
Electoral Equilibria under Scoring Voting
Rules

Dodge Cahan and Arkadii Slinko

Department of Mathematics
The University of Auckland

Singapore, 18 October, 2011



Introduction

“For several fundamental reasons, it is particularly
appropriate that we should include the analysis of
incentives in political institutions as an essential part
of the domain of modern economics.”

Roger Myerson, Schumpeter Lecture (1999)



The three main reasons:

• markets and politics are substantively interconnected
systems

• failures of the political system can affect people’s welfare at
least as much as failures of the market systems

• there are logical similarities between political competition
and market competition



Downs’ thesis

Downs suggested that the famous Hotelling (1929) “Main
Street” market competition model can be also used to analyse
political competition.

“... my central hypothesis: political parties in a democracy
formulate policy strictly as a means of gaining votes. ”

Anthony Downs (1957)

We should recognize though that each voter’s welfare depends
on the policies of the candidate who wins the election, not the
candidate to whom he gives his vote.



The Hotelling’s spatial model

• The issue space is the interval [0,1].

• Voters have ideal positions uniformly distributed along the
interval. Voters rank all candidates by their ideological
distance.

• There are m candidates. A profile is an m vector
x = (x1, . . . , xm) ∈ [0,1]m that specifies each candidate’s
position: xi is candidate i ’s position.
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Ideological spectrum in New Zealand

One of the main assumptions of this model is that the
ideological spectrum is one-dimensional.



Parties objectives

Stigler (1972) also argued that “political and economic motives
will be similar and best modeled by maximization of market or
vote share.”

We assume that parties choose their positions on the
ideological spectrum in order to maximize their share of the
votes.



Questions to answer

In the political context, the main questions are:

• Do equilibria situations exist?

• Will the candidates cluster together, advocating identical or
similar policy positions, or will they adopt diverse positions
that appeal to different groups of voters?

• Which characteristics of the voting rule force rational
candidates to adopt the position of the median voter and
which give an incentive to diversify?

• How do the optimal strategies depend on the voting
system in use?



Nash equilibrium

The key is the investigation of profiles (vectors of candidate
positions) that are in Nash equilibrium.

Two kinds of Nash equilibria exist:

• A convergent Nash equilibrium (CNE) occurs when all
candidates adopt the same ideological position.

• A non-convergent Nash equilibrium (NCNE) is when not all
candidate positions are the same.
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What happens under plurality

Most of the literature on competitive determinants of political
policy positions has focused on just one electoral system:
plurality voting.

• For m = 2 we have CNE (Hotelling 1929) — known as
Principle of Minimum Differentiation.

• For m = 3 no Nash equlibria exist;

• For m = 4,5 there is unique NCNE;

• For m ≥ 6 there are infinitely many NCNE (Eaton and
Lipsey,1975).



Broadening the options

• Cox (1987a, 1990) gave us the first model that
systematically considered different electoral systems, and
he showed that incentives for diversity may differ
systematically across voting rules.

• One such alternative voting rule is famous Borda rule. In
an m-candidate election under Borda a candidate gets
m − i points each time she is ranked i th best. The
condidate with most points wins.

• This rule belongs to a large class of rules called positional
scoring rules.
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Positional scoring rule

• Each voter ranks the candidates. The candidate ranked
i-th receives si points.

• Specified by an m-vector s = (s1, s2, . . . , sm) of scores with
s̄ = 1

m
∑m

i=1 si being the average score.

• Require that s1 ≥ · · · ≥ sm and s1 > sm, i.e., the scores are
nonincreasing and first is better than last. For example:

• Plurality: s = (1,0,0, . . . ,0,0),
• Borda: s = (m − 1,m − 2, . . . ,1,0),
• Antiplurality: s = (1,1,1, . . . ,1,0),
• k -Approval: s = (1,1, . . . ,1︸ ︷︷ ︸

k

,0 . . . ,0).

• The candidates’ overall scores are then calculated by
integrating across all voters.



Positional scoring rule

• Each voter ranks the candidates. The candidate ranked
i-th receives si points.

• Specified by an m-vector s = (s1, s2, . . . , sm) of scores with
s̄ = 1

m
∑m

i=1 si being the average score.

• Require that s1 ≥ · · · ≥ sm and s1 > sm, i.e., the scores are
nonincreasing and first is better than last. For example:

• Plurality: s = (1,0,0, . . . ,0,0),
• Borda: s = (m − 1,m − 2, . . . ,1,0),
• Antiplurality: s = (1,1,1, . . . ,1,0),
• k -Approval: s = (1,1, . . . ,1︸ ︷︷ ︸

k

,0 . . . ,0).

• The candidates’ overall scores are then calculated by
integrating across all voters.



Positional scoring rule

• Each voter ranks the candidates. The candidate ranked
i-th receives si points.

• Specified by an m-vector s = (s1, s2, . . . , sm) of scores with
s̄ = 1

m
∑m

i=1 si being the average score.

• Require that s1 ≥ · · · ≥ sm and s1 > sm, i.e., the scores are
nonincreasing and first is better than last. For example:

• Plurality: s = (1,0,0, . . . ,0,0),
• Borda: s = (m − 1,m − 2, . . . ,1,0),
• Antiplurality: s = (1,1,1, . . . ,1,0),
• k -Approval: s = (1,1, . . . ,1︸ ︷︷ ︸

k

,0 . . . ,0).

• The candidates’ overall scores are then calculated by
integrating across all voters.



Positional scoring rules with ties

• If two or more candidates occupy the same policy position
the voters will be indifferent between them.

• A candidate ranked by a voter in an indifference group that
is ranked from i+1-th to j th in his ranking receives

1
j−i (si+1 + . . . + sj) points from this voter.

• For example, if Borda rule is used:

Ranking Points received
A 6
B 5

C ∼ D ∼ E 3
F 1
G 0
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Workings of a positional scoring rule

The score of a candidate positioned at x1 would be

s1 + s2

2
x1 + x2

2
+

s2 + s3

2
x3 − x2

2
+

s4 + s5

2

(
1− x1 + x3

2

)
.



Economic interpretation of positional scoring rule

Hotelling’s “Main Street” model originally stipulated that the
customers buy always from the closets retailer. We may modify
it as follows.

• The issue space is a road through an urban area, with
customers distributed along it.

• Firms choosing locations so as to maximise their share of
the market.

• s = (s1, . . . , sm) is a vector of probabilities, si being the
probability a customer buys from i-th nearest firm.
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Economics question

• Plurality rule cannot explain for m > 2 the tendency of
firms to cluster together.

• Can we explain this tendency by a more general model?



Convergent equilibria

Theorem (Cox, 1987). For m candidates and scoring rule s, a
profile x = (x∗, . . . , x∗) is a CNE if and only if

c(s,m) ≤ x∗ ≤ 1− c(s,m), (1)

where c(s,m) =
s1 − s̄

s1 − sm
is the c-value (with s̄ = 1

m
∑m

i=1 si ) .

• If c(s,m) > 1/2 (best-rewarding rule1), the inequality (1)
cannot hold. So no CNE exist.

• If c(s,m) ≤ 1/2 (worst-punishing or intermediate rule), any
x∗ in [c(s,m),1− c(s,m)] is a CNE.

Note. Borda is intermediate.

1Terminology of R. Myerson
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A picture of a convergent equilibria

• The blue interval is the set of valid equilibrium platforms.

• The size of the blue interval depends on the rule. The
stronger the incentive to place first, the smaller it is.

• If c(s,m) > 1/2 then there is no blue interval – no CNE
exist.



Non-convergent equilibria

• What about equilibria in which not all candidates adopt the
same platform?

• Theorem (Cox). In a three-candidate election under
scoring rule s = (s1, s2, s3):

• If c(s,3) ≤ 1/2 only CNE exist;

• If c(s,3) > 1/2 no equilibria exist.

• If m = 4, can we characterize the rules for which NCNE
exist? This is the first challenge.
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The four-candidate case

Theorem (C.-S., 2011). In a four-candidate election under
scoring rule s = (s1, s2, s3, s4), NCNE exist iff both the following
conditions are satisfied:

• a) s1 > s2 = s3;

• b) c(s,4) > 1/2.

Moreover, the NCNE is unique and symmetric with two
candidates at

x1 =
s1

4(s1 − s2)

and two at
x2 = 1− x1.



The four-candidate case

• The distance between the pairs of candidates in NCNE
depends on the rule. As c(s,4)→ 1/2, the positions
converge to the half-way point.

• When c(s,4) falls below 1/2, only CNE exist, given by the
previous theorem.

• If c(s,4) > 1/2 but s2 6= s3 then no NE of either kind exist.
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The five-candidate case

Theorem (C.-S., 2011). In a five-candidate election under
scoring rule s = (s1, s2, s3, s4, s5), NCNE exist iff both the
following conditions are satisfied:

• a) s1 > s2 = s3 = s4;

• b) c(s,5) > 1/2.

Moreover, the NCNE is unique and symmetric, with equilibrium
profile x = ((x1,2), (1/2,1), (x2,2)), where

x1 =
1
6

(
s1 + s2

s1 − s2

)
and x3 = 1− x1.

Note. For both m = 4 and m = 5 CNE and NCNE cannot
coexist together.
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The general case

What about the general case of m candidates?

• For m ≥ 6, a complete characterisation of scoring rules
admitting NCNE is not known.

• What can we say about particular classes of scoring rules?
• Is the dichotomy holds for m ≥ 6?

Theorem (C.-S., 2011). Given a scoring rule s, in a Nash
equilibrium the number of occupied positions q satisfies

q ≥
⌈ 1

2(1− c(s,m))

⌉
.

E.g., if c(s,m) > 3/4, then q ≥ 3. For the plurality
c(s,m) > 1− 1/m so we have at least m/2 occupied positions.
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Repeated highest scores

Theorem. (C.-S. 2011) Given a scoring rule s, let
1 ≤ k ≤ m − 1 be such that s1 = · · · = sk > sk+1. Then a
necessary condition for NCNE is min(n1,nq) > k .

Corollary. (C.-S. 2011) If s is a scoring rule such that
s1 = · · · = sk > sk+1 for some k ≥ bm/2c, then s allows no
NCNE.

Example.) If m is odd, consider k -approval with k = (m − 1)/2.
That is, s = (1, . . . ,1,0, . . . ,0), where the first k positions are
ones. Then

c(s,m) = 1− 1
m

(
m − 1

2

)
=

1
2

+
1

2m
>

1
2
.

So the rule is best-rewarding but by Corollary it has no NCNE.
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Concave scores

We say that the score vector s = (s1, . . . , sm) is concave if

s1 − s2 ≥ s2 − s3 ≥ · · · ≥ sn−1 − sn ≥ sn − sm.

Such rules are best rewarding or intermediate: c(s,m) ≥ 1/2.

Theorem. (C.-S. 2011) Let s be a scoring rule
s = (s1, . . . , sn, sn+1, . . . , sm), with

sn+1 = sn+2 = · · · = sm

for some 1 ≤ n < m. If s is concave then there are no NCNE,
unless the subrule s′ = (s1, · · · , sn, sn+1) is Borda and
n + 1 ≤ bm/2c (i.e., more than half the scores are constant).
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Symmetric bipositional NCNE

Theorem. Suppose m is even and s is a scoring rule with
c-value c(s,m) ≤ 1/2 and sm/2 < s̄. Then any profile
x = ((x1,m/2), (x2,m/2)) satisfying

1
2
−

s̄ − sm/2

s1 − sm/2
≤ x1 <

1
2

and x2 = 1− x1

is a NCNE.

Example. Let m = 6. Suppose s = (2,2,1,1,1,0). We have
c(s,m) = 5/12 < 1/2, so the rule is indeed worst-punishing.
Also, s3 = 1 < 7/6 = s̄. So any profile with half the candidates
one each side such that 1/3 ≤ x1 < 1/2 and x2 = 1− x1 is a
NCNE.

Dichotomy fails. Both types of equlibria can coexist together!
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s̄ − sm/2

s1 − sm/2
≤ x1 <

1
2

and x2 = 1− x1

is a NCNE.

Example. Let m = 6. Suppose s = (2,2,1,1,1,0). We have
c(s,m) = 5/12 < 1/2, so the rule is indeed worst-punishing.
Also, s3 = 1 < 7/6 = s̄. So any profile with half the candidates
one each side such that 1/3 ≤ x1 < 1/2 and x2 = 1− x1 is a
NCNE.

Dichotomy fails. Both types of equlibria can coexist together!



Multipositional NCNE

Theorem. Let there be m = qr candidates, q ≥ 2. Let

s = (s1, . . . , sr−1,0, | 0, . . . ,0︸ ︷︷ ︸
r

| · · · | 0, . . . ,0︸ ︷︷ ︸
r

)

be a scoring rule. Divide the interval into q equally sized
subintervals. Then the profile in which r candidates locate at
the half-way point of each subinterval is a NCNE if and only if
c(s′, r) ≤ 1/2, where s′ = (s1, . . . , sr−1,0).

Example: m = 9 candidates and q = r = 3. NCNE for rules:
2-approval, s = (1,1,0,0,0,0,0,0,0) or (2,1,0,0,0,0,0,0,0).
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More NCNE

The previous theorem can be loosened to allow a degree of
non-symmetry in equilibria.

• The previous equilibrium for 9 candidates and
s = (1,1,0,0,0,0,0,0,0) is not unique

• Finding a NCNE reduces to finding a CNE on each
subinterval.
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Example: PLurality m = 6

Since s′ = (1,0) is worst-punishing we obtain the following
equilibrium:

And this is not an equilibrium since s′′ = (1,0,0) is
best-rewarding:
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Firms locations revisited

• If consumers predominately buy from the nearst firm, say if
the city is large, we get NCNE – firms congregate at
multiple locations spread through the city.

• Our results can be seen a confirmation for the Principle of
Local Clustering.

• Principle of Local Clustering (Eaton-Lipsey, 1975).
When a new firm enters a market, or when an existing firm
relocates, there is a strong tendency for that firm to locate
as close as possible to another firm. This behaviour tends
to create local clusters of firms in many equilibrium and
disequilibrium situations.
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Conclusions

The equilibrium behaviour hinges on the c-value c(s,m) but not
only. Convexity of s also matters.

• NCNE can exist both for best-rewarding and
worst-punishing rules.

• For m ≥ 6 dichotomy does not exist.

• Concave score vectors produce rules without NCNE with
small number of well-described exceptions.

• In NCNE candidates spread along the issue space
grouped into clusters.

• Plurality, s = (1,0, . . . ,0) does not explain the Principle of
Local Clustering but more general scoring rules do.
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Future Research

What is next?

• Characterize rules with NCNE for m = 6.

• Develop an algorithm of deciding if a scoring rules has
NCNE. Investigate complexity.

• Does there exist nonsymmetric (i.e., with different number
of candidates at each location) bipositional equilibria?

• Suppose the rule has equilibria but initially the situation
was not in equilibrium. Will there be any convergence?

• Suppose a rule does not have any type of equilibria. Will
the clustering effect still be observed to some extent?
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