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Abstract. Edelman & Fishburn (2006) initiated the study of abstract sim-

plicial complexes which are initial segments of qualitative probability orders.
By their nature they are combinatorial generalizations of threshold complexes,

however they have not been studied before. In this paper we prove that the
class of initial segments of qualitative probabilities is a new class, different

from all the classic generalizations of threshold complexes. More precisely we

construct a qualitative probability order on 26 atoms that has an initial seg-
ment which is not a threshold simplicial complex. Although 26 is probably not

the minimal number for which such example exists we provide some evidence

that it cannot be much smaller.

1. Introduction

The concept of qualitative (comparative) probability takes its origins in attempts
of de Finetti (1931) to axiomatise probability theory. It also played an important
role in the expected utility theory of Savage (1954, p.32). The essence of a qual-
itative probability is that it does not give us numerical probabilities but instead
provides us with the information, for every pair of events, which one is more likely
to happen. The class of qualitative probability orders is broader than the class of
probability measures for any n ≥ 5 (Kraft et al., 1959). Qualitative probability or-
ders on finite sets are now recognised as an important combinatorial object (Kraft
et al., 1959; Fishburn, 1996, 1997) that finds applications in areas as far apart from
probability theory as the theory of Gröbner bases (e.g., Maclagan, 1999).

Another important combinatorial object, also defined on a finite set is an abstract
simplicial complex. This is a set of subsets of a finite set, called faces, with the
property that a subset of a face is also a face. This concept is dual to the concept of
a simple game whose winning coalitions form a set of subsets of a finite set with the
property that if a coalition is winning, then every superset of it is also a winning
coalition. The most studied class of simplicial complexes is the class of threshold
simplicial complexes. These arise when we assign weights to elements of a finite
set, set a threshold and define faces as those subsets whose combined weight is not
achieving the threshold. Given a qualitative probability order one may obtain a
simplicial complex in another way. For this one has to choose a threshold—which
now will be a subset of our finite set—and consider as faces all subsets that are
earlier than the threshold in the given qualitative probability order. The new class
of simplicial complexes contains threshold complexes and is contained in a well-
studied class of shifted complexes (Klivans, 2005, 2007). A natural question is
therefore to ask if this is indeed a new class and whether or not it is different from
the class of threshold complexes.
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In this paper we give answer to this question by presenting an initial segment
of a qualitative probability order on 26 atoms that is not threshold. We also show
that such example cannot be too small, in particular, it is unlikely that one can be
found on less than 18 atoms.

The structure of this paper is as follows. In Section 2 we introduce the basics of
qualitative probability orders. In Section 3 we give a construction that will further
provide us with examples of qualitative probability orders that are not related to
any probability measure. In Section 4 we consider abstract simplicial complexes
and give necessary and sufficient conditions for them being threshold. Finally in
Section 5 we present our main result which is an example of a qualitative probability
order on 26 atoms that is not threshold. Section 6 concludes with some relevant
results and a discussion.

2. Qualitative Probability Orders and Discrete Cones

In this paper all our objects are defined on the set [n] = {1, 2, . . . , n}. By 2[n]

we denote the set of all subsets of [n]. An order1 � on 2[n] is called a qualitative
probability order on [n], if it is not true that

(1) A � ∅
for every nonempty subset A of [n], and � satisfies de Finetti’s axiom, namely for
all A,B,C ∈ 2[n]

(2) A � B ⇐⇒ A ∪ C � B ∪ C whenever (A ∪B) ∩ C = ∅ .
Note that if we have a probability measure p = (p1, . . . , pn) on [n], where pi

is the probability of i, then we know the probability p(A) of every event A and
p(A) =

∑
i∈A pi. We may now define a relation � on 2[n] by

A � B if and only if p(A) ≤ p(B);

obviously � is a qualitative probability order on [n], and any such order is called
representable (e.g., Fishburn, 1996; Regoli, 2000). Those not obtainable in this way
are called non-representable. The class of qualitative probability orders is broader
than the class of probability measures for any n ≥ 5 (Kraft et al., 1959). A non-
representable qualitative probability order � on [n] is said to almost agree with the
measure p on [n] if

(3) A � B =⇒ p(A) ≤ p(B).

If such a measure p exists, then the order � is said to be almost representable. Since
the arrow in (3) is only one-sided it is perfectly possible for an almost representable
order to have A � B but not B � A while p(A) = p(B).

We will start with some rather standard properties of qualitative probability
orders which we will need further. Let � be a qualitative probability order on 2[n].
As usual the following two relations can be derived from it. We write A ≺ B if
A � B but not B � A and A ∼ B if A � B and B � A.

Lemma 1. Suppose that � is a qualitative probability order on 2[n], A,B,C,D ∈
2[n], A � B, C � D and B ∩D = ∅. Then A∪C � B ∪D. Moreover, if A ≺ B or
C ≺ D, then A ∪ C ≺ B ∪D.

1An order in this paper is any reflexive, complete and transitive binary relation. If it is also
anti-symmetric, it is called linear order.
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Proof. Firstly, let us consider the case when A ∩ C = ∅. Let B′ = B \ C and
C ′ = C \B and I = B ∩ C. Then by (2) we have

A ∪ C ′ � B ∪ C ′ = B′ ∪ C � B′ ∪D
where we have A ∪ C ′ ≺ B′ ∪D if A ≺ B or C ≺ D. Now we have

A ∪ C ′ � B′ ∪D ⇔ A ∪ C = (A ∪ C ′) ∪ I � (B′ ∪D) ∪ I = B ∪D.
Now let us consider the case when A ∩ C 6= ∅. Let A′ = A \ C. By (1) and (2) we
now have A′ ≺ B. Since now we have A′ ∩ C = ∅ so by the previous case

A ∪ C = A′ ∪ C ≺ B ∪ C � B ∪D.
In this case we always obtain a strict inequality. �

A weaker version of this lemma can be found in Maclagan (1999)[Lemma 2.2].

Definition 1. A sequence of subsets (A1, . . . , Aj ;B1, . . . , Bj) of [n] of even length
2j is said to be a trading transform of length j if for every i ∈ [n]

|{j | i ∈ Aj}| = |{j | i ∈ Bj}| .
In other words, sets A1, . . . , Aj can be converted into B1, . . . , Bj by rearranging

their elements. We say that an order � on 2[n] satisfies the k-th cancellation con-
dition CCk if there does not exist a trading transform (A1, . . . , Ak;B1, . . . , Bk)
such that Ai � Bi for all i ∈ [k] and Ai ≺ Bi for at least one i ∈ [k].

The key result of Kraft et al. (1959) can now be reformulated as follows.

Theorem 1 (Kraft-Pratt-Seidenberg). A qualitative probability order � is repre-
sentable if and only if it satisfies CCk for all k = 1, 2, . . ..

It was also shown in Fishburn (1996, Section 2) that CC2 and CC3 hold for linear
qualitative probability orders. It follows from de Finetti’s axiom and properties of
linear orders. It can be shown that a qualitative probability order satisfies CC2

and CC3 as well. Hence CC4 is the first nontrivial cancellation condition. As
was noticed in Kraft et al. (1959), for n < 5 all qualitative probability orders are
representable, but for n = 5 there are non-representable ones. For n = 5 all orders
are still almost representable Fishburn (1996) which is no longer true for n = 6
Kraft et al. (1959).

To every such linear order �, there corresponds a discrete cone C(�) in Tn,
where T = {−1, 0, 1}, as defined in Fishburn (1996).

Definition 2. A subset C ⊆ Tn is said to be a discrete cone if the following
properties hold:

D1. {e1, . . . , en} ⊆ C and {−e1, . . . ,−en} ∩ C = ∅, where {e1, . . . , en} is the
standard basis of Rn,

D2. {−x,x} ∩ C 6= ∅ for every x ∈ Tn,
D3. x + y ∈ C whenever x,y ∈ C and x + y ∈ Tn.

We note that in Fishburn (1996), Fishburn requires 0 /∈ C because his orders
are anti-reflexive. In our case, condition D2 implies 0 ∈ C.

Given a qualitative probability order � on 2[n], for every pair of subsets A,B
satisfying B � A we construct a characteristic vector of this pair χ(A,B) = χA−
χB ∈ Tn. We define the set C(�) of all characteristic vectors χ(A,B), for A,B ∈
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2[n] such that B � A. The two axioms of qualitative probability guarantee that
C(�) is a discrete cone (see Fishburn, 1996, Lemma 2.1).

Following Fishburn (1996), the cancellation conditions can be reformulated as
follows:

Proposition 1. A qualitative probability order � satisfies the k-th cancellation
condition CCk if and only if for no set {x1,x2, . . . ,xk} of nonzero vectors in C(�)
such that

(4) x1 + x2 + · · ·+ xm = 0

and −xi /∈ C(�) for at least one i.

Geometrically, a qualitative probability order � is representable if and only if
there exists a positive vector u ∈ Rn such that

x ∈ C(�)⇐⇒ (u,x) ≥ 0 for all x ∈ Tn \ {0},

where (·, ·) is the standard inner product; that is, � is representable if and only if
every non-zero vector in the cone C(�) lies in the closed half-space H+

u = {x ∈
Rn | (u,x) ≥ 0} of the corresponding hyperplane Hu = {x ∈ Rn | (u,x) = 0}.

Similarly, for a non-representable but almost representable qualitative probabil-
ity order �, there exists a vector u ∈ Rn with non-negative entries such that

x ∈ C(�) =⇒ (u,x) ≥ 0 for all x ∈ Tn \ {0}.

In the latter case we can have x ∈ C(�) and −x /∈ C(�) despite (u,x) = 0.
In both cases, the normalised vector u gives us the probability measure, namely

p = (u1 + . . . + un)−1 (u1, . . . , un), from which � arises or with which it almost
agrees.

3. Constructing almost representable orders from nonlinear
representable ones

Proposition 2. Let � be a non-representable but almost representable qualitative
probability order which almost agrees with a probability measure p. Suppose that
the mth cancellation condition CCm is violated, and that for some non-zero vec-
tors {x1,x2, . . . ,xm} ⊆ C(�) the condition (4) holds. Then all of the vectors
x1,x2, . . . ,xm lie in the hyperplane Hp.

Proof. First note that for every x ∈ C(�) which does not belong to Hp, we have
(p,x) > 0. Hence the condition (4) can hold only when all xi ∈ Hp. �

We need to understand how we can construct new qualitative probability orders
from old ones so we need the following investigation. Let � be a representable but
not linear qualitative probability order which agrees with a probability measure p.

Let S(�) be the set of all vectors of C(�) which lie in the corresponding hyper-
plane Hp. Clearly, if x ∈ S(�), then −x is a vector of S(�) as well. Since in the
definition of discrete cone it is sufficient that only one of these vectors is in C(�)
we may try to remove one of them in order to obtain a new qualitative probability
order. The new order will almost agree with p and hence will be at least almost
representable. The big question is: what are the conditions under which a set of
vectors can be removed from S(�)?
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What can prevent us from removing a vector from S(�)? Intuitively, we cannot
remove a vector if the set comparison corresponding to it is a consequence of those
remaining. We need to consider what a consequence means formally.

There are two ways in which one set comparison might imply another one. The
first way is by means of the de Finetti condition. This however is already built in the
definition of the discrete cone as χ(A,B) = χ(A∪C,B∪C). Another way in which a
comparison may be implied from two other is transitivity. This has a nice algebraic
characterisation. Indeed, if C ≺ B ≺ A, then χ(A,C) = χ(A,B) + χ(B,C). This
leads us to the following definition.

Following Christian et al. (2007) let us define a restricted sum for vectors in a
discrete cone C. Let u,v ∈ C. Then

u⊕ v =

{
u + v if u + v ∈ Tn,

undefined if u + v /∈ Tn.

It was shown in (Fishburn, 1996, Lemma 2.1) that the transitivity of a qualitative
probability order is equivalent to closedness of its corresponding discrete cone with
respect to the restricted addition (without formally defining the latter). The axiom
D3 of the discrete cone can be rewritten as

D3. x⊕ y ∈ C whenever x,y ∈ C and x⊕ y is defined.

Note that a restricted sum is not associative.

Theorem 2 (Construction method). Let � be a representable non-linear qualitative
probability order which agrees with the probability measure p. Let S(�) be the set
of all vectors of C(�) which lie in the hyperplane Hp. Let X be a subset of S(�)
such that

• X ∩ {s,−s} 6= ∅ for every s ∈ S(�).
• X is closed under the operation of restricted sum.

Then Y = S(�)\X may be dropped from C(�), that is CY = C(�)\Y is a discrete
cone.

Proof. We first note that if x ∈ C(�) \ S(�) and y ∈ C(�), then x⊕ y, if defined,
cannot be in S(�). So due to closedness of X under the restricted addition all
axioms of a discrete cone are satisfied for CY . On the other hand, if for some two
vectors x,y ∈ X we have x⊕ y ∈ Y , then CY would not be a discrete cone and we
would not be able to construct a qualitative probability order associated with this
set. �

Example 1 (Positive example). The probability measure

p =
1

16
(6, 4, 3, 2, 1).

defines a qualitative probability order � on [5] (which is better written from the
other end):

∅ ≺ 5 ≺ 4 ≺ 3 ≺ 45 ≺ 35 ∼ 2 ≺ 25 ∼ 34 ≺ 1 ≺ 345 ∼ 24 ≺ 23 ∼ 15 ≺ 245 ≺ 14 ∼ 235 . . . .

(Here only the first 17 terms are shown, since the remaining ones can be uniquely
reconstructed. See (Kraft et al., 1959, Proposition 1) for details). There are only
four equivalences here

35 ∼ 2, 25 ∼ 34, 23 ∼ 15 and 14 ∼ 235,
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and all other follow from them, that is:

35 ∼ 2 implies 345 ∼ 24, 135 ∼ 12;

25 ∼ 34 implies 125 ∼ 134;

23 ∼ 15 implies 234 ∼ 145;

14 ∼ 235 has no consequences

Let u1 = χ(2, 35) = (0, 1,−1, 0,−1), u2 = χ(34, 25) = (0,−1, 1, 1,−1), u3 =
χ(15, 23) = (1,−1,−1, 0, 1) and u4 = χ(235, 14) = (−1, 1, 1,−1, 1). Then

S(�) = {±u1,±u2,±u3,±u4}

and X = {u1,u2,u3,u4} is closed under the restricted addition as ui⊕uj is unde-
fined for all i 6= j. Hence we can subtract from the cone C(�) any non-empty subset
Y of −X = {−u1,−u2,−u3,−u4} and still get a qualitative probability. Since

u1 + u2 + u3 + u4 = 0.

it will not be representable. The new order corresponding to the discrete cone C−X
is linear.

Example 2 (Negative example). A certain qualitative probability order is associ-
ated with the Gabelman game of order 3. Nine players are involved each of whom
we think as associated with a certain cell of a 3× 3 square:

1 2 3
4 5 6
7 8 9

The ith player is given a positive weight wi, i = 1, 2, . . . , 9, such that in the quali-
tative probability order, associated with w = (w1, . . . , w9),

147 ∼ 258 ∼ 369 ∼ 123 ∼ 456 ∼ 789

and all other equivalencies are consequences of these. Suppose that we want to
construct a qualitative probability order � for which

147 ∼ 258 ∼ 369 ≺ 123 ∼ 456 ∼ 789.

Then we would like to claim that it is not weighted since for the vectors

x1 = (0, 1, 1,−1, 0, 0,−1, 0, 0) = χ(123, 147),

x2 = (0,−1, 0, 1, 0, 1, 0,−1, 0) = χ(456, 258),

x3 = (0, 0,−1, 0, 0,−1, 1, 1, 0) = χ(789, 369)

we have x1 +x2 +x3 = 0. Putting the sign ≺ instead of ∼ between 369 and 123 will
also automatically imply 147 ≺ 123, 258 ≺ 456 and 369 ≺ 789. This means that
we are dropping the set of vectors {−x1,−x2,−x3} from the cone while leaving the
set {x1,x2,x3} there. This would not be possible since x1 ⊕ x2 = −x3. So every
X ⊃ {x1,x2,x3} with X ∩ {−x1,−x2,−x3} = ∅ is not closed under ⊕.

4. Simplicial complexes and their cancellation conditions

A subset ∆ ⊆ 2[n] is an (abstract) simplicial complex if it satisfies the condition:

if B ∈ ∆ and A ⊆ B, then A ∈ ∆.
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Subsets that are in ∆ are called faces. Abstract simplicial complexes arose from
geometric simplicial complexes in topology (e.g., Maunder, 1996). Indeed, for ev-
ery geometric simplicial complex ∆ the set of vertex sets of simplices in ∆ is an
abstract simplicial complex, also called the vertex scheme of ∆. In combinatorial
optimization various abstract simplicial complexes associated with finite graphs
(Jonsson (2005)) are studied, such as the independence complex, matching com-
plex etc. Abstract simplicial complexes are also in one-to-one correspondence with
simple games as defined by Neumann & Morgenstern (1944). A simple game is a
pair G = ([n],W ), where W is a subset of the power set 2[n] which satisfies the
monotonicity condition:

if X ∈W and X ⊆ Y ⊆ [n], then Y ∈W .

The subsets from W are called winning coalitions and the subsets from L = 2[n]\W
are called losing coalitions. Obviously the set of losing coalitions L is a simplicial
complex. The reverse is also true: if ∆ is a simplicial complex, then the set 2[n] \∆
is a set of winning coalitions of a certain simple game.

The most studied class of simplicial complexes is the threshold complexes (mostly
as an equivalent concept to the concept of a weighted majority game but also
as threshold hypergraphs (Reiterman et al., 1985)). A simplicial complex ∆ is
a threshold complex if there exist non-negative reals w1, . . . , wn and a positive
constant q, such that

A ∈ ∆⇐⇒ w(A) =
∑
i∈A

wi < q.

The same parameters define a what is known as a weighted majority game by setting

A ∈W ⇐⇒ w(A) =
∑
i∈A

wi ≥ q.

This game has the standard notation [q;w1, . . . , wn].

A much larger but still well-understood class of simplicial complexes are shifted
simplicial complexes (Klivans, 2005, 2007). A simplicial complex is shifted if there
exists an order E on the set of vertices [n] such that for any face F , replacing any of
its vertices x ∈ F with a vertex y such that y E x results in a subset (F \{x})∪{y}
which is also a face. Shifted complexes correspond to complete2 games (Freixas &
Molinero, 2009). A complete game has an order E on players such that if a coalition
W is winning, then replacing any player x ∈ W with a player x E z results in a
coalition (W \ {x}) ∪ {z} which is also winning.

A related concept is the so-called Isbel’s desirability relation ≤I Taylor & Zwicker
(1999). Given a game G the relation ≤I on [n] is defined by setting j ≤I i if for
every set X ⊆ [n] not containing i and j

(5) X ∪ {j} ∈W =⇒ X ∪ {i} ∈W.

The idea is that if j ≤I i, then i is more desirable as a coalition partner than j.
The game is complete iff ≤I is an order on [n].

Let � be a qualitative probability order on [n] and T ∈ 2[n]. We denote

∆(�, T ) = {X ⊆ [n] | X ≺ T},

2sometimes also called linear
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where X ≺ Y stands for X � Y but not Y � X, and call it an initial segment
of �. Any initial segment of a qualitative probability order is a shifted simplicial
complex. Similarly, the terminal segment

G(�, T ) = {X ⊆ [n] | T � X}

of any qualitative probability order is a complete simple game.

Necessary and sufficient conditions for a simplicial complex to be a threshold
complex arise in the similar manner as cancellation conditions for the qualitative
probability orders.

Definition 3. A simplicial complex ∆ is said to satisfy CC∗k if for no k ≥ 2 there
exists a trading transform (A1, . . . , Ak;B1, . . . , Bk), such that Ai ∈ ∆ and Bi /∈ ∆,
for every i ∈ [k].

The Theorem 2.4.2 of the book Taylor & Zwicker (1999) can be reformulated to
give necessary and sufficient conditions for the simplicial complex to be a threshold.

Theorem 3. An abstract simplicial complex ∆ ⊆ 2[n] is a threshold complex if and
only if the condition CC∗k holds for all k ≥ 2.

Let us show the connection between CCk and CC∗k .

Theorem 4. Suppose � is a qualitative probability order on 2[n] and ∆(�, T ) is
its initial segment. If � satisfies CCk then ∆(�, T ) satisfies CC∗k .

This gives us some initial properties of initial segments. Since conditions CCk,
k = 2, 3, hold for all qualitative probability orders (Fishburn, 1996) we obtain

Theorem 5. If an abstract simplicial complex ∆ ⊆ 2[n] is an initial segment of
some qualitative probability order, then it satisfies CC∗k for all k ≤ 3.

We will now show that for small values of n cancellation condition CC∗4 is satisfied
for any initial segment. This will also give us invaluable information on how to
construct a non-threshold initial segment later.

Definition 4. Two pairs of subsets (A1, B1) and (A2, B2) are said to be compatible
if the following two conditions hold:

x ∈ A1 ∩A2 =⇒ x ∈ B1 ∪B2, and

x ∈ B1 ∩B2 =⇒ x ∈ A1 ∪A2.

Lemma 2. Let � be a qualitative probability order on 2[n], T ⊆ [n], and let ∆ =
∆n(�, T ) be the respective initial segment. Suppose (A1, . . . , As, B1, . . . , Bs) is a
trading transform and Ai ≺ T � Bj for all i, j ∈ [s]. If any two pairs (Ai, Bk) and
(Aj , Bl) are compatible, then � fails to satisfy CCs−1.

Proof. Let us define

Āi = Ai \ (Ai ∩Bk), B̄k = Bk \ (Ai ∩Bk),(6)

Āj = Aj \ (Aj ∩Bl), B̄l = Bl \ (Aj ∩Bl).(7)

We note that

(8) Āi ∩ Āj = B̄k ∩ B̄l = ∅.
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Indeed, suppose, for example, x ∈ Āi ∩ Āj , then also x ∈ Ai ∩ Aj and by the
compatibility x ∈ Bk or x ∈ Bl. In both cases it is impossible for x to be in
x ∈ Āi ∩ Āj . We note also that by Lemma 1 we have

(9) Āi ∪ Āj ≺ B̄k ∪ B̄l.

Now we observe that

(Āi, Āj , Am1
, . . . , Ams−2

; B̄k, B̄l, Br1 , . . . , Brs−2
).

is a trading transform. Hence, due to (8),

(Āi ∪ Āj , Am1 , . . . , Ams−2 ; B̄k ∪ B̄l, Br1 , . . . , Brs−2)

is also a trading transform. This violates CCs−1 since (9) holds and Amt
≺ Brt for

all t = 1, . . . , s− 2. �

By definition of a trading transform we are allowed to use repetitions of the
same coalition in it. However we will show that to violate CC∗4 we need a trading
transform (A1, . . . , A4;B1, . . . , B4) where all A’s and B’s are different.

Lemma 3. Let � be a qualitative probability order on 2[n], T ⊆ [n], and let ∆ =
∆n(�, T ) be the respective initial segment. Suppose (A1, . . . , A4, B1, . . . , B4) is a
trading transform and Ai ≺ T � Bj for all i, j ∈ [4]. Then

|{A1, . . . , A4}| = |{B1, . . . , B4}| = 4.

Proof. Note that every pair (Ai, Bj), (Al, Bk) is not compatible. Otherwise by
Lemma 2 the order � fails CC3, which contradicts to the fact that every qualitative
probability satisfies CC3. Assume, to the contrary, that we have at least two
identical coalitions among A1, . . . , A4 or B1, . . . , B4. Without loss of generality
we can assume A1 = A2. Clearly all A’s or all B’s cannot coincide and there are
at least two different A’s and two different B’s. Suppose A1 6= A3 and B1 6= B2.
The pair (A1, B1), (A3, B2) is not compatible. It means one of the following two
statements is true: either there is x ∈ A1 ∩ A3 such that x /∈ B1 ∪ B2 or there
is y ∈ B1 ∩ B2 such that y /∈ A1 ∪ A3. Consider the first case the other one is
similar. We know that x ∈ A1 ∩ A3 and we have at least three copies of x among
A1, . . . , A4. At the same time x /∈ B1 ∪ B2 and there could be at most two copies
of x among B1, . . . , B4. This is a contradiction. �

Theorem 6. CC∗4 holds for ∆ = ∆n(�, T ) for all n ≤ 17.

Proof. Let us consider the set of column vectors

(10) U = {x ∈ R8 | xi ∈ {0, 1} and x1 + x2 + x3 + x4 = x5 + x6 + x7 + x8 = 2}.
This set has an involution x 7→ x̄, where x̄i = 1−xi. Say, if x = (1, 1, 0, 0, 0, 0, 1, 1)T ,
then x̄ = (0, 0, 1, 1, 1, 1, 0, 0)T . There are 36 vectors from U which are split into 18
pairs {x, x̄}.

Suppose now T = (A1, A2, A3, A4;B1, B2, B3, B4) is a trading transform, Ai ≺
T � Bj and no two coalitions in the trading transform coincide. Let us write the
characteristic vectors of A1, A2, A3, A4, B1, B2, B3, B4 as rows of 8×n matrix M ,
respectively. Since � satisfies CC3, by Lemma 2 we know that no two pairs (Ai, Ba)
and (Aj , Bb) are compatible. The same can be said about the complementary pair
of pairs (Ak, Bc) and (Al, Bd), where {a, b, c, d} = {i, j, h, l} = [4]. We have

Ai ≺ Ba, Aj ≺ Bb, Ah ≺ Bc, Al ≺ Bd,
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Since (Ai, Ba) and (Aj , Bb) are not compatible one of the following two statements
is true: either there exists x ∈ Ai ∩ Aj such that x /∈ Ba ∪ Bb or there exists
y ∈ Ba ∩Bb such that x /∈ Ai ∪Aj . As T is the trading transform in the first case
we will also have x ∈ Bc ∩ Bd such that x /∈ Ah ∪ Al; in the second y ∈ Ah ∩ Al

such that y /∈ Bc ∪Bd.
Let us consider two columns Mx and My of M that corresponds to elements

x, y ∈ [n]. The above considerations show that both belong to U and Mx = M̄y.
In particular, if (i, j, k, l) = (a, b, c, d) = (1, 2, 3, 4), then the columns Mx and

My will be as in the following picture
x y

M =



χ(A1)
χ(A2)
χ(A3)
χ(A4)
χ(B1)
χ(B2)
χ(B3)
χ(B4)


=



1 0
1 0
0 1
0 1
0 1
0 1
1 0
1 0


(we emphasize however that we have only one such column in the matrix, not both).
We saw that one pairing of indices (i, a), (j, b), (k, c), (k, d) gives us a column from
one of the 18 pairs of U . It is easy to see that a vector from every pair of U can be
obtained by the appropriate choice of the pairing of indices. This means that the
matrix contains at least 18 columns. That is n ≥ 18. �

5. An example of a nonthreshold initial segment of a linear
qualitative probability order

In this section we shall construct an almost representable linear qualitative prob-
ability order v on 2[26] and a subset T ⊆ [26], such that the initial segment ∆(v, T )
of v is not a threshold complex as it fails to satisfy the condition CC∗4 .

The idea of the example is as follows. We will start with a representable linear
qualitative probability order � on [18] defined by weights w1, . . . , w18 and extend
it to a representable but nonlinear qualitative probability order �′ on [26] with
weights w1, . . . , w26. A distinctive feature of �′ will be the existence of eight sets
A′1, . . . , A

′
4, B′1, . . . , B

′
4 in [26] such that:

(1) The sequence (A′1, . . . , A
′
4;B′1, . . . , B

′
4) is a trading transform.

(2) The sets A′1, . . . , A
′
4, B′1, . . . , B

′
4 are tied in �′, that is,

A′1 ∼′ . . . A′4 ∼′ B′1 ∼′ . . . ∼′ B′4.

(3) If any two distinct sets X,Y ⊆ [26] are tied in �′, then χ(X,Y ) = χ(S, T ),
where S, T ∈ {A′1, . . . , A′4, B′1, . . . , B′4}. In other words all equivalences in
�′ are consequences of A′i ∼′ A′j , A′i ∼′ B′j , B′i ∼′ B′j , where i, j ∈ [4].

Then we will use Theorem 2 to untie the eight sets and to construct a comparative
probability order v for which

A′1 @ A
′
2 @ A

′
3 @ A

′
4 @ B

′
1 @ B

′
2 @ B

′
3 @ B

′
4,

where X @ Y means that X v Y is true but not Y v X.
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This will give us an initial segment ∆(v, A4) of the linear qualitative probability
order v, which is not threshold since CC∗4 fails to hold.

Let � be a representable linear qualitative probability order on 2[18] with weights
w1, . . . , w18 that are linearly independent (over Z) real numbers in the interval [0, 1].
Due to the choice of weights, no two distinct subsets X,Y ⊆ [18] have equal weights
relative to this system of weights, i.e.,

X 6= Y =⇒ w(X) =
∑
i∈X

wi 6= w(Y ) =
∑
i∈Y

wi.

Let us consider again the set U defined in (10). Let M be a subset of U with
the following properties: |M | = 18 and x ∈ M if and only if x̄ /∈ M . In other
words M contains exactly one vector from every pair into which U is split. By
M we will also denote an 8 × 18 matrix whose columns are all the vectors from
M taken in arbitrary order. By A1, . . . , A4, B1, . . . , B4 we denote the sets with
characteristic vectors equal to the rows M1, . . . ,M8 of M , respectively. The way
M was constructed secures that the following lemma is true.

Lemma 4. The subsets A1, . . . , A4, B1, . . . , B4 s of [18] satisfy:

(1) (A1, . . . , A4;B1, . . . , B4) is a trading transform;
(2) for any choice of i, k, j,m ∈ [4] with i 6= k and j 6= m the pair (Ai, Bj), (Ak, Bm)

is not compatible.

We shall now embed A1, . . . , A4, B1, . . . , B4 into [26] and add new elements to
them forming A′1, . . . , A

′
4, B

′
1, . . . , B

′
4 in such a way that the characteristic vectors

χ(A′1), . . . , χ(A′4), χ(B′1), . . . , χ(A′1) are the rows M ′1, . . . ,M
′
8 of the following matrix

(11) M ′ =



1...18 19 20 21 22 23 24 25 26

χ(A1)
χ(A2)
χ(A3)
χ(A4)

I I

χ(B1)
χ(B2)
χ(B3)
χ(B4)

J I


,

respectively. Here I is the 4× 4 identity matrix and

J =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Note that if X belongs to [18], it also belongs to [26], so the notation χ(X) is
ambiguous as it may be a vector from Z18 or from Z26, depending on the circum-
stances. However the reference set will be always clear from the context and the
use of this notation will create no confusion.

One can see that (A′1, . . . , A
′
4;B′1, . . . , B

′
4) is again a trading transform and there

are no compatible pairs (A′i, B
′
j), (A

′
k, B

′
m), where i, k, j,m ∈ [4] and i 6= k or j 6= m.

We shall now choose weights w19, . . . , w26 of new elements 19, . . . , 26 in such a way
that the sets A′1, A

′
2, A

′
3, A

′
4, B

′
1, B

′
2, B

′
3, B

′
4 all have the same weight N , which is a

sufficiently large number. It will be clear from the proof how large it should be.



12 PAUL EDELMAN, TATYANA GVOZDEVA, AND ARKADII SLINKO

To find weights w19, . . . , w26 that satisfy this condition we need to solve the
following system of linear equations

(12)

(
I I
J I

) w19

...
w26

 = N1−M ·w,

where 1 = (1, . . . , 1)T ∈ R8 and w = (w1, . . . , w18)T ∈ R18.
The matrix from (12) has rank 7, and the augmented matrix of the system has

the same rank. Therefore, the solution set is not empty, moreover, there is one
free variable (and any one can be chosen for this role). Let this free variable be
w26 and let us give it value K, such that K is large but much smaller than N . In
particular, 126 < K < N . Now we can express all other weights w19, ..., w25 in
terms of w26 = K as follows:

w19 = N−K − (χ(A4)− χ(B1) + χ(A1)) ·w
w20 = N−K − (χ(A4)− χ(B1) + χ(A1)− χ(B2) + χ(A2)) ·w
w21 = N−K − (χ(A4)− χ(B1) + χ(A1)− χ(B2) + χ(A2)−

χ(B3) + χ(A3)) ·w
w22 = N−K − χ(A4) ·w
w23 = K−(−χ(A4) + χ(B1)) ·w
w24 = K−(−χ(A4) + χ(B1)− χ(A1) + χ(B2)) ·w
w25 = K−(−χ(A4) + χ(B1)− χ(A1) + χ(B2)− χ(A2) + χ(B3)) ·w.

(13)

By choice of N and K weights w19, ..., w25 are positive. Indeed, all “small” terms
in the right-hand-side of (13) are strictly less then 7 · 18 = 126 < min{K,N −K}.

Let �′ be the representable qualitative probability order on [26] defined by the
weight vector w′ = (w1, . . . , w26). Using �′ we would like to construct a linear
qualitative probability order v on 2[26] that ranks the subsets A′i and B′j in the
sequence

(14) A′1 @ A
′
2 @ A

′
3 @ A

′
4 @ B

′
1 @ B

′
2 @ B

′
3 @ B

′
4.

We will make use of Theorem 2 now. Let Hw′ = {x ∈ Rn|(w′, x) = 0} be the
hyperplane with the normal vector w′ and S(�′) be the set of all vectors of the
respective discrete cone C(�′) that lie in Hw′ . Suppose

X ′ = {χ(C,D) | C,D ∈ {A′1, . . . , A′4, B′1, . . . , B′4} and D earlier than C in (14)}.

This is a subset of T 26, where T = {−1, 0, 1}. Let also Y ′ = S(�′) \ X ′. To use
Theorem 2 with the goal to achieve (14) we need to show, that

• S(�′) = X ′ ∪ −X ′ and
• X ′ is closed under the operation of restricted sum.

If we could prove this, then C(v) = C(�′) \ Y ′ is a discrete cone of a linear
qualitative probability order v on [26] satisfying (14). Then the initial segment
∆(v, B′1) will not be a threshold complex, because the condition CC∗4 will fail for
it.

Let Y be one of the sets A1, A2, A3, A4, B1, B2, B3, B4. By Y̆ we will denote the
corresponding superset of Y from the set {A′1, A′2, A′3, A′4, B′1, B′2, B′3, B′4}.
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Proposition 3. The subset

X = {χ(C,D) | C,D ∈ {A1, . . . , A4, B1, . . . , B4} with D̆ earlier than C̆ in (14)}.
of T 18 is closed under the operation of restricted sum.

Proof. Let u and v be any two vectors in X. As we will see the restricted sum
u⊕ v is almost always undefined. Without loss of generality we can consider only
five cases.

Case 1. u = χ(Bi, Aj) and v = χ(Bk, Am), where i 6= k and j 6= m. In this case
by Lemma 4 the pairs (Bi, Aj) and (Bk, Am) are not compatible. It means that
there exists p ∈ [18] such that either p ∈ Bi ∩Bk and p /∈ Aj ∪Am or p ∈ Aj ∩Am

and p /∈ Bi ∪ Bk. The vector u + v has 2 or −2 at pth position and u ⊕ v is
undefined. This is illustrated in the table below:

χ(Bi) χ(Bk) χ(Aj) χ(Am) χ(Bi, Aj) χ(Bk, Am) u + v
pth 1 1 0 0 1 1 2

coordinate 0 0 1 1 -1 -1 -2

Case 2. u = χ(Bi, Aj), v = χ(Bi, Am) or u = χ(Bj , Ai), v = χ(Bm, Ai), where
j 6= m. In this case choose k ∈ [4] \ {i}. Then the pairs (Bi, Aj) and (Bk, Am) are
not compatible. As above, the vector χ(Bi, Aj) + χ(Bk, Am) has 2 or −2 at some
position p. Suppose p ∈ Bi ∩Bk and p /∈ Aj ∪Am. Then Bi has a 1 in pth position
and each of the vectors χ(Bi, Aj) and χ(Bi, Am) has a 1 in pth position as well.
Therefore, u⊕v is undefined because u + v has 2 in pth position. Similarly, in the
case when p ∈ Aj ∩ Am and p /∈ Bi ∪ Bk the pth coordinate of u + v is −2. The
case when u = χ(Bj , Ai) and v = χ(Bm, Ai) is similar.

Case 3. u = χ(Bi, Bj), v = χ(Bk, Bm) or u = χ(Ai, Aj), v = χ(Ak, Am), where
{i, j, k,m} = [4]. By construction of M there exists p ∈ [18] such that p ∈ Bi ∩Bk

and p /∈ Bj ∪ Bm or p /∈ Bi ∪ Bk and p ∈ Bj ∩ Bm. So there is p ∈ [18], such that
u + v has 2 or −2 in pth position. Thus u⊕ v is undefined.

Case 4. u = χ(Bi, Bj), v = χ(Bk, Bm) or u = χ(Ai, Aj), v = χ(Ak, Am),
where i = k or j = m. If i = k and j = m, then u⊕ v is undefined. Consider the
case i = k, j 6= m and u = χ(Bi, Bj), v = χ(Bi, Bm). Let s = [4] \ {i, j,m}. By
construction of M either we have p ∈ [18] such that p ∈ Bi ∩Bs and p /∈ Bj ∪Bm

or p /∈ Bi ∪Bs and p ∈ Bj ∩Bm. In both cases u + v has 2 or −2 in position p.

Case 5. u = χ(Bi, Bj), v = χ(Bk, Bm) or u = χ(Ai, Aj), v = χ(Ak, Am),
where j = k or i = m. Suppose j = k. Since i > j and j > m we have i > m. This
implies that χ(Bi, Bm) belongs to X. On the other hand u+v = χ(Bi)−χ(Bm) =
χ(Bi, Bm). Therefore u⊕ v = u + v ∈ X. �

Corollary 1. X ′ is closed under restricted sum.

Proof. We will have to consider the same five cases as in the Proposition 3. As
above in the first four cases the restricted sum of vectors will be undefined. In the
fifth case, when u = χ(B′i, B

′
j), v = χ(B′k, B

′
m) or u = χ(A′i, A

′
j), v = χ(A′k, A

′
m),

where j = k or i = m, we will have u + v = χ(B′i) − χ(B′m) = χ(B′i, B
′
m) ∈ X ′ or

u + v = χ(A′i)− χ(A′m) = χ(A′i, A
′
m) ∈ X ′. �

To satisfy conditions of Theorem 2 we need also to show that the intersection
of the discrete cone C(�′) and the hyperplane Hw′ equals to X ′ ∪ −X ′. More
explicitly we need to prove the following:
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Proposition 4. Suppose C,D ⊆ [26] are tied in �′, that is C �′ D and D �′ C.
Then χ(C,D) ∈ X ′ ∪ −X ′.

Proof. Assume to the contrary that there are two sets C,D ∈ 2[26] that have
equal weights with respect to the corresponding system of weights defining �′ but
χ(C,D) /∈ X ′ ∪−X ′. The sets C and D have to contain some of the elements from
[26] \ [18] since w1, . . . , w18 are linearly independent. Thus C = C1 ∪ C2 and D =
D1 ∪ D2, where C1, D1 ⊆ [18] and C2, D2 ⊆ [26] \ [18] with C2 and D2 being
nonempty. We have

0 = χ(C,D) ·w′ = χ(C1, D1) ·w + χ(C2, D2) ·w+,

where w+ = (w19, . . . , w26)T . By (13), we can express weights w19, . . . , w26 as
linear combinations with integer coefficients of N,K and w1, . . . , w18 obtaining

χ(C2, D2) ·w+ =

(
4∑

i=1

γiχ(Ai) +

4∑
i=1

γ4+iχ(Bi)

)
·w + β1N + β2K,

where γi, βj ∈ Z.
Clearly the expression in the bracket on the right-hand-side is just a vector with

integer entries. Let us denote it α. Then

(15) χ(C2, D2) ·w+ = α ·w + β1N + β2K,

where α ∈ Z18. We can now write χ(C,D) ·w′ in terms of w,K and N :

0 = χ(C,D) ·w′ = (χ(C1, D1) + α) ·w + β1N + β2K.

We recap that K was chosen to be much greater then
∑

i∈[18] wi and N is much

greater then K. So if β1, β2 are different from zero then |β1N + β2K| is a very big
number, which cannot be canceled out by (χ(C1, D1) +α) ·w. Weights w1, . . . , w18

are linearly independent, so for arbitrary b ∈ Z18 the dot product b ·w can be zero
if and only if b = 0. Hence

w(C) = w(D) iff χ(C1, D1) = −α and β1 = 0, β2 = 0.

Taking into account that χ(C1, D1) is a vector from T 18, we get

(16) α /∈ T 18 =⇒ w(C) 6= w(D).

We need the following two claims to finish the proof, their proofs are delegated
to the next section.

Claim 1. Suppose χ(C1, D1) belongs to X∪−X. Then χ(C,D) belongs to X ′∪−X ′.

Claim 2. If α ∈ T 18, then α belongs to X ∪ −X.

Now let us show how with the help of these two claims the proof of Proposition 4
can be completed. The sets C and D have the same weight and this can happen only
if α is a vector in T 18. By Claim 2 α ∈ X∪−X. The characteristic vector χ(C1, D1)
is equal to −α, hence χ(C1, D1) ∈ X∪−X. By Claim 1 we get χ(C,D) ∈ X ′∪−X ′,
a contradiction. �

Theorem 7. There exists a linear qualitative probability order v on [26] and T ⊂
[26] such that the initial segment ∆(v, T ) is not a threshold complex.
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Proof. By Corollary 1 and Proposition 4 all conditions of Theorem 2 are satisfied.
Therefore C(�′)\ (−X ′) is a discrete cone C(v), where v is a almost representable
linear qualitative probability order. By construction A′1 @ A′2 @ A′3 @ A′4 @ B′1 @
B′2 @ B′3 @ B′4 and thus ∆(v, B′1) is an initial segment, which is not a threshold
complex. �

Note that we have a significant degree of freedom in constructing such an exam-
ple. The matrix M can be chosen in 218 possible ways and we have not specified
the linear qualitative probability order �.

6. Proofs of Claim 1 and Claim 2

Lets fix some notation first. Suppose b ∈ Zk and xi ∈ Zn for i ∈ [k]. Then we
define the product

b · (x1, . . . ,xk) =
∑
i∈[k]

bixi.

It resembles the dot product (the difference is that the second argument is a se-
quence of vectors) and is denoted in the same way. For a sequence of vectors

(x1, . . . ,xk) we also define (x1, . . . ,xk)p = (x
(p)
1 , . . . ,x

(p)
k ), where x

(j)
i is the jth

coordinate of vector xi.
We start with the following lemma.

Lemma 5. Let b ∈ Z6. Then

b · (χ(B1, A4), χ(B2, A1), χ(B3, A2), χ(A2, A1), χ(A3, A1), χ(A4, A1)) = 0

if and only if b = 0.

Proof. We know that the pairs (B1, A4) and (B2, A1) are not compatible. So there
exists an element p that lies in the intersection B1∩B2 (or A1∩A4), but p /∈ A4∪A1

(p /∈ B1 ∪ B2, respectively). We have exactly two copies of every element among
A1, . . . , A4 and B1, . . . , B4. Thus, the element p belongs to A2 ∩A3 (B3 ∩B4) and
doesn’t belong to B3 ∪B4 (A2 ∪A3 ). The following table illustrates this:

χ(A1) χ(A2) χ(A3) χ(A4) χ(B1) χ(B2) χ(B3) χ(B4)
pth 0 1 1 0 1 1 0 0

coordinate 1 0 0 1 0 0 1 1

Then at pth position we have

(χ(B1, A4), χ(B2, A1), χ(B3, A2), χ(A2, A1), χ(A3, A1), χ(A4, A1))p = ±(1, 1,−1, 1, 1, 0)

and hence

b1 + b2 − b3 + b4 + b5 = 0.

From the fact that other pairs are not compatible we can get more equations relating
b1, . . . , b6:

b1 − b2 + b3 − b4 − b6 = 0 from (B1, A4), (B3, A2);
−b1 + b2 + b3 + b5 + b6 = 0 from (B1, A4), (B4, A3);

b2 + b5 + b6 = 0 from (B1, A1), (B2, A2);
b4 + b6 = 0 from (B1, A1), (B3, A3);

b3 + b5 + b6 = 0 from (B1, A1), (B3, A2).

The obtained system of linear equations has only the zero solution. �
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Lemma 6. Let a = (a1, . . . , a8) be a vector in Z8 whose every coordinate ai has
absolute value which is at most 100. Then a ·w+ = 0 if and only if a = 0.

Proof. We first rewrite (13) in more convenient form:

w19 = N −K − (−χ(B1, A4) + χ(A1)) ·w
w20 = N −K − (−χ(B1, A4)− χ(B2, A1) + χ(A2)) ·w
w21 = N −K − (−χ(B1, A4)− χ(B2, A1)− χ(B3, A2) + χ(A3)) ·w
w22 = N −K − χ(A4) ·w
w23 = K − χ(B1, A4) ·w
w24 = K − (χ(B1, A4) + χ(B2, A1)) ·w
w25 = K − (χ(B1, A4) + χ(B2, A1) + χ(B3, A2)) ·w
w26 = K

(17)

We calculate the dot product a · w+ substituting the values of w19, . . . , w26

from (17):

0 = a ·w+ = N
∑
i∈[4]

ai −K

∑
i∈[4]

ai −
∑
i∈[4]

a4+i


−
[
χ(B1, A4)

(
7∑

i=5

ai −
3∑

i=1

ai

)
+ χ(B2, A1)

(
7∑

i=6

ai −
3∑

i=2

ai

)
+ χ(B3, A2)(−a3 + a7) +

∑
i∈[4]

aiχ(Ai)
]
·w.

(18)

The numbers N and K are very big and
∑

i∈[18] wi is small. Also |ai| ≤ 100.

Hence the three summands cannot cancel each other. Therefore
∑

i∈[4] ai = 0 and∑
i∈[4] a4+i = 0. The expression in the square brackets should be zero because the

coordinates of w are linearly independent.
We know that a1 = −a2−a3−a4, so the expression in the square brackets in (18)

can be rewritten in the following form:

b1χ(B1, A4) + b2χ(B2, A1) + b3χ(B3, A2)+

a2χ(A2, A1) + a3χ(A3, A1) + a4χ(A4, A1),
(19)

where b1 =
∑7

i=5 ai −
∑3

i=1 ai, b2 =
∑7

i=6 ai −
∑3

i=2 ai and b3 = a7 − a3.
By Lemma 5 we can see that expression (19) is zero iff b1 = 0, b2 = 0, b3 = 0

and a2 = 0, a3 = 0, a4 = 0 and this happens iff a = 0. �

Proof of Claim 1. Assume to the contrary that χ(C1, D1) ∈ X ∪ −X and χ(C,D)

does not belong to X ′ ∪ −X ′. Consider χ(C̆1, D̆1) ∈ X ′ ∪ −X ′. We know that the

weight of C is the same as the weight of D, and also that the weight of C̆1 is the
same as the weight of D̆1. This can be written as

χ(C1, D1) ·w + χ(C2, D2) ·w+ = 0,

χ(C1, D1) ·w + χ(C̆1 \ C1, D̆1 \D1) ·w+ = 0.

We can now see that

(χ(C̆1 \ C1, D̆1 \D1)− χ(C2, D2)) ·w+ = 0.



SIMPLICIAL COMPLEXES OBTAINED FROM QUALITATIVE PROBABILITY ORDERS 17

The left-hand-side of the last equation is a linear combination of weights w19, . . . , w26.
Due to Lemma 6 we conclude from here that

χ(C̆1 \ C1, D̆1 \D1)− χ(C2, D2) = 0.

But this is equivalent to χ(C,D) = χ(C̆1, D̆1) ∈ X, which is a contradiction. �

Proof of Claim 2. We remind the reader that α was defined in (15). Sets C and D
has the same weight and we established that β1 = β2 = 0. So

χ(C2, D2) ·w+ = α ·w.

If we look at the representation of the last eight weights in (17), we note that the
weights w19, w20, w21, w22 are much heavier than the weights w23, w24, w25, w26.
Hence w(C) = w(D) implies

|C2 ∩ {19, 20, 21, 22}| = |D2 ∩ {19, 20, 21, 22}| and

|C2 ∩ {23, 24, 25, 26}| = |D2 ∩ {23, 24, 25, 26}|.
(20)

That is C and D have equal number of super-heavy weights and equal number of
heavy ones.

Without loss of generality we can assume that C2 ∩ D2 is empty. Similar to
derivation in the proof of Lemma 6, the vector α can be expressed as

(21) α = a1χ(B1, A4) + a2χ(B2, A1) + a3χ(B3, A2) +
∑
i∈[4]

biχ(Ai)

for some ai, bj ∈ Z. The characteristic vectors χ(A1), . . . , χ(A4) participate in the
representations of super-heavy elements w19, . . . , w22 only. Hence bi = 1 iff element
18 + i ∈ C2 and bi = −1 iff element 18 + i ∈ D2. Without loss of generality we can
assume that C2 ∩D2 = ∅. By (20) we can see that if C2 contains some super-heavy
element p ∈ {19, . . . , 22} with χ(Ak), k ∈ [4], in the representation of wp, then D2

has a super-heavy q ∈ {19, . . . , 22}, q 6= p with χ(At), t ∈ [4]\{k} in representation
of wq. In such case bk = −bt = 1 and

bkχ(Ak) + btχ(At) = χ(Ak, At).

By (20) the number of super-heavy element in C2 is the same as the number of
super-heavy elements in D2. Therefore (21) can be rewritten in the following way:

(22) α = a1χ(B1, A4) + a2χ(B2, A1) + a3χ(B3, A2) + a4χ(Ai, Ap) + a5χ(Ak, At),

where a1, a2, a3 ∈ Z; a4, a5 ∈ {0, 1} and {i, k, t, p} = [4].

Now the series of technical facts will finish the proof.

Fact 1. Suppose a = (a1, a2, a3) ∈ Z3 and |{i, k, t}| = |{j,m, s}| = 3. Then

a1χ(Bj , Ai) + a2χ(Bm, Ak) + a3χ(Bs, At) ∈ T 18

if and only if

(23) a ∈ {(0, 0, 0), (±1, 0, 0), (0,±1, 0), (0, 0,±1), (1, 1, 1), (−1,−1,−1)}.

Proof. The pairs ((Bj , Ai), (Bm, Ak)), ((Bj , Ai), (Bs, At)) and ((Bm, Ak), (Bs, At))
are not compatible. Using the same technique as in the proofs of Proposition 3 and
Lemma 5 and watching a particular coordinate we get

(a1 + a2 − a3), (a1 − a2 + a3), (−a1 + a2 + a3) ∈ T,
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respectively. The absolute value of the sum of every two of these terms is at most
two. Add the first term to the third. Then |2a2| ≤ 2 or, equivalently, |a2| ≤ 1. In
a similar way we can show that |a3| ≤ 1 and |a1| ≤ 1. The only vectors that satisfy
all the conditions above are those listed in (23). �

Fact 2. Suppose a = (a1, a2, a3) ∈ Z3 and |{i, k, t}| = |{j,m, s}| = 3. Then

a1χ(Bj , Ai) + a2χ(Bm, Ak) + a3χ(Bs, At) + χ(Ak, At) ∈ T 18

if and only if

(24) a ∈ {(0, 0, 0), (0, 1, 0), (0, 0,−1), (0, 1,−1)}.

Proof. Considering non-compatible pairs ((Bm, Ak), (Bs, At)), ((Bj , Ai), (Bm, Ak)),
((Bj , Ai), (Bs, At)), ((Bj , Ak), (Bs, Ai)), ((Bj , At), (Bm, Ai)), we get the inclusions

(−a1 + a2 + a3), (a1 + a2 − a3 − 1), (a1 − a2 + a3 + 1), (a1 − 1), (a1 + 1) ∈ T,
respectively. We can see that |2a2− 1| ≤ 2 and |2a3 + 1| ≤ 2 and a1 = 0. So a2 can
be only 0 or 1 and a3 can have values −1 or 0. �

Fact 3. Suppose a = (a1, a2, a3) ∈ Z3 and {i, k, t, p} = [4] and |{j,m, s}| = 3.
Then

a1χ(Bj , Ai) + a2χ(Bm, Ak) + a3χ(Bs, At) + χ(Ai, Ap) ∈ T 18

if and only if

a ∈ {(0, 0, 0), (1, 0, 0), (1, 1, 1), (2, 1, 1)}.

Proof. Let ` ∈ [4] \ {j,m, s}. From consideration of the following non-compatible
pairs

((Bj , Ai), (Bm, Ak)), ((Bj , Ai), (Bs, At)), ((Bm, Ak), (Bs, At)), ((Bj , Ai), (Bm, At)),

((Bj , Ai), (Bm, Ap)), ((Bj , Ai), (Bs, Ap)), ((Bs, At), (B`, Ai))

we get the following inclusions

(a1 + a2 − a3 − 1), (a1 − a2 + a3 − 1), (−a1 + a2 + a3),

(a1 − 1), (a1 − a3), (a1 − a2), (a2 − a3 + 1) ∈ T,

respectively. So we have |2a3−1| ≤ 2 (from the second and the third inclusions) and
|2a2 − 1| ≤ 2 (from the first and the third inclusions) from which we immediately
get a2, a3 ∈ {1, 0}. We also get a1 ∈ {2, 1, 0} (by the forth inclusion).

• If a1 = 2, then by the fifth and sixth inclusions a3 = 1 and a2 = 1.
• If a1 = 1, then a2 can be either zero or one. If a2 = 0 then we have
χ(Bj , Ai) +a3χ(Bs, At) +χ(Ai, Ap) = χ(Bj , Ap) +a3χ(Bs, At). By Fact 1,
a3 can be zero only. On the other hand, if a2 = 1, then a3 = 1 by the
seventh inclusion.

• If a1 = 0 then a2 can be a 0 or a 1. Suppose a2 = 0. Then a3 = 0 by the
first two inclusions. Assume a2 = 1. Then a3 = 0 by the third inclusion
and on the other hand a3 = 1 by the second inclusion, a contradiction.

This proves the statement. �

Fact 4. Suppose a = (a1, a2, a3) ∈ Z3 and {i, k, t, p} = [4] and |{j,m, s}| = 3.
Then

a1χ(Bj , Ai) + a2χ(Bm, Ak) + a3χ(Bs, At) + χ(Ai, Ap) + χ(Ak, At) /∈ T 18.
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Proof. Let ` ∈ [4]\{j,m, s}. Using the same technique as above from consideration
of non-compatible pairs

((Bj , Ai), (Bm, At)), ((Bs, At), (Bj , Ak)), ((Bj , Ai), (Bs, At)),

((Bm, Ak), (Bs, At)), ((Bj , Ai), (Bm, Ap)), ((Bj , Ai), (B`, Ak))

we obtain inclusions:

a1, a3, (a1 − a2 + a3), (−a1 + a2 + a3), (a1 − a3), (a1 − a3 − 2) ∈ T,

respectively.
From the last two inclusions we can see that a1−a3 = 1. This, together with the

first and the second inclusions, imply (a1, a3) ∈ {(1, 0), (0,−1)}. Suppose (a1, a3) =
(1, 0). Then

χ(Bj , Ai)+a2χ(Bm, Ak)+χ(Ai, Ap)+χ(Ak, At) = χ(Bj , Ap)+a2χ(Bm, Ak)+χ(Ak, At).

By Fact 3, it doesn’t belong to T 18 for any value of a2.
Suppose now that (a1, a3) = (0,−1). Then by the third and the forth inclusions

a2 can be only zero. Then a = (0, 0,−1) and

−χ(Bs, At) + χ(Ai, Ap) + χ(Ak, At) = −χ(Bs, Ak) + χ(Ai, Ap).

However, by Fact 3 the right-hand-side of this equation is not a vector of T 18. �

Fact 5. Suppose a ∈ Z5 and

v = a1χ(Bj , Ai) + a2χ(Bm, Ak) + a3χ(Bs, At) + a4χ(Ai, Ap) + a5χ(Ak, At).

If a4, a5 ∈ {0, 1,−1} and v ∈ T 18, then v belongs to X or −X.

Proof. First of all, we will find the possible values of a in case v ∈ T 18. By Facts 1
–4 one can see that v ∈ T 18 iff a belongs to the set

Q ={(0, 0, 0, 0, 0), (±1, 0, 0, 0, 0), (0,±1, 0, 0, 0), (0, 0,±1, 0, 0), (1, 1, 1, 0, 0),

(0, 0, 0,±1, 0), (±1, 0, 0,±1, 0), (±1,±1,±1,±1, 0), (±2,±1,±1,±1, 0),

(0, 0, 0, 0,±1), (0,±1, 0, 0,±1), (0, 0,∓1, 0,±1), (0,±1,∓1, 0,±1)}.

By the construction of � the sequence (A1, . . . , A4;B1, . . . , B4) is a trading trans-
form. So for every {i1, . . . , i4} = {j1, . . . , j4} = [4] the equation

(25) χ(Bi1 , Aj1) + χ(Bi2 , Aj2) + χ(Bi3 , Aj3) + χ(Bi4 , Aj4) = 0.

holds. Taking (25) into account one can show, that for every a ∈ Q, vector v
belongs to X or −X. For example, if a = (2, 1, 1, 1, 0) then

2χ(Bj , Ai) + χ(Bm, Ak) + χ(Bs, At) + χ(Ai, Ap) =

χ(Bj , Ai)− χ(B`, Ap) + χ(Ai, Ap) = χ(Bj , B`),

where ` ∈ [4] \ {j,m, s}. �

One can see that v from the Fact 5 is the general form of α. Hence α ∈ T 18 if
and only if α ∈ X ∪ −X which is Claim 2. �
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7. Discussion and further research

We note that for any qualitative probability order �, both ∆(�, T ) and G(�, T )
satisfy a much stronger condition than completeness. To formulate it for a game
G = ([n],W ) we define the Winder desirability relation �W on coalitions. We set
A �W B if and only if

(A \B) ∪ Y ∈W =⇒ (B \A) ∪ Y ∈W.

for every Y ⊆ [n] \ ((A \B) ∪ (B \A)).

Furthermore, the Winder existential ordering, ≺W , on 2[n] is defined as follows.
We set A ≺W B iff it is not the case that B �W A, which means that there exists
Z ⊆ [n] \ ((A \B) ∪ (B \A)) such that

(A \B) ∪ Z ∈ L and (B \A) ∪ Z ∈W.

A simple game G is strongly acyclic if there are no k-cycles in the Winder existential
ordering, that is, the situation

A1 ≺W A2 ≺W . . . ≺W Ak ≺W A1

is not possible for any k ≥ 2. Note that the absence of 2-cycles in ≺W implies
completeness of �W . Winder (1962)3 and Taylor & Zwicker (1999) constructed
examples of strongly acyclic non-representable simple games with the second one
being even a constant-sum game.

The concept of strongly acyclic simplicial complex ∆ can be defined straightfor-
wardly. For this, the relation ≺W have to be defined as follows. Given a simplicial
complex ∆ we set A ≺W B for two subsets A,B ⊆ [n] if there exists a subset
Z ⊆ [n] \ ((A \B) ∪ (B \A)) such that

(A \B) ∪ Z ∈ ∆ and (B \A) ∪ Z /∈ ∆.

It is also easy to show that any initial segment ∆(�, T ) of a qualitative proba-
bility order � is strongly acyclic so this construction seems like a natural way of
obtaining strongly acyclic simplicial complexes which are not threshold. However it
appeared to be not so easy: even if a qualitative probability order � is non-weighted
this does not automatically imply that ∆(�, T ) is not threshold; Christian et al.
(2006) computationally checked that all initial segments of qualitative probability
orders for n ≤ 6 atoms are threshold simplicial complexes while numerous non-
representable qualitative probability orders for n ≥ 5 exist. Up to date there were
no known examples of non-threshold initial segments. It is unclear whether or not
the simplicial complex corresponding to the strongly acyclic non-weighted game
from Taylor & Zwicker (1999) is an initial segment of a comparative probability
but, even if it was, it is very large.
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