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Abstract. The vector decomposition problem (VDP) has been proposed as a computational problem
on which to base the security of public key cryptosystems. We give a generalisation and simplification
of the results of Yoshida on the VDP. We then show that, for the supersingular elliptic curves which can
be used in practice, the VDP is equivalent to the computational Diffie-Hellman problem (CDH) in a
cyclic group. For the broader class of pairing-friendly elliptic curves we relate VDP to various co-CDH
problems and also to a generalised discrete logarithm problem 2-DL which in turn is often related to
discrete logarithm problems in cyclic groups.
Keywords: Vector decomposition problem, elliptic curves, Diffie-Hellman problem, generalised discrete
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1 Introduction

The vector decomposition problem (VDP) is a computational problem in non-cyclic groups G (see Section 2
for the definition of this problem). It was introduced by Yoshida [22, 23] as an alternative to the discrete
logarithm or Diffie-Hellman problems for the design of cryptographic systems. Yoshida proved that if certain
conditions hold then the VDP is at least as hard as the computational Diffie-Hellman problem (CDH) in a
certain cyclic subgroup G1 of G. Since the CDH in G1 may be hard, it follows that VDP may be hard, and
so it is a potentially useful problem on which to base public key cryptography. Indeed, cryptosystems based
on the VDP have been proposed in [22, 23, 10].

As with any new computational problem in cryptography, it is important to understand the hardness of
VDP if one is to use it in practice. Apart from the result of Yoshida, there is no discussion in the literature
of the difficulty of the VDP. Hence, it is an open problem to determine the precise security level of the VDP
and thus to evaluate the security/performance of cryptosystems based on it. That is the primary motivation
of this paper.

We prove that the VDP in G is equivalent with certain co-CDH problems in G if a mild condition holds.
A corollary is that CDH ≤ VDP for a much larger class of groups than considered by Yoshida. We then prove
that VDP ≤ CDH for groups satisfying a condition similar to that considered by Yoshida (namely, existence
of what we call a “distortion eigenvector base”). We show that all the supersingular elliptic curves which
can be used in practice satisfy this condition. It follows that CDH and VDP are equivalent in practice for
supersingular curves. We also prove this equivalence for the non-supersingular genus 2 curves proposed by
Duursma and Kiyavasch [9]. Our results therefore completely resolve the issue of the difficulty of the VDP
in the groups considered by [22, 23, 9, 10].

Duursma and Park [10] proposed a signature scheme based on VDP. Our results imply that their sig-
nature scheme has no security advantages over systems based on CDH or DLP. One can therefore compare
the performance of the scheme in [10] with, say, Schnorr signatures and deduce that their scheme has no
advantages in practice.
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To summarise the paper: the main definitions and results are in Section 2. Section 3 proves that distortion
eigenvector bases exist for the supersingular elliptic curves which can be used in practice. Section 4 explains
how our conditions relate to the definitions given by Yoshida. In Section 5 we review possible constructions
of non-cyclic groups for cryptography. Finally, Section 6 gives some methods to reduce the VDP to various
generalised discrete logarithm problems.

2 The vector decomposition problem and relations with CDH

Let r > 3 be a prime. The vector decomposition problem is usually expressed in terms of a 2-dimensional
vector space over Fr. However, it has currently only been instantiated on subgroups of exponent r of the
divisor class group of a curve over a finite field. Hence, in this paper we use a group-theoretic formulation.

Throughout the paper G will be an abelian group of exponent r and order r2 (i.e., G is isomorphic to
(Z/rZ)× (Z/rZ)). We assume implicitly that G can be represented compactly and that the group operation
can be computed in polynomial time. For examples of such groups see Section 5. We write such groups
additively and use capital letters P,Q,R for elements of G. We use the notation 〈P1, . . . , Pn〉 for the subgroup
of G generated by {P1, . . . , Pn}. We call a pair (P1, P2) a base for G if it generates G, i.e. each element in
Q ∈ G can be uniquely written as a linear combination in P1 and P2.

If A and B are computational problems then we denote Turing reduction of A to B by A ≤ B. This means
that there is a polynomial time algorithm for solving problem A given access to an oracle to solve problem
B. We call such a reduction tight if the probability of success of algorithm A is at least the probability of
success of oracle B.

Definition 1. The vector decomposition problem (VDP): given a base (P1, P2) for G and an element
Q ∈ G, compute an element R ∈ G such that R ∈ 〈P1〉 and Q−R ∈ 〈P2〉.

For a fixed base (P1, P2) we define VDP(P1,P2) as: given Q ∈ G find R as above.

Clearly, such an element R is unique and if we write Q = aP1 + bP2 for unique a, b ∈ Z/rZ then
R = aP1. We stress that an algorithm to solve the vector decomposition problem should take as input a
triple (P1, P2, Q) and output a point R such that R ∈ 〈P1〉 and Q − R ∈ 〈P2〉. The VDP conjecture is
that there exist families of groups for which the VDP is hard in the sense that there is no polynomial time
algorithm which succeeds in solving the VDP on groups in the family with non-negligible probability over
all possible input triples.

Yoshida proved that CDH ≤ VDP under certain conditions (see below). This suggests that VDP can be
a hard problem. Our main goal in this paper is to give results in the other direction. As pointed out by an
anonymous referee, an easy example of such a result can be obtained in the direct product of a cyclic group.

Definition 2. Let G1 be a cyclic group of order r. The computational Diffie-Hellman problem CDH(G1)
is: given P, aP, bP ∈ G1, compute abP .

Lemma 1. Let G1 be a cyclic group of prime order r and let G = G1 ×G1. If one can solve the VDP in G
then one can solve CDH in G1.

Proof. Let P, aP, bP be the input CDH problem. Let P1 = (P, aP ), P2 = (0, P ) and Q = (bP, rP ) for a
random integer r. Note that Q = bP1 + (r− ab)P2 so solving the VDP instance (P1, P2, Q) gives R = bP1 =
(bP, abP ) and extracting the second component solves CDH. �

The literature on the VDP seems to contain only three examples of suitable groups. Precisely, Yoshida [23]
suggests the supersingular elliptic curve y2 = x3+1 (see Example 1 below) and Duursma-Kiyavash [9] suggest
two non-supersingular genus 2 curves. However, it is obvious that one could use any pairing-friendly elliptic
curve for applications based on the VDP.

We remark that VDP does not seem to trivially be random self-reducible. In other words, if we have
an algorithm A which solves VDP for some non-negligible proportion of instances then it seems not to be
trivial to convert A into an algorithm which solves VDP with overwhelming probability over all instances.
However, we show in Corollary 2 that one can obtain random self-reducibility for the VDP.

The following definition is the key concept which underlies most of the results in the paper.
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Definition 3. Let G be a group of exponent r and order r2. Let F : G → G be a group isomorphism
computable in polynomial time. A pair of elements S, T ∈ G is an eigenvector base with respect to F if
G = 〈S, T 〉 and if F (S) = λ1S and F (T ) = λ2T for some distinct, non-zero λ1, λ2 ∈ Z/rZ.

In practice F will usually be the Frobenius map (more details are given later). Hence we often abbreviate
‘eigenvector base with respect to F ’ by ‘eigenvector base’.

Example 1. A standard example of such a group is as follows: Let p ≡ 3 (mod 4) be prime and let E : y2 =
x3 + x over Fp. Then E is a supersingular elliptic curve and #E(Fp) = p + 1. Let r > 3 be a prime such
that r | (p + 1). Then we can let G = E[r] ⊆ E(Fp2) be the group of all points on E of order r. Let S be
a generator for E(Fp)[r]. Denote by F the p-power Frobenius map F (x, y) = (xp, yp). Note that F (S) = S
so λ1 = 1. Consider the isomorphism φ defined by φ(x, y) = (x, iy) where i ∈ Fp2 satisfies i2 = −1. Setting
T = φ(S) we have G = 〈S, T 〉 and F (T ) = −T . Hence (S, T ) is an eigenvector base with respect to F .
(Indeed, this is also a distortion eigenvector base, which will be defined later.)

Proposition 1. The VDP(P1,P2) with respect to a fixed base (P1, P2) is solvable in polynomial time iff
(P1, P2) is an eigenvector base.

Proof. For the proof of the “if” part of the result: let F : G→ G be the group isomorphism as in the definition
of eigenvector base. Let α = (λ2 − λ1)−1 (mod r). For i = 1, 2 define the projection map ψi : G→ 〈Pi〉 by

ψ1(R) = α(λ2R− F (R)) ; ψ2(R) = α(F (R)− λ1R).

These are efficiently computable group homomorphisms. Note that ψ1(P1) = P1 and ψ1(P2) = 0 and so ψ1

maps to 〈P1〉. Similarly, ψ2 maps to 〈P2〉. Since Q = ψ1(Q) + ψ2(Q) for all Q ∈ G and the maps ψ1, ψ2 are
easily computable, it follows that VDP with respect to (P1, P2) is easily solvable.

For the proof of the “only if” part of the result: suppose A is a polynomial time algorithm to solve
VDP(P1,P2). Define

ψ1(Q) = A(Q) and ψ2(Q) = Q− ψ1(Q).

Then ψi (i = 1, 2) are group homomorphisms to 〈Pi〉 which can be computed in polynomial time. Any linear
combination F = λ1ψ1 + λ2ψ2 with distinct, non-zero λ1, λ2 ∈ Z/rZ has the desired properties so that
(P1, P2) is an eigenvector base. �

The fact that there are easy instances of VDP(P1,P2) does not affect the VDP conjecture for such curves.
The conjecture is that the VDP should be hard for a randomly chosen input triple from the set G3. In other
words, it is permitted that the VDP be easy for a negligible proportion of triples in G3.

2.1 Diffie-Hellman problems and relation with VDP

We recall the co-CDH problem as defined by Boneh, Lynn and Shacham [5].

Definition 4. Let G1 and G2 be cyclic groups of order r. The co-Computational Diffie-Hellman prob-
lem co-CDH(G1, G2) is: Given P, aP ∈ G1 and Q ∈ G2, compute aQ.

Note that having a perfect algorithm to solve co-CDH is equivalent to being able to compute a group
homomorphism ψ : G1 → G2 such that ψ(P ) = Q.

Lemma 2. Let G1, G2 be cyclic groups of order r. Then CDH(G1) ≤ (co-CDH(G1, G2) and co-CDH(G2, G1)).

Proof. Suppose we have oracles to solve both co-CDH problems which succeed with probability at least ε.
Let P, aP, bP be given. Choose a random Q ∈ G2 and a random x ∈ (Z/rZ)∗ and call the co-CDH(G1, G2)
oracle on (xP, xaP,Q) to get aQ with probability at least ε.

Now, choose random x1, x2 ∈ (Z/rZ)∗ and call the co-CDH(G2, G1) oracle on (x1Q, x1aQ, x2bP ) to get
x2abP with probability at least ε. Exponentiating by x−1

2 gives abP as desired. The probability of success is
at least ε2. �
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In Lemma 4 we give a converse to the above result if additional conditions hold (e.g., for supersingular
elliptic curves). Note that if one can solve CDH(G1) and one has a suitable auxiliary elliptic curve for the
Maurer reduction [15, 16] then one can solve the DLP in G1 and hence solve co-CDH(G1, G2). Hence it is
natural to conjecture that CDH(G1) and co-CDH(G1, G2) are equivalent. However, it could conceivably be
the case that there exist groups such that (co-CDH(G1, G2) and co-CDH(G2, G1)) is strictly harder than
CDH(G1). It would follow from Theorem 1 below that VDP is a strictly harder problem than CDH(G1) for
these groups.

The following computational problem is similar to the problem DCDH defined by Bao et al [2], who also
proved equivalence with CDH. For completeness we give a trivial Lemma which is needed later.

Definition 5. The co-Divisional Computational Diffie-Hellman problem co-DCDH(G1, G2) is, given
(S, aS, T ) for S ∈ G1, T ∈ G2, to compute a−1T .

Lemma 3. co-DCDH(G1, G2) ≤ co-CDH(G1, G2).

Proof. Given a co-DCDH instance (S, aS, T ) choose uniformly at random x1, x2, x3 ∈ (Z/rZ)∗ and return
(x2x3)−1co-CDH(x1aS, x1x2S, x3T ). Hence, if we can solve co-CDH with probability at least ε then one can
solve co-DCDH with probability at least ε. �

Yoshida [22, 23] showed that CDH ≤ VDP for supersingular elliptic curves having endomorphisms sat-
isfying certain conditions. Theorem 1 below gives a major extension of Yoshida’s result, since it has much
weaker conditions and can be applied to ordinary curves (we give more discussion of this later). Also note
that Yoshida’s result requires a perfect oracle to solve VDP (i.e., one which always succeeds) whereas our
proof allows an oracle with only some non-negligible probability of success (this is a non-trivial improvement
since VDP does not seem to trivially have random self-reducibility).

Theorem 1. Let G have an eigenvector base (S, T ) and define G1 = 〈S〉, G2 = 〈T 〉. Then VDP is equivalent
to (co-CDH(G1, G2) and co-CDH(G2, G1)).

More precisely, if one can solve VDP with probability at least ε then one can solve (co-CDH(G1, G2) and
co-CDH(G2, G1)) with probability at least ε. If one can solve (co-CDH(G1, G2) and co-CDH(G2, G1)) with
probability at least ε then one can solve VDP with probability at least ε9.

Proof. First we show that co-CDH(G1, G2) ≤ VDP (the full statement follows by symmetry). We assume
that we have a VDP oracle which succeeds with probability ε and show that one can solve co-CDH(G1, G2)
with probability ε.

Let S, aS, T be given. Choose uniformly at random x1, x2, y1, y2 ∈ (Z/rZ) such that x1x2 − y1y2 6≡ 0
(mod r). Then (P1 = x1S+y1T, P2 = y2S+x2T ) is a uniformly random base for G. There exist λ, µ ∈ (Z/rZ)
such that aS = λP1 + µP2. One has

aS = λ(x1S + y1T ) + µ(y2S + x2T ) = (λx1 + µy2)S + (λy1 + µx2)T

and so (
x1 y2
y1 x2

) (
λ
µ

)
=

(
a
0

)
. (1)

Calling a VDP oracle on (P1, P2, aS+u1P1+u2P2) for uniformly random u1, u2 ∈ (Z/rZ) and subtracting
u1P1 from the output gives λP1 = λx1S + λy1T with probability ε. Using Proposition 1 one can compute
R = λy1T .

Equation (1) implies that λ ≡ (x1x2 − y1y2)−1x2a (mod r). It follows that one can compute aT as

aT = (x1x2 − y1y2)(y1x2)−1R.

This completes the first part of the proof.
For the second part, we assume oracles to solve co-CDH(G1, G2) and co-CDH(G2, G1) which work with

probability at least ε. By Lemma 2 we can also solve ordinary CDH in 〈S〉 and 〈T 〉 with probability at least
ε2. We will show how to solve VDP with probability at least ε9.
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Let (P1, P2, Q) be the input instance of the VDP. Then

Q = aP1 + bP2

for unknown integers (a, b). Our goal is to compute aP1.
There exist (unknown) integers ui,j for 1 ≤ i, j ≤ 2 such that

Pi = u1,iS + u2,iT (2)

and integers (v1, v2) such that Q = v1S+ v2T . By Proposition 1, we can compute u1,iS, u2,iT , v1S and v2T .
Write

U =
(
u1,1 u1,2

u2,1 u2,2

)
.

Since {S, T} and {P1, P2} both generate G, it follows that U is invertible. Clearly,

v1S + v2T = Q = aP1 + bP2 = (au1,1 + bu1,2)S + (au2,1 + bu2,2)T (3)

and so

U

(
a
b

)
=

(
v1
v2

)
.

Hence, (
a
b

)
= (u1,1u2,2 − u1,2u2,1)−1

(
u2,2 −u1,2

−u2,1 u1,1

) (
v1
v2

)
and so

aP1 = (u1,1u2,2 − u1,2u2,1)−1(u2,2v1 − u1,2v2)(u1,1S + u2,1T ).

Compute u2,2v1T, u1,1u2,2S and u1,2u2,1S using 3 calls to co-CDH oracles and u1,2v2T using one call to a
CDH oracle for 〈T 〉 (which is achieved using 2 calls to co-CDH oracles). Then solve co-DCDH(S, (u1,1u2,2 −
u1,2u2,1)S, (u2,2v1 − u1,2v2)T ) using Lemma 3 to get aT .

Given S, u1,1S, aT and u2,1T one can compute aP1 with one call to a CDH oracle for 〈T 〉 and one call
to a co-CDH oracle. It follows that we require 5 co-CDH queries and 2 CDH queries, which means that the
algorithm succeeds with probability at least ε9. �

Corollary 1. Let G be as above and suppose G has an eigenvector base (S, T ). Let G1 = 〈S〉. Then CDH(G1)
≤ VDP.

More precisely, if one has an oracle to solve VDP with probability at least ε then one can solve CDH(G1)
with probability at least ε2.

Proof. This is immediate from Theorem 1 and Lemma 2. �

Corollary 2. Suppose G has an eigenvector base. Then the VDP has random self-reducibility.

Proof. The second part of the proof of Theorem 1 shows how to convert a VDP instance into a number of
co-CDH instances. The first part of the proof of Theorem 1 shows how to convert a co-CDH instance into a
uniformly random instance of the VDP in G. Hence, a specific VDP instance in G is reduced to a number
of uniformly random VDP instances in G. �

2.2 Distortion eigenvector bases and equivalence of VDP and CDH

Definition 6. An eigenvector base (S, T ) is said to be a distortion eigenvector base if there are group
homomorphisms φ1 : 〈S〉 → 〈T 〉 and φ2 : 〈T 〉 → 〈S〉 computable in polynomial time and if an integer d 6≡ 0
(mod r) is given such that φ2(φ1(S)) = dS.

In Section 3 we will show that the commonly used pairing-friendly supersingular elliptic curves all have
a distortion eigenvector base.
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Lemma 4. Let G be as above and suppose G has a distortion eigenvector base (S, T ). Let G1 = 〈S〉 and
G2 = 〈T 〉. Then CDH(G1) is equivalent to co-CDH(G1, G2) and co-CDH(G2, G1). Moreover, the reductions
in both directions are tight.

Proof. Suppose we have an oracle to solve CDH with probability at least ε. Given a co-CDH instance
(S, aS, T ) we want to compute aT . Note that φ2(T ) = cS for some (not necessarily explicitly known) integer
c and that φ1(cS) = dT for known d. Since CDH(S, aS, cS) = acS it follows that the solution to the co-CDH
problem is given by

(d−1 (mod r))φ1(CDH(S, aS, φ2(T ))).

Hence, we can solve co-CDH with probability at least ε (note that CDH and co-CDH are clearly random
self-reducible).

For the converse, suppose S, aS, bS is an instance of CDH(G1). Then one obtains the co-CDH instance
(S, aS, φ1(bS)) and the solution to the CDH is (d−1 (mod r))φ2(co-CDH(S, aS, φ1(bS))). �

This allows a refinement of Corollary 1.

Corollary 3. Suppose G has a distortion eigenvector base (S, T ) and let G1 = 〈S〉. Suppose one has an
oracle to solve VDP with probability at least ε. Then one can solve CDH(G1) with probability at least ε.

We then obtain one of the main results in the paper, that VDP is equivalent to CDH in many cases. This
is a significant sharpening of Yoshida’s result, and gives a complete understanding of VDP for supersingular
curves.

Corollary 4. Let (S, T ) be a distortion eigenvector base for G. Then VDP is equivalent to CDH(〈S〉).

Proof. Let G1 = 〈S〉 and G2 = 〈T 〉. Theorem 1 showed VDP equivalent to co-CDH(G1, G2) and co-
CDH(G2, G1) and so the result follows by Lemma 4. �

Note that when given a CDH oracle then the probability of success in Theorem 1 is ε7 instead of ε9.

2.3 An application of trapdoor VDP

Proposition 1 shows that VDP is easy for certain bases while Theorem 1 indicates that VDP is hard in
general. Hence it is natural to ask if there is a way to set up a trapdoor VDP system. We now explain how
to do this.

Proposition 2. Let (S, T ) be a distortion eigenvector base for G normalised such that T = φ1(S). Let
u1,1, u1,2, u2,1, u2,2 ∈ Z/rZ be such that u1,1u2,2 − u1,2u2,1 6≡ 0 (mod r). Let P1 = u1,1S + u2,1T and
P2 = u1,2S + u2,2T . Given any Q ∈ G, if one knows the ui,j then one can solve the VDP of Q to the base
(P1, P2).

Proof. We have T = φ1(S) and replacing φ2 by (d−1 (mod r))φ2 we have φ2(T ) = S.
Write Q = aP1 + bP2. We are required to compute aP1. Since (S, T ) is an eigenvector base we can

compute v1S and v2T such that Q = v1S + v2T . Using φ1 and φ2 we can compute v1T and v2S. By the
same arguments as in Theorem 1, writing w = (u1,1u2,2 − u1,2u2,1)−1 (mod r), it follows that

aP1 = w(u2,2v1 − u1,2v2)(u1,1S + u2,1T )
= w(u2,2u1,1v1S + u2,2u2,1v1T − u1,1u1,2v2S − u1,2u2,1v2T )

which is easily computed. �

Note that we do not have a full trapdoor which allows solving any instance (P1, P2, Q) of the VDP.
Instead, we construct an easy base (P1, P2) for the VDP from an existing easy base (S, T ).

This idea has several cryptographic applications. For example, one can obtain a public key encryption
scheme (having OW-CPA security depending on VDP) with public key (S,Q = u1,2S + u2,2T ) and where
the private key consists of the ui,j . A message M ∈ 〈S〉 is encrypted as C = M + bQ for random 1 ≤ b < r.
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2.4 The decision vector decomposition problem

As suggested by an anonymous referee, one can consider a decision variant of the VDP.

Definition 7. The decision vector decomposition problem (DVDP) is: given (P1, P2, Q,R) to test
whether R ∈ 〈P1〉 and (Q−R) ∈ 〈P2〉.

Hence the DVDP is just testing subgroup membership, which is a computational problem in cyclic groups
rather than in G and which may or may not be easy depending on the groups in question. For example,
if G = E[r] for an elliptic curve then one can test subgroup membership using the Weil pairing (namely,
R ∈ 〈P1〉 if and only if er(P1, R) = 1). Also, if (S, T ) is an eigenvector base with respect to F then testing
subgroup membership is easy (P ∈ 〈S〉 if and only if F (P ) = λ1P where λ1 is the eigenvalue of F on S).

The decision version of the co-CDH problem is defined as follows [5].

Definition 8. Let G1 and G2 be distinct cyclic groups of order r. The co-decision Diffie-Hellman prob-
lem co-DDH(G1, G2) is: Given S, aS ∈ G1 and T, T ′ ∈ G2 to determine whether or not T ′ = aT .

Note that co-DDH(G1, G2) is trivially equivalent to co-DDH(G2, G1).

Lemma 5. If G1 and G2 are distinct cyclic subgroups of G then co-DDH(G1, G2) ≤ DVDP in G.

Proof. Suppose we have an oracle to solve DVDP and let (S, aS, T, T ′) be the input co-DDH instance. We
assume that 〈S〉 ∩ 〈T 〉 = {0} and that T ′ ∈ 〈T 〉. Let b ∈ (Z/rZ) be such that T ′ = bT .

Choose random x1,1, x1,2, x2,1, x2,2, z ∈ (Z/rZ)∗ such that x1,1x2,2 − x1,1x2,1 6≡ 0 (mod r). Let P1 =
x1,1S + x2,1T , P2 = x1,2S + x2,2T , Q = x1,1aS + x2,1T

′ + zP2 and R = x1,1aS + x2,1T
′ and call the DVDP

oracle on (P1, P2, Q,R). If b ≡ a (mod r) then R ∈ 〈P1〉 and the oracle should answer ‘true’. If b 6≡ a
(mod r) then R 6∈ 〈P1〉 and the oracle should answer ‘false’. �

One can verify that for the case G = E[r], where DVDP is easily solved using the Weil pairing, the proof
of Lemma 5 leads to the standard method for solving co-DDH using pairings (note that if G1 and G2 are
distinct in E[r] then er(S, T ) 6= 1).

Theorem 2. Let G have an eigenvector base (S, T ) and define G1 = 〈S〉, G2 = 〈T 〉. Then DVDP is
equivalent to co-DDH(G1, G2).

Proof. Lemma 5 gives co-DDH(G1, G2) ≤ DVDP. To prove the converse we show how to solve the subgroup
membership problem for any subgroup H = 〈R〉 ⊂ G. If H = 〈S〉 or H = 〈T 〉 then, as mentioned, we can
efficiently solve membership. Hence, we may assume that the projections ψ1(R) and ψ2(R) in the proof of
Proposition 1 are non-trivial. Let P ∈ G. Then P ∈ 〈R〉 if and only if (ψ1(R), ψ1(P ), ψ2(R), ψ2(P )) is a valid
co-DDH(G1, G2) instance. The result follows. �

One might expect a version of the Theorem 2 without the requirement to have an eigenvector base. In
fact, the ability to test subgroup membership (and hence solve DVDP) is essentially implicit in the statement
of co-DDH: How does one know that S, aS ∈ G1 and T, T ′ ∈ G2? What is the behaviour of a co-DDH oracle
if any of these conditions does not hold?

3 Existence of distortion eigenvector bases

We have shown that VDP is equivalent to CDH when G has an distortion eigenvector base. The goal of this
section is to show that all the supersingular elliptic curves used in practice have a distortion eigenvector
basis. The restriction to “curves used in practice” is because for the case of elliptic curves over Fp we use
an algorithm from [14] whose complexity is exponential in the class number h of the CM field Q(

√
t2 − 4p).

Although this algorithm has exponential complexity in general, it has polynomial complexity if the class
number is bounded by a polynomial in log(p) (for the purposes of this paper let’s insist that h ≤ log(p)2).
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Hence the algorithm runs in polynomial time for all curves which can be constructed in polynomial time
using the CM method (which is all supersingular curves used in practice).3 See [14] for more discussion of
this issue.

We summarise some standard examples of supersingular elliptic curves and distortion maps φ in Table 1.
The triple (α1, α2, α3) in the table means that for S ∈ E(Fq) and π the q-power Frobenius map we have
π(S) = α1S and π(φ(S)) = α2S + α3φ(S) (this is the notation of Yoshida [23]). We can obtain from the
table the maps φ1 and φ2 required in Definition 6. Specifically, for the first row of Table 1 one can take
φ1 = m + φ where m is defined to be 2−1 (mod r) as in Proposition 3. One then takes φ2 = m + φ2 and
it follows (compare the techniques in Theorem 4) that d ≡ m2 − m + 1 (mod r), where d is such that
φ2(φ1(S)) = dS. For the last row take φ1 = φ and φ2(x, y) = ((x/γ2)p, (y/u)p) (so d = 1) and for the other
three entries one can take φ1 = φ2 = φ (so d = −1). This shows that all the elliptic curves in Table 1 have
a distortion eigenvector base.

E q k φ(x, y) (α1, α2, α3)

y2 = x3 + 1 p 2 (ζ3x, y) where (1,−1,−1)
p ≡ 2 (mod 3) ζ2

3 + ζ3 + 1 = 0

y2 = x3 + x p 2 (−x, iy) where (1, 0,−1)
p ≡ 3 (mod 4) i2 = −1

y2 + y = x3 + x + b 2m 4 (x + ζ2
3 , y + ζ3x + t) (1, 0,−1)

gcd(m, 2) = 1 ζ2
3 + ζ3 + 1 = 0, t2 + t = ζ3

y2 = x3 − x + b 3m 6 (ρ− x, iy) where (1, 0,−1)
gcd(m, 6) = 1 ρ3 − ρ = b, i2 = −1

y2 = x3 + A where p2 3 (γ2xp, uyp) where (1, 0, λ) where
A ∈ Fp2 is a square p ≡ 2 (mod 3) u2 = A/Aq, u ∈ Fp2 λ2 + λ + 1 ≡ 0
but not a cube γ3 = u, γ ∈ Fp6 (mod r)

Table 1. Suitable elliptic curves for the Yoshida conditions

A corollary of Theorem 3 below is that for every supersingular elliptic curve used in practice there are
(P, φ, F ) satisfying the Yoshida conditions. Recall that Duursma and Kiyavash showed that if E is an elliptic
curve over a finite field with a point P and maps φ, F which satisfy the Yoshida conditions (see Section 4
below) then E is supersingular. Hence our corollary gives a complete classification of elliptic curves used in
practice satisfying the Yoshida conditions.

The restriction to supersingular curves is not surprising: If E is an elliptic curve with a distortion eigen-
vector base and if F and the group homomorphisms φ1, φ2 are endomorphisms of the elliptic curve, then E
must be supersingular (F and φ1 do not commute, so the endomorphism ring is non-commutative).

The case of embedding degree 1 is more subtle. Frobenius acts as the identity, so for an eigenvector
base one must take F to be an endomorphism which is not in Z[π] (where π is the q-power Frobenius) but
which has (at least) two eigenspaces. Such endomorphisms may or may not exist (see Charles [7]). Distortion
eigenvector bases do not exist when k = 1 since a further endomorphism is required which does not commute
with F or π, and for elliptic curves there can be no such maps.

We begin with three lemmas to deal with the case of embedding degree 3 (i.e., r | #E(Fq) has r | (q3−1)).
For background in this section see [4, 8, 19]

Lemma 6. Let E be an elliptic curve over Fq2 with #E(Fq2) = q2 ± q + 1. Then j(E) = 0.

Proof. Let π be the q2-power Frobenius map, which has degree q2 and is purely inseparable. Since E is
supersingular (q divides the trace of Frobenius) it follows that [q] is also purely inseparable of degree q2.

3 One can construct E such that End(E) is not the maximal order in Q(
p

t2 − 4p). However, one can use isogenies
to reduce to the case where End(E) is maximal, so throughout the paper we assume this is the case.
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Therefore (see Silverman [19] Corollary II.2.12), [q] = φπ where φ ∈ End(E). Taking degrees implies that
deg(φ) = 1 and, since π and [q] are defined over Fq2 , it follows that φ is also defined over Fq2 and so πφ = φπ.

Substituting q = φπ into the characteristic polynomial of Frobenius gives

0 = π2 ± qπ + q2 = (φ2 ± φ+ 1)π2

and hence the automorphism φ satisfies φ2 ± φ+ 1 = 0. It follows that ±φ ∈ End(E) is an automorphism of
order 3. This implies (see [19] Theorem III.10.1) that j(E) = 0. �

Lemma 7. Let EA : y2 = x3 + A be an elliptic curve over Fq2 with q = pm such that p > 3. Then
#EA(Fq2) = q2 ± q + 1 if and only if p ≡ 2 (mod 3) and A is not a cube.

Proof. It is a standard fact [19] that E is supersingular if and only if p ≡ 2 (mod 3). Let g be a primitive
element of Fq2 . Then EA is isomorphic over Fp2 to one of the curves Egi : y2 = x3 + gi for 0 ≤ i < 6. We
will determine which of these curves has q2 ± q + 1 points.

It is easy to check that E1 : y2 = x3 + 1 over Fq has q+ 1 = pm + 1 points if m is odd, (pd + 1)2 points if
m = 2d where d is odd, and (pd − 1)2 points if m = 2d where d is even. Hence the characteristic polynomial
of Frobenius over Fq2 is (T ± q)2 and #E1(Fq2) = (q ± 1)2. The quadratic twist Eg3 : y2 = x3 + g3 has
(q ∓ 1)2 points over Fq2 .

We consider Eg : y2 = x3 + g over Fq2 . Let φ : Eg → E1 be the isomorphism φ(x, y) = (αx, βy) where
α ∈ Fq6 and β ∈ Fq4 satisfy α3 = g and β2 = g. Let π be the q2-power Frobenius on Eg and π′ be the
q2-power Frobenius on E1. Then π′ = ∓[q] and so φ−1π′φ = ∓[q]. Now q2 ≡ 1 (mod 3) so

φ−1π′φ(x, y) = φ−1(αq2
xq2

, βq2
yq2

) = φ−1(ζ3αxq2
,−βyq2

) = −ζ3π(x, y)

where ζ3(x, y) = (ζ3x, y). It follows that π satisfies T 2 ± qT + q2 = 0 and so #Eg(Fq2) = q2 ± q + 1.
We now deal with the remaining cases. Since p ≡ 5 (mod 6) it follows that Eg5 is isomorphic to the

Galois conjugate y2 = x3 + gp of Eg, and so it also has q2 ± q + 1 points. The quadratic twists y2 = x3 + g4

and y2 = x3 + g2 therefore also have q2 ∓ q + 1 points. �

Lemma 8. Let E be a supersingular elliptic curve over Fq (characteristic > 3). Let r | #E(Fq) with r > 3
have security parameter 3/2 or 3. Then there is a distortion map φ on E, with easily computed inverse, such
that if P ∈ E(Fq)[r] then φ(P ) ∈ E(Fq3)[r] is a q-power Frobenius eigevector with eigenvalue q.

Proof. Let π be the q-power Frobenius. Then security parameter 3/2 or 3 implies that π satisfies π2±qπ+q =
0. Waterhouse [21] implies q = p2m where p ≡ 2 (mod 3). Hence, by Lemma 6, E is of the form y2 = x3+A.
Further, by Lemma 7, E is of the form y2 = x3 +A where A ∈ Fq2 is not a cube.

We now define a distortion map on E. Note that A may or may not be a square, but in either case A/Aq

is a square. Denote by u a square root of A/Aq, and note that u is not a cube. Let γ ∈ Fq6 satisfy γ3 = u

and note that γq2
= ζ3γ for ζ3 ∈ Fq2 such that ζ2

3 + ζ3 + 1 = 0.
Define

φ(x, y) = (γ2xq, uyq).

One can check that if P ∈ E(Fq2) then φ(P ) ∈ E(Fq6). Clearly φ and φ−1 are easily computed.
It remains to prove that φ(P ) is a Frobenius eigenvector, which we do in two stages. Let P ∈ E(Fq2)[r],

let Q ∈ E(Fq6)[r] be a non-trivial point in the q-eigenspace of Frobenius, and let π be the q2-power Frobenius
on E. Then

πφ(P ) = (γ2q2
xq3

P , u
q2
yq3

P ) = ((γq2
)2xq

P , uy
q
P ).

Since γq2
= ζ3γ we get

πφ(P ) = ζ2
3φ(P ) (4)

where ζ3(x, y) = (ζ3x, y) and ζ2
3 (x, y) = ζ3 ◦ ζ3(x, y) = (ζ2

3x, y). Note that (ζ2
3 + ζ3 + 1)(R) = 0 for all

R ∈ E(Fq). In particular, (ζ2
3 + ζ3 + 1)(Q) = 0.
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We now show that ζ3φ(P ) is an integer multiple of φ(P ). First note that r | (q2±q+1) and so q4+q2+1 ≡ 0
(mod r). Also note that ζ3 is defined over Fq2 so πζ3 = ζ3π. Hence, equation (4) implies

(π2 + π + 1)(φ(P )) = (ζ2
3 + ζ3 + 1)(φ(P )) = 0.

Write φ(P ) = aP + bQ with 0 ≤ a, b < r. Then

0 = (π2 + π + 1)(φ(P )) = a(π2 + π + 1)(P ) + b(π2 + π + 1)(Q) = 3aP

which implies a = 0 as r > 3. It follows that φ(P ) ∈ 〈Q〉 and ζ3φ(P ) ∈ 〈Q〉. �

Theorem 3. Let E be a supersingular elliptic curve over a finite field Fq suitable for pairing-based cryp-
tography (i.e., with embedding degree 2 ≤ k ≤ 6 and such that the class number of the field Q(

√
t2 − 4q) is

at most log(q)2). Let r > 3 be prime and coprime to q. Suppose that r | #E(Fq) and that not all points in
E[r] are defined over Fq. Let k be the smallest positive integer such that r | (qk − 1). Let π be the q-power
Frobenius map. Then E[r] has a distortion eigenvector basis with respect to F = π.

Proof. Let π be the q-power Frobenius. Since r | #E(Fq) and E[r] 6⊆ E(Fq) it follows from Balasubramanian
and Koblitz [1] that k > 1. Hence q 6≡ 1 (mod r). Furthermore, E[r] has a basis {P,Q} such that π(P ) = P
(i.e., P ∈ E(Fq)) and π(Q) = qQ. It remains to prove the existence of a homomorphism φ : 〈P 〉 → 〈Q〉 for
which φ and φ−1 can be computed in polynomial time.

In characteristic 2, there are only finitely many Fq-isomorphism classes of supersingular elliptic curves
and we have k ≤ 4 (see Menezes [18]). For applications we take k = 4, in which case we may assume that E
is the elliptic curve

E : y2 + y = x3 + x+ b

over F2m where b = 0 or 1 and m is odd. The field F24m has elements s, t such that s2 = s+1 and t2 = t+ s.
Following [3] we consider the distortion map φ(x, y) = (x + s2, y + sx + t). Note that φ and φ−1 are easily
computed. It is immediate that if P ∈ E(F2m) then π2(φ(P )) = −φ(P ). Hence, (P, φ(P )) is a distortion
eigenvector base with respect to F = π2.

To prove the result for F = π suppose π(φ(P )) = aP + bφ(P ) for some 0 ≤ a, b < r. Then −φ(P ) =
π(π(φ(P ))) = a(b+1)P + b2φ(P ) and so a(b+1) ≡ 0 (mod r) and b2 ≡ −1 (mod r). It follows that a = 0
and φ(P ) is an eigenvector for Frobenius (with eigenvalue ±q (mod r)).

In characteristic 3, there are also only finitely many Fq-isomorphism classes of supersingular elliptic curves
and we have k ≤ 6. For cryptographic applications we take k = 6 and so we may assume that

E : y2 = x3 − x+ b

over F3m where b = ±1 and gcd(m, 6) = 1. We consider the distortion map φ(x, y) = (ρ − x, σy) where
σ, ρ ∈ F36 satisfy σ2 = −1 and ρ3 = ρ + b. It is easy to check that if P ∈ E(F3m) and if π is the 3m-power
Frobenius then π3(φ(P )) = −φ(P ) so (P, φ(P )) is a distortion eigenvector base with respect to F = π3.
The result also follows for F = π using the same method as used in the case of characteristic 2: write
π(φ(P )) = aP +bφ(P ), then −φ(P ) = π3(φ(P )) = a(b2 +b+1)P +b3φ(P ) and so a = 0 and b ≡ q (mod r).

The case k = 3 is of interest when p > 3 satisfies p ≡ 2 (mod 3). The result is proved in Lemma 8.
Finally, we consider the case k = 2. Galbraith and Rotger [14] have given an algorithm to construct a

distortion map φ for any supersingular elliptic curve E over Fq where q = pm with k = 2. The running
time of the algorithm is polynomial in the running time of the CM method for constructing such an elliptic
curve (and all known constructions of elliptic curves for pairing applications have small class number CM).
Proposition 6.1 of [14] constructs the distortion map φ =

√
−d in End(E) where d may be taken to be

square-free. Then φ is an isogeny of degree d which may be computed using Algorithm 1 of [14]. If E has
been constructed in polynomial time then we may assume that d is bounded by a polynomial in log(p) and
so this algorithm is polynomial time and it follows that φ may be computed in polynomial time.

Similarly, the dual isogeny φ̂ (see [19]) can be computed in polynomial time using an analogous algorithm.
Recall that φ̂φ = [d].
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Finally, the statement that φ(P ) is a Frobenius eigenvector follows from the proof of Proposition 6.1 of
[14]. The q-power Frobenius lifts to the Galois element σ in the proof, and φ lifts to an endomorphism Φ
satisfying Φσ = −Φ. This implies πφ(P ) = −φ(P ) = qφ(P ) as required. �

A significant case not covered by the above theorem is the non-supersingular genus 2 curves proposed
by Duursma and Kiyavash [9]. They consider the curves y2 = x6 − ax3 + 1 and y2 = x6 − ax3 − 3 over Fp

(where p ≡ 2 (mod 3)). Define the isomorphism φ(x, y) = (ζ3x, y) where ζ3 ∈ Fp2 is a primitive cube root
of 1. Note that φ2 + φ + 1 = 0 in End(Jac(C)). Duursma and Kiyavash show that these curves satisfy the
Yoshida conditions (see below). In particular, if S ∈ Jac(C)(Fp) is a divisor class of order r and if F is the
p-power Frobenius then F (S) = S and F (φ(S)) = −S − φ(S).

Theorem 4. Let C be one of the Duursma-Kiyavash curves and let notation be as above. Let m = 2−1

(mod r) and define φ′ = m+ φ. Then (S, φ′(S)) is a distortion eigenvector base.

Proof. It is easy to check (see Proposition 3 below) that Fφ′(S) = −φ′(S). Hence (S, φ′(S)) is an eigenvector
base. Note also that φ′ is an efficiently computable group homomorphism.

To show that (S, φ′(S)) is a distortion eigenvector base it remains to prove that there is an efficiently
computable homomorphism φ′′ such that φ′′φ = d on 〈S〉. Consider the dual isogeny

m̂+ φ = m+ φ̂.

Since φ̂ = φ2 we have
(m+ φ̂)(m+ φ) = m2 +m(φ+ φ̂) + φ̂φ = m2 −m+ 1.

Hence, define d = (m2−m+1) (mod r) and φ′′ = m+φ2 so that φ′′ is efficiently computable and φ′′φ′ = d
on 〈S〉. �

Corollary 4 can therefore be applied to deduce that VDP is equivalent to CDH for the Duursma-Kiyavash
curves.

4 Relation with the Yoshida conditions

Yoshida showed that CDH ≤ VDP when certain conditions on G are satisfied. We have shown that CDH ≤
VDP when the group G has an eigenvector base. In this section we show that Yoshida’s result is a subcase
of ours, by showing that if G satisfies the Yoshida conditions then it has an eigenvector base. First we recall
the conditions introduced by Yoshida in [23].

Definition 9. We say that G satisfies the Yoshida conditions for S ∈ G if there exist group isomorphisms
φ, F : G→ G such that:

1. φ and F can be computed in polynomial time;
2. (S, φ(S)) is a base for G
3. Constants α1, α2, α3 ∈ Z/rZ are given, such that α1α2α3 6= 0 and

F (S) = α1S, F (φ(S)) = α2S + α3φ(S).

We remark that we have been unable to find any groups satisfying the Yoshida conditions with α1 = α3.
Indeed, all known examples of groups satisfying the Yoshida conditions are when G is a subgroup of a divisor
class group of a curve over Fq, P is an element of prime order r defined over the ground field Fq, F is a
Frobenius map and φ is a non-Fq-rational endomorphism of the curve. It follows that α1 = 1.

Proposition 3. If G satisfies the Yoshida conditions for S then one can calculate T ∈ G such that (S, T )
is an eigenvector base.
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Proof. Suppose S, F, φ satisfy the Yoshida conditions.
First suppose that α1 6= α3. Let m = (α3 − α1)−1α2 (mod r) and let φ′ = m+ φ. Then

F (φ′(S)) = F (mS + φ(S)) = α1mS + α2S + α3φ(S)
= (α1m+ α2 − α3m)S + α3φ

′(S)
= α3φ

′(S).

It follows that (S, φ′(S)) is an eigenvector base.
Now we deal with the case α1 = α3 (which possibly never occurs in practice). Set θ = α−1

2 (mod r),
γ = α−1

2 α1 (mod r) and define
ψ(R) = θF (R)− γR

for R ∈ G. It follows that
ψ(S) = (θα1 − γ)S = 0

and
ψ(φ(S)) = θα2S + (θα3 − γ)φ(S) = S.

Consequently, if we take ψ′ = φ ◦ψ we get that ψ′(S) = 0 and ψ′(φ(S)) = φ(S). That is, ψ′ is the projection
on 〈φ(S)〉 w.r.t. the base (S, φ(S)). So R − ψ′(R) is the projection of R on 〈S〉 w.r.t. the base (S, φ(S)).
Consequently if we take F ′(R) = λ2ψ

′(R) + λ1(R− ψ′(R)) for any distinct non-zero λ1, λ2 ∈ Z/rZ it easily
follows that (S, φ(S)) is an eigenvector base for F ′ and φ. �

Note that in many cases the above proof yields a distortion eigenvector base. However, we cannot prove
this in all cases since the Yoshida conditions contain no requirement that the dual isogeny of φ be efficiently
computable.

For completeness we show how to transfrom a distortion eigenvector base to satisfy the Yoshida conditions.

Lemma 9. Let G be a group with homomorphisms φ, F and an eigenvector base (S, φ(S)). Let φ′ = 1 + φ.
Then G together with φ′, F satisfies the Yoshida conditions.

Proof. Clearly the first two Yoshida conditions hold. For the third, one checks that

F (φ′(S)) = F (S + φ(S)) = λ1S + λ2φ(S) = (λ1 − λ2)P + λ2φ
′(P )

which completes the proof �

Corollary 5. Let E be any supersingular elliptic curve used in practice as above. Then one can construct a
triple (P, F, φ) satisfying the Yoshida conditions.

5 Non-cyclic groups

The VDP is defined for any group G of exponent r and order r2. In this section we very briefly recall
some non-cyclic groups which might be suitable for cryptography. Recall that the main groups of interest in
discrete-logarithm based cryptography are the multiplicative group of a finite field (which is always cyclic)
and elliptic curves or divisor class groups of curves (which can be non-cyclic). For background on elliptic
curves in cryptography (and pairings) see [4, 8].

1. Direct products G = G1×G2 where G1, G2 are cyclic subgroups of finite fields, elliptic curves or divisor
class groups.

2. Elliptic curves E over Fq such that the group of points of order r (called the r-torsion subgroup) is
defined over a small degree extension Fqk . Such curves are automatically ‘pairing-friendly’. There are
two cases:
(a) Supersingular curves.
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(b) Ordinary curves. There are many methods to generate pairing-friendly ordinary curves (see [11] for
a survey).

3. Subgroups of exponent r and order r2 of the divisor class group of a curve of genus g ≥ 2 over Fqk .
In this case, the full r-torsion is not necessarily defined over Fqk and so the divisor class group is not
necessarily pairing-friendly. Again, there are two cases.
(a) Supersingular. These curves are necessarily pairing-friendly. There are many examples of supersin-

gular hyperelliptic curves given in the literature (see [13]).
(b) Non-supersingular. For example the curves with complex multiplication presented by Duursma and

Kiyavash [9].
4. The subgroup of order r2 in (Z/nZ)∗ where n = pq is a product of two primes such that r | (p− 1) and
r | (q − 1). Care must be taken that r is not too large, or else it is easy to factor n (see McKee and
Pinch [17]).
This case has a very different flavour to the other groups described above, and the methods of the paper
do not seem to apply in this case.

Note that not all of the above groups will necessarily have an eigenvector base.

6 Generalised discrete logarithm problems

We have proved that VDP is equivalent to CDH in a cyclic group for all examples proposed in the literature.
But one might consider VDP in a more general context where distortion maps φ are not available. Hence we
give some results relating VDP to generalisations of the discrete logarithm problem. As always, G denotes a
group of order r2 and exponent r where r is prime.

We recall the discrete logarithm problem (DLPG1) for a cyclic group G1: Given P,Q ∈ G1, compute an
integer a (if it exists) such that Q = aP . The discrete logarithm problem has been generalized by many
authors in different ways. For example, if G1 is a cyclic group of prime order and P1, P2 ∈ G1 then Brands [6]
defined the representation problem: Given Q ∈ G1 find (a, b) such that Q = aP1 + bP2. It is easy to show
that the the representation problem in the cyclic group G1 is equivalent to the DLP in G1.

For groups G of exponent r and order r2 we define the following generalisation of the discrete logarithm
problem.

Definition 10. The computational problem 2-DL is: Given P1, P2, Q ∈ G such that G = 〈P1, P2〉 compute
a pair of integers (a, b) such that Q = aP1 + bP2.

The following result is natural, but we include it for completeness.

Lemma 10. The computational problem 2-DL is random self-reducible.

Proof. Let (P1, P2, Q) be a 2-DL instance where Q = aP1 + bP2. Choose uniformly at random x1, x2, y1, y2 ∈
(Z/rZ) such that x1x2 − y1y2 6≡ 0 (mod r) and define P ′

1 = x1P1 + y1P2, P ′
2 = y2P1 + x2P2. Then

G = 〈P ′
1, P

′
2〉 and every pair of generators for G can be obtained from {P1, P2} via the above process. Let

u1, u2 ∈ Z/rZ be chosen uniformly at random. Then (P ′
1, P

′
2, Q+ u1P

′
1 + u2P

′
2) is a random 2-DL instance.

Given the solution (a′′, b′′) to this 2-DL instance one can compute a′ = a′′ − u1, b
′ = b′′ − u2 so that

Q = a′P ′
1 + b′P ′

2 = (a′x1 + b′y2)P1 + (a′y1 + b′x2)P2

which gives the solution to the original 2-DL problem. �

Lemma 11. Let G1 be a cyclic subgroup of G. Then DLPG1 ≤ 2-DL.

Proof. Clearly a DLP instance (P, aP ) leads to a 2-DL instance (P,Q, aP ) for any random point Q 6∈ 〈P 〉.
Applying Lemma 10, if one has an oracle to solve 2-DL with probability ε then one can solve DLPG1 with
probability ε. �
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The following result is clear.

Theorem 5. Let G be as above. Then VDP ≤ 2-DL.

Proof. Given an input VDP triple (P1, P2, Q) we call the 2-DL oracle to get (a, b). Then R = aP1 (which
can be computed in polynomial time since the group operation in G may be computed in polynomial time)
is the solution to the VDP.

If the 2-DL oracle has success probability ε then, by applying Lemma 10, one has solved VDP with
probability ε. �

The computational problems VDP and 2-DL are both defined for non-cyclic groups. Computational
problems in non-cyclic groups have not been studied as closely as those in cyclic groups. The remainder of
this section relates the 2-DL problem in non-cyclic groups to discrete logarithm problems in one or more
cyclic groups.

Let G1, G2 be cyclic groups of order r. We say that two group homomorphisms ψi : G→ Gi, for i = 1, 2,
are independent if kerψ1 ∩ kerψ2 = {0}. An example of independent group homomorphisms are the
projection maps in the proof of Proposition 1.

Theorem 6. Let G and G1 be as above and suppose there are two independent group homomorphisms
ψ1, ψ2 : G→ G1 which can be computed in polynomial time. Then 2-DL is equivalent to DLPG1 .

This result is a special case of the following.

Theorem 7. Let G be as above and let G1, G2 be cyclic groups of order r. Suppose there are two independent
group homomorphisms ψi : G → Gi for i = 1, 2 which can be computed in polynomial time. Then 2-DL is
equivalent to (DLPG1 and DLPG2).

Proof. It is trivial from Lemma 11 that (DLPG1 and DLPG2) ≤ 2-DL. We now prove the opposite (the ideas
in the proof are essentially the same as those used in the proof of Theorem 1.)

Let (P1, P2, Q) be the input 2-DL and suppose we have oracles O1, O2 which solve the DLP in G1 and
G2 respectively. Fix a generator R1 for G1 and a generator R2 for G2.

Using O1 and O2 we can compute integers mi,j for 1 ≤ i, j ≤ 2 such that

ψi(Pj) = mi,jRi.

Write M for the 2× 2 matrix (mi,j). Then for Q = aP1 + bP2 we have(
ψ1(Q)
ψ2(Q)

)
= M

(
aR1

bR2

)
.

The fact that ψ1 and ψ2 are independent is equivalent to M being invertible.
To solve the 2-DL we call O1 on ψ1(Q) and O2 on ψ2(Q) to find integers (x, y) such that ψ1(Q) = xR1

and ψ2(Q) = yR2. Then (
x
y

)
= M

(
a
b

)
and one can solve for (a, b) thus solving the 2-DL. �

Corollary 6. If G has an eigenvector base (S, T ) then 2-DL is equivalent to (DLP〈S〉 and DLP〈T 〉).

Corollary 7. Let G be a group which has a distortion eigenvector base (S, T ). Let G1 = 〈S〉. Then 2-DL is
equivalent to DLPG1 .

Proof. We let ψ1 be as in the proof of Proposition 1 and let ψ2(Q) = ψ1(φ(Q)). One can check that these
are independent homomorphisms to 〈S〉, and so the result follows from Theorem 6. �
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Direct products (case 1 of Section 5) are easy to handle.

Corollary 8. Let G be a direct product of two cyclic groups G1, G2 of prime order r. Then 2-DL ≤ (DLPG1

and DLPG2).

Proof. Let G = G1 × G2. The homomorphisms ψi : G → Gi are given by ψ1(R1, R2) = Ri for i = 1, 2.
Theorem 7 then proves the result. �

On ordinary pairing-friendly elliptic curves (i.e., case 2(b) of Section 5) we do not have distortion maps
and so it is not possible to have a distortion eigenvector base. We now state the obvious fact that the 2-DL
can be reduced to the DLP in a finite field using pairings.

Theorem 8. Let G be a subgroup of E(Fqk) of exponent r and order r2. Then r | (qk − 1). Let G1 be the
subgroup of r-th roots of unity in F∗

qk . Then 2-DL ≤ DLPG1 .

Proof. The proof uses the Weil pairing, which is a non-degenerate, bilinear map er : E[r]×E[r] → µr where
µr is the group of rth roots of unity in Fq. The Weil pairing is alternating, which means er(P, P ) = 1 for all
points P ∈ E[r].

First, the statement r | (qk − 1) follows from non-degeneracy of the Weil pairing on E[r] ⊂ E(Fqk).
Now, let (P1, P2, Q) be the 2-DL instance we are required to solve. Since {P1, P2} generates E[r] and the

Weil pairing is non-degenerate and alternating we have g = er(P1, P2) 6= 1. One can appeal to Theorem 6
to give the result, but it is obtained even more directly as follows. Write Q = aP1 + bP2. To solve the 2-DL
one computes the Weil pairing values er(Q,P2) = ga and er(P1, Q) = gb. By solving the two DLPs in G1

one obtains (a, b), which is the solution to the 2-DL problem. �

In the ordinary genus 2 case (again, case 3(b) of Section 5) there is another way to potentially attack the
2-DL. One natural approach to constructing a curve C over Fq whose Jacobian has non-cyclic group order
is to choose C such that there are rational maps ψi : C → Ei (for i = 1, 2) over Fq where Ei are elliptic
curves over Fq. Then the Jacobian of C is isogenous over Fq to E1 × E2 and if r | #Ei(Fq) for i = 1, 2 then
r2 divides the order of Jac(C)(Fq). This approach was used by Duursma and Kiyavash [9]. Since the rational
maps ψi induce explicit isogenies

ψi : Jac(C)(Fq) → Ei(Fq)

for i = 1, 2 one can apply Theorem 7 to reduce the 2-DL to two DLPs in cyclic groups.

7 Conclusion

We present a thorough analysis of the vector decomposition problem (VDP). We have shown that, for all the
supersingular elliptic curves which could be used in practice, VDP is equivalent to CDH in a cyclic group.
We have also related VDP to various co-CDH problems and a generalised discrete logarithm problem 2-DL
which in turn is often related to discrete logarithm problems in cyclic groups.
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