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Abstract

In this paper we show that lobbying in conditions of “direct democracy”

is virtually impossible, even in conditions of complete information about

voters preferences, since it would require solving a very computationally

hard problem. We use the apparatus of parametrized complexity for this

purpose.

1 Direct and Representative Democracy

Countrywide votes on a specific issue are an accepted way of resolving political
issues in many countries around the world. Such votes are usually termed
”referenda.” A referendum gives the people the chance to vote directly on a
specific issue. Although people can also make choices at general elections, these
elections are usually fought on a number of issues and often no clear verdict
on any one issue is delivered. So instead of voting for only representatives,
referenda allow citizens to vote directly on some federal matters. In Switzerland
and California, for example, referenda are very common.

It is a commonplace that an ideal democratic political system should com-
bine both referenda and representative government. A key issue is the relative
weightings of these two ingredients. Referenda are costly. However, in the fully
computerized society, to which we are gradually moving, referenda could be
cheap and fast. Hence the relative weightings of the two ingredients may be
expected to change.

Another development that might drive this change is the relative simplic-
ity of lobbying such legislative bodies as the American Congress and House of
Representatives. In his book, Phillips observes that Washington has become
increasingly dominated by an interest-group elite which is now so deeply en-
trenched and so resistant to change that the proper functioning of government
is impossible [20]. He suggests that representative democracy be restored to
Athenian direct democracy through the use of referenda.

In this paper we show that lobbying in conditions of “direct democracy”
is computationally virtually impossible, even in conditions of complete infor-
mation about voters’ preferences. We use the apparatus of parametrized com-
plexity for this purpose. We envision that computational complexity may play
a positive role in voting, protecting the integrity of social choice. Such a role
would resemble the situation in public-key cryptography [7] where computa-
tional complexity protects the privacy of communication. As far as we know,
this is the first paper which considers applications of parametrized complexity
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to social choice. Previously, complexity issues in social choice were considered
in [1, 2, 3, 4, 5, 6, 10, 11, 12, 16, 17].

2 Parametrized Complexity

For those not familiar with computational complexity, we provide a quick sketch
of concepts and terminology. The reader should consult [8, 14] for more details.

The standard paradigm of complexity theory is embodied in the contrast
between P and NP problems. Problems in P are those which admit an algo-
rithm that, given any input x of size n, produces the output Output(x) required
by the problem specification in time O(nα), that is in time bounded by Cnα,
where α and C are constants. The notation P designates the class of problems
solvable in polynomial time. Such algorithms are generally considered to be
tractable. NP denotes the class of non-deterministic polynomial time solvable
problems. For such problems, for each input x, there is a polynomial time
algorithm that justifies that Output(x) is indeed the output required by the
specifications of the problem. NP contains P and it is believed that P 6= NP .
The hardest problems in NP are called NP -complete. They are all equivalent
in a sense that any such problem can be reduced to an instance of any other
NP -complete problem and such reduction can be made in polynomial time. So,
if one NP -complete problem can be solved in polynomial time, then all of them
can be solved in this way and it would follow that NP = P . NP -completeness
is therefore taken as evidence of inherent intractability.

However, in reality we are often interested in the tractability of problems
when values of a certain parameter k (representing some aspect of the input) are
small. In this case we need to undertake the parametrized comlexity analysis
as developed by Downey and Fellows in [8]. A problem is said to be in the
class FPT (Fixed Parameter Tractable) if there exists an algorithm solving the
problem and running in time f(k)nc, where c is a fixed constant and f is an
arbitrary computable function. If our problem belongs to this class, then it is
tractable for small values of k. Unlike the P versus NP paradigm, here we
obtain a hierarchy of parametrized complexity classes

FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ . . .

(see [8] for exact definition of these classes). Being W [2]-complete is considered
strong evidence that the problem is not tractable even for small values of the
parameter. Two W [2]-complete problems that will be important later in this
paper are described below.

Given a graph G = (V, E) with a set of vertices V and the set of edges E, we
say that a subset of the set of vertices V ′ ⊆ V is a dominating set if every vertex
in V is adjacent to at least one vertex in V ′. If V ′ is dominating and consists
of k vertices we will say that it is a k-dominating set. The set V ′ is called
independent if no two vertices of V ′ are adjacent. The picture below shows a
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3-dominating set which is not independent and an independent 4-dominating
set.
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3-dominating set
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Independent 4-dominating set

The k-Dominating Set problem takes as input a graph G and a positive
integer k, which is considered as parameter. The question asks whether there
exists a k-dominating set in G. The k-Dominating Set problem has been
shown to be W [2]-complete by Downey and Fellows (1999). They consider
that “k-Dominating Set problem represents some fundamental “wall of in-
tractability” where there is no significant alternative to trying all k-subsets for
solving the problem.” [8], p.15.

The Independent k-Dominating Set problem is also W [2]-complete. The
input is the same as for the k-Dominating Set, and the question asks whether
G has an independent dominating set of size k.

3 Lobbying on a Restricted Budget

We consider the problem faced by an actor that wishes to influence the vote of a
certain legislative body or a referendum on a number of issues by trying to exert
influence on particular agents. We will refer to this actor as “The Lobby”. It is
assumed that The Lobby has complete information about agents’ preferences.
The Lobby has a fixed budget and has to be selective in choosing agents to
distribute the limited budget among them. It is reasonable to assume that the
number of agents k that can realistically be influenced is relatively small, and
hence this aspect of the input is appropriate as a parameter for the complexity
analysis. Hence the use of parametrized complexity developed by Downey and
Fellows (1999) is completely appropriate for this problem. Our formal model
of the problem is as follows:

The problem: Optimal Lobbying (OL)
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Instance: An n by m 0/1 matrix E , a positive integer k, and a length
m 0/1 vector x. (Each row of E represents an agent. Each column
represents a referendum in the election or a certain issue to be voted
on by the legislative body. The 0/1 values in a given row represent
the natural inclination of the agent with respect to the referendum
questions put to a vote in the election. The vector x represents the
outcomes preferred by The Lobby.)

Parameter: k (representing the number of agents to be influenced)

Question: Is there a choice of k rows of the matrix, such that these
rows can be edited so that in each column of the resulting matrix,
a majority vote in that column yields the outcome targeted by The
Lobby?

Proposition 1. Optimal Lobbying is W [2]-hard.

Proof. One of the standard techniques of proving a problem is W [2]-hard is to
reduce a problem that is already known to be W [2]-hard to our problem. We
reduce from the W [2]-complete k-Dominating Set problem. Given a graph
G = (V, E), and a positive integer k for which we wish to determine whether G
has a k-element dominating set, we produce the following set of inputs to the
Optimal Lobbying problem. (We will assume that the number of vertices n
is odd, and that the minimum degree of G is at least k, since k-Dominating
Set remains W [2]-complete under these restrictions.)

• The 0/1 matrix E consists of two sets of rows, the top set, indexed by
V = {1, ..., n}, and the bottom set, consisting of n − 2k + 1 additional
rows. The matrix E has n + 1 columns, with the first column being the
template column, and the remaining n columns indexed by V .

• The template column has 0’s in all of the top set row entries, and 1’s in
all of the bottom set row entries.

• A column indexed by a vertex v, in the top row positions, has 0’s in those
rows that are indexed by vertices u ∈ N [v]. In the bottom row positions,
the entries can be computed by first setting all of these entries to 1, and
then changing (arbitrarily) n− k − |N [v]| + 1 of these entries to 0. (This
ensures that in every column indexed by a vertex the total number of 0’s
is one more than the total number of 1’s.)

• The vector x = (1, 1, . . . , 1) of length n + 1 has a 1 in each position.

• The parameter k remains the same.

We claim that this is a yes-instance of OL if and only if G has a k-dominating
set.

One direction is easy. If G has a k-dominating set, then The Lobby corrupts
the corresponding agents, or formally, we edit the corresponding rows. With
respect to the first (template) column, we thus have the opportunity to change
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k of the 0’s to 1’s. Since in the first column, initially, the “1” outcome was
losing by 2k − 1 votes, and since each of these k edit operations decreases the
difference by 2 (as there is one more 1 and one less 0), the outcome in the first
(template) column is a victory for the “1” outcome, by 1. Since the chosen rows
for editing represent a dominating set in G, we are similarly able to advantage
each vertex column contest by at least 2, and since each of these was losing by
one vote, we are able to secure majorities of 1 in every column.

Conversely, suppose the described instance of OL has a solution. Necessarily,
the rows chosen to be edited must be in the top set of rows (indexed by vertices
of G), since otherwise obtaining a majority of 1’s in the first column will not
be possible. Any solution that consists of rows in the top set of rows must
therefore provide at least one opportunity, for each vertex column (indexed by
v), of editing in a row that is indexed by a vertex u ∈ N [v]. Thus, any such
solution corresponds to a k-dominating set in G.

Proposition 2. Optimal Lobbying (OL) is in W [2].

Proof. One of the standard techniques of proving that a problem is in the class
W [2] is to reduce our problem to another problem which is already known to
be in W [2]. We reduce to the W [2]-complete Independent k-Dominating
Set problem [8], page 464. Given an n by m 0/1 matrix E = (eij), a positive
integer k, and a length m 0/1 vector x, proceed as follows:

1. Calculate w = ⌊n/2⌋ + 1, which is the number of votes required to pass
any particular referendum question.

2. For 1 ≤ j ≤ m, let

δ(j) =

{

max(0, w −
∑

i eij), xj = 1,
max(0,

∑

i eij − w + 1), xj = 0.

3. Since δ(j) is the number of votes that The Lobby is away from the desired
outcome in the jth referendum, when δ(j) > k, for at least one j, we have
a trivial negative instance.

4. For each J = 1, . . . , m, let Cj = {i | eij 6= xj , 1 ≤ i ≤ n}. Then Cj is
the set of voters who are naturally inclined to vote against the interests
of The Lobby in the jth referendum.

An OL solution of size k will be any set K ⊆ {1, . . . , n} such that the cardinality
of K is k and |K ∩ Cj | ≥ δ(j) for every j = 1, . . . , m.

Let us construct the graph G as specified below. The vertex set of G consists
of the following vertices:

• xab is a vertex, for 1 ≤ a ≤ k, 1 ≤ b ≤ n.

• xa∞ is a vertex, for 1 ≤ a ≤ k.

• ycd is a vertex, for 1 ≤ c ≤ m, 1 ≤ d ≤
(

k
k−δ(c)+1

)

.
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The edges of G are as follows:

• For every 1 ≤ a ≤ k, the subgraph induced on {xab | 1 ≤ b ≤ n or b = ∞}
is complete.

• For every 1 ≤ b ≤ n (but not b = ∞) the subgraph induced on {xab |
1 ≤ a ≤ k} is complete.

• For every 1 ≤ c ≤ m, let fc be a bijection from {1, 2, . . . ,
(

k
k−δ(c)+1

)

to the

set of all subsets of {1, . . . , k} of cardinality k− δ(c)+1. Then the vertex
ycd is connected by an edge to each member of {xab | a ∈ fc(d), b ∈ Cc}.

We will show now that G has a k-Independent Dominating Set S if and only if
(E , k, x) is a positive instance of OL. First, assume that G has a k-Independent
Dominating Set S. Then each xa∞ is dominated, and, since it is connected only
to vertices xab, where 1 ≤ b ≤ n, at least one vertex xab must be in S for each
1 ≤ a ≤ k.As S is of size k, it includes exactly one of the xab for each a. As S
is independent, it cannot include xsb and xtb for s 6= t.

Now, let K = {b | xab ∈ S for some a}. The cardinality of K is k, so, if
|K ∩ Cj | ≥ δ(j) for every j, then K is an OL solution of size k.

For every j, consider the set Yj = {yjd | 1 ≤ d ≤
(

k
k−δ(j)+1

)

}. Since each of

these vertices is dominated, some member of {xab | a ∈ fj(d), b ∈ Cj} is in S
for each d. Since fj(d) ranges over all subsets of {1, . . . , k} of cardinality k, at
least δ(j) members of {xab | a ∈ {1, . . . , k}, b ∈ Cj} are in S and therefore at
least δ(j) members of Cj are in K. Thus K is an OL solution.

Conversely, imagine that K is an OL solution of size k. Choose an arbitrary
enumeration θ of elements of K and denote S = {xiθ(i) | 1 ≤ i ≤ k}. S is inde-
pendent, because there is no edge between xiθ(i) and xjθ(j) unless i = j. Since i
ranges over 1, . . . , k, each vertex xab is dominated. Since K is an OL solution,
for each j at least δ(j) members of Cj are in K. Thus, by the construction of
S, at least δ(j) members of {xab | a ∈ {1, . . . , k}, b ∈ Cj} are in S, so that some
member of {xab | a ∈ fj(d), b ∈ Cj} is in S for each d, and yjd is dominated for
each j and each d. Thus S is an Independent Dominating Set of size k.

Together, the two propositions above give the following complete classifica-
tion of the parametrized complexity of the problem.

Theorem 1. Optimal Lobbying is W [2]-complete.

4 Conclusion

This paper shows that parameterized complexity is a very appropriate tool for
analyzing the computational difficulty of problems in social choice. We believe
that the methods of parameterized complexity will be especially useful when
dealing with problems regarding voting. Indeed, any voting situation stipulates
the existence of two parameters: the number of voters n and the number of
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alternatives m. The sizes of these two parameters are very different. While the
number of voters can be, and usually is, very large, the number of alternatives
is small, seldom exceeding 20. Hence, the contribution of the relatively small
number of alternatives to the complexity of the problem is limited, and this
should be reflected in the method of investigation. We believe the best way to
do so is to use the conceptual framework of parameterized complexity.

Some 15 years ago, Bartholdi, Tovey and Trick [1] pioneered the study
of voting procedures from the viewpoint of complexity theory. In particular,
they proved that Dodgson Score and Kemeny Score are NP-complete and
Dodgson Winner and Kemeny Winner are NP-hard. The latter two prob-
lems were proved to be complete for parallel access to NP [16, 17]. A similar
result was also established for Young score and Young winner.

It has been known for some time as folklore that the problems Dodgson
score and Kemeny Score, as well as Dodgson winner and Kemeny Win-
ner, are Fixed Parameter Tractable if the number of candidates is chosen as
parameter (see, e.g. [19]). The same is true for Young winner [15]. It looks
like the number of voters has relatively small impact on complexity in com-
parison to the number of candidates. This view is supported by the fact that
Kemeny ranking remains NP-complete even for four voters [9]. Probably
the number of candidates is not the most natural parameter for measuring the
exact complexity of such problems.

The parametrized complexity of Dodgson Score (and similarly Dodg-
son Winner) in the following formulation remains open and is of considerable
interest.

The problem: Dodgson Score (DS)

Instance: Set of candidates A, and a distinguished member a ∈ A;
a profile of preference orders on A.

Parameter: k (representing the bound for the Dodgson’s score)

Question: Is the Dodgson score of candidate a less then or equal to
k?

This is a parametrized version of the original question studied by Bartholdi et
al [1].

5 Acknowledgements

The authors that Prof. Lane Hemaspaandra for his encouraging open reference
on this paper and helpful comments, especially bringing to our attention the
paper [13].

7



References

[1] Bartholdi, J.J.,III, Tovey, C.A, and Trick, M.A. (1989) Voting schemes for
which it may be difficult to tell who won the election. Social Choice and
Welfare 6: 157–165.

[2] Bartholdi, J.J.,III, Tovey, C.A, and Trick, M.A. (1989) The computational
difficulty of manipulating an election. Social Choice and Welfare 6: 227–
241.

[3] Bartholdi, J.J.,III, Tovey, C.A, and Trick, M.A. (1992) How hard is to
control an election? Mathematical and Computer Modelling 16 (8/9): 27–
40.

[4] Bartholdi, J.J.,III, Narasimhan, L.S, and Tovey, C.A (1991) Recognizing
majority rule equilibrium in spatial voting. Social Choice and Welfare 8:
183–197.

[5] Bartholdi, J.J.,III, and Orlin, J.B. (1991) Single transferable vote resists
strategic voting. Social Choice and Welfare 8: 341–354.

[6] Conitzer, V., and Sandholm T. (2002) Complexity of Manipulating Elec-
tions with Few Candidates. In: Proceedings of the National conference on
Artificial Intelligence (AAAI), Edmonton, Canada, 2002, to appear; avail-
able at http://www.cs.cmu.edu/ sandholm.

[7] Diffe, W., and Hellman, M. (1976) New directions in cryptography, IEEE
Transactions on Information Theory IT–22: 644–654.

[8] Downey, R.G, and Fellows, M.R. (1999) Parametrized complexity. New
York, Springer.

[9] Dwork, C., Kumar, R., Naor, M., and Sivakumar, D., 2001, Rank aggre-
gation methods for the web. WWW: 613–622.

[10] Ephrati, E. (1994) A non-manipulable meeting scheduling system. In: Pro-
ceedings 13th International Distributed Artificial Intelligence Workshop,
Lake Quinalt, Washington, July, AAAI Press Technical Report WS-94-02.

[11] Ephrati, E., and Rosenschein, J. (1991) The Clarke tax as a consensus
mechanism among automated agents. In: Proceedings of the National con-
ference on Artificial Intelligence (AAAI), 173–178. Anaheim, CA.

[12] Ephrati, E., and Rosenschein, J. (1993) Multi-agent planning as a dynamic
search for social consensus. In: Proceedings 13th International Joint Con-
ference on Artificial Intelligence (IJCAI), 423–429. Chambery, France.

[13] Faliszewski, P., Hemaspaandra, E., and Hemaspaandra, L. and Rothe,J.
(2006) A richer understanding of the complexity of election systems. Avail-
able at http://www.arxiv.org/abs/cs.GT/0609112

8



[14] Garey, M., and Johnson, D. (1979) Computers and Intractability: A Guide
to The Theory of NP-completeness. San Francisco, Freeman.

[15] Hemaspaandra, L. (2006) Private communication.

[16] Hemaspaandra, E., and Hemaspaandra, L. (2000) Computational Politics:
Electoral Systems, In: Proceedings of the 25th International Symposium
on Mathematical Foundations of Computer Science, pages 64-83. Springer-
Verlag Lecture Notes in Computer Science #1893, August/September.

[17] Hemaspaandra, E., Hemaspaandra, L., and Rothe, J. (1997) Exact analysis
of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for
parallel access to NP. Journal of the ACM, 44(6): 806–825.

[18] Hemaspaandra, E., Spakovski, H. and Vogel, J. (2005) The complexity of
Kemeny elections. Theoretical Computer Science, 349(3): 383–391.

[19] McCabe-Dansted, J. (2006) Approximability and Computational Feasibil-
ity of Dodgson’s Rule. Master’s thesis. The University of Auckland

[20] Phillips, K. (1994) Arrogant Capital, Little, Brown and Company.

[21] Rothe, J., Spakovski, H. and Vogel, J. (2003) Exact complexity of the
winner problem for Young elections. Theory of Computing Systems, 36(4):
375–386.

Robin Christian Department of Combinatorics and Optimization
University of Waterloo
200 University Avenue West
Waterloo, Ontario N2L 3G1, Canada
Email: r3christ@math.uwaterloo.ca

Mike Fellows
School of Electrical Engineering and Computer Science
The University of Newcastle
Calaghan NSW 2308, Australia
Email: mfellows@cs.newcastle.edu.au

Frances Rosamond
School of Electrical Engineering and Computer Science
The University of Newcastle
Calaghan NSW 2308, Australia
Email: fran@cs.newcastle.edu.au

Arkadii Slinko
Department of Mathematics
The University of Auckland
Private Bag 92019, Auckland, New Zealand
Email: a.slinko@auckland.ac.nz

9


