appears as a systematic, deductive science; but mathematics in the making appears as an experimental, inductive science’ (Polya, 1988: vii).

We must be conscious that proofs don’t explain everything, though usually we pretend that they do: ‘the formula 2+2=4 can be proved as a theorem in a formal axiomatic system, but it derives its force and conviction from its physical model of collecting coins or pebbles’ (Hersh, 1997: 224). Axioms and theorems are not the starting point as has been presented academically until recent decades, but the final product of a process. The social constructivism of Ernest sees mathematics as a social construction and as a cultural product with justification bases rooted in empirical character:

‘… the social constructivist thesis is that objective knowledge of mathematics exists in and through the social world of human action, interaction and rules, supported by individuals’ subjective knowledge of mathematics (and language and social life), which need constant re-creation. Thus, subjective knowledge recreates objective knowledge, without the latter reducible to the former.’ (Ernest, 1991: 83)

In this perspective, and considering what has already been mentioned above concerning Bishop’s universals, it makes sense to consider that every culture can develop a particular mathematical knowledge outside institutionalised academies and outside the western culture. This view led to the idea of Ethnomathematics:

‘… we will call ethnomathematics the mathematics which is practiced among identifiable cultural groups, such as national-tribal societies, labour groups, children of a certain age bracket, professional classes, and so on. Its identity depends largely on focuses of interest, on motivation, and on certain codes and jargons which do not belong to the realm of academic mathematics.’ (D’Ambrosio, 1985: 16)

The technology developed by an identifiable group and the way it’s used in particular situations is a sign of mathematical activity. We are facing now the outstanding problem of ethnomathematics: how to identify mathematics?

Ascher (1991), Gerdes (1988), Zalavsky (1973) and others have related mathematics to practices of non western cultures from America and Africa. Gerdes refers to such a mathematics as hidden or frozen mathematics (Gerdes, 1996: 914). But did Ascher, Gerdes and Zalavsky identify mathematics? They related the object of their observations to their mathematical knowledge so they could grasp and explain what was observed. Such a process is called mathematical modelling and is current in mathematical activities, especially those related to practical problems. We don’t know if the authors of these objects and game players were asked to check their conceptions and purposes. As something hidden or frozen already exists, it means that we are referring to something already identified. Therefore it seems inappropriate to apply the term hidden or frozen mathematics to what Ascher, Gerdes and Zalavsky observed. Upon what basis can it be said that mathematics has been identified? 

When trying to identify mathematics related to a culture’s product only taking the product’s visualization into account, the observer runs the risk of falling into a ‘mathematical projection’ of his or her own mathematical knowledge (Albertí, 2005). This means that the observer attributes to what he observes his own mathematical knowledge, a knowledge which allows him to grasp and explain his observation. Such a projection goes from the observer to the observed, not in the other direction as should be the case. The risk is smaller, but does not vanish completely, when he observes the authors making the object because then the observer can confirm or correct the former models or even develop new ones according to his or her observation. No full identification can be claimed if the authors are not questioned about their purposes. If regularity and order imply a thinking mind, we need to know what this mind is thinking when making the product and before making it. When looking for mathematics people is the focus of interest.

This leads to the situated mathematical interpretation (SMI) upon which a research method of identifying mathematics is developed. As we take as object the Torajan woodcarvings, we start distinguishing three stages in any carved design: the finished-work (the final product, what has been made), the work-in-progress (the carving process, how it’s done) and the work-in-purpose (the authors purposes, what they want to do).


For instance, we can see a carved panel with a right angle. Observing the carving process we’ll know how this angle has been constructed and if its rightness is due to a casual fact or seems to be intended. By questioning the authors we’ll find out if they really wanted to build a right angle, how its rightness is justified and if they apply automatic, machine like, procedures or not.


The mathematics identification method used here follows these stages:

1. The mathematics that an observer relates to a product, process or purpose for which one or more people are responsible are mathematical models of the object, process or purpose observed.

2. Until these mathematical models are validated it will not be stated that mathematics has been identified in the product, process or purpose. Before validation it will be said that a mathematical interpretation (MI) of the product, process or purpose has been developed. It represents a projection of the observer’s mathematical knowledge on the object observed.

3. Validation of mathematical interpretations will be made on a different level from that where they were developed, but never on the product’s one: a math interpretation developed on the final product will be validated at the process and/or purpose level; a maths interpretation developed in the process will be validated at the purpose level; and a math interpretation developed at the purpose level will get validation in the process one.

4. A maths interpretation developed taking into account the physical product characteristics (finished-work), its construction process (work-in-progress) and its authors purposes (work-in-purpose), that is, developed considering all aspects involved in the situation, and validated through all three levels of the practice, will be called a situated mathematical interpretation (SMI).
5. Only after a situated mathematical interpretation (SMI) has been developed it will be said that mathematics has been identified in a the situation of a practice. But this identified mathematics will not include all the mathematics involved in the SMI’s development like that developed by the observer to explain and grasp specific aspects of his observation.
Making the Torajan woodcarving grid

This identifying method will be applied to the Torajan woodcarving architectural decoration. Data collecting runs parallel to the above stages, from outside to inside. It starts with a visual analysis of the finished work: visiting many Torajan villages and taking photographs of the traditional houses and rice-barns; then visiting workshops to observe the carving process and also documenting it with photographs and movies; finally, interviewing carvers and documenting their responses with audio tapes and movies.

Visualising the finished work is easy. Village people usually welcome foreigners and allow them to take pictures of their traditional houses and rice-barns. To observe the work in progress, it’s necessary to find a workshop and then be accepted by the artisan work group to witness the carving process. Here comes one of the biggest field research difficulties that has to be overcome before carvers can be questioned: communication.

Torajan carvers don’t speak English. They talk the Torajan language and only a little Bahasa Indonesia learned by those, but not all, who attended elementary school. Some of them can hardly read or write or read. This is a big problem because Toraja has no writing and the available dictionaries which attempted a western speech interpretation of it, like that of Tammu and Van der Veen (1972), are long out of print and only translate Bahasa Toraja to Bahasa Indonesia, not in the reverse direction. So, in the beginning, the researcher needs help from local translators. But as long as he improves a little in Bahasa Indonesia communication problems vanish because the Bahasa Indonesia spoken by Torajan carvers is not highly academic and both, Western observer and Torajan carver, share a similar capability that provides a much better understanding than a highly sophisticated Bahasa Indonesia knowledge which only one of them would have.
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Carvings are made on already fixed spaces, usually rectangles and squares, determined by assembled wood pieces of the façade. Finished work visualization shows that figures are carved following an order determined by straight and perpendicular lines creating a grid which seems to be a scaffolding of the carving:

This means that that artisans’ work doesn’t seem to be absolutely free. Carvers will have to obey what the grid imposes: an architectural organization of space. ‘For some graphic designers the grid has become an unquestionable part of his work that provides precision, order and clarity’ (Samara, 2002). Precision, order and clarity are characteristic aspects of geometry and, more generally, of mathematics.

To make a grid means to divide space into regular parts. In this paper the centre of attention, the situation, will be the partition of the side of the rectangle, that is, the partition of a segment into n equal parts. Therefore, the question is to know how the Torajan carvers solve this problem. After visual analysis of the finished-work a first mathematical interpretation (MI.1) is developed:

MI.1: The segment to be partitioned into n parts is measured with a ruler. The number x obtained in this measure is divided by n: x/n. A tick is made on the original segment corresponding to x/n units taken on the ruler.  


Work-in-progress’ observation reveals how wrong this interpretation is. Carvers don’t measure or calculate. They only use a pencil and a bamboo stick. But this stick is not ticked with any unit measure, it’s plain. Numbers are not seen or written anywhere. Actually, more sophisticated technology is easy available. In the workshops where the observations were done there were rulers divided in millimetres and in the nearby towns of Makale and Rantepao is not difficult to get calculators and computers, but carvers refuse to use them in benefit of efficiency and simplification of the task (Albertí, 2005).

To build the grid of the Pa’ Sule Tang shown in the above figure they divide the upper side (a segment) of the rectangular space into 2 parts and each of these halves into 3 parts. Of the 6 parts obtained only those giving a 1+2+2+1 partition are ticked and copied on the lower side of the rectangle. Using the bamboo stick as a ruler, straight lines are drawn between corresponding points of both opposite sides producing the grid’s vertical lines. After the same units are copied on both vertical opposite sides of the rectangle (1+2+2+2+1) the grid’s horizontal lines are also traced. 

Let’s now see the carver’s procedure to get the middle point of a segment: 

First, he put the bamboo stick close to the up side of the rectangle with its left end close to the left side and made two ticks with a pencil: one (a0), on the bamboo stick; the other (b0), on the rectangle’s side and corresponding to a0:


Then, he moved the bamboo stick to the right until its left end coincided with tick b0 on the rectangle’s side, and made a new tick (a1) on the bamboo stick between the former (a0) and the rectangle’s right side:



The next step was to return the bamboo stick back to its original position and make a new tick (b1) on the rectangle’s side corresponding to a1:



After this, again he moved the bamboo stick to the right until its left end coincided with b1, the last tick on the rectangle’s side. He then made another tick a2 between the last one made on the bamboo (a1) and the right side of the rectangle:


Then, the bamboo stick was again replaced in its original position and another tick b2 corresponding to the last on the bamboo (a2) was traced on the rectangle’s side:


Finally, the carver drove again moved the bamboo stick to the right until its left end and tick b2 on the rectangle coincided. He didn’t trace anything else: the task was finished.


After observing this method of the work-in-progress it’s clear that the former MI.1 doesn’t fits this procedure. Hence, MI.1 is invalidated and a second mathematical interpretation (MI.2) has to be developed. This will be based on a critical question concerning the method applied by the carver. He doesn’t measure anything. At each stage he seems to correct the former estimated value choosing a point closer to the solution. Which reference guides him? His choice doesn’t seem to be random. Otherwise, how could he always get a solution so fast and so precise? A new mathematical interpretation is developed:

MI.2: The carver constructs a succession of marks on the rectangle’s side (b0, b1, b2, …) which leads to the solution, that is, to the middle point of the segment. Such a succession is created by applying a recursive method where each estimated value is corrected by dividing into two parts the former mistake, that is, the small segment left by the former estimation. This means that a0 was the first visual estimation of the side’s middle point. But as this was not the case because 2·a0 was shorter than the whole, the error had to be corrected. It was corrected with tick a1, whose position represented the carver’s estimation of half of the mistake, that is, the eye-estimated middle point between 2·a0 and the rectangle’s right end. So b1 corrects b0 and so are corrected, step by step, a1 by a2, b1 by b2, and so on. Theoretically, the process continues ad infinitum, but human eye limited precision
 allows the succession to conclude after a finite number of applications.

Let L be the length of the segment to divide and let a be the initial estimated value of its middle point. Supposing the worst, that is, that the carver commits the same error when estimating the middle point of the whole segment and of the very short one that remains after the first step of the process, a western mathematical analysis
 uncovers the recursive character of the succession {an}n(N he constructs:

a0=a

a1=L+a·(2·a0-L)-a
a2=L+a·(2·a1-L)-a1

…

an+1=L+a·(2·an-L)-an

In this case it has also been supposed that the error committed is always greater than the middle point. Anyway, further western mathematical analysis shows how to write the general case in a closer expression: 
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Hence, we have exponential speed convergence to the segment’s middle point. The closer a0 is to the solution, the faster we reach it. In fact, this speed has to do with the visual capability of the human eye. A survey with western secondary school students showed that the error made in estimating the middle point of both sides of a DIN A4 format paper was less than 4% in more than 76% of the cases and that in estimating the middle point of a 2cm segment 74% of them did it correctly, with 0% error (Albertí, 2005). This means that non expert individuals would get a good enough solution, with the fault impossible to detect by the human eye, after three iterations. So, what can be expected from long time experienced artisans?

MI.2 had to be validated or invalidated by its practitioner, something that could not be done without questioning the carver. The question was to find out if the carver thinks what the observer thinks, that is, if ticks traced on the bamboo stick follow the reference of looking for the middle point of the mistake’s segment.

The first attempt to confirm MI.2 was planned as an active inquiring: the observer would ask the carver during his procedure. Just before the moment when the carver had to correct the former estimation, the observer asked (without translator, conversation flowing in Bahasa Indonesia):

Observer:
Where should write now?
Carver:
A little less. (In this case the carver had committed an error exceeding the desired.)

Observer:
Yes, but where? Here, or here, or where …? (Observer puts his fingernail in different and random points of the small segment where the correction has to be done.)

Carver:

In the middle!
Observer:
In the middle of where?
Carver:

In the middle of this. (The carver points to the small segment left.)

Observer:
In the middle between here and here? (When pronouncing the first ‘here’, the observer punts his fingernail on the left end of the small segment; when pronouncing the second ‘here’ puts his fingernail on the right end of it.)

Carver:

Yes! (And he makes a tick sign exactly in the middle.)


After this it could be thought that this validates MI.2 because the carver said what was expected: that the correction should be made looking for the middle point of the error committed. But further western mathematical analysis reveals that if the correction is made randomly on any point between both small segment’s ends, a closer point to the solution is achieved. Besides this, and considering the ZPD (Vygotsky, 1978), what actually could have happen was that just only when he was asked the carver realized that such a reference existed or that such a reference was what he had always unconsciously taken.


So, the MI.2 was not considered as validated and a new inquiry had to be carried out. This was done a long time after and in this case the observer took the carver’s artefacts (pencil and bamboo stick) as an apprentice would do and followed the artisan’s instructions. When the critical moment arrived, the observer made a tick on the bamboo stick that was too short for the half of the segment. So, he (pretending not to know where to place the new correction tick of the error committed) asked his ‘teacher’:

Observer:
But where to write now?
Carver:

Increase a little bit more.
Observer:
A little bit more?
Carver:

Yes!
Observer:
Until where?
Carver:

Until, kira-kira, …this will be divided into two parts.
(Kira-kira means approximately. Saying ‘this’ the carver refers to the small segment where the tick has to be made).

Observer:
This into two parts?
Carver:
Yes. What is left divided into two parts! From here to here divided into two parts.
(The carver points to both small segment’s ends, clearly indicating the piece to be partitioned).

Observer:
Who taught this to you?

Carver:

An old person: my grandfather.

Observer:
And who taught him?

Carver:

His grandfather, and so up to the top!

The carver’s answer is not the middle point as before. Now he speaks generally: the small segment left by the error committed has to be divided into two parts. Saying ‘what is left’ he doesn’t refer only to the segment obtained this time, but to any segment obtained at any other time. Thus, his reference to correct the error committed is always the middle point of the error and MI.2 is validated.

Later conversation with the carver showed the generalization of this procedure. He informed the researcher that if a segment has to be partitioned into three parts, the error committed has to be corrected looking for the third part of the error’s small segment; if a segment has to be divided into four parts, the error should be corrected looking for the fourth part of the error.

But actually, when observing the carver in another situation, his method, though basically remaining the same, was subtly modified. At the time of dividing a segment into four equal parts he didn’t look for the fourth part of the error committed; instead, he first divided the whole into two parts and each half into two more. Another time when a very big wood panel of 1 meter long, much longer than the thirty something centimetres of the standard panels, had to be divided into two parts, he started choosing an estimated middle point on the wood panel (b0) and registering it on the bamboo stick (a0). Then, sliding the bamboo until its end fell on the panel’s mark he made a mark on the bamboo stick corresponding to the panel’s end:

Next was to replace the stick in its former position to see the error committed. Then he marked the middle point of the small segment left between both marks. His next checking of the new chosen marks (a1 and b1) revealed that the work was finished. 

This will be called the Torajan Kira-kira method to divide a segment into n parts: just look for the n-th part of the error committed. Western mathematical analysis (Albertí, 2005) shows that for the case n=2 a random choice in the smaller segment determined by the first estimation of the middle point gives a better approximation, but this is no longer the case for n>3.

As MI.2 has been validated after inquiring, not before, it has to be named MI.3. It’s this MI.3 which becomes the SMI of the practice.

During my field work in Tana Toraja I had the opportunity to see how other carvers also applied the Kira-kira using an iron standard compass with nails in both ends instead of a bamboo stick. Some of these carvers used this compass in a similar way as others used the bamboo and scratched a tick on the segment to be divided with one of the nail ends of the compass. Others corrected their estimations in the air, not keeping a register of their estimations, and as soon as the compass was slightly closed or open the estimated value was lost forever. In such a cases some more iterations had to be done to get the solution. 

Concluding remarks

In proposition 10 of book I, Euclides (1991) divides a segment into two parts using ruler, compasses and applying a finite step procedure. Torajan woodcarvers do it in another way, they don’t use compass, but a plain bamboo stick and follow a recursive method. In this sense, the Torajan Kira-kira is not Euclidean.


The western standard academic procedure to divide a segment into n equal parts is based on the similarity of triangles and requires the participation of a ruler and a carpenter’s square. It’s applicable to horizontal or almost horizontal segments, but not to those placed on vertical planes where these tools would fall down. On the contrary, Torajan carvers work on the vertical planes of the façades and their method makes the problem affordable and possible to be applied to segments in any position, even to those placed on the ceiling of a room.

To solve such a mathematical problem of partitioning a segment into equal parts they simplify a difficult task in a, time after time, easier one. To the western mathematician their success is due to western mathematical analysis, but the carver’s justification comes from practical experience, the ‘something else’ of scientific mathematical method referred to by Polya (1988).

As far as the researcher and many other colleagues know, western mathematics didn’t produce such a method (Albertí, 2005). It’s not mentioned in the work of Beskin (1976) concerning the division of a segment into a given ratio or in Kotowski’s (1984) work about geometric constructions with ruler and compass where the author deals with the partition of a segment into n and 2n parts. Thus, the Kira-kira process solves the problem in an unknown way to western mathematics and, even more, importantly, is not learned at school, but is taught by old practitioners. It’s native.

The solution process shows that such a procedure is rigorous and systematic, but also flexible as long as it’s not always applied exactly in the same way, but slightly modified according to the situation. The Kira-kira is a mathematical algorithmic and recursive modus operandi consisting of the application of the same procedure to ever smaller segments, these segments being smaller and smaller until the partition becomes evident to the human eye and, so, the task finite.

Tools participant in the solution are both physical (pencil and bamboo stick) and conceptual (succession of ticked marks). The bamboo is a support to write down the quantifying estimated choice which will be remembered and corrected if necessary. The convergence of the ticks succession towards a limit is guaranteed by visual capability.

In conclusion, these are the mathematics of the SMI which I claim to have identified concerning the division of a segment into n equal parts in the Torajan wood carvers practice. When applying the Kira-kira, the carver does mathematics.

In all mathematical practice two lines can be distinguished: one separates the finished-work from the work-in-progress; the other, separates the work-in-progress from the work-in-purpose. Ethnomathematical research outside western cultures sometimes goes beyond the first, but, as was already pointed out above, very rarely steps beyond the second. From the SMI approach this second line is crucial. We have stepped beyond it because of the carver’s validation of the MI developed.

Every MI gives the key to what to do in the next stage, what to observe, what to ask, and if a new MI has to be developed or not. The SMI process has been stopped when the validation of the Kira-kira has been held, but it could continue further away: does the carver thinks that the kira-kira process has always an achievable end? Can the Kira-kira method be applied using always the same bamboo stick? The new MI coming after answering to these questions would represent a closer approach to the product’s author mind. This feature makes the SMI process a proper conductor for an Ethnomathematical research.

Finally, let’s note that objects made by non human authors, like nests and nets made by birds and spiders, although quite impressive architectural constructions, will not fit the SMI method: their authors cannot be questioned.
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� Limited, but preciss enough up to a quarter of a milimeter.


� All western mathematical analyses mentioned in this paper come from Albertí (2005).
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