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ABSTRACT

The goal of this paper is to examine the incentives to vote insincerely, other
than those induced by rounding, faced by voters under proportional repre-
sentation. We investigate two models of voters. We show that ‘seat max-
imisers can have an incentive to manipulate only if a threshold is present.
We show that ‘power maximisers can have an incentive to manipulate both
in the presence and in the absence of a threshold. We demonstrate that
when a threshold is not in operation power maximisers’ incentives to vote
strategically depend on their attitude towards uncertainty, but when a
threshold is in operation this may no longer be the case. We then use the
two models to explain voter behaviour at the 2005 New Zealand general
election, to demonstrate that rounding creates not just incentives but also
disincentives to vote strategically, and to introduce the notion of groups of
manipulators under- or over-shooting.
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1 Introduction

Political scientists have been discussing the manipulability of proportional representation for
over fifty years. The discussion has, however, often lacked rigour. As a result, a diverse range
of opinions have been expressed. Duverger (1954) dismissed the possibility of strategic voting
under PR; he was criticised by Leys (1959) and Sartori (1968) who believed that the wasted vote
logic must be applicable to certain kinds of PR. Bowler and Lanoue (1992) considered that “un-
der proportional representation ... voting sincerely is a dominant strategy”; they were criticised
by Cox (1997, footnote on p. 270) who thought that political scientists do not pay sufficient
attention to the consequences of the Gibbard-Satterthwaite (GS) theorem (Gibbard, 1973; Sat-
terthwaite, 1975) which states that every non-dictatorial social choice function is manipulable.
These disagreements have arisen because there has not yet appeared a model rigorous enough
and general enough to fully answer the questions “Which systems of PR are manipulable?” and
“Under manipulable systems, which voters have incentives to manipulate, and when?” In this
paper we present such a model and respond to these questions.

A prime example of a successful formalisation of an election in a single member constituency
or an election to a single position is the concept of a social choice function; this formalisation
made possible a proof of the aforementioned GS theorem. Contrary to an apparently widespread
belief, this theorem is not directly applicable to systems of PR. Social choice functions map
preferences of voters expressed as linear orders over a finite set of alternatives onto this same
set of alternatives. To any profile of linear orders such a function assigns just one alternative.
In a system of PR the set of alternatives is the set of competing political parties, and the
corresponding choice function (which we will call a parliament choosing rule) maps the set
of voters’ profiles onto the set of parliaments, which are ‘mixtures’ of alternatives but not
alternatives themselves. Indeed, if three parties A, B, and C contest a parliamentary election
and win 50%, 30%, and 20% of the seats (respectively) then the resulting parliament can be
expressed as 0.5A+ 0.3B+ 0.2C, or simply (0.5, 0.3, 0.2). The fact that the values of the choice
function are mixtures and not alternatives makes a profound difference since each agent will have
open to them a range of methods for extending their order on the set of parties to an order on the
set of parliaments. Our first result in this paper will show that the GS theorem can be applied to
systems of PR, but only indirectly, and only after making some quite unreasonable assumptions
about how voters extend their preferences over parties to preferences over parliaments.

Throughout the theoretical part of this paper we will assume parties can hold fractional
seats, and exclude consideration of the effects of rounding. Practical implementations do of
course need to apply a method of rounding off (see e.g., Saari (1994), chapter 4). Cox and
Shugart (1996) demonstrated that the need to round off can render PR manipulable: if a party
is in a position where receiving a few more or a few less votes will not alter the number of
seats it will take, then some of that party’s supporters may peel off and attempt to influence
the distribution of the remaining seats. Rounding is an important issue, but its consequences
have already been analysed; by excluding it from consideration we can focus on other sources of
manipulative behaviour.

Two obvious ways to extend preferences over parties to preferences over parliaments are to
use the lexicographic order or to introduce utilities. If the first method is used, an agent with
party preferences A > B > C and lexicographic extension of them to the set of parliaments
will prefer the parliament (α, β, γ) to the parliament (α′, β′, γ′) if and only if α > α′ or α = α′

but β > β′. We will call such an agent a lexicographic seat maximiser. The primary concern
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of such an agent is the number of seats their favorite party secures. Alternatively, with the
introduction of utilities u1, u2, u3, the agent will prefer the first parliament to the second if
u1α+ u2β + u3γ > u1α

′ + u2β
′ + u3γ

′. Such an agent cares not only about the number of seats
her favourite party wins, but also about the number of seats won by several other parties. We
call this kind of agent a weighted seat maximiser.

The concept of manipulability for parliament choosing rules is richer than for social choice
functions. An important contribution of this paper is the distinction between strong and weak
manipulability. Manipulation is ‘strong’ if agents’ willingness to undertake this manipulative
move is determined only by their preference order over the alternatives and ‘weak’ if it also
depends on their attitude towards uncertainty. We show that when a threshold — a certain
percentage of the vote that a party must secure in order to reach parliament — is not used in
PR, then seat maximisers will have no incentives to manipulate. This may be what Bowler and
Lanoue (1992) had in mind when they formulated their claim. When a threshold is in operation
some seat maximisers will always have incentives to manipulate however this manipulability is
never strong.

A third method of extending preferences over parties to preferences over parliaments has
the following background. A parliamentary election held under a method of PR will determine
how parliamentary seats are to be allocated. Once the election is over, and all the results are
in, a government formation process begins. We will model that process with a simple game,
where the voting weight of each parliamentary party is given by the number of seats it has
won. The solution of the game will be a government, a set of ministers, a set of policies to be
enacted, and so on. Under PR, a small change in the way ballots are cast will result in a small
change in the voting weights of the parties in the post-election government formation game.
But there do exist circumstances where a small change in the way ballots are cast can effect
a significant change in certain other facets of the government formation game, in particular
the voting powers of the parties and the set of feasible solutions. To illustrate, suppose three
parties contest an election held under a method of PR, and let the vector x = (x1, x2, x3)
denote the resulting parliament, where the ith coordinate gives the fraction of seats won by
the ith party. Compare the parliaments x1 = (0.47, 0.48, 0.05), x2 = (0.49, 0.48, 0.03), and
x3 = (0.51, 0.48, 0.01). Suppose that in the parliament a strict majority is sufficient to pass
any motion. We contend that there is no reason to a priori believe that either the government-
formation game or its solution would be significantly different were the post-election parliament
to be x1 rather than x2. We contend that a comparison of x2 and x3 does not lead to the same
conclusion: if x2 is the election result, then any two of the three parties could (potentially) form
a coalition government (as could all three); if x3 is the election result, the first party would
likely form a government alone. A number of authors have already suggested that voters might
look to set up a favourable coalition game rather than a favourable allocation of seats. For
example, Shikano et al. (2009, page 636) write that “in the context of PR elections, voting
expectations and strategic voting do not rest so much on the conversion of votes into seats than
on the anticipation of post-election coalition building”.

We consider a model of a sophisticated voter who is aware that a post-election government
formation game will take place. We will assume that this voter, first and foremost, is concerned
with the distribution of power in the post-election parliament; this is why we call them power
maximisers. We show that, irrespective of which parliament choosing rule is adopted, there
will always exist circumstances where a power maximising voter would have an incentive to
vote insincerely even in the case of PR without threshold, in which case the manipulability is
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weak. We show that the introduction of a threshold makes a parliament choosing rule strongly
manipulable by power maximising voters.

In the last section we use our model to explain voter behaviour at the 2005 New Zealand
general election. We also investigate how the incentives to manipulate described earlier interre-
late to the rounding, which cannot be ignored in any real situation. In particular, we consider
how the method of rounding New Zealand uses (which is based on the Saint-Lague formula) in-
fluences incentives to vote strategically. We show that the rounding may actually be considered
as a deterrent to manipulation since it requires a degree of coordination from manipulators in
order to avoid under- and overshooting. In game-theoretic terms would be manipulators have
to play a coordination game the outcome of which is by no means certain even if the profile is
manipulable.

The main contributions of this paper are as follows. We rigorously define a parliament
choosing rule and show which consequences regarding manipulability of this rule can be extracted
from the GS theorem. We introduce two realistic types of voters: seat maximisers and power
maximisers, and two degrees of manipulability for a parliament choosing rule, that is weak and
strong manipulability. The suggestion that thresholds can create opportunities for strategic
voting under the systems of PR is not new (see, for example, Roberts, 1988, and Cox, 1997,
p.197). What is new is the characterisation of opportunities for strategic voting presented by
thresholds for each of the classes of voters that have just been discussed. We believe we are
the first to demonstrate that pure PR is manipulable even in the absence of rounding and that
the incentives to vote strategically might depend on the attitude of a particular voter to post-
election uncertainty. We raise the issue of under- and overshooting and show that it can serve
as a deterrent to manipulation. Inspired by Saari (1994), we take a geometric approach and use
graphs with barycentric coordinates to represent parliaments and depict possible manipulation
attempts. Jones (2009) took a similar approach to investigate voting power paradoxes. Our
main results are obtained for the case m = 3. In fact, this is the main case. It is clear that if
we are able to demonstrate manipulability of a parliament choosing rule for m = 3 parties, it
will be manipulable for any m ≥ 3. Austin-Smith and Banks (1988), and Baron and Diemeier
(2001) also assume m = 3.

A few words about related literature are in order. In a narrower framework of spatial voting
strategic voting under PR has been studied extensively. Austin-Smith and Banks (1988), Baron
and Diermeier (2001), De Sinopoli and Iannantuoni (2005) have constructed multi-stage spatial
models of political systems that incorporate proportional representation. In these models voters
(i) have preferences over the set of policies that governments might pursue but (ii) do not
necessarily vote for the party to which they are ideologically closest. Voters might support
parties espousing views more extreme than their own in a bid to counteract votes from other
voters whose opinions lie on the opposite side of the policy spectrum. In all these papers it is
assumed that, at the ballot box, voters can indicate a preference for just one party (i.e. the
positional scoring rule is plurality). The essential difference between their and our approaches
is that in the former the corresponding choice functions map profiles of policies into policies
completely avoiding the government-formation game. Karp et al (2002) examined split voting
in NZ, but, unlike us, they assume voters use their party vote sincerely and their electorate
vote strategically. Shikano et al. (2009) used survey data to investigate how party votes were
completed at the 1994 German election; they claim (page 650) that voters adjusted “their voting
behaviour with regard to the future governmental alternatives”. Pappi and Thurner (2002) and
Gschwend (2007) investigated strategic voting at the 1998 German election. Herrmann (2008)
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and Bargsted and Kedar (2009) used the 2006 Austrian and 2006 Israeli elections, respectively,
as a case studies for analysing the effect of coalition expectations on the vote. Both authors
assumed a single policy dimension.

Below, in Section 2 we introduce parliament choosing rules - the main object of our investi-
gation - and study their properties and representations. In Section 3 we introduce the concept
of manipulability of parliament choosing rules and investigate the consequences of the Gibbard-
Satterthwaite theorem. Section 4 and Section 5 contain the main theoretical results. Section 6
discusses the overshooting and undershooting phenomena. Section 7 uses the results of previous
sections to explain voter behaviour at the 2005 New Zealand general election.

2 Parliament Choosing Rules

We model a parliamentary election. We assume that a parliamentary body is to be elected,
that the body contains a fixed number k of seats, and that m political parties are competing for
those seats. We assume n voters are eligible to vote, and all do.

Voters have preferences on the set of political parties A = {a1, . . . , am}. Every voter has a
favourite party, a second favourite, and so on. No voter is indifferent between any two parties.
Every voter’s preferences can then be represented as a linear order on A. Let L(A) be the set
of all possible linear orders. The Cartesian product L(A)n will then represent preferences of the
n-voter society. Elements of this Cartesian product are called n-profiles or simply profiles. The
collection of all completed ballot papers will also be a profile. At the ballot box, voters do not
necessarily rank the parties in the order of their sincere preference.

We assume each voter forms an expectation of what will transpire at the election. We follow
Cox and Shugart and assume that these expectations “are publicly generated - by, for example,
polls and newspapers’ analysis” of the parties’ prospects - “so that diversity of opinion in the
electorate is minimised” (1996, page 303).

The result of the election will be a parliament. As we mentioned earlier, in the theoretical
part of this paper we will ignore rounding and allow fractional seats. Any parliament can be
represented by a point in the simplex

Sm−1 =

{
(x1, . . . , xm) |

m∑
i=1

xi = 1

}
,

where xi is the fraction of the seats the ith party wins at the election. In the m = 3 case
every parliament x = (x1, x2, x3) can be represented by the point X of the triangle S2 whose
barycentric coordinates are x1, x2 and x3 (see Figure 1). In this case we will usually name the
parties A,B,C instead of a1, a2, a3.
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Figure 1: Triangle of Parliaments

A parliament choosing rule is employed to calculate the distribution of seats in the parlia-
ment. It has two components: a score function and a seat allocation rule. The score function
counts the votes and evaluates the support for each party. The seat allocation rule allocates
seats to parties on the basis of the scores calculated by the score function.

Let us define the score function first. Given a profile R = (R1, . . . , Rn) and a set of alterna-
tives A, a score function assigns to each ai ∈ A a real number. The greater this number, the
better ai is supposed to have done. There are a wide variety of score functions (McCabe-Dansted
and Slinko, 2006, has a comprehensive list of them). In this paper we will work with normalised
positional score functions.

Let w1 ≥ w2 ≥ . . . ≥ wm = 0 be m real numbers, not all zero, which we shall refer to as
weights, and let w = (w1, . . . , wm). Next, let v(a) = (i1(a), . . . , im(a)), where i`(a) indicates the
number of voters that state they rank party a `th best. Then, given a profile R = (R1, . . . , Rn),
the positional score of party a is given by:

scw(R, a) = w · v(a) = w1i1(a) + . . .+ wmim(a).

Well-known vectors of weights and their respective scores include:

• the Plurality score scp(R, a), where p = (1, 0, . . . , 0),

• the Borda score scb(R, a), where b = (m− 1,m− 2, . . . , 1, 0),

• the Antiplurality score sca(R, a), where a = (1, . . . , 1, 0).

The vector of normalised positional scores is given by

scw(R) =
1∑m

i=1 scw(R, ai)
(scw(R, a1), scw(R, a2), . . . , scw(R, am)) .

Clearly, scw(R) ∈ Sm−1. We can now give the following two definitions.
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Definition 1. A normalised positional score function is a mapping

Fs :

∞⋃
n=1

L(A)n → Sm−1,

which assigns to every profile its vector of normalised positional scores for some fixed vector of
weights w.

Like parliaments, normalised positional scores can be represented using the Triangle of Scores
(the idea originates from Saari, 1994). However, unlike parliaments, scores might not fill the
whole triangle. Suppose, in the case of three parties, that the normalised positional score
function is defined by the vector of weights w = (w1, w2, w3) with w1 ≥ w2 ≥ w3. We may
assume that the weights have been normalised so that w1 + w2 + w3 = 1 and w3 = 0.

Let w1 = w and let w2, . . . ,w6 be the vectors obtained from w by permutations of coor-
dinates and let W1, . . . ,W6 be the points of the triangle whose barycentric coordinates in the
Triangle of Scores are equal to the coordinates of w1, . . . ,w6, respectively.
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Figure 2: Hexagon of Scores

For example, W1 will have coordinates (w1, w2, w3) and correspond to the score of the unan-
imous profile, when all voters prefer A to B to C. The six points W1, . . . ,W6 will be on the
boundary of the Triangle of Scores since one of their coordinates is zero. Any vector of scores
s = (s1, s2, s3) will be an affine linear combination of w1, . . . ,w6:

s = α1w1 + . . .+ α6w6 (1)

where α1+ . . .+α6 = 1. It is easy to see that the point S with coordinates (s1, s2, s3) will always
lie in the convex hull of W1, . . . ,W6; we call this hull the Hexagon of Scores. In Figure 2 we show
the Hexagon of Borda Scores. In this case w =

(
2
3 ,

1
3 , 0
)
. For the plurality rule w = (1, 0, 0), and

the hexagon degenerates into the whole triangle ABC. For the antiplurality rule w =
(
1
2 ,

1
2 , 0
)
,

and the hexagon degenerates into the triangle KLM .
In reality only the rational points of the Hexagon of Scores can be realised as scores. The size

of the society needed for realising a rational point as a score will depend on the least common
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multiple of the denominators of the coefficients of w1, . . . ,w6. Therefore the points representing
potential scores are everywhere dense in this hexagon. To see this it is sufficient to replace all
αi in (1) with their sufficiently close rational approximations. It is important to note that any
point inside KLM can be always approximated by normalised scores while points outside KLM
may not be approximated by scores for some w.

Definition 2. A seat allocation rule is any mapping

Fa : Sm−1 → Sm−1.

Given a vector of scores sc ∈ Sm−1, a seat allocation rule determines the distribution of
seats in parliament Fa(sc). There are two main examples of such rule.

Example 1 (Identity seat allocating rule). Fa is the identity function, i.e., Fa(x) = x.

For the second example we fix a threshold, which is a positive real number ε such that
0 < ε ≤ 1/m. We define a threshold function δε : [0, 1]→ [0, 1] so that

δε(x) =

{
0 if x < ε,

x if x ≥ ε.

Example 2 (Threshold seat allocating rule). Let ε be a positive real number such that 0 <
ε ≤ 1/m. Suppose x ∈ Sm−1. Then we define yi = δε(xi) and zi = yi/

∑m
i=1 yi. We now

set Fa(x) = z, where z = (z1, . . . , zm). The restriction ε ≤ 1/m guarantees that Fa is always
defined.
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Figure 3: The action of the threshold seat allocation rule in the vicinity of the boundary.

Figure 3 illustrates the action of this rule on the Triangle of Scores. The points of the central
triangle, where all parties are above the threshold, will not be moved. However, outside of this
triangle they will be mapped onto the boundary (as shown). Using elementary geometry it is
easy to show that B, x, and Fa(x) are on a line.

We are now ready to give the main definition of this section.
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Definition 3. A parliament choosing rule is a composition F = Fa ◦Fs of a score function and
a seat allocation rule:

Fa ◦ Fs :
∞⋃
n=1

L(A)n → Sm−1.

If the identity seat allocating rule is employed, we shall refer to the parliament choosing rule
as pure proportional representation. If a threshold seat allocating rule is employed, we shall refer
to the parliament choosing rule as proportional representation with a threshold. Van der Hout
et al (2006) define “a scoring seat allocation rule” (their Definition 9) which is a similar to our
parliament choosing rule but less general as it does not admit PR with a threshold.

In practice only the plurality score has been used in systems of PR, but combining PR with
other scoring rules has been given theoretical consideration. Potthoff and Brams (1998), for
example, suggested combining PR and approval voting scores.

We have defined normalised positional scores and parliament choosing rules for societies of
arbitrary cardinalities. This is a natural requirement since the number of voters is constantly
changing. In these circumstances parliament choosing rules must be applicable no matter how
large or small the number of voters n is.

Note that there is a significant difference between parliament choosing rules and choose-k
rules (see Brams and Fishburn, 2002, and the references therein). A choose-k rule picks a k-
element subset of the set of alternatives, which is clearly inappropriate in our context when the
parties and not the candidates are the alternatives. A parliament choosing rule reveals not only
which parties win parliamentary seats, but also how many seats each of them wins.

At the end of this section we consider how a voter may influence the outcome of the election
in terms of scores. Here we consider the three -party elections only. Let us consider a voter with
preference A > B > C and suppose that, if she votes sincerely, the outcome of the election — in
terms of scores — will correspond to the point X of the Hexagon of Scores, shown in Figure 4.
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Figure 4: Possible directions of change under a manipulation attempt

Irrespective of the positional scoring rule, by voting insincerely she cannot improve the score
of A, nor worsen the score of C. If she votes insincerely (all else equal), she will expect the vector
of scores to fall in the shaded area. By insincerely reporting her preferences to be B > A > C, she
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will move the vector of scores horizontally east. This she can do so long as the score function is
not antiplurality. By insincerely reporting A > C > B, she moves the vector of scores northwest,
and parallel to BC; this is possible except in the event the score function is plurality.

3 Manipulability of Parliament Choosing Rules. What does the
GS Theorem Imply?

Below we define precisely what it means for a parliament choosing rule to be manipulable. We
will then consider the implications of the GS theorem.

With every profile R a parliament choosing rule F associates a parliament F (R) ∈ Sm−1.
So to be strategic a voter must be able to compare any two parliaments from Sm−1. Such a
voter will have to have an order % on Sm−1. We will require that this order be consistent
with the voter’s order on A. As usual, the strict preference relation of % will be denoted by
� and the indifference relation by ∼. To explain what consistency means we define vectors
ej = (0, . . . , 0, 1, 0, . . . , 0) whose only nonzero coordinate is a 1 positioned in the jth place. Such
a vector corresponds to the parliament where all seats are occupied by members of party aj .

Definition 4. Let L be a voter’s linear order on the set A of political parties:

ai1 > ai2 > . . . > aim .

We say that an order % on Sm−1 is consistent with L if

ei1 � ei2 � . . . � eim ,

i.e. this voter prefers the parliament where all the seats belongs to ai1 to the parliament where
all the seats belong to ai2, etc.

The ith voter’s order %i on parliaments contains more information about her preferences
than the order that she submits in the election. However it is not possible to elicit the former
order at the polling booth. We will refer to %i as the type of voter i.

Definition 5 (Manipulability). Let R be a profile such that Ri1 = . . . = Rik = L for some
group of indices I = {i1, . . . , ik} and linear order L on A. A parliament choosing rule F is said
to be manipulable at R by a group of k voters of type % if % is consistent with L and there
exists a linear order L′ on A such that for the profile R′ which results when Ri1 , . . . , Rik in R
are replaced with L′,

F (R′) � F (R).

The rule F is said to be manipulable if for every n > 1 there exists a profile R ∈ L(A)n which
is manipulable by a group of voters of some type.

The definition above states the following. Suppose R is a profile of sincere preferences where
voters in positions i1, . . . , ik have sincere preference L and are of type %. If these voters would
(all else equal) be better off voting insincerely (by submitting the linear order L′ 6= L), then the
profile R is manipulable.
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Definition 6 (Micro-manipulability). Let F be a manipulable parliament choosing rule. Let kn
be the smallest number for which there exists a profile in L(A)n which is manipulable by a group
of kn voters. The rule F is said to be micro-manipulable if the ratio kn/n tends to 0 as n goes
to infinity.

Micro-manipulability of the rule, for which the size of society is not fixed, is the analogue
of an individually manipulable rule for the societies of a fixed size. This term was coined
by Donald Saari (1990) and we refer the reader to him for more justification of the concept.
Roughly speaking, F is micro-manipulable if, as n → ∞, the manipulating group may consist
of an arbitrary small fraction of the society. And although, to the best of our knowledge, there
are no rigorous results to this extent, it usually happens that if F is micro-manipulable, then
for all n > 1 there exists an n-profile which is manipulable by a single voter. We will illustrate
this with an example in the next section.

Definition 7 (Daft voter). Let us consider a voter whose preference order on the set of political
parties is

a1 > a2 > . . . > am.

We say that this voter is daft if her only concern is which party has a majority of seats in
the parliament and she is indifferent between any two parliaments where the same party has a
majority of seats. To be more precise, if in a parliament x parties ai1 , . . . , aik hold an equal
number of seats, while every other party has a lesser number and i1 < · · · < ik, then x ∼ ei1.

The order % on Sm−1 of a daft voter will have only m indifference classes: [e1], . . . , [em],
where [z] is the indifference class containing z. For the m = 3 case these classes are as shown in
Figure 5. Segments KO and OM belong to [e1] and the segment LO without point O belongs
to [e2].
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Figure 5: Equivalence classes in S2 for a daft voter

We have introduced daft voters not because they are realistic but because they will enable us
to spell out the formal implications of the GS theorem for PR. There have been several informal
attempts to relate the theorem to PR (see, for example, Cox, 1997, p.11) but not a formal one.
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Theorem 1. Let m ≥ 3 and F be a parliament choosing rule. Then, for all n > 1, at a certain
n-profile F can be manipulated by a single daft voter.

Proof. Let us restrict our parliament choosing rules to profiles from L(A)n. Let F : L(A)n →
Sm−1 be a parliament choosing rule and let π : Sm−1 → A be the mapping that maps any
parliament to the party which has most seats in it. If in parliament x there are several parties
ai1 , . . . , aik , with i1 < · · · < ik, which have an equal number of seats and all other parties have
less seats, then we set π(x) = ai1 . Let us consider the composition f = π ◦F . This composition
is a social choice function f : L(A) → A. Since it is obviously non-dictatorial and can take all
m ≥ 3 values, the GS theorem is applicable to it. There therefore exists an n-profile R at which
f is manipulable by a single voter, say the ith voter. This means that she can change R with R′

such that f(R′) �i f(R). This will happen only when the party f(R′) will have a majority in
the parliament F (R′) and the ith voter will prefer this parliament to F (R), where the majority
would belong to f(R). This implies that if the ith voter is daft she can manipulate F at the
same profile.

A daft voter is not a realistic model of a real voter: a daft voter is indifferent between the
parliaments (1, 0, 0) and (1/3, 1/3, 1/3), which is absurd. Surely real voters are more sophisti-
cated than that. Before moving on to more realistic models it is productive to first define a
class, and to then distinguish between ‘weak’ and ‘strong’ manipulability.

Most generally, a class is an arbitrary collection of types. We will refer frequently to two
classes in-particular: the class of seat maximisers (daft voters are a subclass of this class) and the
class of power maximisers. We will consider potential manipulations by voters of each class, and
we will have two grades of manipulability. We formally define a class and incorporate the notion
into our definitions of weak and strong manipulability so that we can simplify the statements
and explanations of results.

Definition 8 (Weak and Strong Manipulability). Let R be a profile such that Ri1 = . . . = Rik =
L for some group of indices I = {i1, . . . , ik} and linear order L on A. Let F be a parliament
choosing rule. Suppose there exists a linear order L′ such that, if R′ is the profile obtained by
taking R and replacing Ri1 , . . . , Rik with L′, then

F (R′) � F (R) (2)

for some type % in C that is consistent with L. Then F is weakly manipulable at R by voters
of class C. If, above, ‘for some type’ can be replaced with ‘for every type’ then F is strongly
manipulable at R by voters of class C.

The difference between the two concepts of manipulability can be illustrated as follows. We
will see later that it is possible that a parliament choosing rule can be manipulated at a certain
profile, but only by uncertainty averse voters. It is also possible that a certain profile can be
manipulated only by uncertainty seekers. These are cases of weak manipulability. A parliament
choosing rule is strongly manipulable at a particular profile by voters of class C only if all voters
from C having a particular preference order on A have an identical incentive to vote insincerely.

4 Strategic Opportunities for Seat Maximising Voters

In this section we consider the behaviour of voters who are concerned about the post-election
distribution of parliamentary seats.
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Definition 9 (Weighted seat maximiser). This voter has a vector of utilities u = (u1, . . . , um),
where ui is the utility of one seat in the parliament that is held by the ith party ai. Given the
parliament x = (x1, . . . , xm) the total utility of x for this voter calculates as

u(x) = u · x = x1u1 + x2u2 + . . .+ xmum. (3)

A voter is a weighted seat maximiser if she weakly prefers parliament x to parliament y if and
only if u(x) ≥ u(y).

Definition 10 (Lexicographic seat maximiser). A voter is a lexicographic seat maximiser if she
has lexicographic preference order % over Sm−1, that is, she prefers parliament x = (x1, . . . , xm)
to parliament y = (y1, . . . , ym) if x1 > y1 or x1 = y1 and x2 > y2, etc.

We call voters of these two classes seat maximisers. Let us show that in the absence of a
threshold the Bowler and Lanoue (1992) claim is true for seat maximising voters.

Theorem 2. Under pure PR a profile cannot be manipulated by a group of seat maximising
voters.

Proof. Consider a group of voters vi1 , . . . , vik with common utility vector u = (u1, . . . , um). Let
I = {i1, . . . , ik}. Assume without loss of generality that

L : a1 > a2 > . . . > am, L′ : aj1 > aj2 > . . . > ajm

are, respectively, these voters’ sincere and insincere preferences, with R and R′ being the cor-
responding profiles before and after the manipulation attempt where these voters change their
preferences from L to L′. Due to our assumption about L we have u1 > u2 > . . . > um. For lexi-
cographic seat maximisers the statement is obvious so let us consider weighted seat maximisers.
Let w = (w1, . . . , wm) be the vectors of weights used to define the score function for this rule.
Let also x = Fs(R) = scw(R) and x′ = Fs(R

′) = scw(R′) be the corresponding parliaments.
Since

∑m
i=1 scw(R, ai) =

∑m
i=1 scw(R′, ai), let us define their common value as S. Let i ∈ I.

Then the change in the ith voter’s utility will be:

u(x)− u(x′) =
1

S
((u1w1 + u2w2 + . . .+ umwm)− (ui1w1 + ui2w2 + . . .+ uimwm)) .

Since u1 > u2 > . . . > um and w1 > w2 > . . . > wm, this will be positive by the rearrangement
inequality (Hardy, Littlewood and Pólya, 1952, p 261). Therefore this group would be better
off voting sincerely.

This looks very much like the Bowler and Lanoue (1992) claim and may explain their as-
sumptions on voting behaviour of individuals. The stark contrast between the two previous
theorems is partly to blame for the existing confusion in the literature about manipulability of
PR. It must be emphasised, however, that we assume that seat maximising voters have linear
utility functions (3). Without this limitation the situation is unclear.

Now we will show that, when PR with a threshold is used, weighted seat maximisers can
sometimes manipulate.

Theorem 3. Suppose m ≥ 3 and let a parliament choosing rule F be PR with a threshold. Then
the rule is micro-manipulable by seat maximising voters but never strongly.
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Proof. For simplicity we will prove this result for m = 3. Exactly the same ideas work in the
general case. Firstly, we will assume that the scoring rule is not antiplurality, i.e., w 6= a. Since
the vectors of scores are everywhere dense in the Hexagon of Scores, we may assume that all
points of the hexagon are in fact scores. Let ε be the threshold and Fa be the corresponding seat
allocation rule. Consider a seat maximising voter whose ranking of alternatives is A > B > C
and whose vector of utilities is u = (u1, u2, u3). By Theorem 2 we can be sure that any successful
manipulation can be achieved only by crossing the threshold.
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Figure 6: Manipulating move, when the scoring rule is not antiplurality.

Let x = (x, ε, z) be a vector of scores such that x > ε and z > ε. Then Fa(x) = x
and the utility of this parliament x for the voter is u(x) = u1x + u2ε. Let us consider the

parliament y =

(
x

1− ε
, 0,

z

1− ε

)
. Then the utility of parliament y will be u(y) =

x

1− ε
u1.

Easy calculations show that for u2 >
x

1− ε
u1 we have u(x) > u(y). Indeed, in this case

u(x) = u1x+ u2ε > u1x+ ε
x

1− ε
u1 =

x

1− ε
u1 = u(y).

Let us consider z ∈ [0, 1] such that x and z = (1 − z, 0, z) lie on a horizontal line. When
z approaches x along this line, Fa(z) approaches y. This shows that we can choose a point z′

which is arbitrary close to x and from where a move to x will give us a jump in utility. If a small
group of voters has preferences A > B > C and utilities as specified above, it will be beneficial
for them to cross the threshold moving eastward. To make such a horizontal move they have
to submit preferences B > A > C. By doing this they will move the score eastward unless

the scoring rule is antiplurality. Thus F is micro-manipulable in this case. If u2 <
x

1− ε
u1

this would not be a successful manipulation; the profile is therefore not strongly manipulable.
Similar considerations apply when crossing the threshold in the other direction.
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Figure 7: Manipulating move for antiplurality.

If w = a, i.e. the scoring rule is antiplurality, the only possible direction of change is
northwest. In this case, when the utility u2 is small relative to u1 it is beneficial to cross the
threshold in the other direction — as shown in Figure 7. This deprives the manipulators’ second
favorite party of votes, and forces it out of parliament. The payoff is that the manipulators’

most favored party gains in seats. This is benefical provided
x

1− ε
u1 > xu1. Again this profile

is only weakly manipulable.

Intuitively, for voters with preferences A > B > C an opportunity to manipulate appears
when the score of their second best party B is hovering around the threshold. If expectations
are that B is just below the threshold, and if the utility of B is reasonably high, these voters
will be better off voting B > A > C and allowing party B to cross the threshold. Similarly, if
party B is anticipated to barely cross the threshold, and the utility of this party is small, then
these voters would find it advantageous to vote A > C > B and force B below the threshold and
out of parliament. For either of these two manipulations to be worthwhile to the voter a certain
utility inequality must be satisfied. In both cases the manipulation would not benefit all voters
with preference A > B > C. This is precisely why the profile fails to be strongly manipulable.

As we mentioned above, if a rule is micro-manipulable, it is usually possible to find a profile
which is manipulable by a single voter. We give an example.

Example 3. Assume 100 voters participate in an election. Suppose F is PR with a five percent
threshold, and suppose the scoring rule is plurality. Suppose a weighted seat maximising voter
has preferences A > B > C and utility vector u = (10, 8, 0). Suppose that in the event all voters
report truthfully the outcome of the election in terms of scores, those scores will be sc(R) =
(0.48, 0.04, 0.48), which results in the outcome in terms of parliaments F (R) = (0.5, 0, 0.5) with
u(F (R)) = 5. If the voter submits B > A > C, then the vector of scores will be sc(R′) =
(0.47, 0.05, 0.48) and the parliament will be F (R′) = (0.47, 0.05, 0.48). The utility of the voter
will then be u(F (R′)) = 4.7+0.4 = 5.1, which is greater than that achievable with a sincere vote.
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5 Strategic Opportunities for Power Maximising Voters

Choosing a parliament is effectively a fair division problem. It might be thought desirable to
allocate each political party a quantity of seats in direct proportion to its support in society.
Suppose we do desire this, and suppose we accept that the support for a party can be measured
by the score it is assigned by a score function at an election: then PR is an obvious choice for a
parliament choosing rule.

But does PR provide a satisfactory solution to the fair division problem? Each party will
get a (roughly) ‘fair’ share of parliamentary representation. However, once the election is over
a government has to be formed and a coalition arrangement may need to be negotiated. The
political power of each player in the government formation game may not be proportional to
either its score or its parliamentary representation. PR can divide seats up ‘fairly’ but is unlikely
to divide power up ‘fairly.’ This may be a potential source of manipulative behaviour.

Later in this section we will assume that some voters may be interested in the post-election
distribution of parliamentary power. For this reason we need some tools for evaluating distri-
butions of power. Indices of voting power are an obvious first choice for this purpose (Taylor,
1995, Felsenthal and Machover, 1998). We will assume that the distribution of voting power in
a parliament can be computed by a (normalised) voting power index. Given a parliament x =
(x1, . . . , xm), a voting power index P computes a vector of voting powers P (x) = (p1, . . . , pm),
where pi denotes the proportion of voting power held by party ai.

Before formally defining a voting power index we need the following standard definitions.
A weighted voting game is a simple m-person game characterised by a non-negative real vector
(w1, . . . , wm), where wi represents the ith player’s voting weight, and a quota q. The quota gives
the minimum number of votes necessary to form a winning coalition. A coalition C is winning
if
∑

i∈C wi > q. Given a parliament x = (x1, . . . , xm), the formation of the government is a
weighted voting game with weights x1, . . . , xm and quota 1

2 (we will assume throughout that
any strict majority of votes is sufficient to pass any motion in parliament), i.e. the players are
the parties and their weights are the proportion of parliamentary seats that they hold.

Let M = {1, 2, . . . ,m} and let v = (M,W ) be a simple m-person game with W ⊆ 2M being
the set of all winning coalitions. A coalition C is called a minimal winning coalition if C ∈ W
and C \ {i} /∈ W for all i ∈ C. A party is called a dummy if it does not belong to any minimal
winning coalition.

Definition 11. Any mapping P : Sm−1 → Sm−1 is called a voting power index if the following
conditions hold. Let x be a parliament and suppose P (x) = (p1(x), . . . , pm(x)), then

PI1. If the ith party is a dummy in parliament x, then pi(x) = 0,

PI2. If the set of minimal winning coalitions of parliament x is the same as the set of minimal
winning coalitions of the parliament y, then P (x) = P (y).

This definition follows Holler and Packel’s definition of a power index for games (Holler and
Packel, 1983). Allingham (1975) requires a third, monotonicity condition. We will not — we
have no need to restrict our generality. We also note that neither the Deegan-Packel (1979) index
nor the Public Good Index (Holler and Packel, 1983) satisfy the monotonicity requirement.

Perhaps the best known voting power indices are the Banzhaf (Bz) and Shapley-Shubik
(S-S) indices (Banzhaf, 1965; Brams, 1975; Shapley and Shubik, 1954). These indices count,
in different ways, how many times a player is critical for some winning coalition. According
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to Felsenthal and Machover (1998, p.9), these two indices “have, by and large, been accepted
as valid measures of a priori voting power. Some authors have a preference for one or another
of these two indices; many regard them as equally valid. Although other indices have been
proposed — ... — none has achieved anything like general recognition as a valid index.”

It is worth pointing out that more seats do not necessarily translate into more power. For in-
stance, compare the parliaments (x1, x2, x3) = (0.98, 0.01, 0.01) and (y1, y2, y3) = (0.51, 0.48, 0.01);
party B has no more power in the second than in the first.

We now model a voter whose primary concern is with the distribution of power in the post-
election parliament.

Definition 12 (Power maximiser). We assume that such a voter has a certain power index P in
mind, which she uses to measure powers of parties, and also a vector of utilities u = (u1, . . . , um),
normalised so that minj uj = 0. These utilities are ordered according to the preferences of this
voter over A, that is, this voter prefers ai to aj if and only if ui > uj. Given a parliament
x = (x1, . . . , xm) its total utility for this voter will be

u(x) = P (x) · u,

where · is the dot product in Rm. Her preference order % on Sm−1 is defined so that for two
parliaments x,y

x % y⇐⇒ u(x) ≥ u(y).

We will denote this type of voter as %P,u. These types form the class P of power maximising
voters.

For m = 3 power maximisers may be further categorised according to their attitude to
uncertainty. Let Ur be some voter’s rth largest utility. We say that this voter is uncertainty
averse if U2 >

1
2(U1 + U3), uncertainty seeking if U2 <

1
2(U1 + U3) and uncertainty neutral if

U2 = 1
2(U1 + U3).

Example 4. Suppose that a power maximising voter with index of voting power P prefers A to
B to C. In this case Ui = ui for i = 1, 2, 3. Suppose this voter is comparing two parliaments x
and y with respective vectors of power indices p = P (x) = (13 ,

1
3 ,

1
3) and q = P (y) = (0, 1, 0).

As we have u(x) =
1

3
(U1 + U2 + U3) and u(y) = U2 we have x % y if the voter is uncertainty

seeking and y % x if she is uncertainty averse.

In this example, the vector p corresponds to a post-election situation where none of the three
parties has an outright majority, and a coalition government will need to be formed. If a voter
anticipates, prior to the election, that p will be the outcome, then she may be uncertain about
the composition of the next government. The vector q corresponds to a post-election situation
where party B has total power, and can form a government by itself. A voter of the opinion
that q will be the outcome of the election will have no doubt as to the composition of the next
government. Thus the voter will rank x over y if she is uncertainty seeking, or y over x if she
is uncertainty averse.

Let P : Sm−1 → Sm−1 be an index of voting power. Then the image of P is the set of all
possible vectors of voting power that might emerge when P is used to measure the distribution
of power. This set is finite. We illustrate this in the proposition below for the m = 3 case.

17



Proposition 1. Let the three parties be A,B,C. Let us split S2 into four equilateral triangles
as shown below (K,L,M are the midpoints of the respective sides):
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Figure 8: Possible vectors of power indices.

Then, irrespective of which power index P is used, the vectors of power indices inside those
triangles are shown on Figure 8.

Proof. Irrespective of the choice of P , whenever the parliament x falls strictly inside one of the
triangles AKM , BML, or CLK, then P (x), will be (1, 0, 0), (0, 1, 0), or (0, 0, 1), respectively,
since two parties in this parliament will be dummies (condition PI1). Should the parliament x
fall inside the inner triangle, then P (x) will be (13 ,

1
3 ,

1
3) due to the symmetry (condition PI2).

If the parliament coincides with one of the vertices of the inner triangle M , K, and L, the
vector of indices, regardless of the index, will be (12 ,

1
2 , 0) or a permutation thereof. Should the

parliament fall on the perimeter of the inner triangle (excluding points M , K, and L) the vector
of power indices will depend on the index of voting power used by the voter. For example,
the vector P (x) of a voter who uses the Banzhaf power index will be either (35 ,

1
5 ,

1
5) or some

permutation thereof, and the vector P (x) of a voter who uses the Shapley-Shubik power index
will be (46 ,

1
6 ,

1
6) or, again, some permutation thereof.1

Example 5. Consider again the case where m = 3 and a voter prefers A to B to C (denote
this linear order by L). Then for the four parliaments x, y, z, m, located on Figure 8 inside the
triangles AKM , BML, CLK, KLM , respectively, all power maximisers whose type is consistent
with L will prefer x to y to z and also x to m to z. However, some of them will prefer y to m
and some will prefer m to y, depending on their attitude towards uncertainty.

We now state and prove two theorems concerning the opportunities power maximisers have
for voting strategically. We continue to restrict ourselves to the m = 3 situation.

Theorem 4. Let the parliament choosing rule F be PR with a threshold. Let w denote the
vector of weights for the corresponding normalised positional score function. Then the rule is
always micro-manipulable by voters in P, but never strongly so. Moreover,

1The last two values will not be used in the paper and we leave their calculations to the reader.
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1. If w = a, i.e. for the antiplurality score, the rule is not manipulable by uncertainty averse
voters.

2. If w = p, i.e. for the plurality score, the rule is not manipulable by uncertainty seeking
voters.

Proof. Suppose voters with preferences A > B > C are comparing the outcome that would
transpire if they vote truthfully with that that would arise if they voted untruthfully. They can
move the vector of the scores in the directions shown on Figure 4. Moving in those directions
they cannot escape from the region inside KCL on Figure 9.
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Figure 9: Weak manipulation under pure PR.

They would not wish to escape into KCL since the vector of power indices there is (0, 0, 1),
and they realise the lowest possible utility. Nor would they wish to escape out of AKM , where
the vector of power indices is (1, 0, 0), and they realise the highest possible utility. But if they
were uncertainty averse, they would seek — by voting strategically — to move the expected
vector of scores X from inside MKL, where the vector of power indices is (1/3, 1/3, 1/3), or
from segment ML, to inside MLB, where power indices will be (0, 1, 0). If they were uncertainty
seeking, they would be keen to move the expected vector of scores Y the other way. In either
case, if the vector of scores they expect to transpire if they vote sincerely is ‘close’ enough to
ML, and if the score function permits, an incentive to manipulate exists. It is not true, however,
that all voters whose type is consistent with A > B > C will have an incentive to manipulate
in the same fashion. Hence the manipulative opportunities are not strong.

It is interesting to note that if a group of voters with preference A > B > C expect that if
they all vote sincerely the vector of scores will lie ‘in the vicinity of ML’, the uncertainty averse
and uncertainty seeking members of this group would then attempt to manipulative against each
other, even though they have identical preferences on the set of parties.

We now show that the introduction of a threshold creates opportunities for strong manipu-
lation.

Theorem 5. Let the parliament choosing rule F be proportional representation rule with a
threshold with the normalised positional score function given by the vector of weights w. Then
the rule is strongly micro-manipulable by power maximisers iff w 6= a.
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Proof. We again use S2 to represents vectors of normalised positional scores scw. The intro-
duction of a threshold changes the shape of the regions in which the vector of power indices,
associated with the normalised score, is constant. The new regions are shown in Figure 10. The
inner equilateral triangle of Figure 8 is now truncated due to the action of the threshold seat
allocation rule. The central region, in which the vector of power indices is (13 ,

1
3 ,

1
3), becomes a

hexagon. The three regions in which the vector of power indices is equal to (1, 0, 0), (0, 1, 0), or
(0, 0, 1) are no longer convex.
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Figure 10: PR with a threshold. A possible strong manipulation

Suppose that a small group of voters with preference A > B > C believe that if they vote
sincerely the resulting normalised score will correspond to the point X (note that X lies inside
the triangle KLM and therefore it can be approximated by normalised positional scores for any
vector w). At this point, B does not score highly enough to overcome the threshold. If at the
election the group in question all insincerely state their preferences to be B > A > C, they may
be able (so long as the score function is not antiplurality) to push B over the threshold, and
move the expected vector of scores inside the hexagon. When this group votes truthfully, the
vector of voting power is anticipated to be (0, 0, 1). Untruthful voting could bring about the
vector of voting power (13 ,

1
3 ,

1
3). This is an unambiguously better prospect for all voters with

preference A > B > C, regardless of their vector of utilities. The introduction of a threshold
can, therefore, create opportunities for strong manipulation.

6 Overshooting

An uncoordinated group of voters attempting to manipulate across a threshold can be in danger
of overshooting or undershooting. This is true even if the attempt is at micro-manipulation.
We demonstrate here that uncertainty seeking voters may undershoot and uncertainty averse
voters may overshoot. For example (and refering to Figure 11), undershooting may occur with
the sincere vector of scores X and overshooting may occur with the sincere vector of scores Y .
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Figure 11: PR with a threshold. Overshooting and undershooting

We illustrate this with an example of undershooting that corresponds to the first situation.

Example 6. Suppose the scoring rule is plurality and the threshold is 6%. Suppose in total
we have 100 voters and the vector of scores corresponding to the parliament X is 1

100(6, 46, 48)
with the parliament being the same as the score. If three voters who voted A > B > C will
vote B > A > C, then the resulting score will be 1

100(3, 49, 48) and the resulting parliament
will be (0, 50.52, 49.48) with the vector of power indices (0, 1, 0). However if only one voter will
change her preferences in this way, the resulting score will be 1

100(5, 47, 48) with the parliament
(0, 49.47, 50.53) and the vector of power indices (0, 0, 1).
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Figure 12: Pure PR. An impossible overshoot.

Absent a threshold, overshooting is almost impossible. It is not, for example, possible for a
group of uncertainty seekers to overshoot in the manner depicted in Figure 12. We omit a formal
proof. Informally, the point X is close to BC, meaning that the score of party A is low. This in
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turn means that there would not be a sufficient number of voters with preferences A > B > C
to move the profile from the interior of MLB to the interior of CLK.

In the next section we will see that overshooting becomes a much more serious issue in the
presence of rounding.

7 The 2005 New Zealand General Election

The NZ electoral system is mixed member proportional, with a 5% threshold. Voters have
two votes - an electoral (district) vote, and a party vote. A first-past-the-post election is run
in 69 electorates, with the winner of each electorate becoming an MP. Party votes are tallied
nationally. The Saint-Lague formula is then applied to the party votes to determine how many
seats in total each party is entitled to in the 120 seat parliament. If a party neither wins an
electorate nor more than 5% of the party vote then it is excluded from consideration. If a
party has fewer electorate wins than places in the highest 120 Saint-Lague quotients then its
parliamentary representation is topped-up accordingly from the party list. If a party wins more
electoral seats than it is entitled to by its party vote, an overhung parliament with more than
120 seats is created. This actually happened in 2005, when a parliament with 121 seats was
formed.

The main political parties participating in the 2005 New Zealand general election were (in
alphabetical order): ACT, Green Party, Labour, Maori Party, National, NZ First, Progressive,
United Future. Labour, the Greens, and the Progressives can be considered as left parties;
National, ACT and to some extent United Future are on the right side of the political spectrum.
For more detailed information on the election see Geddis (2006).

At the election 28.71% of voters gave their electorate vote and their party vote to different
parties (New Zealand Election Results, http://www.electionresults.govt.nz/) (down from
39.04% in 2002). Some of these voters may have split because their first choice did not stand
a candidate in their electorate.2 But the 28.71% figure is high enough to suggest a reasonable
amount of insincere voting went on. In particular, anecdotal evidence (reports to the authors)
has suggested that some voters with preferences

Labour > Greens > ...

may have cast their party vote for the Greens. We use our model of a power maximising voter
to explain why.

The two opinion polls closest to the election gave the following results:

Poll Date Labour National NZ First Greens

TVNZ Colmar Brunton 15 September 38% 41% 5.5% 5.1%
Herald Digipoll 16 September 44.6% 37.4% 4.5% 4.6%

Table 1: Party vote shares as given by the final two opinion poll

Results of previous polls are widely available on the internet. The Green Party were not expected
to win an electorate seat, and NZ First were expected to win at most one. As it turned out,

2A similar pattern has been observed in Germany (Gschwend, 2007).

22

http://www.electionresults.govt.nz/


neither party won an electorate seat. Since Labour and the Greens were not able to form a
government, the ‘strange-bedfellow’ phenomenon (Brams, Jones and Kilgour, 2002) occurred
and Labour formed a coalition with NZ First, United Future, and the Progressive Party. (NZ
First and United Future stayed outside of the government but supported it on confidence and
supply.) Table 2, below, shows the actual election result. Also shown is what would have
transpired had 0.4% of the electorate given their party vote to Labour rather than to the Greens
(ceteris paribus).

Actual Hypothesised

Party

Labour
National
NZ First

Green Party
Maori Party

United Future
ACT

Progressive

Party Vote Seats SS

41.10 50 0.324
39.10 48 0.262
5.72 7 0.143
5.30 6 0.110
2.12 4 0.076
2.67 3 0.043
1.51 2 0.029
1.16 1 0.014

Party Vote Seats SS

41.50 54 0.414
39.10 50 0.214
5.72 7 0.214
4.90 0 0.0
2.12 4 0.081
2.67 3 0.048
1.51 2 0.014
1.16 1 0.014

Table 2: Actual and hypothesised results of the NZ 2005 general election

Election results were obtained from http://electionresults.govt.nz. Alternative elec-
tion scenarios can be investigated at http://www.elections.org.nz/mmp.html. Voting power
indices were calculated at Leech, D. and Leech, R. (cited on August, 6, 2007).

Let us now make a calculation. Suppose that a group of voters at the 2005 general election
behaved as do voters in our model. Suppose that all members of this group were solely concerned
with how Shapley-Shubik power will be distributed in the post-election parliament. Suppose that
all members of this group rank the Labour party first, the Green Party second, and attribute
zero or negligibly small utility to the powers of all the other parties contesting the election.
Further suppose that each group member believes that the election outcome laid out in the
right-hand-side of Table 2 is a distinct possibility. Such a supposition is not unreasonable, given
the pre-election polls. Then members of this group may have an incentive to party vote Green.
The existence and strength of such incentives will depend on each individual voter’s utilities.

Define

αi =
ui(Greens)

ui(Labour)

to be the ratio of utilities of the Greens and Labour calculated for the ith voter. To construct
Figure 13 below we first fix the party votes obtained by all parties other than Labour and the
Greens. We then allow the Greens’ party vote to vary from 4.9% to 8.9% (and, necessarily,
Labour’s party vote to vary from 41.5% to 37.5%). For each possible Green party vote we show,
on the vertical axis, the minimum value of αi the ith voter must have in order to prefer the
outcome arising from this Green party vote to the hypothesised outcome arising when the Greens
secure 4.9%. For example, suppose the ith voter is comparing the outcome arising when the
Greens win 5.3% of the party vote to the outcome arising when the Greens win 4.9% (i.e. he or
she is comparing the parliament on the left-hand-side of Table 2 to that on the right-hand-side
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of Table 2). This voter prefers the former to the latter provided αi > 0.826.
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Figure 13 Graph of minimal utility ratio for which the manipulation is worthwhile

The shape of the graph reflects the working of the Saint-Lague formula. Consider the sit-
uation, for example, when the Greens have 5.3% of the party vote (the actual election result).
At this point, the 119th largest Saint-Lague quotient belongs to Labour, and the 120th largest
to National. As the Greens’ party vote increases (to the detriment of Labour’s) past 5.35%,
the Green party capture the 120th largest quotient from National. The Greens then win a 7th
parliamentary seat, and National lose their 48th. As the Greens’ party vote rises further, their
7th largest quotient eventually exceeds Labour’s 50th largest. No seat changes hands, but the
Greens then have the 119th largest quotient, and Labour the 120th largest. As the Greens’ party
vote increases past 5.65%, Labour’s party vote decreases to the point where its 50th largest quo-
tient falls below National’s 48th largest. National’s 48th seat is then restored at the expense of
Labour’s 50th. The cycle then repeats itself as the Greens’ party vote continues to increase.

The ith voter prefers a parliament with the Greens on between 6 and 11 seats, and with
National on 47, to a parliament without the Greens, and with National on 50, provided they
have αi > 0.676. This voter prefers a parliament with the Greens on between 6 and 11 seats,
and with National on 48, to a parliament without the Greens, and with National on 50, provided
that αi > 0.897.

The ith voter unreservedly prefers a parliament with a small number of Greens to a parlia-
ment without the Greens if she has αi > 0.897. Only those voters who value Green power nearly
as highly as Labour power would meet this criterion. Such a voter would have a clear incentive
to give their party vote to the Greens, despite their first preference being for Labour. If this
voter party votes Green, she increases the likelihood that the Greens will reach parliament. If
sufficiently many other group members feel and act the same way, then the Greens will enter
parliament.

The ith voter with 0.676 < αi < 0.897 prefers some parliaments where the Greens are
present to those where the Greens are not, but not all. Such group members would not have an
unambiguous incentive to party vote Green unless they knew precisely how many other group
members were also going to use their vote strategically. By voting strategically they would be
at risk of both overshooting and undershooting.

We conjecture, then, that at the 2005 NZ general election certain voters with preference
Labour > Green > . . . felt they preferred the power configuration of a parliament with a
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small Green presence to that of a Green-less parliament, thought that polling data showed
the Greens might not cross the threshold, and so party voted Green in order to increase the
likelihood that the Greens would enter parliament. We do not suggest that these voters co-
ordinated, nor that they had knowledge of the preferences or intentions of others beyond what
was available from widely disseminated polling data. We conjecture that the Greens were polling
so close to the threshold that these voters were not overly concerned about damaging Labour’s
prospects without improving the Greens showing (strategically undershooting). We conjecture
that these voters were not worried about overshooting because they felt the proportion of the
electorate that was (i) concerned about configurations of parliamentary power, (ii) had preference
Labour > Green > . . ., and (iii) had 0.897 < α, was relatively small (in particular, less than
4.0%).

Also, it may be the case that there are in practice many kinds of voters - some voters may
be concerned with the post-election distribution of voting power, others with the post-election
distribution of seats, others with the policies to be pursued by the next government, etc. The
calculations that this paper presents would obviously be too difficult for voters to do. However,
the data presented shows that, acting on the intuitive level, they came very close to doing just
that.

8 Conclusion

This paper has presented two new models of voter behaviour under methods of proportional
representation: seat maximising and power maximising voters. We showed that (rounding
aside) seat maximising voters have no incentives to manipulate under pure PR, but do have such
incentives under PR with a threshold. We showed that if voters are mindful of how voting power
will be distributed in the post-election parliament then incentives to vote insincerely will exist
under any method of PR. We showed that attitudes to uncertainty may influence incentives to
vote insincerely. We demonstrated that introducing a threshold could encourage greater numbers
of voters to vote strategically in the same manner. We raised the issue of manipulating attempts
overshooting or undershooting. We showed that rounding can, to a degree, deter voters from
manipulation since it may cause both undershooting and overshooting. After studying the 2005
New Zealand general election we note that, with two major minor parties having approximately
5% support in society, a threshold of 3% may have induced less insincere voting than did the
actual threshold of 5%.

Questions this paper raises that future research could address include: How do incentives
to vote strategically vary with the choice of positional scoring rule? What if the scoring rule
is not positional? The case m > 3 should be interesting with major power indices being dif-
ferent. Finally, the undershooting/overshooting phenomenon deserves a thorough investigation,
especially with regard to how it acts to deter manipulation.
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