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1 Introduction

One of the most fundamental questions in economics is when a preference ordering on bundles of goods has
a representation induced by a numerical order-preserving function of utilities of those commodities. The
set of all admissible commodity bundles can be naturally represented as a subset of the Cartesian product
X =

∏n
i=1 Xi, where the sets Xi vary, depending on the model. A very commonly used assumption is

that all Xi are isomorphic to the set of real numbers R. This imposes a very rich structure on X , which
in this case becomes the n-dimensional Euclidean space R

n. This case was extensively studied by J. von
Neumann and O. Morgenstern [35], J. Marshak [26], I.N. Herstein and J. Milnor [20] and others. Another
particular case, when the Xi are all finite and have no structure at all, was studied by P. Fishburn [12].

However, there are several economic situation which require an intermediate approach when Xi are
finite but have some structure on each of them. We will assume that all Xi are isomorphic to the set
[k] = {1, 2, . . . , k} with the partially defined operation of addition, i.e i + j is the usual sum of integers,
when i + j ≤ k, and not defined otherwise. Such model has a number of useful interpretations.

The first interpretation stipulates n different types of goods, which are indivisible. Each x ∈ X is a
commodity bundle x = (x1, . . . , xn), where i is the type of good and xi is its quantity — which, due to
the indivisibility assumption, is a nonnegative integer. The total number of goods is k =

∑n
i=1 xi, hence

xi ∈ [k]. The relation x � y means that a consumer thinks x is at least as good as y. (See e.g. W.D.
Katzner [21].)

The second interpretation is that of an income stream. Here i is a moment in time and xi ∈ [k] is the
dollar amount of income to be received at this moment. The total amount to be received is k =

∑n
i=1 xi.

The relation x � y means that a beneficiary thinks income stream x is at least as good as income stream
y. (See T.C. Koopmans [22].)

In the third, we consider the composition of a k-member parliament or a committee. There are
n political parties to which the members are affiliated. Here i is the type of political party and ki is
the number of members of this political party elected to the parliament. The total number of elected
parliamentarians is k =

∑n
i=1 ki. The relation x � y means that a voter thinks parliament x is at least

as good as parliament y. (See M.R. Sertel and E. Kalaycıoğlu [31].)
We will also assume that the following linear order on the set [n]

1 ≻ 2 ≻ . . . ≻ n, (1)

reflects the following preferences of the agent. The consumer has preferences over the types of goods,
beneficiary has preferences over the times of receiving money (a dollar today is better than a dollar
tomorrow), and the voter has preferences over the existing political parties. We will assume that all these
preferences are strict and we will also require that the relation x � y on X is consistent with (1) in the
way which will be explained later.

Hence this problem can be viewed as the problem of consistent extension of (1) to X . It is in this
form that the question of the consistent extension of preferences on the set of political parties to the set
of committees was proposed by Sertel in a series of lectures [29], as later also published in Sertel and
Kalaycıoğlu [31]. In his lecture at the IHES, ”Questions for Mathematicians in Economic Design”, Jan.
19.1999, Sertel posed the question of how to extend a linear order on an alphabet to the free semigroup
generated by that alphabet.

Mathematically speaking, in all these examples we are talking about multisets on the set [n] =
{1, 2, . . . , n} (see, e.g., [32]). Unlike sets, multisets allow multiple entry of elements, so in each example
the object under consideration — the bundle, the income stream or the committee — can be represented
as a multiset

M = {1k1 , 2k2 , . . . , nkn}, (2)

where iki means that element i enters the multiset ki times. The number ki is called the multiplicity of
i in M . The multiset M can also be described as ([n], µ) where µ : [n] → N is the multiplicity function
given by µ(i) = ki for all i ∈ [n]. The sum of multiplicities k = k1 + k2 + . . . + kn is called the cardinality
of M . In all three examples we deal with orderings of the set of all multisets of fixed cardinality k on the
set [n], which will be denoted by Pk[n]. We will also omit [n] when this invites no confusion. The usual
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notions for sets can be carried over to multisets in a natural way. We say that a multiset M = ([n], µ) is
a subset of a multiset M ′ = ([n], µ′) and write M ⊆ M ′ iff µ(i) ≤ µ′(i) for all i ∈ [n].

It has to be noted that orders on multisets and its subsets which extend a given linear order on
the underlying set on which multisets are constructed have been instrumental in proofs of program
termination, in equational reasoning algorithms based on term rewriting systems, in computer algebra,
the theory of invariants, and the theory of partitions. We refer the reader to the two surveys by Martin
[27] and Dershowitz [8] and to the book by Kreuzer and Robbiano [25] on these topics.

Following [2], any reflexive, complete and transitive relation will be called an order1 and any antisym-
metric order will be called a linear order. An order will typically be denoted as �. In this case ≻ will
be the strict preference relation of �, i.e. M ≻ N will mean that M � N holds but N � M fails; and
M ∼ N will be the indifference relation of �, i.e. M ∼ N will mean that both M � N and N � M hold.

In each of the applications mentioned above, the orderings of multisets, which were useful, were those
which were “consistent” with a given linear order (1) on the alphabet [n]. To define the concept of
consistency suitable for our purposes, we need the following notation. Let � be an order on Pk[n], k ≥ 2,
and let 1 ≤ j < k. Then for any W ∈ Pj [n] we may define an order �W on Pk−j [n] by setting, for any
U, V ∈ Pk−j [n],

U �W V ⇐⇒ U ∪ W � V ∪ W. (3)

Now we can give the following recursive definition:

Definition 1 (Consistency). The only consistent order on P1[n] is induced by (1). Suppose that consis-
tent orders on Pℓ[n] for ℓ < k are defined. An order � on Pk[n], k ≥ 2, is said to be consistent iff for
every j = 1, 2, . . . , k− 1, the orders �W for all words W of fixed cardinality j coincide, and this common
order is a consistent order of Pk−j [n].

In other words, any consistent order � on Pk(A) stipulates, for ℓ = 1, 2, . . . , k, the existence of
consistent orders �ℓ on Pℓ(A) with �k=�, such that for any multiset W of cardinality j − i > 0 and for
any two multisets of U, V ∈ Pi(A)

U �i V ⇐⇒ U ∪ W �j V ∪ W, (4)

provided j ≤ k. We might think of multisets geometrically, identifying the multiset (2) with the point
(k1, k2, . . . , kn) of the positive orthant of R

n. Then the set P i(A) will be represented as the layer of
integer points of the positive orthant lying on the hyperplane x1 + . . . + xn = i, the orders �i will order
these layers and the condition (4) will be responsible for the coordination of the layers. We will say that
�j extends �i for j > i. In particular, �=�k extends a certain order on P1(A). Since P1(A) can be
naturally identified with A itself, we may think that � extends a certain order on A.

This condition of consistency is somewhat stronger than the multiset analogue of Bossert’s condition
of Responsiveness [5], but weaker than the multiset analogue of the Strong Extended Independence [2].

Orders induced by a utility function, where the word “utility” serves as a generic name for a number
of related but distinct concepts, play an exceptional role in statistics [13, 28], the representational theory
of measurement and decision making [11], as well as computer science [23] and related other areas. They
will play an important role in this paper as well.

Definition 2. We will say that an order � on Pk[n] is (additively) representable iff there exist nonneg-
ative real numbers u1, . . . , um such that, for all M = ([n], µ), N = ([n], ν) belonging to P,

M � N ⇐⇒
n∑

i=1

µ(i)ui ≥
n∑

i=1

ν(i)ui. (5)

We will also refer to the numbers u1, . . . , un as the utilities of 1, 2, . . . , n. For any multiset M = ([n], µ),
the number u(M) =

∑n
i=1 µ(i)ui will be referrred to as the total utility of M . Obviously, any representable

order on Pk[n] is consistent.

1equivalently, the expressions of “complete preorder” and “total preorder” are also used for the same purpose.
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A similar concept is also used for defining orders on subsets of A (see [24] and the survey [2]) and also
on the Cartesian product A1 × A2 × . . . × An, where the utility of a tuple a = (a1, a2, . . . , an) is defined
as u(a) =

∑n
i=1 ui(ai), with ui a utility function for Ai (see Fishburn [10, 11, 12]).

The following class of linear orders on Pk[n] is also of interest.

Definition 3. We will say that an order � on Pk[n] is almost representable iff there exist nonnegative
real numbers u1, . . . , um such that, for all M = ([n], µ), N = ([n], ν) belonging to Pk[n],

M � N =⇒ u(M) ≥ u(N). (6)

If an order � is almost representable, then for some two multisets M and N it is possible to have
M ≻ N while having u(M) = u(N). Almost representable orders need not be representable (see Sect. 3)
and the latter class is broader than the former.

In this paper we prove that, for all integers k ≥ 1, all consistent orders on Pk[3] are representable.
Moreover, all consistent orders on Pk[3] form a one-parametric family and with the parameter has char-
acterising the degree of risk aversion in the case of a consumer or a voter and the degree of impatience
in the case of a beneficiary. We classify consistent orders on Pk[3] in terms of Farey fractions and find
the asymptotics for the number of consistent orders in Pk[3].

We show that there exist 12 consistent linear orders on P2[4], and that two of them, namely A4 and
E4 in Figure 1, are not representable. Moreover, none of these two linear orders can be extended to a
consistent order on P3[4]. However A4 and E4 are almost representable. We also present an example
of a consistent linear order on P3[4] which is not even almost representable. As the full classification of
consistent linear orders on P3[4] shows there are 18 such orderings. There are 30 almost representable
but not representable linear orders and 80 representable linear orders.

We prove that there exists a positive-integer-valued function k 7→ f(k) > k such that, for all n ≥ 4, a
linear order � on Pk[n] can be extended to a consistent linear order on Pf(k)[n] iff it is representable. This
means that having a non-representable preference order on Pk[n] is an early sign of global inconsistency
of the agent as she will not be able to rank consistently multisets of PK [n] for some K > k.

Finally, for an arbitrary positive integer n, we give the lower bound for the number of representable
linear orders on P2[n] and the lower bound for the total number of consistent linear orders on P2[n].

2 Orders on Pk[3]

We will start with the following example.

Example 1 (Sertel, [29, 31]). Let us take n = 3 and k = 2. Then, in any consistent order � on P2[3],
the order 1 ≻ 2 ≻ 3 determines all relations between the pairs (multisets from P2[3]) except the relation
between {1, 3} and {2, 2}. Thus, to construct a consistent order of P2[3] we have one degree of freedom
and hence we can have at most two different consistent linear orders on pairs. We will show that both
opportunities materialise.

Assuming {1, 3} ≻ {2, 2} we will obtain the “risk-loving” linear order,

{1, 1} ≻ {1, 2} ≻ {1, 3} ≻ {2, 2} ≻ {2, 3} ≻ {3, 3}, (7)

and assuming {2, 2} ≻ {1, 3} we have the “risk-avoiding” one,

{1, 1} ≻ {1, 2} ≻ {2, 2} ≻ {1, 3} ≻ {2, 3} ≻ {3, 3). (8)

They are graphically represented as follows:
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Assuming {1, 3} ∼ {2, 2} we will obtain an order,

{1, 1} ≻ {1, 2} ≻ {1, 3} ∼ {2, 2} ≻ {2, 3} ≻ {3, 3}, (9)

which we call “risk-neutral.” An agent with the first ranking is willing to forgo two instances of certain
outcome 2 in favour of the possibility of getting the best choice 1, even together with the worst possible
outcome 3. Clearly, this is not the case for the second ranking.

Consistency of these orders is easy to check. We observe that all three orders of P2[3], the risk-loving,
the risk-avoiding, and the risk-neutral, are representable with the utilities (u1, u2, u3) satisfying

u1 + u3

2
> u2,

u1 + u3

2
< u2, or

u1 + u3

2
= u2,

respectively. The utility function u : {1, 2, 3} → R is concave up, concave down and linear respectively.
If our mutisets are interpreted as income streams, then an agent with the first ranking will prefer $100

now and $100 two month later to $200 one month later. Clearly she puts a great emphasis on receiving
something immediately, while an agent with the second ranking puts an emphasis on receiving the whole
sum earlier. The first agent can be called impatient and the second can be called patient.

As in the case with “utility” the term “risk aversion” that we will use here is a generic name for a
number of related but distinct concepts.

In this section we prove a theorem that describes all consistent orders of Pk[3] for all k. First we
prove that they are all representable and then we describe all representable orders in terms of the Farey
fractions. We need to remind the reader of several definitions and concepts from Number Theory. The
famous Farey sequence of fractions Fk is the increasing sequence of all fractions in lowest terms between
0 and 1 whose denominators do not exceed k. For example, the sequence F6 will be:
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Let φ : N → N be the Euler totient function, for which φ(1) = 1 and, for h ≥ 2, φ(h) is the number of
positive integers not exceeding h and relatively prime to h. It is easy to see that passing from Fk, to
Fk+1, there will be exactly φ(k + 1) new Farey fractions added. Therefore there are exactly Φ(k) + 1

fractions in Fk, where Φ(k) =
∑k

h=1 φ(h). (The standard reference for Farey fractions is [19]. See also
[9]).

For the proofs of Theorem 1 and Theorem 7 we need the following

Lemma 1. Let � be a consistent order on Pk[n] and �i, i = 1, . . . , k, be the corresponding orders on
P i[n] defined in Sect. 1.

(a) If U, V ∈ Pℓ[n], R, Q ∈ Ph[n], and U �ℓ V , R �h Q, ℓ + h ≤ k, then U ∪ R �ℓ+h V ∪ Q.

5



(b) If U, V ∈ Pℓ[n], and U �ℓ V , ℓh ≤ k, for some integer h, then

U ∪ U ∪ . . . ∪ U
︸ ︷︷ ︸

h

�ℓh V ∪ V ∪ . . . ∪ V
︸ ︷︷ ︸

h

.

Proof. (a) Due to consistency of �, we get U ∪ R �ℓ+h V ∪ R �ℓ+h V ∪ Q.
(b) follows from (a) by induction.

Theorem 1. All consistent orders on Pk[3] are representable. Every such order can be represented
by a vector of utilities (u1, u2, u3) = (1, γ, 0), where γ ∈ (0, 1). Two vectors of utilities (1, γ1, 0) and
(1, γ2, 0) determine the same order on Pk[3] iff γ1 and γ2 belong to the same interval (fi, fi+1) between
two neighboring Farey fractions of Fk. The vector of utilities (1, γ, 0) determines a non-linear order iff
γ ∈ Fk.

Proof. Here we will give only an outline of the proof and defer the rest of it to the Appendix. The proof
is by induction on k. We assume that the statement is true for Pk[3]. Firstly, we explore the ways in
which a consistent order � on Pk[3] can be extended to an order on Pk+1[3]. It appears that the only
freedom we have is to choose the position of {2k+1} but sometimes we do not have freedom at all. We
know that � corresponds to a certain vector of weights (1, γ1, 0) where γ is a Farey fraction or belongs
to the interval between two neighboring fractions (fi, fi+1). In the former case we have no freedom and
the continuation is unique. It also appears that if none of the fractions

1

k + 1
,

2

k + 1
, . . . ,

k

k + 1
.

falls into (fi, fi+1), then continuation is unique again. Finally, if j
k+1 falls into (fi, fi+1) (and only one

Farey fraction can fall), then there are three continuations: one corresponding the interval
(

fi,
j

k+1

)

,

another to the interval
(

j
k+1 , fi+1

)

, and the third, when γ = j
k+1 . The difference between the three will

be in relative position of {2k+1} and {1j, 3k+1−j}. We will have

{2k+1} ≺ {1j, 3k+1−j}, {2k+1} ≻ {1j, 3k+1−j}, {2k+1} ∼ {1j, 3k+1−j},

respectively.

Example 2. Suppose that we are trying to estimate the degree of impatience of an agent. Suppose that
the triple (a, b, c) denotes the income stream, when the agent receives $a now, $b one month later and $c
two months later. We can give her to compare the income stream (0, 120, 0) with the income streams

(30, 0, 90), (40, 0, 90), (60, 0, 60), (80, 0, 40), (90, 0, 30).

Then, if the agent says that she is indifferent between (0, 120, 0) and (80, 0, 40), then her degree of impa-
tience is exactly 2/3. If she thinks that (0, 120, 0) is better than (60, 0, 60) but worse than (80, 0, 40), then
her degree of impatience is between 1/2 and 2/3 and in this case we might want to ask her to compare
(0, 120, 0) with (72, 0, 48) to find out if it is between 1/2 and 2/5 or between 2/5 and 2/3 or equal to 2/5
exactly.

Corollary 1. For any integer k ≥ 1, there exist exactly 2Φ(k) − 1 different consistent orders of Pk[3]
and Φ(k) of these are linear orders.

Note that the proof of Theorem 1 is algorithmic and, given a consistent order on Pk[3], it should be
easy to write a computer program to construct utilities for this order.

Corollary 2. Asymptotically, there are

N(k, 3) =
6k2

π2
+ O(k log k) (10)
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different orders on Pk[3], and approximately half of them are linear.2

Proof. A celebrated result by Franz Mertens (see, for example, [7], p. 59) establishes the asymptotics of
the sum Φ(k), namely,

Φ(k) =
3k2

π2
+ O(k log k). (11)

From this and Theorem 1, our asymptotic formula immediately follows.

In Section 3 we will show that, for any n ≥ 4, there exist linear orders on P2[n] that fail to be
representable. It is also worthwhile to note that one cannot replace in Theorem 1 multisets of cardinality
k with multisets of cardinality ≤ k. Indeed, it can be easily checked that the linear order

{1, 1} ≻ {1, 2} ≻ {2, 2} ≻ {1, 3} ≻ {1} ≻ {2, 3} ≻ {3, 3} ≻ {2} ≻ {3} ≻ ∅

is not representable.

3 Consistent Linear Orders on P2[n]

In this section we study consistent linear orders on P2[n]. These linear orders appear to be important in
the recent study [6], where it was discovered that any linear order on subsets which satisfies Dominance
and Conditional Independence can be obtained from a consistent order on multisets of cardinality 2
consisting for each subset of its best and its worst elements. As usual, we assume that (1) is satisfied.
To describe consistent linear orders of multisets of cardinality two (pairs), even in the case of P2[4], we
need the concept of reducibility. In other words, we need to know which linear orders can be obtained
by combining two or more simpler ones.

Definition 4. Let R1 and R2 be two consistent linear orders on P2[n1] and P2[n2], respectively. We
define a linear order R = R1 × R2 ∈ P2[n1 + n2] as follows:

1. {i, j}R{p, q} ⇔ {i, j}R1{p, q} whenever i, j, p, q ∈ [n1];

2. {i, j}R{p, q} ⇔ {i − n1, j − n1}R2{p − n1, q − n1} whenever i, j, p, q ∈ [n1 + n2] r [n1];

3. {i, j}R{p, q} is always true when i, j ∈ [n1] and either p /∈ [n1] or q /∈ [n1] (or both);

4. {i, j}R{p, q} is always true when p, q ∈ [n1 + n2] r [n1] and either i ∈ [n1] or j ∈ [n1] (or both);

5. If i, j ∈ [n1] with i 6= j and p, q ∈ [n1 + n2] r [n1], then {i, p}R{j, q} if and only if i < j.

6. If i ∈ [n1] and p, q ∈ [n1 + n2] r [n1] with p 6= q, then {i, p}R{i, q} if and only if p < q.

The linear order R1 × R2 will be called the product of R1 and R2.

Example 3. Let us denote the only linear order on P1[1] as I. Then the only consistent linear order of
P2[2] will be I × I. The two consistent linear orders in Example 1 will be I × (I × I) and (I × I) × I,
respectively. The linear order (I × I) × (I × I) of P2[4] will have the diagram shown below:

2We write g(n) = O(f(n)) in case there is a positive constant C such that |g(n)| ≤ Cf(n) for all sufficiently large values
of n
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Definition 5. We will call a linear order R on P2[n] irreducible if it cannot be represented as R = L×M
for linear orders L and M on P2[n1] and P2[n2], respectively, for any positive integers n1 and n2 with
n1 + n2 = n. Otherwise, it will be called reducible.

Theorem 2. If linear orders L and M on P2[n1] and P2[n2], respectively, are representable, then their
product L × M is also a representable linear order.

Proof. First we notice that, for all k and n, a representable linear order of Pk[n] with the utilities
u1, . . . , un will stay unchanged if for some integers a > 0 and b, for all i = 1, . . . , n, we undertake an
affine transformation ui 7→ u′

i = aui + b of its utilities. Let u1, . . . , un1
be a system of utilities for L and

v1, . . . , vn2
a system of utilities for M . Let V be the sum of all utilities of the second system and a, b

be two sufficiently large integers such that the new system of utilities u′

1, . . . , u
′

n1
, where u′

j = auj + b,
satisfies the following two conditions: 2u′

n1
> u′

1 + V and u′

k+1 − u′

k > V for all 1 ≤ k < n1 − 1. Then
the system of utilities u′

1, . . . , u
′

n1
, v1, . . . , vn2

will define L × M . This proves the theorem.

As we saw, all consistent linear orders of P2[n] for 1 < n ≤ 3 are reducible. In P2[4] we will have
seven irreducible ones. They are all described in the following theorem.

Theorem 3. There are 12 distinct linear orders in P2[4]:

1. The five reducible consistent linear orders are

R1,4 = I × (I × (I × I)),

R2,4 = I × ((I × I) × I),

R3,4 = (I × I) × (I × I),

R4,4 = (I × (I × I)) × I,

R5,4 = ((I × I) × I) × I,

all of which are representable;

2. The seven irreducible consistent linear orders are A4, B4, C4, D4, E4, F4, G4, given by their
diagrams in Figure 1. Five of them apart from A4 and E4 are representable. A4 and E4 are not
representable but they are almost representable.

Proof. There are only five different arrangements of brackets that convert an associative word x1x2x3x4

of length four into a non-associative word. These non-associative words are x1(x2(x3x4)), x1((x2x3)x4),
(x1x2)(x3x4), (x1(x2x3))x4, ((x1x2)x3)x4. They are distinct elements of the free non-associative monoid
(see, for example, [36], Chapter 1). Accordingly, we can construct five reducible consistent linear orders
as listed in the theorem. They are all representable, due to Theorem 2. It is easy to check directly that
they are distinct (but later we will prove a general statement in this respect). There are no other reducible
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consistent linear orders in P2[4] since, if R is reducible, then R = P × Q, where I, I × I, I × (I × I),
(I × I) × I are the only possibilities for P and Q.

The utilities for B4, C4, D4, F4, G4 can be chosen according to Figure 2. Since any affine trans-
formation u′

i 7→ aui + b of the system of utilities does not change the order, when a > 0, we normalize
these utilities so that u4 = 0 and u1 = 1. Then every point (u2, u3) of the triangle shown on the figure
represents a consistent order on P2[4]. The boundary between the orders for which {1, 4} ≻ {2, 3} and
the orders for which {2, 3} ≻ {1, 4} will be the line u2 + u3 = 1. The boundary between the orders for
which {2, 2} ≻ {1, 3} and the orders for which {1, 3} ≻ {2, 2} will be the line 2u2 − u3 = 1, etc. After
drawing all such lines we get ten regions which correspond to all ten representable linear orders on P2[4].

The order A4 cannot be representable for the following reasons: since we have

{1, 3}A4{2, 2}, {2, 3}A4{1, 4}, {2, 4}A4{3, 3},
any system of utilities for A4 would have

u1 + u3 > 2u2, u2 + u3 > u1 + u4, u2 + u4 > 2u3.

This system is inconsistent since adding the first and the third inequality gives us u2 + u3 < u1 + u4, i.e.
just the opposite of the second inequality. Nevertheless the system of inequalities

u1 + u3 ≥ 2u2, u2 + u3 ≥ u1 + u4, u2 + u4 ≥ 2u3.

is consistent with the only solution of it being the point (2
3 , 1

3 ). This means that A4 is almost representable
for the utilities u2 = 2

3 and u3 = 1
3 .

Similar arguments apply also to E4. Further, we are about to prove that A4 and E4 cannot be
extended to a consistent order of P3[4].

Theorem 4. Let � be a linear order of P2[n] and suppose that there exist indices i, j, k, ℓ satisfying at
least one of the following two conditions:

(1) {i, i} ≻ {j, k}, {j, ℓ} ≻ {i, k} and {k, k} ≻ {i, ℓ};
(2) {j, k} ≻ {i, i}, {i, k} ≻ {j, ℓ} and {i, ℓ} ≻ {k, k};

Then this order cannot be extended to a consistent linear order on P3[n].

i k ℓ

Illustration of the Condition (1)

j

i

k

• •

• • •

•

....................................................................................................................................................................................... ........
.......
......
..

...............................................................................................
..................

.....
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
.......
.......
...........................
.......................

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

..........................

.......................

......................................................................................................................................................................
......
.......
....

.....
.....
.....
.....
...

Proof. We will show that the requirement of consistency for any extension of ≻ leads to intransitivity of
the extension. Indeed, in the first case

{i2} ≻ {j, k} =⇒ {i2, ℓ} ≻ {j, k, ℓ}
{j, ℓ} ≻ {i, k} =⇒ {j, k, ℓ} ≻ {i, k2}
{k2} ≻ {i, ℓ} =⇒ {i, k2} ≻ {i2, ℓ},

so no consistent extension can be transitive. The second case is similar.
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Corollary 3. A4 and E4 cannot be extended to a consistent linear order on P3[4].

Proof. Indeed, in both cases we can spot two arrows going in one direction and an arrow between them
going in the opposite direction. Thus, E4 satisfies the first condition of Theorem 4 with i = 2, j = 1,
k = 3, while A4 satisfies the second condition for the same set of parameters.

We also need to remind the reader of the Catalan numbers (See, for example, [33] or [17], Ch. 20).
We need them because, among other things, the nth Catalan number

c(n) =
1

n + 1

(
2n

n

)

describes the number of ways in which brackets (parentheses) can be placed in an associative word
x1x2 . . . xn of length n to determine the order in which the indeterminates must be multiplied. In
other words c(n) characterizes the number of different non-associative words that can be defined on the
associative word x1x2 . . . xn. Let us denote the set of all such non-associative words by W .

Let w = (x1x2 . . . xn)q be a non-associative word belonging to W with the arrangement of brackets
q. Then we can construct a linear order on P2[n]

w(I) = (I × I × . . . × I)q

where the operation is the product of linear orders given in Definition 4.

Lemma 2. Let w1 = (x1x2 . . . xn)q1
and w2 = (x1x2 . . . xn)q2

be two non-associative words belonging to
W with the arrangements of brackets q1 and q2, respectively. Let w1(I) and w2(I) be the corresponding
linear orders. Then w1(I) = w2(I) if and only if q1 = q2.

Proof. We will prove this statement by induction. As we saw in Example 1 for n = 3 we have only two
different arrangements of brackets and they correspond to different linear orders. This gives us a basis
for our induction.

As is known (see, for example, [36]) any non-associative word has a unique representation as a product
of two non-associative words of smaller length. Suppose now that

w1 = (x1 . . . xk )r1
(xk+1 . . . xn)r2

,

w2 = (x1 . . . xm)s1
(xm+1 . . . xn)s2

,

where r1, r2, s1, s2 are certain arrangements of brackets. We denote ≻1= w1(I) and ≻2= w2(I). If k = m,
then either r1 6= s1 or r2 6= s2 and we may apply the induction hypothesis. Suppose now that m > k (we
can do this without loss of generality). Then xk+1 can be found in the first bracket of w2. This will lead
to {1, n} ≻1 {k + 1, k + 1} but {k + 1, k + 1} ≻2 {1, n}. This shows that ≻1 and ≻2 are different. The
theorem is proved.

Theorem 5. There exist at least c(n) representable reducible linear orders on P2[n]. In total, there are
at least 22n−5 consistent linear orders on P2[n].

Proof. By Lemma 2 we can produce as many representable reducible linear orders on P2[n] as claimed,
using the trivial order I and the product operation defined above. Indeed, we have one such linear order
for any non-associative arrangement of brackets on a word x1x2 . . . xn of length n.

Let us see now what we can do if we drop reducibility and do not assume our linear orders to be
representable but only consistent. Let i ∈ [n]. By a “diagonal” let us mean any set of pairs satisfying
one of the two following properties:

1. {i, i}, {i− 1, i + 1}, . . . , {1, 2i − 1}, in case 2i − 1 ≤ n,

2. {i, i}, {i− 1, i + 1}, . . . , {2i − n, n}, in case 2i − 1 > n.
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For each diagonal, we independently choose a direction of arrows and follow it through the whole diagonal.
For example, we may choose

{i, i} ≻ {i − 1, i + 1} ≻ . . . ≻ {1, 2i − 1}

or
{i, i} ≺ {i − 1, i + 1} ≺ . . . ≺ {1, 2i− 1}.

By choice of directions on all diagonals, a linear order is defined uniquely, and clearly, this will be a
consistent order. Since we have 2n − 5 such diagonals and their directions are chosen independently, we
can construct at least 22n−5 consistent linear orders. The theorem is proved.

To compare the two bounds we note that asymptotically the nth Catalan number is

c(n) ∼ 1√
π

22n

n3/2
=

1√
π

22n− 3

2
log

2
n.

This can be found in [34]. As we see the second bound is only slightly better than the first.

4 Consistent Linear Orders on P3[4]

The phenomenon that we encounter here is the existence of a consistent linear order which is not even
almost representable. We start with such an example.

Example 4. Let us consider the following consistent linear order R on P3[4]:

{13} ≻ {12, 2} ≻ {12, 3} ≻ {12, 4} ≻ {1, 22} ≻ {1, 2, 3} ≻ {1, 2, 4} ≻ {1, 32} ≻ {1, 3, 4} ≻ {23} ≻
{22, 3} ≻ {1, 42} ≻ {22, 4} ≻ {2, 32} ≻ {2, 3, 4} ≻ {2, 42} ≻ {33} ≻ {32, 4} ≻ {3, 42} ≻ {43}

which extends the lexicographic order on P2[4] (or R1,4 in our notation on Figure 2) and fails to be almost
representable. Indeed we have:

{22, 3} ≻ {1, 42}, (12)

{2, 42} ≻ {33}, (13)

{1, 3, 4} ≻ {23}. (14)

If this ranking were almost representable then the respective system of inequalities

2u2 + u3 ≥ 1
u2 ≥ 3u3

1 + u3 ≥ 3u2

would be consistent, but it is not. These inequalities imply 0 ≥ u3, which contradicts our assumption that
u3 > u4 = 0.

To demystify this example, we note that if in R we change the signs in (12,13,14) to the opposite,
effectively swapping three pairs of neighboring multisets, we will obtain a consistent linear order. More-
over, it is representable: one can take, for example, u2 = 337

840 , and u3 = 131
840 . Since the pairs of multisets

do not have common elements, the order after the swap will be consistent if and only if the original
one was consistent. A full classification of consistent linear orders on P3[4] is contained in the following
theorem.

Theorem 6. There are 128 consistent linear orders on P3[4]. Among them 80 are representable, 30 are
almost representable but not representable. The remaining 18 are not almost representable.

Proof. The classification was obtained first by hand and then checked with the help of the computer
algebra system Magma [3].
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5 Nonextendability of Linear Orders That Are Not Representable

Theorem 7. For any two positive integers n ≥ 4 and k, there exists an integer f(n, k) > k such that
a linear order � on Pk[n] can be extended to a consistent linear order on Pf(n,k)[n] if and only if it is
representable.

Proof. It is clear that any representable order � on Pk[n] can be extended to a representable order of
Pm[n] for all m ≥ k. It is enough to take the order with the same utilities.

Suppose now that � is not representable. Under this assumption, we will prove that � cannot be
extended to a consistent order of Pf(n,k)[n] for f(n, k) = kn+1nn/2+1. This number is huge but sufficient
for our purposes. We do not attempt to find a smaller one.

Let N =
(
k+n−1

k

)
, which is the total number of multisets in Pk[n]. Let us enumerate all multisets Qi,

(i = 1, . . . , N) of Pk[n] so that
Q1 ≻ Q2 ≻ . . . ≻ QN . (15)

Let µi be the multiplicity function of Qi. To each multiset Qi we assign a linear form fi : R
n → R such

that for any x ∈ R
n

fi(x) =
n∑

j=1

µi(j)xj (i = 1, . . . , N). (16)

Then the following system of N − 1 linear inequalities

f1(x) − f2(x) > 0

f2(x) − f3(x) > 0

. . .

fN−1(x) − fN (x) > 0

cannot be consistent (otherwise we would be able to find utilities for �). The ith inequality fi(x) −
fi+1(x) > 0 defines a half-space Hi in R

n determined by the corresponding hyperplane fi(x)−fi+1(x) = 0.
For each i ∈ {1, . . . , N − 1} we define the vector

vi = (µi(1) − µi+1(1), . . . , µi(n) − µi+1(n))t.

This is an inner normal vector of Hi, i.e. x ∈ Hi iff (vi,x) > 0. The vectors v1, . . . ,vN−1 have coefficients
ranging from k to −k, and the sum of all coefficients is zero for each of them. A standard linear-algebraic
argument tells us that inconsistency of the system above is equivalent to the existence of a nontrivial
linear combination of v1, . . . ,vN−1 with nonnegative coefficients summing up to zero (see, for example,
Theorem 2.9 of [16], page 48).

Since the sum of all coefficients of every vi is zero, they all lie in a subspace of lower dimension than
n. Another elementary linear-algebraic argument shows that there exist m ≤ n − 1 vectors vi1 , . . . ,vim

among v1, . . . ,vN−1, which are linearly dependent with positive coefficients and such that no proper
subset of {vi1 , . . . ,vim

} is linearly dependent (see, for example, Lemma 5.1 in [11]). This means, in
particular, that the linear dependency between vi1 , . . . ,vim

is unique up to a scalar multiple, that is,
if a1vi1 + . . . + amvim

= 0 and b1vi1 + . . . + bmvim
= 0 are two nontrivial linear combinations that

vanish, then there exists a scalar c 6= 0 such that ai = cbi for all i = 1, 2, . . . , m. In particular, any linear
combination b1vi1 + . . . + bmvim

= 0 has all its coefficients of the same sign, either all positive or all
negative.

Without loss of generality we may assume that vi1 , . . . ,vim
are the first m vectors of the system

{v1, . . . ,vN−1}. Let us consider the matrix V = (v1 | . . . | vm), whose columns are the vectors v1, . . . ,vm.
Suppose, without loss of generality, that the first m−1 rows of V are linearly independent. Let A be a
square m×m matrix whose m rows are the upper m rows of V . Let A = (w1 | . . . | wm), where w1, . . . ,wm

are the columns of A. It is clear that b1v1 + · · ·+ bmvm = 0 if and only if b1w1 + · · ·+ bmwm = 0. Since
detA = 0, we get A11w1 +A12w2 + · · ·+ A1mwm = 0, where Aij is the (i, j)-cofactor of matrix A. Since
the entries of every cofactor are integers between −k and k, the maximal value of such a determinant
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can be no greater than kmmm/2 ≤ knnn/2. (This immediately follows from an important theorem of
Hadamard [18] which states that if A is any real n × n matrix with −1 ≤ aij ≤ 1, then | detA| ≤ nn/2.)
As was mentioned above, this implies A11v1 +A12v2 + · · ·+A1mvm = 0, and all coefficients can be made
positive due to the comment made earlier. So we assume that we have a linear combination

a1v1 + · · · + amvm = 0 (17)

with nonnegative integer coefficients ai such that 0 ≤ ai ≤ g(n, k), where g(n, k) = knnn/2. Returning
to our original notation will mean that

a1vi1 + . . . + amvim
= 0. (18)

Now we recollect that each vk is the inner normal of the half-space Hk defined by the inequality

n∑

j=1

µik
(j)xj −

n∑

j=1

µik+1(j)xj > 0, (19)

where µik
and µik+1 are the multiplicity functions of Qik

and Qik+1, respectively. We denote Mk = Qik

and Nk = Qik+1 and note that Mk ≻ Nk. Let us consider now the two multisets:

M =

m⋃

i=1

Mi ∪ . . . ∪ Mi
︸ ︷︷ ︸

ai

, N =

m⋃

i=1

Ni ∪ . . . ∪ Ni
︸ ︷︷ ︸

ai

(20)

where ai, i = 1, . . . , m, are the coefficients of (18). The common cardinality r of M and N is no greater
than (

∑m
i=1 ai)k ≤ kng(n, k) = f(n, k). Hence both M and N are from Pr[n]. If we assume that �

can be extended to a consistent order on Pf(n,k)[n], then it can be also extended to a consistent order
on Pr[n] and Lemma 1 will imply that M ≻ N . On the other hand, (18) implies that M = N as these
two sets consist of the same elements taken with the same multiplicities. This contradiction proves the
theorem.

6 Further Research

It would be interesting to find analogues of the max-min and min-max rankings that were introduced in
[4] and axiomatically characterised in [1] and find their axiomatic characterisations.

In relation to income streams it will be interesting to find necessary and sufficient conditions for
representability of a ranking on Pk[n] by a system of weights wi = αi−1, i = 1, 2, . . . , n, where α is a
discount rate. A further step might involve rankings of investment projects which will be a continuation
of the paper [15], where conditions were given under which one investment project dominates a second
investment project irrespective of the discout rate.
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7 Appendix: Proof of Theorem 1

Proof. When k = 2, we have φ(2) = 1, Φ(2) = 2, and

F2 = {f0 = 0, f1 = 1/2, f2 = 1}.
The risk-loving linear order occurs precisely when γ < 1/2 or γ ∈ (f0, f1), while the risk-avoiding linear
order occurs precisely when γ ∈ (f1, f2). We will have also one non-antisymmetric order when γ = f1.
Therefore we get three different orders, two of which are linear. This gives a basis for our induction.

Let us prove by induction that, for all k, there will be as many consistent orders on Pk[3] as the
number of Farey fractions in Fk, different from 0 and 1, plus the number of intervals into which the
fractions of Fk split [0, 1], and that these orders are all representable with each of them arising when
γ ∈ (fi, fi+1) for some two neighboring Farey fractions fi and fi+1 (in which case we obtain a linear
order) or when γ = fi /∈ {0, 1} (in which case the order is not antisymmetric).

Assuming that this is true for Pk[3], let us consider Pk+1[3]. By the induction hypothesis, all consistent
orders of Pk[3] are representable and therefore each has at least one extension to an order of Pk+1[3], in
particular the one with the same utilities. Let us explore where we can obtain more than one extension of
a consistent order � on Pk[3] to a representable order on Pk+1[3]. If γ = fi, for some i, the extension is,
of course, unique. Therefore we may assume that � is determined by the utilities such that γ ∈ (fi, fi+1).

If any two multisets of Pk+1[3] contain an element in common, then their order in any consistent
extension is already determined by �. The only thing which is not determined by � and the consistency
of the extension is the position of the multiset T = {2k+1} in the sequence of the following k multisets:

{3k+1} ≺ {1, 3k} ≺ . . . ≺ {1k, 3} ≺ {1k+1}. (21)

These multisets will be arranged in the order (21) for every consistent order � of Pk+1[3]. Let us denote
Si = {1i, 3k+1−i}. Two different values of γ from the same interval (fi, fi+1) might position T relative
to the sequence (21) differently. This happens if and only if one of the fractions

1

k + 1
,

2

k + 1
, . . . ,

k

k + 1
, (22)

falls into the interval (fi, fi+1). Indeed, if no such fraction falls into (fi, fi+1), then for some j ∈
{1, . . . , k−1} we have

j

k + 1
≤ fi < fi+1 ≤ j + 1

k + 1
.
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This means that for every γ ∈ (fi, fi+1) we actually have

j

k + 1
< γ <

j + 1

k + 1

or uγ(Sj) < uγ(T ) < uγ(Sj+1), where uγ(X) denotes the total utility of X calculated for the vector
of utilities (1, γ, 0). This means that every representable extension of � ranks T between Sj and Sj+1.
Hence, there is a unique extension of � to a representable linear order on Pk+1[3].

On the other hand, when one of the fractions (22), say f = j
k+1 , falls into (fi, fi+1), there can be

three different extensions of � to a representable order on Pk+1[3]. One will occur when uγ ∈ (fi, f),
another when γ = f , and the last one when γ ∈ (f, fi+1). They will position T between Sj−1 and Sj ,
force a tie T ∼ Sj , or position T between Sj and Sj+1, respectively. There can be no more than one
new Farey fraction in (fi, fi+1) since it is known that, for any two neighboring Farey fractions a

b and
c
d , we have |ad − bc| = 1 (see [19], Theorem 28), which is not true for a

b = j
k+1 and c

d = j+1
k+1 so they

have to be separated by fi or fi+1. This shows that we will have as many more consistent representable
orders of Pk+1[3] in comparison to Pk[3] as twice the number of Farey fractions from Fk+1 \Fk, namely
2φ(k + 1) new orders. Half of these additional orders are linear. Thus, 2Φ(k) − 1 consistent orders on
Pk[3] generate 2Φ(k + 1) − 1 consistent representable orders on Pk+1[3].

It remains to prove that every consistent order on Pk+1[3] appears as an extension of one of the
consistent representable orders on Pk[3] in the way which has been just described. This will prove that
all orders on Pk+1[3] are representable.

Let us assume now that � is a consistent order of Pk+1[3]. Then it induces a consistent order �i on
P i[3] for each i ∈ {1, 2, . . . , k}. By the induction hypothesis, all orders �i are representable and, with no
loss of generality, we may assume that they are determined by the same set of utilities, i.e. have the same
γ. We know that γ either belongs to the interval (fi, fi+1) for some two neighboring terms fi and fi+1

of Fk or coincides with fi for some i. As Case 1 let us assume that � positions the multiset T = {2k+1}
against the elements of the sequence (21) as follows: Sj ≺ T ≺ Sj+1.

Case 1a. γ ∈ (fi, fi+1). We know that Sj ≺ T ≺ Sj+1 for all representable orders with γ ∈
(

j
k+1 , j+1

k+1

)

. Hence we need to prove that

(fi, fi+1) ∩
(

j

k + 1
,
j + 1

k + 1

)

6= ∅, (23)

for then γ can be adjusted, if needed, to obtain a representable order which coincides with �. Suppose to
the contrary that (23) does not hold and that the intersection there is empty. Without loss of generality,
we assume that fi+1 ≤ j

k+1 . (The case of fi ≥ j+1
k+1 can be handled similarly.) Then γ < fi+1 ≤ j

k+1 , and

γ < j
k+1 .

Suppose, first, that the fraction j
k+1 is not in its lowest terms, i.e. 1 < d = gcd (j, k + 1). Let ℓ = j

d

and h = k+1
d . Then γ < ℓ

h = j
k+1 and hence

{2h} ≺h {1ℓ, 3h−ℓ}.

Since hd = k + 1 and ℓd = j, this immediately implies, due to consistency of � and Lemma 1(b), that

T = {2k+1} = {2hd} ≺ {1ℓd, 3(h−ℓ)d} = {1j, 3k+1−j} = Sj ,

which is a contradiction.
So assume that the fraction j

k+1 is in its lowest terms, i.e. 1 = gcd (j, k+1). Then we consider the

two neighboring Farey fractions s
t and ℓ

h of j
k+1 in Fk+1 such that

s

t
<

j

k + 1
<

ℓ

h
. (24)

Since the fraction j
k+1 is in its lowest terms, fi+1 6= j

k+1 .
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As we assumed the contrary to (23) we have γ < fi+1 ≤ s
t < ℓ

h . Then one of the main theorems
about Farey fractions states that in this case

s + ℓ = j and t + h = k + 1 (25)

(see [19], Theorem 29 or [7] Theorem 9). In particular, t < k + 1 and h < k + 1. Hence it follows that

{2h} ≺h {1ℓ, 3h−ℓ},
{2t} ≺t {1s, 3t−s}.

By Lemma 1(a) and and (25) we get

T = {2k+1} = {2h} ∪ {2t} ≺ {1ℓ, 3h−ℓ} ∪ {1s, 3t−s} = Sj ,

which is a contradiction. So (23) in this subcase holds.

Case 1b. γ = fi for some i. We need to show that in this case

fi ∈
(

j

k + 1
,

j + 1

k + 1

)

. (26)

The argument is very similar to the previous subcase. We assume the contrary to (26) and with no loss
of generality we may assume that fi ≤ j

k+1 . Assuming that j
k+1 is not in its lowest terms we get a

contradiction, proving that T ≺ Sj as in the Case 1a. Assuming that j
k+1 is in its lowest terms, we get

fi 6= j
k+1 and hence fi < j

k+1 . We again take the two neighboring Farey fractions s
t and ℓ

h of j
k+1 in

Fk+1 satisfying (24). As fi ≤ s
t < ℓ

h , we also get (16), (17) and (18) from which we deduce T ≺ Sj and
again obtain a contradiction with Sj ≺ T . This proves (26) in this subcase as well.

As Case 2, we take T ∼ Sj for some j. We again have to consider two subcases. We leave these to
the reader.

So much proves that � is representable. This completes the proof of the induction hypothesis.
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Classification of representable linear orders on P2[4]
according to their values of u2 and u3

( u1 = 1 and u4 = 0)
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Table 2. Types of consistent rankings P3[4]

Order Representable Almost representable Not almost representable Total
on pairs extensions extensions extensions

R1,4 10 3 1 14
R2,4 12 3 1 17
R3,4 10 7 7 24
R4,4 12 3 1 17
R5,4 10 3 1 14
B4 5 1 0 7
C4 5 1 0 7
D4 3 1 0 4
F4 3 1 0 4
G4 10 7 7 24

Total 80 30 18 128
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Classification of representable rankings from P3[4]
according to their values of w2 and w3.

(u1 = 1 and u4 = 0)
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