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Abstract
We consider the problem of manipulating elections by cloning candidates. In our model,

a manipulator can replace each candidate c by several clones, i.e., new candidates that are so
similar to c that each voter simply replaces c in his vote with a block of these new candidates,
ranked consecutively. The outcome of the resulting election may then depend on the number of
clones as well as on how each voter orders the clones within the block. We formalize what it
means for a cloning manipulation to be successful (which turns out to be a surprisingly delicate
issue), and, for a number of common voting rules, characterize the preference profiles for which
a successful cloning manipulation exists. We also consider the model where there is a cost
associated with producing each clone, and study the complexity of finding a minimum-cost
cloning manipulation. Finally, we compare cloning with two related problems: the problem of
control by adding candidates and the problem of possible (co)winners when new alternatives
can join.

1 Introduction

In many real-life elections, some of the candidates may have fairly similar positions on major issues,
yet disagree on what is the best way to implement their common goals. Under many voting rules,
and most glaringly under Plurality voting, these candidates run the risk of splitting the vote and
losing to a candidate with an opposing program. This phenomenon can be exploited to alter the
election outcome. For instance, The New York Times reported on September 6, 2010 [35] that in
Arizona drifters and homeless people were recruited onto the Green Party ballot by a Republican
political operative who freely admitted that their candidacies may siphon some support from the
Democrats and therefore help Republicans.

Such scenarios have been extensively studied in the (computational) social choice literature (see
Section 6 for an overview). Depending on whether the manipulation is contemplated by one of the
candidates or by an external party, this issue is known as strategic candidacy problem (this term was
coined by Dutta, Jackson and Le Breton [17, 18]) or the problem of control by adding candidates.
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In this paper we will address a variant of this problem that is known as cloning. It is charac-
terized by the following feature: each new candidate must be very similar to one of the existing
candidates. This form of manipulative behavior was first identified and studied by Tideman [47],
who also gave a now classic example of a cloning strategy. Tideman wrote: “When I was 12 years
old I was nominated to be treasurer of my class at school. A girl named Michelle was also nom-
inated. I relished the prospect of being treasurer, so I made a quick calculation and nominated
Michelle’s best friend, Charlotte. In the ensuing election I received 13 votes, Michelle received 12,
and Charlotte received 11, so I became treasurer.” The calculation was that, being friends, Michelle
and Charlotte are ‘similar’ and that their electorate will be split.

In Tideman’s example, the cloned alternative lost the election. However, one can also imagine
scenarios where by cloning an alternative we increase its chances of winning. For example, suppose
that an electronics website runs a competition for the best digital camera by asking consumers to
vote for their two favorite models from a given list. If the list contains one model of each brand, and
60% of the consumers prefer Sony to Nikon to Kodak, while the remaining consumers prefer Kodak
to Nikon to Sony, then Nikon will win the competition. On the other hand, if Sony is represented
by two similar models, then the “Sony” customers are likely to vote for these two models of Sony,
and the competition will be won by a Sony camera.

Just as in the general candidate addition scenario, cloning presents an opportunity for a party
that is interested in manipulating the outcome of a preference aggregation procedure, such as an
election or a consumer survey. Such a party—most likely, a campaign manager for one of the
candidates—may invest in creating “clones” of one or more alternatives in order to make its most
preferred alternative (or one of its “clones”) win the election. This campaign management strategy
has certain advantages over introducing an entirely new candidate: In the latter case, it may be hard
to predict how the voters rank the new candidate, so the campaign manager would have to either
invest in eliciting the new candidate’s rankings, or be prepared to deal with rankings that differ
from her initial expectations. In comparison, the outcomes of cloning are much more predictable,
and therefore manipulation by cloning may be easier to implement. A natural question, then, is
which voting rules are resistant to such manipulation, and whether the manipulator can compute the
optimal cloning strategy for a given election in a reasonable amount of time.

As mentioned above, the first study of cloning was undertaken by Tideman [47], who intro-
duced the concept of independence of clones as a criterion for voting rules. Apparently unaware
of Tideman’s work, Laffond et al. [36] introduced the notion of composition consistency, which
is an analogue of independence of clones for tournament solutions [38], i.e., voting rules that are
defined on the majority relation that corresponds to the voters’ preferences. Later, Laslier [37, 39]
introduced the notion of cloning consistency, which is equivalent to independence of clones. We
will discuss these results in more detail in Section 6.

In all these papers, the authors concentrated on finding out whether a certain voting rule is
independent of clones or on constructing new rules with this property. In our work, we take a
somewhat different perspective: Instead of looking at cloning as a manipulative action that should
be prevented, we view cloning as a campaign management tool. This point of view raises a number
of questions that have not been considered—or have been considered from a different angle—in the
previous work:
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What does it mean for cloning to be successful? We assume that the campaign manager can pro-
duce clones of existing candidates, and the voters rank them in response. We assume that
clones are similar enough to be ranked as a group by each voter; however, the order of clones
in such groups may differ from one voter to another. Since the campaign manager cannot con-
trol or predict the order of clones in each voter’s ranking, we assume that this order is random,
i.e., each voter ranks the cloned candidates in each possible order with the same probability;
indeed, this would be the case if all clones were indistinguishable. In this probabilistic model,
each cloning strategy succeeds with a certain probability. Let q be some real number between
0 and 1. We say that manipulation by cloning is q-successful if the probability of electing
a desired candidate p is at least q. We focus on two extreme cases: (1) p wins under each
possible ordering of the clones, and (2) p wins under at least one ordering of the clones. In
case (1), the cloning is 1-successful; in case (2), following the notation typically used when
dealing with limits in continuous mathematics, we will say that the cloning is 0+-successful.

In which instances of elections can cloning be successful? While the previous work shows that
many well-known voting rules are susceptible to cloning, no attempt has been made to char-
acterize the elections in which a specific candidate can be made a winner with respect to a
given voting rule by means of cloning. However, from the point of view of a campaign man-
ager who considers cloning as one of the ways to run the campaign, it would be important
to know if he can change the outcome of a given election by a cloning manipulation. Thus,
in this paper we provide such characterization results for several prominent voting rules. Of-
ten, the candidates for which a successful cloning manipulation exists can be characterized
in terms of well-known notions of social choice such as Pareto undominated alternative (a
candidate c is Pareto undominated if for every other candidate c′ there is a voter that prefers
c to c′), Condorcet loser (candidate c is a Condorcet loser if for every other candidate c′ more
than half of the voters prefer c′ and c), or Uncovered Set (see [43, 29, 38] or Section 5.3).

Which candidates can be cloned and to what extent? The existing research on cloning does not
place any restrictions on the number of clones that can be introduced, or on the identities of
the candidates that can be cloned. On the other hand, it is clear that in practical campaign
management scenarios these issues cannot be ignored; not all candidates can be cloned, and
creating a clone of a given candidate may be costly. Thus, we consider settings in which each
clone of each candidate comes at a cost, and we seek a least expensive successful cloning
strategy. We will mostly focus on the standard model where clones come at zero cost, and on
the unit cost model, where each clone has the same cost.

What is the computational complexity of finding cloning strategies? Finally, we investigate the
computational complexity of finding successful cloning strategies. In practice, it is not suffi-
cient to know that cloning might work: We need to know exactly which strategy to use. We
believe that our paper is the first to consider the computational aspect of cloning. Following
the line of work initiated by the seminal papers of Bartholdi, Tovey, and Trick [3, 4], we seek
to classify prominent voting rules according to whether they admit efficient algorithms for
finding a cloning manipulation.
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One might argue that in real-life elections cloning is not a practical campaign management tool.
After all, recruiting a new candidate that is sufficiently similar to the existing ones may be very
difficult, if not impossible. Nonetheless, there are natural scenarios where our model of cloning is
practical and well-motivated. Below, we provide two such examples.

First, let us consider an election in which parties nominate candidates for some position, and
each party can nominate several candidates. The voters, especially those not following the political
scene closely, are likely to perceive candidates who belong to the same party as clones. A party’s
campaign manager might attempt to strategically choose the number of candidates nominated by
her party. In fact, she might even be able to affect the number of candidates nominated by other
parties (e.g., by accusing them of not giving the voters enough choice).

Second, let us consider an environment where, as suggested by Ephrati and Rosenschein in their
classic paper [21], software agents vote to choose a joint plan (that is, the alternatives are possible
joint plans or steps of possible joint plans). In such a system, the agents can easily come up with
minor variations of the (steps of the) plan, effectively creating clones of the candidates. (Laslier [37]
has given a very similar example regarding a society of agents choosing a project to implement.)

In both cases it is reasonable to assume that all clones are ranked contiguously and the cost of
creating each clone is the same; moreover, to be successful, a cloning strategy should be easy to
compute. Therefore our model provides a good fit for these scenarios.

2 Preliminaries

We start by presenting a brief overview of the social choice concepts that will be used in this paper;
we point the reader to [1] for additional background.

Given a set A of alternatives (also called candidates), a voter’s preference R is a linear order
over A, i.e., a total transitive antisymmetric binary relation over A. An election E with n voters
is given by its set of alternatives A and a preference profile R = (R1, . . . , Rn), where Ri is the
preference of voter i; we write E = (A,R). For readability, we sometimes write �i in place of
Ri. Sometimes when specifying a preference order Ri we write X �i Y , where X and Y are two
disjoint subsets of A. This notation means that each member of X is preferred to each member
of Y but the relative ordering of candidates withing X and within Y is irrelevant to the discussion
(unless specified separately). Also, we denote by |R| the number of voters in the election. Given an
election E = (A,R), we say that an alternative c ∈ A is Pareto undominated if for each alternative
c′ ∈ A, c′ 6= c, at least one voter ranks c ahead of c′. Given two candidates a, c ∈ A, we set
W (c, a) = |{i | c �i a}|. We say that c beats a in their pairwise contest if W (c, a) > W (a, c); if
W (c, a) = W (a, c), the pairwise contest between a and c is said to be tied.

A voting rule F is often defined as a mapping from elections with a fixed set of alternativesA to
the set 2A of all subsets of A (typically assuming that the empty set is not allowed as an outcome).
However, in this work, we are interested in situations where the number of alternatives may change.
Thus, we require voting rules to be defined for arbitrary finite sets of alternatives and preference
profiles over those alternatives. We say that a voting rule F is a mapping from pairs of the form
E = (A,R), where A is some finite set and R is a preference profile over A, to nonempty subsets
of A. The elements of F(E) are called the winners of the election E. Thus, we allow an election
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to have more than one winner, i.e., we work with social choice correspondences; this model is also
called the non-unique winner model.

In this paper we consider the following voting rules (for all rules described in terms of scores
the winners are the alternatives with the maximum score):

Plurality. The Plurality score ScP (c) of a candidate c ∈ A is the number of voters that rank c first.

Veto. The Veto score ScV (c) of a candidate c ∈ A is the number of voters that do not rank c last.

Borda. Given an election (A,R) with |R| = n, the Borda score ScB(c) of a candidate c ∈ A is
given by ScB(c) =

∑n
i=1 |{a ∈ A | c �i a}|.

k-Approval. For any k ≥ 1, the k-Approval score Sck(c) of a candidate c ∈ A is the number of
voters that rank c in the top k positions. Plurality is simply 1-Approval.

Plurality with Runoff. In the first stage, all but two candidates with the top two Plurality scores are
eliminated. Then, we run a pairwise contest between the two survivors; the winner(s) are the
candidate(s) who get at least d|R|/2e votes at this stage, i.e., win or tie the pairwise contest.
We may need to break a tie after the first stage if there are more than two candidates with
the maximum Plurality score, or one top-scorer and several candidates with the second-best
Plurality score. To this end we use the parallel universes tie-breaking rule [15]: a candidate
c is considered to be a winner if he wins or ties in the runoff for some way of breaking ties
after the first stage.

Maximin. The Maximin score ScM (c) of a candidate c ∈ A is given by ScM (c) = mina∈AW (c, a),
i.e., it is the number of votes that c gets in his worst pairwise contest.

Copeland. The Copeland score ScC(c) of a candidate c ∈ A is |{a |W (c, a) > W (a, c)}| − |{a |
W (a, c) > W (c, a)}|. That is, c receives 1 point for each pairwise contest she wins, 0 points
for a tie, and −1 point for each pairwise contest she loses. This is equivalent to the more
conventional definition, in which, for each candidate a, c gets 1 point if she wins the pairwise
contest against a, 0.5 points if there is a tie, and 0 if she loses the contest.

A candidate c is a Condorcet winner (respectively, Condorcet loser) if for each other candidate
a it holds that W (c, a) > W (a, c) (respectively, W (c, a) < W (a, c)). Naturally, not every election
has a Condorcet winner or a Condorcet loser. Observe that in a Copeland election withm candidates
the score of a Condorcet winner is m− 1 and the score of a Condorcet loser is −(m− 1).

Many results of this paper are computational and thus we assume that the reader is familiar with
the standard notions of computational complexity such as classes P and NP, many-one reductions,
NP-hardness and NP-completeness. Most of our NP-hardness results follow by reductions from
the EXACT COVER BY 3-SETS problem, defined below.

Definition 2.1 (Garey and Johnson [30]). An instance (G,S) of EXACT COVER BY 3-SETS (X3C)
is given by a ground setG = {g1, . . . , g3K} and a family S = {S1, . . . , SM} of subsets ofG, where
|Si| = 3 for each i = 1, . . . ,M . It is a “yes”-instance if there is a subfamily S ′ ⊆ S , |S ′| = K,
such that for each gi ∈ G there is an Sj ∈ S ′ such that gi ∈ Sj , and a “no”-instance otherwise.
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3 Our Framework

Cloning and independence of clones were previously defined in [39, 47, 51]. However, we need to
modify the definition given in these papers in order to model the manipulator’s intentions and the
budget constraints. We will now describe our model formally.

Definition 3.1. LetE = (A, (R1, . . . , Rn)) be an election with a set of candidatesA = {c1, . . . , cm}.
We say that an election E′ = (A′, (R′1, . . . , R

′
n)) is obtained from E by replacing a candidate

cj ∈ A with k clones for some k > 0 if A′ = (A \ {cj}) ∪ {c(1)j , . . . , c
(k)
j } and for each i ∈ [n], R′i

is a total order over A′ such that for any a ∈ A \ {cj} and any s ∈ [k] it holds that c(s)j �′i a if and
only if cj �i a.

We say that an election E∗ = (A∗,R∗) is cloned from an election E = (A,R) if there is a
vector of nonnegative integers (k1, . . . , km) such that E∗ is derived from E by replacing each cj ,
j = 1, . . . ,m, with kj clones.

Thus, when we clone a candidate c, we replace her with a group of new candidates that are
ranked together in all voters’ preferences. Observe that according to the definition above, cloning a
candidate cj once means simply changing his name to c(1)j rather than producing an additional copy
of cj . While not completely intuitive, this choice of terminology simplifies some of the arguments
in the rest of the paper.

The definition above is essentially equivalent to the one given in [51]; the main difference is that
we explicitly model cloning of more than one candidate. However, we still need to introduce the
two other components of our model: a definition of what it means for a cloning to be successful,
and the budget.

We start with the former, assuming throughout this discussion that the voting rule is fixed.
Observe that the final outcome of cloning depends on the relative ranking of the clones chosen by
each voter, which is typically not under the manipulator’s control.1 Thus, a cloning may succeed for
some orderings of the clones, but not for others. The election authorities may approach this issue
from the worst-case perspective, and consider it unacceptable when a given cloning succeeds for at
least one ordering of clones by the voters. Alternatively, they can take an average-case perspective,
i.e., assume that the voters rank the clones randomly and independently, with each ordering of the
clones being equally likely (due to similarities among the clones), and consider it acceptable for a
cloning manipulation to succeed with probability that does not exceed a certain threshold. Similarly,
while an extremely cautious manipulator would view cloning as successful only if it succeeds for
all orderings, a more practically-minded one would be happy with a cloning that succeeds with high
probability. We will now present a definition that captures all of these attitudes.

Definition 3.2. Given a positive real q, 0 < q ≤ 1, we say that the manipulation by cloning (or
simply cloning) is q-successful if (a) the manipulator’s preferred candidate is not a winner of the
original election, and (b) a clone of the manipulator’s preferred candidate is a winner of the cloned
election with probability at least q.

1Our general model, and, specifically, the notion of 0+-successful cloning (to be defined in a few paragraphs), captures
the situation where the manipulator does have full control over the ordering of the clones in voters’ preferences.
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The two worst-case approaches discussed above are special cases of this framework. Indeed, a
cloning succeeds for all orderings if and only if it is 1-successful. Similarly, it succeeds for some
ordering if and only if it is q-successful for some q > 0 (where q may depend on |A| and |R|). In
the latter case, we will say that the cloning is 0+-successful; this is equivalent to saying that the
manipulator would succeed if he could dictate each voter how to order the clones. We will use this
equivalent formulation very often as it simplifies proofs.

Observe that, according to our definition, the manipulator succeeds as long as any one of the
clones of the preferred candidate wins. This assumption is natural if the clones represent the same
company (e.g., Coke Light and Coke Zero) or political party. However, if a campaign manager has
created a clone of his candidate simply by recruiting an independent candidate to run on a similar
platform, he may find the outcome in which this new candidate wins less than optimal. We could
instead define success as a victory by the original candidate c (i.e., the clone c(1)), but, at least for
neutral voting rules, this is equivalent to scaling down the success threshold q by a factor of k,
where k is the number of clones of the preferred candidate. Indeed, any preference profile in which
the original candidate wins can be transformed into one in which some clone wins, by switching
their order in each voter’s preferences, so c(1) wins with the same probability as any other clone. In
particular, this means that under this definition a cloning manipulation can only be 1-successful if it
does not clone the manipulator’s preferred candidate.

Another issue that we need to address is that of the costs associated with cloning. Indeed, the
costs are an important aspect of realistic campaign management, as the manager is always restricted
by the budget of the campaign. The most general way to model the cloning costs for an election
with the initial set of candidatesA = {c1, . . . , cm} is by introducing a cost function p : [m]×Z+ →
Z+ ∪ {0,+∞}, where p(i, j) denotes the cost of producing the j-th copy of candidate ci. Note
that p(i, 1) corresponds to not producing additional copies of i, so we require p(i, 1) = 0 for all
i ∈ [m]. We remark that it is natural to assume that all costs are nonnegative (though some of them
may equal zero), whereas the assumption that all costs are integer-valued is made for computational
reasons; this is not a real restriction as monetary values are discrete.

We assume that the marginal cost of introducing an additional cloned candidate eventually be-
comes constant, that is, there exists a t > 1 such that p(i, j) = p(i, t) for each j > t. This ensures
that the cost function has a finite representation; specifically, we can encode p as an m-by-t table
with entries in Z+ ∪ {0,+∞}.

Definition 3.3. An instance of the q-CLONING problem for q ∈ {0+} ∪ (0, 1] is given by the initial
set of candidates A = {c1, . . . , cm}, a preference profile R over A with |R| = n, a manipulator’s
preferred candidate c ∈ A, a parameter t > 1, a cost function p : [m]× [t]→ Z+ ∪ {0,+∞} (with
the interpretation that p(i, j) = p(i, t) for all i = 1, . . . ,m and all j > t), a budget B, and a voting
rule F . We ask if there exists a q-successful cloning with respect to F that costs at most B.

For many of the voting rules that we consider, it is easy to bound the number of clones needed
for 0+-successful or 1-successful cloning (if one exists); moreover, this bound is usually polynomial
in n and m. Thus, t can often be assumed to be polynomial in n and m.

We focus on two natural special cases of q-CLONING:

1. ZERO COST (ZC): p(i, j) = 0 for all i ∈ [m], j ∈ Z+. In this case we would like to decide
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if an election is manipulable by cloning when money is not a concern.

2. UNIT COST (UC): p(i, j) = 1 for all i ∈ [m], j ≥ 2. This model assumes that creating each
new clone has a fixed cost that is equal for all candidates.

We say that an electionE is q-manipulable by cloning with respect to a voting ruleF if it admits
a q-successful manipulation by cloning with respect to F in the ZC model.

In the rest of the paper, we characterize the q-manipulable elections and discuss the complexity
of the q-CLONING problem for a number of well-known voting rules, focusing on the ZC and
UC models. Clearly, hardness results for these special cases also imply hardness results for the
general cost model. Similarly, hardness results for the ZC q-CLONING imply hardness results for
UC q-CLONING; to reduce ZC q-CLONING to UC q-CLONING it suffices to set B = +∞. We
emphasize that whenever we say that q-CLONING is easy, we refer to the general cost model; in
contrast, q-manipulability refers to susceptibility to cloning manipulation with zero costs and/or
unlimited budget.

4 Prominent Voting Rules for Which Cloning is Easy

In this section we study q-CLONING for Plurality, Plurality with Runoff, Veto, and Maximin. Sur-
prisingly, these four rules exhibit very similar behavior with respect to cloning.

4.1 Plurality

We start by considering Plurality, which is arguably the simplest voting rule.

Theorem 4.1. An election is 0+-manipulable by cloning with respect to Plurality if and only if the
manipulator’s preferred candidate c does not win, but is ranked first by at least one voter. Moreover,
for Plurality 0+-CLONING can be solved in linear time.

Proof. Clearly, if c has no first-place votes, no cloning manipulation can make her a winner. Now,
assume that c’s Plurality score ScP (c) is at least 1, and let C = {a ∈ A | ScP (a) > ScP (c)}
denote the set of candidates whose Plurality score is greater than that of c. For each a ∈ C, we
create ka = dScP (a)

ScP (c) e clones of a.
Recall that to show that a cloning is 0+-successful, we only need to specify an ordering of the

clones that makes c a winner. One such ordering can be obtained as follows. For each a ∈ C, let
Ra denote the set of orders in which a is ranked first. SplitRa into ka groups, where the first ka−1
groups have size ScP (c), while the last group has size ScP (a)− (ka−1)ScP (c) ≤ ScP (c). Let the
voters in the i-th group rank the i-th clone of a first, followed by the rest of the clones in an arbitrary
order. Under this ordering of the clones, the Plurality score of each candidate is at most ScP (c), so
c is a winner, i.e., our cloning is 0+-successful.

To prove the second statement of the theorem, note that the above-described algorithm for find-
ing a 0+-successful cloning is optimal: we can reduce a candidate’s Plurality score only by cloning
this candidate, and if a candidate awith score ScP (a) > ScP (c) is cloned less than ka times, at least
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one of its clones will obtain more than ScP (c) Plurality votes. Thus, we simply need to compute
the cost of cloning each candidate a ∈ C exactly ka times, and compare it with our budget B.

It is not too hard to strengthen the first statement of Theorem 4.1 from 0+-manipulability to
q-manipulability for any q ∈ (0, 1).

Theorem 4.2. For any q ∈ (0, 1), a Plurality election is q-manipulable by cloning if and only if the
manipulator’s preferred candidate c does not win, but is ranked first by at least one voter. However,
no Plurality election is 1-manipulable by cloning.

Proof. Fix q ∈ (0, 1). Suppose that the manipulator’s preferred candidate c does not win, but
ScP (c) > 0. For each candidate a ∈ A with ScP (a) > ScP (c), we set s = ScP (a) and create
k =

(
s
2

)
dm−11−q e clones of a. Then the probability that one of the clones of a will be top-ranked two

or more times is at most k ·
(
s
2

)
· 1
k2
≤ 1−q

m−1 . By the union bound, with probability at least q none
of the newly introduced clones gets more than one vote. On the other hand, none of the uncloned
candidates had more Plurality votes than c, and cloning did not change that. Therefore, c is among
the winners of the resulting election. However, obviously the manipulator cannot make c a winner
with probability 1: if all voters order the clones in the same way, the “most popular” clone of each
candidate will have the same Plurality score as the original candidate.

The procedure described in the proof of Theorem 4.2 introduces at most (m − 1)
(
n
2

)
dm−11−q e

clones; this number is polynomial in m and n for any constant q. However, this number of clones is
not necessarily optimal, i.e., our procedure is not a polynomial-time algorithm for q-CLONING. In
fact, the complexity of Plurality q-CLONING for q ∈ (0, 1) remains an open problem.

4.2 Veto and Plurality with Runoff

The Veto rule exhibits extreme vulnerability to cloning.

Theorem 4.3. Any election in which the manipulator’s preferred candidate c does not win is
1-manipulable by cloning with respect to Veto. Moreover, for Veto both 0+-CLONING and 1-
CLONING can be solved in linear time.

Proof. Consider a profile in which the Veto score of the manipulator’s preferred candidate c is k.
This means that c is ranked last n−k times. If we clone c at least n−k+1 times, we are guaranteed
that at least one clone of c is never ranked last, so it is among the Veto winners.

For 0+-CLONING, observe that it is not useful to clone candidates other than c. Thus, the
optimal solution is to make two copies of c and ask all voters to order them in the same way. Then
the “better” clone is never ranked last and is among the winners.

For 1-CLONING, let ` be the Veto score of the election winner(s), and let k be the Veto score
of c. As argued above, we do not benefit from cloning candidates other than c, so we only need to
determine the optimal number of c’s clones. Suppose first that ` = n. Then, by the argument above,
it is sufficient to create n− k + 1 clones of c. It is easy to see that this number is also necessary: if
there are n− k or fewer clones, each of them may be ranked last by some voter.
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Now, suppose that ` < n. Let `′ = n−`, k′ = n−k, set r = b k′

`′+1c, and create r+1 clones of c.
This number of clones is clearly sufficient: we have r+1 > k′

`′+1 , so if each clone of c is ranked last
at least `′ + 1 times, then the total number of voters that rank c last in the original profile would be
at least (`′ + 1)(r+ 1) > k′, a contradiction. On the other hand, it is necessary to introduce at least
r+ 1 clones. Indeed, if there are only r clones, we can split the voters that rank c last into r groups,
where the first r − 1 groups have size `′ + 1, the last group has size k′ − (r − 1)(`′ + 1) ≥ `′ + 1
(where the inequality follows from r ≤ k′

`′+1 ), and the voters in the i-th group rank the i-th clone of
c last. In this preference profile, each clone of c is vetoed as least `′ + 1 times and therefore is not
among the winners.

We now consider Plurality with Runoff.

Theorem 4.4. An election is 0+-manipulable by cloning with respect to Plurality with Runoff if and
only if the manipulator’s preferred candidate c is not a current winner, and either

(1) ScP (c) ≥ 2, or

(2) ScP (c) = 1 and c wins or ties its pairwise contest against some alternative w whose Plurality
score is nonzero.

Moreover, for Plurality with Runoff 0+-CLONING can be solved in polynomial time.

Proof. Suppose first that ScP (c) ≥ 2. We can introduce two clones of c, which we will denote
by c(1) and c(2), split the voters who rank c first into two nonempty groups, ask the voters in the
first group to rank c(1) first, and ask the voters in the second group to rank c(2) first. Next, for each
candidate a 6= c we create ScP (a) clones of a, and ask the i-th voter among those who rank a first
to rank the i-th clone of a first. In the resulting election, the Plurality score of both c(1) and c(2) is
at least 1, and the Plurality score of any other candidate is at most 1. Thus, there is a way to break
ties after the first round so that both c(1) and c(2) progress to the final round, and one of them wins.
As we apply the parallel universes tie-breaking rule, this means that this cloning is 0+-successful.

If ScP (c) = 1, we use the same strategy as in the previous case, except that we do not clone c.
In the resulting election the Plurality score of any candidate is at most 1. Let w be an alternative
with nonzero Plurality score that loses or ties its pairwise election against c. It is easy to see that any
clone of w also loses or ties its pairwise election against c. Since w’s Plurality score in the original
election is positive, there exists a parallel universe where c and a clone of w meet in the final, which
means that c is a winner of the resulting election.

Thus, we see that the conditions of the theorem are sufficient. We will now show that they are
necessary. First, note that if c is not ranked first by any voter, then c will not win irrespective of
which candidates we clone. Indeed, if in the cloned election there are two candidates with nonzero
Plurality scores, c will not reach the final, and if all voters rank some candidate a 6= c first, c may
reach the final, but will lose to a in the final. Now, suppose that ScP (c) = 1, but any alternative w
with ScP (w) > 0 beats c in their pairwise contest; as argued above this also holds for any clone of
w. Since c is not a winner prior to cloning. there exists at least one other candidate with nonzero
Plurality score, and therefore at most one clone of c can progress to the second round; hence, there
is no benefit to cloning c. Moreover, even if c reaches the second round, he has to face (a clone of)
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some alternative with nonzero Plurality score in the original election, and by our assumption any
such clone would beat c in the final.

To complete the proof of the theorem, it remains to give a polynomial-time algorithm for 0+-
CLONING under Plurality with Runoff. As suggested by the discussion above, there are two ways
to make c a winner: we can either (1) try to clone c (and possibly some other alternatives) in order
to ensure that only clones of c go to the runoff, or (2) try to clone alternatives other than c only, to
ensure that c goes to the runoff against an alternative that she can defeat. Our algorithm implements
both options and accepts if either of them is within the budget.

For option (1), we introduce two clones of c, which we will denote by c(1) and c(2) (clearly, there
is no benefit to creating more than two clones of c). It is not hard to see that our optimal strategy
is to ask the voters to order these clones so that they get (almost) identical Plurality scores, i.e., so
that the Plurality scores of c(1) and c(2) are dScP (c)

2 e and bScP (c)
2 c, respectively. Let k = bScP (c)

2 c,
and let C = {a ∈ A \ {c} | ScP (a) > k} denote the set of candidates whose Plurality score is
greater than that of c(2). For each candidate a ∈ C, we introduce ka = dScP (a)

k e clones of a. With
nonzero probability, this action ensures that the Plurality score of each alternative except c(1) and
c(2) does not exceed k, and thus there is a parallel universe in which c(1) competes against c(2) in the
runoff and one them wins. It is easy to see that this strategy gives the cheapest way of implementing
option (1).

Option (2) can be used only if c wins or ties her pairwise contest against at least one other candi-
date with nonzero Plurality score. Let D = {a ∈ A \ {c} | ScP (a) ≥ 1 and W (c, a) > W (a, c)}.
For each w ∈ D we compute the cost of the manipulation that results in c competing against w
in the runoff in one of the parallel universes; we then pick the cheapest of these manipulations. It
remains to explain how to compute such a manipulation for a specific w ∈ D.

Let k = min{ScP (c),ScP (w)}, and let C = {a ∈ A \ {c, w} | ScP (a) > k}. If not cloned,
the candidates in C can prevent c and w from meeting each other in the final round. Thus, we create
ka = dScP (a)

k e clones of each a ∈ C. It is easy to see that this manipulation results in a nonzero
chance of c winning and that we cannot produce fewer clones for a given w ∈ D. This completes
the proof.

Just as for Plurality, we can also characterize Plurality with Runoff’s q-manipulability for q ∈ (0, 1].

Theorem 4.5. For any q ∈ (0, 1), an election is q-manipulable by cloning with respect to Plurality
with Runoff if and only if it is 0+-manipulable by cloning with respect to it. However, no election is
1-manipulable.

Proof. It is immediate that under Plurality with Runoff no election is 1-manipulable: if our preferred
candidate is not a winner and after cloning all voters rank the clones identically, then our preferred
candidate still loses.

To see that for each q ∈ (0, 1) an election is q-manipulable with respect to Plurality with Runoff
if and only if it is 0+-manipulable with respect to it, it suffices to combine the proofs of Theorems 4.4
and 4.2. In more detail, the proof of Theorem 4.2 explains how to clone some of the candidates so
that with probability at least q the Plurality scores of all candidates in the resulting profileR′ do not
exceed 1. We will now argue that whenever this happens (i.e., with probability q) c is a Plurality
with Runoff winner as long as he satisfies the conditions of Theorem 4.4.
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Indeed, suppose that inR′ the Plurality score of each candidate is at most 1. Then if c’s Plurality
score in the original election is at least 2, it has to be the case that at least two clones of c have
positive Plurality scores in R′, and hence there is a parallel universe where they meet in the final.
On the other hand, if c’s Plurality score in the original election is 1, but he beats or ties some
candidate w with nonzero Plurality score in a pairwise election, for R′ there is a parallel universe
where c meets (a clone of) w in the final. Thus, c is a Plurality with Runoff winner in R′, and the
proof is complete.

We remark that the cloning strategy presented in the proof of Proposition 4.5 is, in a sense, degener-
ate: it operates in the same way irrespective of the identity of the preferred candidate c, and has the
effect of making all “eligible” candidates the Plurality with Runoff winners. (This can be seen as
an artifact of the non-unique winner model, where this outcome is viewed as acceptable. If we are
interested in making c the unique Plurality with Runoff winner, we may need a more sophisticated
cloning strategy; however, this question is outside of the scope of this paper.) Observe also that
using cloning it is sometimes possible to manipulate in favor of a Condorcet loser.2

Example 4.6. Let us consider the following Plurality with Runoff election: A = {a, b, c, d}, and
there are 17 voters whose preference orders are:

c � a � b � d 8 voters
a � b � d � c 3 voters
b � a � d � c 3 voters
d � a � b � c 3 voters

Clearly, c is a Condorcet loser. Further, if we apply Plurality with Runoff, c gets into the second
round, but then loses there. Yet if we produce two clones of c, it is possible that each of them
receives four Plurality points, enters the runoff and, as a result, one of them wins the election.

4.3 Maximin

Surprisingly, Maximin behaves in essentially the same way as Plurality with respect to cloning, i.e.,
by cloning a candidate, we can reduce its Maximin score to 1 with nonzero probability.

Consider the following election, which will be used in our constructions throughout this section.
Let E = (A,R) with A = {a1, . . . , ak}, R = (R1, . . . , Rk), where for i ∈ [k] the preferences
of the i-th voter are given by ai �i ai+1 �i . . . �i ak �i a1 �i . . . �i ai−1. We will refer to
any election that can be obtained from E by renaming the candidates as a k-cyclic election. In this
election, assuming a0 = ak, for each i = 1, . . . , k there are k − 1 voters that prefer ai−1 to ai
and 1 voter that prefers ai to ai−1. Thus, the Maximin score of each candidate in A is 1. Further,
this remains true if we add arbitrary candidates to the election, no matter how the voters rank the
additional candidates. This means that by cloning a candidate a in an n-voter election n times and
telling the voters to order the n clones of a as in an n-cyclic election, we can reduce a’s Maximin
score to 1.

2We are grateful to one of the JAIR referees for this example.
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Theorem 4.7. An election is 0+-manipulable by cloning with respect to Maximin if and only if the
manipulator’s preferred candidate c does not win, but is Pareto undominated. Further, for Maximin
0+-CLONING can be solved in linear time. However, no election is 1-manipulable by cloning with
respect to Maximin.

Proof. Clearly, if all voters prefer some alternative a to c, then after any cloning the Maximin score
of c will be 0, whereas the Maximin score of at least one alternative is positive, and hence c cannot
win. On the other hand, if c is undominated, its Maximin score is at least 1. Now, we can use the
construction described above to reduce the Maximin score of any other candidate to 1, thus making
c a winner.

Our algorithm for Maximin 0+-CLONING relies on the observation that the only way to change
the Maximin score of a candidate is to clone her, thereby reducing her score. Now, suppose that
ScM (c) = s. We will argue that we have a “yes”-instance of 0+-CLONING if and only if our budget
allows us to introduce dns e clones for each candidate a such that ScM (a) > s; clearly, this condition
can be checked in linear time.

Indeed, for each candidate a whose Maximin score exceeds s we can do the following. We
create dns e clones of a, divide the voters in s groups, where the size of the first s− 1 groups is dns e,
and the last group consists of the remaining t ≤ dns e voters. For each of the first s − 1 groups, we
ask the voters to rank the clones according to an dns e-cyclic election; the voters in the last group vote
as the first t voters in a dns e-cyclic election. Clearly, in each group, for any i = 1, . . . , dns e there is
at most one voter who ranks the i-th clone above the (i−1)-th clone. Thus, in the resulting election,
the Maximin score of any clone of a is at most s, and therefore c is a winner of that election.

For the converse direction, we need to show that if we create less than dns e clones of a, the
Maximin score of at least one of them will exceed s. Indeed, suppose that we create t < dns e clones
of a; denote these clones by a(1), . . . , a(t). Given an arbitrary preference profile over these clones,
consider a directed graph whose vertices are the clones and there is an edge from a(i) to a(j) if at
least n− s voters prefer a(i) to a(j). Note that if the Maximin score of each clone is at most s, each
vertex of this graph must have an incoming edge. In particular, this means that our graph cannot be
acyclic. We will now argue that each cycle in this graph has length at least dns e; clearly, this implies
that the graph contains at least dns e vertices, a contradiction.

To see this, suppose that there is a cycle of length r < dns e. Relabel the clones along this cycle
as a(1), . . . , a(r), i.e., assume that for each i = 1, . . . , r at least n − s voters prefer a(i) to a(i+1)

(where a(r+1) = a(1)). By induction on i it is easy to see that for each i = 1, . . . , r− 1, there are at
least n−si voters whose preference order� satisfies a(1) � . . . � a(i+1). For i = r−1, this implies
that at least n − s(r − 1) > s voters prefer a(1) to a(r), a contradiction with the assumption that
there is an edge from a(r) to a(1). This establishes that our algorithm for 0+-CLONING is correct.

It is easy to see that no election is 1-manipulable with respect to Maximin. Indeed, the only way
to change a candidate’s Maximin score is to clone him. However, after the cloning, all voters may
order all clones in the same way, in which case the most popular clone will have the same Maximin
score as the original alternative.

It is not clear if one can strengthen the result of Theorem 4.7 to q-manipulability for q ∈ (0, 1).
This amounts to the following question: Suppose that for a fixed n we randomly draw n permuta-
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tions of {1, . . . , k}. Let P (n, k) be the probability that for each i ∈ [k] there is a j ∈ [k] such that
j precedes i in at least n − 1 permutations. Is it the case that, as k → ∞, the probability P (n, k)
approaches 1?

Our computations show that this is unlikely to be the case.3 For (n, k) = (5, 20) there was only
one success out of 106 random trials and only three for (n, k) = (5, 50). For both (n, k) = (7, 20)
and (n, k) = (7, 50) not a single random trial out of 106 trials was successful.

This means that, even if Maximin is q-manipulable for some fixed q > 0, the number of clones
needed would be astronomical.

5 Three Rules for Which Cloning May Be Difficult

We now consider Borda, k-Approval, and Copeland rules, for which cloning-related problems are
significantly more difficult.

5.1 Borda Rule

For the Borda rule, the necessary and sufficient condition for the existence of a 0+-successful ma-
nipulation by cloning is the same as for Maximin: the manipulator’s favorite alternative has to
be Pareto undominated. However, Borda and Maximin exhibit different behavior with respect to 1-
manipulability. Moreover, from the point of view of finding a minimum-cost cloning, Borda appears
to be harder to deal with than Maximin.

Theorem 5.1. An election is 0+-manipulable by cloning with respect to Borda if and only if the
manipulator’s preferred candidate c does not win, but is Pareto undominated. Moreover, UC 0+-
CLONING for Borda can be solved in linear time.

Proof. Note first that if we create k clones of an alternative a that was ranked in position j in some
order Ri, then Ri’s contribution to the scores of all alternatives ranked above a increases by k − 1,
Ri’s contribution to the scores of all alternatives ranked below a does not change, and, finally, the
top-ranked clone of a receives k − 1 more points from Ri than a used to receive. We will now use
this observation to prove the theorem.

Suppose first that all voters prefer some alternative a to c. Note that this implies that ScB(a) >
ScB(c). If we create k clones of some alternative x 6= c, a, for each preference ordering Ri there
are three possibilities:

1. In Ri, x is ranked above both a and c. Then cloning x does not change the Borda scores of a
and c.

2. In Ri, x is ranked below a and above c. Then cloning x increases the Borda score of a by
k − 1 and does not change the score of c.

3. In Ri, x is ranked below both a and c. Then cloning x increases the Borda scores of both a
and c by k − 1.

3We are grateful to Danny Chang for his help in performing our experiments.
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Thus, any single act of cloning an alternative in A \ {c, a} (and hence any combination of them)
does not reduce the gap between the scores of a and c. Further, if we clone a and/or c, in every
ordering Ri each clone of a is ranked above each clone of c, and hence has a higher Borda score.
Thus, c cannot be made a winner by cloning.

For the converse direction, let C = {a ∈ A | ScB(a) > ScB(c)}. For each a ∈ C, let na
be the number of voters that prefer c to a, i.e., na = W (c, a). Let sa denote the score difference
between a and c, i.e., sa = ScB(a) − ScB(c). Now, set k = maxa∈Cd sana

e, and create k + 1
clones of c. Consider the preference profile in which all voters rank all clones of c in the same
way. Let c∗ be the top-ranked clone of c. Observe that the Borda score of c∗ in the new profile
exceeds the original Borda score of c by kn, where n is the total number of voters. Now, consider
some alternative a ∈ C. For each order Ri in which a was ranked above c, Ri’s contribution to the
score of a increased by k, and for each order Ri in which a was ranked below c, Ri’s contribution
to the score of a remained the same. Thus, a’s score has increased by k(n − na). Hence, using
Sc′B(a) and Sc′B(c∗) to denote the scores of a and c∗ after cloning, by our choice of k we have
Sc′B(a) − Sc′B(c∗) = ScB(a) − ScB(c) − kna ≤ 0. We conclude that in the resulting preference
profile the Borda score of c∗ is at least as high as that of any other alternative, i.e., our cloning is
0+-successful.

We will now argue that our input constitutes a “yes”-instance of UC 0+-CLONING if and only
if maxa∈Cd sana

e+1 ≤ B, whereB is the cloning budget, i.e., the manipulation constructed above is
optimal in the UC model. Indeed, consider an alternative a ∈ C that maximizes the expression sa

na
.

By creating t+ 1 clones of some alternative d 6= c, a we can increase the distance between c and a
in the orders in which d is ranked below c but above a by t, and thus reduce the gap between a and
c by t. Obviously, there are at most na such orders. For any other order Ri, cloning d may increase
Ri’s contribution to the score of a, or affect Ri’s contributions to scores of a and c in the same way.
Thus, creating t+ 1 clones of an alternative d ∈ A \ {a, c} can contribute at most tna to closing the
gap between c and a. A similar argument applies to cloning c or a, showing that the contribution
from t+ 1 clones of either of these alternatives is also bounded by tna. Hence, we have to create at
least d sana

e+ 1 clones.

Is it possible to strengthen Theorem 5.1 to q-manipulability for some constant q ∈ (0, 1]? It
turns out that for Borda these questions are significantly more difficult than for the rules we have
considered so far.

We will first consider the situation where the manipulator is restricted to cloning her favorite
candidate. We remark that this special case of our model is very natural. For instance, a party may
be able to nominate several candidates, but is not in a position to force other parties to do so. In this
case, for an even number of voters, we can characterize the elections that can be 1-manipulated by
cloning with respect to Borda.

Let c be the manipulator’s preferred candidate. We will show that, by cloning c, we can deal
with the candidates who currently have a higher Borda score than c, as long as they lose to c in a
pairwise election. However, we have to be careful to ensure that c’s Borda score remains higher
than that of the candidates who beat c in a pairwise election. Formally, let

A+ = {a ∈ A \ {c} | SB(a) > SB(c)}, A− = {a ∈ A \ {c} | SB(a) ≤ SB(c)}.
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Let sa = |SB(a)− SB(c)| for each a ∈ A \ {c}, and set

na =

{
W (c, a)−W (a, c) if a ∈ A+,

W (a, c)−W (c, a) if a ∈ A−.

Finally, let r+ = +∞ if na ≤ 0 for some a ∈ A+ and r+ = max{2sana
| a ∈ A+} otherwise, and

let r− = min{2sana
| a ∈ A−, na > 0}. We are now ready to state our criterion.

Theorem 5.2. An election with an even number of voters can be 1-manipulated with respect to
Borda by cloning the manipulator’s preferred candidate c if and only if c does not win and dr+e ≤
br−c.

Proof. Let n denote the number of voters. Suppose that dr+e > br−c. Consider any cloning that
involves c only. Suppose it results in k clones of c, which we denote by c(1), . . . , c(k). Let s denote
the original Borda score of c. To show that this cloning is not 1-successful, it suffices to describe an
ordering of the clones that results in all clones of c losing the election.

Consider a profile where the first n
2 voters rank the clones as c(1) � · · · � c(k), while the

remaining n
2 voters rank the clones in the opposite order. Clearly, the Borda score of any clone is

s+ n
2 (k − 1). We will now consider two cases.

Case 1 (r+ = +∞). Then there is an alternative a that is preferred to c by at least n
2 voters and

has a higher Borda score than c. Our cloning increases a’s score by at least n
2 (k − 1), so its

final Borda score is at least sB(a) + n
2 (k− 1) > s+ n

2 (k− 1). Thus, after cloning, all clones
of c will still have lower scores than a, i.e., the cloning is not 1-successful.

Case 2 (r+ < +∞). In this case, there exist candidates a ∈ A+, b ∈ A− such that d2sana
e >

b2sbnb
c. After the cloning, a’s Borda score is sB(a) + n−na

2 (k − 1), and b’s Borda score is
sB(b) + n+nb

2 (k − 1). Thus, for c to be a winner, k must satisfy

s+
n(k − 1)

2
≥ sB(a) +

n− na
2

(k − 1); s+
n(k − 1)

2
≥ sB(b) +

n+ nb
2

(k − 1).

Hence, we obtain

sa = sB(a)− s ≤ na
2

(k − 1), sb = s− sB(b) ≥ nb
2

(k − 1).

Since k is integer, this implies r+ = d2sana
e ≤ k − 1 ≤ b2sbnb

c = r−, a contradiction.

For the opposite direction, we will show that the ordering of the clones constructed above is
the worst possible for the manipulator. Formally, suppose that we generate k clones of c for some
k ≥ 1. Consider a voter who gives j points to c. It is not hard to see that this voter gives j + (j +

1) + · · · + (j + k − 1) = kj + k(k−1)
2 points to all clones of c. Thus, the total Borda score of all

clones is equal to ks+ nk(k−1)
2 , where s is the Borda score of c prior to cloning. It follows that the

Borda score of at least one clone is s+ n
2 (k − 1) or higher.
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Since dr+e ≤ br−c, we have r+ < +∞. Set k = 1+dr+e, and consider an arbitrary alternative
a ∈ A+. As r+ < +∞, we have na > 0. Therefore, a gains n−na

2 (k − 1) points from cloning.
Now, it is not hard to see that k ≥ 1 + 2sa

na
implies s + n

2 (k − 1) ≥ SB(a) + n−na
2 (k − 1), which

means that after the cloning some clone of c beats a.
To finish the proof, consider a candidate b ∈ A−. If nb ≤ 0, after the cloning the score of b is at

most SB(b) + nk−1
2 ≤ s+ nk−1

2 , so b still loses to or ties with some clone of c. On the other hand,
if nb > 0, the cloning increases the score of b by n+nb

2 (k − 1) points. We have

k − 1 =
⌈
r+
⌉
≤
⌊
r−
⌋
≤
⌊

2sb
nb

⌋
≤ 2sb

nb
.

Therefore, after the cloning, the score of b is

SB(b) +
n+ nb

2
(k − 1) ≤ SB(b) +

n

2
(k − 1) + sb = s+ n

k − 1

2
,

i.e., b’s Borda score does not exceed that of some clone of c.

It is not hard to see that the second part of the proof (the “if” direction) works for the odd number
of voters as well. However, for the “only if” direction, the argument does not go through. We can,
however, prove a slightly weaker necessary condition. Define r̂+ = +∞ if na ≤ 0 for some a ∈ A+

and r̂+ = max{2sa−1na
| a ∈ A+} otherwise, and let r̂− = min{2sa+1

na
| a ∈ A−, na > 0}.

Proposition 5.3. If an election with an odd number of voters can be 1-manipulated with respect to
Borda by cloning the manipulator’s preferred candidate c, then dr̂+e ≤ br̂−c.

The proof of Proposition 5.3 is in Appendix A.
The proof of Theorem 5.2 indicates which orderings of the clones are most problematic for the

manipulator: these are the orderings that grant each clone roughly the same number of points. But
this is exactly the expected outcome if the orderings are generated uniformly at random! Thus,
our proof shows that for Borda a manipulator cloning c alone should be ready for the worst-case
scenario.

Note, however, that we are not limited to cloning c. Indeed, cloning other candidates might be
more useful with respect to 1-manipulability. For example, suppose that c is Pareto undominated,
and, moreover, the original preference profile contains a candidate c′ that is ranked right under c by
all voters (one can think of this candidate as an “inferior clone” of c; however, we emphasize that it
is present in the original profile). Then one can show that by cloning c′ sufficiently many times we
can make c a winner with probability 1. However, cloning c itself does not have the same effect if
the voters order the clones randomly or adversarially to the manipulator. This is illustrated by the
following example.

Example 5.4. Let us consider the following Borda election. The set of candidates isC = {a, b, c, d},
and there are four voters, whose preference orders are:

R1 : a � c � b � d
R2 : a � c � b � d
R3 : a � c � b � d
R4 : d � c � b � a

ScB(a) = 9
ScB(b) = 4
ScB(c) = 8
ScB(d) = 3
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The winner here is awith 9 points. However, replacing bwith three clones b1, b2, b3 is a 1-successful
manipulation in favor of c since the new score of a is 15, while the new score of c is 16, no matter
how the clones are ordered. At the same time, we cannot make c a winner with probability 1 by
cloning him alone. Indeed, if we split c into k+1 clones, and each voter orders the clones uniformly
at random, the expected score of each clone of c is 4(2 + k

2 ) = 8 + 2k (and, since the number of
voters is even, the proof of Theorem 5.2 gives an explicit ordering of the clones in which each clone
gets 8 + 2k points), whereas a’s score is 9 + 3k.

This shows that, in general, we may need to clone several candidates that are placed between
c and its “competitors” in a large number of votes, and determining the right candidates to clone
might be difficult. Indeed, it is not clear if a 1-successful manipulation for Borda can be found in
polynomial time; answering this question is a challenging open problem.

A related question that is not answered by Theorem 5.1 is the complexity of 0+-CLONING (and,
more generally, q-CLONING for q ∈ (0, 1]) in the general cost model. Note that there is a certain
similarity between this problem and that of 1-manipulability: in both cases, it may be suboptimal to
clone c. Indeed, for general costs, we can prove that q-CLONING is NP-hard for any q.

Theorem 5.5. For Borda, q-CLONING in the general cost model is NP-hard for any rational q ∈
(0, 1] as well as for q = 0+. Moreover, this is the case even if p(i, j) ∈ {0, 1,∞} for all i ∈
[m], j ∈ Z+.

Proof. The reduction is from X3C. Let (G,S) be an instance of X3C where G = {g1, . . . , g3K}
is the ground set and S = {S1, . . . , SM} is a family of 3-element subsets of G. Let N = 3K.
We construct an instance of our problem as follows. Let T = {t1, . . . , tM}. We let the set of
alternatives be A = G ∪ T ∪ {c, u, w}, where c is the manipulator’s preferred alternative. For each
i = 1, . . . ,M , we create two voters with preference orders R2i−1 and R2i. The preference order
R2i−1 is given by

R2i−1 : G \ Si � c � ti � Si � u � w � T \ {ti},

while the preference order R2i is given by

R2i : w � Si � u � c � G \ Si � T.

Further, we require that the candidates in G are ranked in the opposite order in R2i and R2i−1, i.e.,
for any j, ` = 1, . . . ,M we have gj �2i g` if and only if g` �2i−1 gj . Finally, there is one voter,
R2M+1, with preference order

R2M+1 : G � c � T � u � w.

The cloning costs are defined as follows. For each i = 1, . . . ,M , producing one additional
clone of ti costs 1, and producing further clones of ti costs 0. Cloning any other alternative costs
+∞. Finally, we set B = K.

It is easy to verify that from each pair of votes (R2i−1, R2i), c gets (M + 5) + (N − 3 +M) =
2M+N+2 points, each gj gets (M+N+2)+M = 2M+N+2 points (this remains true if gj ∈ Si),
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each tj gets at most (M+4)+(M−1) = 2M+3 points, u getsM+(M+N−2) = 2M+N−2
points, and w gets (M − 1) + (M +N + 2) = 2M +N + 1 points. Thus, because of the last voter,
overall the Borda score of each alternative in G exceeds that of c by at least 1 and at most N , while
the score of any other alternative is lower than that of c.

Note that if we create N + 1 clones of ti, which we can do at cost 1, we ensure that c’s score
is at least as high as that of the alternatives in Si, irrespective of how the voters order the clones.
However, cloning ti does not change the difference in scores between c and the alternatives inG\Si.
Within our budget, we can clone K alternatives from T , N + 1 times each. Thus, any cover of G of
size K = N/3, i.e., any exact cover, can be transformed into a 1-successful cloning manipulation
for our instance.

Conversely, consider any cloning manipulation of cost at most K. Suppose that it clones the
alternatives ti1 , . . . , tis , s ≤ K. If {Si1 , . . . , Sis} is not a cover of G, there is some element gi ∈
G that is not covered by ∪sj=1Sij . This means that our cloning manipulation did not change the
difference in scores between gi and c, i.e., gi still has a higher Borda score than c. Hence, this
cloning is not 0+-successful. Thus, any 0+-successful cloning of cost at most K corresponds to a
cover of G.

Now, consider any q ∈ (0, 1]. If our input instance of X3C is a “yes”-instance, the election
that we have constructed admits a 1-successful cloning, which is also a q-successful cloning (as
well as a 0+-successful cloning). On the other hand, if we start with a “no”-instance of X3C, our
election does not admit a 0+-successful cloning, and hence a q-successful cloning. Thus, the proof
is complete.

Observe that the cost function used in the proof of Theorem 5.5 is very natural: some candidates
cannot be cloned at all, while for others, there is a certain upfront cost associated with creating the
first clone (e.g., researching the platform and/or identity of the candidate), but all subsequent clones
can be created for free.

5.2 k-Approval

We will now demonstrate that there is a family of scoring rules for which deciding whether a given
election is 0+-manipulable is computationally hard. Specifically, this is the case for k-Approval for
any k ≥ 2. Our proof gives a reduction from the problem DOMINATING SET, defined below.

Definition 5.6. An instance of the DOMINATING SET problem is a triple (V,E, s), where (V,E) is
an undirected graph and s is an integer. We ask if there is a subset W of V such that (a) |W | ≤ s
and (b) for each v ∈ V either v ∈W or v is connected to a vertex in W .

Theorem 5.7. For k-Approval, it is NP-hard to decide whether a given election is 0+-manipulable
by cloning.

Proof. First, we remark that one can always make an alternative a a k-Approval winner with
nonzero probability as long as a is ranked first by at least one voter. Indeed, we can simply clone
all other alternatives sufficiently many times (e.g., kn times, where n is the number of voters). This
ensures that there exists a preference profile over the resulting set of alternatives in which each
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candidate other than a gets at most one k-Approval point. However, this condition is not neces-
sary. Indeed, a candidate can be a k-Approval winner even if no voter ranks him first. Thus, in our
hardness reduction, we ask whether we can help a candidate that is never ranked first.

Consider an instance (V,E, s) of DOMINATING SET, where V = {v1, . . . , vt}. We can assume
without loss of generality that the graph (V,E) has no isolated vertices and s < t. We will construct
an election based on (V,E, s) as follows. There is a candidate vi for each vertex of the graph, a
candidate cwhom we would like to make a winner, an additional candidatew, and a setD of dummy
candidates. The exact number of dummy candidates, which will be polynomial in the size of (V,E),
will become clear after we describe the set of voters. For each voter, we only specify which of the
nondummy candidates she ranks in the top k positions. Clearly, the order of candidates ranked in
positions below the k’th one does not affect the outcome of the election. Further, we assume that
each dummy candidate is ranked among the top k positions by exactly one voter. (Thus, the number
of dummy candidates is upper bounded by k times the number of voters.)

For each i = 1, . . . , t, the i-th voter places vi first and ranks c in position k. Each of the next
4t2 − t − s voters places w first and ranks c in position k. Further, for each (undirected) edge
(vi, vj) ∈ E, there are 2s voters that rank vi first and vj second and 2s voters that rank vj first and
vi second.

v1 · · · vt w · · · w · · · vi · · · vi vj · · · vj · · ·
... · · ·

...
... · · ·

...
... vj · · · vj vi · · · vi

...

c · · · c c · · · c · · ·
... · · ·

...
... · · ·

...
...

t 4t2 − t− s 2s 2s

Observe that based on the votes constructed so far, the score of c is 4t2 − s, the score of w is
4t2 − t − s, and the score of each vi, i = 1, . . . , t, is at most 4s(t − 1) + 1. We add polynomially
many voters, each of which ranks w or some candidate from V first (and some dummy candidates
in positions 2, . . . , k), so that w gets 4t2−2s points in total and each candidate in V gets exactly 4t2

points in total (note that this is possible since t > s). Clearly, the number of the voters constructed
at this stage is polynomially bounded in our input size.

We claim that the constructed election is 0+-manipulable if and only if the graph (V,E) has a
dominating set of size at most s. Indeed, suppose first that (V,E) has a dominating set W of size at
most s. We clone each candidate from W exactly k+ 2s(k− 1) times. Now, consider the following
preference profile over the cloned alternatives. Split the clones into 2s + 1 groups, so that the first
group has size k and the remaining groups have size k − 1. For each vi ∈ W , we order the clones
as follows:

1. The i-th voter ranks the first group of vi’s clones in the first k positions.

2. For each j such that (vj , vi) ∈ E, the `-th voter among the 2s voters that used to rank vj first
and vi second now ranks the (`+ 1)-st group of vi’s clones in positions 2, . . . , k.

3. All other voters order the clones arbitrarily.
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Under this preference profile, c gets 4t2− 2s points: he has been “pushed out” of the top k slots
in s out of the first t votes, but did not lose any other points. The clone of each candidate vi ∈ W
gets at most 4t2 − 2s points, too. Indeed, fix some vi ∈ W . By our assumption, the graph (V,E)
has no isolated vertices. Thus, there is some vertex vj connected to vi, and so there are 2s voters
that (before cloning) rank vj in the first position and vi in the second position. Let us denote this
set of voters by Eji. Now, consider the profile after cloning. The first k clones of vi are not ranked
in the first k positions by any voter in Eji, and thus each of them receives at most 4t2 − 2s points.
Now consider the `-th group of vi’s clones, ` = 2, . . . , 2s+ 1: these clones are ranked in the top k
positions by exactly one voter in Eji, and by none of the first t voters. Thus, these clones’ scores
are at most 4t2− (2s− 1)− 1 = 4t2− 2s. We conclude that the score of each clone of vi is at most
4t2 − 2s.

Now, consider any candidate vj ∈ V \W . Since W is a dominating set for (V,E), there exists
a vi ∈ W such that (vi, vj) ∈ E. Since the 2s voters that used to rank vi first and vj second now
rank some clones of vi in the top k positions, vj is “pushed out” of the top k positions in at least
2s votes. Consequently, its k-Approval score is at most 4t2 − 2s. As the k-Approval score of w
was 4t2 − 2s prior to cloning and was not affected by cloning, we conclude that after cloning c is a
winner of the election with nonzero probability.

Conversely, suppose that we can make c a winner with nonzero probability by cloning some of
the candidates. Observe first that we could not have cloned w. Indeed, if we clone w, c is “pushed
out” of the top k positions in 4t2 − t − s votes, so her score is at most t. On the other hand, in the
original preferences, each vi ∈ V has score at least t. ,,, Therefore, to make c a winner after cloning
w, we would have to clone each of vi ∈ V . However, if we do that, c’s k-Approval score goes down
to 0, so she cannot be a winner. We conclude that w is not cloned. As w is not ranked in positions
2, . . . , k in any of the votes, and therefore cannot be “pushed out”, this means that w’s final score
is 4t2 − 2s, and therefore c’s final score must be at least 4t2 − 2s. This, in turn, means that we can
clone at most s candidates in V , as cloning any such candidate reduces c’s score by 1. On the other
hand, we need to reduce the score of each vi ∈ V by at least s. This can be done either by cloning
vi or by cloning some alternative that is ranked first by some voter that ranks vi second. This means
that each vi ∈ V either is cloned or has a neighbor in (V,E) that has been cloned, i.e., the set of
cloned alternatives forms a dominating set of (V,E). As we have argued that the size of this set is
at most s, this completes the reduction.

We can also show that it is NP-hard to decide whether an election is 1-manipulable with respect
to k-Approval.

Theorem 5.8. For any given k ≥ 2, it is NP-hard to decide whether a given election is 1-manipulable
by cloning with respect to k-Approval.

Proof. We will first present the proof for k = 2, and then show how to generalize it to all integer
k ≥ 2. The reduction is from X3C. Let an instance (G,S) of X3C be given by a ground set
G = {g1, . . . , g3K} and a family S = {S1, . . . , SM} of subsets of G, where for each i, 1 ≤ i ≤M ,
we write gi1 , gi2 , gi3 to denote the members of Si. We can assume without loss of generality that
M > K > 3. Given such an instance, we construct an election as follows. The set of alternatives
is A = G ∪ T ∪ {c, w} ∪D, where T = {t1, . . . , tM}, and D is the set of dummy candidates. In

21



what follows, we place the dummy candidates so that each of them appears at most once in the first
two rows.

We will now specify the first two positions in each vote. For i = 1, . . . ,M , the i-th voter ranks
ti first and c second. Each of the next M2 voters ranks w first and a dummy alternative second.
Then we also have M groups of 3M voters, where in the i’th group (a) each voter ranks ti first, and
(b) each of the candidates gi1 , gi2 , and gi3 is ranked second by exactly M voters. Further, for each
i ∈ G, we add Ni = M2 +M −M |{j | gi ∈ Sj}| voters that rank gi first and a dummy candidate
second. Finally, we add N = M2−M +K voters who rank c first and a dummy candidate second.

t1 · · · tM w · · · w · · · ti ti ti · · · gi · · · gi · · · c · · · c
c · · · c · · · · · · · · · · · · gi1 gi2 gi3 · · · · · · · · · · · · · · · · · · · · · · · ·

M M2 3 Ni N

In this profile, the score of each ti is 3M+1, the score of c isM2+K, the score ofw isM2, and
the score of each gi isM2+M . The scores of dummy candidates are equal to 1, and their number is
clearly polynomial in M . As K < M , the set of winners in this profile is G, and c is M −K points
behind. Now, if we clone some candidate gi ∈ G, the voters may still rank all clones of gi in the
same order, so no manipulation that relies on cloning candidates in G is 1-successful. Therefore, to
bridge the gap between c and the candidates in G, we need to clone some of the candidates in T .
However, we cannot clone more than K of them, since otherwise the score of c will fall below the
score of w (while we can clone w as well, the voters may still order all clones of w in the same way,
in which case the top-ranked clone of w still gets M2 points). On the other hand, for each gi ∈ G
we need to clone at least one tj ∈ T such that gi ∈ Sj , since otherwise the score of gi will not go
down. Thus, a 1-successful manipulation corresponds to a cover of G of size at most K, i.e., an
exact cover. Conversely, cloning a set of candidates T ′ ⊆ T such that {Sj | tj ∈ T ′} is an exact
cover of G is a 1-successful cloning.

For k > 2, this construction can be modified as follows. We insert between the first and the
second position in each vote a group of new k − 2 dummy candidates (so that in each vote the
candidate that used to be ranked second is now ranked in position k and each dummy candidate is
ranked first exactly once). It is easy to see that the proof goes through without change.

5.3 Copeland

Let us now move on to Copeland rule. For an election E with a set of candidates A, its pairwise
majority graph is a directed graph (A,X), where X contains an edge from a to b if more than half
of the voters prefer a to b; we say that a beats b if (a, b) ∈ X . If exactly half of the voters prefer a
to b, we say that a and b are tied (this does not mean that their Copeland scores are equal). For any
a ∈ A, we denote by U(a), D(a) and T (a) the sets of all alternatives that beat a, are beaten by a,
or are tied with a, respectively.

For an odd number of voters, the graph (A,X) is a tournament, i.e., for each pair (a, b) ∈ A2,
a 6= b, we have either (a, b) ∈ X or (b, a) ∈ X . In this case, we can make use of a well-
known tournament solution concept of Uncovered Set [43, 29, 38], defined as follows. Given a
tournament (A,X), a candidate a is said to cover another candidate b if a beats b as well as every
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other candidate beaten by b. The Uncovered Set of (A,X) is the set of all candidates not covered
by other candidates.

It turns out that if the number of voters is odd, the Uncovered Set coincides with the set of candi-
dates that can be made Copeland winners by cloning. In contrast with our previous characterization
results, this holds for all values of q ∈ (0, 1] ∪ {0+}.

Theorem 5.9. For any q ∈ (0, 1] ∪ {0+}, a Copeland election E with an odd number of voters is
q-manipulable by cloning if and only if the manipulator’s preferred candidate c does not win, but is
in the Uncovered Set of the pairwise majority graph of E.

Proof. Consider an election E with a set of m alternatives A and an odd number of voters. Let
(A,X) be its pairwise majority graph. Suppose first that c is covered by some a ∈ A. In this
case ScC(c) < ScC(a). Creating k clones of an alternative x increases by k − 1 the score of each
alternative that beats x and decreases by k − 1 the score of each alternative that is beaten by x.
Hence. the gap between c and a cannot be reduced by cloning a third alternative. Moreover, if we
replace c with k clones, the score of each clone of c will be at most ScC(c) + k− 1, while the score
of a becomes ScC(a) + k − 1. Similarly, if we replace a with k clones, the scores of each clone of
a will be at least ScC(a) − (k − 1), while the score of c becomes ScC(c) − (k − 1). This shows
that cloning c or a would not help either. Thus, no matter which alternatives we clone, we cannot
close the gap between a and c (or its highest-scoring clone).

Conversely, suppose that c is in the Uncovered Set. Since the number of candidates is odd, we
have T (c) = ∅, and since c is uncovered, we have U(c) 6= A \ {c}. Therefore, D(c) 6= ∅. We will
proceed in two stages. First, we will secure that either c or its clone has higher Copeland score than
any alternative from D(c), and then we will take care of the alternatives from U(c). At stage one
we create 2m+1 clones of c. This lowers the score of each alternative inD(c) by 2m and raises the
score of each alternative in U(c) by 2m. A simple counting argument shows that, for any ordering
of the clones by the voters, there exists a clone of c whose score is greater or equal to the original
score of c; denote this clone by c′. For each alternative x, let Sc′C(x) denote x’s score after stage
one. For each x ∈ D(c) we have

Sc′C(c′) ≥ ScC(c) ≥ −(m− 1) > ScC(x)− 2m = Sc′C(x),

i.e., c′ beats x. On the other hand, for any x ∈ U(c) we have

Sc′C(c′) ≥ ScC(c) ≥ −(m− 1) ≥ ScC(x)− (2m− 2) = Sc′C(x)− (4m− 2).

At stage two we create 4m + 1 clones of each alternative in D(c). This increases c′’s score by
4m|D(c)|. Further, for any a ∈ D(c), the score of any clone of a constructed at this stage exceeds
Sc′C(a) by at most 4m|D(c)|. Thus, at this stage, c′ has a higher Copeland score than any of the
newly-generated clones. Finally, since c was not covered, no candidate in U(c) beats all candidates
in D(c); in fact, any a ∈ U(c) is beaten by some b ∈ D(c). Thus, the last step increases the score
of each candidate in U(c) by at most 4m(|D(c)| − 1) − 4m = 4m(|D(c)| − 2). It follows that c′

now has a higher Copeland score than any candidate that is not a clone of c.
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For elections with an even number of voters, the situation is significantly more complicated.
The notion of Uncovered Set can be extended to pairwise majority graphs of arbitrary elections in a
natural way (see, e.g., [11]): We say that u covers c if u beats c and all alternatives beaten by c, and,
in addition, c loses to all alternatives that beat u. In particular, this means that u does not cover c
if it is beaten by some alternative that is tied with c. This definition generalizes the one for the odd
number of voters. However, for an even number of voters, the condition that c is in the Uncovered
Set turns out to be necessary, but not sufficient for manipulability by cloning.

Proposition 5.10. In a Copeland election E with an even number of voters in which the manipula-
tor’s preferred candidate c is covered, c cannot be made a winner by cloning.

Proof. Suppose that c is covered by u. The Copeland score of c is given by |D(c)| − |U(c)|. Now,
u beats all alternatives in D(c), and any alternative that beats u is necessarily in U(c). Thus, u has
a strictly higher Copeland score than c. Now, suppose we create k + 1 clones of some a ∈ A. This
can increase the score of c (or one of its clones) only if a ∈ D(c)∪{c}; however, then the score of u
also increases by k. On the other hand, this can decrease the score of u only if a beats u. However,
in this case the score of c also decreases by k. We conclude that c cannot be made a winner by
cloning.

However, the converse is not true, as illustrated by the following example.

Example 5.11. Consider an election with A = {a, b, c, u, w}. Suppose that a beats u, u beats b, b
beats w, w beats a, u and w beat c, and any other pair of candidates is tied. Note that by McGarvey
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Figure 1: Candidate c is undominated, but cannot be made a winner by cloning

theorem [41] there are voters’ preferences that produce this pairwise majority graph. In this election,
c is undominated. While he is beaten by u and w, he is tied with an alternative that beats u, namely,
a, and with an alternative that beats w, namely, b. However, c’s score is negative, and will remain
negative after any cloning. On the other hand, by a counting argument, in any election where some
alternative has a negative Copeland score, at least one other alternative has a positive Copeland
score. Hence, c cannot be made a winner by cloning.

Instead, we can characterize 0+-manipulable profiles in terms of the properties of the induced
(bipartite) subgraph of (A,X) whose vertices are, on the one hand, the candidates that are tied with
c, and, on the other hand, the candidates that beat both c and all candidates beaten by c. However, it
is not clear if this characterization leads to a polynomial-time algorithm for detecting such profiles.
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Specifically, for a profile in which c is not covered to be 0+-manipulable by cloning in favor of c,
the following must hold. Let Y = T (c) and let Z be the set of all candidates that beat both c and all
candidates beaten by c. We associate with each candidate z ∈ Z a number sz = ScC(z)− ScC(c).
Our goal is to assign a nonnegative integer q(y) to every y ∈ Y so that for each z ∈ Z we have∑

(y,z)∈X

q(y)−
∑

(z,y)∈X

q(y) ≥ sz. (1)

Indeed, if this linear program has an integer nonnegative solution (q∗(y))y∈Y , we can replace each
y ∈ Y with q∗(y) + 1 clones. This will lower the score of each z ∈ Z by

∑
(y,z)∈X q∗(y) −∑

(z,y)∈X q∗(y) and thus ensure that c’s Copeland score is at least as high as that of any candidate
in Z. We can then take care of the rest of the candidates by cloning c (and asking all voters to order
all clones of c in the same way) and the candidates in D(c), as in the proof of Theorem 5.9. Thus,
condition (1) is sufficient for 0+-manipulability. We remark, however, that additional constraints
may be needed for 1-manipulability, since cloning c may have a stronger effect on candidates in Z
than on the “average” clone of c.

Conversely, if such an assignment is impossible, there is no way to ensure that all candidates in
Z have a lower Copeland score than c. Indeed, cloning c or the candidates in D(c) will not help, as
any such candidate is also beaten by any candidate in Z. On the other hand, cloning a candidate in
U(c) will harm c (or its clones) at least as much as it will harm the candidates in Z. Thus, the only
way to close the gap between c and the candidates in Z is to clone candidates in T (c), as captured
by our integer linear program. Note also that if the linear program (1) does not admit an integer
solution, this remains to be the case if we clone some of the candidates. Indeed, cloning candidates
in A \ (Y ∪Z) does not change (1). Cloning a candidate z ∈ Z replaces an existing constraint with
several identical ones. Finally, if the program obtained by cloning a candidate y ∈ Y has a feasible
solution, it can be easily transformed into a feasible solution for the original program.

Once we introduce costs, optimal cloning becomes hard even for elections with an odd number
of voters and even in the UC model.

Theorem 5.12. For Copeland, UC q-CLONING is NP-hard for each q ∈ {0+} ∪ (0, 1].

Proof. We give a reduction from X3C. Let I = (G,S) be our input instance, whereG = {g1, . . . , g3K}
is the ground set and S = {S1, . . . , SM} is a family of 3-element subsets of G. It will be conve-
nient to assume that M ≥ 2K; we can always achieve this by duplicating some sets in S . We
will construct an instance of Copeland elections with a preferred candidate c such that if I is a
“yes”-instance of X3C, then there is a 1-successful cloning that introduces at most K clones, and,
furthermore, if I is a “no”-instance of X3C, then there does not exist a 0+-successful cloning that
introduces at most K clones.

The set of candidates for our election will beA = G∪F ∪D∪{c}, where c is the manipulator’s
preferred candidate, F = {f1, . . . , fM}, and D = {d1, . . . , d3M+2}. The cloning budget is set
to K. We describe the voters by providing the outcomes of all head-to-head contests between
candidates in A. By McGarvey’s theorem [41], any such tournament can be realized as the majority
relation of a certain preference profile, which can be computed in polynomial time. The results of
head-to-head contests between the candidates in G ∪ F ∪ {c} will be as follows:
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1. c beats each fj ∈ F .

2. Each gi ∈ G beats c.

3. For each gi ∈ G and each Sj ∈ S, gi beats fj if and only if gi /∈ Sj .

4. All the remaining contests within G ∪ F ∪ {c} result in a tie.

If we limit ourselves to candidates in G∪F ∪{c}, we have the following scores: (a) c has M − 3K
points, (b) each gi ∈ G has between 1 and M + 1 points, and (c) each fj ∈ F has at most 0 points.

Further, we set the results of head-to-head contests between candidates inG∪F ∪{c} and those
in D as follows:

5. c beats 2M + 2K ≤ 3M candidates in {d1, . . . , d3M}.

6. Each gi ∈ G beats exactly as many candidates in {d1, . . . , d3M} as to have score 3M−K+1.

7. All the other contests between candidates in G ∪ F ∪ {c} and those in D result in a tie.

Finally, we set the contests within D as follows: Each di ∈ {d1, . . . , d3M} loses to d3M+1 and
to d3M+2, and all the remaining contests within D result in a tie. Let N = 3M . In the resulting
election we have the following scores:

1. c has N −K points.

2. Each gi ∈ G has N −K + 1 points.

3. dN+1 and dN+2 have N points each.

4. Each remaining candidate has at most 0 points.

Consider some nonnegative integer k. Replacing a single candidate with k + 1 clones increases
other candidates’ scores by at most k, and the score of each clone can differ from that of the cloned
candidate by at most k. As a result, the only candidates that can be winners after a cloning ma-
nipulation of cost K are those in G ∪ {c, dN+1, dN+2}. Thus, in the following discussion we will
consider the scores of these candidates only.

Introducing a single clone of some fj ∈ F increases by 1 the scores of c and of each gi /∈ Sj .
Thus, if there is a set J ⊆ {1, . . . ,M} such that |J | = K and ∪i∈JSi = G, then introducing a
single clone of each candidate in {fi | i ∈ J} ensures that c is a winner of the election. This does
not depend on how the voters order the introduced clones, so the cloning strategy is 1-successful.

For the converse direction, we will now argue that if there is a 0+-successful cloning of cost
at most K, then I is a “yes”-instance of X3C. Let us consider such a 0+-successful cloning. We
have to introduce K clones, because each additional clone can increase c’s score by at most 1, c
trails dN+1 and dN+2 by K points, and after any cloning some clones of dN+1 and dN+2 will
have at least N points. Consequently, we cannot clone any of the candidates in D: cloning any
di ∈ D \ {dN+1, dN+2} increases the scores of dN+1 and dN+2, and cloning dN+1 or dN+2 does
not increase c’s score. Cloning any gi ∈ G also does not increase c’s score, and thus we can only
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clone members of F ∪ {c}. We will now argue that the cloned members of F correspond to a cover
ofG (note that this implies that there is exactlyK of them, and each of them is cloned exactly once).
Indeed, suppose otherwise, and let gi be an element of G that is not covered by the union of the sets
that correspond to cloned members of F . Then our cloning manipulation increases the score of gi
by K, as each new clone contributes to the increase of gi’s score. On the other hand, any cloning
that is within our budget can increase c’s score by at most K, so c still trails gi, a contradiction with
the assumption that our cloning manipulation is 0+-successful. This completes the proof.

6 Related Work

We will now review several lines of research that are related to our work. We start by discussing the
relevant work that originates in the social choice community (Section 6.1), and then move on to the
computational study of voting problems. In Section 6.2 we provide a detailed comparison between
cloning and the classic problem of control by adding candidates [4], and in Section 6.3 we discuss
other related work in computational social choice.

6.1 Cloning in Social Choice Literature

The first study of cloning was undertaken by Tideman [47]. He started by defining which subsets
of the alternative set A are clones for a given profile. Specifically, he defined a proper subset S of
A that contains at least two alternatives to be a clone-set if no voter ranks any candidate outside
of S in between the members of S or as tied with some member of S. This definition reflects the
idea that each voter finds the candidates in S similar. Now, every profile R on A defines a set of
clone-sets C(R) ⊆ 2A. A voting rule is said to be independent of clones if and only if the following
two conditions are met when clones are on the ballot:

1. A candidate that is a member of a set of clones wins if and only if some member of that set
of clones wins after a member of the set is eliminated from the ballot:

2. A candidate that is not a member of a set of clones wins if and only if that candidate wins
after any clone is eliminated from the ballot.

Tideman [47] considered a number of well-known voting rules, and discovered that among these
rules STV was the only one that satisfied his criterion. However, STV does not satisfy many other
important criteria for voting rules, such as Condorcet consistency or monotonicity. Thus, Tide-
man [47] proposed a new voting rule, the “ranked pairs rule,” that was both Condorcet consistent
and independent of clones in all but a small fraction of settings. Subsequently, Zavist and Tide-
man [51] proposed a modification of this rule that is completely independent of clones. Later it
was shown that some other voting rules, such as Schulze’s rule [46], are also independent of clones.
Tideman considered resistance to cloning to be an important normative requirement for voting rules,
and the method of ranked pairs proposed by him and Zavist [51] showed how this condition may be
satisfied.
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Another notion related to cloning is that of composition consistency, due to Laffond et al. [36].
It is defined for tournament solution concepts (i.e., social choice correspondences that take tour-
naments as input). For a given alternative set A, let T (A) denote the set of all tournaments on
A. A non-empty subset C of A is a component of T ∈ T (A) if for any c, c′ ∈ C and for any
a ∈ A \ C it holds that (a, c) ∈ T if and only if (a, c′) ∈ T ; a component C is said to be nontrivial
if 1 < |C| < |A|. A tournament T is said to be composed if it has at least one nontrivial component.
Components of a tournament are natural counterparts of clone-sets of a preference profile.

Let A1, . . . , AK be K disjoint finite sets of alternatives, and let T1, . . . , TK be K tournaments
such that for each k = 1, . . . ,K it holds that Tk ∈ T (Ak). Moreover, let T ∗ be a tournament in
T ([K]), where [K] = {1, 2, . . . ,K}. The composition product of T ∗ by tournaments T1, . . . , TK
is the tournament T = Π(T ∗;T1, . . . , TK) defined on A = A1 ∪ . . . ∪ AK as follows. For each
k, k′ ∈ [K] and each (a, b) ∈ Ak × Ak′ the tournament T contains the pair (a, b) if and only if (i)
k 6= k′ and (k, k′) ∈ T ∗ or (ii) k = k′ and (a, b) ∈ Tk.

A tournament solution concept φ is said to be composition-consistent if for each composition
product T = Π(T ∗;T1, . . . , TK) in T (A) it holds that φ(T ) =

⋃
{φ(Tk) | k ∈ φ(T ∗)}. This

property may be illustrated in the following way. Suppose that there areK different projects a given
society can choose to implement. Further, each projectAk, k ∈ [K], has nk different variants. Com-
position consistency guarantees that we will choose the best variant of the best project irrespectively
of whether we use a two-stage procedure that first chooses the best project and then its best variant,
or simply set up a single tournament in order to choose among all variants of all projects.

Laffond at al. [36] and Laslier [37] suggested a similar construction for social choice correspon-
dences (which are referred to as voting rules in this paper). Given a set X , let Rn(X) be the set of
all n-voter profiles on X . Let A1, . . . , AK be K disjoint finite sets of alternatives, and consider K
preference profilesR1, . . . ,RK , whereRk = (Rk

1 , . . . , R
k
n) is a profile in Rn(Ak) for k ∈ [K]. Let

R∗ = (R∗1, . . . , R
∗
n) ∈ Rn([K]). The composition product Π(R∗;R1, . . . ,RK) of R∗ by profiles

R1, . . . ,RK is the n-voter profile R = (R1, . . . , Rn) defined on A = A1 ∪ . . . ∪ AK as follows.
For each k, k′ ∈ [K] and each (a, b) ∈ Ak × Ak′ we set aRi b if and only if (i) k 6= k′ and k R∗i k

′

or (ii) k = k′ and aRk
i b. A social choice correspondence φ is said to be composition-consistent

if for any n > 0 and any composition product R = Π(R∗;R1, . . . ,RK) in Rn(A) it holds that
φ(R) =

⋃
{φ(Rk) | k ∈ φ(R∗)}.

Laffond at al. [36] and Laslier [37] proved that a number of tournament solution concepts such
as the Banks Set, the Uncovered Set, the Tournament Equilibrium Set (TEQ), and the Minimal
Covering Set are composition-consistent. They also demonstrated that various tournament solution
concepts and social choice correspondences such as the Top Cycle, the Slater rule, the Copeland
rule, and all scoring rules are not composition-consistent.

Laslier [39] also introduced the notion of cloning consistency. A social choice correspon-
dence φ is said to be cloning-consistent if for any n > 0 and any composition product R =
Π(R∗;R1, . . . ,RK) in Rn(A), it holds that φ(R) =

⋃
{Ak | k ∈ φ(R∗)}. This requirement

says that if one clone of an alternative is winning, then all clones of that alternative must win
as well. This property is useful when the set of alternatives is fuzzy, but—as the author himself
acknowledged—terrible if the number of alternatives is fixed and clearly defined.
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The concept of a composed profile is not necessarily useful for manipulation by cloning, but is
very relevant to what one might call decloning. The idea of decloning is to reveal whether or not a
profile (or, a tournament) could have been obtained as a result of cloning and, if possible, identify
the underlying composition product. Recently, decloning proved to be a useful preprocessing tool
for dealing with voting rules that have a computationally hard winner determination problem [13,
7, 10]. The extended abstract of the current paper, which was presented at the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI-2010), initiated a complexity-theoretic study
of decloning in voting. However, decloning deserves careful study on its own and thus has been
omitted from this paper.

The concept of resistance to cloning appeared also in the context of study of self-selectivity of
social choice functions. Koray and Slinko [34] discovered that self-selectivity is a stronger require-
ment than resistance to cloning, even if deletion of candidates is viewed as a special form of cloning
(one that replaces a candidate with zero clones). This partially explains why the universally self-
selective functions are necessarily dictatorial, as discovered earlier by Koray [33]. In [34] Koray and
Slinko managed to circumvent this impossibility result by relaxing the property of self-selectivity:
they require the social choice function to select itself only among other “reasonable” social choice
functions. The concept of being reasonable involves a social choice correspondence (for example,
the one that selects all Pareto optimal alternatives), and it is essential that this social choice corre-
spondence is resistant to cloning of essential alternatives (see [34] for the definition of an essential
alternative).

6.2 Comparison of Cloning and Other Models of Adding Candidates

A problem that is closely related to cloning is that of election control. In general, this term refers
to manipulating the result of an election by changing its structure (e.g., by either adding or delet-
ing candidates or voters). The computational study of election control was initiated by Bartholdi,
Tovey, and Trick [4] who, among other issues, considered constructive control by adding candidates
(CCAC). In their model, we are given a set of registered candidates, a set of spoiler candidates, and
a set of voters, with preferences over both the registered candidates and the spoiler candidates (how-
ever, before we take any action, only the registered candidates participate in the election). The task
is to decide if it is possible to select a subset of spoiler candidates so that when these candidates are
registered, the preferred candidate becomes a winner. Subsequently, Faliszewski et al. [27] refined
this model by introducing a bound on the number of candidates that can be added.

Formally, we will use the following definition of the CCAC problem, which is based on the one
given in Faliszewski et al. [27].

Definition 6.1. Let F be a voting rule. In the constructive control by adding candidates problem
(F-CCAC) we are given an election (C ∪A,R), where C ∩A = ∅, a designated candidate p ∈ C,
and a nonnegative integer t. We ask if there is a setA′ ⊆ A of size at most t such that p is the unique
F-winner of the election (C ∪A′,R).4

In the definition above, the set C corresponds to already registered candidates and the set A is the
set of “spoiler” candidates that the manipulator can introduce into the election.

4Unique-winner model is standard for control problems.
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Bartholdi, Tovey, and Trick considered only two rules, Plurality and Condorcet’s rule (i.e., a rule
that selects a Condorcet winner if one exists and no winners otherwise), and focused on standard
worst-case complexity results, classifying control problems as either NP-complete or in P. Many
researchers followed up on their work by studying various other voting rules [23, 27, 25] and various
other settings [40, 8, 25], of which perhaps most prominent are destructive control of Hemaspaandra,
Hemaspaandra and Rothe [31] and control in multi-winner elections of Meir et al. [42]. We point
the reader to the recent survey of Faliszewski, Hemaspaandra, and Hemaspaandra [26] for more
details on election control.

While q-CLONING (and, in particular, UC q-CLONING) and CCAC control are similar in that
both of them deal with adding new candidates, neither of these problems is a special case of the
other. Indeed, they place different restrictions on the candidates to be added and their positions in
the votes. Specifically, in q-CLONING the new candidates must be clones of existing candidates, but
(especially in 0+-CLONING) we have some freedom as to how to arrange the new candidates in the
votes. In contrast, in CCAC control problems, the spoiler candidates need not be adjacent to each
other in all votes, but the order of all the candidates in each vote is predetermined.

A somewhat different model of adding candidates has been recently proposed by Chevaleyre
et al. [12]. In this paper, the authors consider the following scenario. An election is happening
over a period of time and candidates may still join in. At a given point, we know all the candidates
that have registered by then and the voters’ preferences over those candidates. Each voter may
place new candidates arbitrarily in her vote. Given that at most k new candidates may still appear,
which of the already registered ones still have a chance of winning? (Note that, as in the case
of cloning, the addition of new candidates may benefit some of the original candidates and hurt
some of the others.) Chevaleyre et al. [12], and—in a very recent follow-up work—Xia, Lang,
and Monnot [50], give computational complexity results for the problem of finding the possible
(co)winners when new alternatives join (PcWNA). Their work differs from ours in that they do not
require the new candidates to be clones of preexisting ones (in particular, they do not require the new
candidates to be ranked consistently, consecutively by all the voters), and differs from control by
adding candidates in that they allow introducing arbitrary new candidates (as opposed to introducing
already-ranked-by-voters candidates from a predefined set of spoilers). Formally, their model is a
special case of the possible winner problem, introduced by Konczak and Lang [32], and further
studied by many other researchers [49, 6, 2, 5].

Table 1 provides a comparison of the complexity of control by adding candidates (CCAC con-
trol), possible co-winner determination when new alternatives can join (PcWNA), and q-CLONING

for q ∈ {0+, 1} in the UC model (using the UC model is analogous to counting the number of new
candidates in the CCAC control problems). To fill the first column of Table 1, we provide complex-
ity results for CCAC control for Plurality with Runoff, k-approval, Borda, and Veto, which were
missing from the existing literature. Since these results are tangential to the topic of our paper, we
relegate them to Appendix B.

Table 1 shows that cloning and PcWNA are computationally incomparable (assuming P 6= NP).
For example, for 2-Approval 0+-CLONING is NP-hard, whereas PcWNA is in P. On the other hand,
for Maximin 0+-CLONING is in P, while PcWNA is NP-complete.

In contrast, Table 1 appears to indicate that CCAC control is harder than cloning. These results
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Voting rule CCAC control PcWNA 0+-CLONING 1-CLONING

Plurality NPC [4] P [6] P —
Maximin NPC [25] NPC [50] P —
Plurality w/Runoff NPC P [50] P —
Veto NPC P [6] P P
Borda NPC P [12] P ?
2-Approval NPC P [12] NP-hard NP-hard
k-Approval, k ≥ 3 NPC NPC [12] NP-hard NP-hard
Copeland NPC [27] ? NP-hard NP-hard

Table 1: The complexity of control via adding candidates (CCAC), of possible co-winner determina-
tion when new alternatives can join (PcWNA), and of q-CLONING in the UC model for q ∈ {0+, 1}.
Note that for Plurality, Plurality with Runoff and Maximin 1-successful cloning is impossible. All
the results on CCAC control are in the unique-winner model (though some of them are also proved
in the non-unique winner model), whereas we work in the non-unique winner model. The PcWNA
results for Plurality and Veto follow directly from the more general results of Betzler and Dorn [6]
for the possible winner problem. Xia, Lang, and Monnot [50] also give an NP-completeness result
for a variant of Copeland rule known as Copeland0, where the score of a candidate is simply the
number of head-to-head contests that this candidate wins.

are not entirely surprising; we can construct contrived instances of CCAC control by placing the
spoiler candidates in any way we like, so as to facilitate computational hardness proofs. However,
the next two theorems show that there are also settings where UC 0+-CLONING is computationally
harder than CCAC. The first of these results departs from our standard model in that it considers
weighted voters and only allows one new candidate/clone; its purpose is to provide a quick and
intuitive argument that cloning may be harder than adding new candidates. Our second theorem
exhibits an artificial voting rule for which UC 0+-CLONING is NP-hard, but CCAC is in P.

We first need to extend our definition of an election to allow for weighted voters. Briefly, in
a weighted election E = (A,R) each preference ordering Ri is associated with a positive integer
weight wi; to determine the winner, we apply the voting rule to an election in which each preference
order Ri is replaced by wi copies.

Theorem 6.2. For weighted Plurality elections 0+-CLONING with the additional restriction that
we can introduce at most one clone is NP-hard. However, for weighted Plurality election the CCAC
problem where we can add at most one new candidate is in P.

Proof. It is easy to see that for one new candidate the CCAC problem for weighted Plurality elec-
tions is easy. Indeed, for each spoiler candidate a ∈ A we can easily check if adding a to the
election makes our preferred candidate the election winner.

To prove that our variant of 0+-CLONING is NP-hard, we give a reduction from PARTITION,
which is a well-known NP-complete problem [30]. An instance of PARTITION is a sequence of
positive integers a1, . . . , aN ; it is a “yes”-instance if there is a set X ⊆ {1, . . . , N} such that∑

i∈X ai = 1
2

∑N
i=1 ai.
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Let I = (a1, . . . , aN ) be an instance of PARTITION and set S =
∑N

i=1 ai. We construct an
election with N + 1 voters and two candidates, p and d, as follows. The first N voters all prefer d
to p, and the (N + 1)-st voter prefers p to d. The weight of the i-th voter, i = 1, . . . , N , is ai; the
last voter has weight 1

2S. If we are allowed to introduce at most one additional clone, the only way
to make p a winner is to clone d into d(1) and d(2), and ask the first N voters to order d(1) and d(2)

so that each of the clones gets exactly 1
2S points. This is possible if and only if I is a “yes”-instance

of PARTITION.

One may feel that Theorem 6.2 does not provide a convincing argument that cloning may be
harder than control by adding candidates. Indeed, it applies to the weighted setting, which is not
the focus of this paper, and it limits the number of clones/new candidates. The next theorem shows
that even in the standard model (i.e., with unweighted voters and no limit on the number of new
candidates) there are voting rules, albeit artificial, where UC 0+-CLONING is NP-hard, but CCAC
is in P.

Theorem 6.3. There is a voting rule for which constructive control by adding candidates is in P,
but UC 0+-CLONING is NP-hard.

Proof. The idea of the proof, common to several results of this type (see, e.g., the paper of Fal-
iszewski, Hemaspaandra, and Hemaspaandra [24], where the authors construct a voting rule for
which the problem of bribery is in P, but the problem of manipulation is NP-hard), is to embed
an NP-complete problem into the winner determination procedure of the newly constructed voting
rule.

Let L be an NP-complete language over the alphabet Σ = {0, 1}. We will soon provide some
further assumptions regarding L (all easily satisfied), but before doing so, we describe how an
election can encode a pair of strings over Σ.

Fix an election E = (A,R) with R = (R1, . . . , R`, R`+1). We can assume without loss of
generality that A = {c1, . . . , cm} and that the last voter ranks the candidates as c1 �`+1 c2 �`+1

· · · �`+1 cm. We say that E encodes two length-` binary strings, x = x1 . . . x` and y = y1 . . . y`, if
the following conditions hold:

1. ` > 0 and m ≥ 4.

2. Each voter ranks c1 and c2 in the top two positions.

3. For each i = 1, . . . , `, if yi = 0 then c1 �i c2 and if yi = 1 then c2 �i c1.

4. For each i = 1, . . . , `, if xi = 0 then c3 �i c4 �i · · · �i cm and if xi = 1 then cm �i

cm−1 �i · · · �i c3.

Otherwise E does not encode any strings. Note that the last preference order R`+1 is special, as it
defines the roles of the candidates; also, by requiring ` > 0 we explicitly forbid encoding a pair of
two empty strings.

By definition of NP and by basic properties of NP-complete languages, we can assume that
language L admits a polynomial-time algorithm B such that for every binary string x of length `
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it holds that x ∈ L if and only if there is a binary string y of length ` such that B(x, y) accepts.5

Further, we assume that L does not contain the empty string and that it does not contain any all-0
strings.

We will now define our voting rule, which we call L. Let E = (A,R) be an election. If E
encodes strings x and y such that B(x, y) accepts (that is, such that x ∈ L and y witnesses that
this is the case), then all candidates in A are winners. Otherwise, the winner is the candidate that is
ranked last by the last voter.

First, we claim that L-CCAC is in P. Let I = (E, p, t) be an instance of L-CCAC, where
E = (C ∪ A,R), C = {c1, . . . , cm}, A = {a1, . . . , am′}, R = (R1, . . . , Rn), p ∈ C is the
preferred candidate, and t ∈ Z+ is the bound on the number of candidates that we can add. If p is
a winner prior to adding candidates, we accept. Note that if p is not ranked last by the last voter,
we cannot change that by adding candidates from A. Therefore, to make p a winner, we have to
add candidates so as to influence the strings x, y encoded by the election or to move the election
from the state in which it does not encode any strings to the state where it does. However, if this
goal can be achieved by adding some s ≤ t candidates, then it can also be achieved by adding at
most 4 candidates. Indeed, suppose that we add some candidates ai1 , . . . , ais , 4 < s ≤ t, so that
ai1 �n ai2 �n · · · �n ais and the resulting election encodes some strings x and y. It is easy to
see that if we now remove the candidates ai5 , . . . , ais , the resulting election also encodes the same
strings x and y. Thus, to test if it is possible to make p a winner by adding candidates from A, it
suffices to try adding all subsets of A of size at most 4, and, for each of them, verify whether the
resulting election encodes two strings x and y such that B(x, y) accepts. Clearly, this can be done
in polynomial time.

On the other hand, UC 0+-CLONING is NP-complete for L (in fact, this remains true for ZC
0+-CLONING or any other cost model that allows adding at least one clone). We give a reduction
from L. Let x be our input binary string of length `; we can assume without loss of generality that
` > 0. We create an election E = (A′,R) where A′ = {a, c1, c2, c3} is the set of candidates and
R = (R1, . . . , R`, R`+1) is the preference profile, where

1. R`+1 is given by a �`+1 c1 �`+1 c2 �`+1 c3.

2. For each i = 1, . . . , `, if xi = 0 then Ri is given by a �i c1 �i c2 �i c3 and if xi = 1 then
Ri is given by a �i c3 �i c2 �i c1.

It is easy to see that either this election encodes a pair of strings (0`, 0`) or it does not encode any
strings. We pick a as our preferred candidate; note that a is not ranked last by the last voter.

Suppose that x ∈ L, i.e., there exists a string y, |y| = `, such that B(x, y) accepts. Then we can
clone a into a(1) and a(2) and ask the voters to order the clones so that the top two positions in their
preference orders encode y. Clearly, in the resulting election all candidates win.

Conversely, suppose that it is possible to clone some candidates in A′ so as to make a a winner
(i.e., so that all candidates are winners). Let E′ be the election after cloning. It must be the case that

5Indeed, if we were to require that the length of y is polynomially bounded in |x|, this condition would be simply the
definition of membership in NP. Our requirement that x and y have the same length can be easily satisfied by appropriate
padding.

33



E′ encodes two strings, x′ and y′, such that B(x′, y′) accepts. For this to happen, each voter must
rank clones of a in the first two positions and the clones of c1, c2 and c3 in the remaining positions.
This implies that x′ = x. Hence, if there is a 0+-successful cloning for E, then there is one that
replaces a with two clones, a(1) and a(2), and asks the voters to rank the clones so that they encode
a string y with the property that B(x, y) accepts.

Our reduction can be computed in polynomial time and thus the proof is complete.

To wrap up our discussion of control by adding candidates, we mention an interesting twist
to the standard model of election control that was recently studied by Faliszewski et al. [28] and
Brandt et al. [9]. In these papers, the authors study the complexity of control (as well as manipu-
lation and bribery) for single-peaked electorates. Their main finding is that many control problems
that are known to be NP-hard for unrestricted preferences (and most control problems belong to
this category) turn out to be solvable in polynomial time when the preferences are single-peaked.
In comparison, cloning is computationally feasible for many rules even without assuming special
properties of the electorate. (As a side note, we mention that cloning a candidate is quite likely to
destroy single-peakedness of an election.)

6.3 Cloning and Campaign Management

To a large extent, our work on cloning is motivated by applications of cloning in campaign man-
agement. However, campaign management can be understood in multiple other ways as well. In
particular, the issue of campaign management in voting has been previously studied from the com-
putational perspective by Elkind, Faliszewski, and Slinko [20], who introduced the problem of swap
bribery. In their model, each voter is associated with a certain cost function, which describes how
difficult it is to make local changes to this voter’s preferences. The goal of the campaign manager is
to ensure that a given candidate becomes a winner at the smallest possible cost. While this problem
turns out to be NP-hard for almost all voting rules, some of its special cases admit polynomial-time
solutions. Further, if one focuses on a variant of swap bribery where one is only allowed to shift for-
ward the preferred candidate, it is possible to find effective (approximation) algorithms [20, 19, 45].
Going in a different research direction, Dorn and Schlotter [16] provide parameterized complexity
study of swap bribery. Of course, the standard model of bribery [24], where one can pay a voter to
change his vote arbitrarily, can also be interpreted in the context of campaign management.

Also, the probabilistic model put forward in this paper, and, in particular, our definition of q-
successful cloning is similar in spirit to the model of [22], where voters are bribed to increase their
probabilities of voting in favor of a particular alternative.

Finally, the problem of cloning is particularly relevant in open, anonymous environments, such
as the Internet. In such settings, a problem closely related to cloning candidates is that of cloning
voters. Specifically, in an anonymous environment an agent might be capable of creating several
instances of itself and vote multiple times. Voting rules that are resistant to this kind of manipulation
are called false-name-proof; they were studied by Conitzer [14]. A variant of this framework in
which, similarly to our general model, creating new identities is costly was subsequently considered
by Wagman and Conitzer [48].
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7 Conclusions

We have provided a formal model of manipulating elections by cloning, characterized 0+-manipu-
lable and 1-manipulable profiles for many well-known voting rules, and explored the complexity
of finding a minimum-cost cloning manipulation. The grouping of voting rules according to their
susceptibility to manipulation differs from most standard classifications of voting rules: e.g., scoring
rules behave very differently from each other, and Maximin is more similar to Plurality than to
Copeland. Future research directions include designing approximation algorithms for the minimum-
cost cloning under voting rules for which this problem is known to be NP-hard, and extending our
results to other voting rules.
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A Cloning the Manipulator’s Preferred Candidate under Borda: Odd
Number of Voters

In this section, we present the proof of Proposition 5.3. (We use the notation introduced in the
paragraph preceding Theorem 5.2.)

Proposition 5.3. If an election with an odd number of voters can be 1-manipulated with respect to
Borda by cloning the manipulator’s preferred candidate c, then dr̂+e ≤ br̂−c.

Proof. Let n be the number of voters. Suppose that dr̂+e > br̂−c. Consider any cloning that
involves c only. Suppose it results in k clones of c, which we denote by c(1), . . . , c(k). Let s denote
the original Borda score of c. To show that this cloning is not 1-successful, it suffices to describe an
ordering of the clones that results in c losing the election. Since for n = 1 no cloning is successful,
we can assume without loss of generality that n ≥ 3.

Suppose first that k is odd. Consider the profile6 where the first voter ranks the clones as

c(k) � c(k−2) � . . . � c(1) � c(k−1) � c(k−3) � . . . � c(2),

the second voter ranks the clones as

c(k−1) � c(k−3) � . . . � c(2) � c(k) � c(k−2) � . . . � c(1),

the third voter ranks the clones as
c(1) � . . . � c(k),

and the remaining voters are split into n−3
2 pairs, where in each pair the first voter ranks the clones

as c(k) � . . . � c(1), while the second voter ranks the clones as c(1) � . . . � c(k).
It is not hard to see that in this profile the Borda score of each clone is s+ n(k−1)

2 . Indeed, let us
first consider c(k). The first voter ranks k − 1 other clones below c(k), the second voter ranks k−1

2

other clones below c(k), and the third voter ranks no other clones below c(k), i.e., c(k) gets 3(k−1)
2

additional points from the first 3 voters. Also, he gets k − 1 additional point from each pair of the
remaining voters, i.e., (n−3)(k−1)

2 additional points. Thus, his Borda score is s+ n(k−1)
2 . A similar

calculation shows that the Borda score of c(k−1) is s+ k−3
2 +(k−1)+1+ (n−3)(k−1)

2 = s+ n(k−1)
2 .

Now, if we compare two consecutive odd-numbered clones, i.e., c(j) and c(j−2) for j odd, we can
see that c(j) is ranked just above c(j−2) in the first two votes, and two positions below c(j) in the
third vote, so they get the same number of extra points from the first three voters. Since any two
candidates get the same number of votes from the last n − 3 voters, it follows that c(j) and c(j−2)

have the same Borda scores. The same argument applies to any pair of consecutive even-numbered
clones. Hence, a simple inductive argument shows that the Borda score of each clone is s+ n(k−1)

2 .

6We are grateful to Dima Shiryaev for suggesting this construction.
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Now, if k is even, we set k′ = k − 1, and rank the first k′ clones using the construction for odd
k given above. We then place c(k) above all other clones in the first n−1

2 votes and below all other
clones in the remaining n+1

2 votes. Clearly, the score of any clone c(j), j < k, is

s+
n(k − 2)

2
+
n+ 1

2
= s+

n(k − 1) + 1

2
= s+

⌈
n(k − 1)

2

⌉
;

the last equality holds since n is odd and k is even. Moreover, the score of c(k) is s+ (k− 1)n−12 ≤
s+ dn(k−1)2 e. Thus, for all values of k the Borda score of each clone is at most s+ dn(k−1)2 e.

To show that in this profile c does not win, we will consider two cases.

Case 1 (r̂+ = +∞). Then there is an alternative a that is preferred to c by at least n+1
2 voters and

has a higher Borda score than c. Our cloning increases a’s score by at least n+1
2 (k − 1), so

its final Borda score is at least sB(a) + n+1
2 (k − 1) > s+ dn(k−1)2 e. Thus, after cloning, all

clones of c will still have lower scores than a, i.e., the cloning is not 1-successful.

Case 2 (r̂+ < +∞). In this case, there exist candidates a ∈ A+, b ∈ A− such that d2sa−1na
e >

b2sb+1
nb
c. After the cloning, a’s Borda score is sB(a) + n−na

2 (k − 1), and b’s Borda score is
sB(b) + n+nb

2 (k − 1). Thus, for c to be the winner, k must satisfy

s+

⌈
n(k − 1)

2

⌉
≥ sB(a) +

n− na
2

(k − 1); s+

⌈
n(k − 1)

2

⌉
≥ sB(b) +

n+ nb
2

(k − 1).

We have dn(k−1)2 e ≤ n(k−1)+1
2 . Thus, by transforming the above inequalities, we obtain

sa = sB(a)− s ≤ na
2

(k − 1) +
1

2
, sb = s− sB(b) ≥ nb

2
(k − 1)− 1

2
.

Since k is an integer, this implies

r̂+ =

⌈
2sa − 1

na

⌉
≤ k − 1 ≤

⌊
2sb + 1

nb

⌋
= r̂−,

a contradiction.

B Proofs for Section 6.2

The proof of Theorem B.1 proceeds by a fairly straightforward reduction from Plurality-CCAC. In
contrast, the remaining proofs in this section employ reductions from X3C, and are quite technical.

Theorem B.1. For each fixed k, k ≥ 1, constructive control by adding candidates for k-approval
is NP-complete.
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Proof. For k = 1, k-approval is simply Plurality and Plurality-CCAC has been shown to be NP-
complete [4]. Thus, let us assume that k ≥ 2.

Clearly, k-approval-CCAC is in NP. To prove hardness, we give a reduction from Plurality-
CCAC to k-approval-CCAC. Given an instance I = (C,A,R, p, t) of Plurality-CCAC with R =
(R1, . . . , Rn) (see Definition 6.1), we construct an instance Î = (Ĉ, A, R̂, p, t) of k-approval-
CCAC as follows:

1. If |R| = 1, we solve I in polynomial time (which is easy to do in this case) and output a fixed
instance of k-approval-CCAC with the same answer.

2. If n = |R| > 1, we set D = {di,j | 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1} and let Ĉ = C ∪ D.
For i = 1, . . . , n, in the i-th preference order R̂i the candidates di,1, . . . , di,k−1 are ranked in
positions 1, . . . , k − 1, and the candidate that was ranked first in Ri is ranked in position k.
We set R̂ = (R̂1, . . . , R̂n).

Clearly, if n = 1, the reduction works correctly. Now suppose n > 1. For each A′ ⊆ A, and each
candidate c ∈ C ∪A′, the Plurality score of c in (C ∪A′,R) is the same as his k-approval score in
(Ĉ ∪A′, R̂), while the k-approval score of any d ∈ D in (Ĉ ∪A′, R̂) is 1. To complete the proof, it
remains to observe that if some candidate c∗ is a unique winner of a Plurality election with at least
two voters, then c∗ receives at least two points.

Theorem B.2. Constructive control by adding candidates for Plurality with Runoff is NP-complete.

Proof. The problem is clearly in NP. Our hardness reduction is from X3C. Let I = (G,S) be an
input instance of X3C, where G = {g1, . . . , g3K} is the ground set and S = {S1, . . . , SM} is a
family of 3-element subsets of G.

We construct an instance of CCAC for Plurality with Runoff as follows. We let the candidate set
be C = {p, u, w}, and we let the set of spoiler candidates be A = {a1, . . . , aM}. The preference
profile R consists of 6K + 20 preference orders R1, . . . , R6K+20, described as follows. For i =
1, . . . , 3K, let Ai = {aj ∈ A | gi ∈ Sj}. Preference orders Ri and R3K+i, i = 1, . . . , 3K, are
given by

Ai � u � A \Ai � p � w and Ai � w � A \Ai � p � u,

respectively. There are also 7 voters whose preference order is p � A � u � w, 7 voters whose
preference order is u � A � p � w, and 6 voters whose preference order is w � A � p � u.
Finally, we set t = K.

We claim that p can become the unique winner of election (C,R) by adding at most t = K
spoiler candidates from A if and only if I is a “yes”-instance of X3C.

Let us first consider Plurality scores of the candidates in (C,R). We have ScP (u) = 3K + 7,
ScP (w) = 3K + 6, and ScP (p) = 7. The runoff is between u and w, and thus p does not win.

Now, consider some subsetA′ ofA and an election (C∪A′,R). Let Sc′P (c) denote the Plurality
score of a candidate c ∈ C ∪ A′ in election (C ∪ A′,R). We have Sc′P (p) = 7, Sc′P (u) ≥ 7,
Sc′P (w) = Sc′P (u) − 1, and, moreover, Sc′P (ai) ≤ 6 for any ai ∈ A′. This implies that no
candidate from A′ can ever participate in the runoff. Thus, depending on the participating spoiler
candidates, the following runoff scenarios are possible:
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1. Sc′P (u) ≥ 9. Then Sc′P (w) ≥ 8, and the runoff is between u and w.

2. Sc′P (u) = 8. Then Sc′P (w) = 7, and the runoff is between u and either p or w.

3. Sc′P (u) = 7. Then Sc′P (w) = 6, and the runoff is between u and p.

As we use the parallel-universe tie-breaking rule, and more than half of the voters prefer p to u,
p is the unique winner of the election if and only if Sc′P (u) = 7. That is, p can be made the
unique winner of the election by adding at most t candidates if and only if it is possible to choose
a subset A′ of A such that |A′| ≤ K and u receives no Plurality points from the first 6K voters in
election (C ∪ A′,R). Clearly, such a set A′ has the property that in every preference order among
R1, . . . , R3K some member of A′ is ranked above u. As |A′| ≤ K, this is possible if and only if the
collection S ′ = {Si | ai ∈ A′} is an exact 3-cover of G.

To prove that CCAC control for Borda is NP-complete as well, we need a tool to construct
Borda votes conveniently.

Lemma B.3. Let C = {c1, . . . , c2t−1, d}, t ≥ 2, be a set of candidates and let A = {a1, . . . , as}
be a set of spoiler candidates. Let `1, . . . , `2t−1 be a sequence of nonnegative integers, and set
L =

∑2t−1
i=1 `i. Then there is a preference profileR = (R1, . . . , R2L) over C∪A such that for each

A′ ⊆ A the Borda scores in the election (C ∪A′,R) are as follows:

1. For each ci ∈ C, ScB(ci) = L(2|A′|+ |C| − 1) + `i.

2. ScB(d) = L(2|A′|+ |C| − 1)− L.

3. For each ai ∈ A′, ScB(ai) ≤ L(2|A′|+ |C| − 1)− 2L.

Moreover, the preference profileR is computable in time polynomial in |C|+ |A|+ L.

Proof. For each i = 1, . . . , 2t−1, set e = ci, renumber the candidates inC\{d, e} as b1, . . . , b2t−2,
and consider preference orders R2i−1 and R2i given by

R2i−1 : b1 � b2 � . . . � bt−1 � e � d � bt � . . . � b2t−2 � A,
R2i : b2t−2 � b2t−3 � . . . � bt � e � d � bt−1 � . . . � b1 � A.

Let Ri = (R2i−1, R2i). For any given A′ ⊆ A, in election (C ∪ A′,Ri) each bi ∈ C \ {d, e}
receives 2|A′|+ |C| − 1 points, e receives 2|A′|+ |C| points, and d receives 2|A′|+ |C| − 2 points.
Moreover, each candidate ai in A′ receives at most 2|A′| − 2 points.

Our preference profileR has `i copies of R2i−1 and `i copies of R2i for each i = 1, . . . , 2t− 1.
It is easy to see that it satisfies the condition of the lemma.

Theorem B.4. Constructive control by adding candidates for Borda is NP-complete.
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Proof. It is easy to see that the CCAC control problem for Borda is in NP. We will now show that
this problem is NP-hard by giving a reduction from X3C.

Let (G,S) be our input instance of X3C, where G = {g1, . . . , g3K} is the ground set and
S = {S1, . . . , SM} is a collection of 3-element subsets of G. We assume without loss of generality
that K is even and K > 2; this can be achieved, e.g., by duplicating the instance.

We construct an instance of our problem as follows. The set of registered candidates C is
{p, d} ∪ G (we will sometimes refer to p as g3K+1) and the set of spoiler candidates is A =
{a1, . . . , aM}. The preference profileR consists of two parts,R′ andR′′. We first describeR′, and
defineR′′ based on the number of Borda points the candidates get fromR′. For each i = 1, . . . ,M ,
the preference profileR′ contains exactly one preference order

A \ {ai} � Si � p � ai � G \ Si � d.

For each candidate c ∈ C, let Sc′B(c) be the number of Borda points that c gets from R′, assum-
ing that no candidate from A participates in the election. Set S =

∑
c∈C Sc′B(c). Observe that

irrespective of what subset A′ of spoiler candidates participates in the election, each spoiler can-
didate ai gets at most T = M(3K + M + 1) points from R′. Also, in an election with the set
of alternatives C ∪ A′, candidate p gets Sc′B(p) + |A′| points from R′, while each gi ∈ G gets
Sc′B(gi) + |{aj | aj ∈ A′ ∧ gi ∈ Sj}| points fromR′.

For each i = 1, . . . , 3K, we set

`i = T + S − Sc′B(gi)− 2,

and for p = g3K+1 we set
`3K+1 = T + S − Sc′B(p)−K.

We obtainR′′ by applying Lemma B.3 to the candidate set C (where each gi’s take the roles of ci’s
and p takes the role of c3K+1), the spoiler candidate set A, and the sequence `1, . . . , `3K+1; note
that here we use the assumption that K is even (and hence |C| is even). Finally, we set t = K.

Let L =
∑3K+1

i=1 `i, and for any A′ ⊆ A set f(A′) = L(2|A′| + |C| − 1) + T + S. For any
A′ ⊆ A, in the election (C ∪A′,R′ +R′′) the candidates have the following Borda scores:

1. ScB(p) = f(A′)−K + |A′|.

2. For each gi ∈ G, we have ScB(gi) = f(A′)− 2 + |{aj | aj ∈ A′ ∧ gi ∈ Sj}|.

3. Irrespective of the choice of A′, for each ai ∈ A′ we have ScB(ai) < ScB(p) and ScB(d) <
ScB(p).

Now it is easy to see that p is not a Borda winner in the election (C,R′ +R′′). Let us assume
that there is a subset A′ of the spoiler candidates such that |A′| ≤ K and p is the unique winner of
election (C∪A′,R′+R′′). By the argument above,A′ is non-empty. Now, for any aj ∈ A′ and any
gi ∈ Sj we have ScB(gi) ≥ f(A′)−1. Therefore, for p to be the unique winner of (C∪A′,R′+R′′),
it has to be the case that ScB(p) ≥ f(A′), i.e., |A′| = K, and, furthermore, for each gi ∈ G there
is at most one aj ∈ A′ such that gi ∈ Sj . Hence, the collection S ′ = {Sj | aj ∈ A′} consists of
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K non-overlapping sets of size 3, i.e., it is an exact cover of G. Conversely, it is easy to see that if
S ′ is an exact cover of G by sets from S and A′ = {aj | Sj ∈ S ′}, then p is the unique winner of
(C ∪A′,R′ +R′′). This completes the proof.

We remark that certain aspects of control under Borda have already been studied by Russel [44];
in fact, Russel mentions the idea of cloning in his work, but does not provide any results for cloning
or CCAC control under Borda.

Theorem B.5. Constructive control by adding candidates for Veto is NP-complete.

Proof. The problem is clearly in NP. To show NP-hardness, we give a reduction from X3C.
Let (G,S) be an input instance of X3C, where G = {g1, . . . , g3K} is the ground set and S =
{S1, . . . , SM} is a family of 3-element subsets of G. Without loss of generality we can assume that
K > 2. For each i = 1, . . . , 3K, let `i = |{Sj ∈ S | gi ∈ Sj}|.

We form the following instance of our problem. Our set of registered candidates isC = G∪{p},
and the set of spoiler candidates is A = {a1, . . . , aM}. The preference profile R consists of four
subprofilesR1,R2,R3, andR4.

R1: R1 contains 4M preference orders in M groups of four, one group for each set in S. If
Si = {gi1 , gi2 , gi3}, the i-th group contains the following four preference orders:

A \ {ai} � p � G \ {gi1} � gi1 � ai,
A \ {ai} � p � G \ {gi2} � gi2 � ai,
A \ {ai} � p � G \ {gi3} � gi3 � ai,
A \ {ai} � G � p � ai.

R2: R2 contains 3K groups of voters, where the i-th group consists of M − `i preference orders,
i.e., |R2| =

∑3K
i=1(M − `i) = 3KM −

∑3K
i=1 `i = 3M(K − 1). For each i = 1, . . . , 3K,

each of the preference orders in the i-th group is given by A � p � G \ {gi} � gi.

R3: R3 contains K − 2 preference orders of the form A � G � p.

R4: R4 contains (3K + 1)M2 preference orders. For each i = 1, . . . ,M , j = 1, . . . , 3K, there
are M preference orders of the form p � G \ {gj} � gj � A \ {ai} � ai and for each
i = 1, . . . ,M , there are M preference orders of the form G � p � A \ {ai} � ai.

Intuitively,R1 models the input X3C instance,R2 ensures that withinR1 andR2 all candidates
receive the same number of points (assuming only candidates from C participate), R3 models the
constraint that the added candidates must correspond to a cover, and R4 ensures that none of the
spoiler candidates can become a winner. Let us make these observations more formal by calculating
the scores of candidates, assuming that the set of candidates is C ∪A′ for some A′ ⊆ A.

For each j = 1, . . . , 3K, let t(A′, gj) be the number of sets Si ∈ S such that gj ∈ Si and
ai ∈ A′. Candidate gj receives |R1| − `j + t(A′, gj) points fromR1, |R2| − (M − `j) points from
R2, and |R3| points fromR3. Thus, in total gj receives

4M − `j + t(A′, gj) + 3M(K − 1)− (M − `j) + (K − 2) = 3KM + t(A′, gj) + (K − 2)

44



points from voters inR1 +R2 +R3. Similarly, p receives 3M + |A′|+ |R2| = 3KM + |A′| points
from R1 +R2 +R3 and each ai ∈ A′ receives |R1| − 4 + |R2| + |R3| = 4M − 4 + 3M(K −
1) + (K − 2) = M(3K + 1) + (K − 6) points from voters inR1 +R2 +R3.

It remains to calculate how many points each candidate receives from R4. Note that there are
(3K + 1)M2 preference orders in R4 and each ai ∈ A′ is ranked last in at least (3K + 1)M of
them. Thus, each ai ∈ A′ receives at most (3K + 1)M2 − (3K + 1)M points from R4. On the
other hand, if A′ 6= ∅, each candidate in C receives exactly (3K + 1)M2 points from R4, whereas
if A′ = ∅, each candidate in C receives 3KM2 points fromR4.

We set t = K, and ask whether p can be made the unique winner by adding at most t spoiler
candidates. It is easy to see that ifA′ = ∅, candidate p loses to all candidates inG, and thus is not the
unique winner of the election. Now suppose that A′ 6= ∅. Set F = (3K + 1)M2 + 3KM +K − 1.
The candidates have the following scores:

1. ScV (p) = F + |A′| −K + 1,

2. for each gj ∈ G, we have ScV (gj) = F − 1 + t(A′, gj), and

3. for each ai ∈ A′, we have ScV (ai) ≤ F − 3KM − 5.

Thus, clearly no member of A′ is a winner. Let us now assume that 0 < |A′| ≤ K and p is the
unique winner of the election. Since t(A′, gj) ≥ 1 for at least one gj ∈ G, it holds that some gj ∈ G
has at least F points, and therefore the score of p is at least F + 1. This implies that |A′| = K.
Further, for each gj ∈ G it must be the case that t(A′, gj) ≤ 1. Since |A′| = K, this means that the
collection {Si | ai ∈ A′} is an exact cover of G by sets from S.

It is easy to see that the converse direction is also true. Thus, it is possible to ensure that p is
a winner of our election by adding at most k candidates from A′ if and only if (G,S) is a “yes”-
instance of X3C.
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