
SAMPLING FROM DISCRETE GAUSSIANS FOR LATTICE-BASED CRYPTOGRAPHY ON A
CONSTRAINED DEVICE

NAGARJUN C. DWARAKANATH AND STEVEN D. GALBRAITH

ABSTRACT. Modern lattice-based public-key cryptosystems require sampling from discrete Gaussian (normal)
distributions. The paper surveys algorithms to implement such sampling efficiently, with particular focus on the
case of constrained devices with small on-board storage and without access to large numbers of external random
bits. We review lattice-based encryption schemes and signature schemes and their requirements for sampling
from discrete Gaussians. Finally, we make some remarks on challenges and potential solutions for practical
lattice-based cryptography.

Keywords: Lattice-based cryptography, sampling discrete gaussian distributions.

1. INTRODUCTION

Lattice-based cryptography is an extremely active research area that promises systems whose security
depends on worst-case computational assumptions in lattices that are believed to be hard even for quantum
computers. It is also often said that lattice-based cryptosystems are fast and simple to implement, as the basic
operation is only matrix-vector multiplication modulo an integer q. Hence, one might think that lattice-based
cryptosystems are ideal for constrained devices (by a constrained device we think of an embedded device or
portable device that has small RAM (e.g., measured in kilobytes rather than megabytes), a modest processor,
and is required to be economical with respect to power usage). However, there are several reasons why
implementing these cryptosystems may not be practical on constrained devices:

(1) The public keys and ciphertexts/signatures may be very large.
(2) The systems often require sampling from discrete Gaussian distributions on lattices.

It is the second of these issues that is the focus of our paper. The problem is to sample a vector from a
discrete Gaussian distribution on a lattice L ⊆ Zm. This task can be reduced to sampling m integers from
discrete Gaussian distributions on Z. While sampling from Gaussian distributions is a standard problem in
statistical computing, there are several reasons why implementing it can be inconvenient on a constrained
device:

(1) The methods require the generation of a large number of random bits as input to the sampling
algorithm. Generating these bits (e.g., using a pseudorandom generator) may have non-negligible
cost.

(2) The sampling algorithms require either high-precision floating-point arithmetic or very large pre-
computed tables.

(3) Cryptographical applications require higher quality sampling (i.e., a smaller statistical difference
between the desired distribution and the actual distribution sampled) than traditional applications in
statistical computing.

Hence, it is not clear whether it is practical to sample from discrete Gaussian distributions on a constrained
device. The aims of this paper are:

• To discuss some issues that have not been widely addressed in the literature on lattice cryptography.
1

2 NAGARJUN C. DWARAKANATH AND STEVEN D. GALBRAITH

• To determine the practicality of currently proposed schemes with rigorous security guarantees, with
direct reference to the proposed algorithms and suggested parameters.
• To survey some methods for compact and efficient sampling from discrete Gaussians, and give an

analysis of them.
The paper is organised as follows. Section 2 recalls some basic definitions and results about discrete

Gaussian distributions on lattices. Section 3.1 recalls some encryption schemes based on lattices and dis-
cusses which schemes require sampling from discrete Gaussians. Section 3.2 recalls some provably secure
lattice-based signature schemes. Some of these are based on trapdoor lattices and the “hash-and-sign” para-
digm, while others are based on the Fiat-Shamir paradigm. Our finding is that there is no hope to implement
hash-and-sign signatures on a constrained device.

Section 4.1 recalls the standard methods to compute numerical approximations to the function exp(x).
Finally, in Section 5 we recall the Knuth-Yao algorithm and analyse its storage cost. Section 6 suggests an
alternative approach to sampling from discrete Gaussian distributions by using the central limit theorem, and
explains why this does not seem to be useful in practice. Section 7 mentions some concurrent and subsequent
papers on this topic.

2. DISCRETE GAUSSIAN DISTRIBUTIONS

Let σ ∈ R>0 be fixed. The discrete normal distribution or discrete Gaussian distribution on Z with mean
0 and parameter σ (note that σ is close, but not equal, to the standard deviation of the distribution) is denoted
Dσ and is defined as follows. Let

(1) S =

∞∑
k=−∞

e−k
2/(2σ2) = 1 + 2

∞∑
k=1

e−k
2/(2σ2)

and let E be the random variable on Z such that, for x ∈ Z, Pr(E = x) = ρσ(x) = 1
S e
−x2/(2σ2). Note that

some authors write the probability as proportional to e−πx
2/s2 , where s =

√
2πσ is a parameter.

More generally we will use the following notation. For σ, c ∈ R we define ρσ,c(x) = exp(−(x −
c)2/(2σ2)). We write

Sσ,c = ρσ,c(Z) =

∞∑
k=−∞

ρσ,c(k)

and define Dσ,c to be the distribution on Z such that the probability of x ∈ Z is ρσ,c(x)/Sσ,c.
One can extend these definitions to a lattice L ⊆ Rm. For x ∈ L and c ∈ Rm we have ρL,σ,c(x) =

exp(−‖x− c‖2/(2σ2)) and DL,σ,c is the distribution on L given by Pr(x) = ρL,σ,c(x)/ρL,σ,c(L). We write
DL,σ for DL,σ,0.

We now mention some tail bounds for discrete Gaussians. Lemma 4.4(1) of the full version of [18] states
that

(2) Pr
z←Dσ

(|z| > 12σ) ≤ 2 exp(−122/2) < 2−100.

For the lattice distribution, Lemma 4.4(3) of the full version of [18] states that if v is sampled from DZm,σ
then

(3) Pr
z←DZm,σ

(‖v‖ > cσ
√
m) < cm exp(m(1− c2)/2).

Lemma 1. Let σ > 0 and m ∈ N be fixed. Consider the distribution DZm,σ . Let k ∈ N and suppose c ≥ 1
is such that

c >
√

1 + 2 log(c) + 2(k/m) log(2).

SAMPLING FROM DISCRETE GAUSSIANS 3

Then

Pr
v←DZm,σ

(‖v‖ > c
√
mσ) <

1

2k
.

In particular, if k = 100 and m = 512 then one can take c = 1.388 and c
√
mσ = 31.4σ. Similarly, if

k = 100 and m = 1024 then one can take c = 1.275 and c
√
mσ = 40.8σ.

Proof. The result follows immediately from equation (3). Solving cm exp(m(1 − c2)/2) < 1/2k gives the
result. �

2.1. Sampling Methods. There are standard methods in statistical computing for sampling from such dis-
tributions. The book by Devroye [5] gives a thorough survey. Two basic methods are rejection sampling and
the inversion method. Rejection sampling (Section II.3 of [5]) from a set S involves sampling x ∈ S from
some easy distribution (typically the uniform or exponential distribution) and then accepting the sample with
probability proportional to Pr(x) (we give more details below). The inversion method (Section II.2 of [5])
is to use a function or table that translates sampling from the required distribution into sampling from a
uniform distribution on a different set. The formulation in [5] is to have a continuous distribution function
F : S → [0, 1] such that if U is a uniform random variable on [0, 1] then F−1(U) is a random variable on S
of the required form. When S is a finite set this can be implemented as a table of values F (x) ∈ [0, 1] over
x ∈ S, with Pr(F (x) ≤ u) = Pr(x ≤ F−1(u)).

A standard assumption in works such as [5] is that one can sample uniformly from [0, 1]. This is achieved
in practice by sampling a sequence of uniformly chosen bits, giving the binary expansion of a real number
between 0 and 1.

It is useful to have a theoretical lower bound on the number of uniformly chosen bits required, on average,
to sample from a given distribution. The inversion method gives an algorithm to sample from the distribution
that attains this theoretical minimum. The lower bound is given by the entropy of the distribution, which is
a measure of the “information” to specify a value in the distribution. The entropy of the normal distribution
on R with variance σ2 is log(2πeσ2)/2 ≈ 1.4 + log(σ). Since we measure bitlengths we prefer to use log2.
In the discrete case the definition of entropy is

H = −
∞∑

k=−∞

pk log2(pk)

where pk = ρσ(k). For example, we calculated the entropy of the discrete Gaussian distribution on Z with
parameter σ = 20 to be H ≈ 6.36. Increasing σ to 200 gives H ≈ 9.69. In other words, one should only
need to use around 6 uniformly generated bits to generate a single sample from D20, and around 10 bits to
generate a sample fromD200. More generally, one should only need around 2+log2(σ) uniformly generated
bits to sample an integer from Dσ . Hence, we should be able to have efficient algorithms to sample from
these distributions that only use a small number of calls to a (pseudo-)random bit generator.

We now give more details about rejection sampling (Section II.3 of [5]). Let S be a finite set to be
sampled, let f be the desired probability distribution on S and g the probability distribution that can be
easily sampled (e.g., g(x) = 1/#S for all x ∈ S). Let MR ∈ R be such that MRg(x) ≥ f(x) for all
x ∈ S. The sampling algorithm is to sample x ∈ S according to the distribution g and then to output x with
probability f(x)

MRg(x)
and otherwise to repeat the process. The expected number of times x is sampled before

an output is produced is MR. In the case where g is the uniform distribution on the set S, the rejection
sampling algorithm requires on average MR log2(#S) calls to the random bit generator.

2.2. Statistical distance. No finite computation will ever produce a discrete normal distribution. Since we
want efficient cryptosystems we need algorithms with bounded running time that sample from distributions

4 NAGARJUN C. DWARAKANATH AND STEVEN D. GALBRAITH

that are very close to the desired distribution. The precision required is governed by the security proof of the
cryptosystem. To make this precise one uses the notion of statistical difference. LetX and Y be two random
variables corresponding to given distributions on a lattice L. Then the statistical difference is defined by

∆(X,Y) = 1
2

∑
x∈L

∣∣∣Pr(X = x)− Pr(Y = x)
∣∣∣.

It is necessary for the rigorous security analysis that the statistical difference between the actual distribution
being sampled and the theoretical distribution (as used in the security proof) is negligible, say around 2−90

to 2−128.
We now prove a simple fact about how well one needs to approximate the discrete Gaussian on Z in order

to generate good samples from the discrete Gaussian on Zm.

Lemma 2. Let σ > 0, ε > 0 be given. Let k ∈ N and let t > 0 be such that the tail bound Pr(‖v‖ > tσ)
as in Lemma 1 is at most 1/2k. For x ∈ Z denote by ρx the probability of sampling x from the distribution
Dσ . Suppose one has computed approximations 0 ≤ px ∈ Q for x ∈ Z, −tσ ≤ x ≤ tσ such that

|px − ρx| < ε

and such that
∑tσ
x=−tσ px = 1. LetD′ be the distribution on [−tσ, tσ]∩Z corresponding to the probabilities

px. Denote by D′′ the distribution on Zm corresponding to taking m independent samples vi from D′ and
forming the vector v = (v1, . . . , vm). Then

(4) ∆(D′′, DZm,σ,0) < 2−k + 2mtσε.

Proof. Let X = {v = (v1, . . . , vn) ∈ Zn : |vi| ≤ tσ} be the support of D′′. By restricting to sampling
entries of v from [−tσ, tσ]∩Z we certainly cover all vectors v such that ‖v‖ ≤ tσ (and many more). Hence,
by assumption, the sum of all the probabilities with respect to DZm,σ for all v ∈ Zm −X is less than 2−k.

It remains to compute the statistical difference on X . In other words, to bound

(5)
∑
v∈X
|pv1pv2 · · · pvm − ρv1 · · · ρvm |.

One can write the inner term pv1 · · · pvm − ρv1 · · · ρvm as

pv1pv2 · · · pvm − ρv1pv2 · · · pvm + ρv1pv2 · · · pvm − ρv1 · · · ρvm
= (pv1 − ρv1)(pv2 · · · pvm) + ρv1(pv2 · · · pvm − ρv2 · · · ρvm).

Continuing the process gives

(pv1 − ρv1)(pv2 · · · pvm) + ρv1(pv2 − ρv2)(pv3 · · · pvm) + · · ·+ (ρv1 · · · ρvm−1
)(pvm − ρvm).

Applying the triangle inequality turns the sum into a sum of entries of the form (this is just the first one)

|pv1 − ρv1 |
∑

w∈X∩Zm−1

pw2
· · · pwm

where X ∩ Zm−1 means restricting to the last m − 1 components. Since the probabilities sum to 1, each
term is bounded above by |pv1 − ρv1 |. Since there are 2tσ choices for each vi and m choices for i it follows
that equation (5) is bounded by 2mtσε. �

The above result is not tight as [−tσ, tσ]m is a hypercube while {v ∈ Zm : ‖v‖ > tσ} is the exterior
of a hypersphere, so we are double counting. Hence, the dependence on m may not actually be as bad in
practice as the linear term in equation (4) would suggest. We performed some toy experiments to assess
this. We fixed small values for σ, t, ε (e.g., (σ, t, ε) = (3, 4, 0.01)) and computed the statistical distance of
the distributions DZm,σ and D′′, as above, for m = 1, 2, For ease of computation we restricted to the

SAMPLING FROM DISCRETE GAUSSIANS 5

FIGURE 1. Plot of statistical distance ∆ (for one orthont of Zm) versus m for σ = 3 and
ε = 0.01 (blue line, square dots). The straight line (red, diamonds) is a linear interpolation
of the data points for m = 1 and m = 2. The left hand graph has t = 4 and the right hand
graph has t = 6.

first orthont Zm≥0. A typical graph is given in Figure 1. One sees that the graph drops below linear extremely
slowly, however this seems to be mainly due to the tail in the region of the hypercube that is not in the
hypersphere. As t grows (making the tail smaller) the plot becomes closer to linear. The results indicate that
there is still a linear dependence on m. So for the remainder of the paper we assume that it is necessary to
have the bound growing linearly with m.

Note that m hurts us twice. First, there is a
√
m contribution to t from Lemma 1. Second, there is the m

in the term 2mtσε term in equation (4). It therefore follows that if we want statistical distance for the lattice
sampling of around 2−k, then we need to sample from Z with statistical distance around 2−k/(2m

√
mσ).

Taking k = 100,m = 1024, t = 40.8 and σ = 1.6 · 105 in Lemma 2 gives statistical distance of
approximately 2−100 + 1.3 · 1010ε. Hence, to have statistical difference of 2−90 it is necessary to take
ε ≈ 2−124.

3. LATTICE-BASED CRYPTOGRAPHY

Lattice-based cryptography is a large subject and there are a number of different cryptosystems with a
number of special features. The aim of this section is to recall some examples of these systems, explain how
discrete Gaussian distributions are used, and to discuss some specific cryptosystems that one may wish to
use on constrained devices.

3.1. Learning with errors and encryption schemes. As a first example we recall the learning with errors
problem (LWE) and the basic LWE encryption scheme, invented by Regev [23, 24].

Let q, n ∈ N, where q is an odd integer. We represent Z/qZ using the set {−(q − 1)/2, . . . , (q − 1)/2}.
We represent the set (Z/qZ)n using column vectors of length n with entries in Z/qZ. The entries of the
column vector s will be denoted s1, . . . , sn.

Definition 1. Let n, q, σ be as above. Let s ∈ (Z/qZ)n. The LWE distribution As,σ is the distribution on
(Z/qZ)n+1 defined as follows: choose uniformly at random a length n row vector a with entries in Z/qZ;
choose an integer e randomly according to the distribution Dσ; set

b ≡ as + e (mod q)

and consider (a, b).

6 NAGARJUN C. DWARAKANATH AND STEVEN D. GALBRAITH

The learning with errors problem (LWE) is: Given n, q, σ and an oracle which outputs values (a, b)
drawn from the LWE distribution As,σ , to compute the vector s.

The LWE problem is well-defined in the sense that, if sufficiently many samples are drawn from the LWE
distribution, one value for s is overwhelming more likely than the others to have been used to generate the
samples.

In practice it is common to use the ring variant of the LWE problem. Let R = Z[x]/(xN + 1) and
Rq = Zq[x]/(xN + 1) where N = 2m is a parameter. One can interpret an element of R as a length N
vector over Z. A vector in ZN with small norm is interpreted as a “small” ring element. The Ring-LWE
problem is: Fix s ∈ Rq , then given samples (a,b = as + e) ∈ R2

q where a is uniformly chosen in Rq and
where e ∈ R is a “small” ring element (having entries chosen from some discrete Gaussian), to compute s.
For details on Ring-LWE see Lyubashevsky, Peikert and Regev [15, 16].

It is crucial, to maintain the difficulty of the LWE problem, that the error values can occasionally be large.
For example, Arora and Ge [1] and Ding [7] give approaches to attack LWE cryptosystems if the errors are
known to be bounded. Hence, when one is sampling error values from the Gaussian distribution one must
ensure that the tail is not truncated too severely.

3.1.1. Regev’s Cryptosystem. The private key is a length n column vector s over Z/qZ, where q is prime.
The public key is a pair (A,b) where A is a randomly chosen m× n matrix over Zq with rows ai, and b is a
length m column vector with entries bi = ais + e (mod q) such that e is sampled from the error distribution
(with mean 0 and parameter σ). Lindner and Peikert [14] suggest

(n,m, q, σ) = (256, 640, 4093, 2.8).

This value for n is probably considered too small nowadays for most applications.
To encrypt a message x ∈ {0, 1} to a user one chooses a row vector uT ∈ {0, 1}m (i.e., the entries of u

are chosen uniformly at random in {0, 1}) and computes

(C1, C2) = (uTA (mod q),uTb + xbq/2c (mod q)).

Decryption is to compute y = C2 − C1s (mod q) and determine x by seeing if y is “closer” to 0 or
bq/2c. Note that decryption fails with some probability, which may be made arbitrarily small by taking q
sufficiently large compared with m and σ (see Lemma 5.1 of Regev [24]). One can encrypt many bits by
either repeating the above process for each bit or by using a single A and different values for s (e.g., see
Lindner and Peikert [14]).

Both key generation and encryption require generating randomness. Encryption just requires generating
uniform bits, which is easy using entropy external to the device or a good pseudorandom generator. How-
ever, key generation requires sampling from the Gaussian error distribution, which is not an entirely trivial
computation.

There is a dual version of LWE: in this case the public key is A and uTA (mod q), and the ciphertext
involves computing C1 = b = As + e (mod q) and C2 = uTb + xbq/2c (mod q). The disadvantage, in
practice, of this method is that the encryption algorithm now has to perform the Gaussian sampling. Hence,
for constrained devices, we believe the original encryption scheme will be more practical than the dual
scheme.

3.1.2. Other encryption schemes. Lindner and Peikert [14] and Lyubashevsky, Peikert and Regev [16] have
given improved encryption schemes. We give a re-writing of the Ring-LWE variant from Section 8.2 of [16].

The public key is (a,b) ∈ R2
q (for details see [16]). To encrypt a message µ ∈ R/(p) (where p is a small

prime) one first chooses z, e′, e′′ from certain discrete Gaussian distributions and computes (where t and N̂

SAMPLING FROM DISCRETE GAUSSIANS 7

are defined in Definition 2.17 of [16])

u = N̂(za + pe′), v = zb + pe′′ + t−1µ.

Decryption is a simple computation and rounding. The algebraic details are not important to our discussion.
The important fact is that it is necessary to sample from Gaussians as part of the encryption process.

This scheme is more efficient than Regev’s scheme in terms of bandwidth and number of ring operations.
However, the necessity to sample from discrete Gaussians may cause other penalties to the efficiency if using
constrained devices. Also note that no actual parameters are given in [16], so it is hard to assess practicality.

3.2. Signature Schemes. There are other applications that require sampling from the error distribution as
part of the “on-line” computation. The most notable of such applications are signature schemes based on
lattice problems. Since authentication is often an important security issue for constrained devices it is natural
to study how practical these schemes might be on such devices. We briefly recall some of these proposals.

3.2.1. Gentry-Peikert-Vaikuntanathan Signatures. Gentry, Peikert and Vaikuntanathan [10] presented a sig-
nature scheme based on lattices. The scheme fits into the “hash-and-sign” paradigm. We do not give all the
details, but the basic scheme is as follows. The public key consists of a matrix A ∈ Zn×mq defining a rank m
lattice Λ⊥(A) = {e ∈ Zm : Ae ≡ 0 (mod q)}. The private key consists of a “short” full rank set of vectors
in this lattice that allows one to invert the function f(e) = Ae (mod q). The signature on message m is a
“short” vector s ∈ Zm such that As ≡ H(m) (mod q), where H is a cryptographic hash function (random
oracle) mapping to Znq .

The signing algorithm of [10] is as follows. The algorithm first computes an arbitrary preimage t ∈ Zm
such that At ≡ H(m) (mod q) then finds a lattice vector v ∈ Λ⊥(A) “close” to t, so that the signature to be
returned is t − v. The instance of the closest vector problem is solved using the “nice” private lattice basis
and a variant of the Babai nearest plane algorithm. But instead of rounding a Gram-Schmidt coefficient to
the nearest integer, so as to choose the nearest plane at each stage in the algorithm, the rounding is performed
using a discrete Gaussian distribution. This rounding is performed by the SampleD function of Section 4.2
of [10]. This function involves sampling m integers from the distribution DZ,σ,c for varying values of σ and
c (the parameter σ depends on the norm of the i-th Gram-Schmidt vector while the “center” c depends on
the current Gram-Schmidt coefficient that is being rounded).

The approach in [10] for actually sampling these integers is to use rejection sampling: One samples x ∈ Z
uniformly from a large interval [−σ log(n), σ log(n)] (where n is a security parameter) of integers and then
accepts with probability proportional to ρσ,c(x) (i.e., the probability that this integer x would be output).
This method is inefficient in several ways, as we now discuss.

One particular inefficiency is that one needs to sample from the interval many times before acceptance.
We now estimate the expected number of trials for each value. Suppose we sample from the uniform dis-
tribution on [−20σ, 20σ] and wish to generate a discrete Gaussian given by ρσ,c(x). We take c = 0 for
simplicity. Using notation as in Section 2.1, we have g(x) = 1/(1 + 40σ) and f(x) = e−x

2/(2σ2)/(
√

2πσ)

giving f(0) = 1/(
√

2πσ) and so MR = (1 + 40σ)/(
√

2πσ) ≈ 40/
√

2π ≈ 16. Hence, around 16 uniformly
chosen integers must be generated and around 16 computations of the function ρσ,c(x) are needed for each
sample.

Another issue with rejection sampling is that one needs random bits as input for two different purposes.
Recall that the algorithm first generates an integer a uniformly at random from [−σ log(n), σ log(n)], then
accepts it with probability p. The rejection is done by sampling from a two-element set with probabilities p
and 1−p and making a decision based on the element that is generated. One can use the Knuth-Yao algorithm

8 NAGARJUN C. DWARAKANATH AND STEVEN D. GALBRAITH

(see Section 5) for this latter task.1 Finally, since σ and c vary, we need to compute the probabilities ρσ,c(x)
for various x, which requires high precision floating-point arithmetic.

Putting all the above together, the number of uniform input bits used for sampling from the discrete
Gaussian Dσ,c using rejection sampling will be around 16(log2(40σ) + 2) ≈ 117 + 16 log2(σ) rather than
the value log2(2πeσ2)/2 ≈ 2 + log2(σ) of the entropy. For these reasons, and others, we believe the
signature scheme using this approach is completely impractical on constrained devices (or perhaps almost
any device).

3.2.2. The improvements by Peikert. Peikert [22] has given an alternative method to address the closest
vector problem. He proposes a variant of the Babai rounding algorithm, again choosing the integers from a
discrete Gaussian distribution. One crucial difference is that, in Peikert’s method, the parameter s is fixed
and only the center changes.

Section 4.1 of [22] discusses the basic operation of sampling from the distributionDZ,σ,v (where, without
loss of generality 0 ≤ v < 1). Peikert uses the inversion method. More precisely, one chooses a multiplier
M = ω(

√
log(n)) such that one can restrict to sampling integers z in the range v − σM ≤ z ≤ v + σM

(typical values for M are between 20 and 40). One then computes a table of cumulative probabilities
pz = Pr(Dσ,v ≤ z). To sample from the distribution one then generates a uniformly chosen real number a
in the interval [0, 1] (by generating its binary expansion as a sequence of uniformly chosen bits) and returns
the integer z such that pz−1 < a ≤ pz .

One serious issue with this approach is the size of the table and the cost of computing it. The standard goal
for good quality theoretical results is to be able to sample from a distribution whose statistical difference with
the desired distribution is around 2−90 to 2−100. We take some parameters from Figure 2 of Micciancio and
Peikert [19] (the parameters for GPV-signatures would be at least as bad as these, so our calculation will be
a lower bound on the actual size of the table). They suggest n = 13812 and “s = 418” (which corresponds
to σ ≈ 167). So it is required to compute a large table containing approximations (up to accuracy ε) to the
probabilities for each integer in the range [−Mσ,Mσ]. By Lemmas 1 and 2 we could take 20 ≤ M ≤ 40).
and ensure that 2nMσε < 2−100 which means taking ε ≈ 2−126 (since 26 < log2(2nMσ) < 28). In other
words, we need a table with 5, 000 ≤ 2 ·M · σ ≤ 12, 000 entries, each with around 126 binary digits of
fixed-point accuracy. Such a table requires around 100 kilobytes. If the entries were all centered on 0 then
one could exploit symmetry and use with a table of 342, 972 entries and using 42 kilobytes. These values
are potentially feasible for some devices, but not ideal.

3.2.3. Micciancio-Peikert signatures. Micciancio and Peikert [19] give a variant of GPV signatures with
numerous practical advantages. It is beyond the scope of our paper to recall the details of their scheme, but
we discuss some crucial elements.

The main part of the signing algorithm is the SampleD procedure given as Algorithm 3 of [19]. This
algorithm can be broken down into an “offline” phase and an “online” phase. The difference is that the
offline phase does not depend on the message, and so this computation can be performed in advance during
idle time of the device, or a certain number of such values may be precomputed and stored on the device for
one-time use. Amazingly, the online phase is permitted to be deterministic, and if there is sufficient storage
on the device then any random sampling steps may be replaced by table look-ups. Hence, from the point of
view of requiring random input bits to the algorithm, the online phase of the Micciancio-Peikert scheme is
perfect.

We now give further details of the online phase as explained in Section 4.1 of [19]. The basic task is:
Given g ∈ Zkq and u ∈ Zq to return a vector x ∈ Zk such that x · g ≡ u (mod q) and such that x is sampled

1As will be discussed later, even if Pr(a) is very small then this only requires around two random input bits on average. But we do
need to calculate the binary tree for the Knuth-Yao algorithm for each case, which seems inconvenient.

SAMPLING FROM DISCRETE GAUSSIANS 9

from a discrete Gaussian distribution on Zk with small parameter 2r ≈ 9. One approach is to store a table of
q values containing one such x ∈ Zkq for each value of u. However, the storage requirements for the table for
the online phase are as follows: we need q vectors in Zq of length k; taking the values from Figure 2 of [19]
gives q = 224 and k = 24, giving a total of qk log q ≈ 233 bits or 1.1 gigabytes, which is not practical.2

A second approach is to use the fact that we have a nice basis and can solve CVP. This approach requires
sampling from either 2Z or 2Z + 1 with discrete Gaussian distribution and small parameter s ≈ 9. This can
be performed in practice by precomputing many such values and using each of them once only. Section 4.1
of [19] also suggests a hybrid algorithm.

The offline phase requires sampling perturbations from a spherical Gaussian distribution on a certain
lattice. Section 5.4 of [19] suggests this can be done by sampling a continuous non-spherical Gaussian and
then taking randomised-rounding using samples from DZ,r with small parameter r ≈ 4.5. These operations
still require high-precision floating-point arithmetic or large precomputed tables.

Overall, it seems that the signature scheme of [19] is not ideally-suited for constrained devices. But one
could consider a version of it for devices with relatively low storage as follows. The samples needed for the
offline phase could be precomputed and stored on the device (limiting the number of signatures produced by
the device during its lifetime). The online phase could be performed, less quickly than the approach in [19],
using an algorithm to efficiently sample from 2Z and 2Z + 1 with small parameter, such as the ones we
will discuss later in our paper (this requires precomputed tables of modest size). Hence, it seems that our
methods may be useful for the future development of the Micciancio-Peikert scheme.

3.3. Lyubashevsky Signatures. Lyubashevsky and his co-authors have developed secure lattice-based dig-
ital signature schemes based on the Fiat-Shamir paradigm. In other words, the signature behaves like a proof
of knowledge of the private key. A crucial technique is the use of rejection sampling to ensure that the
distribution of signatures is independent of the private key. The distributions used are sometimes Gaussians
and sometimes uniform distributions. We briefly recall some of their schemes now.

The signature scheme of Lyubashevsky [17] does not seem to require sampling from discrete normal
distributions. Instead, the signing algorithm requires sampling coefficients of a ring element from a uni-
form distribution. This scheme is therefore practical to implement on a constrained device. However, the
signatures are very large (at least 49,000 bits), which is not good for constrained devices.

Lyubashevsky [18] gives signature scheme for which the signatures are around 20,500 bits. The scheme
in [18] requires sampling from a discrete Gaussian distribution on Zm with parameter σ being very large
(between 3·104 and 1.7·105). The corresponding values form are between 1024 and 8786; for the remainder
we consider (m,σ) = (1024, 1.7 · 105). The distribution is centered on the origin in Zm, so there are no
issues about changing the center. Precisely, one is required to sample a length m vector y ∈ Zm according
to DZm,σ , and this can be done by taking m independent samples from Dσ for the m entries in the vector.
Lyubashevsky suggests to use rejection sampling to generate y. Rejection sampling is also used by the
signing algorithm to ensure that the signature is independent of the secret. But at least the value σ is fixed
for all samples and so one can easily make use of precomputed tables.

Suppose we use Peikert’s inversion method [22] in this application (with m = 1024 and σ = 1.7 ·
105). Again applying Lemma 1 we need 124 bits of precision (and hence storage) for each probability. We
therefore need a table with M ·σ ≥ 3.4 ·106 entries (for 20 ≤M ≤ 40). This table can be precomputed and
stored on the device, removing any need for floating-point arithmetic to be implemented, which is a good
feature. The problem is that the table needs at least 50 megabytes of storage, which is not available on a
constrained device.

2Since the parameter is 9 and so σ = 3.6 we will actually only generate integers in the range |xi| < 12σ ≈ 43. Hence only 7 bits
are needed to represent each entry of the vector and the storage can be reduced to about 0.3Gb.

10 NAGARJUN C. DWARAKANATH AND STEVEN D. GALBRAITH

Güneysu, Lyubashevsky and Pöppelmann [11] gave a signature scheme that only requires uniform distri-
butions, and for which signatures are around 9,000 bits. The scheme is easily implemented on a constrained
device, however its security is based on non-standard assumptions and a full proof of security is not given
in [11]. Following their work, Bai and Galbraith [2] have given a provably secure scheme that can be
implemented using uniform distributions and has signatures of size between 9,000 and 12,000 bits.

Ducas, Durmus, Lepoint and Lyubashevsky [9] have given a new scheme with several further tricks to
reduce the signature size. Their scheme uses discrete Gaussian distributions (indeed, bimodal distributions)
and the signing algorithm requires sampling from a discrete Gaussian with parameter σ = 107. Their paper
includes some very interesting new techniques to sample from discrete Gaussians (their approach does not
require a very large amount of precomputation, nor floating-point arithmetic). The security is based on a
non-standard computational assumption related to NTRU, and the scheme has signatures of around 5,000
bits.

To conclude, the schemes of [9, 11, 2] seem to be quite feasible for a constrained device, whereas the
scheme in [18] seems to be infeasible to implement using the Knuth-Yao method. Further, the hash-and-sign
signature schemes seem to be impractical on constrained devices, however there is some hope to make the
Micciancio-Peikert scheme practical using methods like those discussed in our paper.

4. COMPUTING PROBABILITIES

We now back-up a little and ask precisely what resources are required to compute these probabilities and
distributions. In particular, how is the function exp(x) computed to high precision anyway?

4.1. Computing the Exponential Function. We now discuss the standard algorithms for computing exp(x)
where x is a real number (we are mainly interested in the case when x < 0).

Recall that the binary floating-point representation of a real number x is as a sign bit s, a “significand” or
“mantissa” m and a signed exponent e such that

x ≈ (−1)s2e(1.m)

i.e., the bits m are the binary expansion after the decimal point where the leading bit is always 1 (since
otherwise one can set e = e+ 1). An alternative is for m to be interpreted as an integer and the real number
is (−1)s2e(1 +m). The usual settings for 32-bit floating-point numbers are for the significand to require 23
bits (representing a 24-bit integer due to the leading 1) and an 8 bit signed exponent. Double precision (i.e.,
64-bit) floating-point representation has a 53-bit significand and a 10-bit signed exponent.

The values 2n, where n ∈ Z, −127 ≤ n ≤ 128 therefore have an exact floating-point representation with
e = n and m = 0. We now explain the standard method to compute an approximation to 2y for y ∈ R: One
sets e = bye and z = e − y so that |z| ≤ 1/2 and computes an approximation to the binary expansion of
2z . This can be done by using precomputed tables with linear interpolation (for a survey of such methods
see [4, 6]).

The trick to computing floating-point approximations to exp(x) for x ∈ R is to note that exp(x) =
2x/ ln(2), where ln(2) is the log to base e of 2. Hence, to compute exp(x) one first computes y = x/ ln(2) ∈
R and then computes a floating-point approximation to 2y as above.

There are two variants of the above method, both of which involve translating the computation 2y for
|y| ≤ 1/2 or 0 < y < 1 back to exp(x) as 2y = exp(y ln(2)). The first is to use the power series expansion
exp(x) = 1 + x+ x2/2! + x3/3! + · · · by summing an appropriate number of terms (see [21]). This avoids
storing large tables, but adds to the running time.

A second variant for computing exp(x) for small x ≥ 0, due to Specker [26], is to use the fact that
exp(x) =

∏R
i=0 bi if and only if x =

∑R
i=0 ln(bi). Specker suggests to choose each bi to be either 1 or

SAMPLING FROM DISCRETE GAUSSIANS 11

1 + 2−i, so that ln(bi) is either 0 or approximately 2−i. It is relatively easy to decide which value of bi
to choose at each step by looking at the binary expansion of x −

∑i−1
j=0 ln(bj). One could precompute the

values of ln(bj), or compute them “on the fly” using power series or tables. This approach gives a tradeoff
between running time and storage requirements. A related method, using the arithmetic-geometric mean, is
presented in Section 5.5.3 of Muller [20].

To summarise, there are several methods in the literature to compute high-precision floating-point ap-
proximations to exp(x). All use either large precomputed tables or else a large number of floating-point
operations (e.g., to sum a power series). None of these methods are particularly suited to constrained de-
vices.

4.2. Computing the Discrete Gaussian Distribution. We are mainly interested in the distribution Dσ,c on
Z defined in Section 2. Recall that σ, c ∈ R, ρσ,c = exp(−(x− c)2/(2σ2)),

Sσ,c = ρσ,c(Z) =

∞∑
x=−∞

ρσ,c(x)

andDσ,c is defined to be the distribution on Z such that the probability of x ∈ Z is ρσ,c(x)/Sσ,c. To compute
this probability function it is necessary to compute Sσ,c. When c = 0 we expect Sσ ≈

√
2πσ. Indeed, for

even relatively moderate values for σ (e.g., σ > 5) and then the formula
√

2πσ is actually accurate enough
for our purposes.

When c 6= 0 then one cannot use a simple formula, however when σ is sufficiently large then the approx-
imation

√
2πσ remains good enough. If σ is small then to sample from Dσ,c one needs to compute a close

approximation to the value Sσ,c, for example as
12σ∑

x=−12σ
ρσ,c(x).

5. THE KNUTH-YAO ALGORITHM

Knuth and Yao [13] developed an algorithm to sample from non-uniform distributions using as few uni-
form input bits as possible. In other words, the aim of the Knuth-Yao algorithm is to sample using a number
of input bits that is as close as possible to the minimum value given by the entropy of the distribution. A
good reference is Chapter 15 of Devroye [5].

The method is quite simple. Suppose we want to sample from the set {1, . . . ,m} such that an integer a
is sampled with probability pa. Write each pa in binary. Now write down a binary tree (when implementing
the algorithm one uses a table) called a discrete distribution generating (DDG) tree. At each level we will
choose some vertices to be internal (labelled as “I”), and some to be leaves. The number of leaves at level
i is the number of values for a such that the i-th decimal digit of pa is a one. Each leaf is labelled with
a different value for a. To sample from the distribution one walks down the tree from the root using one
uniform bit at each step to decide which of the two children to move to. When one hits a leaf one outputs
the integer label for that leaf.

For example, let p1 = 0.10010, p2 = 0.00011, p3 = 0.01011 be the probabilities of choosing elements
from the set {1, 2, 3}. The tree has one leaf at level 1 (labelled 1); one leaf at level 2 (labelled 3); no leaves
at level 3; three leaves at level 4 (labelled 1, 2 and 3); and finally two leaves at level 5 (labelled 2 and 3).
The tree is drawn in Figure 2.

In general, the binary tree will be infinite. It is easy to see that the Knuth-Yao algorithm samples from
the correct distribution, even if the probabilities have infinite binary expansions (though we will only use it
with finite expansions).

12 NAGARJUN C. DWARAKANATH AND STEVEN D. GALBRAITH

FIGURE 2. Knuth-Yao DDG tree.

Level 1 2 3 4 5
Nodes I I I I 2

1 3 I 1 3
2
3

FIGURE 3. Tabular representation of Knuth-Yao DDG tree.

It can also be shown that the expected number of uniformly generated input bits used in the algorithm
is at most two more than the entropy of the distribution (see Theorem 2.1 and the Corollary to Theorem
2.2 of Knuth and Yao [13] or Theorems 15.2.1 and 15.3.1 of Devroye [5]). An easy exercise is to consider
sampling from {0, 1} where the probability of 0 is p and the probability of 1 is 1 − p. If p = 1/2 then the
expected number of uniform bits used by the algorithm is 1, if p = 1/4 then the expected number of bits
used is 1.5. More generally, the entropy is between 0 and 1 and the expected number of trials is less than 3,
and is close to 2 when p is very small.

Suppose that the probabilities all have at most k bits in their binary expansion, so that the tree has depth
k. The number of leaves of the tree is equal to the number of ones in all m binary expansions, so the tree has
at most mk leaves. A tree with mk leaves has mk− 1 internal vertices, so the tree requires O(mk) space to
represent.

It is not necessary to represent the algorithm using a tree. Instead, one can store the information as a table
as in Figure 3. The table itself is more-or-less just a re-writing of the binary expansions of the probabilities,
though note that the i-th column may contain as many as 2i entries (as long as 2i < mk, since that is a
bound on the total number of leaves and internal vertices). It is not necessary to store the entire table to
perform the algorithm. Instead, one just needs to store the probabilities and a single column of the table;
from this information it is simple to construct the next column of the table (more details of this process are
given in [25]). The Knuth-Yao algorithm can be organised so that the random walk down the tree only makes
use of this “local” information.

5.1. The Knuth-Yao method for sampling discrete Gaussians. We consider using the Knuth-Yao method
for sampling discrete Gaussians. We now suppose we are sampling from Dσ . One only needs to sample

SAMPLING FROM DISCRETE GAUSSIANS 13

from Z≥0 and use a uniform bit to choose the sign (in this setting one has to set the probability of zero to be
half its correct value since −0 = +0 and so 0 is sampled twice).

When using the Knuth-Yao algorithm we need to store the binary expansions of the probabilities. Hence,
one might think that the algorithm requires more-or-less the same storage as Peikert’s method (which stores
a table of cumulative probabilities). However, the Knuth-Yao table has many leading zeroes and there is no
reason to store them directly. So one can expect to reduce the storage for the table.

For example, suppose σ = 10 and that we need the probabilities ρσ(x) for x ∈ [0, 200]. We list in the
below table the values pσ(iσ) for i = 0, 1, 2, 3, 4, 5, 6, 7 with 20 bits of precision. One might assume that
the table requires 201 · 20 = 4020 bits of storage, however it is clear that the first 4 bits are always zero and
so do not need to be stored. Furthermore, once past two standard deviations the first 7 bits are always zero,
and past three standard deviations the first 11 bits are all zero, and so on. Just storing the data in individual
tables in “blocks” of 10, each with a different precision, leads to storage of 5 small integers (the number
of leading zero bits) together with 11 · 16 + 10 · 15 + 10 · 13 + 10 · 9 + 20 · 4 = 626 bits. This idea has
subsequently been developed in [25].

x pσ(x) Binary expansion of pσ(x)
0 0.01994711 0.00000101000110110100
1 0.03969525 0.00001010001010010111
10 0.02419707 0.00000110001100011100
20 0.00539909 0.00000001011000011101
30 0.00044318 0.00000000000111010001
40 0.00001338 0.00000000000000001110
50 0.00000015 0.00000000000000000000

The above remarks indicate how the table of probabilities can be compressed by omitting some leading
zeroes. We now consider the Knuth-Yao algorithm itself. One approach is to take a large set [−Mσ,Mσ] for
20 ≤ M ≤ 40 and apply the Knuth-Yao method for all the probabilities together. If one stores the current
column of the Knuth-Yao table then the number of entries to be stored may be very large. Algorithm 1
of [25] gives an approach that does not require storing any columns of the Knuth-Yao table. An alternative,
that may have other advantages, is to work with blocks.

5.2. Knuth-Yao in blocks. The idea is to partition [0,Mσ] (e.g., 20 ≤ M ≤ 40) as a union of pair-wise
disjoint sets A1, . . . , At (being the “blocks”) such that the probability ρσ(Ai) is roughly the same for all
1 ≤ i ≤ t. One stores high-precision approximations pAi to Pr(Ai) and performs the Knuth-Yao algorithm
in two stages. The first stage is to determine in which set Ai the value will be chosen. For the second stage
one stores approximations to the conditional probabilities Pr(a|Ai) and performs the Knuth-Yao algorithm
to decide the value a to be sampled. One could employ more than two iterations of the idea.

For example, suppose σ = 50 and we are sampling from [0, 40σ]. Taking t = 10 we find the following
intervals all having similar weight in the distribution:

A1 = [0, 12], A2 = [13, 25], A3 = [26, 39], A4 = [40, 54], A5 = [55, 70], A6 = [71, 88],

A7 = [89, 109], A8 = [110, 136], A9 = [137, 180], A10 = [181, 2000].

For example, we have Pr(A1) ≈ 0.102647 (this is normalised to sampling from [0, 20σ]) and Pr(A2) ≈
0.100995 and Pr(A10) ≈ 0.070511.

Note that the statistical distance of the sampled distribution from the desired distribution is at least as big
as

1

2

t∑
i=1

|pAi − Pr(Ai)|

14 NAGARJUN C. DWARAKANATH AND STEVEN D. GALBRAITH

k 3 4 5 6 7 8 9 10
−blog2(pk)e 24 29 36 44 53 64 76 90

FIGURE 4. Number of leading zeroes in binary expansion of tail probabilities.

and so it is necessary that the values pAi be computed to very high precision. However, one does not need
such a high precision for the terms Pr(a|Ai), since Pr(a) = Pr(a|Ai) Pr(Ai). This is essentially another
way of viewing the “omission” of leading zero bits in the probability.

Since we are no longer performing the exact Knuth-Yao algorithm it is necessary to consider whether the
number of input bits used in the sampling is increased significantly. One can verify that this is not a serious
issue. To support this we performed some small experiments. For example, taking σ = 2.8, the entropy
of the distribution is around 2.45 and expected number of bits to sample using the Knuth-Yao algorithm is
computed to be approximately 4.44, which agrees with the theoretical upper bound of 2.45+2 = 4.45. Now
consider the variant of the Knuth-Yao algorithm where one first chooses a sign bit and then samples from
[0,Mσ] rather than [−Mσ,Mσ] (we only go as far as M = 12 since we are not working with extremely
high precision). One might expect the number of bits needed to be increased by one, but the reduced sample
space compensates for this. The entropy of the “half” distribution is approximately 1.85, and adding the
sign bits gives a minimum of 2.85 bits for sampling using this method. We calculated the expected number
of bits used by the Knuth-Yao algorithm to be approximately 4.63. So the additional penalty for halving the
size of the table is only about 0.2 bits on average.

Similarly, using the block method instead of the full table of probabilities only adds a small fractional
amount to the expected number of bits required. For the case σ = 2.8 one might first partition the range
[0, 33] into the four intervals {0}, {1}, {2, 3} and [4, 33]. The respective probabilities are roughly 0.142,
0.267, 0.381 and 0.209. If either of the last two sets is chosen then the Knuth-Yao algorithm is repeated with
an appropriate table to choose the actual integer sampled. We computed that the expected number of bits
used by this variant of the algorithm is approximately 5.23, which is about 0.6 bits more than the previous
method – not a large price to pay.

5.3. Constructing the tail on the fly. One might not want to precompute and store all the probabilities
in the final block, which corresponds to the long tail. So we now sketch an approach to compute this as
required.

Our observation is that, since the tail probabilities are all extremely small, they do not need to be com-
puted to such high floating-point precision. Hence, it may be possible to compute approximations to the
probabilities of the tail values on-the-fly on a constrained device using relatively standard floating-point
precision.

Figure 4 gives the number of leading zero bits in the probabilities pk = exp(−(kσ)2/(2σ2))/Sσ for
σ = 105 and various values for k. One sees that to achieve 120 significant bits of fixed-point precision
(i.e., ε = 1/2120) it is only necessary to store exp(−x2/(2σ2))/Sσ to 30 bits of precision when x ≥ 10σ.
Hence, it is sufficient to use standard double-precision (64-bit) floating-point arithmetic to compute the tail
probabilities for x > 8.5σ.

Hence, it is of interest to consider methods for generating a list of approximations to the probabilities
exp(−x2/(2σ2))/Sσ when x is large. As already mentioned in Section 4.1, it is not necessarily trivial
to compute the exp(x) function using numerical methods. The trick is to exploit the fact that we want to
compute an entire list of values. Of course, the computation cost is linear in the length of the list, which may
be very significant when σ is large. Hence, it is likely that a partial list is computed first and the extreme
values only computed if absolutely necessary.

SAMPLING FROM DISCRETE GAUSSIANS 15

We now explain how to use a recurrence to compute a list of values for exp(−x2/2σ2), hence avoiding
the methods in Section 4.1. Let A(x) = exp(−x2) and B(x) = exp(−x). Then

A(x+ 1) = cA(x)B(x)2 , B(x+ 1) = cB(x)

where c = exp(−1). If the initial values A(x0), B(x0) and c are precomputed and stored on the device
then a list of values A(x0 + i), B(x0 + i) can therefore be computed relatively easily using floating-point
arithmetic to the required precision.

6. USING THE CENTRAL LIMIT THEOREM

We have explored some methods that may be appropriate when σ is rather small, but they seem to require
prohibitive storage when σ is large. The aim of this section is to sketch an alternative approach for the case
when σ is large. Unfortunately this does not seem to lead to a practical solution.

Recall the central limit theorem: IfX1, . . . are random variables on [−M,M] (e.g., uniformly distributed)
with mean 0 and variance σ2 then

Sk = 1
k

k∑
i=1

Xi

is a random variable on R with mean 0 and variance kσ2. To sample from a discrete Gaussians one could
generate a large number k of integers x1, . . . , xk uniformly distributed in a range [−M,M] ∩ Z and then
return their sum

∑k
i=1 xi. It follows from the central limit theorem that, for sufficiently large k, the sum is

“close” to a discrete normally distributed integer random variable with variance kM2/3. Hence, one chooses
k so that the variance is the value desired for the application. The hope is that this can lead to an algorithm
for sampling from discrete Gaussians that does not require floating-point arithmetic or large tables.

One simple case is to sample the integers xi from {−1, 1}, but this leads to the unfortunate problem that
the sampled value has the same parity as k. Other natural choices are {−1, 0, 1} or {−2,−1, 1, 2}.

The main problem with this approach is to get a sufficiently small statistical difference with the true
distribution. For example, taking σ = 20 and k = 160 sampling uniformly from {−2,−1, 1, 2} gives
statistical difference approximately 0.000612 ≈ 1/210.7. Of course, one can scale the problem: In other
words, sample as above for a large multiple Mk of the expected number of samples and then scale the
results by grouping them in chunks (essentially, dividing by M and rounding the distribution on 1

MZ to Z).
However, the rate of convergence in the central limit theorem is slow and so this approach does not seem to
be practical to generate distributions within a statistical difference of 2−100 with a true discrete Gaussian.

Another drawback is that the method still needs a large number of uniform bits as input: typically one
needs to take k ≈ σ samples, so the number of bits used is proportional to σ, rather than proportional to
log(σ) as desired from the entropy calculations in Section 2.

7. RECENT LITERATURE

Subsequent to the submission of our paper, several authors have worked on this problem:
(1) Buchmann, Cabarcas, Göpfert, Hülsing and Weiden [3] give a different approach to sampling, based

on the ziggurat method, that combines precomputed tables and rejection sampling. However, the
rejection sampling can be made very efficient. Large precomputed tables are still required.

(2) Sinha Roy, Vercauteren and Verbauwhede [25] build on our work, giving some improvements to the
storage and a low-level implementation of the method.

(3) Ducas and Nguyen [8] discuss sampling from discrete Gaussians on lattices using m-bit floating-
point precision. Their approach uses rejection sampling to sample from a discrete Gaussian on Z
and assumes a floating-point implementation of the exp(x) function.

16 NAGARJUN C. DWARAKANATH AND STEVEN D. GALBRAITH

(4) Ducas, Durmus, Lepoint and Lyubashevsky [9] give a different way to efficiently compute prob-
abilities without large precomputation. Section 6.2 of [9] shows how to do rejection sampling by
constructing the exact probabilities on the fly without large precomputation. Section 6.3 of [9] gives
a method to easily sample from an exponential distribution that is already close to a discrete Gauss-
ian, and then uses rejection sampling so that the ouput is close to the desired discrete Gaussian.

(5) Karney [12] samples from the exponential distribution using the von Neumann method and then
uses rejection sampling to correct to a Gaussian distribution. Hence, the method is very similar to
that in [9]. The paper is written for continuous Gaussians but it seems it can also be used for discrete
Gaussians. The method can be implemented without needing floating-point arithmetic.

ACKNOWLEDGEMENTS

We thank Mark Holmes, Charles Karney, Vadim Lyubashevsky and Frederik Vercauteren for comments
and corrections.

REFERENCES

1. S. Arora and R. Ge, New Algorithms for Learning in Presence of Errors, in L. Aceto, M. Henzinger and J. Sgall (eds.), ICALP
2011, Springer LNCS 6755 (2011) 403–415.

2. S. Bai and S. D. Galbraith, An Improved Compression Technique for Signatures Based on Learning with Errors, in J. Benaloh
(ed.), CT-RSA 2014, Springer LNCS 8366 (2014) 28–47.

3. J. Buchmann, D. Cabarcas, F. Göpfert, A. Hülsing and P. Weiden, Discrete Ziggurat: A Time-Memory Trade-off for Sampling
from a Gaussian Distribution over the Integers, to appear in proceedings of SAC 2013.

4. J. Detrey and F. de Dinechin, Table-based polynomials for fast hardware function evaluation, in Application-specific Systems,
Architectures and Processors (ASAP 2005), IEEE (2005) 328–333.

5. L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York (1986)
Available from: http://www.nrbook.com/devroye/

6. F. de Dinechin and A. Tisserand, Multipartite table methods, IEEE Transactions on Computers, Vol. 54, No. 3 (2005) 319–330.
7. J. Ding, Solving LWE problem with bounded errors in polynomial time, eprint 2010/558, 2010.
8. L. Ducas and P. Q. Nguyen, Faster Gaussian Lattice Sampling Using Lazy Floating-Point Arithmetic, in X. Wang and K. Sako

(eds.), ASIACRYPT 2012, Springer LNCS 7658 (2012) 415–432.
9. L. Ducas, A. Durmus, T. Lepoint and V. Lyubashevsky, Lattice Signatures and Bimodal Gaussians, in R. Canetti and J. A. Garay

(eds.), CRYPTO 2013, Springer LNCS 8042 (2013) 40–56.
10. C. Gentry, C. Peikert and V. Vaikuntanathan, Trapdoors for Hard Lattices and New Cryptographic Constructions, in C. Dwork (ed),

STOC 2008, ACM (2008) 197–206.
11. T. Güneysu, V. Lyubashevsky and T. Pöppelmann, Practical Lattice-Based Cryptography: A Signature Scheme for Embedded

Systems, in E. Prouff and P. Schaumont (eds.), CHES 2012, Springer LNCS 7428 (2012) 530–547.
12. C. F. F. Karney, Sampling exactly from the normal distribution, arXiv:1303.6257 (2013).
13. D. E. Knuth and A. C. Yao, The complexity of non uniform random number generation, in J. F. Traub (ed.), Algorithms and

Complexity, Academic Press, New York (1976) 357–428.
14. R. Lindner and C. Peikert, Better key sizes (and attacks) for LWE-based encryption, in A. Kiayias (ed.), CT-RSA 2011, Springer

LNCS 6558 (2011) 319–339.
15. V. Lyubashevsky, C. Peikert and O. Regev, On Ideal Lattices and Learning with Errors over Rings, in H. Gilbert (ed.), EUROCRYPT

2010, Springer LNCS 6110 (2010) 1–23.
16. V. Lyubashevsky, C. Peikert and O. Regev, A Toolkit for Ring-LWE Cryptography, in T. Johansson and P. Q. Nguyen (eds.),

EUROCRYPT 2013, Springer LNCS 7881 (2013) 35–54.
17. V. Lyubashevsky, Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures, in M. Matsui (ed), ASI-

ACRYPT 2009, Springer LNCS 5912 (2009) 598–616.
18. V. Lyubashevsky, Lattice Signatures without Trapdoors, in D. Pointcheval and T. Johansson (eds.), EUROCRYPT 2012, Springer

LNCS 7237 (2012) 738–755.
19. D. Micciancio and C. Peikert, Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller, in D. Pointcheval and T. Johansson (eds.),

EUROCRYPT 2012, Springer LNCS 7237 (2012) 700–718.
20. J.-M. Muller, Elementary Functions, Algorithms and Implementation (2nd ed.), Birkhauser, Boston, 2005.

SAMPLING FROM DISCRETE GAUSSIANS 17

21. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University
Press, 2010.

22. C. Peikert, An Efficient and Parallel Gaussian Sampler for Lattices, in T. Rabin (ed.), CRYPTO 2010, Springer LNCS 6223 (2010)
80–97.

23. O. Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC 2005, ACM (2005) 84–93.
24. O. Regev, On lattices, learning with errors, random linear codes, and cryptography, Journal of the ACM, 56(6), article 34, 2009.
25. S. Sinha Roy, F. Vercauteren and I. Verbauwhede, High precision discrete gaussian sampling on FPGAs, to appear in proceedings

of SAC 2013.
26. W. H. Specker, A Class of Algorithms for lnx, expx, sinx, cosx, tan−1 x, and cot−1 x, IEEE Transactions on Electronic

Computers, Vol. EC-14 , Issue 1 (1965) 85–86.
E-mail address: nagarjuncd@gmail.com

INDIAN INSTITUTE OF TECHNOLOGY, GUWAHATI, INDIA.
E-mail address: S.Galbraith@math.auckland.ac.nz

MATHEMATICS DEPARTMENT, UNIVERSITY OF AUCKLAND, NEW ZEALAND.

