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Abstract The concept of distance rationalizability allows one to define new voting

rules or “rationalize” existing ones via a consensus class of elections and a distance. A

candidate is declared an election winner if she is the consensus candidate in one of the

nearest consensus elections. It is known that many classic voting rules are defined or

can be represented in this way. In this paper, we focus on the power and the limitations

of the distance rationalizability approach. We first show that if we do not place any

restrictions on the class of consensus profiles or possible distances then essentially all

voting rules become distance-rationalizable. Thus, to make the concept of distance

ratioanalizability meaningful, we have to restrict the class of distances involved. To

this end, we present a very natural class of distances, which we call votewise distances.

We investigate which voting rules can be rationalized via votewise distances and study

the properties of such rules and study their relations with rules that are maximum-

likelyhood estimators.

1 Introduction

Preference aggregation is an important task both for human societies and for multi-

agent systems. Indeed, it is often the case that a group of agents has to make a joint

decision, e.g., to select a unique alternative from a set of options available to them,

even though the agents may have different opinions about the relative merits of these

alternatives. A standard method of preference aggregation is voting. The agents submit

ballots, which are usually rankings (total orders) of the alternatives, and a voting rule is

used to select the “best” alternative. While in such settings the goal is usually to select
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the alternative that reflects the individual preferences of voters in the best possible

way, there is no universal agreement on how to achieve this. Any voting rule represents

an agreement in the society about what should be considered as a fair outcome. This

may differ from one society to another. As a consequence, there is a multitude of voting

rules, and these rules are remarkably diverse (see, e.g., Brams and Fishburn (2002)).

Another reason for this diversity is the strikingly long list of impossibility theorems—

starting with the famous Arrow’s impossibility theorem Arrow (1951 (revised editon,

1963))—which state that there is no voting rule (or a social welfare function) that

simultaneously satisfies several natural desiderata. Thus in each real-life scenario an

election designer have to decide which of the desired conditions should be sacrificed.

An earlier view, initiated by Marquis de Condorcet, is that a voting rule must be

a method for aggregating information. There is an objectively best choice but voters

have different opinions because they make errors of judgment; absent these errors,

they would all agree on the best choice. The goal is to design a voting rule that

identifies the best choice with highest probability. This approach is called maximum

likelihood estimation and it has been actively pursued in Young (1977), and in Young

and Levenglick (1978) who showed that consistent application of Condorcet’s ideas

leads to the Kemeny rule (Kemeny, 1959). It has been shown since then that several

other voting rules can be obtained as maximum likelihood estimators for different

models of errors (see Conitzer, Rognlie, and Xia (2009) and Conitzer and Sandholm

(2005)).

The third approach that has emerged recently in a number of papers by Nitzan (1981),

Baigent (1987) and Meskanen and Nurmi (2008); can be called consensus-based. The

result of each election is viewed as an imperfect approximation to some kind of elec-

toral consensus. The winner of a given election, or a preference profile, is there fore

most likely to be the undisputed winner in the “closest” consensus preference profile.

The differences among voting rules can then be explained by the fact that there are

several ways of defining consensus, as well as several ways of defining closeness. The

heart of this approach is the agreement which situations should be viewed as “electoral

consensuses,” be it the existence of Condorcet winner, unanimous agreement on which

candidate is best, or something else. The concept of closeness should also be agreed

upon.

In this paper we concentrate on the third approach. To date, the most complete

list of distance-rationalizable rules is provided by Meskanen and Nurmi (2008) (but

see also Baigent (1987); Klamler (2005b, 2005a)). There, the authors show how to

distance-rationalize many voting rules, including, among others, Plurality, Borda, Veto,

Copeland, Dodgson, Kemeny, Slater, and STV. In the aforementioned paper Meskanen

and Nurmi attempted to give a distance-rationalization for Young’s rule. However it

appeared to be incorrect: the authors of this paper in (Elkind, Faliszewski, & Slinko,

2009, 2011) constructed a counterexample and gave a correct distance-rationalization

for Young’s rule, which appeared to be highly nontrivial.

In Section 3.3 we show that every reasonable voting rule can be distance rational-

ized with respect to some distance and some notion of consensus. This indicates that

the notion of distance rationalizability used in the extant work is too broad to be mean-

ingful. Hence, we have to determine what are the “reasonable” consensus classes and

the “reasonable” distances and to reexamine all existing results from this perspective.

In Section 4 we suggest a family of “good” distances (which we call votewise dis-

tances) and study voting rules that are distance rationalizable with respect to such

distances. In particular, in Section 4.2 we show that many of the rules considered in
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Meskanen & Nurmi (2008), as well as all scoring rules and a variant of the Bucklin rule,

can be rationalized via distances from this family. In contrast, we demonstrate that

STV, which was shown to be distance-rationalizable in (Meskanen & Nurmi, 2008), is

not distance-rationalizable via votewise distances, i.e., the restricted notion of distance

rationalizability has indeed some bite.

Distance rationalizability can be used as an alternative to an axiomatic character-

ization of voting rules. In this case we impose axioms not on the rule as a whole but

on underlying distances and consensus classes. In particular, in Section 4.5 we obtain

such a characterization of scoring voting rules which we hope will be as useful as the

famous Young’s axiomatic characterization (Young, 1975) has been.

Importantly, the distance rationalizability framework can be viewed as a general

method for specifying and analyzing voting rules. As such, it may be useful for prov-

ing results for entire families of voting rules, rather than isolated rules. For instance,

a lot of recent research in computational social choice has focused on the complexity

of determining (possible) election winners (see, e.g., E. Hemaspaandra, Hemaspaan-

dra, and Rothe (1997); Konczak and Lang (2005)), and the complexity of various

types of attacks on elections (e.g., manipulation Conitzer, Sandholm, and Lang (2007),

bribery Faliszewski, Hemaspaandra, and Hemaspaandra (2009), and control Meir, Pro-

caccia, Rosenschein, and Zohar (2008); Faliszewski, Hemaspaandra, Hemaspaandra,

and Rothe (2009)).1 However, most of the results in this line of work are specific to

particular voting rules. We believe that the ability to describe multiple voting rules

in a unified way (e.g., via the distance rationalizability framework) will lead to more

general results. To provide an argument in favor of this belief, in Sections 4.1 and Sec-

tion 5 we present initial results of this type, relating the type of distance and consensus

used to rationalize a voting rule with the complexity of winner determination under

this rule as well as the rule’s axiomatic properties (such as anonymity, neutrality and

consistency).

Finally we compare the distance rationalizability and maximum likelihood estima-

tion frameworks and conclude that the former is more general and more flexible. All

the rules that are maximum likelihood estimators for well-behaved noise models can be

also obtained through distance rationalizability. Our results imply that Litvak’s rule is

a new maximum likelihood estimator rule.

2 Preliminaries: elections, distances and consensus classes

2.1 Elections

An election is a pair E = (C, V ) where C is the set of candidates and V = is an

ordered list of voters. Each voter is represented by her vote, i.e., a strict, linear order

over the set of candidates (also called a preference order). We will refer to the list V

as a preference profile, and we denote the number of voters in V by |V |. The number

of alternatives will be denoted by |C|.
A voting ruleR is a function that given an election E = (C, V ) returns a non-empty

set of election winners R(E) ⊆ C. Note that it is legal for the set of winners to contain

more that one candidate. When the set of candidates is clear, we will sometimes write

1 These references are only examples; an overview of literature is far beyond the scope of this paper.
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R(V ) instead of R(E). We sometimes consider voting rules defined for a particular

number of candidates (or even a particular set of candidates) only.

Below we define several prominent voting rules that would be mentioned later.

Scoring rules. For any m-element vector α = (α1, . . . , αm) of nonnegative integers,

where α1 ≥ α2 ≥ . . . ≥ αm, a scoring rule Rα is defined as follows. Fix an

election E = (C, V ), where C = {c1, . . . , cm} and V = (v1, . . . , vn). The α-score of

a candidate cj ∈ C is given by
∑n
i=1 αposvi (cj)

, where posv(c) is the position of

candidate c in v’s ranking . That is, candidate cj receives αi points from each voter

that puts her in the ith position. The winners of E under Rα are the candidates

with the maximum α-score. Note that a scoring rule is defined for a fixed number

of candidates. However, many standard voting rules can be defined via families of

scoring rules. For example, Plurality is defined via the family of vectors (1, 0, . . . , 0),

veto is defined via the family of vectors (1, . . . , 1, 0), and Borda is defined via the

family of vectors (m − 1,m − 2, . . . , 0); k-approval is the scoring rule with αi = 1

for i ≤ k, αi = 0 for i > k.

Bucklin and Simplified Bucklin. Given a positive integer k, 1 ≤ k ≤ |C|, we say

that a candidate c is a k-majority winner if more than
|V |
2 voters rank c among the

top k candidates. Let k′ be the smallest positive integer such that there is at least

one k′-majority winner for E. The Bucklin score of a candidate c is the number of

voters that rank her in top k′ positions. The Bucklin winners are the candidates

with the highest Bucklin score; clearly, all of them are k′-majority winners. The

simplified Bucklin winners are all k′-majority winners.

Single Transferable Vote (STV). In STV the winner is chosen by repeated elimi-

nation of “inferior” candidates. We find a candidate with the lowest Plurality score

(i.e., one that is ranked first the least number of times) and remove her from the

votes (this may require tie-breaking). We repeat the process until a single candidate

remains; this candidate is declared to be the winner. For STV the issue of handling

ties—that is, the issue of the order in which candidates with lowest Plurality scores

are deleted—is quite important, and is discussed in detail by Conitzer, Rognlie and

Xia (Conitzer et al., 2009). However, the results in our paper are independent of

the tie-breaking rule.

Dodgson. A Condorcet winner is a candidate that is preferred to any other candidate

by a majority of voters. The score of a candidate c is the smallest number of swaps of

adjacent candidates that have to be performed on the votes to make c a Condorcet

winner. The winner(s) are the candidate(s) with the lowest score.

Kemeny. Let u and v be two preference orders over C. The number of disagreements

between u and v, denoted t(u, v), is the number of pairs of candidates ci, cj such

that either ci is ranked higher than cj in u and cj is ranked higher than ci in v or

the vice versa. A candidate is a Kemeny winner of the profile (v1, . . . , vn) if it is

ranked first in any preference order v that minimizes the sum
∑n
i=1 t(v, vi).

Litvak. Litvak’s method (Litvak, 1982; Meskanen & Nurmi, 2008) is similar to Ke-

meny rule. If |C| = m, then each preference ranking v is assigned a vector `(v) of

m components. The component i of this vector indicates how many alternatives

are placed in v ahead of ci. In other words

`(v) = (posv(c1), posv(c2), . . . , posv(cm)).

Each such vector is thus a permutation of numbers 0, . . . ,m − 1. Given two such

vectors p = (p1, . . . , pm) and q = (q1, . . . , qm), we define the disagreement between



5

them as s(p, q) =
∑n
i=1 |pi−qi|. Given a profile (v1, . . . , vn), a candidate is a Litvak

winner of the election E = (V,C) if it is ranked first in any preference order v that

minimizes the sum
∑n
i=1 s(`(v), `(vi)).

2

Threshold. Given a profile V = (v1, . . . , vn) and a candidate c the threshold rule

calculates score of c as the the lowest rank of c in orders of V i.e., the score

of c is maxni=1(posvi(c)). Then the set of threshold winners of the profile V are

the set of alternatives with the lowest score. Instead we can calculate the score

of c as minni=1(m − posvi(c)) and then select winners as the alternatives with the

maximal score. The latter formulation reminds us that the threshold rule is a distant

relative of the Borda rule. Indeed, instead of summing the values m−posvi(c) up to

obtain the Borda score we take a minimum. This rule was introduced by Aleskerov,

Chistyakov, and Kalyagin (2010) (see also references there).

2.2 Distances

Let X be a set. A function d : X×X → R∪{∞} is a distance (or, a metric) if for each

x, y, z ∈ X it satisfies the following four conditions:

(a) d(x, y) ≥ 0 (nonnegativity),

(b) d(x, y) = 0 if and only if x = y (identity of indiscernibles),

(c) d(x, y) = d(y, x) (symmetry),

(d) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

If d satisfies all of the above conditions except the second one (identity of indiscernibles)

then d is called a pseudodistance.

We are going to use distances on profiles to define voting rules. For all voting

procedures acceptable for a democratic society the outcomes must depend on the votes

cast in a simple and transparent manner. In mathematical language this means that

any distance between profiles must be a function of linear orders from those profiles.

Therefore a natural approach would be to define a distance on linear orders first and

then try to extend it to a distance over the profiles.

Let P (C) be the set of all possible linear orders (votes) over a set of candidates

C. Two particularly useful distances over votes are the discrete distance and the swap

distance defined below. Let u and v be two linear orders over C. Here by u(i) we will

denote the alternative ranked ith in u.

Discrete distance. The discrete distance ddiscr(u, v) is defined to be 0 if u = v and

1 otherwise.

Swap distance. The swap distance3 dswap(u, v) is the least number of swaps of ad-

jacent candidates that transform linear order u into linear order v.

Sertel distance. The Sertel’s distance is defined as

dsert(u, v) = max
i

[u(i) 6= v(i)]. (1)

2 Bury and Wagner (2003) give a concise discussion on Litvak’s method and provide computational
algorithms for determining of what they call the Litvak median.

3 also called Kendall tau distance, Dodgson distance and bubble-sort distance.
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This distance is non-Archimedean (ultrametric) and satisfies the ultrametric in-

equality

dsert(u,w) ≤ max [dsert(u, v), dsert(v, w)].

Spearman’s distance and generalizations. The Spearman’s distance4 between the

linear orders u and v is

dspear(u, v) =

m∑
i=1

|posu(ci)− posv(ci)|. (2)

An interesting modification of this distance appears when we take in (2) maximum

instead of the sum:

d∞spear(u, v) =
m

max
i=1
|posu(ci)− posv(ci)|. (3)

We may generalize Spearman’s distance by assuming that dscrepancies in different

positions have different costs. Let α = (α1, . . . , αm) be any vector with nonnegative

coordinates. We define a new distance between two orders u and v as

dα(u, v) =

m∑
i=1

|αposu(ci)
− αposv(ci)

|. (4)

Note that if we obtain v from u by swapping elements in positions i and j, the

distance of the new order from the old one will be 2|αi − αj |. In general, some

several weights may be equal and in this case dα is a pseudodistance.

There are a number of other natural distances on P (C) used in statistics, computer

science and biology, some of them are computationally involved. For example, calcu-

lating the reversal distance defined to be the number of substring reversals required

to transform one linear order into another is NP-hard (Carpara, 1977) There is an

Encyclopedia of Distances (Deza & Deza, 2009).

Now we have to extend a given distance on P (C) to a distance on the set of profiles

P (C)n, where n = |V |. This can be done in many different ways and we are very much

in a situation similar to the functional analysis, when it concerns with introducing

norms in spaces of dimension larger than one.

Any distance over votes can be extended in several ways to the distance over the

profiles. Let d be a distance on P (C) and let E = (C,U) and E′ = (C, V ) be two

elections with U = (u1, . . . , un) and V = (v1, . . . , vn) being two profiles from P (C)n.

Then we define the lk metric on elections by

d̂k(E,E′) =

(
n∑
i=1

d(ui, vi)
k

) 1
k

, d̂∞(E,E′) = max
i
d(ui, vi).

(and we set d̂(E′, E′′) = ∞ if the candidate sets are different or the profiles have

different number of voters).

Clearly, d̂k, k = 1, 2, . . . ,∞, satisfies all distance axioms as long as d does. l1 and

l2 metrics have been widely used in preference aggregation literature, see, for example,

(Bogard, 1973, 1975; Cook & Seiford, 1978, 1982; Litvak, 1983) although l2 has not

been used yet in context of distance rationalizability. However, further we will need

4 known in statistics as “Spearman’s footrule” (Kendall & Gibbons, 1990), also called Litvak’s distance
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l∞ metric to distance rationalize Bucklin and Threshold rules. Since d̂1 has by far the

most frequent appearance we will omit 1 in this case and write d̂ if this may not lead

to a confusion.

2.3 Consensus classes

Intuitively, we say that an election E = (C, V ) is a consensus if it has an undisputed

winner reflecting a certain concept of fairness in the society. Formally, a consensus class

is a pair (E ,W) where E is a set of elections andW : E → C is a mapping which for each

election E ∈ E assigns a unique alternative, which is called the consensus alternative

(winner). The following four natural classes have been historically used by societies as

situations of consensus:

Strong unanimity. Denoted S, this class contains elections E = (C, V ) where all

voters report the same preference order. The consensus alternative W(E) is the

candidate ranked first by all the voters.

Unanimity. Denoted U , this class contains all elections E = (C, V ) where all voters

rank some candidate c first. The consensus alternative W(E) of such an election

is c.

Majority. Denoted M, this class contains all elections E = (C, V ) where more than

half of the voters rank some candidate c first. The consensus alternative W(E) of

such an election is c.

Condorcet. Denoted C, this class contains all elections E = (C, V ) with a Condorcet

winner (defined above). The Condorcet winner is the consensus alternative W(E).

There are other quite natural classes that could but yet have not been used to define a

consensus in the society. One of them is based on the concept of Lorenz dominance of

vectors. Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) we say that x Lorenz

dominates y if
∑k
i=1 xi ≥

∑k
i=1 yi for all k = 1, 2, . . . , n and the inequality is strict

for at least one k. Given a profile V = (v1, . . . , vn) over C, for each alternative c ∈ C
we define a vector `(c) whose ith coordinate shows how many times c was ranked ith

or higher in linear orders of V . Am alternative c will be called a Lorenz winner5 if

`(c) Lorenz dominates `(d) for all d ∈ C different from c. So we define the following

consensus class:

Lorenz. Denoted L, this class contains all elections E = (C, V ) with a Lorenz winner.

The Lorenz winner is the consensus alternative W(E).

This natural consensus class is virtually unused and unstudied. It is different from

all four classes introduced earlier. To demonstrate this we give the following example.

Consider the following profile of 15 voters on the set of three alternatives a, b, c

3 3 2 5 2

a a b b c

b c a c a

c b c a b

5 We thank Jérôme Lang for attracting our attention to this concept.
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the Condorcet winner is a while the Lorenz winner is b. Indeed, `(a) = (6, 10, 15) and

`(b) = (7, 10, 15).

Also, one can certainly consider situations in which the voters reach a consensus

that several candidates are equally well qualified to be elected (this may happen, for

example, in Approval voting when all voters approve two or more candidates). However,

in this paper we limit ourselves to consensuses with unique winners.

3 Distance rationalizability

3.1 An Attempt at a Definition and the Results So Far

Firstly, we show how the consensus class and a distance define a voting rule.

Definition 1 Let d be a distance over elections and let K = (E ,W) be a consensus

class. We define the (K, d)-score of a candidate c in an election E to be the distance

(according to d) between E and a closest consensus election E′ ∈ E such that c is a

winner of E′. The set of (K, d)-winners of an election E = (C, V ) consists of those

candidates in C whose (K, d)-score is the smallest.

We can now formally define the concept of distance rationalizability of a voting

rule.

Definition 2 A voting rule R is distance-rationalizable via a consensus class K and a

distance d over elections, if for each election E, a candidate c is an R-winner of E if

and only if she is a (K, d)-winner of E. We also say that R is (K, d)-rationalizable.

Many common voting rules are known to be distance-rationalizable in a very natural

way. Nitzan (1981) proved that Plurality is (U , d̂discr)-rationalizable and Borda rule

is (U , d̂swap)-rationalizable. For many rules their distance rationalizations are obvi-

ous from their definitions, e.g., Kemeny rule is (S, d̂swap)-rationalizable, and Dodgson

rule is (C, d̂swap)-rationalizable. It is quite remarkable that these three major voting

rules—Borda, Dodgson and Kemeny—can be rationalized using the same distance.

Meskanen and Nurmi (2008) show that Litvak’s rule is (S, d̂spear)-rationalizable. They

also distance-rationalized STV but the distance used by them is extremely complicated;

in Section 4 we will discover the reason for this complexity.

Meskanen and Nurmi (2008) claim that they have distance rationalized Young’s

rule. However, as the authors of this paper shown (Elkind et al., 2009, 2011), they

actually distance-rationalized another rule, which had previously no name and dubbed

it voters-replacement rule. Elkind et al. (2009, 2011) give a correct distance rational-

ization of Young’s rule and distance-rationalize Minimax.

Also Meskanen and Nurmi (2008) consider a number of rules whose definition

use outranking matrices or the majority relation, e.g., Slater rule or Schulze’s (2003)

method. However distances they obtain in this case are actually pseudodistances as

different profiles (and even voting situations) can lead to the same outranking matrix.

We remark that the notion of distance-rationalizability introduced in Definition 2

allows for arbitrary consensus classes and distances; as we will see in the next section,

this lack of constraints results in a definition that is too broad to be useful as any

rule can be distance-rationalized. Distance rationalizability approach turns thus into a
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program of classification of voting rules by two parameters: a distance and a consensus

class and the key question is: Which rules can be rationalized by using natural distances

and natural consensus classes? A good distance rationalization of a rule provides an

undisputed value. In the next section we further contribute to this program by analyzing

arbitrary scoring rules from this perspective.

3.2 Scoring Rules

In this section, we will show that all scoring rules—an important class of voting rules

that includes such famous rules as Plurality, Borda, Veto, and k-approval—are very

close to being distance-rationalizable. More precisely, we prove that all such rules are

pseudodistance-rationalizable, i.e., can be defined via a consensus class and a pseudodis-

tance.

Any vector α = (α1, . . . , αm) can be used to define a pseudodistance dα over profiles

of preferences over candidates in C with |C| = m as follows. For any two voters v and

w set

dα(v, w) =

m∑
i=1

|αposv(ci)
− αposw(ci)|. (5)

It is not hard to see that dα satisfies all pseudodistance axioms. Moreover, if αi 6= αi+1

for all i = 1, . . . ,m− 1 (we will call such vectors, and the corresponding distances and

scoring rules faithful), then dα also satisfies axiom (2), i.e., it is a distance. On the

other hand, if αi = αi+1 for some i = 1, . . . ,m, then we have dα(v, w) = 0 for the

two voters v, w such that w is obtained from v by swapping the ith and the (i+ 1)st

candidate in v’s preference ordering, and dα is indeed only a pseudodistance, but not a

distance. Note that for α = (m−1, . . . , 1, 0)—the vector that corresponds to the Borda

rule—we have dα(v, w) = 2dswap(v, w). More generally, dα(v, w) can be interpreted as

the cost of transforming v into w by a sequence of swaps of adjacent candidates, where

the cost of swapping the candidate in the kth position with the one just below him is

given by 2(αk − αk+1).

We will now prove that any scoring rule Rα is (U , d̂α)-rationalizable, where d̂α is

the pseudodistance over elections that corresponds to dα. Note that this implies that

all faithful scoring rules are distance rationalizable. While distance rationalizability of

the Borda rule was proven by Nitzan (1981), no such result was previously known for

other scoring rules.

Theorem 1 For each scoring vector α = (α1, . . . , αm) and each election E = (C, V )

with |C| = m, a candidate c ∈ C is a winner of E according to Rα if and only if c is

a (U , d̂α)-winner of E.

Proof Fix a candidate cj ∈ C, and consider a voter v ∈ V that ranks cj in the kth posi-

tion, i.e., posv(cj) = k. Consider an arbitrary preference order w in which cj is ranked

first. We have
∑m
`=1 αposv(c`)

=
∑m
`=1 αposw(c`) =

∑m
i=1 αi, so

∑m
`=1(αposw(c`) −

αposv(c`)
) = 0. On the other hand, we have αposw(cj)−αposv(cj)

= α1−αk. For any m

real numbers a1, . . . , am such that
∑m
i=1 ai = 0 we have

∑m
i=1 |ai| ≥ |aj |+|

∑
i 6=j ai| =

2|aj |. Thus, for dα(v, w) given by (5) we have

dα(v, w) ≥ 2|αposw(cj) − αposv(cj)
| = 2(α1 − αk).
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On the other hand, for the preference order w′ that is obtained from v by swapping cj
with the top candidate in v, we have dα(v, w′) = 2(α1 − αk). Hence, the dα-distance

from v to the nearest vote that ranks cj first is exactly 2(α1 −αk), and, consequently,

the d̂α-distance from E to the nearest unanimous election in which all voters rank cj
first is exactly

∑n
i=1 2(α1 − αposvi (cj)

). On the other hand, the score that cj receives

in Rα is equal to
∑n
i=1 αposvi (cj)

. Thus, any candidate in E with the highest score

under Rα is a (U , d̂α)-winner of E and vice versa.

For some scoring rules the statement of Theorem 1 cannot be strengthened to distance

rationalizability.

Proposition 1 Any scoring rule defined by a vector α with α1 = α2 is not distance-

rationalizable with respect to consensus class U .

Proof Fix a scoring rule Rα with α1 = α2. Consider an election E in which all voters

rank some candidate c1 first and another candidate c2 second. Under Rα, both c1 and

c2 are winners. On the other hand, E is clearly unanimous, with c1 being the consensus

winner. Thus, for any distance d, the distance between E and the closest election in

U is 0. Therefore, for c2 to be a (U , d)-winner, there must exist a unanimous election

E′ in which c2 is ranked first such that d(E,E′) = 0. However, as E′ is necessarily

different from E, this is impossible for any distance d.

Observe that the condition of Proposition 1 is satisfied by Veto and k-approval for

k > 1, so these rules are not distance-rationalizable with respect to U .

What about scoring rules with α1 6= α2, but αj = αj+1 for some j = 2, . . . ,m− 1?

As argued above, for such rules dα is a pseudodistance, but not a distance. It is tempting

to conjecture that we can extend the proof of Proposition 1 to this case in order to show

that no such rule is distance-rationalizable with respect to U . However, this conjecture

is easy to refute: indeed, the Plurality rule for m candidates is a scoring rule with

α2 = . . . = αm = 0, but we have seen that Plurality can be distance-rationalized with

respect to U . Observe that the distance ddiscr that we have used for this purpose is

different from d(1,0,...,0). However, it is not clear how to generalize this construction

to other scoring rules with α1 > . . . > αj = αj+1. Thus, distance rationalizability of

such rules with respect to U remains an open question.

We have shown that any faithful scoring rule can be rationalized with respect

to the consensus class U . We will now argue that there is no scoring rule that can

be rationalized with respect to Condorcet consensus; the proof is similar to that of

Proposition 1.

Proposition 2 No scoring rule is distance-rationalizable with respect to the consensus

class C.

Proof It is known that no scoring rule is Condorcet-consistent (Moulin, 1991). That

is, for any scoring rule R there exists an election E = (C, V ) such that R(E) = {c}, E
has a Condorcet winner c′, but c 6= c′. Now, consider any distance d. Since d satisfies

axiom (2) (identity of indiscernibles), the election E has exactly one candidate with

the (C, d)-score of 0, this is c′. Hence, the set of (C, d)-winners of E consists of c′ only,

and is therefore different from the set of R-winners of E.
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3.3 Unrestricted Distance-Rationalizability

We say that a voting rule R over a set of candidates C satisfies nonimposition if

for every c ∈ C there exists an election with the set of candidates C in which c is the

unique winner under R. Clearly, nonimposition is a very weak condition, even weaker

than unanimity, and is satisfied by all common voting rules. Nevertheless, it turns out

to be sufficient for unrestricted distance-rationalizability.

Theorem 2 For any voting rule R over a set of candidates C that satisfies non-

imposition, there is a consensus class K = (E ,W) and a distance d such that R is

(K, d)-rationalizable.

Proof Since R satisfied nonimposition, for each c ∈ C there exists an election Ec =

(C, Vc) in which c is the unique winner. Define an undirected graph G = (K,F ) as

follows. The set K consists of all profiles over C (note that this set is infinite). The

set F contains an edge between profiles U and V if |R(U)| = 1 and R(U) ⊆ R(V ) or

|R(V )| = 1 and R(V ) ⊆ R(U). For any two elections EU = (C,U) and EV = (C, V ),

we define d(EU , EV ) to be the shortest path distance between U and V in G. It is easy

to check that d is indeed a distance.

A profile will be a consensus profile if it has a unique winner, i.e., we set E = {E |
|R(E)| = 1}, and let the unique winner W(E) of the E-consensus election E be R(E).

We set K = (E ,W).

Now, suppose that E ∈ E . Then d(E,E) = 0 and there does not exist an election

E′ 6= E such that d(E,E′) = 0. So the (K, d)-winner of E is W(E) = R(E). On the

other hand, if E 6∈ E , then d(E,E′) ≥ 1 for any election E′, and for any c ∈ R(E) we

have d(E,Ec) = 1. Moreover, for any c 6∈ R(E) and any E′ ∈ E such that R(E′) = {c}
we have d(E,E′) ≥ 2. Thus, the set R(E) is exactly the set of (K, d)-winners of E.

Thus R is (K, d)-rationalizable.

The consensus class used in the proof of Theorem 2 is rather artificial. However, the

following theorem shows that a similar result holds for our four natural consensus

notions too.

Definition 3 Let R be a voting rule and let K = (E ,W) be a consensus class. We say

that R is compatible with K, or K-compatible, if for each election E in E it holds that

R(E) =W(E).

The next theorem shows that compatibility with a particular consensus is equivalent

to distance-rationalizability with respect to this consensus. In what follows we prove

this result for the four consensus classes considered in this paper; however, it can

be generalized to any consensus class that has the property that any candidate is a

consensus winner in one of the profiles of this class. Note also that any voting rule

that is compatible with any such consensus class also satisfies nonimposition, so the

compatibility condition is more restrictive than nonimposition.

Theorem 3 For any consensus class K = (E ,W), a voting rule R is (K, d)-rationali-

zable for some distance d if and only if R is K-compatible.

Proof Suppose R is (K, d)-rationalizable and let E ∈ E . Then there is only one election

at distance 0 from it—which is E itself,—so the (K, d)-winner of E is W(E) and R is

K-compatible.
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For the converse let us assume that R is K-compatible. To construct its distance

rationalization we will use a distance very similar to the one used in Theorem 2; the

only difference is that we require d′(E,E′) = +∞ if E and E′ have a different number

of voters. Let P (C), as above, be the set of all possible votes over C. For each n ∈ Z+,

we define an undirected graph G(C, n) = (K,F ), where the set of vertices K is P (C)n

i.e., the set of all possible profiles of n votes over C, and there is an edge between U

and V if and only if (C,U) ∈ E and R(U) ⊆ R(V ) or (C, V ) ∈ E and R(V ) ⊆ R(U).

We define the distance d(E,E′) between two elections E = (C,U) and E′ = (C, V )

to be the shortest path distance between U and V in G(C, n) if U and V are both in

P (C)n for some n > 0, and set d(E,E′) = +∞ if E and E′ have a different number

of voters. The argument that R is (K, d)-rationalizable follows along the same lines as

the proof of Theorem 2.

Since almost all interesting rules are S-compatible, effectively, Theorem 3 shows

that almost any interesting voting rule is distance-rationalizable with respect to the

strong unanimity consensus. Exceptions are those rules that do not have unique winners

on strongly unanimous profiles, e.g., veto and k-approval (for each k > 1). However,

both veto and k-approval satisfy nonimposition and thus are distance-rationalizable

via Theorem 2.

This brings us to the conclusion: knowing that a rule is distance-rationalizable—

even with respect to a standard notion of consensus—provides no further insight into

the properties of the rule. Moreover, the dichotomy between distance-rationalizable

and non-distance-rationalizable rules becomes essentially meaningless. This observation

does not, however, diminish the value of distance-rationalizations of particular rules.

Distance-rationalizability approach becomes a program of classification of voting rules

according to the two parameters. So any attempts to rationalize known voting rules

using simpler or nicer distances and consensus classes are meaningful.

The distance employed in the proof of Theorem 3 is very unnatural and bad in many

respects. In particular, as the following proposition implies, it may not be polynomial-

time computable.

Proposition 3 Let K = (E ,W) be a consensus class and R be a voting rule, compatible

with K. Let d be the distance defined in the proof of Theorem 3. Suppose that

(a) for any election E we can check in polynomial-time if E ∈ E,

(b) there is a polynomial-time algorithm for computing d,

(c) the rule W on E satisfies nonimposition, moreover for an element c ∈ C we can in

polynomial time construct a profile Ec ∈ E such that W(Ec) = c.

Then we can construct a polynomial-time algorithm that solves the winner determina-

tion problem for R.

Proof Suppose that we are given an election E = (C, V ). We can check in polynomial-

time if E ∈ E , and if so, output the consensus winnerW(E) as R is compatible with K.

Otherwise, for each candidate c ∈ C, we can construct in polynomial time an

election Ec = (C, Vc), where Ec ∈ E and W(Ec) = c. Now, c ∈ R(E) if and only

if d(E,Ec) = 1. Thus we can query the distance oracle d on |C| inputs of the form

(E,Ec) and output the set {c | d(E,Ec) = 1} which will be exactly R(E).

For example, Proposition 3 implies that, if P 6= NP, the distance produced in the

proof of Theorem 3 for the rationalization of Kemeny rule with respect to S is not
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polynomial-time computable. On the other hand, we know that Kemeny does have

a very natural rationalization with respect to S via distance d̂swap. This shows once

more that it is not the fact of distance-rationalizability itself that is interesting but the

distances and consensus classes used in this distance-rationalization.

The requirement that the distance should be polynomial-time computable is essen-

tial for the distance rationalizability framework to be interesting. We will impose this

condition in addition to further, structural, restriction on the distances that we will

introduce in the next section.

4 Distance-Rationalizability via Votewise Distances

The results of previous section make it clear that we need to restrict the set of distances

that we consider acceptable to use in distance-rationalizations. To identify an appro-

priate restriction, consider the constructions used to rationalize Borda, Plurality and

Litvak rules via distances d̂swap, d̂discr and d̂spear, respectively (see Section 2). To build

either of these distances, we first defined a distance over votes and then extended it to a

distance over elections (with the same candidate sets and equal-cardinality voter lists)

via summing the distances between respective votes. This technique can be interpreted

as taking the direct product of the metric spaces that correspond to individual votes,

and defining the distance on the resulting space via the `1-norm. It turns out that

distances obtained in this manner (possibly using norms other than `1), which we will

call votewise distances, are very versatile and expressive. They are also attractive from

the social choice point of view, as they exhibit continuous and monotone dependence

of the distance on the voters’ opinions.

In this section we will define votewise distances rigorously and attempt to answer

the first two of the following three important questions regarding voting rules that can

be rationalized via votewise distances:

(a) What properties do such rules have?

(b) Which rules can be rationalized with respect to votewise distances?

(c) What is the complexity of winner determination for such rules?

The last question will be discussed in Section 5.

4.1 Definition and General Properties of Votewise Rules

Definition 4 Given a vector space S over R, a norm on S is a mapping N from S to

R that satisfies the following properties:

(i) positive scalability: N(αu) = |α|N(u) for all u ∈ S and all α ∈ R;

(ii) positive semidefiniteness: N(u) ≥ 0 for all u ∈ S, and N(u) = 0 if and only if u = 0;

(iii) triangle inequality: N(u+ v) ≤ N(u) +N(v) for all u, v ∈ S.

A well-known class of norms on Rn are the p-norms `p given by `p(x1, . . . , xn) =(∑n
i=1(|xi|p)

) 1
p , with the convention that `∞(x1, . . . , xn) = max{x1, . . . , xn}. Here-

after by Sn we denote the group of permutations on {1, . . . , n}. A norm N on Rn is

said to be symmetric if it satisfies N(x1, . . . , xn) = N(xσ(1), . . . , xσ(n)) for any per-

mutation σ ∈ Sn; clearly, all p-norms are symmetric. We can now define our family of

votewise distances.
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Definition 5 We say that a function d on pairs of preference profiles is votewise if the

following conditions hold:

1. d(E,E′) = +∞ if E and E′ have a different set of candidates or a different number

of voters.

2. For any set of candidates C, there exists a distance dC defined on votes over C;

3. For any n ∈ N, there exists a norm Nn on Rn such that for any two preference

profiles E = (C,U), E′ = (C, V ) with U = (u1, . . . , un) and V = (v1, . . . , vn) we

have d(E,E′) = Nn(dC(u1, v1), . . . , dC(un, vn)).

It is well known that any function defined in this manner is a metric. Thus, in what

follows, we refer to votewise functions as votewise distances; we will also use the term

“N -votewise distance” to refer to a votewise distance defined via a norm N , and denote

a votewise distance on the set of profiles that is based on a distance d over votes by

d̂. Similarly, we will use the term N-votewise rules to refer to voting rules that can be

distance-rationalized via one of our four consensus classes and an N -votewise distance.

An important special case of our framework is when Nn is the `1-norm, i.e.,

Nn(x1, . . . , xn) = |x1| + · · · + |xn|; we will call any such distance an additively vote-

wise distance, or, in line with the notation introduced above, an `1-votewise distance.

Although `1-votewise distances were the only votewise distances used in distance ratio-

nalizability constructions of social choice rules, `2-metric has been used in aggregation

of expert opinions, e.g., in Litvak (1983). Also, N -votewise distances with N 6= `1 are

almost as easy to work with as `1-votewise distances and may be useful for rationalizing

natural voting rules in the future. In fact, later on we will see that simplified Bucklin

and the Threshold rules are an `∞-votewise.

In this section we consider several basic properties of voting rules. Specifically,

given a consensus class K and a votewise distance d̂, we ask under which circumstances

a (K, d̂)-rationalizable voting rule is anonymous, neutral, or consistent. To start, we

recall the formal definitions of these properties.

Let E = (C, V ) be an election with V = (v1, . . . , vn), and C = (c1, . . . , cm) where

we view here the set of candidates as a list too. Let σ and π be permutations of

V and C, respectively. For any C′ ⊆ C, set π(C′) = {π(c) | c ∈ C′}. Let π̃(v)

be the vote obtained from v by replacing each occurrence of a candidate c ∈ C by

an occurrence of π(c); we can extend this definition to preference profiles by setting

π̃(v1, . . . , vn) = (π̃(v1), . . . , π̃(vn)).

Anonymity. A voting rule is anonymous if its result depends only on the number of

voters reporting each preference order. Formally, a voting rule R is anonymous if

for every election E = (C, V ) with V = (v1, . . . , vn) and every permutation σ of V ,

the election E′ = (C, σ(V )) satisfies R(E) = R(E′).

Neutrality. A voting rule is neutral if its result does not depend on the candidates’

names. Formally, a voting rule R is neutral if for every election E = (C, V ) and ev-

ery permutation π of C, the election E′ = (C, π̃(V )) satisfies R(E) = π−1(R(E′)).

Consistency. A voting rule R is consistent if for any two elections E1 = (C, V1) and

E2 = (C, V2) such that R(E1)∩R(E2) 6= ∅, the election E = (C, V1 +V2) (i.e., the

election where the collections of voters from E1 and E2 are concatenated) satisfies

R(E) = R(E1)∩R(E2). This property was introduced by Young (1975) and is also

known as reinforcement (Chebotarev & Shamis, 1998).
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Homogeneity. A voting rule R is homogeneous if for every election E = (C, V ) and

every positive integer k it holds that R(E) = R(kE), where kE is the election

kE = (C, kV ). This property is weaker than consistency.

Continuity. A voting rule R is continuous if for any two elections E1 = (C, V1) and

E2 = (C, V2) such that R(E1) = {a}, the election E = (C, nV1 + V2) also satisfies

R(E) = {a} for sufficiently large n. This property was introduced by Young (1975).

Monotonicity. A voting rule R is monotone if for every election E = (C, V ) and

every c ∈ R(E) it holds that if a voters change her minds about c moving c higher

in her ranking (but do not change relative positions of other alternatives) then

c remains a winner of the new election. In Moulin’s (1991) book this property is

called ceteris paribus monotonicity to distinguish it from Maskin monotonicity.

If K = (E ,W) is a consensus class, then, of course, these definitions are also applicable

toW if E is closed under the respective profile transformations. For example, we will say

that K is anonymous if for any profile U from E any profile U ′ obtained by permuting

linear orders in U is also in E and W(U) =W(U ′).

We will start with showing that for votewise distance-rationalizable rules, a symmetric

norm produces an anonymous rule.

Proposition 4 Suppose that K is an anonymous consensus class and a voting rule R
is (K, d̂)-rationalizable, where d̂ is an N-votewise distance for a symmetric norm N

and d is a pseudodistance over votes. Then R is anonymous.

Proof Let EV = (C, V ), where |V | = n, be an election, and let σ be a permutation

of V . Fix a candidate c ∈ R(E), and let EU = (C,U) be a K-consensus election that

is closest to E among those whose winner is c. We form elections E′V = (C, V ′) and

E′U = (C,U ′) by setting V ′ = σ(V ) and U ′ = σ(U). As K is anonymous the election E′U
is a K-consensus again, and, moreover, d̂(EV , EU ) = d̂(E′V , E

′
U ). Now, suppose that

there exists a K-consensus election EW = (C,W ) such that d̂(E′V , EW ) < d̂(E′V , E
′
U ).

Then for the election E′W = (C, σ−1(W )) we have

d̂(EV , E
′
W ) = d̂(E′V , EW ) < d̂(E′V , E

′
U ) = d̂(EV , EU ),

a contradiction with our choice of EU . Thus, any winner of EV is a winner of E′V . By

considering permutation σ−1, we also obtain that any winner of E′V is a winner of EV
too.

We have shown that for votewise rules, anonymity is essentially a property of the

underlying norm. In contrast, neutrality is inherited from the underlying distance over

votes.

Definition 6 Let C be a set of candidates and let d be a distance on votes over C.

We say that d is neutral if for each permutations π over C and any two votes u and v

over C it holds that d(u, v) = d(π̃(u), π̃(v)).

Proposition 5 Suppose that a voting rule R is (K, d̂)-rationalizable for a neutral con-

sensus class K and a neutral pseudodistance d over votes. Then R is neutral.

Proof The proof is similar to the proof of Proposition 4 and we omit it.
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It is natural to ask if the converse of Proposition 5 is also true, i.e., if every neutral

votewise rule can be rationalized via a neutral distance. Indeed, paper of Conitzer et al.

(2009) provides a positive answer to a similar question in the context of representing

voting rules as maximum likelihood estimators. However, it is not clear how their

approach can be adapted to work in our setting. Nevertheless, all votewise distances

that have so far arisen in the study of distance rationalizability of common voting rules

are neutral.

Our results for anonymity and neutrality are applicable to all consensus classes

considered in this paper. In contrast, when discussing consistency, we need to limit

ourselves to the unanimity consensus, and to `p-votewise rules.

Theorem 4 Suppose that a voting rule R is (U , d̂p)-rationalizable for some pseudodis-

tance d over votes. Then R is consistent.

Proof Let E1 = (C, V1) and E2 = (C, V2) be two elections over the same candidate

set C such that R(E1) ∩ R(E2) 6= ∅, and let E = (C, V1 + V2). First, we will show

that R(E1)∩R(E2) ⊆ R(E). Fix a candidate c ∈ R(E1)∩R(E2). By definition, there

are two unanimous profiles, U1 and U2, such that c is the unanimity winner of Ui and

Ui ∈ arg minX∈U d̂(Vi, X) for i = 1, 2.

For the sake of contradiction, suppose that c 6∈ R(E). Clearly, U1 + U2 is a unan-

imous profile with winner c. As c 6∈ R(E), there must be another unanimous profile

W1 +W2 with |W1| = |V1|, |W2| = |V2| such that

d̂(V1 + V2, U1 + U2) > d̂(V1 + V2,W1 +W2).

Since d̂ is an `p-votewise distance, this inequality is equivalent to

p

√
d̂(V1, U1)p + d̂(V2, U2)p >

p

√
d̂(V1,W1)p + d̂(V2,W2)p. (6)

However, by the choice of U1 and U2, it holds that

d̂(V1, U1) ≤ d̂(V1,W1), d̂(V2, U2) ≤ d̂(V2,W2),

which immediately yields a contradiction with (6), and so c ∈ R(E).

To show that R(E) ⊆ R(E1) ∩ R(E2), consider a c′ ∈ R(E). Since c and c′ are

both in R(E), there exists a unanimous profile X1 + X2 with winner c′ such that

|X1| = |V1|, |X2| = |V2| and d̂(V1 + V2, X1 +X2) = d̂(V1 + V2, U1 + U2). that is,

p

√
d̂(V1, X1)p + d̂(V2, X2)p =

p

√
d̂(V1, U1)p + d̂(V2, U2)p. (7)

On the other hand, we have

d̂(V1, U1) ≤ d̂(V1, X1), d̂(V2, U2) ≤ d̂(V2, X2),

It follows from (7) that both of the inequalities above are, in fact, equalities. Thus, by

our choice of U1 and U2, for i = 1, 2, we obtain that Xi ∈ arg minX∈U d̂(Vi, X). Since

c′ is the unanimity winner in X1 and X2, it follows that c′ ∈ R(E1) ∩R(E2).
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For consensus classes S and C the analogue of Theorem 4 cannot be proved. Coun-

terexamples are provided by the Kemeny rule and the Dodgson rule, respectively. Both

are rationalizable via d̂swap distance. However, since both extend Condorcet rule, by

Theorem 2 of Young and Levenglick (1978), they cannot be consistent and Dodgson

rule is not even homogeneous (Brandt, 2009).

Note that the second part of the proof of Theorem 4 does not go through for `∞-

votewise rules so we can claim only R(E1) ∩R(E2) ⊆ R(E). However if E1 = E2 the

argument does go through. This means that all `∞-votewise rules distance rationalized

relative to the unanimity consensus are homogeneous. Also it is easy to see that when

E1 = E2 the argument also work with the strong unanimity consensus S. Thus we

obtain

Theorem 5 Suppose that voting rule R is (K, d̂p)-rationalizable, where K ∈ {S,U},
p ∈ N ∪ {∞}, and d is a pseudodistance over votes. Then R is homogeneous.

In general `∞-votewise distance-rationalizable rules are very prone to being homo-

geneous: we need to impose only a very mild condition on the consensus class K.

Definition 7 Let K = (E ,W) be a consensus class. We say that it is split-homogeneous

if the following two conditions hold:

(a) If U ∈ E is a consensus profile then nU is a consensus profile too with W(U) =

W(nU);

(b) If U and W are two profiles, with n votes each, such that U +W ∈ E , then either

U ∈ E or W ∈ E .

Any known consensus class but C are of this nature (see the counterexample for C
in the appendix).

It turns out that combining a split-homogeneous consensus class with an `∞-

votewise distance produces a homogeneous rule.

Theorem 6 Let C be any set of alternatives and d be any pseudodistance on P (C). Let

K = (E ,W) be a split-homogeneous consensus class. Then any (K, d̂∞)-rationalizable

voting rule R is homogeneous.

Proof We will prove that for any election E = (C, V ) we have R(E) = R(2E), the

general case is similar. Let c be a winner of E and U be the closest consensus profile

to V with W(U) = c. Then

k = d̂∞(V,U) ≤ d̂∞(V,U ′) for any U ′ ∈ E . (8)

Due to the nature of `∞-metric we have

d̂∞(2V, 2U) = d̂∞(V,U) = k (9)

and 2U is a consensus profile by condition (a). Suppose that c ∈ W(U) = W(2U) is

not a winner of 2E. Then there exist a profile X +Y ∈ E , each with n votes, such that

d̂∞(2V,X + Y ) < k. Since our distance is an `∞ one, we have

d̂∞(V,X) < k and d̂∞(V, Y ) < k.

However the consensus class is split-homogeneous so either X ∈ E or Y ∈ E which

contradicts to (8) and (9).
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Corollary 1 Bucklin and Threshold rules are homogeneous.

Both of these two rules however are not consistent. For `p-votewise rules and even

for additively votewise rules Theorem 6 does not hold. In particular, in the next section

we will see that M-Borda, which will be defined there, is not homogeneous.

The condition of split-homogeneity in Theorem 6 is only sufficient but not necessary.

Let us define the following voting rule.

Definition 8 The rule which always selects (C, d∞swap)-winners will be called Dodgson∞.

This min-max version of the Dodgson’s rule is remarkable in several ways. In par-

ticular, it is homogeneous (and Dodgson’s rule is not!).

Proposition 6 Dodgson∞ is homogeneous.

Proof The Dodgson∞’s score score∞Dodg(V ) of the alternative c ∈ C in a profile V is the

smallest positive integer k such it is possible to make c a Condorcet winner by making

no more than k swaps in each preference order of V . The winner is the alternative with

the lowest score. The statement follows from the fact that if c is a Dodgson∞’s winner

of sV for some positive integer s with the score k, then there exist a sequence of swaps

that

– makes c a Condorcet winner;

– makes no more than k swaps in any of the preference orders and exactly k in some

of them;

– makes exactly the same swaps in each of s copies of V .

This means score∞Dodg(sV ) = score∞Dodg(V ) and this proves the statement.

Now let us deal with the continuity.

Proposition 7 Suppose that a voting rule R is (U , d̂p)-rationalizable, where d is a

pseudodistance over votes. Then R is continuous.

Proof Let E1 = (C, V1) and E2 = (C, V2) be two elections over the same candidate

set C such that R(E1) = a, and let En = (C, nV1 + V2). By definition, there are two

unanimous profiles, U1 and U2, such that a is the unanimity winner of U1, c 6= a is the

unanimity winner of U2 and Ui ∈ arg minX∈U d̂(Vi, X) for i = 1, 2. The distance from

any X ∈ U to Vn = nV1 + V2 will be measured as

d̂(nV1 + V2, X) =
p

√
npd̂(V1, X)p + d̂(V2, X)p (10)

For large n this expression is minimized if and only if d̂(V1, X) is minimized, so the

top alternative of X must be in R(E1) and hence a. Thus R(En) = a for such n.

4.2 `p-Votewise Rules

Now that we know that `p-votewise rules have some desirable properties, let us see

which voting rules are in fact `p-votewise distance rationalizable. We will generally

focus on `p-votewise rules, but we will look at `∞ as well. Naturally, we expect the

answer to this question to strongly depend on the consensus notion used. Thus, let

us consider unanimity, strong unanimity, majority, and Condorcet consensuses one by

one.

We start with the unanimity consensus.
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Theorem 7 Let C be a fixed set of m alternatives, R be a voting rule and p is a positive

integer. Suppose R is (U , d̂p)-rationalizable where d is a neutral pseudodistance over

votes. Then R is a scoring rule, that is Rα for some vector α = (α1, . . . , αm).6

Proof By combining Propositions 4, 5 and 7 and Theorem 4 we conclude that any rule

that is (U , d̂p)-rationalizable, where d is a neutral pseudodistance, is neutral, anony-

mous, consistent and continuous and by Young’s famous characterization result (Young,

1975) it is a (simple) scoring rule.

This leads to a surprising conclusion that for unanimous consensus we cannot get

anything new by using `p-votewise distances with p > 1. This probably explains why we

have never heard about, for example, quadratic Borda rule where the score is calculated

by taking squares of respective weights of alternatives and not weights themselves.

For additive votewise distances we can formulate a stronger statement.

Theorem 8 Let R be a voting rule. There exists a neutral pseudodistance d such that

R is (U , d̂1)-rationalizable if and only if R is a scoring rule.

Proof The “if” direction was essentially shown by us; it is not hard to see that the

distance used in the proof of Theorem 1 is a neutral `1-votewise pseudodistance. The

“only if” direction follows from Theorem 7.

Here we have an if and only if statement. Theorem 7 goes only one way since we

have no idea how to obtain an `p-votewise rationalizations for scoring rules similar to

the one in Theorem 1 for any p > 1.

Later in Section 5 we will show that we can actually “extract” the weights of the

scoring rule from the corresponding distance, albeit not efficiently (see Section 5 for a

discussion of the related complexity issues).

Theorem 8 gives a complete characterization of voting rules rationalizable via neu-

tral `1-votewise distances with respect to the unanimity consensus. However, the situ-

ation with respect to other consensus notions is more difficult to describe.

Let us consider strong unanimity next. Intuitively, strong unanimity is quite chal-

lenging to work with as it provides very little flexibility. Meskanen and Nurmi (2008)

have shown that Kemeny is `1-votewise with respect to S, but, at least at the first

glance, it seems that no other natural rule is. Interestingly, and very counterintuitively,

Plurality is also `1-votewise with respect to strong unanimity while Borda is not. As

the proof of these statements are technical we relegate them to the appendix.

Theorem 9 There exists an `1-votewise distance d̂ such that Plurality rule is (S, d̂)-

rationalizable but there is no `1-votewise distance d̂ such that Borda rule is (S, d̂)-rati-

onalizable.

Thus, the class of rules `1-votewise rationalizable with respect to S is rather enigmatic.

On the one hand, it does contain Kemeny, a very complex rule, and Plurality, a very

simple rule, yet it does not contain other natural scoring rules such as Borda. One

6 Note that here, following Young (1975), we do not require α1, . . . , αm to be nondecreasing or integer.
Indeed, the distance rationalizability framework does not impose any ordering over different
positions in a vote, so it works equally well for a scoring rule with any nonnegative α. In the
Section 4.5 we will see which condition on the distance leads to the ordered α.
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characterization of this class is however obtained further in Theorem 23, where this

class of rules is shown to be MLERIV for one particular model of noise. This will be

proved in Section 6.

For the case of M some old rules get new rationalizations. For example, the same

logic as in Nitzan (1981) tells us that Plurality is (M, d̂discr)-rationalizable.

If combining d̂discr with M gives the same effect as combining it with U , then

perhaps the same trick works for d̂swap, and `1-votewise (M, d̂swap)-rationalizable rule

is Borda? It is easy to see that this is not the case, but the resulting rule is indeed very

similar to Borda.

Let us consider the voting rule R that always selects the set of (M, d̂swap)-winners.

Let E = (C, V ) be an election, where C = {c1, . . . , cm} and V = (v1, . . . , vn). For each

candidate ci ∈ C, let M(ci) be the multiset of Borda scores {m−posvj (ci) | 1 ≤ j ≤ n}.
We claim that R always selects a candidate ci ∈ C with the highest score calculated

as the sum of the highest
⌊
n
2

⌋
+ 1 values from M(ci). Indeed, to keep the number of

swaps to the consensus to a minimum we have to choose
⌊
n
2

⌋
+ 1 voters who rank cj

highest and move cj to the top position in those. It is easy to see that R is different

from Borda in which case of the score of ci is calculated as the sum of all the values

from M(ci). We will refer to this new rule R asM-Borda. Not only Borda but in fact,

all scoring rules have their “M-variants.”

Definition 9 Let α = (α1, . . . , αm) be a scoring vector. Voting ruleM-Rα is defined

as follows. Let E = (C, V ) be an election where C = {c1, . . . , cm} and V = (v1, . . . , vn).

For each candidate ci ∈ C, let M(ci) be the multiset of numbers {αposvj (ci)
| 1 ≤ j ≤

n}. The M-Rα score of candidate ci is the sum of the
⌊
n
2

⌋
+ 1 highest values from

M(ci). The candidates with the highest M-Rα scores are the winners.

We will refer to voting rules from Definition 9 asM-scoring rules. The next theorem

(preceded by a technical lemma) is a characterization ofM-scoring rules analogous to

Theorem 8.

By P (C, c) we denote the set of linear orders over the set of alternatives C whose

top alternative is c.

Lemma 1 Let R be a voting rule that is (M, d̂)-rationalized. Let E = (C, V ) be an

arbitrary election where V = (v1, . . . , vn) and let (C,U) be an M-consensus such

that d̂(U, V ) is minimal among all M-consensuses over C with n votes. Let c ∈
C be the consensus winner of (C,U). Then, for each i, 1 ≤ i ≤ n, either ui ∈
arg minx∈P (C,c) d(x, vi) or ui = vi (or both).

Proof Follows directly from the definitions of M and `1-votewise distances. It can be

explained as follows. Given a profile V we have to find the closest M-consensus U to

it. For this we will have to modify at most
⌊
n
2

⌋
+ 1 votes in V so for the rest of the

votes we will have ui = vi. When we modify the remaining votes we do it optimally,

hence ui ∈ arg minx∈P (C,c) d(x, vi).

Theorem 10 For each scoring vector α = (α1, . . . , αm) and each election E = (C, V )

with |C| = m, a candidate cj ∈ C is a winner of E according to M-Rα if and only if

cj is a (M, d̂α)-winner of E.

Proof Goes along the same lines as the proof of Theorem 1 with the use of Lemma 1

in appropriate places.
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Theorem 11 Let R be a voting rule. There exists a neutral pseudodistance d over

votes such that R is (M, d̂)-rationalizable if and only if R =M-Rα for some scoring

vector α.

Proof The “if” direction is proved in Theorem 10 since the pseudodistance d̂α is neutral

and `1-votewise. For the “only if” direction, let R be a (U , d̂)-rationalizable voting rule,

where d̂ is a neutral, `1-votewise pseudodistance based on a pseudodistance d. We will

now show how to derive a scoring rule M-R(α1,...,αm) that corresponds to R for m

candidates.

Let C = {c1, . . . , cm}, and consider an arbitrary preference profile V = (v1, . . . , vn)

over C. Fix any vote v ∈ V and let c ∈ C be such that posv(c) = k. Let also u be

the nearest vote to v that ranks c first. Define βk = d(u, v). Note that by neutrality

the value of βk is independent of the choice of v. Now, consider a candidate c that is

ranked in position ti in vi for i = 1, . . . , n. Clearly, the distance from V to the nearest

profile inM in which c wins is given by the sum of
⌊
n
2

⌋
+1 lowest values in the multiset

{βi | 1 ≤ i ≤ n}. Thus, to transform the vector β = (β1, . . . , βm) into a score vector,

we need to “reverse” it by setting αj = B − βj for j = 1, . . . ,m where B is large

enough, e.g., B = maxmj=1 βj . It is immediate that M-R(α1,...,αm) is exactly R for m

candidates.

4.3 `∞-Votewise Rules

The characterizations in the previous subsection of neutral `p-votewise rules strictly

excluded `∞-votewise rules, which as we saw can be substantially different. They are

nevertheless important as several important rules have distance rationalizations relative

to `∞-votewise distances.

Theorem 12 The threshold rule is (U , d̂∞borda)-rationalizable.

Proof Follows directly from definitions.

More interestingly, we can show that simplified Bucklin is `∞-votewise with respect

to M.

Theorem 13 Simplified Bucklin is both (M, d̂∞sert)-rationalizable and (M, d̂∞spear)-ratio-

nalizable.

Proof Let E = (C, V ) be an election with V = (v1, . . . , vn), and let c be a candidate

in C. Let k be the smallest integer such that c is a k-majority winner.

Now consider an arbitrary election EU = (C,U), U = (u1, . . . , un), in which c is

a strict-majority winner. We have d̂∞sert(E,EU ) ≥ k. Indeed, suppose ` = bn2 c+ 1 and

suppose without loss of generality that c is placed on the top by the first ` linear orders

in U , that is u1, . . . , u`. If posvi(c) < k for i = 1, 2, . . . , `, then k is not the smallest.

This means that for some 1 ≤ i ≤ ` we have posvi(c) ≥ k. This implies dsert(ui, vi) ≥ k
and d̂∞sert(E,EU ) = maxni=1 dsert(ui, vi) ≥ k as well.

On the other hand, there is a strict majority consensus EW = (C,W ) with winner

c such that d̂∞sert(E,EW ) = k. Indeed, we can construct EW from E by shifting c to the

top in each vote that ranks c among the top k candidates (without changing anything

else in those votes). Due to the minimality of k one of them has to be shifted from kth

position securing that the distance is at least k.
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Thus, for each simplified Bucklin winner c of E there exists an election EW ∈ M
such that EW ∈ arg minE′∈M d̂∞sert(E,E

′). That is, simplified Bucklin is (M, d̂∞sert)-
rationalizable.

The proof of (M, d̂∞spear)-rationalization is similar.

The full version of Bucklin rule is also rationalizable via a distance very similar to

the one for simplified Bucklin but, nonetheless, not votewise. Finding further natural

voting rules that are votewise rationalizable with respect to M is an open question.

Our knowledge of rules that are votewise rationalizable with respect to C is more

limited. Dodgson, according to its definition, is `1-votewise rationalizable with respect

to C, and we can see that no scoring rule is distance-rationalizable with respect to C
because scoring rules are not Condorcet-consistent (Moulin, 1991). It is very interesting

if, e.g., Young’s rule is votewise with respect to C (however, see Section 7 for some

comments).

4.4 STV Is Not Votewise Distance-Rationalizable

We will now prove that STV cannot be rationalized with respect to S and (almost)

any votewise distance. We need the following definition.

Definition 10 (Bauer, Stoer, and Witzgall (1961)) A norm N in Rn is mono-

tonic in the positive orthant, or Rn+-monotonic, if for any two vectors (x1, . . . , xn), (y1, . . . , yn) ∈
Rn+ such that xi ≤ yi for all i = 1, . . . , n we have N(x1, . . . , xn) ≤ N(y1, . . . , yn).

Bauer, Stoer, and Witzgall (1961) provide a discussion of norms that are monotonic

in the positive orthant. We remark that this is a fairly weak notion of monotonicity:

the class of Rn+-monotonic norms strictly contains the class of all monotonic norms

as defined in Bauer et al (1961). The requirement of Rn+-monotonicity is very natural

when the norm in question is to be used to construct a product metric, as in our case.

For example, Rn+-monotonic norms are used in a similar context in non-preemptive

goal programming (Carrizosa & Fliege, 2002).

We say that a votewise distance is monotonic if the respective norm is monotonic in

the positive orthant. (Note that the values of the norm outside of the positive orthant

are not used to compute the distance.)

Theorem 14 For three candidates, STV (together with any intermediate tie-breaking

rule) is not (S, d̂)-rationalizable with respect to any neutral anonymous monotonic vote-

wise distance d̂.

Proof For the sake of contradiction, suppose that STV can be rationalized with respect

to S via a neutral anonymous monotonic votewise distance d̂, and let N denote the

corresponding norm. Consider a profile

V = (abc, . . . , abc︸ ︷︷ ︸
k

, bca, . . . , bca︸ ︷︷ ︸
k

, cab). (11)
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By neutrality and symmetry d(abc, bca) = d(abc, cab) = S, d(abc, acb) = T, d(abc, bac) =

B, d(abc, cba) = C for some numbers B,C, S, T . Hence

d1 = d̂(V, abc) = N(0, . . . , 0, S, . . . , S, S),

d2 = d̂(V, acb) = N(T, . . . , T, C, . . . , C,B),

d3 = d̂(V, bca) = N(S, . . . , S, 0, . . . , 0, S),

d4 = d̂(V, bac) = N(B, . . . , B, T, . . . , T, C).

Clearly, under STV candidate a is the unique winner in V . Thus, it must be the case

that min{d1, d2} < min{d3, d4}. By symmetry we have d1 = d3, and hence d2 < d4.

Also, by symmetry we get d4 = N(T, . . . , T, C,B, . . . , B). Hence, by monotonicity

C < B.

Now, consider the profile W obtained by replacing the last voter in V by a voter

whose preferences are cba. We have

d′1 = d̂(W,abc) = N(0, . . . , 0, S, . . . , S, C),

d′2 = d̂(W,acb) = N(T, . . . , T, C, . . . , C, S),

d′3 = d̂(W, bca) = N(S, . . . , S, 0, . . . , 0, B),

d′4 = d̂(W, bac) = N(B, . . . , B, T, . . . , T, S).

The STV-winner of W is b, so we have min{d′1, d′2} > min{d′3, d′4}. Furthermore, by

symmetry, we have d′3 = N(0, . . . , 0, S, . . . , S,B). As C < B, by monotonicity we

conclude that d′1 ≤ d′3. This implies that d′2 > d′4. However, by symmetry we have

d′4 = N(T, . . . , T,B, . . . , B, S), so by monotonicity d′2 ≤ d′4, a contradiction.

We can use similar ideas to show that STV is not distance-rationalizable with respect

to U and a neutral anonymous monotonic votewise distance.

Theorem 15 For three candidates, STV (together with any intermediate tie-breaking

rule) is not (U , d̂)-rationalizable with respect to any neutral anonymous monotonic vote-

wise distance d̂.

Proof Suppose to the contrary that STV can be rationalized with respect to weak

unanimity via a neutral anonymous monotonic votewise distance d̂, where d is the

underlying distance over the votes, and N is the corresponding norm.

Let V be as in (11) and W is obtained from V as in the proof of Theorem 14.

Let numbers C, S, T be also the same as in that proof. Set msc = min{S,C}, msb =

min{S,B}. Let Ua and Ub denote the closest to V weak unanimity consensus profiles

with winners a and b, respectively. Clearly, when constructing Ua (respectively, Ub),

we pick for each vote in V the closest vote that ranks a (respectively, b) first; these

choices are made independently for each vote in V . Thus, we have d(bca, abc) = S,

d(bca, acb) = C and d(cab, abc) = S, d(cab, acb) = B, so

d̂(V,Ua) = N(0, . . . , 0,msc, . . . ,msc,msb).

Also d(abc, bac) = B, d(abc, bca) = S, and d(cba, abc) = C, d(cba, acb) = S, hence

d̂(V,Ub) = N(msb, . . . ,msb, 0, . . . , 0,msc).

As a wins in V , we have d̂(V,Ua) < d̂(V,Ub), and therefore by symmetry and mono-

tonicity msc < msb.
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Now, let U ′a and U ′b denote its closest to W weak unanimity consensus profiles with

winners a and b, respectively. We have

d̂(W,U ′a) = N(0, . . . , 0,msc, . . . ,msc,msc),

d̂(W,U ′b) = N(msb, . . . ,msb, 0, . . . , 0,msb).

As b wins in W , we have d̂(W,U ′a) > d̂(W,U ′b), and therefore msc > msb, a contradic-

tion.

Note that for any p = 1, . . . ,∞, all `p-votewise distance are anonymous and mono-

tonic, so Theorems 14 and 15 mean that STV cannot be distance-rationalized with

respect to either strong or weak unanimity via any neutral `p-votewise distance.

Finally, we remark that STV is not distance-rationalizable with respect to C either

since it is not Condorcet-consistent. Note that Meskanen and Nurmi (2008) show that

STV can be distance-rationalized with respect to U . Their distance is neutral, but

not votewise. Further, it is not immediately clear if their distance is polynomial-time

computable. Thus, of all rules we have considered, STV is distance-rationalizable in

the weakest possible sense.

4.5 Monotonicity and The Main Characterization Theorem

Let us now consider another important property of voting rules, namely monotonicity.

Characterizing precisely which votewise rules are monotone seems much more difficult

than for homogeneous rules. We are able, however, to give two fairly natural conditions

on distances over votes that ensure monotonicity of the voting rule when distances

satisfying these two conditions are coupled with matching consensus classes.

In this section we will not discuss the Condorcet consensus. The reason for this

is twofold. First, it is well-known that Dodgson rule is not monotone (see Brandt

(2009) for a recent survey of Dodgson rule’s deficiencies) and since Dodgson voting

is (C, d̂swap)-rationalizable and d̂swap appears to be about the best behaved distance

one can think of, finding either a sufficient or necessary condition for a distance d to

satisfy so that a voting rule is (C, d̂)-rationalized and monotone seems challenging. The

second reason is that C is, in some sense, the least “local” of the consensus classes

we consider. As a result, conditions regarding just the distance among votes may be

very hard to translate to conditions regarding the whole profile (and monotonicity is a

“global” condition in the sense that the whole profile is involved). Also for simplicity,

we focus on `1-votewise rules and `∞-votewise rules.

Let C be a set of candidates and let d be a distance over votes. How can we specify

a condition on d so that voting rules rationalized using this distance are monotone?

Intuitively, the condition should ensure that if candidate c is a winner and some voter

ranks him higher than before, then the distance to the consensus where c was the

winner decreases more than the distance to a consensus with any other winner. The

next definition tries to capture this intuition.

Definition 11 Let C be a set of candidates and let d be a distance between votes

over C. We say that d is relatively monotone if for every candidate c ∈ C, each two

preference orders y and y′ such that y′ is identical to y except that y′ ranks c higher

than y, and every two preference orders x and z such that x ranks c first and z does

not, it holds that

d(x, y)− d(x, y′) ≥ d(z, y)− d(z, y′).
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As a quick sanity check, it is easy to observe that the swap distance, dswap, satisfies

the relative monotonicity condition.

Relative monotonicity of a distance d over P (C) naturally translates into the mono-

tonicity of a (K, d̂)-rationalizable voting rule, provided that K is S or U .

Theorem 16 Let R be a voting rule rationalized by (K, d̂), where K ∈ {S,U} and d

is a relatively monotone distance on votes. Then R is monotone.

Proof Let E = (C, V ) be an election, where V = (v1, . . . , vn), and c ∈ C be a candidate

such that c ∈ R(E). Let E′ = (C, V ′), where V ′ = (v′1, . . . , v
′
n), be an arbitrary election

that is identical to E except one voter, say v′1, ranks c higher ceteris paribus. It suffices

to show that c ∈ R(E′).
To show this, we give a proof by contradiction. Let (C,U) ∈ K, where U =

(u1, . . . , un), be a consensus witnessing that c ∈ R(E), and let (C,W ), where W =

(w1, . . . , wn), be any consensus in K such that c is not a consensus winner of (C,W ).

For the sake of contradiction, let us assume that d̂(U, V ′) > d̂(W,V ′). If K is either U
or S, then we know that u1 ranks c first and that w1 does not rank c first. By relative

monotonicity, this means that

d(u1, v1)− d(u1, v
′
1) ≥ d(w1, v1)− d(w1, v

′
1). (12)

However, since d̂(U, V ′) > d̂(W,V ′) and V differs from V ′ only by the first voter, it

holds that

d(u1, v
′
1) +

n∑
i=2

d(ui, vi) > d(w1, v
′
1) +

n∑
i=2

d(wi, vi). (13)

If we add inequality (12) to inequality (13), we obtain

d(u1, v1) +

n∑
i=2

d(ui, vi) > d(w1, v1) +

n∑
i=2

d(wi, vi).

That is, d̂(U, V ) > d̂(W,V ), which is a contradiction by our choice of U .

Relative monotonicity is a remarkably strong condition, not satisfied even by some

very natural distances that, intuitively, should be monotone. Here is an example.

Example 1 Consider a scoring vector α = (0, 1, 2, 3, 4, 5), i.e., the 6-candidate scoring

vector for Borda rule and a candidate set C = {c, d, x1, x2, x3, x4}. Distance dα does

not satisfy the relative monotonicity condition. Indeed, let us consider the following

four votes:

x : c > d > x1 > x2 > x3 > x4,

z : x1 > c > x2 > x3 > x4 > d,

y : x1 > x2 > d > c > x3 > x4,

y′ : x1 > x2 > c > d > x3 > x4.

Note that y and y′ are identical except that in y′ candidates c and d are swapped, c

is ranked on the top of x and is not ranked on the top of z. We can easily verify that

d(x, y)− d(x, y′) = 0 but d(z, y)− d(z, y′) = 2. Thus, dα is not relatively monotone.

For the case of U we can weaken the assumptions of Theorem 16 to relative min-

monotonicity defined below. It is easy to modify the proof.
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Definition 12 Let C be a set of candidates and let d be a distance between votes over

C. We say that d is relatively min-monotone if for each candidate c ∈ C and each two

preference orders y and y′ such that y′ is identical to y except that y′ ranks c higher

than y, it holds that for each candidate e ∈ C \ {c}:

min
x∈P(C,c)

d(x, y)− min
x′∈P(C,c)

d(x′, y′) ≥ min
z∈P(C,e)

d(z, y)− min
z′∈P(C,e)

d(z′, y′).

Corollary 2 Let R be a (U , d̂)-rationalized voting rule, where d is relatively min-

monotone distance over votes. Then R is monotone.

On the other hand, if we want to obtain monotonicity for voting rules based on

votewise distances and the majority consensus, it seems that we have to give up the

“relative” part of the definition of relative min-monotone distances. The next definition

explains this formally.

Definition 13 Let C be a set of candidates and let d be a distance over votes over C.

We say that d is min-monotone if for every candidate c ∈ C and every two preference

orders y and y′ such that y′ is the same as y except that it ranks c higher, for each

e ∈ C \ {c} it holds that:

min
x∈P(C,c)

d(x, y) ≥ min
x′∈P(C,c)

d(x′, y′), (14)

min
z∈P(C,e)

d(z, y) ≤ min
z′∈P(C,e)

d(z′, y′). (15)

In other words, a distance is min-monotone if ranking a certain candidate c higher

never increases his distance from the closest vote where he is ranked first, and, for

every candidate e other than c, never decreases his distance from a vote where e is

ranked first. It is easy to see that relative min-monotonicity is a relaxation of min-

monotonicity and so Corollary 2 applies to min-monotone distances as well. Let us

state this for further references:

Proposition 8 Each min-monotone distance d over votes is relatively min-monotone.

Using min-monotone distances, we can now show an analog of Theorem 16 for the

case of the majority consensus.

Theorem 17 Let R be a (M, d̂)-rationalizable voting rule where d is a min-monotone

distance on votes. Then R is monotone.

Proof Let E = (C, V ) be an election with V = (v1, . . . , vn) and let c ∈ R(E) be one of

the winners of E. Let (C,U), where U = (u1, . . . , un), be a majority consensus closest

to V with c being its majority winner. Let E′ = (C, V ′), where V ′ = (v′1, v2, . . . , vn)

which differ from V only in the first preference order and v′1 is identical to v1 except

that it ranks c higher than v1.

For the sake of contradiction, we assume that c is not an R winner of E′, but that

some candidate e ∈ C \ {c} is. Let (C,W ), where W = (w1, . . . , wn) be a majority

consensus closest to V ′ with e being a simple majority winner of E′. Let us form two

new M-consensuses, U ′ and W ′ as follows:

1. U ′ = (u′1, u2, . . . , un), where u′1 = v′1, if u1 does not ranks c first and u′1 ∈
arg minx∈P(C,c) d(x, v′1) otherwise. The majority winner of this new consensus is

again c.
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2. W ′ = (w′1, w2, . . . , wn), where w′1 = w1, if w1 does not ranks e first and w′1 ∈
arg minz∈P(C,c) d(z, w′1) otherwise. The majority winner of this new consensus is

again e.

Thus, by Lemma 1 and min-monotonicity of d

d(u′1, v
′
1) ≤ d(u1, v1), d(w′1, v

′
1) ≥ d(w1, v1).

Now, using the fact that V and V ′ agree on all voters but the first one, our choice of

W ′, and the two above inequalities, we can see that the following inequality holds:

d̂(U, V ) = d(u1, v1) +

n∑
i=2

d(ui, vi) ≥ d(u′1, v
′
1) +

n∑
i=2

d(ui, vi)

> d(w′1, v
′
1) +

n∑
i=2

d(wi, vi) ≥ d(w1, v1) +

n∑
i=2

d(wi, vi) = d̂(W,V ).

However, this is a contradiction because by our choice of U , d̂(U, V ) is a minimal

distance between V and any majority consensus with n voters.

We can use essentially the same proof for the case of `∞-votewise distances.

Corollary 3 LetR be a (M, d̂∞)-rationalizable voting rule, where d is a min-monotone

distance on votes. Then R is monotone.

Note that it is hard to apply the notion of min-monotone distances to prove mono-

tonicity of voting rules that are distance rationalized via strong unanimity consensus.

The next proposition, together with Example 1, shows that indeed min-monotonicity

is a considerably weaker condition than relatvie monotonicity.

Proposition 9 Let α = (α1, . . . , αm) be a nonnegative scoring vector. Pseudodistance

dα is min-monotone if and only if α is nonincreasing.

Proof As it follows from its definition given in (4) the vector α and vector

β = (α1 − a, α2 − a, . . . , αm − a)

for any a generate the same distance. It will be convenient to choose a = α1 and getting

β1 = 0 (allowing apparently by doing so negative weights). As we showed in the proof

of Theorem 1 for each candidate c ∈ C, each integer k such that 1 ≤ k ≤ m, and each

vote y that ranks c in position k, we have minx∈P(C,c) d(x, y) = 2|β1 − βk| = 2|βk|.
Let us fix some two distinct candidates c, e ∈ C. Let y and y′ be two votes that are

identical, except that c is ranked on some position k in y and in y′ candidate c is shifted

to position `, where ` < k. We know that minx∈P(C,c) d(x, y) = 2|β1−βk| = 2|βk| and

minx′∈P(C,c) d(x′, y′) = 2|β1 − β`| = 2|β`|. If α is nonincreasing, all βi are nonpositive

then (14) is satisfied if and only if |β`| ≤ |βk| which is in turn equivalent to β` ≥ βk
and α` ≥ αk.

Thus, the first inequality (14) from the definition of min-monotonicity is satisfied if

and only if α is nondecreasing. One can analogously show that the same holds for the

second inequality (in essence, the proof works by arguing that either posy(e) = posy′(e)

or posy(e) = posy′(e)− 1.
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The above proposition, combined with Theorem 7 give us our main characterization

theorem

Theorem 18 A voting rule R is (U, d̂)-rationalizable for some min-monotone neutral

pseudodistance d on votes if and only if R is a scoring rule Rα for some vector α =

(α1, . . . , αm) with α1 ≥ α2 ≥ . . . ≥ αm.

5 Complexity Issues for Distance-Rationalizable Rules

Now that we have some understanding of the nature of distance-rationalizable rules

in general and votewise rules specifically, it is high time to consider their compu-

tational aspects. We will focus on two issues. Foremost, we will show complexity-

theoretic upper-bounds on the runtime of winner-determination procedures for a large

class of distance-rationalizable rules. Then, we will show that for votewise rules we

can obtain stronger fixed-parameter tractability resutls. Finally, we will show that in

a certain technical sense `∞-votewise rules can be considered as approximations to

the corresponding `1-votewise rules. This result is interesting because sometimes `∞-

votewise rules have considerably more efficient winner-determination procedures than

their `1-votewise counterparts. (We will indeed see this for the case of Dodgson and its

`∞-votewise analogue.)

We assume that the reader is familiar with basic notions of computational com-

plexity theory such as complexity classes P and NP, (nondeterministic) polynomial-

time computation, etc. In addition, our analysis will include complexity classes PNP

and Θp2 that lie one notch higher in the Polynomial Hierarchy, and the class FPT of

fixed-parameter tractable problems. A decision problem belongs to PNP if, given ac-

cess to an NP-oracle, it can be solved in polynomial time (i.e., the problem can be

solved in polynomial-time given a procedure that solves some given NP-problem in

constant time). A decision problem is in Θp2 if it is in PNP but all the oracle queries

are prepared before any of the answers are received (in other words, the queries cannot

be chosen adaptively). A catalog of reductions and complexity classes can be found

in (L. Hemaspaandra & Ogihara, 2002). A problem is fixed-parameter tractable (is in

FPT) with respect to some parameter (in our case the parameter will be the number

of candidates in the election) if there is an algorithm that for each instance I of size

n with parameter value j computes the solution to the problem in time O(f(j)nO(1)),

where f is a (computable) function of j.

5.1 Winner Determination Problem

For a given voting rule R to be of any practical value, it must be possible to ef-

ficiently establish R-winners of elections. Let us consider the complexity of winner-

determination under distance-rationalizable rules. Our first goal is to prove upper

bounds on the hardness of winner determination. However, to do so we, of course,

need to impose restrictions on the distances that we consider. Otherwise, due to our

unrestricted distance-rationalizability results no upper bound would exist. Thus, we

will focus on distances that are polynomial-time computable and take values from the

set Z ∪ {∞}.
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Definition 14 Let d be a distance over some set X. We say that d is normal if it is

polynomial-time computable (given an encoding of the elements in X) and takes values

from the set Z ∪ {∞}.

Naturally, for us the set X will either be the set of all preference orders over some

candidate set or the set of all profiles over some candidate set. We require a distance to

have values in Z∪{∞} for technical reasons only; standard mechanism of computational

complexity can easily deal with integers (and could be adopted to work with rationals)

but have no clear way of dealing with irrational numbers. Nonetheless, essentially all

natural, interesting distances are normal.

Formally, we define this winner-determination problem as follows.

Definition 15 Let R be a voting rule. In the R-winner problem we are given an

election E = (C, V ) and a candidate c ∈ C, and we ask whether c ∈ R(E).

Our next theorem provides complexity-theoretic upper bounds for R-winner deter-

mination where R is distance-rationalizable via a normal distance D and one of our

standard consensus classes.

Theorem 19 Suppose that a voting rule R is (K, D)-rationalizable, where D is a

normal distance that for any two elections E1 = (C, V1) , E2 = (C, V2) satisfies

D(E1, E2) = +∞ whenever C1 6= C2 or |V1| 6= |V2|, and K ∈ {S,U ,M, C}. It holds

that:

1. R-winner is in PNP, and

2. if, in addition, there is a polynomial p such that for each two elections E1 and E2

either D(E1, E2) = +∞ or D(E1, E2) ≤ p(|C|+ |V1|+ |V2|) holds, then R-winner

is in Θp2 .

Proof Let E = (C, V ) be our input election and let c be a candidate in C. Our goal

is to decide whether c ∈ R(E). In our construction we will use the following decision

problem, which we call R-score. Given an election F , a candidate e in this election,

and a nonnegative integer k we ask if (K, D)-score of e is at most k. It is easy to see

that since D is normal (and, as a result, polynomial-time computable), R-score is in

NP.

To show that R-winner is in PNP we can use the following simple algorithm: (a)

For each candidate e ∈ C, using binary-search and oracle queries to R-score, compute

the (K, D)-score of e. If c is among the candidates with the smallest (K, D)-score then

accept and otherwise reject. Since D is polynomial-time computable, we know that

(K, D)-score of each candidate in E is exponentially bounded in |C|+ |V | (or, is +∞);

this is so because whatever polynomial-time algorithm we would use for computing

the value of D, would not have time to output more than polynomially many bits.

Thus, the binary search procedure would require at most polynomially many queries

per candidate and the whole procedure would run in polynomial time (given access to

R-score oracle).

Let us now consider the second statement of the theorem. To establish membership

in Θp2 , we will provide an algorithm that solves R-winner in polynomial-time, provided

it is allowed to make independent oracle queries toR-score (i.e., the algorithm will form

all the queries prior to receiving any of the oracle answers). Clearly, this means that the

algorithm cannot use binary search directly. Nonetheless, in the second statement of

the theorem we have assumed that the values of D are either +∞ or are polynomially
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bounded with respect to |C| + |V | (recall that if D(E1, E2) 6= +∞, then |V1| = |V2|).
As a result, each candidate in C has (K, D)-score that is +∞ or that is polynomially

bounded with respect to |C|+ |V |.
Our algorithm works as follows. For each candidate e ∈ C and for each integer k

that e could possibly have as the score, our algorithm queries the oracle whether e has

(K, D)-score at most k. After all these queries are asked, we can trivially compute each

candidate’s score and output the winner. Clearly, we make at most polynomially many

queries and the whole algorithm runs in polynomial time.

It seems that Theorem 19 cannot be improved. Indeed, it is well-known that winner

determination under Dodgson’s and Kemeny’s rules, both of which satisfy the second

part of the theorem, is Θp2-complete (E. Hemaspaandra et al., 1997; E. Hemaspaandra,

Spakowski, & Vogel, 2005). For the first part of the theorem, it is not too difficult to

construct a distance which is not polynomially bounded; e.g., consider a family R of

scoring rules Rαm , m = 1, 2, . . ., where the coefficients of αm depend exponentially

on m. While for such scoring rules the winner determination procedure is much easier

than PNP-complete (even if the rule is represented by a distance and not the score

vector itself), it seems that the distances used to rationalize such scoring rules would

yield rules with PNP-complete winner determination problems when paired with either

C or S. However, no such result was yet proved since such rules do not seem practically

interesting.

On the positive side, for both Dodgson and Kemeny the winner determination

problem can be solved in polynomial time if the number of candidates is fixed. In fact,

a stronger statement is true: The winner determination problem for both Dodgson and

Kemeny is fixed parameter tractable with respect to the number of candidates. This

is an example of a more general fact: If a voting rule is rationalized via a normal `1-

votewise distance, the winner determination problem is fixed-parameter tractable with

respect to the number of candidates.

Theorem 20 Suppose that a voting ruleR is (K, d̂)-rationalizable, where K ∈ {S,U ,M, C}.
and d̂ is a normal `1-votewise distance. Then the R-winner problem is in FPT with

respect to the number of candidates.

Proof There is an FPT algorithm, due to Lenstra, Jr. (1983), that—in effect—allows

us to solve integer linear programs for which the number of variables is a function of

the parameter (and for which the constants in our integer linear programs are well-

behaved; in our case they will be). Thus, our proof proceeds by showing an integer linear

program for computing (K, d̂)-score of a given candidate, whose number of variables

will be a function of the number of candidates in the election. Naturally, the ability to

compute (K, d̂)-scores immediately implies the ability to compute winners.

Let E = (C, V ) be an election and let e be a candidate in C. Let ρ1, . . . , ρ|C|! be all

|C|! preference orders over C. Our integer linear program for e’s (K, d̂)-score at a profile

V = (v1, . . . , vn) is as follows. Given another profile U = (u1, . . . , un) we can, for every

v, u ∈ P (C) calculate the number nv,u equal to the number of indices i ∈ {1, 2, . . . , n}
such that v = vi and u = ui. The set of numbers NV,U = {nv,u | v, u ∈ P (C)} does

not determine U uniquely but any two profiles U1 and U2 with NV,U1
= NV,U2

have

the property d̂(V,U1) = d̂(V,U2).
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In the program we seek to minimize the distance from V to a consensus profile U ,

represented by NV,U , where e is the winner. That is, we seek to minimize

|C|!∑
i=1

|C|!∑
j=1

nρi,ρjd(ρi, ρj)

(which, will then be d’s (K, d̂)-score) under the following constraints:

1. For each i, 1 ≤ i ≤ |C|!, the sum
∑|C|!
j=1 nρi,ρj equals the number of voters in V

with preference order ρi (that is, the variables really correspond to the voters in V ).

2. If we form an election where for each j, 1 ≤ j ≤ |C|!, there are exactly
∑|C|!
i=1 nρi,ρj

voters with preference ρj , then this election is a K-consensus with e as the consensus

winner.

The first constraint above is clearly in the form of a linear equation, as required by

integer linear programs. The second constraint can also be expressed in terms of linear

inequalities for each of the consensus classes we consider. This completes the proof.

The above two theorems give complexity-theoretic upper bounds for hardness of

winner determination under distance-rationalizable/votewise rules. While there are

some settings where these upper bounds are exact (consider, e.g., Dodgson and Ke-

meny), it seems to not be the case for `1-votewise rules rationalized via the unanimity

consensus. Indeed, in prior sections we have seen that such rules form families of scor-

ing rules, and for scoring rules winner determination is next to trivial. Note, however,

that in our setting we are given the distance, but not the scoring vector and comput-

ing the latter from the former might be hard. Nevertheless, it turns out that in this

setting (and in similar ones) we can easily determine the winner if we are allowed to

use polynomial-size advice.

Theorem 21 Suppose that a voting rule R is distance-rationalizable via a normal

neutral `1-votewise (`∞-votewise) distance and either the unanimity consensus or the

majority consensus. Then R-winner is in P/poly.

P/poly is a complexity class that captures the power of polynomial computation “with

advice.” (Informally, here the advice is the scoring vector underlying the rule.) Karp–

Lipton theorem (Karp & Lipton, 1980) says that if there is an NP-hard problem

in P/poly then the Polynomial Hierarchy collapses. Thus, for voting rules that are

distance-rationalizable via a normal neutral `1-votewise distance and the consensus

class U the winner determination problem is unlikely to be NP-hard. This stands in

sharp contrast with such rules rationalized via consensus classes C and S, which indeed

can have NP-hard winner determination problems (again, Dodgson and Kemeny server

as examples). Thus, from computational perspective, the unanimity consensus appears

to be easier to work with than the strong unanimity consensus and the Condorcet

consensus. Indeed, both S and C impose “global” constraints on the closest consensus

and U only imposes “local” ones.

5.2 `1-Votewise Rules versus `∞-Votewise Rules

In addition to complexity-theoretic analysis of winner determination, it is also inter-

esting to consider relations between winner determination in rules defined via similar
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distances and consensus classes. Specifically, we will now discuss the relation between

`1-votewise rules and `∞-votewise rules. It turns out that in a certain weak sense, `∞-

votewise rules are approximations of corresponding `1-votewise rules using the same

distance over votes and the same consensus class.

Theorem 22 Let K ∈ {S,U ,M, C} be a consensus class and let d be a distance over

votes. Let d̂ be an `1 extension of d to a distance over elections and d̂∞ be an `∞
extension of d. Let R be (K, d̂)-rationalized and R∞ be (K, d̂∞)-rationalized. For each

election E = (C, V ) and each candidate c ∈ C it holds that

scoreR∞(c) ≤ scoreR(c) ≤ |V | · scoreR∞(c).

Proof Let E = (C, V ) be an arbitrary election, where C = {c1, . . . , cm} and V =

(v1, . . . , vn). We fix candidate c ∈ C.

We first claim that scoreR(c) ≤ |V |·scoreR∞(c). Let (C,W ), whereW = (w1, . . . , wn),

be a K-consensus where c is the winner and such that scoreR∞(c) = d̂∞(V,W ). By

definition, we have

scoreR(c) ≤ d̂(V,W ) =

n∑
i=1

d(vi, wi) ≤ n ·
n

max
i=1
{d(vi, wi)}

= n · d̂∞(V,W ) = |V | · scoreR∞(c),

which proves the second inequality.

On the other hand, let (C,U), where U = (u1, . . . , un), be a K-consensus where c

is the winner and for which scoreR(c) = d̂(V,U). By definition, it holds that

scoreR(c) = d̂(V,U) =

n∑
i=1

d(vi, ui) ≥
n

max
i=1
{d(vi, ui)}

= d̂∞(V,U) ≥ scoreR∞(c),

and so scoreR∞(c) ≤ scoreR(c). This completes the proof.

In other words, an `∞-votewise rule is a |V |-approximation of a corresponding `1-

votewise rule in the sense of Caragiannis et al. (Caragiannis et al., 2009; Caragiannis,

Kaklamanis, Karanikolas, & Procaccia, 2010). Of course, this approximation is very

weak as its approximation ratio depends linearly on the number of voters. The only

settings where such an approximation would be of any value would be those, where

we have very few voters and very many candidates (and the original voting rule is

hard to compute). One of the few settings where these conditions are satisfied is the

situation where we view web search engines as voting on the most appropriate result

for a given query. There are very few search engines, but millions of web pages. (See

the classic paper of Dwork et al. (Dwork, Kumar, Naor, & Sivakumar, 2001) for a

discussion of the idea of search-engine elections.) If we were for some reason to use

an approximation algorithm for Dodgson’s rule, then the algorithms of Caragiannis et

al. (Caragiannis et al., 2009, 2010), whose approximation ratios depend on functions

of |C|, would eventually give higher approximation ratios than |V |, yielded by the

(C, d∞swap)-rationalizable rule R. Of course, for R to be useful, we would have to be

able to compute its winners in polynomial time. This is indeed the case.
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Proposition 10 Let R be (C, d∞swap)-rationalizable. The problem of deciding whether

a given candidate is a winner of R-elections is in P.

Proof Let E = (C, V ) be an election and let c ∈ C be an arbitrary candidate. It is easy

to verify that the following algorithm computes R-score of c in E:

1. Set s = 0.

2. If c is a Condorcet winner of E then return s.

3. For each vote where c is not ranked first, swap c and its preceding candidate.

4. Increase s by 1.

5. Go to Step 2.

Since after at most |V | steps the algorithm terminates, it is easy to see that it runs in

polynomial time. This completes the proof.

It is not at all clear that it is always the case, or at least the case for nice distances,

that an `∞ variant of an `1-votewise rule has a polynomial-time winner-determination

procedure.

Question 1 Let R be (S, d∞swap)-rationalizable. Is the problem of deciding whether a

given candidate is a winner of R-elections in P?

Note that the rule in the above question is an `∞ variant of Kemeny. Of course,

there are much better approximation algorithms known for Kemeny (Ailon, Charikar,

& Newman, 2008; Coppersmith, Fleisher, & Rurda, 2010; Kenyon-Mathieu & Schudy,

2007) and the value of resolving the above question is in enhancing our understanding

of Kemeny and relations between `1- and `∞-votewise rules.

6 Distance Rationalizable Rules and Rules that are Maximum Likelihood

Estimators

Condorcet viewed voting as aggregation of information. He assumed that there always

exists a “correct” outcome (winner or ranking), and each voter’s vote corresponds to

a noisy perception of this correct outcome. This line of research was actively pursued

by Young (1975) and Young and Levenglick (1978) who showed that consistent appli-

cation of Condorcet’s principles leads to the unique rule which is known as Kemeny

rule. Recently the idea was further explored by Conitzer with coauthors (Conitzer &

Sandholm, 2005; Conitzer et al., 2009).

Maximum likelihood estimator (MLE) voting rules and votewise distance ratio-

nalisable (VDR) voting rules have some rules in common. This section is devoted to

establishing connections between these two classes.

Firstly, we note that two possible assumptions: existence of a correct ranking and

existence of a correct winner lead to two slightly different frameworks MLERIV and

MLEWIV, respectively, in terminology of Conitzer & Sandholm (2005). However in

both cases the central concept of an MLE voting rule is the model of noise. Let us deal

with the ranking case first.

Definition 16 A noise model (in the ranking case) is a family of probability distribu-

tions P (x|y) on P (C) indexed by y ∈ P (C). This is the probability that a voter would

submit preference order x if the correct ranking was y.
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We assume that each voter is influenced with the same factors that cause her to

make mistakes in her judgement. We also assume that the probability distribution

P (x|y) is the same for all voters, that is, the voters’ preference orders are independent

identically distributed (iid) random variables. In the classical framework of the jury

deciding on whether or not a defendant is guilty or not we may have for example for

each juror probabilities:

P (g|g) = 0.9, P (i|g) = 0.1, P (g|i) = 0.2, P (i|i) = 0.8, (16)

where ‘g’ stands for ‘guilty’ verdict preferred to ‘innocent’ verdict and ‘i’ stands for the

opposite preference.

Definition 17 A social welfare function F : P (C)n → P (C) is a maximum likelihood

estimator (MLE) if there exists a noise model P such that

F (V ) = argmaxx∈P (C)

n∏
i=1

P (vi|x)

for any positive integer n and any profile V = (v1, . . . , vn) ∈ P (C)n.

It is inevitable that we have to have a separate noise model for each number of

alternatives m. But it would be unreasonable to allow the noise to depend on the

number of voters n (as we mentioned all voters are in the same conditions and if more

voters join, this does not change those conditions). Hence it is important to emphasise

that since we define a rule applicable for a fixed number of alternatives m but for an

arbitrary number of voters n in the above definition the noise does not depend on n.

Voting rules that calculate the MLE social welfare function first and then harvest

the top alternative(s) are MLERIV (maximum likelihood estimator for ranking under

identically distributed independent votes) rules (Conitzer & Sandholm, 2005).

Definition 18 A noise model is said to be neutral if P (π̃(x)|π̃(y)) = P (x|y) for any

x, y ∈ P (C)n and any permutation π ∈ Sm.7

The noise model (16) is obviously not neutral because the probabilities conditional

on g are different from the probabilities conditional on i and this could not happen

with a neutral noise model.

One of the most popular noise models in the literature is the Mallows model

(Mallows, 1957). His idea was to use the Kendall tau distance to introduce a probability

measure on Sm (which can be identified with P (C) for our needs). This measure has

a location parameter x0 ∈ P (C) and a scale parameter λ which is a non-negaitive real

number. Following Diaconis (1988) we generalise this measure by using an arbitrary

pseudodistance8 d on P (C) by setting

P (x|x0) = ce−λd(x,x0), c =

 ∑
x∈P (C)

e−λd(x,x0)

−1 . (17)

We will call it the generalised Mallows model of noise relative to the pseudodistance d.

7 The notation π̃ was introduced in Section 4.1.
8 As Diaconis (1988) (p. 102) does not require the metric to satisfy the identity of indiscernibles.
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Here the largest probability is assigned to x0 and probability decreases geometri-

cally as a function of the distance from x0. Increasing λ makes the distribution more

and more peaked about x0. Critchlow (1985) provides a number of examples where the

Mallows model provides a good fit to ranking data.

Theorem 23 A rule R is (S, d̂)-rationalizable relative to the strong consensus class

S and additively votewise distance d̂ if and only if R is a MLERIV rule relative to the

generalised Mallows model of noise.

Proof Let P (V |x) be the probability of profile V , given the correct ranking x. We have

P (V |x) =

n∏
i=1

P (vi|x) =

n∏
i=1

ce−λd(vi,x) = ce−λ
∑n
i=1 d(vi,x) = ce−λd̂(V,X),

where X is a strong consensus profile where all linear orders are equal to x. Hence

maximising this probability is equivalent to minimising d̂(V,X) and this is exactly

what R is doing.

Since this is an if and only if statement we can obtain consequences in both direc-

tions. In particular we get a new MLERIV rule.

Corollary 4 Litvak’s rule is MLERIV.

Among MLERIV rules Conitzer and Sandholm (2005) list scoring rules, Kemeny

rule and STV. The presence of STV in this list seem to contradict to our Theorems 23

since we know that STV is not votewise distance rationalizable with respect to S.

Why is this happenning? There could be two answers to this question (but we do

not know which one is true). Either STV requires the noise model different from the

Mallows model or else it is impossible to come up with the noise model for STV which

is independent of n (it is dependent in Conitzer and Sandholm (2005)).

Now let us deal with the MLE rules which estimate the winner with no prior

estimation of the ranking.

Definition 19 A noise model (in the winner case) is a family of probability distribu-

tions P (k|a) on A indexed by a ∈ A. This is the probability that a voter would submit

preference order in which the correct winner a was in the kth best position.

Definition 20 A social choice rule F : P (C)n → 2C is a maximum likelihood estima-

tor (MLE) if there exists a noise model P (not depending on n) such that

F (R) = argmaxx∈C

n∏
i=1

P (posvi(x)|x) (18)

for any positive integer n and any profile V = (v1, . . . , vn) ∈ P (C)n.

Voting rules which fall into this category are MLEWIV (maximum likelihood es-

timator for winner under identically distributed independent votes) rules in terms of

Conitzer and Sandholm (2005).

Let |C| = m. A reasonable model of noise in this case is as follows: we introduce a

scoring vector α = (α1, . . . , αm) whose coordinates are nonnegative, α1 ≥ α2 ≥ . . . ≥
αm, and set

P (k|a) = ce−λαk , c =

(
m∑
k=1

e−λαk

)−1
. (19)
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Theorem 24 Let α = (α1, . . . , αm) be a vector with non-negative coordinates. A

MLEWIV rule with a neutral noise model (19) is the scoring rule Rα.

Proof Let v ∈ P (C) and posv(c) = k. Then as we know the distance from v to the

closest vote v′ that ranks c first is d(v, v′) = α1 − αk. Then we have

P (V |a) =

n∏
i=1

P (vi|a) =

n∏
i=1

ce
−λ·αposvi

(a) = ce
−λ

∑n
i=1 αposvi

(a)

= ce−λ(nα1−
∑n
i=1 dα(vi,v

′
i)), (20)

where v′i is the closest (in metric dα) linear order to vi in which a is the top candidate.

Then maximising the right-hand-side of (20) is the same as minimising d̂α(V, V ′) for

the weakly unanimous profile V ′ = (v′1, v
′
2, . . . , v

′
n). Thus our rule is F (U , d̂α) and

hence Rα by Theorem 1.

Therefore we can say that apart from exotic noise models MLERIV voting rules

are those that can be `1-votewise distance rationalised relative to the strong unanimity

consensus and MLEWIV voting rules are just scoring rules.

7 Conclusions and Open Problems

In this paper we have presented general results regarding the recently introduced dis-

tance rationalizability framework. Our paper has three main contributions:

1. We have shown that without any restrictions, essentially every reasonable voting

rule is distance-rationalizable and further refinement of this framework is needed.

2. We have put forward a natural class of distances—votewise distances—and proved

that the rules which can be distance-rationalized using such distances have sev-

eral desirable properties. We have identified a number of votewise rules, as well as

showed that some rules are not votewise rationalizable with respect to standard

consensus classes, and established complexity results for winner determination un-

der votewise rules.

3. We characterized scoring rules as the class of rules distance rationalizable relative

to the unanimity consensus and votewise distance over profiles based on a neutral

and min-monotone distance over the votes.

Are votewise distances the only natural distances that one should consider? Such

distances are based on the assumption that, given an election E = (C, V ), if a voter

changes her opinion in a minor way, then the resulting election E′ = (C, V ′) must

not deviate from E too far. However some rules have discontinuous nature by defini-

tion, especially Young’s rule which picks the winner of a largest Condorcet-consistent

subelection. It is unlikely that such rules can be distance-rationalized via a votewise

distance. Indeed, it can be shown that Young’s rule and Maximin can be rationalized

with respect to C via fairly intuitive distances that operate on profiles with different

numbers of voters: in the case of Maximin we are, essentially, adding voters, and in

the case of Young, we are deleting voters. (We omit the definitions of these rules and

the construction due to space constraints). However, neither of these rules is known to

be votewise rationalizable. Thus, it would be desirable to extend the class of “accept-

able” distances to include some non-votewise distances; how to do this is an interesting

research direction.
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We mention that our work is closely related to a sequence of papers of Conitzer,

Rognlie, Sandholm, and Xia (Conitzer & Sandholm, 2005; Conitzer et al., 2009) on

interpreting voting rules as maximum likelihood estimators. We show that distance ra-

tionalizability framework is reacher even if we restrict ourselves with votewise distance

rationalizable rules.
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Appendix

A1. M-Borda is not Homogeneous

Here we present an example showing that Theorem 6 cannot be extended even to additively
votewise rules.

Example 2 M-Borda is not homogeneous despite being additively votewise. To see this it
suffices to consider the following election:

v1 v2 v3 v4 v5 v6
b a c c c d
a b b b d a
d d a a a b
e e e e e e
c c d d b c

A simple calculation shows that to become a majority winner a needs 4 swaps, b needs 3 swaps,
c needs 4 swaps, and d needs 5 swaps. Thus, b is a winner according to M-Borda. However,
if we replace each voter by two identical ones, it turns out that b needs 5 swaps to become a
majority winner, but c requires only 4 and is the M-Borda winner of this new election.

A2. Condorcet Consensus and Homogeneity

The Condorcet consensus is not split-homogeneous as the following example demonstrates.
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v1 v2 v3 v4 v5 v6
c a c b a c
↓ b a ↓ ↓ ↓
b c b a b a
↓ ↓ ↓ ↓ ↓ ↓
a ↓ ↓ c c b
↓ ↓ ↓ ↓ ↓ ↓

Table 1 Election E = (C, V ) from the proof of Proposition 11.

Example 3 Consider the following election E = (C, V ) with C = {a, b, c, d, e} and V =
(v1, . . . , v12).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
a b c d e c e a b c d c
b c d e a a d e a b c a
c d e a b b c d e a b b
d e a b c d b c d e a d
e a b c d e a b c d e e

Here, voters from the group V1 = (v1, . . . , v5) form a Condorcet cycle, and voters from the
group V2 = (v7, . . . , v11) are obtained from voters v1, . . . , v5 by reversing their preferences.
Voters v6 and v12 are identical and rank candidate c on top. Since voters from the groups
V1 and V2 ‘cancel’ each other c is the Condorcet winner in E. On the other hand, consider
elections E1 = (C, V1) and E2 = (C, V2). In E1, b is ranked above c in 4 votes, so c is not
a Condorcet winner in E1. Similarly, in E2, d is ranked above c in 4 votes, so c is not a
Condorcet winner in E2 either.

There are `∞-votewise distances that combined with the Condorcet consensus yield non-
homogeneous rules.

Proposition 11 There exists a set of candidates C and a distance d on P(C) such that the

voting rule rationalized by (C, d̂∞) is not homogeneous.

Proof We first define two additional types of swap operations for preference orders. A forward
distance-two swap of candidate c transforms this preference order as follows: the candidate
ranked two positions higher than c, is moved from his current position and placed directly
below c. If c were ranked first or second, a forward distance-two swap is not defined. For
example, if C = {a, b, c, d, e} and the preference order is a � b � c � d � e, then the result of a
forward distance-two swap of candidate c will be b � c � a � d � e. A backward distance-two
swap is defined similarly. It is easy to see that a single forward distance-two swap can be
reversed by applying a single backward distance-two swap and the other way round.

We can now define our distance d. Let us fix some candidate set C = {c1, . . . , cm}. For
each two preference orders u and v over C we define d(u, v) to be the minimal number of
swaps of adjacent candidates and distance-two swaps of candidates needed to transform vote
u into vote v. It is easy to see that d indeed is a distance because it counts the number of

reversible operations that transform one preference order into the other. As before, d̂∞ is the
`∞-votewise extension of d to a distance over elections.

Let R be a voting rule that selects (C, d̂∞)-winners. We will now build an election E =
(C, V ) such that R(E) 6= R(2E). We set C = {a, b, c, x1, . . . , xt}, where t is a sufficiently large
integer. (After reading our description of the votes in V it will become clear what we mean
by sufficiently large.) The set of voters V will contain six voters, v1, . . . , v6, whose preference
orders are presented in Table 1. Note that in this table we only showed how candidates in
{a, b, c} are ranked. Remaining candidates are ranked in the places of arrows, in such a way
that (a) each candidate in {a, b, c} is preferred to each candidate xi, 1 ≤ i ≤ t, by a majority
of voters, and (b) one needs at least three swaps or distance-two swaps to change the relative
order of two candidates from {a, b, c} that are separated by an arrow.

We have the following results of head-to-head contests in E: four voters prefer a to b, a
and c are tied, b and c are also tied. Thus, a single swap of a and c in vote v3 makes a a
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Condorcet winner of the election. On the other hand, it is easy to see that being allowed one
(possibly distance-two) swap per vote, it is impossible to make either b or c the Condorcet
winner. Thus, a is the unique R-winner of E.

In 2E, similarly, a single swap (within one of the copies of v3) suffices to make a the
Condorcet winner. However, now also a single swap per vote suffices to make c a Condorcet
winner. Indeed, in one copy of v2 we transform a � b � c into a � c � b and in the other into
b � c � a. These two transformations allow c to break a tie with both a and b, and become
the Condorcet winner.

A3. Proof of Theorem 9.

Let C = {c1, . . . , cm} be a set of candidates. For two votes u, v ∈ P (C), we say that v can
be obtained from u by a cyclic shift if there exists an i ∈ [m] and a permutation π : C → C
such that v = π(c1) � . . . � π(cm), u = π(ci) � . . . � π(cm) � π(c1) � . . . � π(ci−1).

Partition P (C) into m groups L1, . . . , Lm, where the voters in Li rank ci on top. Set
s = (m − 1)! and, for each i ∈ [m], number the votes in Li as v1i , . . . , v

s
i so that for any

i, j ∈ [m] the vote vtj can be obtained from the vote vti by a cyclic shift. This is possible,

since for each uti, i ∈ [m], t ∈ [s] and each j ∈ [m], there is exactly one vote in Lj that can
be obtained from vti by a cyclic shift. Now, set d(vti , v

r
j ) = 1 if either i = j or t = r, but

(i, t) 6= (j, r), and set d(vti , v
r
j ) = 2 if i 6= j, t 6= r. Observe that since d(u, v) ∈ {1, 2} for u 6= v,

the mapping d satisfies the triangle inequality; it is also symmetric and neutral.

Consider a preference profile V . For any i ∈ [m], t ∈ [s], let ati denote the number of voters
in V with preferences vti .

We have

d̂(V, vti) =
∑

r∈[s]\{t}
ari +

∑
j∈[m]\{i}

atj + 2
∑

j∈[m]\{i}

∑
r∈[s]\{t}

arj

=
∑

j∈[m]\{i}

∑
r∈[s]

arj +
∑

j∈[m]

∑
r∈[s]\{t}

arj .

Consequently, the distance from V to the nearest profile in S with winner ci is given by∑
j∈[m]\{i}

∑
r∈[s] a

r
j + mint∈[s]

∑
j∈[m]

∑
r∈[s]\{t} a

r
j . The second component of this expres-

sion does not depend on i, while its first component counts the number of voters that do not
rank ci first. Thus, the nearest strong unanimity consensus to V has ci as a winner if and only
if i minimizes the sum

∑
j∈[m]\{i}

∑
r∈[s] a

r
j over all i ∈ [m], i.e., ci has the largest number of

first-place votes. Thus, Plurality is distance-rationalizable with respect to S via d̂.

Now let us deal with Borda. This construction is for the three candidate set C = {a, b, c}.
Consider a distance d over P (C) satisfying neutrality. By symmetry d is completely described
by its values on the pairs (abc, abc), (abc, acb), (abc, bac), (abc, bca), (abc, cab), and (abc, cba).
Further, we have d(abc, abc) = 0, and by neutrality and symmetry we have d(abc, bca) =
d(abc, cab) (to see this, note that the permutation π given by π(a) = c, π(b) = a, π(c) = b
transforms abc into cab and bca into abc). Set d(abc, acb) = T , d(abc, bac) = B, d(abc, cba) = M ,
d(abc, bca) = d(abc, cab) = S. Table 2 gives the values of d for each pair of preference orders.9

Since d is a distance, we have T,M,B, S > 0.

Not all values of T,M,B, S give us a distance but if all of them are either 1 or 2, then
they will. Suppose that Borda is additively votewise distance rationalizable with respect to
S via a distance d on votes given by some values T , M , B, and S. Consider two families of
preference profiles, V1(k) and V2(k), where k = 1, 2, . . .. Both V1(k) and V2(k) contain k voters
with preference order acb, k voters with preference order bca, and one extra voter. In the case
of V1(k) this extra voter has preference order cab, and in the case of V2(k), the extra voter has

9 If a vote u is obtained from a vote v by permuting the second and the third candidate (and leaving
the top candidate in place), we have d(u, v) = T , if u is obtained from v by permuting the first
and the second candidate (and leaving the bottom candidate in place), we have d(u, v) = B, if
u is obtained from v by permuting the first and the third candidate (and leaving the center in
place), we have d(u, v) = M , and if u is obtained from v by a cyclic shift, we have d(u, v) = S.
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abc acb bac bca cab cba
abc 0 T B S S M
acb T 0 S M B S
bac B S 0 T M S
bca S M T 0 S B
cab S B M S 0 T
cba M S S B T 0

Table 2 The values of d for each pair of votes over C.

preference acb. We have

d1 = d̂(V1(k), cab) = kB + kS,

d2 = d̂(V1(k), cba) = kS + kB + T,

d3 = d̂(V1(k), acb) = kM +B,

d4 = d̂(V1(k), bca) = kM + S.

Naturally, d1 < d2. Further, for each k > 0, the unique winner of V1(k) is c, and the unique
winner of V2(k) is a. Therefore, for any k > 0 it holds that d1 < d3, and d1 < d4, that is, in
particular, for each k we have

(k − 1)B + kS < kM. (21)

On the other hand, for V2(k) we have:

d′1 = d̂(V2(k), cab) = (k + 1)B + kS,

d′2 = d̂(V2(k), cba) = (k + 1)S + kB,

d′3 = d̂(V2(k), acb) = kM,

d′4 = d̂(V2(k), abc) = (k + 1)T + kS.

By triangle inequality, T + S = d(abc, acb) + d(acb, cba) ≥ d(abc, cba) = M , so d′3 < d′4. Since
a wins in V2(k), we have d′3 < d′1 and d′3 < d′2. In particular, for each k > 0 it holds that
kM < (k+ 1)B+ kS. Combining this inequality with (21), we get that for each k > 0 it holds
that

k − 1

k
B + S < M <

k + 1

k
B + S.

Since k can be arbitrarily large, we have M = B + S.
Now, consider a preference profile V3 = (abc, acb). Clearly, a is the unique Borda winner

for V3. We have d′′1 = d̂(V3, abc) = T , d′′2 = d̂(V3, acb) = T , and d′′3 = d̂(V3, cab) = S+B. Since
a is the unique winner, it holds that T < S + B. In particular, T < B. However, by triangle
inequality we know that T +S ≥M . We also know that M = B+S, so we have T +S ≥ B+S,
that is, T ≥ B. This is a contradiction. ut


