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Abstract

It is known that Dodgson’s rule is computationally very demanding.
Tideman [15] suggested an approximation to it but did not investigate
how often his approximation selects the Dodgson winner. We show that
under the Impartial Culture assumption the probability that the Tide-
man winner is the Dodgson winner tends to 1. However we show that
the convergence of this probability to 1 is slow. We suggest another ap-
proximation — we call it Dodgson Quick — for which this convergence
is exponentially fast.

1 Introduction

Condorcet proposed that a winner of an election is not legitimate unless a
majority of the population prefer that alternative to all other alternatives. A
number of voting rules have been proposed which select the Condorcet winner
if it exists, and otherwise selects an alternative that is in some sense closest
to being a Condorcet Winner. A prime example of such as rule was the one
proposed by Dodgson [7].

Bartholdi et al. [2] proved that finding the Dodgson winner is, unfortunately,
an NP-hard problem. Hemaspaandra et al. [8] refined this result by proving that
it is Θp

2-complete and hence is not NP-complete unless the polynomial hierarchy
collapses. As Dodgson’s rule is hard to compute, a number of numerical studies
have used approximations [14, 10]. The worst case time required to compute
the Dodgson winner from a voting situation is sublinear for a fixed number
of alternatives [10], however this algorithm is non-trivial to implement and its
running time may grow quickly with the number of alternatives.

We investigate the asymptotic behaviour of simple approximations to the
Dodgson rule as the number of agents gets large. Tideman [15] suggested an
approximation but did not investigate its convergence to Dodgson. We prove
that under the assumption that all votes are independent and each type of vote
is equally likely, the probability that the Tideman [15] approximation picks
the Dodgson winner asymptotically converges to 1, but not exponentially fast.
Although the Simpson rule frequently picks the Dodgson winner [11], it does
not converge to Dodgson’s rule [10] and is not included in this paper.

We propose a new social choice rule, which we call Dodgson Quick. The
Dodgson Quick approximation does exhibit exponential convergence to Dodg-
son. We may quickly verify that a particular profile has the property that forces
the DQ-winner to be the Dodgson winner.

Despite its simplicity, our approximation picked the correct winner in all
of 1,000,000 elections with 85 agents and 5 alternatives [10], each generated



randomly according to the Impartial Culture assumption. Our approximation
can also be used to develop an algorithm to determine the Dodgson winner with
O(ln n) expected running time for a fixed number of alternatives and n agents.

A result independently obtained by Homan and Hemaspaandra [9] has a
lot in common with our result formulated in the previous paragraph, but there
are important distinctions as well. They developed a “greedy” algorithm that,
given a profile, finds the Dodgson winner with certain probability. Under the
Impartial Culture assumption this probability also approaches 1 as we increase
the number of agents. However the Dodgson Quick rule is simpler and, unlike
their algorithm, the Dodgson Quick rule requires only the information in the
weighted majority relation. This makes the Dodgson Quick rule easier to study
and compare with other simple rules such as the Tideman rule.

2 Preliminaries

Let A and N be two finite sets of cardinality m and n respectively. The elements
of A will be called alternatives, the elements of N agents. We assume that the
agents have preferences over the set of alternatives represented by (strict) linear
orders. By L(A) we denote the set of all linear orders on A. The elements of
the Cartesian product

L(A)n = L(A) × · · · × L(A) (n times)

are called profiles. Let P = (P1, P2, . . . , Pn) be a profile. The linear order Pi

represents the preferences of the ith agent; by aPib, we denote that this agent
prefers a to b. We define nxy to be the number of linear orders in P that rank
x above y, i.e. nxy = #{i | xPiy}. A function WP : A × A → Z given by
WP(a, b) = nab − nba for all a, b ∈ A, will be called the weighted majority
relation on P . It is obviously skew symmetric, i.e. WP(a, b) = −WP(b, a) for
all a, b ∈ A.

Many of the rules to determine the winner use the numbers

adv(a, b) = max(0, nab − nba) = (nab − nba)+,

which will be called advantages. Note that adv(a, b) = max(0, W (a, b)) =
W (a, b)+ where W is the weighted majority relation on P .

A Condorcet winner is an alternative a for which adv(b, a) = 0 for all
other alternatives b.

The Dodgson score [7, 4, 15], which we denote as Scd(a), of an alternative
a is the minimum number of neighbouring alternatives that must be swapped to
make a a Condorcet winner. We call the alternative(s) with the lowest Dodgson
score the Dodgson winner(s).

The Tideman score [15] Sct(a) of an alternative a is

Sct(a) =
∑

b6=a

adv(b, a).



We call the alternative(s) with the lowest Tideman score the Tideman win-
ner(s). Tideman [15] suggested the rule based on this score as an approximation
to Dodgson.

The Dodgson Quick (DQ) score Scq(a) of an alternative a, which we
introduce in this paper, is

Scq(a) =
∑

b6=a

F (b, a), where F (b, a) =

⌈

adv(b, a)

2

⌉

.

We call the alternative(s) with the lowest DQ-score the Dodgson Quick win-
ner(s) or DQ-winner.

The Impartial Culture assumption (IC) stipulates that all possible profiles
P ∈ L(A)n are equally likely to represent the collection of preferences of an
n-element society of agents N . This assumption does not accurately reflect the
voting behaviour of most voting societies and the choice of probability model
can affect the similarities between approximations to the Dodgson rule [11].
However the IC is the most simplifying assumption available. As noted by Berg
[3], many voting theorists have chosen to focus their research upon the IC. Thus
an in depth study of the approximability of Dodgson’s rule under the Impartial
Culture is a natural first step.

The IC leads to the following m!-dimensional multinomial distribution. Let
us enumerate all m! linear orders in some way. Let P ∈ L(A)n be a random
profile. Let then X be a vector where each Xi, for i = 1, 2, . . . , m!, represents
the number of occurrences of the ith linear order in the profile P . Then, under
the IC, the vector X is (n, k,p)-multinomially distributed with k = m! and
p = 1k/k = ( 1

k
, 1

k
, . . . , 1

k
).

Definition 2.1 A weighted tournament on a set A is any function W : A×
A → Z satisfying W (a, b) = −W (b, a) for all a, b ∈ A.

We call W (a, b) the weight of an ordered pair of distinct elements (a, b).
One can view weighted tournaments as complete directed graphs whose edges
are assigned integers characterising the intensity and the sign of the relation
between the two vertices that this particular edge connects. The only condition
is that if an edge from a to b is assigned integer z, then the edge from b to a is
assigned the integer −z.

Weighted majority relation WP on a profile P defined earlier in this paper is
a prime example of a weighted tournament. We say that a profile P generates
a weighted tournament W if W = WP . We note that adv(a, b) = WP(a, b)+,
where x+ = max(0, x). Similarly WP(a, b) = adv(a, b) − adv(b, a).

The following theorem generalises the famous McGarvey theorem [12].

Theorem 2.2 Let W be a weighted tournament. Then there exists a profile
that generates a weighted tournament W if and only if all weights in W have
the same parity [5, 13].



3 Dodgson Quick, A New Approximation

In this section we work under the Impartial Culture assumption.

Definition 3.1 Let P = (P1, P2, . . . , Pn) be a profile. We say that the ith agent
ranks b directly above a if and only if aPib and there does not exist c different
from a, b such that aPic and cPib. We define D(b, a) as the number of agents
who rank b directly above a.

Lemma 3.2 The probability that D(x, a) > F (x, a) for all x converges expo-
nentially fast to 1 as the number of agents n tends to infinity.

Proof. As nba and D(b, a) are binomially distributed with means of n/2
and n/m, respectively, from Chomsky’s large deviation theorem [6], we know
that for a fixed number of alternatives m there exist β1 > 0 and β2 > 0 s.t.

P

(

D(b, a)

n
<

1

2m

)

≤ e−β1n, P

(

nba

n
− 1

2
>

1

4m

)

≤ e−β2n.

We can rearrange the second equation to involve F (b, a),

P

(

nba

n
− 1

2
>

1

4m

)

= P

(

nba − nab

n
>

1

2m

)

= P

(

adv(b, a)

n
>

1

2m

)

.

Since adv(b, a) ≥ F (b, a),

P

(

nba

n
− 1

2
>

1

4m

)

≥ P

(

F (b, a)

n
>

1

2m

)

.

From the law of probability P (A ∨ B) ≤ P (A) + P (B) it follows that

P

(

F (b, a)

n
>

1

2m

)

≤ e−β2n, P

(

D(b, a)

n
<

1

2m

)

≤ e−β1n,

and so for β = min(β1, β2) we obtain

P

(

F (b, a)

n
>

1

2m
or

D(b, a)

n
<

1

2m

)

≤ e−β1n + e−β2n ≤ 2e−βn.

Hence

P

(

∃x

F (x, a)

n
>

1

2m
or

D(x, a)

n
<

1

2m

)

≤ 2me−βn.

Using P (Ē) = 1 − P (E), we find that

P

(

∀x

F (x, a)

n
<

1

2m
<

D(x, a)

n

)

≥ 1 − 2me−βn.



Lemma 3.3 The DQ-score Scq(a) is a lower bound for the Dodgson Score
Scd(a) of a.

Proof. Let P be a profile and a ∈ A. Suppose we are allowed to change
linear orders in P , by repeatedly swapping neighbouring alternatives. Then to
make a a Condorcet winner we must reduce adv(x, a) to 0 for all x and we know
that adv(x, a) = 0 if and only if F (x, a) = 0. Swapping a over an alternative
b ranked directly above a will reduce nba − nab by two, but this will not affect
nca − nac where a 6= c. Thus swapping a over b will reduce F (b, a) by one, but
will not affect F (c, a) where b 6= c. Therefore, making a a Condorcet winner
will require at least ΣbF (b, a) swaps. This is the DQ-Score Scq(a) of a.

Lemma 3.4 If D(x, a) ≥ F (x, a) for every alternative x, then the DQ-Score
Scq(a) of a is equal to the Dodgson Score Scd(a) and the DQ-Winner is equal
to the Dodgson Winner.

Proof. If D(b, a) ≥ F (b, a), we can find at least F (b, a) linear orders in
the profile where b is ranked directly above a. Thus we can swap a directly
over b, F (b, a) times, reducing F (b, a) to 0. Hence we can reduce F (x, a) to 0
for all x, making a a Condorcet winner, using ΣxF (x, a) swaps of neighbouring
alternatives. In this case, Scq(a) = ΣbF (b, a) is also an upper bound for the
Dodgson Score Scd(a) of a. Hence Scq(a) = Scd(a).

Theorem 3.5 The probability that the DQ-Score Scq(a) of an arbitrary alter-
native a equals the Dodgson Score Scd(a), converges to 1 exponentially fast.

Proof. From Lemma 3.4, if D(x, a) ≥ F (x, a) for all alternatives x then
Scq(a)= Scd(a). From Lemma 3.2, the probability of this event converges
exponentially fast to 1 as n → ∞.

Corollary 3.6 The probability that the DQ-Winner is the Dodgson Winner
converges to 1 exponentially fast as we increase the number of agents.

Corollary 3.7 Suppose that the number of alternatives m is fixed. Then there
exists an algorithm that computes the Dodgson score of an alternative a taking
as input the frequency of each linear order in the profile P with expected running
time logarithmic with respect to the number of agents (i.e. is O(ln n)).

Proof. The are at most m! distinct linear orders in the profile. Hence for
a fixed number of alternatives the number of distinct linear orders is bounded.
Hence we may find the DQ-score and check whether D(x, a) ≥ F (x, a) for all
alternatives x using a fixed number of additions. Additions can be performed
in time linear with respect to the number of bits and logarithmic with respect



to the magnitude of the operands. So we have used an amount of time that is
at worst logarithmic with respect to the number of agents.

If D(x, a) ≥ F (x, a) for all alternatives x, we know that the DQ-score is the
Dodgson score and we do not need to go further. From Lemma 3.2 we know
that the probability that we need go further declines exponentially fast, and,
if this happens, we can still find the Dodgson score in time polynomial with
respect to the number of agents [2].

4 Tideman’s Rule

In this section we focus our attention on the Tideman rule which was defined
in Section 2. We continue to assume the IC.

Lemma 4.1 Given an even number of agents, the Tideman winner and the
DQ-winner will be the same.

Proof. Since n is even, all weights in the majority relation W are even.
Since adv(a, b) ≡ W (a, b)+ it is clear that all advantages will also be even. Since
adv(a, b) will always be even, dadv(a, b)/2e will be exactly half adv(a, b) and
so the DQ-score will be exactly half the Tideman score. Hence the DQ-winner
and the Tideman winner will be the same.

Corollary 4.2 Let P be a profile for which the Tideman winner is not the
DQ-winner. Then all non-zero advantages are odd.

Proof. As we must have an odd number of agents, all weights in the
majority relation WP must be odd. Since adv(a, b) = WP(a, b)+ the advantage
adv(a, b) must be zero or equal to the weight WP(a, b).

Note 4.3 There are no profiles with three alternatives where the set of DQ-
winners and Tideman winners differ. There are profiles with four alternatives
where the set of tied winners differ, but no such profile has a unique DQ-winner
that differs from the unique Tideman winner [10].

Example 4.4 There exist profiles with five alternatives where there is a unique
Tideman winner that differs from the unique DQ-winner. By Theorem 2.2,
we know we may construct a profile whose weighted majority relation has the
following advantages:

1

1

1

1

5

1

19

9

9

x

y

b

a

c

Scores a b c x y

Tideman 10 10 9 4 5
DQ 6 6 5 4 3



Here x is the sole Tideman winner, but y is the sole DQ-winner.

Theorem 4.5 For any m ≥ 5 there exists a profile with m alternatives and an
odd number of agents, where the Tideman winner is not the DQ-winner.

Example 4.4 demonstrates the existence of a profile with m = 5 alternatives
for which the Tideman winner is not the Dodgson Quick winner. To extend this
example for larger numbers of alternatives, we may add additional alternatives
who lose to all of a, b, c, x, y. From Theorem 2.2 there exists a profile with an
odd number of agents that generates that weighted majority relation.

Theorem 4.6 If the number of agents is even, the probability that all of the
advantages are 0 does not converge to 0 faster than O(n−m!

4 ).

Proof. Let P be a random profile, V = {v1,v2, . . . ,vm!} be an ordered
set containing all m! possible linear orders on m alternatives, and X be a
random vector, with elements Xi representing the number of occurrences of
vi in P . Under the Impartial Culture assumption, X is distributed according
to a multinomial distribution with n trials and m! possible outcomes. Let us
group the m! outcomes into m!/2 pairs Si = {vi, v̄i}. Denote the number of
occurrences of v as n(v). Let the random variable Y 1

i be n(vi) and Y 2
i be

n(v̄i). Let Yi = Y 1
i + Y 2

i .
It is easy to show that, given Yi = yi for all i, each Y 1

i is independently
binomially distributed with p = 1/2 and yi trials. It is also easy to show that
for an arbitrary integer n > 0, a (2n, 0.5)-binomial random variable X has a
probability of at least 1√

2n
of equaling n; thus if yi is even then the probability

that Y 1
i = Y 2

i is at least 1
2
√

yi

. Combining these results we get

P (∀iY
1
i = Y 2

i | ∀iYi = yi ∈ 2Z) ≥
∏

i

1

2
√

yi

≥
∏

i

1

2
√

n
= 2−

m!

2 n−m!

4 .

It is easy to show that for any k-dimensional multinomially distributed random
vector, the probability that all k elements are even is at least 2−k+1; hence the
probability that all Xi are even is at least 2−k+1 where k = m!/2. Hence

P (∀iXi,1 = Xi,2) ≥
(

2−
m!

2
+1

) (

2−
m!

2 n−m!

4

)

= 21−m!n−m!

4 .

If for all i, Xi,1 = Xi,2 then for all i, n(vi) = n(v̄i), i.e. the number of each
type of vote is the same as its complement. Thus

nba =
∑

v∈{v:bva}
n(v) =

∑

v̄∈{v̄:av̄b}
n(v̄) =

∑

v∈{v:avb}
n(v) = nab,

so adv(b, a) = 0 for all alternatives b and a.



Lemma 4.7 The probability that the Tideman winner is not the DQ-winner
does not converge to 0 faster than O(n−m!

4 ) as the number of agents n tends to
infinity.

Let P be a random profile from L(A)n for some odd number n. Let |C| be the
size of the profile from Theorem 4.5. Let us place the first |C| agents from profile
P into sub-profile C and the remainder of the agents into sub-profile D. There
is a small but constant probability that C forms the example from Theorem
4.5, resulting in the Tideman winner of C differing from its DQ-winner. As
n, |C| are odd, |D| is even. Thus from Theorem 4.6 the probability that the

advantages in D are zero does not converge to 0 faster than O(n− m!

4 ). If all
the advantages in D are zero then adding D to C will not affect the Tideman
or DQ-winners. Hence the probability that the Tideman winner is not the
DQ-winner does not converge to 0 faster than O(n−m!

4 ).

Theorem 4.8 The probability that the Tideman winner is not the Dodgson
winner does not converge to 0 faster than O(n− m!

4 ) as the number of agents n
tends to infinity.

Proof. From Corollary 3.6 the DQ-winner converges to the Dodgson winner
exponentially fast. However, the Tideman winner does not converge faster
than O(n−m!

4 ) to the DQ-winner, and hence also does not converge faster than

O(n−m!

4 ) to the Dodgson winner.

Our next goal is to prove that under the IC the probability that the Tideman
winner and Dodgson winner coincide converges asymptotically to 1.

Definition 4.9 We define the adjacency matrix M , of a linear order v, as
follows:

Mij =







1 if ivj
−1 if jvi
0 if i = j

.

Lemma 4.10 Suppose that v is a random linear order chosen from the uni-
form distribution on L(A). Then its adjacency matrix M is an m2-dimensional
random variable satisfying E[M ] = 0 and for all i, j, r, s ∈ A:

cov(Mij , Mrs) =























1 if i = r 6= j = s,
1/3 if i = r, but i, j, s distinct ∨ j = s, others distinct,
−1/3 if i = s, others distinct ∨ j = r, others distinct,
0 if i, j, r, s distinct ∨ i = j = r = s,
−1 if i = s 6= j = r.

Proof. Clearly, E[Mij ] = (1)+(−1)
2 = 0. It is well known [1] that

cov(X, Y ) = E[XY ] − E[X ]E[Y ] so it follows that cov(Mij , Mrs)E[MijMrs].



Note that for all i 6= j we know that MiiMii = 0, MijMij = 1, and
MijMji = −1. If i = r and i, j, s are all distinct then the sign of MijMis

for each permutation of i, j and s is as shown below.

i i j j s s
j s i s i j
s j s i j i

Mij + + − − + −
Mis + + + − − −

MijMis + + − + − +

Thus, E[MijMrs] = +1+1−1+1−1+1
6 = 1

3 .
If i, j, r, s are all distinct then there are six linear orders v where ivj and

rvs, six linear orders v where ivj and svr, six linear orders v where jvi and
rvs, and six linear orders v where jvi and svr. Hence,

E[MijMrs] = 6(1)(1)+6(1)(−1)+6(−1)(1)+6(−1)(−1)
24 = 0 .

We may prove the other cases for cov(Mij , Mrs) in much the same way.

We note that as var(X) = cov(X, X) we also have, var(Mij) = 1 if i 6= j,
and var(Mij) = 0 if i = j.

Define Y to be a collection of random normal variables indexed by i, j for
1 ≤ i < j ≤ m each with mean of 0, and covariance matrix Ω, where

Ωij,rs = cov(Yij , Yrs) = cov(Mij , Mrs),

We may use the fact that i < j, r < s implies i 6= j, r 6= s, (s = i ⇒ r 6= j)
and (r = j ⇒ s 6= i) to simplify the definition of Ω as shown below:

Ωij,rs =















1 if (r, s) = (i, j),
1/3 if r = i, s 6= j or s = j, r 6= i,
−1/3 if s = i or r = j,
0 if i, j, r, s are all distinct.

Lemma 4.11 Let P = (P1, P2, . . . , Pn) be a profile chosen from the uniform
distribution on L(A)n. Let Mi be the adjacency matrix of Pi. Then, as n
approaches infinity,

∑n

i=1 Mi/
√

n converges in distribution to














0 Y12 Y13 · · · Y1m

−Y12 0 Y23 · · · Y2m

−Y13 −Y23 0 · · · Y3m

...
...

...
. . .

...
−Y1m −Y2m −Y3m · · · 0















,

where Y is a collection of random normal variables indexed by i, j for 1 ≤ i <
j ≤ m each with mean of 0, and covariance matrix Ω, where

Ωij,rs = cov(Yij , Yrs) = cov(Mij , Mrs).



Proof. As M1, M2, . . . , Mn are independent identically-distributed (i.i.d.)
random variables, we know from the multivariate central limit theorem [1, p81]
that

∑n

i=1 Mi/
√

n converges in distribution to the multivariate normal distribu-
tion with the same mean and covariance as the random matrix M from Lemma
4.10. As MT = −M and Mii = 0, we have the result.

Lemma 4.12 Ω is non-singular.

Proof. Consider Ω2 with elements

(Ω2)ij,kl =
∑

1≤r<s≤m

Γij,kl(r, s),

where Γij,kl(r, s) = Ωij,rsΩrs,kl.
If i, j, r, s distinct, then Γij,ij(i, j) = 1 and Γij,ij(r, s) = 0. For

(r, j), (i, s), (r, i), (j, s) the function Γij,ij evaluates to 1/9.
Let us consider the case (i, j) = (k, l). If (i, j) = (k, l) then

Γij,ij(r, s) = Ωij,rsΩrs,ij =















(1)2 if (r, s) = (i, j),
(1/3)2 if r = i, s 6= j or s = j, r 6= i,

(−1/3)2 if s = i, (r 6= j) or r = j, (s 6= i),
0 if i, j, r, s are all distinct.

Recall that r < s, i < j and r, s ∈ [1, m]. Let us consider for how many
values of (r, s) each of the above cases occur:

• (r, s) = (i, j): This occurs for exactly one value of (r, s).

• r = i, s 6= j: Combining the fact that r < s and r = i we get i < s. Thus
s ∈ (i, j)∪ (j, m], and there are (j− i−1)+(m− j) = (m− i−1) possible
values of s. As there is only one possible value of r this means that there
are also (m − i − 1) possible values of (r, s).

• s = j, r 6= i: Combining the fact that r < s and s = j we get r < j. Thus
r ∈ [1, i)∪ (i, j), and there are (i−1)+(j− i−1) = (j−2) possible values
of (r, s).

• s = i: Here we want r 6= j, however r < s = i < j, so explicitly stating
r 6= j is redundant. Combining the fact that r < s and s = i we get r < i.
Hence r ∈ [1, i] and there are i − 1 possible values for (r, s).

• r = j: Here we want s 6= i, however i < j = r < s, so explicitly stating
that r 6= j is redundant. From here on we will not state redundant
inequalities. Combining the fact that r < s and r = j we get j < s.
Hence s ∈ (j, m] and there are m − j possible values for (r, s).



Hence,

∑

1≤r<s≤m

Γij,ij(r, s) = 1 + (m + j − i − 3)

(

1

9

)

+ (m + i − j − 1)

(

1

9

)

= (9 + (m + j − i − 3) + (m + i − j − 1)) /9 =
2m + 5

9
.

Let us consider now the case i = k, j 6= l. Then

Γij,il(r, s) =















































(1)(1/3) = 1/3 if (i, j) = (r, s),
(1/3)(1) = 1/3 if r = i, s = l 6= j,
(1/3)(1/3) = 1/9 if r = i, s 6= j, s =6= l,
(1/3)(0) = 0 if s = j 6= l, r 6= i,

(−1/3)(−1/3) = 1/9 if s = i,
(−1/3)(1/3) = −1/9 if r = j, s = l,
(−1/3)(0) = 0 if r = j, s 6= l,

0 = 0 if i, j, r, s are all distinct,

hence,

∑

1≤r<s≤m

Γij,il(r, s) =
1

3
+

1

3
+

∑

1≤r<s≤m,r=i,s6=j,s=6=l

1

9
+

∑

1≤r<s≤m,s=i

1

9
− 1

9

=
1

3
+

1

3
+

∑

i<s≤m

1

9
− 2

9
+

∑

1≤r<i

1

9
− 1

9

=
1

3
+ (m − i)

1

9
+ (i − 1)

1

9
=

m + 2

9
.

Similarly for i 6= k, j = l, we may show (Ω2)ij,kj = m+2
9 . If j = k then

(Ω2)ij,kl = −1

3
− 1

3
+

1

9
−

∑

1≤r<i,r 6=i

1

9
−

∑

j<s≤m,s6=l

1

9
= −m + 2

9
,

similarly for l = i. If i, j, k, l are all distinct, (Ω2)ij,kl equals 0. Consequently

Ω2 =

(

m + 2

3

)

Ω −
(

m + 1

9

)

I.

Since the matrix Ω satisfies Ω2 = αΩ + βI with β 6= 0 it has an inverse, hence
Ω is not singular.

Theorem 4.13 The probability that the Tideman winner and Dodgson winner
coincide converges asymptotically to 1 as n → ∞.

Proof. We will prove that the Tideman winner asymptotically coincides
with the Dodgson Quick winner. The Tideman winner is the alternative a ∈ A
with the minimal value of

G(a) =
∑

b∈A

adv(b, a),



while the DQ-winner has minimal value of

F (a) =
∑

b∈A

⌈

adv(b, a)

2

⌉

.

Let aT be the Tideman winner and aQ be the DQ-winner. Note that G(c)−m ≤
2F (c) ≤ G(c) for every alternative c. If for some b we have G(b)−m > G(aT ),
then 2F (b) ≥ G(b)−m > G(aT ) ≥ 2F (aT ) and so b is not a DQ-winner. Hence,
if G(b) −m > G(aT ) for all alternatives b distinct from aT , then aT is also the
DQ-winner aQ. Thus,

P (aT 6= aQ) ≤ P (∃a6=b |G(a) − G(b)| ≤ m) = P

(

∃a6=b

∣

∣

∣

∣

G(a) − G(b)√
n

∣

∣

∣

∣

≤ m√
n

)

.

It follows that for any ε > 0 and sufficiently large n, we have

P (aT 6= aQ) ≤ P

(

∃a6=b

∣

∣

∣

∣

G(a) − G(b)√
n

∣

∣

∣

∣

≤ ε

)

.

We will show that the right-hand side of the inequality above converges to 0 as n
tends to ∞. All probabilities are non-negative so 0 ≤ P (aT 6= aQ). From these
facts and the sandwich theorem it will follow that limn→∞ P (aT 6= aQ) = 0.

Let

Gj =
∑

i<j

(Yij)
+

+
∑

k>j

(−Yjk)
+

,

where variables Yij come from the matrix (1) to which
∑n

i=1 Mi/
√

n converges
by Lemma 4.11. Thus,

lim
n→∞

P

(

∃a6=b

∣

∣

∣

∣

G(a) − G(b)√
n

∣

∣

∣

∣

≤ ε

)

= P (∃i6=j |Gi − Gj | ≤ ε)

Since ε > 0 is arbitrary,

lim
n→∞

P (aT 6= aQ) ≤ P (∃i6=jGi = Gj).

For fixed i < j we have

Gi −Gj = −Yij +
∑

k<i

(−Yki)
+

+
∑

k>i,k 6=i

(Yik)
+ −

∑

k<j,k 6=i

(Ykj)
+ −

∑

k>j

(−Yjk)
+

.

Define v so that Gi − Gj = −Yij + v. Then P (Gi = Gj) = P (Yij = v) =
E[P (Yij = v | v)]. Since Y has a multivariate normal distribution with a non-
singular covariance matrix Ω, it follows that P (Yij = v | v) = 0. That is,
P (Gi = Gj) = 0 for any i, j where i 6= j. Hence P (∃i6=jGi = Gj) = 0. As
discussed previously in this proof, we may now use the sandwich theorem to
prove that limn→∞ P (aT 6= aQ) = 0.



5 Conclusion

In this paper we showed that, under the Impartial Culture assumption, the
Tideman rule converges to the Dodgson’s rule when the number of agents tends
to infinity. However we discovered that a new rule, which we call Dodgson
Quick, approximates Dodgson’s rule much better and converges to it much
faster. The Dodgson Quick rule is computationally very simple, however in
our simulations [10] it picked the Dodgson winner in all of 1,000,000 elections
with 85 agents and 5 alternatives.

These results, the simplicity of Dodgson Quick’s definition and the ease
with which its winner can be computed make Dodgson Quick a highly effective
tool for theoretical and numerical study of Dodgson’s rule under the Impar-
tial Culture assumption. Despite the popularity of the Impartial Culture as
a simplifying assumption, it is highly unrealistic and our theorems do not ap-
ply if the slightest deviation from impartiality occurs. Our previous numerical
results [11] suggest that introduction of homogeneity into the random sample
may cause these approximations to diverge from the Dodgson rule. The most
interesting question for further research, that this paper rises, is whether or
not the Dodgson Quick rule approximates Dodgson’s rule under the Impartial
Anonymous Culture assumption and other models for the population.

While there is no significant difference in the difficulty of computing the
Dodgson Quick winner or the Tideman winner, the Tideman rule can be easier
to reason with in some circumstances. We find that the Tideman rule is often
useful to study properties of the Dodgson rule where rapid convergence is not
required.
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