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For many students, understanding of linear algebraic equations primarily accrues from
working in a single, symbolic representation. It is not until later that they study graphs and
attempts are made to link these to the previously studied equations. This paper reports
results of a study where super–calculators were used with 13 year–old Korean students, none
of whom had used calculators in mathematics lessons before, in an attempt to make explicit
links between symbolic, tabular and graphical representations of equations. The results show
that the students did build some improved deep links between the domains and that the
experience of using the calculators was generally a positive one for them.

Background

It appears that often the focus of mathematics for secondary students has been on
learning which encourages them to build knowledge specific to particular problems.
Further, much of this learning has emphasised procedural methods rather than
concepts. For example, in early algebra sometimes students learn how to simplify,
expand, factorise and solve, without understanding the meaning of the processes or
the nature of the objects (Tall et al., 1999) upon which they are acting. While
procedural knowledge is important it is prone to be learned instrumentally (Skemp,
1979).

There is wide agreement that our conceptual structures or schemas are a key
determinant of our progress in mathematics. It seems clear then, that the richer one’s
construction of schemas in a given domain in terms of conceptual associations or
C–links (Skemp, 1979), the greater the potential for future expansion and linking to
other domains of mathematical knowledge. One way to accomplish this is by making
explicit conceptual links between different representations of mathematics, described
by Kaput (1987, p. 23) as involving “a correspondence between some aspects of the
represented world and some aspects of the representing world.” Kaput (1992, p. 524)
has listed one of the four classes of mathematical activity in school as “translations
between notation systems, including the coordination of action across notation
systems.” and explains the value of technology in enabling manipulation of
mathematical concepts both within and between these different representations.
However, more is required than the ability to translate between the representation
systems. Students may have such a surface ability without an understanding of the
deeper, conceptual links which are imbedded in the transformation between the
representations (Greer & Harel, 1998). Chinnappan and Thomas (1999) have
investigated the schemas of experienced teachers who employ modelling techniques,
and have suggested a model with schematic conceptual links as the foundation for
learning which relates representations, internally and externally.

This research investigated the value of making explicit links between three
different representations of linear algebraic equations: the symbolic; the graphical;
and the tabular forms. While these representations have often been used before, here
the concept of equation, and in particular the deep idea of conservation of a solution



to an equation under cross–representation transformations, was emphasised during
the learning experience.

A consideration of the best way to approach this led to the graphic calculator,
since all three dynamically related representations arise naturally in that context
(Kaput, 1992). In addition, graphic calculators are more accessible to students than
computers are in many schools (Kissane, 1995; Thomas, 1996) and this is a key
advantage. However some have been sceptical of the value of the technology in
secondary mathematics learning and continued research is needed in order to provide
convincing evidence of how graphic calculators can be valuably employed in the
mathematics curriculum. There is already a growing body of such research (e.g.
Ruthven, 1990; Penglase & Arnold, 1996; Graham & Thomas, 1997) supporting
their use in mathematics learning, but it is still restricted in terms of content area and
use of the calculators’ facilities.

Method

The research described here forms the Korean part of a study of students in New
Zealand and Korea (a high performing country on the TIMSS results), whose aim is
to investigate the use of super/graphic calculators to improve students’ conceptual
understanding of linear algebraic equations. This research was carried out during the
period 5th–16th July, 1999.

Subjects: The study involved one class of 35 Form 4 students (aged 13–14 years)
from a middle school in Seoul, Korea, who are not currently allowed to use any
calculator in their classes, or for assessment, such as examinations. Thus while 27 of
the subjects had used a calculator (but never in their standard mathematics lessons)
none had ever used a graphic or a super–calculator. The students had previously
covered simplification of algebraic expressions and solving linear equations during
the school year. This enabled us to use them as a stand–alone single subject group to
see what, if anything, they could gain by additional exposure to and linking with the
alternative methods of approaching equations that the super–calculator permits.

Instruments: A module of work using the TI–92 super–calculator was prepared.
This contained a description of the basic facilities of the TI-92 and then showed
how, using a ‘Press’, ‘See’, and ‘Explanation’ format, linear equations can be solved
in three different ways: algebraically, graphically, and numerically from a table of
values. Two algebraic methods were given, using the TI–92 to solve the equation
directly and also using a standard balancing algorithm. An illustrative section from
the module showing the four methods for the equation 2x – 5 = 3x – 9 are given in
Figure 1 (note the section is incomplete and formatting has been changed). The fact
that the solution is the same in each case was emphasised. Two parallel tests, divided
into sections A and B and comprising different numerical values, were constructed as
pre– and post–tests. Section A of these tests comprised standard textbooks questions
such as:    5x – 8 = 3x + 2; m = 8 – 3m; and 6 – 8n = –3 + n.

In contrast, section B addressed the students’ conceptual thinking in solving
equations, both within and across different representations. The concept of
equivalent equations is also important and we wanted to know whether the students
were able to conserve equation under addition of constant or variable quantities as
used in method 1b), and could recognise equivalent ones without having to find
solutions.



2x – 5 = 3x – 9 is solved by an
algebraic method.
The b  x tells the calculator to
solve with respect to x.
x = 4 is the value which makes
both sides equal in value.

To find the value of x, we need to
simplify the given expression step
by step:
If we add 5 to both sides, the
expression is simplified to 2x=3x-4.
If we subtract 3x, the expression is
simplified to –x = –4.
If we divide by –1, finally we get
x=4
Here each side of the equation is
defined as a function, using y1(x)
and y2(x):
y1(x)= 2x – 5
y2(x)= 3x – 9
Looking at the two graphs, we can
see that they intersect at one point.

1st curve means y1(x),
2nd curve means y2(x).
The lower and upper bound means
the interval in which the
intersection point is found.
So the two graphs intersect at the
point (4, 3). i.e. x = 4

The point of intersection can be
found using a table.
Enter y1 and y2 as in method 2.
When we look at the point x=4, we
can see the values of the two
functions are the same, and equal to
3.

Figure 1: A section of the module showing the layout and calculator screens

Within the symbolic representation we asked them questions (B1) such as:

Do the following pairs of two equations have the same solution? Give reasons for your answer.
a) 5x – 1 = 3x + 2 b) 2 – 3x = x – 3

 5x – 1 + 8 = 3x + 2 + 8      2 – 2x = 2x – 3

We note that in both examples above the second equation may be seen by
someone with the concept of equivalence of equations as a legitimate transformation
of the first (by adding 8 or x to both sides) conserving the solution, although this
may not be a productive transformation in terms of actually obtaining that solution.

 In addition the tests required the students to maintain the concept of solving an
equation across representations, asking them to solve a symbolically presented
equation in a graphical and a tabular domain (question B7) and to convert a
graphical picture into a symbolic representation, as in Figure 2.



B6. Write a single equation in x which can be represented by the following diagram:
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Figure 2: A question assessing understanding of transformation from a graphical to a symbolic
representation

Students were also given a list of 6 symbolic, 3 graphical and 3 tabular
representations and asked ‘Which of the following are different ways of representing
the same equations?’ (see Figure 3). This tested their ability to conceptualise
functional equality across representations.

B2. Which of the following are different ways of representing the same equations? Match the letters
which correspond and write them in the boxes below.

x + 2 = 2x 4 – 2x = 3 – 2x +3 = 2 – x
A B C

5 – x = 2 – 2x 2x – 4 = 4x + 10 5 – 3x = –4
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3 –3 3 –1 4 –7 4 –4 4 3
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Answer. � � � correspond � � � correspond

� � � correspond � � � correspond

Figure 3. A question testing equivalent representations of equation forms

As well as the test each student was given a questionnaire covering their
experience with the calculators (serving to triangulate the test results) and their
understanding of the concepts associated with linear equations, and an attitude scale
(using a 5 point Likert format) on their feelings towards calculators.

Procedure: The module (written in English and translated into Korean – the
English version is shown in this paper) was initially given to the class teacher, who
familiarised herself with the content. The first named researcher met twice with her
to answer her questions and to make sure that she was comfortable with the



calculator and the material. The teacher then taught the class for four lessons, two
covering basic facilities of the calculators including introducing graphs and tables,
the other two describing how to solve equations in different ways on the TI–92. The
only previous experience the students had had was in solving equations algebraically.

Each student had access to their own TI–92 super–calculator, which they kept
with them for the whole of the time of the study, including their time at home.
During lessons the teacher stood at the front of the class, who sat in the traditional
rows of desks, demonstrating each step while the students followed in the module
and copied her working onto their own calculator. She employed a calculator
viewscreen and projected the image using an overhead projector. However, the
calculator commands were projected in English and it was necessary for the teacher
to translate each one into Korean for the students, causing some confusion until they
became more accustomed to the English commands. Each session lasted 45 minutes,
and after the teacher’s explanation, the students spent the rest of the session
practising while the teacher circulated and assisted with any problems, and the last
five minutes were used for a summary. At the end of fourth tutorial the students
were given the post-test, followed by the attitude test and the questionnaire.

Results

The students had spent some time in normal lessons prior to the research learning
how to solve equations in a symbolic arena. Hence it was not surprising that they had
pre–test facilities of 86.7% and 69% on the two skills questions in section A,
showing that before the study they were able to solve even difficult linear equations.
However, for question 6 in section B (see Figure 2), not one student could relate
either of the lines to an equation in x (this was considered by the teacher to be at too
high a level for her students). Even when given a graph or tables and an
accompanying symbolic equation as in question B7 (see Figure 4), very few students
could solve the equation using the graphical or tabular representation, this question
having a facility of 15.8%. On question B2, (Figure 3), students also had difficulty,
with just 11.5% of answers correct. It seems, from this pre–test evidence, that
students were good at solving equations symbolically, but were less good at
translating between the symbolic and other representations, or using those
representations to solve equations. They had problems relating the surface features of
the domains and had not built an understanding of the deeper relationship based on
conservation of equation solution under different representations of the functions.

After the calculator intervention there was no change in the students’ skills at
solving the equations (Section A: max score = 7; mpre=5.61, mpost=5.54, t=0.16,
n.s.) but they had improved significantly on some of the more testing questions in
section B (max score = 35; mpre=13.1, mpost=17.0, t=2.25, p<.05). However, the
improvement was variable across the questions, as may be seen from Table 1,
which gives the mean scores for each of the questions in sections A and B.

Each of questions B2, B6 and B7, where the students performed significantly
better after the module, involved relating data between two or more
representations (see Figures 2 and 3). While the improvement in question B6 was
small, involving only 5 students, this was a more difficult question, needing
further attention. Figure 4 shows the response of student L2 on question B7,
where they were asked to solve the symbolic equation using the given graph or
table. On the pre–test he was unable to use the graph or table to solve the



equation, but on the post–test he has made the link to a solution in each case, and
understands why it is the solution.

Table 1: A comparison of pre– and post–test section A and B mean scores
Question Number

(Max score)
Pre–test
mean

Post–test
mean

t p

A1 (5) 4.33 4.09 –0.44 n.s.
A2 (2) 1.38 1.46 0.41 n.s.
B1 (18) 10.5 11.5 0.77 n.s.
B2 (4) 0.46 1.14 3.95 <.0005
B3 (2) 0.85 1.09 1.46 n.s.
B4 (1) 0.04 0 –1.79 n.s.
B5 (2) 0.35 0.53 1.46 n.s.
B6 (2) 0 0.17 2.24 <.05
B7 (6) 0.95 2.66 3.29 <.005

We note that for the graph question he also solves the equation symbolically, but
does not do so for the table.

Pre–Test Solution Post–Test Solution

[x equals –1, because –1.00 is indicated on the x-axis]

No Response

[x = 1, because the values of y as 2 at the point x = 1 are the
same from the two tables]

Figure 4: The B7 work of student L2 showing conceptual links between representations

The aspect of conceptual understanding, seeing the relationship between equations
and their solutions across the representations, was further investigated in the
students’ questionnaire, where they were asked the following question:

Is there a relationship between A, B, C in following diagrams? If so, then what is it?

x + 2 = –2x + 8
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This was very similar to question B2, where the pre–test facility was 11.5%, and
the post-test 19%. In the questionnaire 17 (48%) of the students answered that the
value of x is common, showing that they may have conserved solution of equation
across the representations. It could be argued that they had merely calculated that in
each case the solution was 2, without appreciating that the functions were the same.
However, 9 (25%) of the students also answered that the expression A can be shown
by the graph B and the table C, demonstrating that these had made the link. Further
supporting this, 11 (31%) of the students mentioned later in their questionnaires, as



an advantage of calculators, that through the use of the table, graph and algebra the
solution to the equations could be more easily and quickly understood. In addition,
when asked 'How many different ways can an equation be represented?' 21 (60%)
replied 3, citing algebraic, table and graph. This was evidence that the tutorial had
assisted construction of schematic understanding of surface and deep relationships
between algebraic, tabular graphical representations of the concept of equality of
linear functions.

Table 2: Breakdown of methods employed on the conservation of equation question B1
Pre-test
Method

No solution*

39 (18.6%)
Solve

19 (9.0%)
Solve+Explain
109 (51.9%)

Explain only
43 (20.5%)

Post-test
Method

No solution*

45 (21.4%)
Solve

23 (11.0%)
Solve+Explain

48 (22.9%)
Explain only
94 (44.8%)

* or incorrect solution

At first sight it appeared (see Table 1) that there was no improvement in the test
question (B1) on the conservation of equation under transformations in the symbolic
representation. However, as Table 2 shows, in the post–test many more equations
were correctly solved by students in question B1 by considering the relationship
between the two equations, without needing to solve the equations (as shown by the
'explain only' column). Student C, for example, had to symbolically solve equations
of the type in question B1 a) and b) in the pre–test. However, in the post–test she
was able to write that they have “the same solution because if you add the same
value to both sides then the equation is the same”, and “If you multiply both sides by
the same value [4] then the equation is the same”, without needing to solve either
equation.

Student Attitudes: These students had never used a calculator in their mathematics
learning, hence it was of great interest to find out their view of them. After their
tutorials, when asked 'How do you feel about the TI–92 graphic calculator?', 22
(62%) of the students replied that they felt easy, comfortable, curious or were
interested in using the calculator. When asked what difficulties they had encountered
17 (48%) of the Korean students replied that the commands on the calculator were
difficult because they were in English. The attitude scale questions confirmed the
positive view of calculators. Each question was scored with an integer from 1 to 5,
and scores were reversed on negative questions so that in every case the higher the
score the more positive the attitude to calculators. Overall their response to the
calculators was significantly positive, with a mean score of 3.54 (t=5.16, p<.00005).
Their mean scores showed that they clearly thought that calculators were valuable (I
think the calculator is a very important tool for learning mathematics, 4.0), and
made mathematics more interesting (More interesting mathematics problems can be
done when students have access to calculators, 4.2). Further they were keen to use
them more themselves (I want to improve my ability to use a calculator, 4.17), and
thought that others should learn how to use them (All students should learn to use
calculators, 4.0). It was interesting to see that they were not really influenced by
commonly held views, such as the detrimental effect of calculators on mathematics
skills (Using calculators will cause students to lose basic computational skills, 3.06;
Students should not be allowed to use a calculator until they have mastered the idea
or method, 3.23).



Conclusion

Our contention is that important conceptual links between the symbolic, graphical
and tabular representations of functions can easily be lost if algebra is approached in
a purely procedural manner. The value of graphic and super–calculators is that they
may be used to assist teachers to make these links explicit, provided teachers are
pedagogically alert to the deeper, underlying conceptual relationships, and
preservation of the conceptual structure of the mathematics is central to their
schemas. For example, one may approach the graphical solution of linear equations
by providing the surface, procedural method of drawing the graph of each function
and reading off the x–value of the point of intersection without explicitly tackling
the deeper, functional relationships (see Greer & Harel, 1998 for other examples).
The concept of linear function passes across four different representations in this
method: algebraic, tabular, ordered pairs and graphical. To build rich relational
schemas which contain internal representations of the external ones, students should
experience the links and the sub–concepts of one–to–one, independent and dependent
variable, etc. in each representation. In addition, the fact that two one–to–one
functions coincide for a single value of the independent variable, and the
conservation of these values across any representation is important. In this research
study we have begun the process of testing the value of super–calculators such as the
TI–92 in promoting the construction of relationships like these. This small–scale,
uncontrolled study, provides some evidence of the value of the approach, with the
students able to add conceptual schematic links to the knowledge they had built by
studying equations purely symbolically. Whether the calculator is a significant
factor, or the results could be duplicated without using them is of considerable
interest, and we would welcome a study which sought to determine this.
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