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Editorial 
This is the first issue of a Newsletter published by the Community for 

Learning in the Mathematical Sciences (CULMS) of The University of 
Auckland that focuses on undergraduate teaching and learning. Our intention 
is to publish the Newsletter twice a year and we welcome relevant 
submissions from all areas of the Mathematical Sciences.  

It is apparent on inspection of the literature that, in comparison with 
research in school mathematics, there is relatively little research into teaching 
and learning of mathematical sciences at the undergraduate level, and very 
few academic journals that focus on publishing such research. In recent years 
our own research has moved to focus more on university mathematics and we 
have experienced the difficulty of finding a suitable journal to submit articles 
to. While this Newsletter is not a journal it is our hope that it will help fill the 
need to provide a voice for short research articles and opinion pieces on 
aspects of undergraduate teaching and learning.  

There are a number of issues that we believe to be important in this 
growing field of research into the nature of undergraduate teaching and 
learning in the mathematical sciences. For example, what theoretical 
frameworks can inform undergraduate teaching practice? Is the lecture and 
tutorial model the best teaching approach, or can we improve on it? If so, 
how? What should be the role of technology in the undergraduate 
mathematical sciences? Should it be used, and if so what kind of technology 
and to what extent? Is there a role for CAS calculators, for example, in 
undergraduate courses? How might course content change when technology 
is integrated? What should be the relationships between the teaching of the 
various branches of mathematics, and between mathematics and other 
mathematical sciences? How important is service teaching of mathematics, 
and should service courses differ from those for mathematics majors? Do 
bridging courses have a role to play in the learning of mathematical sciences, 
and how should they relate to issues in the transition from school to 
university? Is the traditional written examination still an appropriate way to 
assess mathematical understanding and proficiency? What are other 
appropriate ways of assessing mathematical knowledge and thinking? What 
are the differences and similarities between teaching pure mathematics, 
statistics, applied mathematics, engineering science. What about finer 
refinements like discrete mathematics versus analysis? If you have a view on 
questions such as these, or similar related issues, or have been researching in 
these fields, then as the editors of the CULMS Newsletter we would be 
pleased to receive a contribution from you. 

In this issue Bill Barton sets out his vision for a new approach to 
undergraduate teaching of mathematics. He lays down a challenge to 
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undertake an analysis of traditional delivery methods and comes up with new 
possibilities that he claims are within the economies of scale of universities. 
The second article by Jamie Sneddon describes a team-based approach that 
incorporates student team learning into undergraduate teaching. While this 
has been employed in many subjects around the world it is not often used in 
mathematics. This University of Auckland trial in just part of a small 
mathematics class enabled deeper concepts to be explored and the students 
reported that they found it enjoyable. Another new approach to 
supplementing teaching in the form of guidance tutoring is described by 
Terhi Hautala. This peer support method was instigated at the University of 
Helsinki, and it is claimed that students gained an improved learning 
experience, were better motivated for study, and formed a more cohesive 
student body. It is hoped that these benefits will assist in stemming the drop 
out from mathematics courses. The following article presents Derek Holton’s 
personal perspective on what is involved in mathematics research, and how 
undergraduate teaching should be truly informed by this. He makes a plea for 
a move away from techniques for solving ‘standard’ textbook style questions 
to the use of more open problems. In this way, he argues, students will not 
only see what mathematics is really about but will be better prepared for 
many types of employment. The final article in this issue by Joanna 
Mamona-Downs and Martin Downs considers an approach to the 
completeness of the real numbers using infinite decimals. The aim of 
avoiding an axiomatic approach to this concept is to make links between the 
symbolic and formal worlds of mathematical thinking (Tall, 2008), and thus 
ease students’ transition into the formal mathematical thinking expected at 
university.  

Reference 
Tall, D. O. (2008). The transition to formal thinking in mathematics. Mathematics 

Education Research Journal, 20(2), 5–24. 
 
 
 

Bill Barton and Mike Thomas 
Editors 
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The Pleasure Principle in Undergraduate Mathematics1 
Bill Barton 

The University of Auckland 

I wish to live in a world where… 
• our yachting population will understand the vector explanation of 

why you do not sail with the wind directly behind you (this should 
be demonstrated in secondary school); 

• I will not wake up to a headline proclaiming that examination 
results will tell you how your child’s school is performing 
(journalists should know enough statistics to understand that such a 
statement is nonsense); 

• those who frequent art galleries will see the mathematical as well as 
artistic beauty in Peter James Smith’s paintings (mathematics 
should be widely valued for its beauty as well as its utility). 

Mathematics should be a gate through which we are welcomed to a 
greater understanding of our world, not a gate that keeps out a significant 
proportion of the population from participation. This is a problem for all 
levels of education, but how can we change undergraduate education in 
particular to make this transformation? 

Mathematicians speak like addicts about their subject, deep mathematical 
knowledge is a source of intense and intimate pleasure. Vaughan Jones (NZ’s 
Fields Medallist):  

I was on a high for months as the result revealed itself. All I wanted to do was 
think about the maths and any worldly thing was an intrusion. 

Marcus du Sautoy (UK’s Mathematics communicator):  
I love the buzz of discovering some new eternal truth about the mathematical 
world. The adrenaline rush of creating a strange symmetrical object never seen 
before, with interesting new properties, is addictive. 

Hauke Groot (a practising roading engineer):  
Finally I got it. It was such a buzz. Partly because I had spent so much time but 
finally did it. And then I thought. Oh, there is another way to do this, so I worked 
on, and came to the same solution but using another method, and then a third one. 
It was so satisfying. But I could not charge my client for the last three hours work, 
because I already had the solution, I had just got carried away with the 

                                                
1 This article is based on a Public Lecture given at The University of Auckland in April, 
2010. It is based on a large body of research, especially on undergraduate mathematics. 
This is not referenced in the text, but the major sources are listed in the References 
section. 
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mathematics. 

What would the undergraduate experience look like if it was directed at 
getting students addicted? Rather than relying on tradition to guide our 
practice, I propose a research-based design for tempting undergraduates into 
deep mathematical engagement. 

How do you get people addicted? Classical behaviourist theory tells us 
how: give intermittent, irregular reinforcement. This may be what research in 
mathematics provides for its practitioners—expanses of frustration, lots of 
work, and mazes of dead-ends followed by the rare thrill of a breakthrough. 
But it is not how most mathematics courses are designed. Students either get 
little or no reinforcement at all, or get it frequently and regularly for not 
much effort. We need, rather, to design a curriculum so that students 
experience the struggle and rewards of mathematical endeavour. Such a 
principle (I call it the Pleasure Principle) should override the usual curricular 
principle of getting through a stairway of topics. 

There are some problems here. For example, how can we start reinforcing 
behaviour if the behaviour we want to reinforce is struggle? At undergraduate 
level, this should not be a problem. The students come to us (for better or 
worse) with a history of struggle. They expect it. What we need to arrange is 
the appropriate rewards for the appropriate struggles. Also I acknowledge 
that such a principle may not work for all students. However I believe that is 
will work for a larger number than currently get stimulated by the 
undergraduate experience. 

The Pedagogical Task 
Let us start by thinking carefully about what we would like undergraduate 

students to learn. We must pay attention both to those who are hoping to 
become mathematicians of one sort or another, and those who are studying 
mathematics for other purposes. My list of learning outcomes (for the end of 
three years undergraduate study) is as follows: 

• a broad grasp of the field; 
• an appreciation of its power and its applicability; 
• yes, some technical skills and familiarity with content; 
• significant experience of working in mathematics (including with 

technology); 
• rational thinking (of a special kind, let us call it mathematico-rational 

thinking); 
• perseverance (of a special kind—driven by confidence that rational 

thinking will work, that I can learn any mathematics that I need, and 
that “I can do it”); and 

• a desire to bring mathematics to bear and to critique its use. 
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And the work habit outcomes? It is necessary that we develop in students 
the skills of individual learning and taking responsibility for their own 
behaviour. They must become self-motivated, they will need to use multiple 
sources and modes, and, this last is a big change from school learning, they 
must become self-monitoring. 

Now we have the pedagogical task of thinking about how these things 
may come about. How can we implement the “Pleasure Principle” that 
encapsulates what has happened to those who love mathematics the most? 
Tradition, which has been the strongest factor in guiding current practice at 
universities, has not served us particularly well. Education research tells us 
quite clearly that lectures are a very poor means of communicating content, 
or guiding students how to do mathematical problems, or even explaining the 
intricacies of mathematical concepts. Lecture notes are an inefficient means 
of recording mathematical knowledge that students need—each lecturer 
reproducing a new set of notes when multiple versions of mathematical texts 
exist already in printed and electronic form is a huge waste of valuable time. 
Tutorials, as places where mathematical communication can take place, and 
where students can engage in authentic mathematical tasks, are potentially 
successful learning environments. However, research again tells us that 
tutorials can get modified (by poor tutoring, by assessments, by task design) 
to be places where students work on repetitive exercises (rather than 
mathematical tasks), places where lecture material is repeated, or places 
where students are rarely questioned in ways that will lead to conceptual 
learning. 

But lectures and texts should not be abandoned. On the contrary, research 
also tells us that they are very effective, respectively, at some parts of the 
necessary learning experience. Lectures are a means whereby large numbers 
of students can experience a mathematician at work, the thinking they do as 
they struggle with a problem, the delight when something beautiful happens, 
the way they bring all their knowledge to bear in a creative way. Lectures can 
model the desired behaviour (and the Pleasure Principle). Lectures can also 
be effective communicators of a mathematician’s vision of their discipline—
a lecturer can enthuse and educate their audience with the power, beauty, 
utility, width, history, living experience of mathematics. Our students need 
such stimulation. They do not need it several times a week. 

And self-learning students do need coherent and “correct” accounts of 
mathematics written in forms that are accessible to students at different 
stages of their mathematical development. I do not believe that there is one 
such account, but I also do not believe that there needs to be one account per 
university course. 

Tutorials, or some small group organisation, are well-authenticated in 
general education research as well as specifically mathematics education 
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research as a place where effective learning can occur. The problem is that 
the economies of scale of a university do not seem to allow such a form of 
delivery—or do they? I suggest that, provided we properly use technology, 
and properly set up student expectations and learning habits, then there IS 
time for students to have close, small group learning experiences as a central 
part of their course. 

A Possible New Delivery Plan 
What follows is a delivery plan—one of many possible. It is based on a 

course that, traditionally, has lecture streams of 200 students each, has 
traditionally been delivered by three lectures plus one tutorial per week, with 
assignments, a mid-semester test and an examination. Such a course is 
standard at The University of Auckland, and is supported by a fulltime 
“Assistance Room”, and some facility for one-on-one tutorial assistance. 
Students do four courses at a time, so are expected to spend at least ten hours 
per week on each course. 

The new delivery plan described below assumes that students have been 
already inducted into a high level of self-learning responsibility and new 
“habits”. A first-year course would need to pay attention to developing these 
characteristics. 

The new plan is centred around “Engagement Sessions”. This is a place 
where students experience the authentic struggle, frustration, and reward of 
mathematical activity. This is where they will learn, in a supportive 
environment, what it means to think rationally, the deep and connected nature 
of mathematical concepts, to be creative in their approach to mathematics, to 
justify and hypothesise and question and prove mathematical conjectures, to 
be part of a mathematically literate community. The opportunity to develop 
mathematical discourse, to be challenged, and to operate with personal 
support are all strongly indicated by research to be both favoured by students, 
and to be effective learning conditions. 

In addition, there would be a single lecture per week, where a  “star” 
lecturer would model the thinking, attitudes, expertise, habits, language, 
processes of a working mathematician, and/or would talk widely about the 
subject, its applications, its contemporary developments, its cross-links, its 
expanse and beauty. 

In practical terms, each student would, with ten others, meet with a 
mathematics lecturer once a week for two hours, plus one lecture. In addition 
students would be expected to work for four hours per week developing and 
practicing mathematical skills in a computer laboratory using existing 
tutorials of various kinds. The final three hours would be in unsupervised 
peer-group (or individual) sessions working on authentic problems to present 
and discuss at the engagement session. 
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But surely that will not be the same lecturer/tutor time commitment as the 
traditional delivery method. Traditionally there are four 1-hour lectures, and 
four 2-hour preparation periods, plus eight 1-hour tutorials (200 students in 
groups of 25)—a total of 20 hours/week. We replace it with a lecture and 20 
2-hour engagement sessions. 20 ≠ 41. The answer lies in the demand for tutor 
assistance and in the assessment. 

Currently such a course requires additional tutor assistance of the order of 
15 hours per week (either in tutorials or Assistance Room or one-on-one 
provision). The saving would be equivalent to about 0.25 of a contract 
lecturer. So there are more lecturers. 

Assessment 
With respect to assessment, it is interesting that, in my discussions with 

mathematicians, mathematics educators, and university educators there is a 
refreshing willingness to rethink much of university education. There is no 
difficulty talking about, and imagining, university mathematics courses that 
have much broader aims than at present. It is not difficult to give away 
content lists, even skill lists, in favour of developing good attitudes towards 
mathematics, generic rational thinking skills, and a willingness to struggle 
with problems.  

There is also no difficulty talking about alternative modes of delivery: 
problem-based courses; project courses; changed and reduced roles for 
lecturing; peer-mentoring; innovative tutorials; self-planned and independent 
learning; reverse engineered courses where the student task is to write the 
textbook or set the examination. But when it comes to assessment, the 
shutters come down. My attempts to get people to contemplate assessment-
free courses have all failed, and ended up in accusations of irrational pushing 
of boundaries. 

Now this is curious. Most people display a willingness to critique current 
practices and talk about alternative assessment, they will discuss assessment 
distinctions (such as the difference between formative and summative 
assessment, or the need to assess both skills and understanding). Many 
heavily criticise final examinations. Furthermore, most discussions included 
a heavy critique of school assessments, particularly the idea of high-stakes 
examinations at the end of every year (or even every three years). But no-one 
will contemplate letting go university assessments that occur three times a 
year? 

Discussion includes “authentic assessment”, that is, assessment that 
mirrors the activities for which the course was a preparation. For example, 
law students having to argue their case in a mock court, English students 
being asked to review and edit reports or draft writing, mathematics students 
having to attack unseen problems in real time. 
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The appeal for such assessment is also curious because assessment is not 
part of the authentic experience. Authentic assessment is an oxymoron. A 
research mathematician does not have a senior researcher standing at his or 
her shoulder evaluating their attempts to formulate a conjecture or prove it. A 
writer may have their writing edited, but it is never graded. A lawyer does 
not get a score at the end of the year for their courtroom performance. 

But wait. In the world outside university there is evaluation. We know 
when we have failed to prove a conjecture (or proved something trivial); we 
know when our short story is rejected; we know when our client gets sent 
down. And ultimately our professional lives are successful or not, and this 
bears consequences. However, here is the key point. This evaluation is 
ultimately our own. WE know when we have failed; we do not need others to 
tell us. 

So not only is the educational experience particular in its insistence on 
externalised assessment, but also a severe consequence of authority-provided 
assessment is that we do not learn how to self evaluate and act sensibly on 
those evaluations. 

The new delivery plan would have considerably reduced lecturer 
assessment. What it would have, however, is provision for students to 
monitor their own performance. Students need, and want, feedback, 
feedback, and more feedback. Much of this would be on-line and self-
regulated. The rest would be personal in the engagements sessions. In early 
courses, self-monitoring student behaviour could be externally moderated by 
administrators, perhaps. But ultimately students will need to develop their 
own monitoring habits. 

So, for first year, the new delivery plan will have no formal externalised 
assessment except for a broad grade given by the lecturer who takes their 
engagement session, and an automated multichoice test. Thus the hours spent 
by lecturers writing, checking, invigilating, and marking examinations and 
assignments. This is a significant saving. Is it equivalent to the 240 hours 
extra spent in student contact (an extra 10hours per week for twelve weeks)? 
Yes, it probably is: 3 assignments at 4 hours each to set; one test that takes 10 
hours to set, 2 to check, 12 to invigilate, 15 to mark; one examination that 
takes 15 hours to set, 6 to check, 30 to mark and check. Total of 102 hours 
plus more assignment marking by tutors saved. So we are about 140 hours in 
excess of the traditional mode, but have an extra 0.25 of a lecturer. No 
significant difference. (An aside—if there is no examination, then the course 
could extend for an extra week or two—14% more time for each course). 

These figures are based on the situation at The University of Auckland. 
Averaged across all first and second year undergraduate courses, the number 
of students is considerably less than 200 per lecture stream, and fewer 
students means significantly less time in the new plan, but very little change 
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in the traditional plan. The numbers stack up surprisingly well. 

Changing Culture 
Finally, a word on the practicality of changing cultures. 
Today’s university students are “strategic” and have competing interests 

for time. So any assessment-free course may get ignored under the pressure 
of the demands of other courses. Hence the culture change will require the 
creation of a personal awareness and urgency of the need for mathematical 
thinking, experience, and expertise. This is a major difference from the 
content, goal-directed motivation of traditional courses: you must master 
these examples to pass this examination. 

These are major culture changes. Are they possible? The transition from 
school to university has been researched as a significant break, one that 
causes problems for many students. But what if we made use of this 
discontinuity? The problem might change from one of size of break to re-
setting of expectations—so long as we paid attention to informing students of 
the change, a break with school tradition, the taking on of personal 
responsibility, the new institutional habits could all be positive. 

In my view the more difficult culture change will be that of the institution. 
Not only will there be different physical needs for learning environments, but 
also the support services and administrative requirements will change. For 
example, if a course has broad (or no) grades, how will other systems cope 
with that? 

But most difficult is us. As lecturers, changing the habits of a life-time 
(those same habits as those of our own lecturers) will be nearly impossible. 
The challenge lies with us. Can we think outside the cube? Can we break 
with tradition simply on the basis of rational analysis of experience and 
educational research? We must. 
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Team Based Learning in Undergraduate Mathematics 
Jamie Sneddon 

The University of Auckland 

In 2009, Judy Paterson introduced Team Based Learning (TBL) to a final 
year mathematics course (MATHS 302 “Teaching and Learning 
Mathematics”). Judy and I applied for a Teaching Improvement Grant from 
the University of Auckland to build TBL into MATHS 326 “Combinatorial 
Computing”, and having been successful, are now in the process of following 
through. MATHS 326 covers a range of topics in combinatorics, with a focus 
on graph theory, colourings and block designs. 

Team Based Learning is a carefully structured approach to building team 
learning into undergraduate teaching, for small and large classes 
(Michaelsen, Fink & Knight, 1997; Michaelsen, 1998). It differentiates 
between teams (which remain intact throughout a course) and groups (which 
may not). Its power comes from the high level of cohesiveness that can be 
developed within effective teams. The TBL approach has been used 
worldwide in courses from Architecture to Veterinary Clinical Pathology, 
and just about everything in between. The related TBL website [see 
references] contains very good videos and documentation explaining the 
structure and rationale of TBL course design. 

There are two main shifts in teaching that occur with TBL. A shift from 
students learning concepts to using concepts, and a shift from students being 
consumers of knowledge to being seekers of knowledge: they become 
responsible for initial acquisition of content (through required readings), and 
work with their team to learn how to use content (in team tasks). Both of 
these sit well with my teaching philosophy. The TBL approach has 
advantages that appeal in mathematics teaching. Covering introductory 
definitions and concepts outside class in preparatory reading makes time for 
more in depth content in class. More importantly to my goals for the students, 
the synergy of a team working together on a mathematical problem is a good 
illustration of how research mathematicians collaborate. 

I have not quite incorporated all of the documented TBL approach into the 
course. Students are not involved in setting the weights of various 
components of the course2, and students do not formally rate each other’s 
performance as part of the team. In the future, perhaps intra-team feedback 
for individuals would be useful; I am taking a wait-and-see approach on this 
for now. It is unclear whether intra-team feedback on teamwork would 
encourage or discourage students who under-contribute to teamwork. 
                                                
2 Component weightings are set with department approval before semester starts. 
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The 19 students were separated into three teams of approximately equal 
ability based on their academic transcripts, which they remained in through 
the semester3. The teams had varied backgrounds with a mix of pure 
mathematics, computer science and other majors. We discussed in class the 
difference between group work, which most of the students had experienced 
before in collaborative tutorials (Oates, 1999), and teamwork, where students 
remained in the same teams, and worked together throughout the semester. I 
expected at least a little resistance to fixing teams but there was none. The 
teams gelled well, with natural leaders taking control. The less well-prepared 
students interacted in the teamwork, and report than learned from their team-
mates. 

Each topic in a TBL course starts with a reading to be completed before 
the topic starts: for instance, I used “Group Theory in the Bedroom” (Hayes, 
2005) as an accessible and interesting introduction to symmetry groups and 
permutations. Each reading introduces content that would require more than a 
lecture to cover traditionally. The first in-class contact for each topic is a 
Readiness Assurance Test (RAT), split into two parts. 

The first part of a Readiness Assurance Test is individual: an iRAT. 
Students spend fifteen minutes on eight multi-choice questions working 
individually, and hand in answers. 

The second part of a Readiness Assurance Test is for the team: a tRAT. 
Following this, they have as long as they need (about twenty minutes) to 
answer the same questions as a team on an “Immediate Feedback” form: an 
iFAT (Figure 1).  

 
 
 
 
 
 
 
 
 

Figure 1. An example of an iFAT scratch sheet, with correct and incorrect team answers. 

The team members work together to scratch their answers, revealing a star 
when they are correct. Finding the correct answer on the first, second or third 
attempt gains 4, 2 or 1 mark respectively, so a wrong answer is always 
                                                
3 TBL suggests relatively large teams of five to seven students, to share intellectual 
resources as equitably as possible. 
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followed by more team discussion, and reinforces the correct answer. Each 
tRAT counts for 0.5% of a student’s overall grade (as does each iRAT). The 
RATs are formative assessments. 

A typical question from the first RAT is: “What is the clique number,  
)(Gχ , of a tree?” with options: “(a) 1, (b) 2, (c) 3, (d) it depends”4. It 

combines required knowledge of cliques and trees (concepts covered in the 
reading), and is short, giving simple possible answers to the question. 

Following the readiness assurance process, there is time at the end of the 
class to go over the key points that have been misunderstood. Marking the 
iRATs in class gives quick feedback on which concepts students have not 
understood – which have not always been in the areas I expected. A short 
explanation of these particular problem concepts ends the class. At this point, 
all students in the class have had the ideas of the preparatory reading 
consolidated, and their difficulties addressed. 

The readiness assurance process of each topic is followed by a sequence 
of four or five “normal” lectures on subsequent content in the topic area. 
Some teaching time has been saved through the readiness assurance process, 
and now the more sophisticated mathematics can be approached. My goal for 
these lectures was building knowledge of the topic, which was required for 
the team to attack a team task set in a related area. Each of the five team-
tasks count for 1% of a student’s overall grade. 

The first team task introduced the class to Vizing’s Theorem, which gives 
a classification of graphs into two classes according to how their edges can 
be coloured. It turns out it is hard to find graphs which are in ‘class 2’. The 
task asked for examples of various graphs in each class, and to explain why it 
is harder to find ‘class 2’ graphs. Teams submit answers to the task at the end 
of the class. Looking for real, accessible mathematics to challenge the teams 
led me to follow this task with a discussion in the next class of the Perfect 
Graph Theorem, which was proved in 20025. I had not previously managed to 
bring such current mathematical research into an undergraduate mathematics 
course, but focusing on creating a mathematically “real” task led me down 
this path. 

The teams approached the first task energetically, but perhaps a little 
haphazardly. One team in particular went off together on an interesting but 
nonetheless unproductive tangent, and struggled to complete the task on time. 
However there followed some discussion within the team about what went 
wrong and how they intended to do better next time, and they were much 

                                                
4 The correct answer is “(d) it depends”, which was a significant source of discussion 
within each team, and a point that was covered at the end of the first topic’s RAT class. 
5 The Perfect Graph Theorem classifies all of the class 1 (“perfect”) graphs of Vizing’s 
Theorem, proving the Strong Perfect Graph Conjecture. 
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more focused on the remaining tasks. Another team seemed to accept too 
readily what one member deemed a sufficient answer, and their lack of rigour 
let them down somewhat. The quieter members of the teams began to find 
their voices and contribute more vocally to their team’s efforts in the first 
task, and developed a little more as the course progressed. 

It was surprising to observe that each team quickly became invested in the 
individual learning of its members. No team was observed to answer a tRAT 
question by voting – they always worked toward a consensus through 
discussion. Furthermore, there appears to be a genuine interest within each 
team to be sure all members understand an answer before it is scratched in a 
tRAT. This may be because our mathematics students have been exposed to 
collaborative tutorials in previous mathematics courses, and that working in 
fixed teams is not an uncomfortable further step. 

Having implemented Team Based Learning in a small class, I am 
confident it would be possible to implement in a larger class. There is a larger 
amount of paperwork generated by the regular assessments, but it would not 
be unmanageable in a class with 100 or so students. 

The structure of Team Based Learning energised my MATHS 326 class. 
It was very enjoyable teaching this way, and I think the students enjoyed 
learning this way, actively working in teams and achieving well. Although 
only 7.5% of the overall mark comes from team activities, the class took 
these assessments seriously and were engaged. The structure made the class 
more interesting by moving some of the basic definitions and concepts from 
in-class teaching to pre-class readings, so that deeper concepts could be 
covered in class. 
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Guidance Tutoring — Guidance and Support in the  
First Steps of Studies  

Terhi Tuulia Hautala 
University of Helsinki 

A new form of peer support was implemented at the Department of 
Mathematics and Statistics, University of Helsinki, in autumn 2002 to assist 
first-year students with their studies and to reduce the number of drop-outs. 
This new peer support system, known as guidance tutoring, has become an 
essential part of the department’s curriculum for the first-year students. 

The Starting Point 
The Department of Mathematics and Statistics suffered from a massive 

loss of students at the beginning of their studies in mathematics; a large 
number of freshmen dropped out after their first semester or never even 
began their studies at the department. Only a handful of students continued 
on to advanced studies. Students considered the first year’s curriculum too 
demanding, and lacked guidance and social interaction with other students 
and the staff. This resulted in poor success in studies and a lack of 
motivation, which in many cases lead to dropping out. 

The developments implemented in the first-year courses, and especially 
into lectures, were unable to affect all areas of studying at the university, so 
something else was to be provided for the students outside the first-year 
courses that would bind them to the department and help them to study more 
successfully.  

Background Theory 
Lev Vygotsky’s theory of the Zone of Proximal Development (ZPD), and 

especially the idea of capable peers, was used as a theoretical background for 
guidance tutoring. The Zone of Proximal Development has usually been 
applied to children and their learning, but now this theory was applied to the 
department’s first-year students. 

Vygotsky stated that learning was adapting skills, knowledge and ways of 
thinking which have developed in a certain culture. In this respect the 
Department of Mathematics and Statistics can be seen as a cultural 
environment to which students must adjust. Vygotsky’s essential idea was 
that to understand an individual’s psychological development, one must 
understand the network of social relations in which the individual develops 
and lives (Vygotsky, 1981). 

Vygotsky formed the idea of the ZPD, describing it as follows: 
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The distance between the actual development level as determined by independent 
problem solving and the level of potential development as determined through 
problem solving under adult guidance or in collaboration with more capable peers. 

 (Vygotsky, 1978, p. 86) 

Small group activity and peer tutoring were other bases for guidance 
tutoring. In addition, group work and peer tutoring have proved effective in 
helping students in their studies (Beasley 1997; Loos, Menzel & Poparad, 
2004). The definition of peer tutoring is as follows: “people from similar 
social groupings who are not professional teachers helping each other to learn 
and learning themselves by teaching” (Topping 1996, p. 322). The theoretical 
advantages of peer tutoring have been linked to Vygotsky’s (1978) theory of 
the ZPD and to social and cognitive interaction with a capable peer. Thus 
peer tutoring benefits not only the tutee, but also the tutor. The act of tutoring 
itself involves further cognitive challenge in simplification and clarification.   

Based on the ZPD and the idea of capable peers, development of the idea 
of a peer support system began. Working in a small group consisting of a 
student’s peers and a tutor provides the student with an opportunity to 
achieve better learning results regarding learning skills and mathematics. 
Group work promotes learning by encouraging discussions and debate, which 
in turn encourage the justification of ideas, the resolution of disagreements 
and the understanding of new perspectives (Webb, 1995).  

The theory behind guidance tutoring was based on the following thinking: 
an individual has a certain ability to adapt and to learn new skills. If the 
individual works in social interaction with his peers, his ability to learn is 
better than working alone (Vygotsky, 1978). If a tutor, who is on a higher 
level of development, is added to this group, this ability improves (Topping, 
1996). 

Among first-year students, the interest and motivation to study was fading 
rapidly, as was clearly evident in the considerably smaller number of students 
participating in second-year courses than had participated in first-year 
courses the previous year. Through the peer support system, groups would 
work together to find the enthusiasm to study mathematics. One key to 
cultivating an interest in studies was providing students with experiences of 
success. At the beginning of studies, understanding new abstract concepts in 
mathematics was usually hard, and in this system the students were 
encouraged to participate actively in the learning process as a group. Social 
interaction significantly enhanced their understanding of new concepts. Peer 
tutoring gives students a chance to talk through problems they encounter in 
their learning with another student; they do not always need to do so with a 
teacher (Goodlad & Hirst, 1989). 

The idea of co-operative learning in studying mathematics was also 
brought to guidance tutoring. The goal of cooperative learning is to commit 
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students to participate actively in the learning process, to guide them to take 
responsibility for their own and for others’ learning, to encourage them to 
learn together and to share information instead of competing against each 
other, to develop co-operation, social and problem-solving skills and to 
improve their self-esteem and motivation to study (Gillies & Ashman, 2003). 

The system was also intended to promote learning to learn, so that the step 
from studying upper-secondary school mathematics to the university level 
would not be too difficult. Studying mathematics at the university requires 
possessing different kind of study skills than are usually used at the lower 
level of education. The student must master skills to make independent 
decisions and plans concerning his or her studies. Also the nature of 
university level mathematics makes it essential to develop abstract thinking 
and comprehension of mathematical concepts. Wright (1982, p. 36) describes 
learning to learn as follows: “the student has the confidence to develop a 
learning strategy closely related to why he or she is carrying out a particular 
learning activity at a particular time and to grasp a wider picture of why he or 
she is studying at the university and why specifically these courses.” 
Although a student has to take responsibility for his or her actions, a certain 
amount of guidance in the beginning would do more good than harm. This 
guidance would provide the student with a picture of how to study 
mathematics that would make it easier for him or her to be in command of his 
or her own learning (Wright, 1982).  

The Goals 
Through guidance tutoring, our group aimed to achieve seven different 

goals. These goals were, firstly, that the small group activity would provide a 
place where tutors can observe students’ learning; secondly, that these groups 
would serve as discussion platforms; and thirdly, that they would support 
learning to learn. The fourth goal was to encourage students to work together. 
The fifth goal was to encourage discussion on how to make the most of all 
different study situations the department has to offer and the sixth was to 
guide the students to find the motivation to study. The last goal was to have 
the tutors serve as contact people between the students and the staff.  

These goals are essential regarding studying mathematics. The new 
students were not usually familiar with discussing mathematics with one 
other. They did not realize how different it is to study mathematics at a 
university level than in school and that they would have pay more attention to 
how and why they study.  

The Recruitment and Training of Guidance Tutors 

The tutors are selected through an application process and evaluated based 
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on their social skills and whether they had the right conception of guidance 
tutoring and how motivated they were to become guidance tutors or to study 
their major. The number of guidance tutors has ranged from 10 to 18. The 
selected tutors usually had experience in small group activity. They may have 
been student tutors who guide first-year students for the first couple of weeks 
of their studies. Many such tutors study to become teachers, so some of them 
have also had some educational training. In addition, they usually have 
hobbies that relate to small group activities, Scout Association, for example, 
or sport teams. 

The department provides training for tutors in guiding a small group 
before the autumn semester and the beginning of the tutoring sessions. These 
training sessions consist of discussions on the different roles in a group and 
how a band of students becomes a group. The training sessions are usually 
discussions; the selected tutors discuss the goals of guidance tutoring and the 
session topics for each semester together with the co-ordinator. The tutors are 
paired up and they discuss what expectations they have for the tutoring year, 
and the group of tutors use brainstorming to generate new ideas for guidance 
tutoring.  

Tutoring Sessions 
There are various weekly themes for tutoring sessions. The themes are 

selected so that they will support the students as well as possible and the 
timing of the themes is important, for example a lot of attention is focused on 
social interaction and developing study skills in the beginning of the 
academic year and later more attention is targeted on planning studies. 

The motivation to study is found by granting students the feeling of 
success and by strengthening their own opinions about their own skills. This 
can be done by creating situations where the students can feel that they have 
achieved something (e.g. comprehension of a new concept in mathematics). 

What and how to study is a very important topic of the tutoring session 
discussions. For most of the students, studying at the university is new and 
the study methods they have are usually from upper-secondary schools. In 
the sessions, the students discuss how studying at the university differs from 
studying at the upper-secondary level. Usually, the students find that much 
more reading and understanding and less mechanical counting must take 
place at the university level. The students notice that comprehension is the 
key to success, not learning by rote. Advice on which courses to take and 
when to take them is also needed so that the students will construct their 
mathematical knowledge wisely. 
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The Effects 

A questionnaire was sent to all of the students at the department about 
their experiences with guidance tutoring and what effects it has had on their 
own studies in spring 2007. Approximately 80 per cent of the students who 
answered the questionnaire said that participation in guidance tutoring had 
positively affected their studies. Further, a substantial number of students 
stated that guidance tutoring had a beneficial impact on their social 
relationships. In particular, the development of their social network within 
the department was considered important.  

Guidance tutoring is not a study group, although the groups sometimes 
discuss the content of first-year courses. Rather, guidance tutoring combines 
student tutoring and study group activities, bringing out forms of peer 
tutoring and small group action. Guidance tutoring is an easy way to get to 
know other students, especially for those students who are not naturally so 
active in creating their own social network at the department. The survey 
conducted for the students who had participated in guidance tutoring 
highlighted the effect of guidance tutoring on social relations and further the 
impact it had on motivation to study. Here is a quote from the survey: 
“Originally, I was not planning on staying at the department at all. Had it not 
been for those social contacts made in my guidance tutor group, I would not 
be studying mathematics anymore.” 

Guidance tutoring had a clear influence on how the students’ studies went 
during the first year, and this was reflected throughout their studies. The 
study techniques and skills learned in the groups remained in use after the 
first year. The students had also found that the interaction between them and 
the staff had increased and that the atmosphere at the department had become 
more student-focused and open. Students have become more active, and they 
participate more in the development of teaching at the department. They have 
also learned to plan their studies, so the road from freshman to Bachelor of 
Science and onwards to Master of Science has become clearer. 

All the measures implemented to improve first-year studies at our 
department have affected how the students get on with their studies. The 
developments made in first-year courses (Oikkonen, 2009) have yielded 
better learning experiences and consequently, have motivated the students to 
study. The effects that guidance tutoring has had on first-year students add to 
these effects; guidance tutoring emphasises social interaction in learning 
mathematics, developing study skills and becoming an active member of the 
scientific community.  
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Mathematics: What? Why? How? 
Derek Holton 

Melbourne University 

In this article I want to say what I think mathematics is and why, and 
even how, it might be presented at university level.  

Mathematics: What? (Structure) 
Anybody who has reached this point before would generally reach for the 

nearest dictionary and quote a definition of mathematics. But I’m too lazy to 
even look up the word on the web. Besides it wouldn’t help. The result would 
be, at best, a one-dimensional view of something that is infinitely 
dimensional. Sorry to go as low as to paraphrase the Sound of Music, but 
“How do you find a word that means Maria?” 

Let’s start off slowly though. I guess that mathematics is a way of looking 
at the world and trying to sort out some of its problems. It seems to have 
presently accumulated an enormous number of facts, ideas and theorems. 
But, despite the way that maths is still taught in almost every classroom in 
the world, it is more than a collection of algorithms that, for some unknown 
reason appear to have to be known. There is also a creative side to the subject 
– a place where new maths suddenly appears, sometimes even miraculously. 
And the thing that we have tried to suppress from the general public is that it 
is created by human intervention. 

In my own career6 it seemed to me that there was a rough structure around 
the creation of new ideas and results. Writing this down in some ways 
doesn’t help because any structure that can be put on a page will be 
inadequate for the grand task it is written down for. Nevertheless, it is the 
only way I can think of to communicate so here is my first attempt at a 
structure for the creative side of mathematics. 

What you see in Figure 1 are the key points of a process. I’ll try to weave 
these points together and show how they interact. But right at the start it is 
necessary to say that their interactions are in no way linear and often appear 
to be quite random.  

To me there is no mathematics without a problem. Mathematics exists to 
solve problems. I don’t see how you can do maths unless you are working on 
a problem. I also want to say that by problem, here, I mean something that it 
is not immediately obvious how to solve. OK, you may have some thoughts 
on the matter, some area of maths to look in for a solution, even some 
                                                
6 It should also be noted that there are many places where I have used the first person here 
when in fact I was working with a research group. 
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theorems that you might employ in the solution, but you can’t just sit down 
and write out a solution. These are not exercises that we are dealing with 
where the method is known, these are genuine problems. Clearly if they are 
research problems, then nobody yet knows how to solve them. 

 

Figure 1. An attempt to describe the structure of the creative process in mathematics. 

A common combinatorial approach to solving problems is to experiment 
with the concept in hand. This may involve using a computer to generate 
examples that can be counted or examined in some way. It may involve 
generating examples by hand. But the aim of the exercise is to get to know 
the problem you are dealing with in more detail so that you can form some 
idea as to how a whole class of objects might behave. And when you have 
that idea you have a conjecture as to what might be going on. 

If you are lucky the conjecture will be true and you can prove that it is 
true. But you won’t know this beforehand, so it may well be false. In this 
indecisive position you will try to prove it but a proof may not come either 
because you there isn’t one or you don’t have the mathematical machinery to 
prove it. So you are caught in a wasteland where you alternate between 
looking for a proof and looking for a counterargument or a counterexample. 
Hopefully, any difficulty with a proof will lead to an idea for a 
counterexample and any difficulty in constructing a counterexample will give 
more fuel for the construction of a proof.  

When you get a proof, you have a theorem and life looks very good. For 
me this was always a high point of the process. It was as if I had been 
holding my breath for weeks and finally I could breathe again. All the dead 
ends and frustrations along the way were over and forgotten and a goal had 
been achieved. However, a theorem only led to more work and in some ways 
a return to the start because it was only here that I could really contemplate 
generalisations and extensions. At this point it was essentially back to the 
beginning to see what bigger and deeper results could be found. 

Of course, theorems take time and despite the best efforts, didn’t always 
come. Indeed they often didn’t come. I think that on balance that was good. 
I’m not sure that the whole business would have been as much fun as it was 

Problem 
Experiment 
Conjecture 

Proof                          Counter-argument                    Give up 
Generalise / Extend  For now/ For ever 
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if I could have walked in to the office every morning and produced a theorem 
before lunch. It’s comforting to know that I’m not the only mathematician 
who has had to give up. Like others before me I have given up forever on all 
the conjectures that were floating in my mathematical air. But the same is 
true for Fermat and Goldbach, and so on, and so on. But in Figure 1 I have 
allowed for giving up for now. That has always been a very useful technique. 
It’s amazing how often, after banging my head against a mathematical brick 
wall for hours, turning off, even having to go to a meeting, provides some 
sort of distance from a problem, and while I’m trying to be professorial at my 
meeting, part of my brain, independent of my conscious efforts, seems to be 
gnawing at the problem. The Eureka feeling when it comes, the new idea 
seemingly out of nowhere, is a pretty good experience. And it’s one that isn’t 
only open to the fabled Archimedes at bath time. 

Maybe this background brainwork is also responsible for the strange 
effect of the changing proof. When writing up a proof for publication it does 
sometimes happen that you discover a slip along the way and suddenly the 
proof evaporates. So the elation in getting a proof can be short lived. On the 
other hand, sometimes things get better rather than worse. It’s amazing how 
often the original proof gives way to something that is much more elegant 
when it hits the journal pages. Sometimes this happens because of the 
intervention of a good referee but often a new approach just seems to present 
itself. 

Mathematics: What? (Mathematics and Metacognition) 
But there is much more to research than knowing the structure of the 

process that might lead to a result. In fact, despite the time I’ve spent over it, 
the process is not something that I think I was aware of in the heat of battle. 
It was just the normal process that I naturally went through. And although it 
looks as if there might be a reasonably linear route through the points of the 
structure, nothing could be far from the truth. I would scurry around from 
point to point where the problem led me. Experimentation, for example, 
might be employed at any stage; it was more than a guide to a conjecture. For 
example, if a proof wasn’t working experimentation might help see what to 
try next. However, the goal is always clear. What you hope to do is to come 
out the end with at least a theorem. So this is where you are always heading, 
despite the twists and turns along the way. 

What else is there? Clearly there are all the known results of mathematics 
to draw on. The more of these you know, the more likely you are to come out 
at the end with something new. But maybe metacognition, thinking about 
your thinking, isn’t so obviously a research partner. How do you muster your 
resources? How might the conditions of Blogg’s Theorem be marshalled in 
the present situation to move you forward? How do you recognise that 
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Blogg’s Theorem is the one that you might want? Is this the time to make a 
list? Is this approach any good? Maybe now is the time to abandon it and 
move in a different direction. If I could prove “that” would that lead to “that” 
and then give me “that”? Strategy, as well as process and mathematical 
knowledge, is constantly being applied. (See Figure 2.) 

 

Figure 2. The ‘mess’ of research. 

In cricket, people talk about ‘being in the zone’. I think that this comes to 
a batsman after they have got set and are seeing the ball ‘like a balloon’. In 
some sense then, they probably subsume control of the bat to the 
subconscious and play instinctively rather than consciously. Presumably at 
this stage they are totally focussed on the bowler and the ball. 

I suspect that there are ‘zones’ too for mathematicians. Dunedin is not the 
warmest place in winter and we lived in a big old house that could have had 
more heating. I can remember ‘waking up’ many evenings after 3 or more 
hours at my desk, suddenly realising that I was cold. I hadn’t been asleep; I 
had been deep into a problem. I was so focussed on what I was doing that I 
had totally neglected small matters of temperature. For me, at least, this 
submersion in a difficult problem was an important step towards its solution.  

Mathematics: Why? 
The question that then has to be asked about undergraduate mathematics 

is that if the subject progresses because researchers know both the results of 
the subject and the processes for its creation, why, in our teaching, do we 
spend so much time on only one of these aspects, the results, and very little 
time on the other? Why do we spend so much time on the regurgitation of the 
solution of specific types of problem rather than spending time on promoting 
the solving of problems? Of course, students need to know some 
mathematical results, you can’t do any maths without them, but why have we 
been so slow to help them to develop in what is an important aspect of the 
subject overall – the practice of mathematics? 

I assume that the normal reaction to this is that we get our students to 
solve problems all the time. It’s the basis of all of our courses. But it seems to 
me that what we do is we present a range of standard problems and their 
solutions and are happy when students are able to replicate these solutions. 
We shy away from setting questions that are, in some sense ‘open’, and we 
avoid ‘natural questions’ while we move down set paths through traditional 

Metacognition                Structure                          Known 
Results 
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courses. 
I think that we need to make more effort to introduce this second aspect of 

the subject for four reasons. First, solving problems is a fundamental part of 
mathematics. It is the motivation for the very existence of mathematics. So 
students should know about this side and that solving problems is not just 
about solving problems that everyone knows how to solve. Second, I know 
from experience with bright secondary students that they really enjoy that 
experience. This is good for them and their attitude towards the subject and 
good for the public face of maths. Third, when students leave us and go into 
careers they will need to solve problems, sometimes on a daily basis. Giving 
them one more differential equation in lectures isn’t necessarily the best 
preparation for attacking new problems. Fourth, in some sense, tackling 
problems is a more human side of mathematics than the cold set of theorems 
and algorithms that are often presented, and presented as things to be learned.  

I didn’t really understand what mathematics was about until I was in the 
middle of my masters thesis. Suddenly it all made sense. Why was the 
‘secret’ kept for so long? Others are on record as having realised what was 
going on later in their studies. Why do we hide the best, most interesting 
aspect of the subject from public gaze?  

Mathematics: How? 
Over the years I have tried to widen my approach to undergraduate 

teaching so that it went further than the presentation of techniques but I don’t 
claim to have found perfection. Perhaps my best attempt was for the few 
years when I was responsible for pre-service primary students. There was a 
one-hour lecture every week but we got closest to mathematics in the three-
hour ‘workshop’. This enabled me to ask problems that developed the 
students feeling for basic number. In the workshops they were doing 
mathematics and hopefully understanding the number that they would soon 
teach. 

In graph theory I always started with a few lectures that explored the 
difficult question: How many graphs are there with one vertex? After 
defining a graph as a set of dots and lines we looked at how many graphs we 
could get with various numbers of vertices. First, this was because these were 
natural questions to ask. Second, because the students went straight into 
solving problems and asking questions (such as “Can we have loops?”). 
Third, because by doing this they developed some intuition for the subject 
and started to collect some basic graphs to test ideas on. And fourth, because 
many of the basic ideas of graph theory simply fell out from what the 
students did. Things like degree of a vertex, connectivity, isomorphism and 
cycles just naturally needed to be considered on the way and led to the rest of 
the course.  
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But every subject in mathematics originally developed from scratch, even 
calculus. So there is no reason why similar approaches couldn’t be taken with 
every subject.  
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The Decimal System as a Topic in Transition  
From School to University 
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At school, the model of the whole real number system is based on 
infinite decimals. However, the question “what is an infinite decimal 
exactly?” is usually avoided. At university, the real numbers are 
defined axiomatically. Thus a proper investigation of the infinite 
decimals is ‘squeezed out’ between the two institutional levels. Much 
educational research has been devoted to the perceived transition 
between school and university mathematics, but most is directed to 
general considerations. This communication aims to outline some of 
the mathematical options that exist to reinforce the understanding of 
infinite decimals, and how this understanding could fit in with an 
axiomatic approach. In particular, the concept of completeness of the 
real numbers is discussed. Hence we are treating a particular, but 
major, theme concerning the transition from school to university. 

In the course of teaching numbers through the school years, students first 
learn natural numbers, with their usual operations. The operation of ‘minus’ 
eventually raises the need for the number ‘zero’ and negative integers. The 
operation of division ultimately leads to the idea of fractions. Fractions 
represent numbers, but only equivalence classes of fractions can be regarded 
as numbers. Often a particular representative is taken as a number, i.e. the 
fraction ‘in its lowest terms’. Now the numbers that we have introduced up to 
now function perfectly as a self-contained body in the sense that the 
operations brought in are closed. But cognitively there seems a psychological 
demand that any line segment should have a length recognised as a number. 
As the length of the hypotenuse of a right triangle where the other two sides 
have length 1 cannot be expressed as a fraction, it is deemed that there must 
be other numbers apart from those that can be represented as a fraction. But 
what characterises these ‘extra’ numbers? 

This is a question that is rarely raised seriously in school teaching. 
However, simultaneous with the development of learning about different 
kinds of numbers, a representation system is refined, namely the decimals. A 
digit scheme using a specific basis is a particularly efficient way to 
symbolize individual integers, and to describe operations implemented 
through certain algorithms. These algorithms typically are taught at primary 
school. Of course the ‘default’ basis taken in modern times is ‘ten’ (though 
for certain areas of mathematics, especially those related to programming and 
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coding, it is more natural to adopt the binary system.) In fact, the retention of 
one particular basis can raise problems for students later when they meet 
other bases, but on the other hand this situation provides students an 
opportunity to obtain a deeper understanding on what the decimals involve. 
The introduction of the notion of ‘negative integral powers’ means that 
decimals can be extended from the integers to those ‘numbers’ that have a 
‘fractional part’. The integral part and the fractional part are separated by the 
decimal point; both parts are expressed by a finite string of digits. This is just 
a description of the symbolism anan-1…a1a0•d1d2…dm denoting 
anx10n + an-1x10n–1 + … + a1x101 + a0x100 + d1x10–1 + d2x10–2 + … +dmx10–m 

where each of ai and di are integers from zero to nine. Such finite decimals 
admit natural extension of the four fundamental operations expected for 
numbers. But the set of finite decimals has a ‘defect’; it is not closed under 
division. For instance, 1

3
 cannot be expressed as a finite decimal. 

Effecting the Division Algorithm n times for any natural number n, the 
fraction 1

3
 can be written as:

  

 

0.33...3
n digits
  +

1
3 ×10

−n  

Applying the Division Algorithm once more adds a further digit to the 
string of 3’s already ‘produced’ and reduces the ‘recompensing’ term by a 
factor of ten. It is then rather conducive to assign to 1

3
 the new symbolism 

0.3… where the dots suggest an infinite string of successive digits all taking 
the value of 3. It is important to realize that at this stage that 0.3… is just 
another way to say 1

3
; it does not have as yet an autonomous definition. 

A similar situation occurs for all fractions (in lowest terms); on applying 
the Division Algorithm, either the fraction is ‘converted’ to a finite decimal 
or the digits eventually are repeated in successive ‘blocks’. The reason for 
this is straightforward. Suppose m

n
 is a fraction in its lowest terms, and does 

not have a finite decimal representation. Carrying out a ‘new’ step in the 
Division Algorithm applied on m

n
 depends only on the remainder of the 

previous step. The number of values ‘available’ for the remainder is n–1. 
Hence before n digits are ‘produced’, a value for the remainders must be 
repeated, at which point a cycling behaviour must start in the digits. The 
resultant repeated block of digits is usually called the period (of the decimal 
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representation of m
n

), and the number of digits in the period as the length of 

the period. Applying the Division Algorithm indefinitely, it seems 
appropriate to give the fraction an alternative symbolism as an ‘infinite’ 
decimal:  

 
anan−1 ⋅⋅⋅a1a0id1...di ⋅⋅⋅dj  

where the digits that are over-lined indicate the period. Then the length of the 
period, say p, equals j–i+1. Then the expression above is given more 
explicitly by: 

for any natural number m ≥ i, dm = d((m-i)mod p)+i 
Finite decimals evidently could be rewritten as ‘infinite’ decimals with a 

period of one digit of value zero, so all fractions (in their lowest terms) can 
be expressed as ‘infinite’ decimals. Taking this convention, the word 
‘infinite’ in the term ‘infinite decimals’ is now redundant, so is omitted 
henceforth. A convincing simple argument suggests that, conversely, any 
decimal possessing a period represents a fraction. However, fractions (in their 
lowest terms) are not quite in a one-to-one correspondence to the set of 
periodic decimals; a finite decimal represents the same fraction as another 
decimal with a period of one digit of value 9. For example, the question 
whether 0.9 =1.0  is resolved affirmatively simply by the fact that both sides 
represent the same fraction 1

1
. (If the period is not of the form of one digit of 

value 0 or 9, a periodic decimal is unique in representing a fraction.) 
Showing that fractions are periodic decimals and vice-versa involves a 

mix of convention and fact. The fact is that as many digits as wished can be 
produced by the Division Algorithm, and so the period can be identified (in 
principle). The convention is that this information can be signified in the 
form of a decimal. The decimal representation is suggestive of a mental 
interpretation that the period is repeated indefinitely, despite the fact that 
there is only concrete meaning in finite repetition. This raises the issue of 
‘potential infinity’ (against ‘actual infinity’), an issue much elaborated on by 
researchers in the philosophy of mathematics and by mathematics educators 
(e.g., Moore, 1999; Dubinsky, Weller, McDonald and Brown, 2005).  

When periodic decimals are first introduced, students ideally will have the 
curiosity to ask some questions. Is there any point in wondering whether you 
can give meaning to decimals that are not periodic? Should these be regarded 
as numbers also? If so, do decimals (including the periodic decimals) 
determine all numbers, and on what grounds would you make this judgment? 
If a decimal is not just an alternative symbolism for fractions, what defines 
it? 
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Again, these questions are rarely put to students. The usual teaching 
sequence in school is to decree that the set of decimals, or in other words the 
decimal system, constitutes the whole body of the real numbers. The numbers 
that are represented by periodic decimals are called rational numbers, to 
distinguish them from those that are not, which are called irrational numbers. 
The system of decimals becomes, in the class environment, the predominate 
model of the real numbers. 

Despite this, typically at school little is done with this system. Decimals 
that are not periodic stay as vague entities. Many students learn by heart that 
π = 3.14159…, with little understanding what the three dots signify, whereas 
the fact that π is irrational is rarely known or retained. True, a proof of this 
fact is beyond normal school work, but even the issue as a question is not 
raised. The activities done are usually restricted to exercises in converting 
fractions into periodic decimals and vice-versa, leaving the decimals 
corresponding to the irrationals virtually unexamined. 

If the decimal system is not properly covered at school, the same holds at 
university where an axiomatic approach to the reals dominates. The topic 
usually is squeezed out of the curricula between the two levels. For example, 
Gardiner (1982) states that: 

But through the long division process, which we use to transform an ordinary 
fraction into a decimal fraction, frequently gives rise to infinite decimals, little if 
any time or effort is devoted either to investing these curious entities with ordinary 
meaning, or to clarifying the mathematical idea which justifies their representation 
as never ending decimals. Experience suggests that many undergraduates complete 
their studies of sequences, series, and limits in the calculus without ever realizing 
the light they shed on infinite decimals.      (ibid, p. 70) 

This is unfortunate, because a mature treatment of the decimals can be a 
good vehicle to motivate the axioms of the reals, especially in premeditating 
the axiom of completeness. Quite often the terms ‘Calculus’ and ‘Real 
Analysis’ are distinguished, the first conveying an intuitive understanding of 
what the real numbers are and from this what can be assumed about real 
functions, the second conveying a strictly axiomatic prescription of the reals 
where all properties of functions have to be proved however ‘obvious’ they 
may seem. It is often observed by educators that the transition between 
Calculus and Real Analysis is difficult for many students (e.g., Mamona-
Downs, 2008). In this respect, it is reasonable to propose that teaching 
directed to an appreciation of the nature of infinite decimals should be of 
help. This proposition could be implemented within several different 
institutional settings; either as an item to insert in the school curriculum, as 
part of a ‘primer’ course at the start of students’ undergraduate career, as 
background reading whilst taking a (first) undergraduate course in Real 
Analysis, or as a theme addressed in teaching training. (The latter means that 
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schoolteachers of mathematics will be equipped with a reasonable 
background knowledge concerning decimals, which hopefully would be 
transmitted at class).  

The various settings might well affect the style of instruction, but a 
common aim certainly would be to ‘legitimize’ decimals as ‘bona-fide’ 
numbers, and having done this to explain how the ordinary elementary 
operations (add, subtract, multiply, divide) can be applied in the context of 
decimals with an infinite number of digits. 

A status for periodic decimals has already been established; they represent 
the rationals with fixed procedures of conversion into fractions, and algebraic 
operations are permitted through our knowledge of the arithmetic of 
fractions. However, in order to have an integrated formulation of the real 
system, decimals that are periodic should be treated exactly in the same way 
as decimals that are not. Thus the special status of periodic decimals has to be 
temporarily suspended; once we have established the basis of the whole real 
system, it can be re-captured.  

This does not mean that our experience with periodic decimals, especially 
finite decimals, will not influence our thinking concerning all decimals. 
Intuitively, a decimal is an infinite string of digits. For the periodic decimals, 
there is a process to generate as many digits as wished. This promotes a 
potential image of an infinite process. Non-periodic decimals, as a body 
distinguishing irrationals from the rationals, are not imagined in this way; for 
any randomly chosen irrational, there is an (unknown) allocation of a digit 
for each decimal place (without any sense of generation from previous 
digits). The mental image now is more allied to ‘actual’ infinity. However, it 
is natural to consider that a decimal is determined by its digits. So if a 
decimal is represented by N.d1d2…, where N is an integer, and the di’s 
undetermined, we can image the sequence of finite decimals N.d1, N.d1d2, 
N.d1d2d3, … as representing the decimal. Then a principle could be decided 
on that says such a sequence always converges to a number. Imposing such a 
‘principle’ might seem to the student just as an act of assuming true what is 
desired; what justifies this? To counter this we might say that we have a 
preconceived idea that the number system exists but it is not as yet firmly 
determined; the principle acts in a way to finally seal a definitional basis for 
the reals. Having said this, the word ‘principle’ also has connotations of 
transparency that perhaps are lacking in this case. As sequences and their 
limiting behaviour are relatively sophisticated constructs and the assumption 
that decimals always converge might interfere with students’ working 
practices and beliefs concerning limiting behaviour of real functions, this 
indeed might not be the most convincing way to justify decimals as being 
numbers. It is more natural to regard the statement ‘a bounded increasing 
sequence converges’ as expressing a property that has to be proved rather 
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than expressing a tenet. 
Thus we aim to find an alternative principle that might be accepted more 

readily. We associate N.d1d2… with a set of intervals I1: = (N.d1, N.d1 + 10–1), 
…, Ii: = (N.d1…di, N.d1…di + 10–i), … where an interval (a, b) indicates all 
the (putative) numbers between the rationals a and b. Clearly for k>j, Ik⊂Ij; 

for any natural n, 
 

Ii
i=1

n

 = In , and the length of In+1 is the tenth of that of In. If 

we take the ‘infinite’ intersection and compare it with the finite situation, we 
can imagine an infinite process for which the successive intervals collapse 
into a single element. The existence of this element of the infinite 
intersection, though, cannot be proved (unless the completeness property of 
the reals is defined in another way). It has to be regarded as a postulate, 
which is convincing enough to expect a consensus acceptance. Thus in this 
model ascribing a decimal as a number, the ‘number’ N.d1.d2… is a 
symbolism for the number arising from a particular infinite intersection. 

But there are other options to interpret a decimal. For motivation let us 
take a particular number that we already know is irrational, say 21/2. This, 
then, is represented as a decimal that does not have a period. Consider the set 
of all rationals that are less than 21/2. By supposition, 21/2 is an upper bound of 
this set. Now the decimal for 21/2 ‘cut off’ at the (i+1)th. decimal place would 
be greater than 21/2–10-i however large the natural i is taken; this means that 
21/2 is the least upper bound. This particular case could encourage us to 
formulate the whole number system in terms of the least upper bound of sets 
of rationals. However, we would have to invoke yet another principle; that 
for all bounded (non-empty) sets (of rationals) a least upper bound does exist. 

Above we have mentioned three ways to give an expression for the 
numbers that ‘lie beyond’ the rationals. Each way depends on adopting a 
central principle that just has to be accepted. When you compare the three, it 
should be evident that they are all consonant to the same idea; hence they are 
collectively identified as different expressions of the same concept, i.e., 
completeness. There are other candidates beyond the three mentioned (see 
e.g. Artmann, 1988). (In particular, the idea of Dedekind cuts has obvious 
cognitive links with the dictate that least upper bounds exist, but conceptually 
it fits more comfortably with the image of the number line rather that the 
environment of the decimals.) However, each one has a form that is 
significantly different in character from the others. For this reason, perhaps it 
is only feasible to teach one model at school; if various ways of interpreting 
the decimals are introduced, the teacher would have the resultant task of 
reconciling one version to the others. In this respect, probably the version of 
completeness that would be most readily accepted by students is the one 
concerning nested intervals (and so this would be the most suitable to teach). 
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It is natural to regard the convergence of increasing, bounded above 
sequences as a theorem rather than a tenet; the existence of least upper 
bounds and Dedekind cuts bring in a set theoretical perspective where the 
role of finite decimals subsequently becomes obsolete.  

However, there is a problem in obtaining models of the real numbers 
based on the decimals vis-à-vis a strict axiomatic approach. At school, 
numbers are taught in stages. In particular, only from having an 
understanding of the rationals do you build up the whole real system. The 
axiomatic approach taken at university, though, reverses this process; the 
axioms ‘determine’ the numbers as a unified body from ‘the scratch’, and 
special categories of numbers such as the rationals must be identified a-
posteriori. This means that the expression of the axiom of completeness 
should not depend on a previous knowledge of rationals. This would force 
reformulations to our models of completeness stated before. In particular, 
removing the pre-supposition that rationals exist a-priori affects the 
assumption that the nested intervals corresponding to a decimal would lead to 
a single ‘point’; it could possibly be an interval. As in passing from one 
interval to the next, the length of the interval would decrease by a factor of 
1/10, although this possibility can be dismissed if you assume the 
Archimedean Property. Thus an expression for the completeness of the reals 
concerning the principle of nested sets has to be accompanied by the 
Archimedean Property. 

At the risk of raising some philosophical difficulties, it would seem only 
sensible to try to confront students, in their later years of schooling, with the 
issue of completeness, and to do this based on the model of numbers that they 
are familiar with, i.e., the decimal system. This claim is strengthened by 
educational research that suggests measures should be taken to ease the 
transition between school mathematics and that taught at university; see for 
example Castella (2007). However, very few educational tracts explicitly 
deal with the concept of completeness (an exception is some work by Bergé, 
2010); this is surprising as the real numbers are fundamental to both 
institutional levels. In particular, certainly some dialectic between the 
concept of density and completeness would be welcome at the school level. 
Another issue is that students at school take it for granted that numbers can 
be acted on by the operations plus, minus, multiplication and division. 
However, it is far from obvious how these operations are effected on (non-
periodic) decimals; in order to tackle this problem one again has to examine 
more precisely what we mean by the decimals. If this is not attempted, an 
occurrence of incoherency appears within the usual school curriculum. In this 
communication, we will not expand on the theme of the arithmetic of the 
decimals; a good account may be found in Gardiner (1982), chapter II.11.  

This short essay points out that a mathematical issue, i.e., what the real 
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numbers are, is dealt with in a completely different framework at school from 
what it is at university, and discusses in mathematical terms how these 
frameworks could be reconciled to some degree. What we have not attempted 
is the following: to forward an educational programme to address this 
concern. I hope, though, that what we have written here will prompt other 
educators to undertake exactly this. Also, as the whole topic of the system of 
the decimals is left hanging at school, there are opportunities for educational 
research to take other directions than that suggested by this current dialogue. 
Even in the more concrete situation of periodic decimals, certain general 
patterns in the digits can be discovered (e.g., Brenton, 2008; Lewittes, 2007) 
that afford an excellent problem solving environment to test students’ ability 
to apply or develop elementary results in number theory or group theory at 
the early undergraduate career. Another interesting angle would be to take the 
decimals as an exemplar of a topic relevant to the school/university 
transition; how should the resultant theory be presented as a blend of the 
practices of the two institutional levels? 
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New Zealand  

Mathematical Society 
Colloquium 

 

University of Otago, Dunedin, New Zealand 
7th December - 9th December 2010 

 
The annual Colloquium, for the first time under the auspices of the New 

Zealand Mathematical Society, will be hosted in 2010 by the Department of 
Mathematics and Statistics at the University of Otago. 

The programme consists of five plenary sessions together with 
contributed talks representing, we hope, a wide range of contemporary pure 
and applied mathematics and related areas, such as mathematics history and 
education. 

There will be a reception on Monday evening to welcome those attending; 
registration formalities can be completed then or on the following morning.   

On Tuesday there will be a second reception at which posters will be 
exhibited and informally talked about by their authors.  ANZIAM has kindly 
donated a prize for the best poster submitted by a student. 

Excursions suitable for the energetic and the sedentary have been 
arranged for Wednesday afternoon.  The Colloquium dinner will be held on 
Wednesday evening at the historic and picturesque Larnach’s Castle on the 
Otago Peninsula.  Transport to and from the dinner will be provided. 

 
Further details are available from the website: 
http://nzmathsoc.org.nz/colloquium/home.php 

 
Please direct any enquiries to:  
Ms Leanne Kirk  lkirk@maths.otago.ac.nz  

 
We very much look forward to seeing you there.   
  
Peter Fenton,  
Convener        
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