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− Pam Freeman – Manager, Cardiovascular Services
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− Nursing staff at unit

• Department of Statistics, University of Auckland
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The Cardiothoracic Surgical Unit, Auckland City Hospital

Patients treated

• Heart bypass patients, acute and elective (scheduled)

• Other cardiac patients

• Thoracic (chest) patients

• Other patients (vascular, .....).

Questions

• Initial question – how to minimize waiting lists and maximize
number of patients treated?

• First stage – how many beds should be staffed in intensive care to
keep cancellations low? (Need to employ around 5 nurses per bed.)

• Second stage – given the staffing level, what is the optimal roster
and number of electives that should be scheduled?

• Third stage – bottlenecks elsewhere.



The system

• 3 operating theatres + 1 for emergencies

• Intensive care unit (ICU) staffs 9-12 beds, up to 16 available.

− 1 nurse per patient + 2 runners (can look after acute
patients) + charge nurse + 2 on-call nurses

• High dependency unit (HDU) has 6 beds

− 1 nurse per 2 patients + 1 runner + charge nurse

• 52 beds in wards



Patient flow

Acute

Elective

Other

ICU

HDU

Theatre

Ward



Data

3,412 admission records ICU and HDU Jan 2006 – Dec 2007,
842 ICU records Feb – Nov 2008

• Admission date and time

• Length of stay (LOS) in minutes

• Type of procedure

• Ward (ICU or HDU)

• Admission type (e.g. elective, acute, vascular, surgical non-bypass,
cardiac non-surgical, ECMO, (medical), other)

Additional data on transfers between ICU and HDU, rosters, schedules,
elective patients treated...



Cardiovascular Intensive Care Unit (CV-ICU)

Several patient arrival flows 2008 (2006-7)

• Acute – emergency patients 4.2% (7%)

• Elective bypass – scheduled cardio-thoracic surgical patients
65.9% (61%)

• Medical, vascular and other patients 29.9% (32%).

Variable admission times for non-elective patients.

Variable lengths of stay 2008 (2006-7)

• 51% (50%) of patients leave ICU within 24 hours,
94% (96%) within 1 week
2% (1%) stay longer than 17 days.



Length of stay (hours) in ICU Feb–Nov 2008
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Why is it important to include variability in the model?

Imagine a single-server queue where

• 1 customer arrives at the beginning of each minute

• each customer requires 51 seconds (0.85 minute) service exactly

• so the server is busy 85% of the time

What does a plot of the number in the queue look like?



Deterministic model – arrivals 1 per minute, service time
0.85 minutes (51 seconds)
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Now let’s look at a plot of the number in a single-server queue where

• customers arrive randomly (as a Poisson process) – on average 1
per minute

• customer service times are random (exponentially distributed) –
each customer requires 51 seconds service on average

• the server is still busy 85% of the time on average

What does a plot of the number in this queue look like?



Random model – arrivals 1 per minute, service time 0.85
minutes (51 seconds) on average
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• The queue buildup is due just to variability in the arrival and
service processes.

• The greater the variability, the greater the average length of the
queue even though the average arrival and service rates don’t
change.

• The variability of the number in the queue increases too, so waiting
times are less predictable.

• But the server is no busier, on average, when variability increases.



• The queue buildup is due just to variability in the arrival and
service processes.

• The greater the variability, the greater the average length of the
queue even though the average arrival and service rates don’t
change.

• The variability of the number in the queue increases too, so waiting
times are less predictable.

• But the server is no busier, on average, when variability increases.

Conclusion: Deterministic models are not enough to tell you about queue
lengths.



ICU Patients Feb-Nov 2008

Important to model different types of patient.

Patient N Mean LOS Median LOS σ % occupancy
Bypass elective 555 52.6 23.7 93.2 51.8
Bypass acute 35 163.4 88.0 182.2 10.1
Bypass repeat 74 45.5 23.4 64.6 6.0
Surgical non-bypass 65 58.0 21.6 109.4 6.7
Non-surgical cardiac 80 72.8 35.4 95.3 10.3
ECMO (bypass) 7 348.3 166.5 333.4 8.6
Vascular 68 37.3 20.4 68.2 4.5
Other 32 33.3 20.7 47.9 1.9
Total 916 58.9 23.8 103.7 100



ICU modelling – analytical model

• A suitable model might be a modified G|G|C+2+2|C+2+2 queue.

• Runners and on-call nurses provide buffer – priority reservation for
acute bypass and some non-bypass patients.

• Difficulties in modelling arrivals:-

− Both deterministic and Poisson arrival streams.

− Arrivals vary with time of day and day of week.

− Arrival rates vary on a faster time-scale than lengths of stay
(unlike emergency departments).



ICU simulation model 24-hour 7-day

• Simulation written in R.

• Simulation splits each day into 5 time periods starting at

00:00, 7:00, 11:00, 15:00, 19:00.

State of system at beginning of each time period is given by

S = (N, LOS, t, shift, day of week)

N = number of patients in ICU
LOS = vector of residual lengths of stay for patients in ICU

t = time of day
shift = a.m. or p.m.



• Arrivals

− Deterministic arrivals of electives on weekdays at 11:00 and
15:00.

Mon Tue Wed Thur Fri Sat Sun
a.m. 3 3 0 3 3 0 0
p.m. 2 2 2 2 2 0 0

− Other patients arrive as a Poisson process – rate depends on
time of day, day of week and type of patient. Typical
marginal rates per hour are:-

start time 00:00 07:00 11:00 15:00 19:00 average
λ 0.0240 0.0304 0.0674 0.0839 0.0579 0.0495

• Length of stay in ICU drawn from empirical distribution of lengths
of stay.



• Surgery for elective patients is cancelled if a bed is not available.

• At beginning of each time period

− Patients who have left ICU during previous time period are
removed from list.

− Acute and other non-elective arrivals are added to the list.

− If electives are scheduled, a decision is made about whether
to continue with surgery.



Inputs to simulation

• Elective schedule

• Nursing roster (how many nurses working each shift)

• File of patient data including

− Day and time of arrival

− Length of stay

− Type of patient

• Arrival rates for patient types are calculated from data, but can also
be entered manually.



Outputs from simulation

The simulation gives a wide variety of outputs, including estimates of:-

• Number of cancellations per week/shift.

• Number of occupied beds per shift – bed utilisation.

• Number of elective patients treated/admitted per week/shift.

• Number of additional nurses called in per shift.



Simulations of number of occupied beds at 4 p.m.



Estimated number of cancellations per day
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What is the optimal roster?

Objective function?

• Minimize number of cancellations.

• Maximize number of electives treated.

• Keep low the number of additional nurses called in.

• A workable roster.



Typical elective operating schedule

Mon Tue Wed Thur Fri Sat Sun
a.m. 3 3 0 3 3 0 0
p.m. 2 2 2 2 2 0 0

Typical baseline nursing roster, including runners

Mon Tue Wed Thur Fri Sat Sun
a.m. 8 12 12 11 12 12 10
p.m. 12 12 12 11 12 10 9

12-hour shifts, starting at 7 a.m. and 7 p.m.

Mean cancellations per week 6.66± 0.45 (95%CI).



And after searching for improved roster

Starting roster

Mon Tue Wed Thur Fri Sat Sun
a.m. 8 12 12 11 12 12 10
p.m. 12 12 12 11 12 10 9

Mean cancellations per week 6.66± 0.45 (95%CI).

Improved roster

Mon Tue Wed Thur Fri Sat Sun
a.m. 11 14 12 14 15 10 7
p.m. 12 12 10 11 12 8 7

Mean cancellations per week 2.84± 0.30 (95%CI).



Conclusion

Mathematical modelling and optimisation can

• Increase number of patients treated.

• Improve quality of care for patients.

• Improve staffing rosters.

• Improve efficiency of units.

The simulation and optimisation tool described here is a prototype, which
has been designed so that it can be applied more generally.

• In other settings (e.g. HDU, Ward)

• To answer other kinds of questions – "what if" questions .....

This is just part of a larger project. Cameron Walker and Mike O’Sullivan
(Engineering Science) are working with other units, and we want to extend
these ideas to a general simulation and optimisation tool, that can be easily
customised for new units, to assist with informed decision making.
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