
Mathematics of Public Key Cryptography. Version 2.0

Steven D Galbraith

October 31, 2018

2

Contents

1 Introduction 27
1.1 Public Key Cryptography . 28
1.2 The Textbook RSA Cryptosystem . 28
1.3 Formal Definition of Public Key Cryptography 30

1.3.1 Security of Encryption . 31
1.3.2 Security of Signatures . 33

I Background 35

2 Basic Algorithmic Number Theory 37
2.1 Algorithms and Complexity . 37

2.1.1 Randomised Algorithms . 39
2.1.2 Success Probability of a Randomised Algorithm 40
2.1.3 Reductions . 42
2.1.4 Random Self-Reducibility . 43

2.2 Integer Operations . 44
2.2.1 Faster Integer Multiplication . 45

2.3 Euclid’s Algorithm . 47
2.4 Computing Legendre and Jacobi Symbols 50
2.5 Modular Arithmetic . 52
2.6 Chinese Remainder Theorem . 53
2.7 Linear Algebra . 54
2.8 Modular Exponentiation . 55
2.9 Square Roots Modulo p . 57
2.10 Polynomial Arithmetic . 60
2.11 Arithmetic in Finite Fields . 61
2.12 Factoring Polynomials over Finite Fields 63
2.13 Hensel Lifting . 65
2.14 Algorithms in Finite Fields . 65

2.14.1 Constructing Finite Fields . 65
2.14.2 Solving Quadratic Equations in Finite Fields 66
2.14.3 Isomorphisms Between Finite Fields 67

2.15 Computing Orders of Elements and Primitive Roots 68
2.15.1 Sets of Exponentials of Products 69
2.15.2 Computing the Order of a Group Element 71
2.15.3 Computing Primitive Roots . 71

2.16 Fast Evaluation of Polynomials at Multiple Points 72
2.17 Pseudorandom Generation . 73

3

4 CONTENTS

2.18 Summary . 73

3 Hash Functions and MACs 75
3.1 Security Properties of Hash Functions . 75
3.2 Birthday Attack . 76
3.3 Message Authentication Codes . 77
3.4 Constructions of Hash Functions . 77
3.5 Number-Theoretic Hash Functions . 77
3.6 Full Domain Hash . 78
3.7 Random Oracle Model . 78

II Algebraic Groups 81

4 Preliminary Remarks on Algebraic Groups 83
4.1 Informal Definition of an Algebraic Group 83
4.2 Examples of Algebraic Groups . 85
4.3 Algebraic Group Quotients . 85
4.4 Algebraic Groups over Rings . 86

5 Varieties 87
5.1 Affine algebraic sets . 87
5.2 Projective Algebraic Sets . 91
5.3 Irreducibility . 96
5.4 Function Fields . 98
5.5 Rational Maps and Morphisms . 100
5.6 Dimension . 105
5.7 Weil Restriction of Scalars . 106

6 Tori, LUC and XTR 109
6.1 Cyclotomic Subgroups of Finite Fields . 109
6.2 Algebraic Tori . 111
6.3 The Group Gq,2 . 112

6.3.1 The Torus T2 . 113
6.3.2 Lucas Sequences . 114

6.4 The Group Gq,6 . 116
6.4.1 The Torus T6 . 117
6.4.2 XTR . 119

6.5 Further Remarks . 120
6.6 Algebraic Tori over Rings . 120

7 Curves and Divisor Class Groups 123
7.1 Non-Singular Varieties . 123
7.2 Weierstrass Equations . 127
7.3 Uniformizers on Curves . 129
7.4 Valuation at a Point on a Curve . 131
7.5 Valuations and Points on Curves . 133
7.6 Divisors . 134
7.7 Principal Divisors . 135
7.8 Divisor Class Group . 138
7.9 Elliptic Curves . 140

CONTENTS 5

8 Rational Maps on Curves and Divisors 145

8.1 Rational Maps of Curves and the Degree 145

8.2 Extensions of Valuations . 148

8.3 Maps on Divisor Classes . 150

8.4 Riemann-Roch Spaces . 154

8.5 Derivations and Differentials . 155

8.6 Genus Zero Curves . 161

8.7 Riemann-Roch Theorem and Hurwitz Genus Formula 162

9 Elliptic Curves 165

9.1 Group law . 165

9.2 Morphisms Between Elliptic Curves . 167

9.3 Isomorphisms of Elliptic Curves . 168

9.4 Automorphisms . 170

9.5 Twists . 171

9.6 Isogenies . 172

9.7 The Invariant Differential . 178

9.8 Multiplication by n and Division Polynomials 180

9.9 Endomorphism Structure . 182

9.10 Frobenius map . 183

9.10.1 Complex Multiplication . 187

9.10.2 Counting Points on Elliptic Curves 188

9.11 Supersingular Elliptic Curves . 189

9.12 Alternative Models for Elliptic Curves . 192

9.12.1 Montgomery Model . 192

9.12.2 Edwards Model . 196

9.12.3 Jacobi Quartic Model . 198

9.13 Statistics of Elliptic Curves over Finite Fields 199

9.14 Elliptic Curves over Rings . 200

10 Hyperelliptic Curves 201

10.1 Non-Singular Models for Hyperelliptic Curves 202

10.1.1 Projective Models for Hyperelliptic Curves 204

10.1.2 Uniformizers on Hyperelliptic Curves 207

10.1.3 The Genus of a Hyperelliptic Curve 209

10.2 Isomorphisms, Automorphisms and Twists 209

10.3 Effective Affine Divisors on Hyperelliptic Curves 212

10.3.1 Mumford Representation of Semi-Reduced Divisors 213

10.3.2 Addition and Semi-Reduction of Divisors in Mumford Representation214

10.3.3 Reduction of Divisors in Mumford Representation 217

10.4 Addition in the Divisor Class Group . 219

10.4.1 Addition of Divisor Classes on Ramified Models 219

10.4.2 Addition of Divisor Classes on Split Models 221

10.5 Jacobians, Abelian Varieties and Isogenies 226

10.6 Elements of Order n . 228

10.7 Hyperelliptic Curves Over Finite Fields 229

10.8 Endomorphisms . 232

10.9 Supersingular Curves . 233

6 CONTENTS

III Exponentiation, Factoring and Discrete Logarithms 235

11 Basic Algorithms for Algebraic Groups 237
11.1 Efficient Exponentiation Using Signed Exponents 238

11.1.1 Non-Adjacent Form . 238
11.1.2 Width-w Non-Adjacent Form . 241
11.1.3 Further Methods . 242

11.2 Multi-exponentiation . 242
11.3 Efficient Exponentiation in Specific Algebraic Groups 244

11.3.1 Alternative Basic Operations . 244
11.3.2 Frobenius Expansions . 245
11.3.3 GLV Method . 251

11.4 Sampling from Algebraic Groups . 252
11.4.1 Sampling from Tori . 253
11.4.2 Sampling from Elliptic Curves . 254
11.4.3 Hashing to Algebraic Groups . 257
11.4.4 Hashing from Algebraic Groups . 257

11.5 Determining Elliptic Curve Group Structure 257
11.6 Testing Subgroup Membership . 259
11.7 Elliptic Curve Point Compression . 259

12 Primality and Factoring using Algebraic Groups 261
12.1 Primality Testing . 261

12.1.1 Fermat Test . 262
12.1.2 The Miller-Rabin Test . 262
12.1.3 Primality Proving . 263

12.2 Generating Random Primes . 263
12.2.1 Primality Certificates . 264

12.3 The p− 1 Factoring Method . 265
12.4 Elliptic Curve Method . 266
12.5 Pollard-Strassen Method . 267

13 Basic Discrete Logarithm Algorithms 269
13.1 Exhaustive Search . 270
13.2 The Pohlig-Hellman Method . 270
13.3 Baby-Step-Giant-Step (BSGS) Method . 273
13.4 Lower Bounds on the DLP . 275

13.4.1 Shoup’s Model for Generic Algorithms 276
13.4.2 Maurer’s Model for Generic Algorithms 276
13.4.3 The Lower Bound . 277

13.5 Generalised Discrete Logarithm Problems 278
13.6 Low Hamming Weight DLP . 279
13.7 Low Hamming Weight Product Exponents 281
13.8 Wagner’s Generalised Birthday Algorithm 282

14 Pseudorandom Walks 285
14.1 Birthday Paradox . 285
14.2 The Pollard Rho Method . 287

14.2.1 The Pseudorandom Walk . 288
14.2.2 Pollard Rho Using Floyd Cycle Finding 289
14.2.3 Other Cycle Finding Methods . 293

CONTENTS 7

14.2.4 Distinguished Points and Pollard Rho 293
14.2.5 Towards a Rigorous Analysis of Pollard Rho 296

14.3 Distributed Pollard Rho . 297
14.3.1 The Algorithm and its Heuristic Analysis 297

14.4 Using Equivalence Classes . 300
14.4.1 Examples of Equivalence Classes 301
14.4.2 Dealing with Cycles . 302
14.4.3 Practical Experience with the Distributed Rho Algorithm 303

14.5 The Kangaroo Method . 303
14.5.1 The Pseudorandom Walk . 304
14.5.2 The Kangaroo Algorithm . 305
14.5.3 Heuristic Analysis of the Kangaroo Method 306
14.5.4 Comparison with the Rho Algorithm 308
14.5.5 Using Inversion . 308
14.5.6 Towards a Rigorous Analysis of the Kangaroo Method 309

14.6 Distributed Kangaroo Algorithm . 310
14.6.1 Van Oorschot and Wiener Version 311
14.6.2 Pollard Version . 313
14.6.3 Comparison of the Two Versions 314

14.7 The Gaudry-Schost Algorithm . 315
14.7.1 Two-Dimensional Discrete Logarithm Problem 315
14.7.2 Interval DLP using Equivalence Classes 318

14.8 Parallel Collision Search in Other Contexts 318
14.8.1 The Low Hamming Weight DLP 319

14.9 Pollard Rho Factoring Method . 319
14.10Pollard Kangaroo Factoring . 321

15 Subexponential Algorithms 323
15.1 Smooth Integers . 323
15.2 Factoring using Random Squares . 325

15.2.1 Complexity of the Random Squares Algorithm 327
15.2.2 The Quadratic Sieve . 329
15.2.3 Summary . 330

15.3 Elliptic Curve Method Revisited . 330
15.4 The Number Field Sieve . 332
15.5 Index Calculus in Finite Fields . 334

15.5.1 Rigorous Subexponential Discrete Logarithms Modulo p 334
15.5.2 Heuristic Algorithms for Discrete Logarithms Modulo p 336
15.5.3 Discrete Logarithms in Small Characteristic 337
15.5.4 Coppersmith’s Algorithm for the DLP in F∗

2n 338
15.5.5 The Joux-Lercier Algorithm . 341
15.5.6 Number Field Sieve for the DLP 342
15.5.7 Discrete Logarithms for all Finite Fields 343

15.6 Discrete Logarithms on Hyperelliptic Curves 343
15.6.1 Index Calculus on Hyperelliptic Curves 344
15.6.2 The Algorithm of Adleman, De Marrais and Huang 345
15.6.3 Gaudry’s Algorithm . 345

15.7 Weil Descent . 346
15.8 Elliptic Curves over Extension Fields . 347

15.8.1 Semaev’s Summation Polynomials 347

8 CONTENTS

15.8.2 Gaudry’s Variant of Semaev’s Method 348
15.8.3 Diem’s Algorithm for the ECDLP 349

15.9 Further Results . 350
15.9.1 Diem’s Algorithm for Plane Curves of Low Degree 350
15.9.2 The Algorithm of Enge-Gaudry-Thomé and Diem 350
15.9.3 Index Calculus for General Elliptic Curves 351

IV Lattices 353

16 Lattices 355
16.1 Basic Notions on Lattices . 357
16.2 The Hermite and Minkowski Bounds . 360
16.3 Computational Problems in Lattices . 362

17 Lattice Basis Reduction 365
17.1 Lattice Basis Reduction in Two Dimensions 365

17.1.1 Connection Between Lagrange-Gauss Reduction and Euclid’s Algo-
rithm . 368

17.2 LLL-Reduced Lattice Bases . 369
17.3 The Gram-Schmidt Algorithm . 373
17.4 The LLL Algorithm . 375
17.5 Complexity of LLL . 378
17.6 Variants of the LLL Algorithm . 381

18 Close and Short Vectors 383
18.1 Babai’s Nearest Plane Method . 383
18.2 Babai’s Rounding Technique . 388
18.3 The Embedding Technique . 390
18.4 Enumerating all Short Vectors . 391

18.4.1 Enumeration of Closest Vectors . 394
18.5 Korkine-Zolotarev Bases . 394

19 Coppersmith’s Method and Related Applications 397
19.1 Modular Univariate Polynomials . 398

19.1.1 First Steps to Coppersmith’s Method 398
19.1.2 The Full Coppersmith Method . 400

19.2 Multivariate Modular Polynomial Equations 403
19.3 Bivariate Integer Polynomials . 403
19.4 Some Applications of Coppersmith’s method 406

19.4.1 Fixed Padding Schemes in RSA . 406
19.4.2 Factoring N = pq with Partial Knowledge of p 407
19.4.3 Factoring prq . 409
19.4.4 Chinese Remaindering with Errors 409

19.5 Simultaneous Diophantine Approximation 412
19.6 Approximate Integer Greatest Common Divisors 413
19.7 Learning with Errors . 414
19.8 Further Applications of Lattice Reduction 416
19.9 Goldreich-Goldwasser-Halevi Cryptosystem 417
19.10Cryptanalysis of GGH Encryption . 420
19.11GGH Signatures . 422

CONTENTS 9

19.12NTRU . 423
19.13Knapsack Cryptosystems . 423

19.13.1Public Key Encryption Using Knapsacks 425
19.13.2Cryptanalysis of Knapsack Cryptosystems 427

V Cryptography Related to Discrete Logarithms 433

20 Diffie-Hellman Cryptography 435
20.1 The Discrete Logarithm Assumption . 435
20.2 Key Exchange . 436

20.2.1 Diffie-Hellman Key Exchange . 436
20.2.2 Burmester-Desmedt Key Exchange 437
20.2.3 Key Derivation Functions . 437

20.3 Textbook Elgamal Encryption . 438
20.4 Security of Textbook Elgamal Encryption 439

20.4.1 OWE Against Passive Attacks . 440
20.4.2 OWE Security Under CCA Attacks 440
20.4.3 Semantic Security Under Passive Attacks 441

20.5 Security of Diffie-Hellman Key Exchange 443
20.6 Efficiency of Discrete Logarithm Cryptography 445

21 The Diffie-Hellman Problem 447
21.1 Variants of the Diffie-Hellman Problem . 447
21.2 Lower Bound on the Complexity of CDH for Generic Algorithms 450
21.3 Random Self-Reducibility and Self-Correction of CDH 451
21.4 The den Boer and Maurer Reductions . 454

21.4.1 Implicit Representations . 454
21.4.2 The den Boer Reduction . 455
21.4.3 The Maurer Reduction . 457

21.5 Algorithms for Static Diffie-Hellman . 462
21.6 Hard Bits of Discrete Logarithms . 465

21.6.1 Hard Bits for DLP in Algebraic Group Quotients 468
21.7 Bit Security of Diffie-Hellman . 469

21.7.1 The Hidden Number Problem . 470
21.7.2 Hard Bits for CDH Modulo a Prime 472
21.7.3 Hard Bits for CDH in Other Groups 474

21.8 Further Topics . 475

22 Digital Signatures Based on Discrete Logarithms 477
22.1 Schnorr Signatures . 477

22.1.1 The Schnorr Identification Scheme 477
22.1.2 Schnorr Signatures . 480
22.1.3 Security of Schnorr Signatures . 482
22.1.4 Efficiency Considerations for Schnorr Signatures 483

22.2 Other Public Key Signature Schemes . 483
22.2.1 Elgamal Signatures in Prime Order Subgroups 483
22.2.2 DSA . 486
22.2.3 Signatures Secure in the Standard Model 487

22.3 Lattice Attacks on Signatures . 489
22.4 Other Signature Functionalities . 490

10 CONTENTS

23 Encryption from Discrete Logarithms 493
23.1 CCA Secure Elgamal Encryption . 493

23.1.1 The KEM/DEM Paradigm . 495
23.1.2 Proof of Security in the Random Oracle Model 496

23.2 Cramer-Shoup Encryption . 498
23.3 Other Encryption Functionalities . 501

23.3.1 Homomorphic Encryption . 501
23.3.2 Identity-Based Encryption . 502

VI Cryptography Related to Integer Factorisation 505

24 The RSA and Rabin Cryptosystems 507
24.1 The Textbook RSA Cryptosystem . 507

24.1.1 Efficient Implementation of RSA 509
24.1.2 Variants of RSA . 509
24.1.3 Security of Textbook RSA . 511

24.2 The Textbook Rabin Cryptosystem . 513
24.2.1 Redundancy Schemes for Unique Decryption 514
24.2.2 Variants of Rabin . 516
24.2.3 Security of Textbook Rabin . 517
24.2.4 Other Computational Problems Related to Factoring 519

24.3 Homomorphic Encryption . 520
24.4 Algebraic Attacks on Textbook RSA and Rabin 522

24.4.1 The H̊astad Attack . 522
24.4.2 Algebraic Attacks . 523
24.4.3 Desmedt-Odlyzko Attack . 523
24.4.4 Related Message Attacks . 524
24.4.5 Fixed Pattern RSA Signature Forgery 524
24.4.6 Two Attacks by Bleichenbacher . 526

24.5 Attacks on RSA Parameters . 527
24.5.1 Wiener Attack on Small Private Exponent RSA 527
24.5.2 Small CRT Private Exponents . 529
24.5.3 Large Common Factor of p− 1 and q − 1 530

24.6 Digital Signatures Based on RSA and Rabin 531
24.6.1 Full Domain Hash . 531
24.6.2 Secure Rabin-Williams Signatures in the Random Oracle Model . 532
24.6.3 Other Signature and Identification Schemes 534

24.7 Public Key Encryption Based on RSA and Rabin 536
24.7.1 Padding Schemes for RSA and Rabin 536
24.7.2 OAEP . 537
24.7.3 Rabin-SAEP . 538
24.7.4 Further Topics . 541

VII Advanced Topics in Elliptic and Hyperelliptic Curves 543

25 Isogenies of Elliptic Curves 545
25.1 Isogenies and Kernels . 545

25.1.1 Vélu’s Formulae . 547
25.2 Isogenies from j-invariants . 552

CONTENTS 11

25.2.1 Elkies’ Algorithm . 554
25.2.2 Stark’s Algorithm . 556
25.2.3 The Small Characteristic Case . 556

25.3 Isogeny Graphs of Elliptic Curves over Finite Fields 557
25.3.1 Ordinary Isogeny Graph . 558
25.3.2 Expander Graphs and Ramanujan Graphs 561
25.3.3 Supersingular Isogeny Graph . 562

25.4 The Structure of the Ordinary Isogeny Graph 563
25.4.1 Isogeny Volcanoes . 563
25.4.2 Kohel’s Algorithm (Ordinary Case) 566

25.5 Constructing Isogenies Between Elliptic Curves 567
25.5.1 The Galbraith Algorithm . 568
25.5.2 The Galbraith-Hess-Smart Algorithm 569

25.6 Relating Discrete Logs . 570

26 Pairings on Elliptic Curves 573
26.1 Weil Reciprocity . 573
26.2 The Weil Pairing . 574
26.3 The Tate-Lichtenbaum Pairing . 576

26.3.1 Miller’s Algorithm . 577
26.3.2 The Reduced Tate-Lichtenbaum Pairing 578
26.3.3 Ate Pairing . 580
26.3.4 Optimal Pairings . 581
26.3.5 Pairing Lattices . 582

26.4 Reduction of ECDLP to Finite Fields . 583
26.4.1 Anomalous Curves . 584

26.5 Computational Problems . 585
26.5.1 Pairing Inversion . 585
26.5.2 Solving DDH using Pairings . 586

26.6 Pairing-Friendly Elliptic Curves . 586
26.6.1 Distortion Maps . 588
26.6.2 Using Twists to Improve Pairing-Based Cryptography 588

A Background Mathematics 589
A.1 Basic Notation . 589
A.2 Groups . 590
A.3 Rings . 590
A.4 Modules . 590
A.5 Polynomials . 591

A.5.1 Homogeneous Polynomials . 592
A.5.2 Resultants . 592

A.6 Field Extensions . 593
A.7 Galois Theory . 594

A.7.1 Galois Cohomology . 594
A.8 Finite Fields . 595
A.9 Ideals . 596
A.10 Vector Spaces and Linear Algebra . 597

A.10.1 Inner Products and Norms . 598
A.10.2 Gram-Schmidt Orthogonalisation 599
A.10.3 Determinants . 599

A.11 Hermite Normal Form . 600

12 CONTENTS

A.12 Orders in Quadratic Fields . 600
A.13 Binary Strings . 600
A.14 Probability and Combinatorics . 601

B Hints and Solutions to Exercises 605

Preface

The book has grown from lecture notes of a Master’s level course in mathematics, for
students who have already attended a cryptography course along the lines of Stinson’s
or Smart’s books. The book is therefore suitable as a teaching tool or for self-study.
However, it is not expected that the book will be read linearly. Indeed, we discourage
anyone to start reading with either Part 1, Part 2 or Part 3. The best place to start, for an
understanding of mathematical cryptography, is probably Part 5 (replacing all references
to “algebraic group G” by F∗

p). For an introduction to RSA and Rabin one could start
reading at Part 6 and ignore most references to the earlier parts.

Exercises are distributed throughout the book, so that the reader performing self-study
can do them at precisely the right point in their learning. Readers may find exercises
denoted by ⋆ somewhat more difficult than the others, but it would be dangerous to
assume that everyone’s experience of the exercises will be the same.

Despite our best efforts, it is inevitable that the book will contain errors and misleading
statements. Errata will be listed on the author’s webpage for the book. Readers are
encouraged to being any errors to the attention of the author.

I would like to thank Royal Holloway, University of London and the University of
Auckland, each of which in turn was my employer for a substantial time while I was
writing the book. I also thank the EPSRC, who supported my research with an advanced
fellowship for the first few years of writing the book.

The book is dedicated to Siouxsie and Eve, both of whom tolerated my obsession with
writing for the last four years.

Steven Galbraith
Auckland

2011

13

14 CONTENTS

Notation

Basic mathematical notation

∅ The empty set
#S The number of elements in the finite set S
S − T Set difference of sets S and T
Z, Q, R, C integers, rationals, reals and complex numbers
N, Z>0 Natural numbers
Z/rZ Integers modulo r
Fq Finite field of q = pm elements
Zp, Qp p-adic ring, field, where p (sometimes also called l) is a prime.
〈g1, . . . , gn〉 Group generated by g1, . . . , gn
(g1, . . . , gn) Ideal generated over a ring R by g1, . . . , gn ∈ R
ϕ(n) Euler phi function
ζ(n) Riemann zeta function
λ(N) Carmichael lambda function
a | b, a ∤ b b is/is not a multiple of a
qn, rn Quotient and remainder in n-th step of Euclidean algorithm
sn, tn Numbers arising in the extended Euclidean algorithm to compute gcd(a, b),

they satisfy rn = asn + btn
hn/kn Convergents of a continued fraction expansion
log2(x) Logarithm to base 2
log(x) Natural logarithm
[0, 1] {x ∈ R : 0 ≤ x ≤ 1}
≈ Approximately equal (we do not give a precise definition), such as π ≈ 3.1415
(al−1 . . . a1a0)2 Binary representation of an integer a
v, w Vectors
0 Zero vector
ei i-th unit vector
In n× n identity matrix
〈x, x〉 Inner product
‖x‖ Euclidean length of a vector (2 norm)
‖ · ‖a ℓa-norm for a ∈ N
span{v1, . . . , vn} Span of a set of vectors
rank(A) Rank of a matrix A
Mn(R) n× n matrices over the ring R
⌊x⌋ Round x ∈ R down to an integer
⌈x⌉ Round x ∈ R up to an integer
[x], ⌊x⌉ Closest integer to x, with [1/2] = ⌊1/2⌉ = 1

15

16 CONTENTS

Notation for polynomials and fields
Fq Finite field of q = pm elements
F (x) Irreducible polynomial defining a finite field
θ Generator of a finite field
TrFqm/Fq Trace
NFqn/Fq or N Norm map with respect to Fqn/Fq
k Ground field, always assumed to be perfect
char(k) The characteristic of k (either 0 or a prime)
k An algebraic closure of k
k′ A field extension of k contained in k
Gal(k′/k) Galois group if k′/k is Galois
trdeg Transcendence degree
F (x) Polynomial of degree d
F ′(x) The derivative of the polynoial F (x)
R(F,G), Rx(F (x), G(x)) Resultant of polynomials
R1(x), Ri(x), T (x) Polynomials arising in polynomial factorisation algorithms of Section 2.12
deg(F (x)), degx(F (x)) Degree of polynomial
deg(f(x)) Total degree of polynomial
F Polynomial in Fq[x] of degree m defining Fqm = Fq[x]/(F (x))
ZF Ring of integers of number field F
Cl(O) Class group of order O
h(O) Class number of order O

Notation for algorithms and complexity
O(f) Big O notation
o(f) Little o notation

Õ(f) Soft O notation
Ω(f) Big Omega notation
Θ(f) Big Theta notation
≤R Reduction
len(a) The bit-length of a
wt(m) The Hamming weight of m (number of ones in binary expansion)
M(n) The cost of multiplication of two n-bit integers
M(d, q) = M(d log(dq)) The cost of multiplying two degree d polynomials over Fq
s← S s ∈ S chosen according to an (implicit) distribution on S
LN(a, c) Subexponential function
O, A Oracle

Notation for algebraic geometry
Ga(k) Additive group (k,+)
Gm(k) Multiplicative group (k∗, .)
mult Multiplication map in an algebraic group
inverse Inverse map in an algebraic group
[g] Orbit or equivalence class of g under an automorphism
G/ψ Set of orbits/equivalence classes of G under the automorphism ψ
An(k) Affine space, points (x1, . . . , xn)
Pn(k) Projective space, points (x0 : . . . |xn)
(x0 : · · · : xn) Homogeneous coordinate for point of Pn

≡ Equivalence of (n+ 1)-tuples to define projective space
x Either (x1, . . . , xn) ∈ An(k) or (x0 : · · · : xn) ∈ Pn(k)
X , Y Algebraic set
X(k) k-rational points of X

CONTENTS 17

V (I) Zero set of the ideal I
(S) Ideal over k[x] generated by the set S
Ik(X), I(X) Ideal over k corresponding to the algebraic set X over k
rad(I) Radical of the ideal I
k[X] Coordinate ring of algebraic set X
k(X)m k(C) Function field of X (resp. C)
F,K,L Function field
Ui Subset of Pn comprising all points (x0 : · · · : xn) with xi 6= 0
ϕi Rational map ϕi : An → Pn with image Ui
ϕ Rational map ϕn
ϕ∗
i Homogenisation map from k[y1, . . . , yn] to k[x0, . . . , xn]
ϕ−1
i Rational map Pn → An

ϕ−1∗
i De-homogenisation k[x0, . . . , xn]→ k[y1, . . . , yn]
X ∩ An Abbreviation for ϕ−1

n (X ∩ Un)

f Homogenisation of the polynomial f
I Homogenisation of the ideal I
X Projective closure of algebraic set X ⊆ An

O(X) Regular functions on variety X
dim(X) Dimension of the algebraic variety X
φ Rational map or morphism of varieties
p A prime ideal of a ring
S−1R The localiation of a ring with respect to a multiplicative set S
Rp The localisation of a ring at the prime ideal p
OP,k(X),OP Local ring of X at P .
mP,k(X),mP Maximal ideal of OP,k(X)
JX,P Jacobian matrix of X = V (f1, . . . , fm) ⊆ An at P
C Curve
E Elliptic curve
C(k), E(k) The k-rational points of C (resp. E)
OE ,OC Point at infinity on a curve
ι(P) If P = (x, y) then ι(P) = (x,−y − a1x− a3)
vP (f) Valuation of function f ∈ k(C) at point P
tP Uniformizer at P
l(x, y) Line between points P1 and P2 on an elliptic curve
v(x) Vertical line on an elliptic curve
Homk(E1, E2),Endk(E) Homomorphisms/endos of elliptic curves
Tl(E) Tate module of an elliptic curve
x(P), xP , y(P), yP Coordinates of the point P = (xP , yP) ∈ C(k)
πq q-power Frobenius map
P0 A given k-rational point on a curve
Φn(x) n-th cyclotomic polynomial
Gq,n Cyclotomic subgroup of F∗

qn of order Φn(q)
g An element of Gq,n
θ Generator over Fq of a finite field Fq2
TrFqn/Fq or Tr Trace map with respect to Fqn/Fq
Tn Algebraic torus
comp Torus compression function
decomp Torus decompression function
⋆ Partial group operation for T2

18 CONTENTS

Vn Trace of gn in LUC
U Hypersurface in the construction of T6

pU Rational parameterisation of the hypersurface U
χg(x) Characteristic polynomial over Fq2 of element of Fq6
tn Trace of gn in XTR
F (x), H(x) Polynomials in k[x] used to define a curve
E(x, y) Weierstrass equation y2 +H(x)y − F (x)
a1, a2, a3, a4, a6 Coefficients of Weierstrass equation
D Divisor
div(f) Divisor of the function f
Supp(D) Support of a divisor
Divk(C) Divisors on C defined over k
Div0

k(C) Degree zero divisors on C defined over k
Prink(C) Principal divisors on C
D Divisor class

Pic0k(C) Degree zero divisor class group of curve C over k
≡ Linear equivalence (i.e., equivalence of divisors)
v′ | v Extension of valuations
Rv Valuation ring
mv Maximal ideal of the valuation
Lk(D) Riemann-Roch space for divisor D
ℓk(D) Dimension of Riemann-Roch space for D
D ≤ D′ Ordering relation on divisors
DivEff Set of all effective divisors

Picdk(X) Divisor class group (degree d divisor class group of X over the field k)
degx a(x) Degree in x of the polynomial a(x)
deg(φ) Degree of the morphism φ
deg(D) Degree of the divisor D
φ∗ Pullback under a morphism
φ∗ Pushforward under a morphism
g genus of curve C
∂F/∂x Standard partial differentiation of polynomials or rational functions
hdx Differential on C
Ωk(C) Set of differentials on C over k
ω Differential on C
ωE Invariant differential on elliptic curve E
div(ω) Divisor of a differential on C
(C,P), (E,O) A pointed curve, i.e., a curve over k together

with a specified k-rational point.
τQ Translation map
[n] Multiplication by n map on an elliptic curve (or torus or Abelian variety)
E[n] Points of order dividing n on an elliptic curve
Twist(E) Set of classes of twists of E
E(d) Quadratic twist of E
Homk(E1, E2) Group of isogenies from E1 to E2 over k
Endk(E) Ring of isogenies from E to itself over k
ker(φ) Kernel of an isogeny
t∞ Uniformizer on elliptic curve at OE
P (T) Characteristic polynomial of Frobenius

CONTENTS 19

φ̂ Dual isogeny
degs(φ) Separable degree
degi(φ) Inseparable degree
(Y : Xd : · · · : X0) Variables for projective non-singular equation of hyperelliptic curve
C† Image of hyperelliptic curve C under map swapping ∞ and zero
ρP Birational map from hyperelliptic curve taking P to infinity
(u(x), v(x)) Mumford representation for semi-reduced divisors
∞+,∞− Points at infinity on a hyperelliptic curve
monic(u(x)) Monic polynomial obtain by dividing by the leading coefficient
div(u(x), y − v(x)) Greatest common divisor of div(u(x)) and div(y − v(x))
u†, v†, v‡ Polynomials arising in Cantor reduction and reduction at infinity
D† Semi-reduced divisor arising from Cantor’s reduction
D∞ Effective Divisor on a hyperelliptic curve of degree g with support only at infinity
(u(x), v(x), n) Divisor div(u(x), y − v(x)) ∩ A2 + n(∞+) + (g − deg(u(x))− n)(∞−)
JC Jacobian variety of the curve C
Θ Mumford theta divisor
L(t) L-polynomial of the curve C over Fq
αi Roots of P (T) and reciprocal roots of L(t) for curve C over Fq
K/k Fields in Weil descent attack

Notation for algorithms in algebraic groups

NAF Non-adjacent form
w-NAF or NAFw Width w non-adjacent form
D Digit set for an expansion
digit Function assigning to an integer and integer in D
weight Weight of the expansion
logg(h) Discrete logarithm problem (g ∈ G)
r Large prime, the order of g ∈ G
(mods m) Modular reduction to signed residue

1 Coefficient −1 in a signed expansion
PH Pohlig-Hellman algorithm
BSGS Baby-step-giant-step algorithm
Sj Sets for representation problem and product DLP
Lj Lists for generalised birthday algorithm
LSBm m least signficant bits
MSBm m most signficant bits, or bits specifying a decomposition of

the domain into equal partitions
HNP Hidden number problem

Notation in Chapter 14

G An algebraic group or algebraic group quotient
g An element in an AG or AGQ G, usually of prime order r
r The prime order of an element g
h An element in 〈g〉
a The discrete logarithm of h with respect to g
S A set
N Size of the set S, or an integer to be factored
π(X) The number of primes ≤ X
Pr Probability
¬E Complemenent of an event E

20 CONTENTS

l The number of elements sampled from S
nS Number of partitions in Pollard walk
S Map from G to Z/nSZ
b(g) Binary representation of g ∈ G
X Random variable
xi Random walk sequence
(ai, bi) Representation of walk element xi = gaihbi

(uj, vj) Powers of g and h in random walk steps
gj A jump in the random walk
walk The random walk function
lt Length of tail of Pollard rho walk
lh Length of cycle (or head) of Pollard rho walk
ǫ A small positive real number
D Set of distinguished points
nD Number of bits used to define distinguishing property
θ Probability that a random g ∈ G is a distinguished point
NP Number of processors
n Number of steps made by tame kangaroo
type Indicator ‘tame’ or ‘wild’
s Spacing between starting positions of kangaroos in the same herd
NC Size of generic equivalence class
x Equivalence class of x
x̂ Equivalence class representative of class of x
Aut(G) Automorphism group of an algebraic group G
b Start of interval; usually set to 0
w Length of interval
m Mean step size
f : S → S Function in parallel collision search
fi : Si →R Function in meet-in-the-middle attack
I Set {0, 1, . . . , N − 1}
σi : I → Si Functions in parallel meet-in-middle-attack
ρ : R→ I × 1, 2 Function in parallel meet-in-middle-attack
f(x) Function in Pollard rho factoring

Notation in Chapter 15
Ψ(X,Y) Number of Y -smooth integers less than X
f(n) ∼ g(n) If limn→∞ f(n)/g(n) = 1
ρ(u) Dickman-de Bruijn function
TB Expected number of trials until a random integer 1 ≤ x < N is B-smooth
LN(a, c) Subexponential function
B Factor base
B Bound on primes to define B
s Number of elements in factor base B
I(n) number of irreducible polynomials of degree n
N(n, b) number of b-smooth polynomials of degree exactly equal to n
p(n, b) probability that a uniformly chosen polynomial of degree at most n is b-smooth
Summn(x1, . . . , xn) Summation polynomial

CONTENTS 21

Notation for Part IV
b, v, w Row vectors (usually in Rm)
0 Zero vector in Rm

ei i-th unit vector in Rm

In n× n identity matrix
〈x, x〉 Inner product
‖x‖ Euclidean length (ℓ2 norm)
‖ · ‖a ℓa-norm for a ∈ N
span{v1, . . . , vn} Span of a set of vectors over R
rank(A) Rank of a matrix A
⌊x⌉ Closest integer to x, ⌊1/2⌉ = 1
B Basis matrix for a lattice
L Lattice
b∗i Gram-Schmidt vector arising from ordered basis {b1, . . . , bn}
µi,j Gram-Schmidt coefficient 〈bi, b∗j 〉/〈b∗j , b∗j 〉
Bi ‖b∗i ‖2
λi Successive minima of a lattice
det(L) Determinant of a lattice
γn Hermite’s constant
X Bound on the size of the entries in the basis matrix L
B(i) i×m matrix formed by the first i rows of B
di Determinant of matrix of 〈bj, bk〉 for 1 ≤ j, k ≤ i
D Product of di
P1/2(B) Fundamental domain (parallelepiped) for lattice basis B
F (x), F (x, y) Polynomial with “small” root
G(x), G(x, y) Polynomial with “small” root in common with F (x) (resp., F (x, y))
X,Y Bounds on size of root in Coppersmith’s method
bF Coefficient vector of polynomial F
R(F,G), Rx(F (x), G(x)) Resultant of polynomials
W Bound in Coppersmith’s method
P,R Constants in noisy Chinese remaindering
amp(x) The amplitude gcd(P, x −R) in noisy Chinese remaindering
B,B′ Basis matrices for GGH encryption
In n× n identity matrix
U Invertible matrix disguising the private key in GGH
m, e, c Message (respectively, error vector, ciphertext) in McEliece or GGH
σ Entry in error vector in GGH
M Size of coefficients in message in GGH
s GGH signature
a1, . . . , an Subset sum weights
b1, . . . , bn Superincreasing sequence
s =

∑n
i=1 xiai The sum in a subset sum instance, with xi ∈ {0, 1}

d Density of a subset sum instance
π Permutation of {1, . . . , n} used in the Merkle-Hellman cryptosystem
σ Vector in Nguyen attack
M Modulus in Merkle-Hellman knapsack
W Multiplier in Merkle-Hellman knapsack
U W−1 (mod M) in Merkle-Hellman
t Number of iterations in iterated Merkle-Hellman knapsack

22 CONTENTS

Notation for cryptography
κ Security parameter
M Message space
PK Public key space
SK Private key space
C Ciphertext space
pk Public key
sk Private key
m Message
c, (c1, c2) Ciphertext
s, (s1, s2) Signature
Enc Symmetric encryption
Dec Symmetric decryption
g Element of an algebraic group G
⊥ Symbol for invalid ciphertext or algorithm failure

H Cryptographic hash function
qS Number of signature queries in security proof
F (s1) Function used in Elgamal and DSA signatures
DLP Discrete logarithm problem
CDH Computational Diffie-Hellman problem
DDH Decisional Diffie-Hellman problem
kdf Key derivation function

Inverse-DH Inverse Diffie-Hellman problem (g, ga) 7→ ga
−1

Static-DH Static Diffie-Hellman problem
Strong-DH Strong Diffie-Hellman problem
Square-DH Square Diffie-Hellman problem
Hash-DH Hash Diffie-Hellman problem
Adv Advantage of an algorithm
MAC Message authentication code
KEM Key encapsulation mechanism
DEM Date encapsulation mechanism
K Key space (for a KEM)
Xg1,g2,h A set used in the security proof of the Cramer-Shoup encryption scheme
id Identity of a user
S The set of RSA moduli

CONTENTS 23

Notation used in Part VII
E/G Quotient elliptic curve by subgroup G
Φd(x, y) Modular polynomial
̃ j-invariant of isogenous curve in Elkies method
a, b, l O-ideals
XE,Fq,S Isogeny graph
E[l] Kernel of isogeny corresponding to ideal l
δv(S) Vertex boundary of a set S in a graph
δe(S) Edge boundary of a set S in a graph
f(D) Evaluation of function f at divisor D
en Weil pairing
tn Tate-Lichtenbaum pairing
t̂n Reduced Tate-Lichtenbaum pairing
k(q, n) Embedding degree
G1, G2 Eigenspaces of Frobenius in E[r]
T t− 1, used in the ate pairing
aT (Q,P) Ate pairing

24 CONTENTS

Acknowledgements

The book grew out of my lecture notes from the Masters course “Public key cryptography”
at Royal Holloway. I thank the students who took that course for asking questions and
doing their homework in unexpected ways.

The staff at Cambridge University Press have been very helpful during the preparation
of this book.

I also thank the following people for answering my questions, pointing out errors in
drafts of the book, helping with latex, examples, proofs, exercises etc: José de Jesús Angel
Angel, Olivier Bernard, Nicolas Bonifas, Nils Bruin, Ilya Chevyrev, Bart Coppens, Alex
Dent, Claus Diem, Marion Duporté, Andreas Enge, Victor Flynn, David Freeman, Pier-
rick Gaudry, Takuya Hayashi, Nadia Heninger, Florian Hess, Mark Holmes, Everett Howe,
David Jao, Jonathan Katz, Eike Kiltz, Kitae Kim, David Kohel, Cong Ling, Alexander
May, Esmaeil Mehrabi, Ciaran Mullan, Mats Näslund, Francisco Monteiro, James McKee,
James Nelson, Samuel Neves, Phong Nguyen, TaeHun Oh, Chris Peikert, Michael Phillips,
John Pollard, Francesco Pretto, Oded Regev, Christophe Ritzenthaler, Karl Rubin, Ra-
minder Ruprai, Takakazu Satoh, Leanne Scheepers, Davide Schipani, Michael Schneider,
Peter Schwabe, Reza Sepahi, Victor Shoup, Igor Shparlinski, Andrew Shallue, Francesco
Sica, Alice Silverberg, Benjamin Smith, Martijn Stam, Damien Stehlé, Anton Stolbunov,
Drew Sutherland, Garry Tee, Emmanuel Thomé, Frederik Vercauteren, Timothy Vogel,
Anastasia Zaytseva, Chang-An Zhao, Paul Zimmermann.

The remaining errors and omissions are the authors responsibility.

Note added October 2018: Thanks to all the people who have pointed out errors.
They are thanked in the errata list on my webpage.

25

26 CONTENTS

Chapter 1

Introduction

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Cryptography is an interdisciplinary field of great practical importance. The sub-
field of public key cryptography has notable applications, such as digital signatures. The
security of a public key cryptosystem depends on the difficulty of certain computational
problems in mathematics. A deep understanding of the security and efficient implementa-
tion of public key cryptography requires significant background in algebra, number theory
and geometry.

This book gives a rigorous presentation of most of the mathematics underlying public
key cryptography. Our main focus is mathematics. We put mathematical precision and
rigour ahead of generality, practical issues in real-world cryptography, or algorithmic
optimality. It is infeasible to cover all the mathematics of public key cryptography in one
book. Hence we primarily discuss the mathematics most relevant to cryptosystems that
are currently in use, or that are expected to be used in the near future. More precisely, we
focus on discrete logarithms (especially on elliptic curves), factoring based cryptography
(e.g., RSA and Rabin), lattices and pairings. We cover many topics that have never had
a detailed presentation in any textbook.

Due to lack of space, some topics are not covered in as much detail as others. For ex-
ample, we do not give a complete presentation of algorithms for integer factorisation, pri-
mality testing, and discrete logarithms in finite fields, as there are several good references
for these subjects. Some other topics that are not covered in the book include hardware
implementation, side-channel attacks, lattice-based cryptography, cryptosystems based
on coding theory, multivariate cryptosystems and cryptography in non-Abelian groups.
In the future, quantum cryptography or post-quantum cryptography (see the book [50]
by Bernstein, Buchmann and Dahmen) may be used in practice, but these topics are also
not discussed in the book.

The reader is assumed to have at least a standard undergraduate background in groups,
rings, fields and cryptography. Some experience with algorithms and complexity is also as-
sumed. For a basic introduction to public key cryptography and the relevant mathematics
the reader is recommended to consult Smart [572], Stinson [592] or Vaudenay [616].

27

28 CHAPTER 1. INTRODUCTION

An aim of the present book is to collect in one place all the necessary background
and results for a deep understanding of public key cryptography. Ultimately, the text
presents what I believe is the “core” mathematics required for current research in public
key cryptography and it is what I would want my PhD students to know.

The remainder of this chapter states some fundamental definitions in public key cryp-
tography and illustrates them using the RSA cryptosystem.

1.1 Public Key Cryptography

Two fundamental goals of cryptography are to provide privacy of communication between
two entities and to provide authentication of one entity to another. Both goals can be
achieved with symmetric cryptography. However, symmetric cryptography is not conve-
nient in some applications for the following reasons. First, each pair of communicating
entities needs to have a shared key. Second, these keys must be transmitted securely.
Third, it is difficult to obtain signatures with non-repudiation (e.g., suitable for signing
contracts).

In the mid 1970s, Merkle, Diffie and Hellman proposed the idea of public key cryp-
tography (also sometimes called asymmetric cryptography). This idea was also
proposed by Ellis at GCHQ, under the name “non-secret encryption”. One of the earliest
and most important public key cryptosystems is RSA, invented by Adleman, Rivest and
Shamir in 1977 (essentially the same scheme was also invented by Cocks at GCHQ in
1973).

As noted above, a major application of public key cryptography is to provide authenti-
cation. An extremely important example of this in the real world is digital signatures for
authenticating automatic software updates. The public key of the software developer is
stored in the application or operating system and the software update is only performed if
the digital signature on the update is verified for that public key (see Section 12.1 of Katz
and Lindell [334] for more details). Signature schemes also provide message integrity,
message authentication and non-repudiation (see Section 10.2 of Smart [572]). Other im-
portant applications of public key cryptography are key exchange and key transport for
secure communication (e.g., in SSL or TLS).

1.2 The Textbook RSA Cryptosystem

We briefly describe the “textbook” RSA cryptosystem. The word “textbook” indicates
that, although the RSA cryptosystem as presented below appears in many papers and
books, this is definitely not how it should be used in the real world. In particular, public
key encryption is most commonly used to transmit keys (the functionality is often called
key transport or key encapsulation), rather than to encrypt data. Chapter 24 gives many
more details about RSA including, in Section 24.7, a very brief discussion of padding
schemes for use in real applications.

Alice chooses two large primes p and q of similar size and computes N = pq. Alice
also chooses e ∈ N coprime to ϕ(N) = (p− 1)(q − 1) and computes d ∈ N such that

ed ≡ 1 (mod ϕ(N)).

Alice’s RSA public key is the pair of integers (N, e) and her private key is the integer
d. To encrypt a message to Alice, Bob does the following:

1. Obtain an authentic copy of Alice’s public key (N, e). This step may require trusted
third parties and public key infrastructures, which are outside the scope of this book;

1.2. THE TEXTBOOK RSA CRYPTOSYSTEM 29

see Chapter 12 of Smart [572] or Chapter 12 of Stinson [592]. We suppress this issue
in the book.

2. Encode the message as an integer 1 ≤ m < N .

Note that m does not necessarily lie in (Z/NZ)∗. However, if p, q ≈
√
N then the

probability that gcd(m, N) > 1 is (p+ q − 1)/(N − 1) ≈ 2/
√
N . Hence, in practice

one may assume that m ∈ (Z/NZ)∗.1

3. Compute and transmit the ciphertext

c = me (mod N).

To decrypt the ciphertext, Alice computes m = cd (mod N) and decodes this to obtain
the original message.

Exercise 1.2.1. Show that if gcd(m, N) = 1 then (me)d ≡ m (mod N). Show that if
gcd(m, N) 6= 1 then (me)d ≡ m (mod N).

The RSA system can also be used as a digital signature algorithm. When sending a
message m to Bob, Alice computes the signature s = md (mod N). When Bob receives
(m, s) he obtains an authentic copy of Alice’s public key and then verifies that m ≡
se (mod N). If the verification equation holds then Bob believes that the message m

does come from Alice. The value m is not usually an actual message or document (which
might be huge) but a short integer that is the output of some (non-injective) compression
function (such as a hash function). We sometimes call m a message digest.

The idea is that exponentiation to the power e modulo N is a one-way function: a
function that is easy to compute but such that it is hard to compute pre-images. Indeed,
exponentiation modulo N is a one-way permutation on (Z/NZ)∗ when e is co-prime to
ϕ(N). The private key d allows the permutation to be efficiently inverted and is known as
a trapdoor. Therefore RSA is often described as a trapdoor one-way permutation.

A number of practical issues must be considered:

1. Can public keys be efficiently generated?

2. Is the cryptosystem efficient in the sense of computation time and ciphertext size?

3. How does Bob know that Alice’s public key is authentic?

4. Is the scheme secure?

5. What does “security” mean anyway?

One aim of this book is to explore the above issues in depth. We will study RSA (and
some other cryptosystems based on integer factorisation) as well as cryptosystems based
on the discrete logarithm problem.

To indicate some of the potential problems with the “textbook” RSA cryptosystem
as described above, we present a three simple attacks.

1. Suppose the RSA cryptosystem is being used for an online election to provide privacy
of an individual’s vote to everyone outside the electoral office.2 Each voter encrypts

1If N is a product of two 150 digit primes (which is the minimum size for an RSA modulus) then the
expected number of trials to find 1 ≤ m < N with gcd(m, N) > 1 is therefore ≈ 10150. Note that the age
of the universe is believed to be less than 1018 seconds.

2Much more interesting electronic voting schemes have been invented. This unnatural example is
chosen purely for pedagogical purposes.

30 CHAPTER 1. INTRODUCTION

their vote under the public key of the electoral office and then sends their vote by
email. Voters don’t want any other member of the public to know who they voted
for.

Suppose the eavesdropper Eve is monitoring internet traffic from Alice’s computer
and makes a copy of the ciphertext corresponding to her vote. Since encryption is
deterministic and there is only a short list of possible candidates, it is possible for
Eve to compute each possible vote by encrypting each candidate’s name under the
public key. Hence, Eve can deduce who Alice voted for.

2. To speed up encryption it is tempting to use small encryption exponents, such as
e = 3 (assuming that N = pq where p ≡ q ≡ 2 (mod 3)). Now suppose Bob is
only sending a very small message 0 < m < N1/3 to Alice; this is quite likely, since
public key cryptography is most often used to securely transmit symmetric keys.
Then c = m3 in N, i.e., no modular reduction has taken place. An adversary can
therefore compute the message m from the ciphertext c by taking cube roots in N
(using numerical analysis techniques).

3. A good encryption scheme should allow an adversary to learn absolutely nothing
about a message from the ciphertext. But with the RSA cryptosystem one can
compute the Jacobi symbol (m

N) of the message by computing (c

N) (this can be
computed efficiently without knowing the factorisation of N ; see Section 2.4). The
details are Exercise 24.1.11.

The above three attacks may be serious attacks for some applications, but not for
others. However, a cryptosystem designer often has little control over the applications
in which their system is to be used. Hence it is preferable to have systems that are not
vulnerable to attacks of the above form. In Section 24.7 we will explain how to secure
RSA against these sorts of attacks, by making the encryption process randomised and by
using padding schemes that encode short messages as sufficiently large integers and that
destroy algebraic relationships between messages.

1.3 Formal Definition of Public Key Cryptography

To study public key cryptography using mathematical techniques it is necessary to give
a precise definition of an encryption scheme. The following definition uses terminology
about algorithms that is recalled in Section 2.1. Note that the problem of obtaining an
authentic copy of the public key is not covered by this definition; the public key is an
input to the encryption function.

Definition 1.3.1. Let κ ∈ N be a security parameter (note that κ is not necessarily
the same as the “key length”; see Example 1.3.2). An encryption scheme is defined by
the following spaces (all depending on the security parameter κ) and algorithms.

Mκ the space of all possible messages;
PKκ the space of all possible public keys;
SKκ the space of all possible private keys;
Cκ the space of all possible ciphertexts;
KeyGen a randomised algorithm that takes the security parameter κ, runs in

expected polynomial-time (i.e., O(κc) bit operations for some constant
c ∈ N) and outputs a public key pk ∈ PKκ and a private key sk ∈ SKκ;

Encrypt a randomised algorithm that takes as input m ∈ Mκ and pk, runs in
expected polynomial-time (i.e., O(κc) bit operations for some constant

1.3. FORMAL DEFINITION OF PUBLIC KEY CRYPTOGRAPHY 31

c ∈ N) and outputs a ciphertext c ∈ Cκ;
Decrypt an algorithm (not usually randomised) that takes c ∈ Cκ and sk,

runs in polynomial-time and outputs either m ∈ Mκ or the
invalid ciphertext symbol ⊥.

It is required that
Decrypt(Encrypt(m, pk), sk) = m

if (pk, sk) is a matching key pair. Typically we require that the fastest known attack on
the system requires at least 2κ bit operations.

Example 1.3.2. We sketch how to write “textbook” RSA encryption in the format of
Definition 1.3.1. The KeyGen algorithm takes input κ and outputs a modulus N that is
a product of two randomly chosen primes of a certain length, as well as an encryption
exponent e.

Giving a precise recipe for the bit-length of the primes as a function of the security
parameter is non-trivial for RSA. The complexity of the best factoring algorithms implies
that we need 2κ ≈ LN(1/3, c) for some constant c (see Chapter 15 for this notation and
an explantion of factoring algorithms). This implies that log(N) = O(κ3) and so the
bit-length of the public key is bounded by a polynomial in κ. A typical benchmark is
that if κ = 128 (i.e., so that there is no known attack on the system performing fewer
than 2128 bit operations) then N is a product of two 1536-bit primes.

As we will discuss in Chapter 12, one can generate primes in expected polynomial-time
and hence KeyGen is a randomised algorithm with expected polynomial-time complexity.

The message space Mκ depends on the randomised padding scheme being used. The
ciphertext space Cκ in this case is (Z/NZ)∗, which does not agree with Definition 1.3.1 as
it does not depend only on κ. Instead one usually takes Cκ to be the set of ⌈log2(N)⌉-bit
strings.

The Encrypt and Decrypt algorithms are straightforward (though the details depend
on the padding scheme). The correctness condition is easily checked.

1.3.1 Security of Encryption

We now give precise definitions for the security of public key encryption. An adersary
is a randomised polynomial-time algorithm that interacts with the cryptosystem in some
way. It is necessary to define the attack model, which specifies the way the adversary
can interact with the cryptosystem. It is also necessary to define the attack goal of
the adversary. For further details of these issues see Sections 10.2 and 10.6 of Katz and
Lindell [334], Section 1.13 of Menezes, van Oorschot and Vanstone [418], or Section 15.1
of Smart [572].

We first list the attack goals for public key encryption. The most severe one
is the total break, where the adversary computes a private key. There are three other
commonly studied attacks, and they are usually formulated as security properties (the
security property is the failure of an adversary to achieve its attack goal).

The word oracle is used below. This is just a fancy name for a magic box that takes
some input and then outputs the correct answer in constant time. Precise definitions are
given in Section 2.1.3.

• One way encryption (OWE): Given a challenge ciphertext c the adversary can-
not compute the corresponding message m.

• Semantic security: An adversary learns no information at all about a message
from its ciphertext, apart from possibly the length of the message.

32 CHAPTER 1. INTRODUCTION

This concept is made precise as follows: Assume all messages in Mκ have the same
length. A semantic security adversary is a randomised polynomial-time algo-
rithm A that first chooses a function f : Mκ → {0, 1} such that the probability, over
uniformly chosen m ∈ Mκ, that f(m) = 1 is 1/2. The adversary A then takes as
input a challenge (c, pk), where c is the encryption of a random message m ∈ Mκ,
and outputs a bit b. The adversary is successful if b = f(m).

Note that the standard definition of semantic security allows messages m ∈ Mκ to
be drawn according to any probability distribution. We have simplified to the case
of the uniform distribution on Mκ.

• Indistinguishability (IND): An adversary cannot distinguish the encryption of
any two messages m0 and m1, chosen by the adversary, of the same length.

This concept is made precise by defining an indistinguishability adversary to
be a randomised polynomial-time algorithm A that plays the following game with a
challenger: First the challenger generates a public key and gives it to A. Then (this is
the “first phase” of the attack) A performs some computations (and possibly queries
to oracles) and outputs two equal length messages m0 and m1. The challenger
computes the challenge ciphertext c (which is an encryption of mb where b ∈
{0, 1} is randomly chosen) and gives it to A. In the “second phase” the adversary A
performs more calculations (and possibly oracle queries) and outputs a bit b′. The
adversary is successful if b = b′.

For a fixed value κ one can consider the probability that an adversary is successful over
all public keys pk output by KeyGen, and (except when studying a total break adversary)
all challenge ciphertexts c output by Encrypt, and over all random choices made by the
adversary. The adversary breaks the security property if the success probability of the
adversary is noticeable as a function of κ (see Definition 2.1.10 for the terms noticeable
and negligible). The cryptosystem achieves the security property if every polynomial-time
adversary has negligible success probability as a function of κ. An adversary that works
with probability 1 is called a perfect adversary.

We now list the three main attack models for public key cryptography.

• Passive attack/chosen plaintext attack (CPA): The adversary is given the
public key.

• Lunchtime attack (CCA1):3 The adversary has the public key and can also ask
for decryptions of ciphertexts of its choosing during the first stage of the attack
(i.e., before the challenge ciphertext is received).

• Adaptive chosen-ciphertext attack (CCA): (Also denoted CCA2.) The ad-
versary has the public key and is given access to a decryption oracle O that will
provide decryptions of any ciphertext of its choosing, with the restriction that O
outputs ⊥ in the second phase of the attack if the challenge ciphertext is submitted
to O.

One can consider an adversary against any of the above security properties in any of
the above attack models. For example, the strongest security notion is indistinguishability
under an adaptive chosen ciphertext attack. A cryptosystem that achieves this security
level is said to have IND-CCA security. It has become standard in theoretical cryp-
tography to insist that all cryptosystems have IND-CCA security. This is not because

3The name comes from an adversary who breaks into someone’s office during their lunch break,
interacts with their private key in some way, and then later in the day tries to decrypt a ciphertext.

1.3. FORMAL DEFINITION OF PUBLIC KEY CRYPTOGRAPHY 33

CCA attacks occur frequently in the real world, but because a scheme that has IND-CCA
security should also be secure against any real-world attacker.4

Exercise 1.3.3. Show that the “textbook” RSA cryptosystem does not have IND-CPA
security.

Exercise 1.3.4. Show that the “textbook” RSA cryptosystem does not have OWE-CCA
security.

Exercise 1.3.5. Prove that if a cryptosystem has IND security under some attack model
then it has semantic security under the same attack model.

1.3.2 Security of Signatures

Definition 1.3.6. A signature scheme is defined, analogously to encryption, by mes-
sage, signature and key spaces depending on a security parameter κ. There is a KeyGen
algorithm and algorithms:

Sign A randomised algorithm that runs in polynomial-time (i.e., O(κc) bit
operations for some constant c ∈ N), takes as input a message m and a
private key sk, and outputs a signature s.

Verify An algorithm (usually deterministic) that runs in polynomial-time, takes
as input a message m, a signature s and a public key pk, and
outputs “valid” or “invalid”.

We require that Verify(m, Sign(m, sk), pk) = “valid”. Typically, we require that all known
algorithms to break the signature scheme require at least 2κ bit operations.

The main attack goals for signatures are the following (for more discussion see
Goldwasser, Micali and Rivest [258], Section 12.2 of Katz and Lindell [334], Section 15.4
of Smart [572], or Section 7.2 of Stinson [592]):

• Total break: An adversary can obtain the private key for the given public key.

• Selective forgery: (Also called target message forgery.) An adversary can
generate a valid signature for the given public key on any message.

• Existential forgery: An adversary can generate a pair (m, s) where m is a message
and s is a signature for the given public key on that message.

The acronym UF stands for the security property “unforgeable”. In other words,
a signature scheme has UF security if every polynomial-time existential forgery
algorithm succeeds with only negligible probability. Be warned that some authors
use UF to denote “universal forgery”, which is another name for selective forgery.

As with encryption there are various attack models.

• Passive attack: The adversary is given the public key only. This is also called a
“public key only” attack.

• Known message attack: The adversary is given various sample message-signature
pairs for the public key.

4Of course, there are attacks that lie outside the attack model we are considering, such as side-channel
attacks or attacks by dishonest system administrators.

34 CHAPTER 1. INTRODUCTION

• Adaptive chosen-message attack (CMA): The adversary is given a signing
oracle that generates signatures for the public key on messages of their choosing.

In this case, signature forgery usually means producing a valid signature s for the
public key pk on a message m such that m was not already queried to the signing
oracle for key pk. Another notion, which we do not consider further in this book, is
strong forgery; namely to output a valid signature s on m for public key pk such
that s is not equal to any of the outputs of the signing oracle on m.

As with encryption, one says the signature scheme has the stated security property
under the stated attack model if there is no polynomial-time algorithm A that solves the
problem with noticeable success probability under the appropriate game. The standard
notion of security for digital signatures is UF-CMA security.

Exercise 1.3.7. Give a precise definition for UF-CMA security.

Exercise 1.3.8. Do “textbook” RSA signatures have selective forgery security under a
passive attack?

Exercise 1.3.9. Show that there is a passive existential forgery attack on “textbook”
RSA signatures.

Exercise 1.3.10. Show that, under a chosen-message attack, one can selective forge
“textbook” RSA signatures.

Part I

Background

35

Chapter 2

Basic Algorithmic Number
Theory

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

The aim of this chapter is to give a brief summary of some fundamental algorithms
for arithmetic in finite fields. The intention is not to provide an implementation guide;
instead, we sketch some important concepts and state some complexity results that will
be used later in the book. We do not give a consistent level of detail for all algorithms;
instead we only give full details for algorithms that will play a significant role in later
chapters of the book.

More details of these subjects can be found in Crandall and Pomerance [162], Shoup
[556], Buhler and Stevenhagen [113], Brent and Zimmermann [100], Knuth [343], von zur
Gathen and Gerhard [238], Bach and Shallit [22] and the handbooks [16, 418].

The chapter begins with some remarks about computational problems, algorithms
and complexity theory. We then present methods for fast integer and modular arith-
metic. Next we present some fundamental algorithms in computational number theory
such as Euclid’s algorithm, computing Legendre symbols, and taking square roots mod-
ulo p. Finally, we discuss polynomial arithmetic, constructing finite fields, and some
computational problems in finite fields.

2.1 Algorithms and Complexity

We assume the reader is already familiar with computers, computation and algorithms.
General references for this section are Chapter 1 of Cormen, Leiserson, Rivest and Stein [146],
Davis and Weyuker [167], Hopcroft and Ullman [293], Section 3.1 of Shoup [556], Sipser
[568] and Talbot and Welsh [600].

Rather than using a fully abstract model of computation, such as Turing machines,
we consider all algorithms as running on a digital computer with a typical instruction set,

37

38 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

an infinite number of bits of memory and constant-time memory access. This is similar
to the random access machine (or register machine) model; see Section 3.6 of [22], [139],
Section 2.2 of [146], Section 7.6 of [293] or Section 3.2 of [556]. We think of an algorithm
as a sequence of bit operations, though it is more realistic to consider word operations.

A computational problem is specified by an input (of a certain form) and an output
(satisfying certain properties relative to the input). An instance of a computational
problem is a specific input. The input size of an instance of a computational problem
is the number of bits required to represent the instance. The output size of an instance
of a computational problem is the number of bits necessary to represent the output. A
decision problem is a computational problem where the output is either “yes” or “no”.
As an example, we give one of the most important definitions in the book.

Definition 2.1.1. Let G be a group written in multiplicative notation. The discrete
logarithm problem (DLP) is: Given g, h ∈ G to find a, if it exists, such that h = ga.

In Definition 2.1.1 the input is a description of the group G together with the group
elements g and h and the output is a or the failure symbol ⊥ (to indicate that h 6∈ 〈g〉).
Typically G is an algebraic group over a finite field and the order of g is assumed to be
known. We stress that an instance of the DLP, according to Definition 2.1.1, includes
the specification of G, g and h; so one must understand that they are all allowed to vary
(note that, in many cryptographic applications one considers the group G and element
g as being fixed; we discuss this in Exercise 21.1.2). As explained in Section 2.1.2, a
computational problem should be defined with respect to an instance generator; in the
absence of any further information it is usual to assume that the instances are chosen
uniformly from the space of all possible inputs of a given size. In particular, for the
DLP it is usual to denote the order of g by r and to assume that h = ga where a is
chosen uniformly in Z/rZ. The output is the integer a (e.g., written in binary). The
input size depends on the specific group G and the method used to represent it. If h can
take all values in 〈g〉 then one needs at least log2(r) bits to specify h from among the r
possibilities. Hence, the input size is at least log2(r) bits. Similarly, if the output a is
uniformly distributed in Z/rZ then the output size is at least log2(r) bits.

An algorithm to solve a computational problem is called deterministic if it does not
make use of any randomness. We will study the asymptotic complexity of deterministic
algorithms by counting the number of bit operations performed by the algorithm expressed
as a function of the input size. Upper bounds on the complexity are presented using “big
O” notation. When giving complexity estimates using big O notation we implicitly assume
that there is a countably infinite number of possible inputs to the algorithm.

Definition 2.1.2. Let f, g : N → R>0. Write f = O(g) if there are c ∈ R>0 and N ∈ N
such that

f(n) ≤ cg(n)

for all n ≥ N .
Similarly, if f(n1, . . . , nm) and g(n1, . . . , nm) are functions from Nm to R>0 then we

write f = O(g) if there are c ∈ R>0 and N1, . . . , Nm ∈ N such that f(n1, . . . , nm) ≤
cg(n1, . . . , nm) for all (n1, . . . , nm) ∈ Nm with ni ≥ Ni for all 1 ≤ i ≤ m.

Example 2.1.3. 3n2+2n+1 = O(n2), n+sin(n) = O(n), n100+2n = O(2n), log10(n) =
O(log(n)).

Exercise 2.1.4. Show that if f(n) = O(log(n)a) and g(n) = O(log(n)b) then (f+g)(n) =
f(n) + g(n) = O(log(n)max{a,b}) and (fg)(n) = f(n)g(n) = O(log(n)a+b). Show that
O(nc) = O(2c log(n)).

2.1. ALGORITHMS AND COMPLEXITY 39

We also present the “little o”, “soft O”, “big Omega” and “big Theta” notation .
These will only ever be used in this book for functions of a single argument.

Definition 2.1.5. Let f, g : N→ R>0. Write f(n) = o(g(n)) if

lim
n→∞

f(n)/g(n) = 0.

Write f(n) = Õ(g(n)) if there is some m ∈ N such that f(n) = O(g(n) log(g(n))m).
Write f(n) = Ω(g(n)) if g(n) = O(f(n)). Write f(n) = Θ(g(n)) if f(n) = O(g(n)) and
g(n) = O(f(n)).

Exercise 2.1.6. Show that if g(n) = O(n) and f(n) = Õ(g(n)) then there is some m ∈ N
such that f(n) = O(n log(n)m).

Definition 2.1.7. (Worst-case asymptotic complexity.) Let A be a deterministic algo-
rithm and let t(n) be a bound on the running time of A on every problem of input size n
bits.

• A is polynomial-time if there is an integer k ∈ N such that t(n) = O(nk).

• A is superpolynomial-time if t(n) = Ω(nc) for all c ∈ R>1.

• A is exponential-time if there is a constant c2 > 1 such that t(n) = O(cn2).

• A is subexponential-time if t(n) = O(cn) for all c ∈ R>1.

Exercise 2.1.8. Show that na log(log(n)) and na log(n), for some a ∈ R>0, are functions
that are Ω(nc) and O(cn) for all c ∈ R>1.

For more information about computational complexity, including the definitions of
complexity classes such as P and NP, see Chapters 2 to 4 of [600], Chapter 13 of [293],
Chapter 15 of [167], Chapter 7 of [568] or Chapter 34 of [146]. Definition 2.1.7 is for
uniform complexity, as a single algorithm A solves all problem instances. One can also
consider non-uniform complexity, where one has an algorithm A and, for each n ∈ N,
polynomially sized auxiliary input h(n) (the hint) such that if x is an n-bit instance of the
computational problem then A(x, h(n)) solves the instance. An alternative definition is a
sequence An of algorithms, one for each input size n ∈ N, and such that the description
of the algorithm is polynomially bounded. We stress that the hint is not required to be
efficiently computable. We refer to Section 4.6 of Talbot and Welsh [600] for details.

Complexity theory is an excellent tool for comparing algorithms, but one should always
be aware that the results can be misleading. For example, it can happen that there are
several algorithms to solve a computational problem and that the one with the best
complexity is slower than the others for the specific problem instance one is interested in
(for example, see Remark 2.2.5).

2.1.1 Randomised Algorithms

All our algorithms may be randomised, in the sense that they have access to a random
number generator. A deterministic algorithm should terminate after a finite number of
steps but a randomised algorithm can run forever if an infinite sequence of “unlucky” ran-
dom choices is made.1 Also, a randomised algorithm may output an incorrect answer for

1In algorithmic number theory it is traditional to allow algorithms that do not necessarily terminate,
whereas in cryptography it is traditional to consider algorithms whose running time is bounded (typically
by a polynomial in the input size). Indeed, in security reductions it is crucial that an adversary (i.e.,
randomised algorithm) always terminates. Hence, some of the definitions in this section (e.g., Las Vegas
algorithms) mainly arise in the algorithmic number theory literature.

40 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

some choices of randomness. A Las Vegas algorithm is a randomised algorithm which,
if it terminates2, outputs a correct solution to the problem. A randomised algorithm for a
decision problem is a Monte Carlo algorithm if it always terminates and if the output
is “yes” then it is correct and if the output is “no” then it is correct with “noticeable”
probability (see the next section for a formal definition of noticeable success probability).

An example of a Las Vegas algorithm is choosing a random quadratic non-residue
modulo p by choosing random integers modulo p and computing the Legendre symbol
(see Exercise 2.4.6 in Section 2.4); the algorithm could be extremely unlucky forever. Of
course, there is a deterministic algorithm for this problem, but its complexity is worse than
the randomised algorithm. An example of a Monte Carlo algorithm is testing primality
of an integer N using the Miller-Rabin test (see Section 12.1.2). Many of the algorithms
in the book are randomised Monte Carlo or Las Vegas algorithms. We will often omit the
words “Las Vegas” or “Monte Carlo”.

Deterministic algorithms have a well-defined running time on any given problem in-
stance. For a randomised algorithm the running time for a fixed instance of the problem
is not necessarily well-defined. Instead, one considers the expected value of the running
time over all choices of the randomness. We usually consider worst-case complexity.
For a randomised algorithm, the worst-case complexity for input size n is the maximum,
over all problem instances of size n, of the expected running time of the algorithm. As
always, when considering asymptotic complexity it is necessary that the computational
problem have a countably infinite number of problem instances.

A randomised algorithm is expected polynomial-time if the worst-case over all
problem instances of size n bits of the expected value of the running time is O(nc) for some
c ∈ R>0. (An expected polynomial-time algorithm can run longer than polynomial-time if
it makes many “unlucky” choices.) A randomised algorithm is expected exponential-
time (respectively, expected subexponential-time) if there exists c ∈ R>1 (respec-
tively, for all c ∈ R>1) such that the expected value of the running time on problem
instances of size n bits is O(cn).

One can also consider average-case complexity, which is the average, over all prob-
lem instances of size n, of the expected running time of the algorithm. Equivalently, the
average-case complexity is the expected number of bit operations of the algorithm where
the expectation is taken over all problem instances of size n as well as all choices of the
randomness. For more details see Section 4.2 of Talbot and Welsh [600].

2.1.2 Success Probability of a Randomised Algorithm

Throughout the book we give very simple definitions (like Definition 2.1.1) for compu-
tational problems. However, it is more subtle to define what it means for a randomised
algorithm A to solve a computational problem. A perfect algorithm is one whose out-
put is always correct (i.e., it always succeeds). We also consider algorithms that give the
correct answer only for some subset of the problem instances, or for all instances but only
with a certain probability.

The issue of whether an algorithm is successful is handled somewhat differently by
the two communities whose work is surveyed in this book. In the computational number
theory community, algorithms are expected to solve all problem instances with probability
of success close to 1. In the cryptography community it is usual to consider algorithms that
only solve some noticeable (see Definition 2.1.10) proportion of problem instances, and
even then only with some noticeable probability. The motivation for the latter community

2An alternative definition is that a Las Vegas algorithm has finite expected running time, and outputs
either a correct result or the failure symbol ⊥.

2.1. ALGORITHMS AND COMPLEXITY 41

is that an algorithm to break a cryptosystem is considered devastating even if only a
relatively small proportion of ciphertexts are vulnerable to the attack. Two examples of
attacks that only apply to a small proportion of ciphertexts are the attack by Boneh,
Joux and Nguyen on textbook Elgamal (see Exercise 20.4.9) and the Desmedt-Odlyzko
signature forgery method (see Section 24.4.3).

We give general definitions for the success probability of an algorithm in this section,
but rarely use the formalism in our later discussion. Instead, for most of the book, we focus
on the case of algorithms that always succeed (or, at least, that succeed with probability
extremely close to 1). This choice allows shorter and simpler proofs of many facts. In
any case, for most computational problems the success probability can be increased by
running the algorithm repeatedly, see Section 2.1.4.

The success of an algorithm to solve a computational problem is defined with respect
to an instance generator, which is a randomised algorithm that takes as input κ ∈ N
(often κ is called the security parameter), runs in polynomial-time in the output size,
and outputs an instance of the computational problem (or fails to generate an instance
with some negligible probability). The output is usually assumed to be Θ(κ) bits,3 so
“polynomial-time” in the previous sentence means O(κm) bit operations for some m ∈ N.
We give an example of an instance generator for the DLP in Example 2.1.9.

Let A be a randomised algorithm that takes an input κ ∈ N. Write Sκ for the set of
possible outputs of A(κ). The output distribution of A on input κ is the distribution
on Sκ such that Pr(x) for x ∈ Sκ is the probability, over the random choices made by A,
that the output of A(κ) is x.

Example 2.1.9. Let a security parameter κ ∈ N be given. First, generate a random
prime number r such that 22κ < r < 22κ+1 (by choosing uniformly at random (2κ+1)-bit
integers and testing each for primality). Next, try consecutive small4 integers k until
p = kr + 1 is prime. Then, choose a random integer 1 < u < p and set g = u(p−1)/r and
repeat if g = 1. It follows that g is a generator of a cyclic subgroup of G = F∗

p of order
r. Finally, choose uniformly at random an integer 0 < a < r and set h = ga. Output
(p, r, g, h), which can be achieved using 3⌈log2(p)⌉+ ⌈log2(r)⌉ bits.

One sees that there are finitely many problem instances for a given value of the security
parameter κ, but infinitely many instances in total. The output distribution has r uniform
among (2κ+1)-bit primes, p is not at all random (it is essentially determined by r), while
the pair (g, h) is uniformly distributed in the set of pairs of elements of order r in F∗

p, but
not necessarily well-distributed in (F∗

p)
2.

When considering an algorithm A to solve a computational problem we assume that
A has been customised for a particular instance generator. Hence, a problem might be
easy with respect to some instance generators and hard for others. Thus it makes no
sense to claim that “DLP is a hard problem”; instead, one should conjecture that DLP
is hard for certain instance generators.

We now define what is meant by the word negligible.

Definition 2.1.10. A function ǫ : N→ R>0 is negligible if for every polynomial p(x) ∈
R[x] there is some K ∈ N such that for all κ > K with p(κ) 6= 0 we have ǫ(κ) < 1/|p(κ)|.

A function ǫ : N→ R>0 is noticeable if there exists a polynomial p(x) ∈ R[x] and an
integer K such that ǫ(κ) > 1/|p(κ)| for all κ > K with p(κ) 6= 0.

3For problems related to RSA or factoring, we may either take κ to be the bit-length of the modulus,
or assume the output is O(κ3) bits.

4In practice, to ensure the discrete logarithm problem can’t be solved in 2κ bit operations using index
calculus algorithms, one would choose k large enough that Lp(1/3, 1.5) > 2kappa.

42 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Let [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. A function p : N → [0, 1] is overwhelming if
1− p(κ) is negligible.

Note that noticeable is not the logical negation of negligible. There are functions that
are neither negligible nor noticeable.

Example 2.1.11. The function ǫ(κ) = 1/2κ is negligible.

Exercise 2.1.12. Let f1(κ) and f2(κ) be negligible functions. Prove that f1 + f2 is a
negligible function and that p(κ)f1(κ) is a negligible function for any polynomial p(x) ∈
R[x] such that p(x) > 0 for all sufficiently large x.

Definition 2.1.13. Let A be a randomised algorithm to solve instances of a computa-
tional problem generated by a specific instance generator. The success probability of
the algorithm A is the function f : N→ [0, 1] such that, for κ ∈ N, f(κ) is the probability
that A outputs the correct answer, where the probability is taken over the randomness
used by A and according to the output distribution of the instance generator on input κ.
An algorithm A with respect to an instance generator succeeds if its success probability
is a noticeable function.

Note that the success probability is taken over both the random choices made by A
and the distribution of problem instances. In particular, an algorithm that succeeds does
not necessarily solve a specific problem instance even when run repeatedly with different
random choices.

Example 2.1.14. Consider an algorithm A for the DLP with respect to the instance
generator of Example 2.1.9. Suppose A simply outputs an integer a chosen uniformly
at random in the range 0 < a < r. Since r > 22κ the probability that A is correct is
1/(r − 1) ≤ 1/22κ. For any polynomial p(x) there are X, c ∈ R>0 and n ∈ N such that
|p(x)| ≤ cxn for x ≥ X . Similarly, there is some K ≥ X such that cKn ≤ 22K . Hence,
the success probability of A is negligible.

Certain decision problems (for example, decision Diffie-Hellman) require an algorithm
to behave differently when given inputs drawn from different distributions on the same
underlying set. In this case, the success probability is not the right concept and one
instead uses the advantage. We refer to Definition 20.2.4 for an example.

Chapter 7 of Shoup [556] gives further discussion of randomised algorithms and success
probabilities.

2.1.3 Reductions

An oracle for a computational problem takes one unit of running time, independent of
the size of the instance, and returns an output. An oracle that always outputs a correct
answer is called a perfect oracle. One can consider oracles that only output a correct
answer with a certain noticeable probability (or advantage). For simplicity we usually
assume that oracles are perfect and leave the details in the general case as an exercise for
the reader. We sometimes use the word reliable for an oracle whose success probability
is overwhelming (i.e., success probability 1 − ǫ where ǫ is negligible) and unreliable for
an oracle whose success probability is small (but still noticeable).

Note that the behaviour of an oracle is only defined if its input is a valid instance of the
computational problem it solves. Similarly, the oracle performs with the stated success
probability only if it is given problem instances drawn with the correct distribution from
the set of all problem instances.

2.1. ALGORITHMS AND COMPLEXITY 43

Definition 2.1.15. A reduction from problem A to problem B is a randomised algo-
rithm to solve problem A (running in expected polynomial-time and having noticeable
success probability) by making queries to an oracle (which succeeds with noticeable prob-
ability) to solve problem B.

If there is a reduction from problem A to problem B then we write5

A ≤R B.

Theorem 2.1.16. Let A and B be computational problems such that A ≤R B. If there
is a polynomial-time randomised algorithm to solve B then there is a polynomial-time
randomised algorithm to solve A.

A reduction between problems A and B therefore explains that “if you can solve B
then you can solve A”. This means that solving A has been “reduced” to solving problem
B and we can infer that problem B is “at least as hard as” problem A or that problem A
is “no harder than” problem B.

Since oracle queries take one unit of running time and reductions are polynomial-time
algorithms, a reduction makes only polynomially many oracle queries.

Definition 2.1.17. If there is a reduction from A to B and a reduction from B to A then
we say that problems A and B are equivalent and write A ≡R B.

Some authors use the phrases polynomial-time reduction and polynomial-time
equivalent in place of reduction and equivalence. However, these terms have a technical
meaning in complexity theory that is different from reduction (see Section 34.3 of [146]).
Definition 2.1.15 is closer to the notion of Turing reduction, except that we allow ran-
domised algorithms whereas a Turing reduction is a deterministic algorithm. We abuse
terminology and define the terms subexponential-time reduction and exponential-
time reduction by relaxing the condition in Definition 2.1.15 that the algorithm be
polynomial-time (these terms are used in Section 21.4.3).

2.1.4 Random Self-Reducibility

There are two different ways that an algorithm or oracle can be unreliable: First, it may
be randomised and only output the correct answer with some probability; such a situation
is relatively easy to deal with by repeatedly running the algorithm/oracle on the same
input. The second situation, which is more difficult to handle, is when there is a subset
of problem instances for which the algorithm or oracle extremely rarely or never outputs
the correct solution; for this situation random self-reducibility is essential. We give a
definition only for the special case of computational problems in groups.

Definition 2.1.18. Let P be a computational problem for which every instance of the
problem is an n1-tuple of elements of some cyclic group G of order r and such that the
solution is an n2-tuple of elements of G together with an n3-tuple of elements of Z/rZ
(where n2 or n3 may be zero).

The computational problem P is random self-reducible if there is a polynomial-
time algorithm that transforms an instance of the problem (with elements in a group G)
into a uniformly random instance of the problem (with elements in the same group G)
such that the solution to the original problem can be obtained in polynomial-time from
the solution to the new instance.

5The subscript R denotes the word “reduction” and should also remind the reader that our reductions
are randomised algorithms.

44 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

We stress that a random self-reduction of a computational problem in a group G gives
instances of the same computational problem in the same group. In general there is no
way to use information about instances of a computational problem in a group G′ to solve
computational problems in G if G′ 6= G (unless perhaps G′ is a subgroup of G or vice
versa).

Lemma 2.1.19. Let G be a group and let g ∈ G have prime order r. Then the DLP in
〈g〉 is random self-reducible.

Proof: First, note that the DLP fits the framework of computational problems in Defi-
nition 2.1.18. Denote by X the set (〈g〉 − {1})×〈g〉. Let (g, h) ∈ X be an instance of the
DLP.

Choose 1 ≤ x < r and 0 ≤ y < r uniformly at random and consider the pair
(gx, hxgxy) ∈ X . Every pair (g1, g2) ∈ X arises in this way for exactly one pair (x, y).
Hence we have produced a DLP instance uniformly at random.

If a is the solution to the new DLP instance, i.e., hxgxy = (gx)a then the solution to
the original instance is

a− y (mod r).

This completes the proof. �

A useful feature of random self-reducible problems is that if A is an algorithm that
solves an instance of the problem in a group G with probability (or advantage) ǫ then
one can obtain an algorithm A′ that repeatedly calls A and solves any instance in G
of the problem with overwhelming probability. This is called amplifying the success
probability (or advantage). An algorithm to transform an unreliable oracle into a reliable
one is sometimes called a self-corrector.

Lemma 2.1.20. Let g have prime order r and let G = 〈g〉. Let A be an algorithm that
solves the DLP in G with probability at least ǫ > 0. Let ǫ′ > 0 and define n = ⌈log(1/ǫ′)/ǫ⌉
(where log denotes the natural logarithm). Then there is an algorithm A′ that solves the
DLP in G with probability at least 1 − ǫ′. The running time of A′ is O(n log(r)) group
operations plus n times the running time of A.

Proof: Run A on n random self-reduced versions of the original DLP. One convenient
feature of the DLP is that one can check whether a solution is correct (this takes O(log(r))
group operations for each guess for the DLP).

The probability that all n trials are incorrect is at most (1 − ǫ)n < (e−ǫ)log(1/ǫ
′)/ǫ =

elog(ǫ
′) = ǫ′. Hence A′ outputs the correct answer with probability at least 1− ǫ′. �

2.2 Integer Operations

We now begin our survey of efficient computer arithmetic. General references for this
topic are Section 9.1 of Crandall and Pomerance [162], Section 3.3 of Shoup [556], Section
4.3.1 of Knuth [343], Chapter 1 of Brent-Zimmermann [100] and von zur Gathen and
Gerhard [238].

Integers are represented as a sequence of binary words. Operations like add or multiply
may correspond to many bit or word operations. The length of an unsigned integer a
represented in binary is

len(a) =

{
⌊log2(a)⌋+ 1 if a 6= 0,
1 if a = 0.

For a signed integer we define len(a) = len(|a|) + 1.

2.2. INTEGER OPERATIONS 45

The complexity of algorithms manipulating integers depends on the length of the
integers, hence one should express the complexity in terms of the function len. However,
it is traditional to just use log2 or the natural logarithm log.

Exercise 2.2.1. Show that, for a ∈ N, len(a) = O(log(a)) and log(a) = O(len(a)).

Lemma 2.2.2. Let a, b ∈ Z be represented as a sequence of binary words.

1. It requires O(log(a)) bit operations to write a out in binary.

2. One can compute a± b in O(max{log(a), log(b)}) bit operations.

3. One can compute ab in O(log(a) log(b)) bit operations.

4. Suppose |a| > |b|. One can compute q and r such that a = bq+ r and 0 ≤ r < |b| in
O(log(b) log(q)) = O(log(b)(log(a)− log(b) + 1)) bit operations.

Proof: Only the final statement is non-trivial. The school method of long division
computes q and r simultaneously and requires O(log(q) log(a)) bit operations. It is more
efficient to compute q first by considering only the most significant log2(q) bits of a, and
then to compute r as a−bq. For more details see Section 4.3.1 of [343], Section 2.4 of [238]
or Section 3.3.4 of [556]. �

2.2.1 Faster Integer Multiplication

An important discovery is that it is possible to multiply integers more quickly than the
“school method”. General references for this subject include Section 9.5 of [162], Section
4.3.3 of [343], Section 3.5 of [556] and Section 1.3 of [100].

Karatsuba multiplication is based on the observation that one can compute (a0 +
2na1)(b0 + 2nb1), where a0, a1, b0 and b1 are n-bit integers, in three multiplications of
n-bit integers rather than four.

Exercise 2.2.3. Prove that the complexity of Karatsuba multiplication of n bit integers
is O(nlog2(3)) = O(n1.585) bit operations.
[Hint: Assume n is a power of 2.]

Toom-Cook multiplication is a generalisation of Karatsuba. Fix a value k and
suppose a = a0 +a12n+a222n+ · · · ak2kn and similarly for b. One can think of a and b as
being polynomials in x of degree k evaluated at 2n and we want to compute the product
c = ab, which is a polynomial of degree 2k in x evaluated at x = 2n. The idea is to
compute the coefficients of the polynomial c using polynomial interpolation and therefore
to recover c. The arithmetic is fast if the polynomials are evaluated at small integer
values. Hence, we compute c(1) = a(1)b(1), c(−1) = a(−1)b(−1), c(2) = a(2)b(2) etc.
The complexity of Toom-Cook multiplication for n-bit integers is O(nlogk+1(2k+1)) (e.g.,
when k = 3 the complexity is O(n1.465)). For more details see Section 9.5.1 of [162].

Exercise 2.2.4.⋆ Give an algorithm for Toom-Cook multiplication with k = 3.

Schönhage-Strassen multiplication multiplies n-bit integers in nearly linear time,
namely O(n log(n) log(log(n))) bit operations, using the fast Fourier transform (FFT).
The Fürer algorithm is slightly better. These algorithms are not currently used in the
implementation of RSA or discrete logarithm cryptosystems so we do not describe them in
this book. We refer to Sections 9.5.2 to 9.5.7 of Crandall and Pomerance [162], Chapter
8 of von zur Gathen and Gerhard [238], Chapter 2 of Brent and Zimmermann [100],
Turk [611] and Chapter 4 of Borodin and Munro [88] for details.

46 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Another alternative is residue number arithmetic which is based on the Chinese re-
mainder theorem. It reduces large integer operations to modular computations for some
set of moduli. This idea may be useful if one can exploit parallel computation (though for
any given application there may be more effective uses for parallelism). These methods
are not used frequently for cryptography so interested readers are referred to Section II.1.2
of [64], Section 14.5.1 of [418], Remark 10.53(ii) of [16], and Section 4.3.2 of [343].

Remark 2.2.5. In practice, the “school” method is fastest for small numbers. The
crossover point (i.e., when Karatsuba becomes faster than the school method) depends
on the word size of the processor and many other issues, but seems to be for numbers of
around 300-1000 bits (i.e., 90-300 digits) for most computing platforms. For a popular 32
bit processor Zimmermann [642] reports reports that Karatsuba beats the school method
for integers of 20 words (640 bits) and Toom-Cook with k = 3 beats Karatsuba at 77
words (2464 bits). Bentahar [43] reports crossovers of 23 words (i.e., about 700 bits)
and 133 words (approximately 4200 bits) respectively. The crossover point for the FFT
methods is much larger. Hence, for elliptic curve cryptography at current security levels
the “school” method is usually used, while for RSA cryptography the Karatsuba method
is usually used.

Definition 2.2.6. Denote by M(n) the number of bit operations to perform a multipli-
cation of n bit integers.

For the remainder of the book we assume that M(n) = c1n
2 for some constant c1

when talking about elliptic curve arithmetic, and that M(n) = c2n
1.585 for some constant

c2 when talking about RSA .

Applications of Newton’s Method

Recall that if F : R→ R is differentiable and if x0 is an approximation to a zero of F (x)
then one can efficiently get a very close approximation to the zero by running Newton’s
iteration

xn+1 = xn − F (xn)/F ′(xn).

Newton’s method has quadratic convergence, in general, so the precision of the approxi-
mation roughly doubles at each iteration.

Integer Division

There are a number of fast algorithms to compute ⌊a/b⌋ for a, b ∈ N. This operation has
important applications to efficient modular arithmetic (see Section 2.5). Section 10.5 of
[16] gives an excellent survey.

We now present an application of Newton’s method to this problem. The idea is to
to compute a good rational approximation to 1/a by finding a root of F (x) = x−1 − a.

Exercise 2.2.7. Show that the Newton iteration for F (x) = x−1−a is xn+1 = 2xn−ax2n.

First we recall that a real number α can be represented by a rational approximation
b/2e where b, e ∈ Z. A key feature of this representation (based on the fact that division
by powers of 2 is easy) is that if we know that |α− b/2e| < 1/2k (i.e., the result is correct
to precision k) then we can renormalise the representation by replacing the approximation
b/2e by ⌊b/2e−k⌉/2k.

Suppose 2m ≤ a < 2m+1. Then we take x0 = b0/2
e0 = 1/2m as the first approximation

to 1/a. In other words, b0 = 1 and e0 = m. The Newton iteration in this case is

2.3. EUCLID’S ALGORITHM 47

en+1 = 2en and bn+1 = bn(2en+1 − abn) which requires two integer multiplications.
To prevent exponential growth of the numbers bn one can renormalise the representation
according to the expected precision of that step. One can show that the total complexity of
getting an approximation to 1/a of precision m is O(M(m)) bit operations. For details see
Section 3.5 of [556] (especially Exercise 3.35), Chapter 9 of [238] or, for a slightly different
formulation, Section 9.2.2 of [162]. Applications of this idea to modular arithmetic will
be given in Section 2.5.

Integer Approximations to Real Roots of Polynomials

Let F (x) ∈ Z[x]. Approximations to roots of F (x) in R can be computed using Newton’s
method. As a special case, integer square roots of m-bit numbers can be computed in
time proportional to the cost of a multiplication of two m-bit numbers. Similarly, other
roots (such as cube roots) can be computed in polynomial-time.

Exercise 2.2.8. Show that the Newton iteration for computing a square root of a is
xn+1 = (xn + a/xn)/2. Hence, write down an algorithm to compute an integer approxi-
mation to the square root of a.

Exercise 2.2.8 can be used to test whether an integer a is a square. An alternative
is to compute the Legendre symbol (ap) for some random small primes p. For details see
Exercise 2.4.9.

Exercise 2.2.9. Show that if N = pe where p is prime and e ≥ 1 then one can factor N
in polynomial-time.

2.3 Euclid’s Algorithm

For a, b ∈ N, Euclid’s algorithm computes d = gcd(a, b). A simple way to express Euclid’s
algorithm is by the recursive formula

gcd(a, b) =

{
gcd(a, 0) = a
gcd(b, a (mod b)) if b 6= 0.

The traditional approach is to work with positive integers a and b throughout the al-
gorithm and to choose a (mod b) to be in the set {0, 1, . . . , b − 1}. In practice, the
algorithm can be used with a, b ∈ Z and it runs faster if we choose remainders in the
range {−⌈|b|/2⌉+ 1, . . . ,−1, 0, 1, . . . , ⌈|b|/2⌉}. However, for some applications (especially,
those related to Diophantine approximation) the version with positive remainders is the
desired choice.

In practice we often want to compute integers (s, t) such that d = as + bt, in which
case we use the extended Euclidean algorithm. This is presented in Algorithm 1, where
the integers ri, si, ti always satisfy ri = sia+ tib.

Theorem 2.3.1. The complexity of Euclid’s algorithm is O(log(a) log(b)) bit operations.

Proof: Each iteration of Euclid’s algorithm involves computing the quotient and remain-
der of division of ri−2 by ri−1 where we may assume |ri−2| > |ri−1| (except maybe for
i = 1). By Lemma 2.2.2 this requires ≤ c log(ri−1)(log(ri−2)−log(ri−1)+1) bit operations
for some constant c ∈ R>0. Hence the total running time is at most

c
∑

i≥1

log(ri−1)(log(ri−2)− log(ri−1) + 1).

48 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Algorithm 1 Extended Euclidean algorithm

Input: a, b ∈ Z
Output: d = gcd(a, b) and s, t ∈ Z such that d = sa+ tb
1: r−1 = a, s−1 = 1, t−1 = 0
2: r0 = b, s0 = 0, t0 = 1
3: i = 0
4: while (ri 6= 0) do
5: i = i+ 1
6: find qi, ri ∈ Z such that −|ri−1|/2 < ri ≤ |ri−1|/2 and ri−2 = qiri−1 + ri
7: si = si−2 − qisi−1

8: ti = ti−2 − qiti−1

9: end while
10: return ri−1, si−1, ti−1

Re-arranging terms gives

c log(r−1) log(r0) + c
∑

i≥1

log(ri−1)(1 + log(ri)− log(ri−1)).

Now, 2|ri| ≤ |ri−1| so 1 + log(ri) ≤ log(ri−1) hence all the terms in the above sum are
≤ 0. It follows that the algorithm performs O(log(a) log(b)) bit operations. �

Exercise 2.3.2. Show that the complexity of Algorithm 1 is still O(log(a) log(b)) bit
operations even when the remainders in line 6 are chosen in the range 0 ≤ ri < ri−1.

A more convenient method for fast computer implementation is the binary Euclidean
algorithm (originally due to Stein). This uses bit operations such as division by 2 rather
than taking general quotients; see Section 4.5.2 of [343], Section 4.7 of [22], Chapter 3
of [238], Section 9.4.1 of [162] or Section 14.4.3 of [418].

There are subquadratic versions of Euclid’s algorithm. One can compute the extended
gcd of two n-bit integers in O(M(n) log(n)) bit operations. We refer to Section 9.4 of [162],
[583] or Section 11.1 of [238].

The rest of the section gives some results about Diophantine approximation that are
used later (for example, in the Wiener attack on RSA, see Section 24.5.1). We assume
that a, b > 0 and that the extended Euclidean algorithm with positive remainders is used
to generate the sequence of values (ri, si, ti).

The integers si and ti arising from the extended Euclidean algorithm are equal, up to
sign, to the convergents of the continued fraction expansion of a/b. To be precise, if the
convergents of a/b are denoted hi/ki for i = 0, 1, . . . then, for i ≥ 1, si = (−1)i−1ki−1

and ti = (−1)ihi−1. Therefore, the values (si, ti) satisfy various equations, summarised
below, that will be used later in the book. We refer to Chapter 10 of [276] or Chapter 7
of [468] for details on continued fractions.

Lemma 2.3.3. Let a, b ∈ N and let ri, si, ti ∈ Z be the triples generated by running
Algorithm 1 in the case of positive remainders 0 ≤ ri < ri−1.

1. For i ≥ 1, |si| < |si+1| and |ti| < |ti+1|.
2. If a, b > 0 then ti > 0 when i ≥ 1 is even and ti < 0 when i is odd (and vice versa

for si).

3. ti+1si − tisi+1 = (−1)i+1.

2.3. EUCLID’S ALGORITHM 49

4. risi−1 − ri−1si = (−1)ib and riti−1 − ri−1ti = (−1)i−1a. In other words, ri|si−1|+
ri−1|si| = b and ri|ti−1|+ ri−1|ti| = a.

5. |a/b+ ti/si| ≤ 1/|sisi+1|.
6. |risi| < |risi+1| ≤ |b| and |riti| < |riti+1| ≤ |a|.
7. If s, t ∈ Z are such that |a/b + t/s| < 1/(2s2) then (s, t) is (up to sign) one of the

pairs (si, ti) computed by Euclid’s algorithm.

8. If r, s, t ∈ Z satisfy r = as+ bt and |rs| < |b|/2 then (r, s, t) is (up to sign) one of
the triples (ri, si, ti) computed by Euclid’s algorithm.

Proof: Statements 1, 2 and 3 are proved using the relation si = (−1)i−1ki−1 and ti =
(−1)ihi−1 where hi/ki are the continued fraction convergents to a/b. From Chapter 10
of [276] and Chapter 7 of [468] one knows that hm = qm+1hm−1 + hm−2 and km =
qm+1km−1 + km−2 where qm+1 is the quotient in iteration m + 1 of Euclid’s algorithm.
The first statement follows immediately and the third statement follows from the fact
that hmkm−1 − hm−1km = (−1)m−1. The second statement follows since a, b > 0 implies
hi, ki > 0.

Statement 4 can be proved by induction, using the fact that ri+1si− risi+1 = (ri−1−
qiri)si−ri(si−1−qisi) = −(risi−1−ri−1si). Statement 5 is the standard result (equation
(10.7.7) of [276], Theorem 7.11 of [468]) that the convergents of a/b satisfy |a/b−hm/km| <
1/|kmkm+1|. Statement 6 follows directly from statements 2 and 4. For example, a =
ri(−1)i−1ti−1 + ri−1(−1)iti and both terms on the right hand side are positive.

Statement 7 is also a standard result in Diophantine approximation; see Theorem 184
of [276] or Theorem 7.14 of [468].

Finally, to prove statement 8, suppose r, s, t ∈ Z are such that r = as + bt and
|rs| < |b|/2. Then

|a/b+ t/s| = |(as+ bt)/bs| = |r|/|bs| = |rs|/|bs2| < 1/(2s2).

The result follows from statement 7. �

Example 2.3.4. The first few terms of Euclid’s algorithm on a = 513 and b = 311 give

i ri qi si ti |risi| |riti|
-1 513 – 1 0 513 0
0 311 – 0 1 0 311
1 202 1 1 –1 202 202
2 109 1 –1 2 109 218
3 93 1 2 –3 186 279
4 16 1 –3 5 48 80
5 13 5 17 -28 221 364

One can verify that |risi| ≤ |b| and |riti| ≤ |a|. Indeed, |risi+1| ≤ |b| and |riti+1| ≤ |a|
as stated in part 6 of Lemma 2.3.3.

Diophantine approximation is the study of approximating real numbers by rationals.
Statement 7 in Lemma 2.3.3 is a special case of one of the famous results; namely that
the “best” rational approximations to real numbers are given by the convergents in their
continued fraction expansion. Lemma 2.3.5 shows how the result can be relaxed slightly,
giving “less good” rational approximations in terms of convergents to continued fractions.

Lemma 2.3.5. Let α ∈ R, c ∈ R>0 and let s, t ∈ N be such that |α− t/s| < c/s2. Then
(t, s) = (uhn+1 ± vhn, ukn+1 ± vkn) for some n, u, v ∈ Z≥0 such that uv < 2c.

50 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Proof: See Theorem 1 and Remark 2 of Dujella [184]. �

We now remark that continued fractions allow one to compute solutions to Pell’s
equation.

Theorem 2.3.6. Let d ∈ N be square-free. Then the continued fraction expansion of
√
d

is periodic; denote by r the period. Let hn/kn be the convergents in the continued fraction
expansion of

√
d. Then h2nr−1− dk2nr−1 = (−1)nr for n ∈ N. Furthermore, every solution

of the equation x2 − dy2 = ±1 arises in this way.

Proof: See Corollary 7.23 of [468]. �

2.4 Computing Legendre and Jacobi Symbols

The Legendre symbol tells us when an integer is a square modulo p. It is a non-trivial
group homomorphism from (Z/pZ)∗ to the multiplicative group {−1, 1}.

Definition 2.4.1. Let p be an odd prime and a ∈ Z. The Legendre symbol (ap) is

(
a

p

)
=

1 if x2 ≡ a (mod p) has a solution.
0 if p | a
−1 otherwise

If p is prime and a ∈ Z satisfies (ap) = 1 then a is a quadratic residue, while if (ap) = −1
then a is a quadratic non-residue.

Let n =
∏
i p
ei
i be odd. The Jacobi symbol is

(a
n

)
=
∏

i

(
a

pi

)ei
.

A further generalisation is the Kronecker symbol (an) which allows n to be even.
This is defined in equation (25.4), which is the only place in the book that it is used.

Exercise 2.4.2. Show that if p is an odd prime then (ap) = 1 for exactly half the integers
1 ≤ a ≤ p− 1.

Theorem 2.4.3. Let n ∈ N be odd and a ∈ Z. The Legendre and Jacobi symbols satisfy
the following properties.

• (an) = (a (mod n)
n) and (1

n) = 1.

• (Euler’s criterion) If n is prime then (an) = a(n−1)/2 (mod n).

• (Multiplicative) (abn) = (an)(bn) for all a, b ∈ Z.

• (−1
n) = (−1)(n−1)/2. In other words

(−1

n

)
=

{
1 if n ≡ 1 (mod 4),
−1 otherwise

• (2
n) = (−1)(n

2−1)/8. In other words

(
2

n

)
=

{
1 if n ≡ 1, 7 (mod 8),
−1 otherwise

2.4. COMPUTING LEGENDRE AND JACOBI SYMBOLS 51

• (Quadratic reciprocity) Let n and m be odd integers with gcd(m,n) = 1. Then

(n
m

)
= (−1)(m−1)(n−1)/4

(m
n

)
.

In other words, (nm) = (mn) unless m ≡ n ≡ 3 (mod 4).

Proof: See Section II.2 of [348], Sections 3.1, 3.2 and 3.3 of [468] or Chapter 6 of [276].
�

An important fact is that it is not necessary to factor integers to compute the Jacobi
symbol.

Exercise 2.4.4. Write down an algorithm to compute Legendre and Jacobi symbols
using quadratic reciprocity.

Exercise 2.4.5. Prove that the complexity of computing (mn) is O(log(m) log(n)) bit
operations.

Exercise 2.4.6. Give a randomised algorithm to compute a quadratic non-residue mod-
ulo p. What is the expected complexity of this algorithm?

Exercise 2.4.7. Several applications require knowing a quadratic non-residue modulo a
prime p. Prove that the values a in the following table satisfy (ap) = −1.

p a
p ≡ 3 (mod 4) −1
p ≡ 1 (mod 4), p ≡ 2 (mod 3) 3
p ≡ 1 (mod 4), p 6≡ 1 (mod 8)

√
−1

p ≡ 1 (mod 8), p 6≡ 1 (mod 16) (1 +
√
−1)/

√
2

Remark 2.4.8. The problem of computing quadratic non-residues has several algo-
rithmic implications. One conjectures that the least quadratic non-residue modulo p
is O(log(p) log(log(p))). Burgess proved that the least quadratic non-residue modulo p is
at most p1/(4

√
e)+o(1) ≈ p0.151633+o(1) while Ankeny showed, assuming the extended Rie-

mann hypothesis, that it is O(log(p)2). We refer to Section 8.5 of Bach and Shallit [22]
for details and references. It follows that one can compute a quadratic non-residue in
O(log(p)4) bit operations assuming the extended Riemann hypothesis.

Exercise 2.4.9. Give a Las Vegas algorithm to test whether a ∈ N is a square by
computing (ap) for some random small primes p. What is the complexity of this algorithm?

Exercise 2.4.10. Let p be prime. In Section 2.8 we give algorithms to compute modular
exponentiation quickly. Compare the cost of computing (ap) using quadratic reciprocity
versus using Euler’s criterion.

Remark 2.4.11. An interesting computational problem (considered, for example, by
Damg̊ard [164]) is: given a prime p an integer k and the sequence (ap), (a+1

p), . . . , (a+k−1
p)

to output (a+kp). A potentially harder problem is to determine a given the sequence

of values. It is known that if k is a little larger than log2(p) then a is usually uniquely
determined modulo p and so both problems make sense. No efficient algorithms are known
to solve either of these problems. One can also consider the natural analogue for Jacobi
symbols. We refer to [164] for further details. This is also discussed as Conjecture 2.1 of
Boneh and Lipton [83]. The pseudorandomness of the sequence is discussed by Mauduit
and Sárközy [401] and Sárközy and Stewart [510].

52 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Finally, we remark that one can compute the Legendre or Jacobi symbol of n-bit
integers in O(M(n) log(n)) operations using an analogue of fast algorithms for computing
gcds. We refer to Exercise 5.52 (also see pages 343-344) of Bach and Shallit [22] or Brent
and Zimmermann [101] for the details.

2.5 Modular Arithmetic

In cryptography, modular arithmetic (i.e., arithmetic modulo n ∈ N) is a fundamental
building block. We represent elements of Z/nZ as integers from the set {0, 1, . . . , n− 1}.
We first summarise the complexity of standard “school” methods for modular arithmetic.

Lemma 2.5.1. Let a, b ∈ Z/nZ.

1. Computing a± b (mod n) can be done in O(log(n)) bit operations.

2. Computing ab (mod n) can be done in O(log(n)2) bit operations.

3. Computing a−1 (mod n) can be done in O(log(n)2) bit operations.

4. For a ∈ Z computing a (mod n) can be done in O(log(n)(log(a) − log(n) + 1)) bit
operations.

Montgomery Multiplication

This method6 is useful when one needs to perform an operation such as am (mod n)
when n is odd. It is based on the fact that arithmetic modulo 2s is easier than arithmetic
modulo n. Let R = 2s > n (where s is typically a multiple of the word size).

Definition 2.5.2. Let n ∈ N be odd and R = 2s > n. The Montgomery representa-
tion of a ∈ (Z/nZ) is a = aR (mod n) such that 0 ≤ a < n.

To transform a into Montgomery representation requires a standard modular multi-
plication. However, Lemma 2.5.3 shows that transforming back from Montgomery repre-
sentation to standard representation may be performed more efficiently.

Lemma 2.5.3. (Montgomery reduction) Let n ∈ N be odd and R = 2s > n. Let n′ =
−n−1 (mod R) be such that 1 ≤ n′ < R. Let a be an element of (Z/nZ) in Montgomery
representation. Let u = an′ (mod R). Then w = (a + un)/R lies in Z and satisfies
w ≡ aR−1 (mod n).

Proof: Write w′ = a + un. Clearly w′ ≡ 0 (mod R) so w ∈ Z. Further, 0 ≤ w′ ≤
(n− 1) + (R− 1)n = Rn− 1 and so w < n. Finally, it is clear that w ≡ aR−1 (mod n). �

The reason why this is efficient is that division by R is easy. The computation of n′

is also easier than a general modular inversion (see Algorithm II.5 of [64]) and, in many
applications, it can be precomputed.

We now sketch the Montgomery multiplication algorithm. If a and b are in Mont-
gomery representation then we want to compute the Montgomery representation of ab,
which is abR−1 (mod n). Compute x = ab ∈ Z so that 0 ≤ x < n2 < nR, then compute
u = xn′ (mod R) and w′ = x+ nu ∈ Z. As in Lemma 2.5.3 we have w′ ≡ 0 (mod R) and
can compute w = w′/R. It follows that w ≡ abR−1 (mod n) and 0 ≤ w < 2n so ab is
either w or w − n.

Lemma 2.5.4. The complexity of Montgomery multiplication modulo n is O(M(log(n)))
bit operations.

6Credited to Montgomery [435], but apparently a similar idea was used by Hensel.

2.6. CHINESE REMAINDER THEOREM 53

For further details see Section 9.2.1 of [162], Section II.1.4 of [64], Section 11.1.2.b
of [16] or Section 2.2.4 of [274].

Faster Modular Reduction

Using Newton’s method to compute ⌊a/n⌋ one can compute a (mod n) using only multi-
plication of integers. If a = O(n2) then the complexity is O(M(log(n))). The basic idea
is to use Newton’s method to compute a rational approximation to 1/a of the form b/2e

(see Section 2.2.1) and then compute q = ⌊n/a⌋ = ⌊nb/2e⌋ and thus r = a − nq is the
remainder. See Exercises 3.35, 3.36 of [556] and Section 9.1 of [238] for details. For large
a the cost of computing a (mod n) remains O(log(a) log(n)) as before. This idea gives
rise to Barret reduction; see Section 9.2.2 of [162], Section 2.3.1 of [100], Section 14.3.3
of [418], Section II.1.3 of [64], or Section 10.4.1 of [16].

Special Moduli

For cryptography based on discrete logarithms, especially elliptic curve cryptography,
it is recommended to use primes of a special form to speed up arithmetic modulo p.
Commonly used primes are of the form p = 2k − c for some small c ∈ N or the NIST
primes p = 2nkw ± 2nk−1w ± · · · ± 2n1w ± 1 where w = 16, 32 or 64. In these cases it
is possible to compute reduction modulo p much more quickly than for general p. See
Section 2.2.6 of [274], Section 14.3.4 of [418] or Section 10.4.3 of [16] for examples and
details.

Modular Inversion

Suppose that a, n ∈ N are such that gcd(a, n) = 1. One can compute a−1 (mod n) using
the extended Euclidean algorithm: computing integers s, t ∈ Z such that as+nt = 1 gives
a−1 ≡ s (mod n). Hence, if 0 < a < n then one can compute a−1 (mod n) in O(log(n)2)
bit operations, or faster using subquadratic versions of the extended Euclidean algorithm.

In practice, modular inversion is significantly slower than modular multiplication. For
example, when implementing elliptic curve cryptography it is usual to assume that the
cost of an inversion in Fp is between 8 and 50 times slower than the cost of a multiplication
in Fp (the actual figure depends on the platform and algorithms used).

Simultaneous Modular Inversion

One can compute a−1
1 (mod n), . . . , a−1

m (mod n) with a single inversion modulo n and
a number of multiplications modulo n using a trick due to Montgomery. Namely, one
computes b = a1 · · · am (mod n), computes b−1 (mod n), and then recovers the individual
a−1
i .

Exercise 2.5.5. Give pseudocode for simultaneous modular inversion and show that it
requires one inversion and 3(m− 1) modular multiplications.

2.6 Chinese Remainder Theorem

The Chinese Remainder Theorem (CRT) states that if gcd(m1,m2) = 1 then there is a
unique solution 0 ≤ x < m1m2 to x ≡ ci (mod mi) for i = 1, 2. Computing x can be
done in polynomial-time in various ways. One method is to use the formula

x = c1 + (c2 − c1)(m−1
1 (mod m2))m1.

54 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

This is a special case of Garner’s algorithm (see Section 14.5.2 of [418] or Section 10.6.4
of [16]).

Exercise 2.6.1. Suppose m1 < m2 and 0 ≤ ci < mi. What is the input size of the
instance of the CRT? What is the complexity of computing the solution?

Exercise 2.6.2. Let n > 2 and suppose coprime integers 2 ≤ m1 < · · · < mn and
integers c1, . . . , cn such that 0 ≤ ci < mi for 1 ≤ i ≤ n are given. Let N =

∏n
i=1mi. For

1 ≤ i ≤ n define Ni = N/mi and ui = N−1
i (mod mi). Show that

x =

n∑

i=1

ciuiNi (2.1)

satisfies x ≡ ci (mod mi) for all 1 ≤ i ≤ n.
Show that one can compute the integer x in equation (2.1) in O(n2 log(mn)2) bit

operations.

Exercise 2.6.3. Show that a special case of Exercise 2.6.2 (which is recommended when
many computations are required for the same pair of moduli) is to pre-compute the
integers A = u1N1 and B = u2N2 so that x = c1A+ c2B (mod N).

Algorithm 10.22 of [238] gives an asymptotically fast CRT algorithm.
Exercise 2.6.4 gives a variant of the Chinese remainder theorem, which seems to orig-

inate in work of Montgomery and Silverman, called the explicit Chinese remainder
theorem. This variant is useful when one wants to compute the large integer x modulo a
smaller integer p and one wants to minimise the overall storage. For a more careful com-
plexity analysis see Section 6 of Sutherland [597]; for small p he shows that the explicit
CRT can be computed in O(nM(log(p)) +M(log(N) + n log(n))) bit operations.

Exercise 2.6.4. Let the notation be as in Exercise 2.6.2 and let p be coprime to N .
The goal is to compute x (mod p) where x is an integer such that x ≡ ci (mod mi) for
1 ≤ i ≤ n and |x| < N/2.

Let z =
∑n

i=1 ciui/mi ∈ Q. Show that 2z 6∈ Z and that 0 ≤ z < nmn. Show that the
solution x to the congruences satisfying |x| < N/2 is equal to Nz −N⌊z⌉.

Hence, show that

x ≡
n∑

i=1

(ciui(Ni (mod p)) (mod p))− (N (mod p))(⌊z⌉ (mod p)) (mod p). (2.2)

Show that one can therefore compute x using equation (2.2) and representing z as a
floating point number in a way that does not require knowing more than one of the values
ci at a time. Show that one can precompute N (mod p) and Ni (mod p) for 1 ≤ i ≤ n
in O(n(log(mn) log(p) + M(log(p))) bit operations. Hence show that the complexity of
solving the explicit CRT is (assuming the floating point operations can be ignored) at
most O(n(log(mn) log(p) +M(log(p)))) bit operations.

2.7 Linear Algebra

Let A be an n× n matrix over a field k. One can perform Gaussian elimination to solve
the linear system Ax = b (or determine there are no solutions), to compute det(A), or to
compute A−1 in O(n3) field operations. When working over R a number of issues arise

2.8. MODULAR EXPONENTIATION 55

due to rounding errors, but no such problems arise when working over finite fields. We
refer to Section 3.3 of Joux [317] for details.

A matrix is called sparse if almost all entries of each row are zero. To make this precise
one usually considers the asymptotic complexity of an algorithm on m × n matrices, as
m and/or n tends to infinity, and where the number of non-zero entries in each row is
bounded by O(log(n)) or O(log(m)).

One can compute the kernel (i.e., a vector x such that Ax = 0) of an n × n sparse
matrix A over a field in O(n2) field operations using the algorithms of Wiedemann [629]
or Lanczos [363]. We refer to Section 3.4 of [317] or Section 12.4 of [238] for details.

Hermite Normal Form

When working over a ring the Hermite normal form (HNF) is an important tool for
solving or simplifying systems of equations. Some properties of the Hermite normal form
are mentioned in Section A.11.

Algorithms to compute the HNF of a matrix are given in Section 2.4.2 of Cohen [136],
Hafner and McCurley [273], Section 3.3.3 of Joux [317], Algorithm 16.26 of von zur
Gathen and Gerhard [238], Section 5.3 of Schrijver [531], Kannan and Bachem [331],
Storjohann and Labahn [593], and Micciancio and Warinschi [425]. Naive algorithms to
compute the HNF suffer from coefficient explosion, so computing the HNF efficiently in
practice, and determining the complexity of the algorithm, is non-trivial. One solution is
to work modulo the determinant (or a sub-determinant) of the matrix A (see Section 2.4.2
of [136], [273] or [593] for further details). Let A = (Ai,j) be an n×m matrix over Z and
define ‖A‖∞ = maxi,j{|Ai,j |}. The complexity of the HNF algorithm of Storjohann and
Labahn on A (using naive integer and matrix multiplication) is O(nm4 log(‖A‖∞)2) bit
operations.

One can also use lattice reduction to compute the HNF of a matrix. For details see
page 74 of [531], Havas, Majewski and Matthews [280], or van der Kallen [328].

2.8 Modular Exponentiation

Exponentiation modulo n can be performed in polynomial-time by the “square-and-
multiply” method.7 This method is presented in Algorithm 2; it is called a “left-to-right”
algorithm as it processes the bits of the exponent m starting with the most significant
bits. Algorithm 2 can be applied in any group, in which case the complexity is O(log(m))
times the complexity of the group operation. In this section we give some basic techniques
to speed-up the algorithm; further tricks are described in Chapter 11.

Lemma 2.8.1. The complexity of Algorithm 2 using naive modular arithmetic is O(log(m) log(n)2)
bit operations.

Exercise 2.8.2. Prove Lemma 2.8.1.

Lemma 2.8.3. If Montgomery multiplication (see Section 2.5) is used then the complexity
of Algorithm 2.5 is O(log(n)2 + log(m)M(log(n))).

Proof: Convert g to Montgomery representation g in O(log(n)2) bit operations. Algo-
rithm 2 then proceeds using Montgomery multiplication in lines 5 and 7, which requires
O(log(m)M(log(n))) bit operations. Finally Montgomery reduction is used to convert
the output to standard form. �

7This algorithm already appears in the chandah-sūtra by Pingala.

56 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Algorithm 2 Square-and-multiply algorithm for modular exponentiation

Input: g, n,m ∈ N
Output: b ≡ gm (mod n)
1: i = ⌊log2(m)⌋ − 1
2: Write m in binary as (1mi . . .m1m0)2
3: b = g
4: while (i ≥ 0) do
5: b = b2 (mod n)
6: if mi = 1 then
7: b = bg (mod n)
8: end if
9: i = i− 1

10: end while
11: return b

The algorithm using Montgomery multiplication is usually better than the naive ver-
sion, especially when fast multiplication is available. An application of the above algo-
rithm, where Karatsuba multiplication would be appropriate, is RSA decryption (either
the standard method, or using the CRT). Since log(m) = Ω(log(n)) in this case, decryp-
tion requires O(log(n)2.585) bit operations.

Corollary 2.8.4. One can compute the Legendre symbol (ap) using Euler’s criterion in

O(log(p)M(log(p))) bit operations.

When storage for precomputed group elements is available there are many ways to
speed up exponentiation. These methods are particularly appropriate when many expo-
nentiations of a fixed element g are required. The methods fall naturally into two types:
those that reduce the number of squarings in Algorithm 2 and those that reduce the
number of multiplications. An extreme example of the first type is to precompute and
store ui = g2

i

(mod n) for 2 ≤ i ≤ log(n). Given 2l ≤ m < 2l+1 with binary expansion

(1ml−1 . . .m1m0)2 one computes
∏l
i=0:mi=1 ui (mod n). Obviously this method is not

more efficient than Algorithm 2 if g varies. An example of the second type is sliding
window methods that we now briefly describe. Note that there is a simpler but less
efficient “non-sliding” window method, also called the 2k-ary method, which can be found
in many books. Sliding window methods can be useful even in the case where g varies
(e.g., Algorithm 3 below).

Given a window length w one precomputes ui = gi (mod n) for all odd integers
1 ≤ i < 2w. Then one runs a variant of Algorithm 2 where w (or more) squarings
are performed followed by one multiplication corresponding to a w-bit sub-string of the
binary expansion of m that corresponds to an odd integer. One subtlety is that algorithms
based on the “square-and-multiply” idea and which use pre-computation must parse the
exponent starting with the most significant bits (i.e., from left to right) whereas to work
out sliding windows one needs to parse the exponent from the least significant bits (i.e.,
right to left).

Example 2.8.5. Let w = 2 so that one precomputes u1 = g and u3 = g3. Suppose m
has binary expansion (10011011)2. By parsing the binary expansion starting with the
least significant bits one obtains the representation 10003003 (we stress that this is still
a representation in base 2). One then performs the usual square-and-multiply algorithm
by parsing the exponent from left to right; the steps of the sliding window algorithm are

2.9. SQUARE ROOTS MODULO P 57

(omitting the (mod n) notation)

b = u1, b = b2; b = b2, b = b2, b = b2, b = bu3, b = b2, b = b2, b = b2, b = bu3.

Exercise 2.8.6. Write pseudocode for the sliding window method. Show that the pre-
computation stage requires one squaring and 2w−1 − 1 multiplications.

Exercise 2.8.7. Show that the expected number of squarings between each multiply
in the sliding window algorithm is w + 1. Hence show that (ignoring the precomputa-
tion) exponentiation using sliding windows requires log(m) squarings and, on average,
log(m)/(w + 1) multiplications.

Exercise 2.8.8. Consider running the sliding window method in a group, with varying g
and m (so the powers of g must be computed for every exponentiation) but with unlimited
storage. For a given bound on len(m) one can compute the value for w that minimises
the total cost. Verify that the choices in the following table are optimal.

len(m) 80 160 300 800 2000
w 3 4 5 6 7

Exercise 2.8.9. Algorithm 2 processes the bits of the exponent m from left to right.
Give pseudocode for a modular exponentiation algorithm that processes the bits of the
exponent m from right to left.
[Hint: Have two variables in the main loop; one that stores g2

i

in the i-th iteration, and

the other that stores the value g
∑i
j=0 aj2

j

.]

Exercise 2.8.10. Write pseudocode for a right to left sliding window algorithm for com-
puting gm (mod n), extending Exercise 2.8.9. Explain why this variant is not appropriate
when using precomputation (hence, it is not so effective when computing gm (mod n) for
many random m but when g is fixed).

One can also consider the opposite scenario where one is computing gm (mod n) for a
fixed value m and varying g. Again, with some precomputation, and if there is sufficient
storage available, one can get an improvement over the naive algorithm. The idea is
to determine an efficient addition chain for m. This is a sequence of squarings and
multiplications, depending on m, that minimises the number of group operations. More
precisely, an addition chain of length l for m is a sequence m1,m2, . . . ,ml of integers
such that m1 = 1, ml = m and, for each 2 ≤ i ≤ l we have mi = mj + mk for some
1 ≤ j ≤ k < i. One computes each of the intermediate values gmi for 2 ≤ i ≤ l with
one group operation. Note that all these intermediate values are stored. The algorithm
requires l group operations and l group elements of storage.

It is conjectured by Stolarsky that every integer m has an addition chain of length
log2(m) + log2(wt(m)) where wt(m) is the Hamming weight of m (i.e., the number of
ones in the binary expansion of m). There is a vast literature on addition chains, we refer
to Section C6 of [272], Section 4.6.3 of [343] and Section 9.2 of [16] for discussion and
references.

Exercise 2.8.11. Prove that an addition chain has length at least log2(m).

2.9 Square Roots Modulo p

There are a number of situations in this book that require computing square roots modulo
a prime. Let p be an odd prime and let a ∈ N. We have already shown that Legendre

58 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

symbols can be computed in polynomial-time. Hence, the decision problem “Is a a square
modulo p?” is soluble in polynomial-time. But this fact does not imply that the compu-
tational problem “Find a square root of a modulo p” is easy.

We present two methods in this section. The Tonelli-Shanks algorithm [549] is the best
method in practice. The Cipolla algorithm actually has better asymptotic complexity,
but is usually slower than Tonelli-Shanks.

Recall that half the integers 1 ≤ a < p are squares modulo p and, when a is square,
there are two solutions ±x to the equation x2 ≡ a (mod p).

Lemma 2.9.1. Let p ≡ 3 (mod 4) be prime and a ∈ N. If (ap) = 1 then x =

a(p+1)/4 (mod p) satisfies x2 ≡ a (mod p).

This result can be verified directly by computing x2, but we give a more group-
theoretic proof that helps to motivate the general algorithm.
Proof: Since p ≡ 3 (mod 4) it follows that q = (p− 1)/2 is odd. The assumption (ap) = 1

implies that aq = a(p−1)/2 ≡ 1 (mod p) and so the order of a is odd. Therefore a square
root of a is given by

x = a2
−1 (mod q) (mod p).

Now, 2−1 (mod q) is just (q + 1)/2 = (p+ 1)/4. �

Lemma 2.9.2. Let p be a prime and suppose that a is a square modulo p. Write p− 1 =
2eq where q is odd. Let w = a(q+1)/2 (mod p). Then w2 ≡ ab (mod p) where b has order
dividing 2e−1.

Proof: We have

w2 ≡ aq+1 ≡ aaq (mod p)

so b ≡ aq (mod p). Now a has order dividing (p − 1)/2 = 2e−1q so b has order dividing
2e−1. �

The value w is like a “first approximation” to the square root of a modulo p. To
complete the computation it is therefore sufficient to compute a square root of b.

Lemma 2.9.3. Suppose 1 < n < p is such that (np) = −1. Then y ≡ nq (mod p) has
order 2e.

Proof: The order of y is a divisor of 2e. The fact n(p−1)/2 ≡ −1 (mod p) implies that y

satisfies y2
e−1 ≡ −1 (mod p). Hence the order of y is equal to 2e. �

Since Z∗
p is a cyclic group, it follows that y generates the full subgroup of elements of

order dividing 2e. Hence, b = yi (mod p) for some 1 ≤ i ≤ 2e. Furthermore, since the
order of b divides 2e−1 it follows that i is even.

Writing i = 2j and x = w/yj (mod p) then

x2 ≡ w2/y2j ≡ ab/b ≡ a (mod p).

Hence, if one can compute i then one can compute the square root of a.
If e is small then the value i can be found by a brute-force search. A more advanced

method is to use the Pohlig-Hellman method to solve the discrete logarithm of b to the
base y (see Section 13.2 for an explanation of these terms). This idea leads to the Tonelli-
Shanks algorithm for computing square roots modulo p (see Section 1.3.3 of [64] or Section
1.5 of [136]).

Exercise 2.9.4. Compute
√

3 modulo 61 using the Tonelli-Shanks algorithm.

2.9. SQUARE ROOTS MODULO P 59

Algorithm 3 Tonelli-Shanks algorithm

Input: a, p such that (ap) = 1

Output: x such that x2 ≡ a (mod p)
1: Write p− 1 = 2eq where q is odd
2: Choose random integers 1 < n < p until (np) = −1

3: Set y = nq (mod p)
4: Set w = a(q+1)/2 (mod p) and b = aq (mod p)
5: Compute an integer j such that b ≡ y2j (mod p)
6: return w/yj (mod p)

Lemma 2.9.5. The Tonelli-Shanks method is a Las Vegas algorithm with expected run-
ning time O(log(p)2M(log(p))) bit operations.

Proof: The first step of the algorithm is the requirement to find an integer n such that
(np) = −1. This is Exercise 2.4.6 and it is the only part of the algorithm that is randomised
and Las Vegas. The expected number of trials is 2. Since one can compute the Legendre
symbol in O(log(p)2) bit operations, this gives O(log(p)2) expected bit operations, which
is less than O(log(p)M(log(p))).

The remaining parts of the algorithm amount to exponentiation modulo p, requiring
O(log(p)M(log(p))) bit operations, and the computation of the index j. Naively, this
could require as many as p − 1 operations, but using the Pohlig-Hellman method (see
Exercise 13.2.6 in Section 13.2) brings the complexity of this stage to O(log(p)2M(log(p)))
bit operations. �

As we will see in Exercise 2.12.6, the worst-case complexity O(log(p)2M(log(p))) of the
Tonelli-Shanks algorithm is actually worse than the cost of factoring quadratic polynomi-
als using general polynomial-factorisation algorithms. But, in most practical situations,
the Tonelli-Shanks algorithm is faster than using polynomial factorisation.

Exercise 2.9.6. If one precomputes y for a given prime p then the square root algorithm
becomes deterministic. Show that the complexity remains the same.

Exercise 2.9.7. Show, using Remark 2.4.8, that under the extended Riemann hypothesis
one can compute square roots modulo p in deterministic O(log(p)4) bit operations.

Exercise 2.9.8. Let r ∈ N. Generalise the Tonelli-Shanks algorithm so that it computes
r-th roots in Fp (the only non-trivial case being when p ≡ 1 (mod r)).

Exercise 2.9.9. (Atkin) Let p ≡ 5 (mod 8) be prime and a ∈ Z such that (ap) = 1. Let

z = (2a)(p−5)/8 (mod p) and i = 2az2 (mod p). Show that i2 = −1 (mod p) and that
w = az(i− 1) satisfies w2 ≡ a (mod p).

If p − 1 is highly divisible by 2 then an algorithm due to Cipolla, sketched in Exer-
cise 2.9.10 below, is more suitable (see Section 7.2 of [22] or Section 3.5 of [418]). See
Bernstein [44] for further discussion. There is a completely different algorithm due to
Schoof that is deterministic and has polynomial-time complexity for fixed a as p tends to
infinity.

Exercise 2.9.10. (Cipolla) Let p be prime and a ∈ Z. Show that if t ∈ Z is such that

(t
2−4a
p) = −1 then x(p+1)/2 in Fp[x]/(x2 − tx+ a) is a square root of a modulo p. Hence

write down an algorithm to compute square roots modulo p and show that it has expected
running time O(log(p)M(log(p))) bit operations.

60 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

We remark that, in some applications, one wants to compute a Legendre symbol to test
whether an element is a square and, if so, compute the square root. If one computes the
Legendre symbol using Euler’s criterion as a(p−1)/2 (mod p) then one will have already
computed aq (mod p) and so this value can be recycled. This is not usually faster
than using quadratic reciprocity for large p, but it is relevant for applications such as
Lemma 21.4.9.

A related topic is, given a prime p and an integer d > 0, to find integer solutions
(x, y), if they exist, to the equation x2 + dy2 = p. The Cornacchia algorithm achieves
this. The algorithm is given in Section 2.3.4 of Crandall and Pomerance [162], and a
proof of correctness is given in Section 4 of Schoof [530] or Morain and Nicolas [437].
In brief, the algorithm computes p/2 < x0 < p such that x20 ≡ −d (mod p), then
runs the Euclidean algorithm on 2p and x0 stopping at the first remainder r <

√
p,

then computes s =
√

(p− r2)/d if this is an integer. The output is (x, y) = (r, s).
The complexity is dominated by computing the square root modulo p, and so is an
expected O(log(p)2M(log(p))) bit operations. A closely related algorithm finds solutions
to x2 + dy2 = 4p.

2.10 Polynomial Arithmetic

Let R be a commutative ring. A polynomial in R[x] of degree d is represented8 as a
(d+ 1)-tuple over R. A polynomial of degree d over Fq therefore requires (d+ 1)⌈log2(q)⌉
bits for its representation. An algorithm on polynomials will be polynomial-time if the
number of bit operations is bounded above by a polynomial in d log(q).

Arithmetic on polynomials is analogous to integer arithmetic (indeed, it is simpler as
there are no carries to deal with). We refer to Chapter 2 of [238], Chapter 18 of [556],
Section 4.6 of [343] or Section 9.6 of [162] for details.

Lemma 2.10.1. Let R be a commutative ring and F1(x), F2(x) ∈ R[x].

1. One can compute F1(x) + F2(x) in O(max{deg(F1), deg(F2)}) additions in R.

2. One can compute F1(x)F2(x) in O(deg(F1) deg(F2)) additions and multiplications
in R.

3. If R is a field one can compute the quotient and remainder of division of F1(x) by
F2(x) in O(deg(F2)(deg(F1)− deg(F2) + 1)) operations (i.e., additions, multiplica-
tions and inversions) in R.

4. If R is a field one can compute F (x) = gcd(F1(x), F2(x)) and polynomials s(x), t(x) ∈
R[x] such that F (x) = s(x)F1(x) + t(x)F2(x), using the extended Euclidean algo-
rithm in O(deg(F1) deg(F2)) operations in R.

Exercise 2.10.2. Prove Lemma 2.10.1.

Exercise 2.10.3.⋆ Describe the Karatsuba and 3-Toom-Cook algorithms for multipli-
cation of polynomials of degree d in Fq[x]. Show that these algorithms have complexity
O(d1.585) and O(d1.404) multiplications in Fq.

Asymptotically fast multiplication of polynomials, analogous to the algorithms men-
tioned in Section 2.2, are given in Chapter 8 of [238] or Section 18.6 of [556]. Multipli-
cation of polynomials in k[x] of degree bounded by d can be done in O(M(d)) multipli-
cations in k. The methods mentioned in Section 2.5 for efficiently computing remainders

8We restrict attention in this and the following section to univariate polynomials. There are alternative
representations for sparse and/or multivariate polynomials, but we do not consider this issue further.

2.11. ARITHMETIC IN FINITE FIELDS 61

F (x) (mod G(x)) in k[x] can also be used with polynomials; see Section 9.6.2 of [162]
or Section 11.1 of [238] for details. Fast variants of algorithms for the extended Eu-
clidean algorithm for polynomials in k[x] of degree bounded by d require O(M(d) log(d))
multiplications in k and O(d) inversions in k (Corollary 11.6 of [238]).

Kronecker substitution is a general technique which transforms polynomial multi-
plication into integer multiplication. It allows multiplication of two degree d polynomials
in Fq[x] (where q is prime) in O(M(d(log(q)+log(d)))) = O(M(d log(dq))) bit operations;
see Section 1.3 of [100], Section 8.4 of [238] or Section 18.6 of [556]. Kronecker substitu-
tion can be generalised to bivariate polynomials and hence to polynomials over Fq where
q is a prime power. We write M(d, q) = M(d log(dq)) for the number of bit operations to
multiply two degree d polynomials over Fq.

Exercise 2.10.4. Show that Montgomery reduction and multiplication can be imple-
mented for arithmetic modulo a polynomial F (x) ∈ Fq[x] of degree d.

Exercise 2.10.5. One can evaluate a polynomial F (x) ∈ R[x] at a value a ∈ R efficiently

using Horner’s rule. More precisely, if F (x) =
∑d
i=0 Fix

i then one computes F (a) as
(· · · ((Fda)a + Fd−1)a + · · · + F1)a + F0. Write pseudocode for Horner’s rule and show
that the method requires d additions and d multiplications if deg(F (x)) = d.

2.11 Arithmetic in Finite Fields

Efficient algorithms for arithmetic modulo p have been presented, but we now consider
arithmetic in finite fields Fpm when m > 1. We assume Fpm is represented using either a
polynomial basis (i.e., as Fp[x]/(F (x))) or a normal basis. Our main focus is when either
p is large and m is small, or vice versa. Optimal asymptotic complexities for the case
when both p and m grow large require some care.

Exercise 2.11.1. Show that addition and subtraction of elements in Fpm requires O(m)
additions in Fp. Show that multiplication in Fpm , represented by a polynomial basis
and using naive methods, requires O(m2) multiplications modulo p and O(m) reductions
modulo p.

If p is constant and m grows then multiplication in Fpm requires O(m2) bit operations
or, using fast polynomial arithmetic, O(M(m)) bit operations. If m is fixed and p goes
to infinity then the complexity is O(M(log(p))) bit operations.

Inversion of elements in Fpm = Fp[x]/(F (x)) can be done using the extended Euclidean
algorithm in O(m2) operations in Fp. If p is fixed and m grows then one can invert
elements in Fpm in O(M(m) log(m)) bit operations.

Alternatively, for any vector space basis {θ1, . . . , θm} for Fqm over Fq there is an m×m
matrix M over Fq such that the product ab for a, b ∈ Fqm is given by

(a1, . . . , am)M(b1, . . . , bm)t =

m∑

i=1

m∑

j=1

Mi,jaibj

where (a1, . . . , am) and (b1, . . . , bm) are the coefficient vectors for the representation of a
and b with respect to the basis.

In particular, if Fqm is represented by a normal basis {θ, θq, . . . , θqm−1} then multipli-
cation of elements in normal basis representation is given by

(
m−1∑

i=0

aiθ
qi

)

m−1∑

j=0

bjθ
qj

 =

m−1∑

i=0

m−1∑

j=0

aibjθ
qi+qj

62 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

so it is necessary to precompute the representation of each term Mi,j = θq
i+qj over

the normal basis. Multiplication in Fpm using a normal basis representation is typically
slower than multiplication with a polynomial basis; indeed, the complexity can be as bad
as O(m3) operations in Fp. An optimal normal basis is a normal basis for which the
number of non-zero coefficients in the product is minimal (see Section II.2.2 of [64] for
the case of F2m). Much work has been done on speeding up multiplication with optimal
normal bases; for example see Bernstein and Lange [54] for discussion and references.

Raising an element of Fqm to the q-th power is always fast since it is a linear operation.
Taking q-th powers (respectively, q-th roots) is especially fast for normal bases as it is a
rotation; this is the main motivation for considering normal bases. This fact has a number
of important applications, see for example, Exercise 14.4.7.

The Itoh-Tsujii inversion algorithm [307] is appropriate when using a normal
basis representation, though it can be used to compute inverses in any finite field. First
we present a simple inversion algorithm for any field and later we sketch the actual
Itoh-Tsujii algorithm. Let g ∈ F∗

qm . The idea is to exploit the fact that the norm

NFqm/Fq (g) = g1+q+q
2+···+qm−1

lies in Fq and is therefore easier to invert than an element
of Fqm .

Lemma 2.11.2. Let g ∈ F∗
qm . Then

g−1 = NFqm/Fq (g)−1
m−1∏

i=1

gq
i

.

Exercise 2.11.3. Prove Lemma 2.11.2.

A simple inversion algorithm is to compute h1 =
∏m−1
i=1 gq

i

and h2 = gh using m
multiplications in Fqm , then h−1

2 using one inversion in Fq and finally g−1 = h−1
2 h1

with an Fq × Fqm multiplication. The complexity of the algorithm is O(m3 log(q)2) bit
operations using naive arithmetic, or O(mM(m) log(q)2) using fast arithmetic when m
is large and q is small. This is worse than the complexity O(m2 log(q)2) of the extended
Euclidean algorithm.

In the case where q = 2 we know that NFqm/Fq (g) = 1 and the algorithm simply

computes g−1 as

g2+22+···+2m−1

=
m−1∏

i=1

g2
i

.

This formula can be derived directly using the fact g2
m−1 = 1 as

g−1 = g2
m−1−1 = g2(2

m−1−1) = g2(1+2+22+···+2m−2).

The Itoh-Tsujii algorithm then follows from a further idea, which is that one can compute
g2
m−1−1 in fewer than m multiplications using an appropriate addition chain. We give

the details only in the special case where m = 2k + 1. Since 2m−1 − 1 = 22
k − 1 =

(22
k−1 − 1)22

k−1

+ (22
k−1 − 1) it is sufficient to compute the sequence g2

2i−1 iteratively
for i = 0, 1, . . . , k, each step taking some shifts and one multiplication in the field. In
other words, the complexity in this case is O(km2 log(q)2) = O(log(m)m2 log(q)2) field
operations. For details of the general case, and further discussion we refer to [307, 270].

See, for example, Fong, Hankerson, Lopez and Menezes [207] for more discussion about
inversion for the fields relevant for elliptic curve cryptography.

Finally we remark that, for some computational devices, it is convenient to use finite
fields Fpm where p ≈ 232 or p ≈ 264. These are called optimal extension fields and we
refer to Section 2.4 of [274] for details.

2.12. FACTORING POLYNOMIALS OVER FINITE FIELDS 63

2.12 Factoring Polynomials over Finite Fields

There is a large literature on polynomial factorisation and we only give a very brief
sketch of the main concepts. The basic ideas go back to Berlekamp and others. For full
discussion, historical background, and extensive references see Chapter 7 of Bach and
Shallit [22] or Chapter 14 of von zur Gathen and Gerhard [238]. One should be aware
that for polynomials over fields of small characteristic the algorithm by Niederreiter [466]
can be useful.

Let F (x) ∈ Fq[x] have degree d. If there exists G(x) ∈ Fq[x] such that G(x)2 | F (x)
then G(x) | F ′(x) where F ′(x) is the derivative of F (x). A polynomial is square-
free if it has no repeated factor. It follows that F (x) is square-free if F ′(x) 6= 0 and
gcd(F (x), F ′(x)) = 1. If F (x) ∈ Fq[x] and S(x) = gcd(F (x), F ′(x)) then F (x)/S(x) is
square-free.

Exercise 2.12.1. Determine the complexity of testing whether a polynomial F (x) ∈ Fq[x]
is square-free.

Exercise 2.12.2. Show that one can reduce polynomial factorisation over finite fields to
the case of factoring square-free polynomials.

Finding Roots of Polynomials in Finite Fields

Let F (x) ∈ Fq[x] have degree d. The roots of F (x) in Fq are precisely the roots of

R1(x) = gcd(F (x), xq − x). (2.3)

If q is much larger than d then the efficient way to compute R1(x) is to compute
xq (mod F (x)) using a square-and-multiply algorithm and then run Euclid’s algorithm.

Exercise 2.12.3. Determine the complexity of computing R1(x) in equation (2.3). Hence
explain why the decision problem “Does F (x) have a root in Fq?” has a polynomial-time
solution.

The basic idea of root-finding algorithms is to note that, if q is odd, xq − x =
x(x(q−1)/2 + 1)(x(q−1)/2 − 1). Hence, one can try to split9 R1(x) by computing

gcd(R1(x), x(q−1)/2 − 1). (2.4)

Similar ideas can be used when q is even (see Section 2.14.2).

Exercise 2.12.4. Show that the roots of the polynomial in equation (2.4) are precisely
the α ∈ Fq such that F (α) = 0 and α is a square in F∗

q .

To obtain a randomised (Las Vegas) algorithm to factor R1(x) completely when q is
odd one simply chooses a random polynomial u(x) ∈ Fq[x] of degree < d and computes

gcd(R1(x), u(x)(q−1)/2 − 1).

This computation selects those roots α of R1(x) such that u(α) is a square in Fq. In
practice it suffices to choose u(x) to be linear. Performing this computation sufficiently
many times on the resulting factors of R1(x) and taking gcds eventually leads to the
complete factorisation of R1(x).

9We reserve the word “factor” for giving the full decomposition into irreducibles, whereas we use the
word “split” to mean breaking into two pieces.

64 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Exercise 2.12.5. Write down pseudocode for the above root finding algorithm and show
that its expected complexity (without using a fast Euclidean algorithm) is bounded by
O(log(d)(log(q)M(d) + d2)) = O(log(q) log(d)d2) field operations.

Exercise 2.12.6. Let q be an odd prime power and R(x) = x2 + ax + b ∈ Fq[x]. Show
that the expected complexity of finding roots of R(x) using polynomial factorisation is
O(log(q)M(log(q))) bit operations.

Exercise 2.12.7.⋆ Show, using Kronecker substitution, fast versions of Euclid’s algo-
rithm and other tricks, that one can compute one root in Fq (if any exist) of a degree d
polynomial in Fq[x] in an expected O(log(qd)M(d, q)) bit operations.

When q is even (i.e., q = 2m) then, instead of x(q−1)/2, one considers the trace

polynomial T (x) =
∑m−1

i=0 x2
i

. (A similar idea can be used over any field of small
characteristic.)

Exercise 2.12.8. Show that the roots of the polynomial gcd(R1(x), T (x)) are precisely
the α ∈ Fq such that R1(α) = 0 and TrF2m/F2

(α) = 0.

Taking random u(x) ∈ F2m [x] of degree < d and then computing gcd(R1(x), T (u(x)))
gives a Las Vegas root finding algorithm as before. See Section 21.3.2 of [556] for details.

Higher Degree Factors

Having found the roots in Fq one can try to find factors of larger degree. The same ideas
can be used. Let

R2(x) = gcd(F (x)/R1(x), xq
2 − x), R3(x) = gcd(F (x)/(R1(x)R2(x)), xq

3 − x),

Exercise 2.12.9. Show that all irreducible factors of Ri(x) over Fq[x] have degree i.

Exercise 2.12.10. Give an algorithm to test whether a polynomial F (x) ∈ Fq[x] of
degree d is irreducible. What is the complexity?

When q is odd one can factor Ri(x) using similar ideas to the above, i.e., by computing

gcd(Ri(x), u(x)(q
i−1)/2 − 1).

These techniques lead to the Cantor-Zassenhaus algorithm. It factors polynomials
of degree d over Fq in an expected O(d log(d) log(q)M(d)) field operations. For many
more details about polynomial factorisation see Section 7.4 of [22], Sections 21.3 and 21.4
of [556], Chapter 14 of [238], [370], Chapter 4 of [388, 389] or Section 4.6.2 of [343].

Exercise 2.12.11. Let d ∈ N and F (x) ∈ Fq[x] of degree d. Given 1 < b < n suppose
we wish to output all irreducible factors of F (x) of degree at most b. Show that the
expected complexity is O(b log(d) log(q)M(d)) operations in Fq. Hence, one can factor
F (x) completely in O(d log(d) log(q)M(d)) operations in Fq.

Exercise 2.12.12.⋆ Using the same methods as Exercise 2.12.7, show that one can find
an irreducible factor of degree 1 < b < d of a degree d polynomial in Fq[x] in an expected
O(b log(dq)M(d, q)) bit operations.

2.13. HENSEL LIFTING 65

2.13 Hensel Lifting

Hensel lifting is a tool for solving polynomial equations of the form F (x) ≡ 0 (mod pe)
where p is prime and e ∈ N>1. One application of Hensel lifting is the Takagi variant of
RSA, see Example 24.1.6. The key idea is given in the following Lemma.

Lemma 2.13.1. Let F (x) ∈ Z[x] be a polynomial and p a prime. Let xk ∈ Z satisfy
F (xk) ≡ 0 (mod pk) where k ∈ N. Suppose F ′(xk) 6≡ 0 (mod p). Then one can compute
xk+1 ∈ Z in polynomial-time such that F (xk+1) ≡ 0 (mod pk+1).

Proof: Write xk+1 = xk + pkz where z is a variable. Note that F (xk+1) ≡ 0 (mod pk).
One has

F (xk+1) ≡ F (xk) + pkF ′(xk)z (mod pk+1).

Setting z = −(F (xk)/pk)F ′(xk)−1 (mod p) gives F (xk+1) ≡ 0 (mod pk+1). �

Example 2.13.2. We solve the equation

x2 ≡ 7 (mod 33).

Let f(x) = x2 − 7. First, the equation f(x) ≡ x2 − 1 (mod 3) has solutions x ≡
1, 2 (mod 3). We take x1 = 1. Since f ′(1) = 2 6≡ 0 (mod 3) we can “lift” this to a solution
modulo 32. Write x2 = 1 + 3z. Then

f(x2) = x22 − 7 ≡ −6 + 6z (mod 32)

or, in other words, 1− z ≡ 0 (mod 3). This has the solution z = 1 giving x2 = 4.
Now lift to a solution modulo 33. Write x3 = 4 + 9z. Then f(x3) ≡ 9 + 72z (mod 33)

and dividing by 9 yields 1 − z ≡ 0 (mod 3). This has solution z = 1 giving x3 = 13 as
one solution to the original equation.

Exercise 2.13.3. The equation x3 ≡ 3 (mod 5) has the solution x ≡ 2 (mod 5). Use
Hensel lifting to find a solution to the equation x3 ≡ 3 (mod 53).

Exercise 2.13.4. Let F (x) ∈ Z[x] be a polynomial and p a prime. Let xk ∈ Z satisfy
F (xk) ≡ 0 (mod pk) and F ′(xk) 6≡ 0 (mod p). Show that the Hensel iteration can be
written in the form

xk+1 = xk −
F (xk)

F ′(xk)

just like Newton iteration. Show that Hensel lifting has quadratic convergence in this
case (i.e., if F (xk) ≡ 0 (mod pk) then F (xk+1) ≡ 0 (mod p2k)).

2.14 Algorithms in Finite Fields

We present some algorithms for constructing finite fields Fpm when m > 1, solving equa-
tions in them, and transforming between different representations of them.

2.14.1 Constructing Finite Fields

Lemma A.5.1 implies a randomly chosen monic polynomial in Fq[x] of degree m is irre-
ducible with probability ≥ 1/(2m). Hence, using the algorithm of Exercise 2.12.10 one
can generate a random irreducible polynomial F (x) ∈ Fq[x] of degree m, using naive
arithmetic, in O(m4 log(q)) operations in Fq. In other words, one can construct a poly-
nomial basis for Fqm in O(m4 log(q)) operations in Fq. This complexity is not the best
known.

66 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Constructing a Normal Basis

We briefly survey the literature on constructing normal bases for finite fields. We assume
that a polynomial basis for Fqm over Fq has already been computed.

The simplest randomised algorithm is to choose θ ∈ Fqm at random and test whether

the set {θ, θq, . . . , θqm−1} is linearly independent over Fq. Corollary 3.6 of von zur Gathen
and Giesbrecht [239] (also see Theorem 3.73 and Exercise 3.76 of [388, 389]) shows that
a randomly chosen θ is normal with probability at least 1/34 if m < q4 and probability
at least 1/(16 logq(m)) if m ≥ q4.

Exercise 2.14.1. Determine the complexity of constructing a normal basis by randomly
choosing θ.

When q > m(m − 1) there is a better randomised algorithm based on the following
result.

Theorem 2.14.2. Let F (x) ∈ Fq[x] be irreducible of degree m and let α ∈ Fqm be any
root of F (x). Define G(x) = F (x)/((x−α)F ′(α)) ∈ Fqm [x]. Then there are q−m(m− 1)
elements u ∈ Fq such that θ = G(u) generates a normal basis.

Proof: See Theorem 28 of Section II.N of Artin [14] or Section 3.1 of Gao [236]. �

Deterministic algorithms for constructing a normal basis have been given by Lüneburg [399]
and Lenstra [379] (also see Gao [236]).

2.14.2 Solving Quadratic Equations in Finite Fields

This section is about solving quadratic equations x2 + ax + b = 0 over Fq. One can
apply any of the algorithms for polynomial factorisation mentioned earlier. As we saw in
Exercise 2.12.6, when q is odd, the basic method computes roots in O(log(q)M(log(q)))
bit operations. When q is odd it is also natural to use the quadratic formula and a
square-roots algorithm (see Section 2.9).

Exercise 2.14.3. Generalise the Tonelli-Shanks algorithm from Section 2.9 to work
for any finite field Fq where q is odd. Show that the complexity remains an expected
O(log(q)2M(log(q))) bit operations.

Exercise 2.14.4. Suppose Fq2 is represented as Fq(θ) where θ2 ∈ Fq. Show that one
can compute square roots in Fq2 using two square roots in Fq and a small number of
multiplications in Fq.

Since squaring in F2m is a linear operation one can take square roots in F2m using
linear algebra in O(m3) bit operations. The following exercise gives a method that is
more efficient.

Exercise 2.14.5. Suppose one represents F2m using a polynomial basis F2[x]/(F (x)).

Precompute
√
x as a polynomial in x. Let g =

∑m−1
i=0 aix

i. To compute
√
g write

(assuming m is odd; the case of m even is similar)

g =
(
a0 + a2x

2 + · · ·+ am−1x
m−1

)
+ x

(
a1 + a3x

2 + · · ·+ am−2x
m−3

)
.

Show that

√
g =

(
a0 + a2x+ · · ·xm−1x

(m−1)/2
)

+
√
x
(
a1 + a3x+ · · ·+ am−2x

(m−3)/2
)
.

Show that this computation takes roughly half the cost of one field multiplication, and
hence O(m2) bit operations.

2.14. ALGORITHMS IN FINITE FIELDS 67

Exercise 2.14.6. Generalise Exercise 2.14.5 to computing p-th roots in Fpm . Show that
the method requires (p− 1) multiplications in Fpm .

We now consider how to solve quadratic equations of the form

x2 + x = α (2.5)

where α ∈ F2m .

Exercise 2.14.7.⋆ Prove that the equation x2 + x = α has a solution x ∈ F2m if and
only if TrF2m/F2

(α) = 0.

Lemma 2.14.8. If m is odd (we refer to Section II.2.4 of [64] for the case where m is
even) then a solution to equation (2.5) is given by the half trace

x =

(m−1)/2∑

i=0

α22i . (2.6)

Exercise 2.14.9. Prove Lemma 2.14.8. Show that the complexity of solving quadratic
equations in Fq when q = 2m and m is odd is an expected O(m3) bit operations (or
O(m2) bit operations when a normal basis is being used).

The expected complexity of solving quadratic equations in F2m when m is even is
O(m4) bit operations, or O(m3) when a normal basis is being used. Hence, we can make
the statement that the complexity of solving a quadratic equation over any field Fq is an
expected O(log(q)4) bit operations.

2.14.3 Isomorphisms Between Finite Fields

Computing the Minimal Polynomial of an Element

Given g ∈ Fqm one can compute the minimal polynomial F (x) of g over Fq using linear
algebra. To do this one considers the set Sn = {1, g, g2, . . . , gn} for n = 1, . . . ,m. Let
n be the smallest integer such that Sn is linearly dependent over Fq. Then there are
a0, . . . , an ∈ Fq such that

∑n
i=0 aig

i = 0. Since Sn−1 is linearly independent it follows
that F (x) =

∑n
i=0 aix

i is the minimal polynomial for g.

Exercise 2.14.10. Show that the above algorithm requires O(m3) operations in Fq.

Computing a Polynomial Basis for a Finite Field

Suppose Fqm is given by some basis that is not a polynomial basis. We now give a method
to compute a polynomial basis for Fqm .

If g ∈ Fqm is chosen uniformly at random then, by Lemma A.8.4, with probability
at least 1/q the element g does not lie in a subfield of Fqm that contains Fq. Hence the
minimal polynomal F (x) of g over Fq has degree m and the algorithm of the previous
subsection computes F (x). One therefore has a polynomial basis {1, x, . . . , xm−1} for Fqm
over Fq.

Exercise 2.14.11. Determine the complexity of this algorithm.

68 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Computing Isomorphisms Between Finite Fields

Suppose one has two representations for Fqm as a vector space over Fq and wants to
compute an isomorphism between them. We do this in two stages: first we compute
an isomorphism from any representation to a polynomial basis, and second we compute
isomorphisms between any two polynomial bases. We assume that one already has an
isomorphism between the corresponding representations of the subfield Fq.

Let {θ1, . . . , θm} be the vector space basis over Fq for one of the representations of
Fqm . The first task is to compute an isomorphism from this representation to a polynomial
representation. To do this one computes a polynomial basis for Fqm over Fq using the
method above. One now has a monic irreducible polynomial F (x) ∈ Fq[x] of degree m and
a representation x =

∑m
i=1 aiθi for a root of F (x) in Fqm . Determine the representations of

x2, x3, . . . , xm over the basis {θ1, . . . , θm}. This gives an isomorphism from Fq[x]/(F (x))
to the original representation of Fqm . By solving a system of linear equations, one can
express each of θ1, . . . , θm with respect to the polynomial basis; this gives the isomorphism
from the original representation to Fq[x]/(F (x)). The above ideas appear in a special case
in the work of Zierler [641].

Exercise 2.14.12. Determine the complexity of the above algorithm to give an isomor-
phism between an arbitrary vector space representation of Fqm and a polynomial basis
for Fqm .

Finally, it remains to compute an isomorphism between any two polynomial rep-
resentations Fq[x]/(F1(x)) and Fq[y]/(F2(y)) for Fqm . This is done by finding a root
a(y) ∈ Fq[y]/(F2(y)) of the polynomial F1(x). The function x 7→ a(y) extends to a field
isomorphism from Fq[x]/(F1(x)) to Fq[y]/(F2(y)). The inverse to this isomorphism is
computed by linear algebra.

Exercise 2.14.13. Determine the complexity of the above algorithm to give an isomor-
phism between an arbitrary vector space representation of Fqm and a polynomial basis
for Fqm .

See Lenstra [379] for deterministic algorithms to solve this problem.

Random Sampling of Finite Fields

Let Fpm be represented as a vector space over Fp with basis {θ1, . . . , θm}. Generating
an element g ∈ Fpm uniformly at random can be done by selecting m integers a1, . . . , am
uniformly at random in the range 0 ≤ ai < p and taking g =

∑m
i=1 aiθi. Section 11.4

mentions some methods to get random integers modulo p from random bits.
To sample uniformly from F∗

pm one can use the above method, repeating the process
if ai = 0 for all 1 ≤ i ≤ m. This is much more efficient than choosing 0 ≤ a < pm − 1
uniformly at random and computing g = γa where γ is a primitive root.

2.15 Computing Orders of Elements and Primitive Roots

We first consider how to determine the order of an element g ∈ F∗
q . Assume the factori-

sation q − 1 =
∏m
i=1 l

ei
i is known.10 Then it is sufficient to determine, for each i, the

10As far as I am aware, it has not been proved that computing the order of an element in F∗

q is equivalent
to factoring q− 1; or even that computing the order of an element in Z∗

N is equivalent to factoring ϕ(N).
Yet it seems to be impossible to correctly determine the order of every g ∈ F∗

q without knowing the
factorisation of q − 1.

2.15. COMPUTING ORDERS OF ELEMENTS AND PRIMITIVE ROOTS 69

smallest 0 ≤ f ≤ ei such that

g(q−1)/lfi = 1.

This leads to a simple algorithm for computing the order of g that requires O(log(q)4)
bit operations.

Exercise 2.15.1. Write pseudocode for the basic algorithm for determining the order of
g and determine the complexity.

The next subsection gives an algorithm (also used in other parts of the book) that
leads to an improvement of the basic algorithm.

2.15.1 Sets of Exponentials of Products

We now explain how to compute sets of the form {g(q−1)/l : l | (q − 1)} efficiently. We
generalise the problem as follows. Let N1, . . . , Nm ∈ N and N =

∏m
i=1Ni (typically the

integers Ni will be coprime, but it is not necessary to assume this). Let k = ⌈log2(m)⌉
and, for m < i ≤ 2k set Ni = 1. Let G be a group and g ∈ G (where g typically has order
≥ N). The goal is to efficiently compute

{gN/Ni : 1 ≤ i ≤ m}.

The naive approach (computing each term separately and not using any window methods
etc) requires at least

m∑

i=1

log(N/Ni) = m log(N)−
m∑

i=1

log(Ni) = (m− 1) log(N)

operations in G and at most 2m log(N) operations in G.
For the improved solution one re-uses intermediate values. The basic idea can be

seen in the following example. Computing products in such a way is often called using a
product tree.

Example 2.15.2. Let N = N1N2N3N4 and suppose one needs to compute

gN1N2N3 , gN1N2N4 , gN1N3N4 , gN2N3N4 .

We first compute

h1,1 = gN3N4 and h1,2 = gN1N2

in ≤ 2(log2(N1N2) + log2(N3N4)) = 2 log2(N) operations. One can then compute the
result

gN1N2N3 = hN3
1,2, g

N1N2N4 = hN4
1,2, g

N1N3N4 = hN1
1,1, g

N2N3N4 = hN2
1,1.

This final step requires at most 2(log2(N3)+ log2(N4)+ log2(N1)+ log2(N2)) = 2 log2(N)
operations. The total complexity is at most 4 log2(N) operations in the group.

The algorithm has a compact recursive description. Let F be the function that on
input (g,m,N1, . . . , Nm) outputs the list of m values gN/Ni for 1 ≤ i ≤ m where N =
N1 · · ·Nm. Then F (g, 1, N1) = g. For m > 1 one computes F (g,m,N1, . . . , Nm) as fol-
lows: Let l = ⌊m/2⌋ and let h1 = gN1···Nl and h2 = gNl+1···Nm . Then F (g,m,N1, . . . , Nm)
is equal to the concatenation of F (h1, (m− l), Nl+1, . . . , Nm) and F (h2, l, N1, . . . , Nl).

We introduce some notation to express the algorithm in a non-recursive format.

70 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Definition 2.15.3. Define S = {1, 2, 3, . . . , 2k}. For 1 ≤ l ≤ k and 1 ≤ j ≤ 2l define

Sl,j = {i ∈ S : (j − 1)2k−l + 1 ≤ i ≤ j2k−l}

Lemma 2.15.4. Let 1 ≤ l ≤ k and 1 ≤ j ≤ 2l. The sets Sl,j satisfy:

1. #Sl,j = 2k−l;

2. Sl,j ∩ Sl,j′ = ∅ if j 6= j′;

3. ∪2lj=1Sl,j = S for all 1 ≤ l ≤ k;
4. If l ≥ 2 and 1 ≤ j ≤ 2l−1 then Sl−1,j = Sl,2j−1 ∪ Sl,2j ;
5. Sk,j = {j} for 1 ≤ j ≤ 2k.

Exercise 2.15.5. Prove Lemma 2.15.4.

Definition 2.15.6. For 1 ≤ l ≤ k and 1 ≤ j ≤ 2l define

hl,j = g
∏
j∈S−Sl,j

Ni
.

To compute {hk,j : 1 ≤ j ≤ m} efficiently one notes that if l ≥ 2 and 1 ≤ j ≤ 2l then,
writing j1 = ⌈j/2⌉,

hl,j = h

∏
i∈Sl−1,j1

−Sl,j
Ni

l−1,j1
.

This leads to Algorithm 4.

Algorithm 4 Computing Set of Exponentials of Products

Input: N1, . . . , Nm
Output: {gN/Ni : 1 ≤ i ≤ m}
1: k = ⌈log2(m)⌉
2: h1,1 = gN2k−1+1

···N
2k , h1,2 = gN1···N2k−1

3: for l = 2 to k do
4: for j = 1 to 2l do
5: j1 = ⌈j/2⌉
6: hl,j = h

∏
i∈Sl−1,j1

−Sl,j
Ni

l−1,j1
7: end for
8: end for
9: return {hk,1, . . . , hk,m}

Lemma 2.15.7. Algorithm 4 is correct and requires ≤ 2⌈log2(m)⌉ log(N) group opera-
tions.

Proof: Almost everything is left as an exercise. The important observation is that lines
4 to 7 involve raising to the power Ni for all i ∈ S. Hence the cost for each iteration of

the loop in line 3 is at most 2
∑2k

i=1 log2(Ni) = 2 log2(N). �

This method works efficiently in all cases (i.e., it doesn’t require m to be large).
However, Exercise 2.15.8 shows that for small values of m there may be more efficient
solutions.

Exercise 2.15.8. Let N = N1N2N3 where Ni ≈ N1/3 for 1 ≤ i ≤ 3. One can compute
gN/Ni for 1 ≤ i ≤ 3 using Algorithm 4 or in the “naive” way. Suppose one uses the

2.15. COMPUTING ORDERS OF ELEMENTS AND PRIMITIVE ROOTS 71

standard square-and-multiply method for exponentiation and assume that each of N1, N2

and N3 has Hamming weight about half their bit-length.
Note that the exponentiations in the naive solution are all with respect to the fixed

base g. A simple optimisation is therefore to precompute all g2
j

for 1 ≤ j ≤ log2(N2/3).
Determine the number of group operations for each algorithm if this optimisation is
performed. Which is better?

Remark 2.15.9. Sutherland gives an improved algorithm (which he calls the snowball
algorithm) as Algorithm 7.4 of [596]. Proposition 7.3 of [596] states that the complexity
is

O(log(N) log(m)/ log(log(m))) (2.7)

group operations.

2.15.2 Computing the Order of a Group Element

We can now return to the original problem of computing the order of an element in a
finite field.

Theorem 2.15.10. Let g ∈ F∗
q and assume that the factorisation q − 1 =

∏m
i=1 l

ei
i is

known. Then one can determine the order of g in O(log(q) log log(q)) multiplications in
Fq.

Proof: The idea is to use Algorithm 4 to compute all hi = g(q−1)/l
ei
i . Sincem = O(log(q))

this requires O(log(q) log log(q)) multiplications in Fq. One can then compute all h
lfi
i for

1 ≤ f < ei and, since
∏m
i=1 l

ei
i = q − 1 this requires a further O(log(q)) multiplications.

�

The complexity in Theorem 2.15.10 cannot be improved toO(log(q) log log(q)/ log(log(log(q))))
using the result of equation (2.7) because the value m is not always Θ(log(q)).

2.15.3 Computing Primitive Roots

Recall that F∗
q is a cyclic group and that a primitive root in F∗

q is an element of order
q − 1. We assume in this section that the factorisation of q − 1 is known.

One algorithm to generate primitive roots is to choose g ∈ F∗
q uniformly at random

and to compute the order of g using the method of Theorem 2.15.10 until an element
of order q − 1 is found. The probability that a random g ∈ F∗

q is a primitive root is
ϕ(q−1)/(q−1). Using Theorem A.3.1 this probability is at least 1/(6 log(log(q))). Hence
this gives an algorithm that requires O(log(q)(log(log(q)))2) field multiplications in Fq.

We now present a better algorithm for this problem, which works by considering the
prime powers dividing q − 1 individually. See Exercise 11.2 of Section 11.1 of [556] for
further details.

Theorem 2.15.11. Algorithm 5 outputs a primitive root. The complexity of the algorithm
is O(log(q) log log(q)) multiplications in Fq.

Proof: The values gi are elements of order dividing leii . If g
l
ei−1

i
i 6= 1 then gi has order

exactly leii . One completion of the while loop the value t is the product of m elements of
maximal coprime orders leii . Hence t is a primitive root.

Each iteration of the while loop requires O(log(q) log log(q)) multiplications in Fq. It
remains to bound the number of iterations of the loop. First note that, by the Chinese
remainder theorem, the gi are independent and uniformly at random in subgroups of

72 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Algorithm 5 Computing a primitive root in F∗
q

Input: q,m, {(li, ei)} such that q − 1 =
∏m
i=1 l

ei
i and the li are distinct primes

Output: primitive root g
1: Let S = {1, . . . ,m}
2: t = 1
3: while S 6= ∅ do
4: Choose g ∈ F∗

q uniformly at random

5: Compute gi = g(q−1)/l
ei
i for 1 ≤ i ≤ m using Algorithm 4

6: for i ∈ S do

7: if g
l
ei−1

i

i 6= 1 then
8: t = tgi
9: Remove i from S

10: end if
11: end for
12: end while
13: return t

order leii . Hence, the probability that g
l
ei−1

i

i = 1 is 1/li ≤ 1/2 and the expected number
of trials for any given value gi less than or equal to 2. Hence, the expected number of
iterations of the while loop is less than or equal to 2. This completes the proof. �

2.16 Fast Evaluation of Polynomials at Multiple Points

We have seen that one can evaluate a univariate polynomial at a field element efficiently
using Horner’s rule. For some applications, for example the attack on small CRT expo-
nents for RSA in Section 24.5.2, one must evaluate a fixed polynomial repeatedly at lots
of field elements. Naively repeating Horner’s rule n times would give a total cost of n2

multiplications. This section shows one can solve this problem more efficiently than the
naive method.

Theorem 2.16.1. Let F (x) ∈ k[x] have degree n and let x1, . . . , xn ∈ k. Then one can
compute {F (x1), . . . , F (xn)} in O(M(n) log(n)) field operations. The storage requirement
is O(n log(n)) elements of k .

Proof: (Sketch) Let t = ⌈log2(n)⌉ and set xi = 0 for n < i ≤ 2t. For 0 ≤ i ≤ t and
1 ≤ j ≤ 2t−i define

Gi,j(x) =

j2i∏

k=(j−1)2i+1

(x− xk).

One computes theGi,j(x) for i = 0, 1, . . . , t using the formulaGi,j(x) = Gi−1,2j−1(x)Gi−1,2j(x).
(This is essentially the same trick as Section 2.15.1.) For each i one needs to store n el-
ements of k to represent all the polynomials Gi,j(x). Hence, the total storage is n log(n)
elements of k.

Once all the Gi,j(x) have been computed one defines, for 0 ≤ i ≤ t, 1 ≤ j ≤ 2t−i the
polynomials Fi,j(x) = F (x) (mod Gi,j(x)). One computes Ft,0(x) = F (x) (mod Gt,0(x))
and then computes Fi,j(x) efficiently as Fi+1,⌊(j+1)/2⌋(x) (mod Gi,j(x)) for i = t − 1
downto 0. Note that F0,j(x) = F (x) (mod (x− xj)) = F (xj) as required.

One can show that the complexity is O(M(n) log(n)) operations in k. For details see
Theorem 4 of [611], Section 10.1 of [238] or Corollary 4.5.4 of [88]. �

2.17. PSEUDORANDOM GENERATION 73

Exercise 2.16.2. Show that Theorem 2.16.1 also holds when the field k is replaced by a
ring.

The inverse problem (namely, determining F (x) from the n pairs (xj , F (xj))) can also
be solved in O(M(n) log(n)) field operations; see Section 10.2 of [238].

2.17 Pseudorandom Generation

Many of the above algorithms, and also many cryptographic systems, require generation of
random or pseudorandom numbers. The precise definitions for random and pseudorandom
are out of the scope of this book, as is a full discussion of methods to extract almost perfect
randomness from the environment and methods to generate pseudorandom sequences from
a short random seed.

There are pseudorandom number generators related to RSA (the Blum-Blum-Shub
generator) and discrete logarithms. Readers interest to learn more about this topic should
consult Chapter 5 of [418], Chapter 3 of [343], Chapter 30 of [16], or [398].

2.18 Summary

Table 2.18 gives a brief summary of the complexities for the algorithms discussed in this
chapter. The notation used in the table is n ∈ N, a, b ∈ Z, p is a prime, q is a prime
power and k is a field. Recall that M(m) is the number of bit operations to multiply
two m-bit integers (which is also the number of operations in k to multiply two degree-m
polynomials over a field k). Similarly, M(d, q) is the number of bit operations to multiply
two degree-d polynomials in Fq[x].

Table 2.18 gives the asymptotic complexity for the algorithms that are used in crypto-
graphic applications (i.e., for integers of, say, at most 10,000 bits). Many of the algorithms
are randomised and so the complexity in those cases is the expected complexity. The
reader is warned that the best possible asymptotic complexity may be different: some-
times it is sufficient to replace M(m) by m log(m) log(log(m)) to get the best complexity,
but in other cases (such as constructing a polynomial basis for Fqm) there are totally
different methods that have better asymptotic complexity. In cryptographic applications
M(m) typically behaves as M(m) = O(m2) or M(m) = O(m1.585).

The words “k-operations” includes additions, multiplications and inversions in k. If
inversions in k are not required in the algorithm then we say “k multiplications”.

74 CHAPTER 2. BASIC ALGORITHMIC NUMBER THEORY

Table 2.1: Expected complexity of basic algorithms for numbers of size relevant for cryp-
tography and related applications. The symbol ∗ indicates that better asymptotic com-
plexities are known.
Computational problem Expected complexity for cryptography
Multiplication of m-bit integers, M(m) O(m2) or O(m1.585) bit operations
Compute ⌊a/n⌋, a (mod n) O((log(|a|) − log(n)) log(n))

or O(M(log(|a|)) bit operations

Compute ⌊
√

|a|⌋ O(M(log(|a|))) bit operations
Extended gcd(a, b) where a and b are m-bit integers O(m2) or O(M(m) log(m)) bit operations
Legendre/Jacobi symbol (a

n
), |a| < n O(log(n)2) or

O(M(log(n)) log(log(n))) bit operations
Multiplication modulo n O(M(log(n))) bit operations
Inversion modulo n O(log(n)2) or O(M(log(n)) log(n)) bit operations
Compute gm (mod n) O(log(m)M(log(n))) bit operations
Compute square roots in F∗

q (q odd) O(log(q)M(log(q))) bit operations
Multiplication of two degree d polys in k[x] O(M(d)) k-multiplications
Multiplication of two degree d polys in Fq[x], M(d, q) O(M(d log(dq))) bit operations
Inversion in k[x]/(F (x)) where deg(F (x)) = d O(d2) or O(M(d) log(d)) k-operations
Multiplication in Fqm O(M(m)) operations in Fq ∗
Evaluate degree d polynomial at α ∈ k O(d) k-operations
Find all roots in Fq of a degree d polynomial in Fq[x] O(log(d) log(q)d2) Fq-operations ∗
Find one root in Fq of a degree d polynomial in Fq[x] O(log(dq)M(d, q)) bit operations
Determine if degree d poly over Fq is irreducible O(d3 log(q)) Fq-operations ∗
Factor degree d polynomial over Fq O(d3 log(q)) Fq-operations ∗
Construct polynomial basis for Fqm O(m4 log(q)) Fq-operations ∗
Construct normal basis for Fqm given a poly basis O(m3 logq(m)) Fq-operations ∗
Solve quadratic equations in Fq O(log(q)4) bit operations ∗
Compute the minimal poly over Fq of α ∈ Fqm O(m3) Fq-operations
Compute an isomorphism between repns of Fqm O(m3) Fq-operations
Compute order of α ∈ F∗

q given factorisation of q − 1 O(log(q) log(log(q))) Fq-multiplications
Compute primitive root in F∗

q given factorisation of q − 1 O(log(q) log(log(q))) Fq-multiplications
Compute f(αj) ∈ k for f ∈ k[x] of degree n O(M(n) log(n)) k-multiplications
and α1, . . . , αn ∈ k

Chapter 3

Hash Functions and MACs

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Hash functions are important tools in cryptography. In public key cryptography,
they are used in key derivation functions, digital signatures and message authentication
codes. We are unable to give a thorough presentation of hash functions. Instead, we
refer to Chapter 4 of Katz and Lindell [334], Chapter 9 of Menezes, van Oorschot and
Vanstone [418], Chapter 4 of Stinson [592] or Chapter 3 of Vaudenay [616].

3.1 Security Properties of Hash Functions

Definition 3.1.1. A cryptographic hash function is a deterministic algorithm H
that maps bitstrings of arbitrary finite length (we denote the set of arbitrary finite length
bitstrings by {0, 1}∗) to bitstrings of a fixed length l (e.g., l = 160 or l = 256). A
cryptographic hash family is a set of functions {Hk : k ∈ K}, for some finite set K,
such that each function in the family is of the form Hk : {0, 1}∗ → {0, 1}l.

The value k that specifies a hash function Hk from a hash family is called a key, but
in many applications the key is not kept secret (an exception is message authentication
codes). We now give an informal description of the typical security properties for hash
functions.

1. Preimage-resistance: Given an l-bit string y it should be computationally infea-
sible to compute a bitstring x such that H(x) = y.

2. Second-preimage-resistance: Given a bitstring x and a bitstring y = H(x)
it should be computationally infeasible to compute a bitstring x′ 6= x such that
H(x′) = y.

3. Collision-resistance: It should be computationally infeasible to compute bit-
strings x 6= x′ such that H(x) = H(x′).

75

76 CHAPTER 3. HASH FUNCTIONS AND MACS

In general one expects that for any y ∈ {0, 1}l there are infinitely many bitstrings x
such that H(x) = y. Hence, all the above problems will have many solutions.

To obtain a meaningful definition for collision-resistance it is necessary to consider
hash families rather than hash functions. The problem is that an efficient adversary for
collision-resistance against a fixed hash function H is only required to output a pair {x, x′}
of messages. As long as such a collision exists then there exists an efficient algorithm that
outputs one (namely, an algorithm that has the values x and x′ hard-coded into it). Note
that there is an important distinction here between the running time of the algorithm
and the running time of the programmer (who is obliged to compute the collision as part
of their task). A full discussion of this issue is given by Rogaway [500]; also see Section
4.6.1 of Katz and Lindell [334].

Intuitively, if one can compute preimages then one can compute second-preimages
(though some care is needed here to be certain that the value x′ output by a pre-image
oracle is not just x again; Note 9.20 of Menezes, van Oorschot and Vanstone [418] gives
an artificial hash function that is second-preimage-resistant but not preimage-resistant).
Similarly, if one can compute second-preimages then one can find collisions. Hence, in
practice we prefer to study hash families that offer collision-resistance. For more details
about these relations see Section 4.6.2 of [334], Section 4.2 of [592] or Section 10.3 of [572].

Another requirement of hash families is that they be entropy smoothing: If G is
a “sufficiently large” finite set (i.e., #G ≫ 2l) with a “sufficiently nice” distribution
on it (but not necessarily uniform) then the distribution on {0, 1}l given by Pr(y) =∑

x∈G:H(x)=y Pr(x) is “close” to uniform. We do not make this notion precise, but refer

to Section 6.9 of Shoup [556].
In Section 23.2 we will need the following security notion for hash families (which is

just a re-statement of second-preimage resistance).

Definition 3.1.2. Let X and Y be finite sets. A hash family {Hk : X → Y : k ∈ K} is
called target-collision-resistant if there is no polynomial-time adversary A with non-
negligible advantage in the following game: A receives x ∈ X and a key k ∈ K, both chosen
uniformly at random, then outputs an x′ ∈ X such that x′ 6= x and Hk(x′) = Hk(x).

For more details about target-collision-resistant hash families we refer to Section 5 of
Cramer and Shoup [161].

3.2 Birthday Attack

Computing pre-images for a general hash function with l-bit output is expected to take
approximately 2l computations of the hash algorithm, but one can find collisions much
more efficiently. Indeed, one can find collisions in roughly

√
π2l−1 applications of the

hash function using a randomised algorithm as follows: Choose a subset D ⊂ {0, 1}l
of distinguished points (e.g., those whose κ least significant bits are all zero, for some
0 < κ < l/4). Choose random starting values x0 ∈ {0, 1}l (Joux [317] suggests that these
should be distinguished points) and compute the sequence xn = H(xn−1) for n = 1, 2, . . .
until xn ∈ D. Store (x0, xn) (i.e., the starting point and the ending distinguished point)
and repeat. When the same distinguished point x is found twice then, assuming the
starting points x0 and x′0 are distinct, one can find a collision in the hash function by
computing the full sequences xi and x′j and determining the smallest integers i and j such
that xi = x′j and hence the collision is H(xi−1) = H(x′j−1).

If we assume that values xi are close to uniformly distributed in {0, 1}l then, by
the birthday paradox, one expects to have a collision after

√
π2l/2 strings have been

3.3. MESSAGE AUTHENTICATION CODES 77

encountered (i.e., that many evaluations of the hash function). The storage required is
expected to be

√
π2l−1

#D
2l

pairs (x0, xn). For the choice of D as above, this would be about 2l/2−κ bitstrings of
storage. For many more details on this topic see Section 7.5 of Joux [317], Section 9.7.1
of Menezes, van Oorschot and Vanstone [418] or Section 3.2 of Vaudenay [616].

This approach also works if one wants to find collisions under some constraint on the
messages (for example, all messages have a fixed prefix or suffix).

3.3 Message Authentication Codes

Message authentication codes are a form of symmetric cryptography. The main purpose is
for a sender and receiver who share a secret key k to determine whether a communication
between them has been tampered with.

A message authentication code (MAC) is a set of functions {MACk(x) : k ∈ K}
such that MACk : {0, 1}∗ → {0, 1}l. Note that this is exactly the same definition as a hash
family. The difference between MACs and hash families lies in the security requirement;
in particular the security model for MACs assumes the adversary does not know the key
k. Informally, a MAC is secure against forgery if there is no efficient adversary that, given
pairs (xi, yi) ∈ {0, 1}∗ × {0, 1}l such that yi = MACk(xi) (for some fixed, but secret, key
k) for 1 ≤ i ≤ n, can output a pair (x, y) ∈ {0, 1}∗ × {0, 1}l such that y = MACk(x)
but (x, y) 6= (xi, yi) for all 1 ≤ i ≤ n. For precise definitions and further details of
MACs see Section 4.3 of Katz and Lindell [334], Section 9.5 of Menezes, van Oorschot
and Vanstone [418], Section 6.7.2 of Shoup [556], Section 4.4 of Stinson [592] or Section
3.4 of Vaudenay [616].

There are well-known constructions of MACs from hash functions (such as HMAC,
see Section 4.7 of [334], Section 4.4.1 of [592] or Section 3.4.6 of [616]) and from block
ciphers (such as CBC-MAC, see Section 4.5 of [334], Section 4.4.2 of [592] or Section 3.4.4
of [616]).

3.4 Constructions of Hash Functions

There is a large literature on constructions of hash functions and it is beyond the scope of
this book to give the details. The basic process is to first define a compression function
(namely a function that takes bitstrings of a fixed length to bitstrings of some shorter
fixed length) and then to build a hash function on arbitrary length bitstrings by iterating
the compression function (e.g., using the Merkle-Damg̊ard construction). We refer to
Chapter 4 of Katz and Lindell [334], Sections 9.3 and 9.4 of Menezes, van Oorschot and
Vanstone [418], Chapter 10 of Smart [572], Chapter 4 of Stinson [592] or Chapter 3 of
Vaudenay [616] for the details.

3.5 Number-Theoretic Hash Functions

We briefly mention some compression functions and hash functions that are based on
algebraic groups and number theory. These schemes are not usually used in practice as
the computational overhead is usually much too high.

78 CHAPTER 3. HASH FUNCTIONS AND MACS

An early proposal for hashing based on number theory, due to Davies and Price, was to
use the function H(x) = x2 (mod N) where N is an RSA modulus whose factorisation is
not known. Inverting such a function or finding collisions (apart from the trivial collisions
H(x) = H(±x+ yN) for y ∈ Z) is as hard as factoring N . There are a number of papers
that build on this idea.

Another approach to hash functions based on factoring is to let N be an RSA mod-
ulus whose factorisation is unknown and let g ∈ (Z/NZ)∗ be fixed. One can define the
compression function H : N→ (Z/NZ)∗ by

H(x) = gx (mod N).

Finding a collision H(x) = H(x′) is equivalent to finding a multiple of the order of g.
This is hard if factoring is hard, by Exercise 24.1.20. Finding pre-images is the discrete
logarithm problem modulo N , which is also as hard as factoring. Hence, we have a
collision-resistant compression function. More generally, fix g, h ∈ (Z/NZ)∗ and consider
the compression function H : N × N → (Z/NZ)∗ defined by H(x, y) = gxhy (mod N).
A collision leads to either finding the order of g or h, or essentially finding the discrete
logarithm of h with respect to g, and all these problems are as hard as factoring.

One can also base hash functions on the discrete logarithm problem in any group
G. Let g, h ∈ G have order r. One can now consider the compression function H :
{0, . . . , r − 1}2 → G by H(x, y) = gxhy (mod p). It is necessary to fix the domain of
the function since H(x, y) = H(x + r, y) = H(x, y + r). If one can find collisions in this
function then one can compute the discrete logarithm of h to the base g. A reference for
this scheme is Chaum, van Heijst and Pfitzmann [130].

3.6 Full Domain Hash

Hash functions usually output binary strings of some fixed length l. Some cryptosystems,
such as full domain hash RSA signatures, require hashing uniformly (or, at least, very
close to uniformly) to Z/NZ, where N is large.

Bellare and Rogaway gave two methods to do this (one in Section 6 of [38] and another
in Appendix A of [41]). We briefly recall the latter. The idea is to take some hash function
H with fixed length output and define a new function h(x) using a constant bitstring c
and a counter i as

h(x) = H(c‖0‖x) ‖H(c‖1‖x) ‖ · · · ‖H(c‖i‖x).

For the RSA application one can construct a bitstring that is a small amount larger than
N and then reduce the resulting integer modulo N (as in Example 11.4.2).

These approaches have been critically analysed by Leurent and Nguyen [385]. They
give a number of results that demonstrate that care is needed in assessing the security
level of a hash function with “full domain” output.

3.7 Random Oracle Model

The random oracle model is a tool for the security analysis of cryptographic systems. It is
a computational model that includes the standard model (i.e., the computational model
mentioned in Section 2.1) together with an oracle that computes a “random” function from
the set {0, 1}∗ (i.e., binary strings of arbitrary finite length) to {0, 1}∞ (i.e., bitstrings of
countably infinite length). Since the number of such functions is uncountable, care must

3.7. RANDOM ORACLE MODEL 79

be taken when defining the word “random”. In any given application, one has a fixed
bit-length l in mind for the output, and one also can bound the length of the inputs.
Hence, one is considering functions H : {0, 1}n → {0, 1}l and, since there are l2n such
functions we can define “random” to mean uniformly chosen from the set of all possible
functions. We stress that a random oracle is a function: if it is queried twice on the same
input then the output is the same.

A cryptosystem in the random oracle model is a cryptosystem where one or more
hash functions are replaced by oracle queries to the random function. A cryptosystem is
secure in the random oracle model if the cryptosystem in the random oracle model
is secure. This does not imply that the cryptosystem in the standard model is secure,
since there may be an attack that exploits some feature of the hash function. Indeed,
there are “artificial” cryptosystems that are proven secure in the random oracle model,
but that are insecure for any instantiation of the hash function (see Canetti, Goldreich
and Halevi [115]).

The random oracle model enables security proofs in several ways. We list three of
these ways, in increasing order of power.

1. It ensures that the output of H is truly random (rather than merely pseudorandom).

2. It allows the security proof to “look inside” the working of the adversary by learning
the values that are inputs to the hash function.

3. It allows the security proof to “programme” the hash function so that it outputs a
specific value at a crucial stage in the security game.

A classic example of a proof in the random oracle model is Theorem 20.4.11. An extensive
discussion of the random oracle model is given in Section 13.1 of Katz and Lindell [334].

Since a general function from {0, 1}n to {0, 1}l cannot be represented more compactly
than by a table of values, a random oracle requires l2n bits to describe. It follows that
a random oracle cannot be implemented in polynomial space. However, the crucial ob-
servation that is used in security proofs is that a random oracle can be simulated in
polynomial-time and space (assuming only polynomially many queries to the oracle are
made) by creating, on-the-fly, a table giving the pairs (x, y) such that H(x) = y.

80 CHAPTER 3. HASH FUNCTIONS AND MACS

Part II

Algebraic Groups

81

Chapter 4

Preliminary Remarks on
Algebraic Groups

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

For efficient public key cryptography based on discrete logarithms one would like to
have groups for which computing gn is as fast as possible, the representation of group
elements is as small as possible, and for which the DLP (see Definition 2.1.1 or 13.0.1) is
(at least conjecturally) as hard as possible.

If g is a group element of order r then one needs at least log2(r) bits to represent
an arbitrary element of 〈g〉. This optimal size can be achieved by using the exponent
representation, i.e., represent ga as a ∈ Z/rZ. However, the DLP is not hard when this
representation is used.

Ideally, for any cyclic group G of order r, one would like to be able to represent
arbitrary group elements (in a manner which does not then render the DLP trivial) using
roughly log2(r) bits. This can be done in some cases (e.g., elliptic curves over finite fields
with a prime number of points) but it is unlikely that it can always be done. Using
algebraic groups over finite fields is a good way to achieve these conflicting objectives.

4.1 Informal Definition of an Algebraic Group

The subject of algebraic groups is large and has an extensive literature. Instead of pre-
senting the full theory, in this book we present only the algebraic groups that are currently
believed to be useful in public key cryptography. Informally1, an algebraic group over
a field k is a group such that:

• Group elements are specified as n-tuples of elements in a field k;

1We refrain from giving a formal definition of algebraic groups; mainly as it requires defining products
of projective varieties.

83

84 CHAPTER 4. PRELIMINARY REMARKS ON ALGEBRAIC GROUPS

• The group operations (multiplication and inversion) can be performed using only
polynomial equations (or ratios of polynomials) defined over k. In other words, we
have polynomial or rational maps mult : k2n → kn and inverse : kn → kn. There
is not necessarily a single n-tuple of polynomial equations that defines mult for all
possible pairs of group elements.

An algebraic group quotient is the set of equivalence classes of an algebraic group
under some equivalence relation (see Section 4.3 for an example). Note that, in general,
an algebraic group quotient is not a group.

We stress that being an algebraic group is not a group-theoretic property; it is a
property of a particular description of the group. Perhaps it helps to give an example of
a group whose usual representation is not an algebraic group.

Example 4.1.1. Let n ∈ N and let Sn be the group of permutations on n symbols. Per-
mutations can be represented as an n-tuple of distinct integers from the set {1, 2, . . . , n}.
The composition (x1, . . . , xn) ◦ (y1, . . . , yn) of two permutations is (xy1 , xy2 , . . . , xyn).
Since xy1 is not a polynomial, the usual representation of Sn is not an algebraic group.
However, Sn can be represented as a subgroup of the matrix group GLn(k) (for any field
k), which is an algebraic group.

Our main interest is algebraic groups over finite fields Fq. For each example of an
algebraic group (or quotient) G we will explain how to achieve the following basic func-
tionalities:

• Efficient group operations in G (typically requiring O(log(q)2) bit operations);

• Compact representation of elements of G (typically O(log(q)) bits);

• Generating cryptographically suitable G in polynomial-time (i.e., O(log(q)c) for
some (small) c ∈ N);

• Generating random elements in G in polynomial-time;

• Hashing from {0, 1}l to G or from G to {0, 1}l in polynomial-time.

In order to be able to use an algebraic group (or quotient)G for cryptographic applications
we need some or all of these functionalities, as well as requiring the discrete logarithm
problem (and possibly other computational problems) to be hard.

We sometimes use the notation AG to mean “algebraic group in the context of this
book”; similarly AGQ means “algebraic group quotient in the context of this book”.
The aim of this part of the book is to describe the algebraic groups of relevance for
public key cryptography (namely, multiplicative groups, algebraic tori, elliptic curves and
divisor class groups). As is traditional, we will use multiplicative notation for the group
operation in multiplicative groups and tori, and additive notation for the group operation
on elliptic curves and divisor class groups of hyperelliptic curves. In Parts III and V,
when we discuss cryptographic applications, we will always use multiplicative notation
for algebraic groups.

The purpose of this chapter is to give the simplest examples of algebraic groups and
quotients. The later chapters introduce enough algebraic geometry to be able to define
the algebraic groups of interest in this book and prove some important facts about them.

4.2. EXAMPLES OF ALGEBRAIC GROUPS 85

4.2 Examples of Algebraic Groups

The simplest examples of algebraic groups are the additive group Ga and multiplica-
tive group Gm of a field k. For Ga(k) the set of points is k and the group operation
is given by the polynomial mult(x, y) = x + y (for computing the group operation) and
inverse(x) = −x (for computing inverses). For Gm(k) the set of points is k∗ = k−{0} and
the group operation is given by the polynomial mult(x, y) = xy and the rational function
inverse(x) = 1/x (Example 5.1.5 shows how to express Gm(k) as an algebraic set).

The additive group is useless for cryptography since the discrete logarithm problem
is easy. The discrete logarithm problem is also easy for the multiplicative group over
certain fields (e.g., if g ∈ R∗ then the discrete logarithm problem in 〈g〉 ⊆ R∗ is easy due
to algorithms that compute approximations to the natural logarithm function). However,
Gm(Fq) is useful for cryptography and will be one of the main examples used in this book.

The other main examples of algebraic groups in public key cryptography are algebraic
tori (see Chapter 6), elliptic curves and divisor class groups of hyperelliptic curves.

4.3 Algebraic Group Quotients

Quotients of algebraic groups are used to reduce the storage and communication require-
ments of public key cryptosystems. Let G be a group with an automorphism ψ such
that ψn = 1 (where 1 : G → G is the identity map and ψn is the n-fold composition
ψ ◦ · · · ◦ ψ). We define ψ0 = 1. Define the orbit or equivalence class of g ∈ G under
ψ to be [g] = {ψi(g) : 0 ≤ i < n}. Define the quotient as the set of orbits under ψ. In
other words

G/ψ = {[g] : g ∈ G}.
We call G the covering group of a quotient G/ψ. In general, the group structure of
G does not induce a group structure on the quotient G/ψ. Nevertheless, we can define
exponentiation on the quotient by [g]n = [gn] for n ∈ Z. Since exponentiation is the
fundamental operation for many cryptographic applications it follows that quotients of
algebraic groups are sufficient for many cryptographic applications.

Lemma 4.3.1. Let n ∈ Z and [g] ∈ G/ψ, then [g]n is well-defined.

Proof: Since ψ is a group homomorphism we have ψi(g)n = ψi(gn) and so for each
g1 ∈ [g] we have gn1 ∈ [gn]. �

The advantage of algebraic group quotients G/ψ is that they can require less storage
than the original algebraic group G. We now give an example of this.

Example 4.3.2. Let p be an odd prime. Consider the subgroup G ⊂ F∗
p2 of order p+ 1.

Note that gcd(p − 1, p + 1) = 2 so G ∩ F∗
p = {1,−1}. If g ∈ G then we have gp+1 = 1,

which is equivalent to gp = g−1. Let ψ be the automorphism ψ(g) = gp. Then ψ2 = 1 in
Fp2 and the orbits [g] in G/ψ all have size 2 except for [1] and [−1].

The natural representation for elements of G ⊆ Fp2 is a pair of elements of Fp. How-
ever, since #(G/ψ) = 2 + (p− 1)/2 one might expect to be able to represent elements of
G/ψ using just one element of Fp.

Let g ∈ G. Then the elements of [g] = {g, gp} are the roots of the equation x2− tx+ 1
in Fp2 where t = g + gp ∈ Fp. Conversely, each t ∈ Fp such that the roots of x2 − tx+ 1
are Galois conjugates corresponds to a class [g] (the values t = ±2 correspond to [1] and
[−1]). Hence, one can represent an element of G/ψ by the trace t. We therefore require
half the storage compared with the standard representation of G ⊂ Fp2 .

86 CHAPTER 4. PRELIMINARY REMARKS ON ALGEBRAIC GROUPS

In Section 6.3.2 we show that, given the trace t of g, one can compute the trace tn of
gn efficiently using Lucas sequences (though there is a slight catch, namely that we have
to work with a pair (tn, tn−1) of traces).

Another important example of an algebraic group quotient is elliptic curve arithmetic
using x-coordinates only. This is the quotient of an elliptic curve by the equivalence
relation P ≡ −P .

4.4 Algebraic Groups over Rings

Algebraic geometry is traditionally studied over fields. However, several applications
(both algorithmic and cryptographic) will exploit algebraic groups or algebraic group
quotients over Z/NZ (we do not consider general rings).

Let N =
∏k
i=1 pi be square-free (the non-square-free case is often more subtle). By the

Chinese remainder theorem, Z/NZ is isomorphic as a ring to ⊕ki=1Fpi (where ⊕ denotes
the direct sum of rings). Hence, if G is an algebraic group then it is natural to define

G(Z/NZ) =
k⊕

i=1

G(Fpi) (4.1)

(where ⊕ now denotes the direct sum of groups). A problem is that this representation
for G(Z/NZ) does not satisfy the natural generalisation to rings of our informal definition
of an algebraic group. For example, group elements are not n-tuples over the ring, but
over a collection of different fields. Also the value n is no longer bounded.

The challenge is to find a representation for G(Z/NZ) that uses n-tuples over Z/NZ
and satisfies the other properties of the informal definition. Example 4.4.1 shows that
this holds for the additive and multiplicative groups.

Example 4.4.1. Let N =
∏
i pi where the pi are distinct primes. Then, using the

definition in equation (4.1),

Ga(Z/NZ) ∼=
⊕

i

Ga(Fpi) ∼=
⊕

i

Fpi ∼= Z/NZ.

Similarly,

Gm(Z/NZ) ∼=
⊕

i

Gm(Fpi) ∼=
⊕

i

F∗
pi
∼= (Z/NZ)∗.

Hence, both groups can naturally be considered as algebraic groups over Z/NZ.

Note that Gm(Z/NZ) is not cyclic when N is square-free but not prime.
To deal with non-square-free N it is necessary to define G(Z/pnZ). The details of

this depend on the algebraic group. For Ga and Gm it is straightforward and we still
have Ga(Z/NZ) = Z/NZ and Gm(Z/NZ) = (Z/NZ)∗. For other groups it can be more
complicated.

Chapter 5

Varieties

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptogra-
phy” by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

The purpose of this chapter is to state some basic definitions and results from algebraic
geometry that are required for the main part of the book. In particular, we define algebraic
sets, irreducibility, function fields, rational maps and dimension. The chapter is not
intended as a self-contained introduction to algebraic geometry. We make the following
recommendations to the reader:

1. Readers who want a very elementary introduction to elliptic curves are advised
to consult one or more of Koblitz [348], Silverman-Tate [567], Washington [626],
Smart [572] or Stinson [592].

2. Readers who wish to learn algebraic geometry properly should first read a basic
text such as Reid [497] or Fulton [216]. They can then skim this chapter and
consult Stichtenoth [589], Moreno [439], Hartshorne [278], Lorenzini [394] or Sha-
farevich [543] for detailed proofs and discussion.

5.1 Affine algebraic sets

Let k be a perfect field contained in a fixed algebraic closure k. All algebraic extensions
k′/k are implicitly assumed to be subfields of k. We use the notation k[x] = k[x1, . . . , xn]
(in later sections we also use k[x] = k[x0, . . . , xn]). When n = 2 or 3 we often write k[x, y]
or k[x, y, z].

Define affine n-space over k as An(k) = kn. We call A1(k) the affine line and A2(k)
the affine plane over k. If k ⊆ k′ then we have the natural inclusion An(k) ⊆ An(k′).
We write An for An(k) and so An(k) ⊆ An.

Definition 5.1.1. Let S ⊆ k[x]. Define

V (S) = {P ∈ An(k) : f(P) = 0 for all f ∈ S}.

87

88 CHAPTER 5. VARIETIES

If S = {f1, . . . , fm} then we write V (f1, . . . , fm) for V (S). An affine algebraic set is a
set X = V (S) ⊂ An where S ⊂ k[x].

Let k′/k be an algebraic extension. The k′-rational points of X = V (S) are

X(k′) = X ∩ An(k′) = {P ∈ An(k′) : f(P) = 0 for all f ∈ S}.

An algebraic set V (f), where f ∈ k[x], is a hypersurface. If f(x) is a polynomial of
total degree 1 then V (f) is a hyperplane.

Informally we often write “the algebraic set f = 0” instead of V (f). For example,
y2 = x3 instead of V (y2− x3). We stress that, as is standard, V (S) is the set of solutions
over an algebraically closed field.

When an algebraic set is defined as the vanishing of a set of polynomials with coeffi-
cients in k then it is called a k-algebraic set. The phrase “defined over k” has a different
meaning and the relation between them will be explained in Remark 5.3.7.

Example 5.1.2. If X = V (x21 + x22 + 1) ⊆ A2 over Q then X(Q) = ∅. Let k = F2 and
let X = V (y8 + x6y + x3 + 1) ⊆ A2. Then X(F2) = {(0, 1), (1, 0), (1, 1)}.

Exercise 5.1.3. Let k be a field. Show that {(t, t2) : t ∈ k} ⊆ A2, {(t,±
√
t) : t ∈ k} ⊆ A2

and {(t2 + 1, t3) : t ∈ k} ⊆ A2 are affine algebraic sets.

Exercise 5.1.4. Let f(x, y) ∈ k[x, y] be a non-constant polynomial. Prove that V (f(x, y)) ⊂
A2 is an infinite set.

Example 5.1.5. Let k be a field. There is a one-to-one correspondence between the
set k∗ and the k-rational points X(k) of the affine algebraic set X = V (xy − 1) ⊂ A2.
Multiplication in the field k corresponds to the function mult : X × X → X given
by mult((x1, y1), (x2, y2)) = (x1x2, y1y2). Similarly, inversion in k∗ corresponds to the
function inverse(x, y) = (y, x). Hence we have represented k∗ as an algebraic group,
which we call Gm(k).

Example 5.1.6. Another elementary example of an algebraic group is the affine algebraic
set X = V (x2 + y2 − 1) ⊂ A2 with the group operation mult((x1, y1), (x2, y2)) = (x1x2 −
y1y2, x1y2 +x2y1). (These formulae are analogous to the angle addition rules for sine and
cosine as, over R, one can identify (x, y) with (cos(θ), sin(θ)).) The reader should verify
that the image of mult is contained in X . The identity element is (1, 0) and the inverse
of (x, y) is (x,−y). One can verify that the axioms of a group are satisfied. This group is
sometimes called the circle group.

Exercise 5.1.7. Let p ≡ 3 (mod 4) be prime and define Fp2 = Fp(i) where i2 = −1.
Show that the groupX(Fp), where X is the circle group from Example 5.1.6, is isomorphic
as a group to the subgroup G ⊆ F∗

p2 of order p+ 1.

Proposition 5.1.8. Let S ⊆ k[x1, . . . , xn].

1. V (S) = V ((S)) where (S) is the k[x]-ideal generated by S.

2. V (k[x]) = ∅ and V ({0}) = An where ∅ denotes the empty set.

3. If S1 ⊆ S2 then V (S2) ⊆ V (S1).

4. V (fg) = V (f) ∪ V (g).

5. V (f) ∩ V (g) = V (f, g).

Exercise 5.1.9. Prove Proposition 5.1.8.

5.1. AFFINE ALGEBRAIC SETS 89

Exercise 5.1.10. Show that V (S)(k) = An(k) does not necessarily imply that S = {0}.
The following result assumes a knowledge of Galois theory. See Section A.7 for back-

ground.

Lemma 5.1.11. Let X = V (S) be an algebraic set with S ⊆ k[x] (i.e., X is a k-algebraic
set). Let k′ be an algebraic extension of k. Let σ ∈ Gal(k/k′). For P = (P1, . . . , Pn)
define σ(P) = (σ(P1), . . . , σ(Pn)).

1. If P ∈ X(k) then σ(P) ∈ X(k).

2. X(k′) = {P ∈ X(k) : σ(P) = P for all σ ∈ Gal(k/k′)}.
Exercise 5.1.12. Prove Lemma 5.1.11.

Definition 5.1.13. The ideal over k of a set X ⊆ An(k) is

Ik(X) = {f ∈ k[x] : f(P) = 0 for all P ∈ X(k)}.

We define I(X) = Ik(X).1

An algebraic set X is defined over k (sometimes abbreviated to “X over k”) if I(X)
can be generated by elements of k[x].

Note that if X is an algebraic set defined over k then X is a k-algebraic set. Perhaps
surprisingly, it is not necessarily true that an algebraic set described by polynomials
defined over k is an algebraic set defined over k. In Remark 5.3.7 we will explain that
these concepts are equivalent for the objects of interest in this book.

Exercise 5.1.14. Show that Ik(X) = I(X) ∩ k[x].

The following example shows that Ik(X) is not necessarily the same as Ik(X(k)).

Example 5.1.15. Let X = V (x2 + y2) ⊂ A2 be an algebraic set over R. Then X(R) =
{(0, 0)} while X(C) = {(x,±ix) : x ∈ C}. One has IR(X) = (x2 + y2) where this
denotes an R[x, y]-ideal. Similarly, IC(X) is the C[x, y]-ideal (x2 + y2). Indeed, IC(X) =
IR(X)⊗R C. On the other hand, IR(X(R)) is the R[x, y]-ideal (x, y).

Proposition 5.1.16. Let X,Y ⊆ An be sets and J a k[x]-ideal. Then

1. Ik(X) is a k[x]-ideal.

2. X ⊆ V (Ik(X)).

3. If X ⊆ Y then Ik(Y) ⊆ Ik(X).

4. Ik(X ∪ Y) = Ik(X) ∩ Ik(Y).

5. If X is an algebraic set defined over k then V (Ik(X)) = X.

6. If X and Y are algebraic sets defined over k and Ik(X) = Ik(Y) then X = Y .

7. J ⊆ Ik(V (J)).

8. Ik(∅) = k[x].

Exercise 5.1.17. Prove Proposition 5.1.16.

Definition 5.1.18. The affine coordinate ring over k of an affine algebraic set X ⊆ An

defined over k is
k[X] = k[x1, . . . , xn]/Ik(X).

1The notation Ik(X) is not standard (Silverman [564] calls it I(X/k)), but the notation I(X) agrees
with many elementary books on algebraic geometry, since they work over an algebraically closed field.

90 CHAPTER 5. VARIETIES

Warning: Here k[X] does not denote polynomials in the variable X . Hartshorne and
Fulton write A(X) and Γ(X) respectively for the affine coordinate ring.

Exercise 5.1.19. Prove that k[X] is a commutative ring with an identity.

Note that k[X] is isomorphic to the ring of all functions f : X → k given by polyno-
mials defined over k.

Hilbert’s Nullstellensatz is a powerful tool for understanding Ik(X) and it has several
other applications (for example, we use it in Section 7.5). We follow the presentation of
Fulton [216]. Note that it is necessary to work over k.

Theorem 5.1.20. (Weak Nullstellensatz) Let X ⊆ An be an affine algebraic set defined
over k and let m be a maximal ideal of the affine coordinate ring k[X]. Then V (m) = {P}
for some P = (P1, . . . , Pn) ∈ X(k) and m = (x1 − P1, . . . , xn − Pn).

Proof: Consider the field F = k[X]/m, which contains k. Note that F is finitely
generated as a ring over k by the images of x1, . . . , xn. By Theorem A.6.2, F is an
algebraic extension of k and so F = k.

It follows that, for 1 ≤ i ≤ n, there is some Pi ∈ k such that xi − Pi ∈ m. Hence,
n = (x1 − P1, . . . , xn − Pn) ⊆ m and, since k[X]/n = k it follows that m = n.

Finally, it is clear that P ∈ V (m) and if Q = (Q1, . . . , Qn) ∈ X(k) − {P} then there
is some 1 ≤ i ≤ n such that Qi 6= Pi and so (x− Pi)(Qi) 6= 0. Hence V (m) = {P}. �

Corollary 5.1.21. If I is a proper ideal in k[x1, . . . , xn] then V (I) 6= ∅.

Proof: There is some maximal ideal m such that I ⊆ m. By Theorem 5.1.20, m =
(x1 − P1, . . . , xn − Pn) for some P = (P1, . . . , Pn) ∈ An(k) and so P ∈ V (I). �

Indeed, Corollary 5.1.21 is true when one starts with I a proper ideal in k[x1, . . . , xn];
see Lemma VIII.7.3 of [301].

We can now state the Hilbert Nullstellensatz. This form of the theorem (which
applies to Ik(V (I)) where k is not necessarily algebraically closed), appears as Proposition
VIII.7.4 of [301].

Theorem 5.1.22. Let I be an ideal in R = k[x1, . . . , xn]. Then Ik(V (I)) = radR(I) (see
Section A.9 for the definition of the radical ideal).

Proof: One has radR(I) ⊆ Ik(V (I)) since fn ∈ I implies fn(P) = 0 for all P ∈ V (I)
and so f(P) = 0 for all P ∈ V (I). For the converse suppose I = (F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn))
and G(x1, . . . , xn) ∈ Ik(V (I)). Define the k[x1, . . . , xn+1]-ideal

J = (F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn), xn+1G(x1, . . . , xn)− 1).

Then V (J) = ∅ since if P = (P1, . . . , Pn+1) ∈ An+1(k) is such that Fi(P1, . . . , Pn) = 0
for all 1 ≤ i ≤ m then G(P1, . . . , Pn) = 0 too and so one does not have Pn+1G(P) = 1. It
follows from (the stronger form of) Corollary 5.1.21 that J = (1) and so 1 ∈ J . In other
words, there are polynomials ai(x1, . . . , xn+1) ∈ k[x1, . . . , xn+1] for 1 ≤ i ≤ m + 1 such
that

1 = am+1(xn+1G− 1) +

m∑

i=1

aiFi.

Write y = 1/xn+1 and let N = 1 + max1≤i≤m+1{degxn+1
(ai)}. One has

yN = bm+1(x1, . . . , xn, y)(G− y) +
m∑

i=1

bi(x1, . . . , xn, y)Fi(x1, . . . , xn)

for some polynomials bi ∈ k[x1, . . . , xn, y]. Setting y = G proves that GN ∈ I and so
G ∈ radR(I). �

5.2. PROJECTIVE ALGEBRAIC SETS 91

Corollary 5.1.23. Let f(x, y) ∈ k[x, y] be irreducible over k and let X = V (f(x, y)) ⊂
A2(k). Then I(X) = (f(x, y)), i.e., the ideal over k[x, y] generated by f(x, y).

Proof: By Theorem 5.1.22 we have I(X) = radk((f(x, y))). Since k[x, y] is a unique
factorisation domain and f(x, y) is irreducible, then f(x, y) is prime. So g(x, y) ∈
radk((f(x, y))) implies g(x, y)n = f(x, y)h(x, y) for some h(x, y) ∈ k[x, y] which implies
f(x, y) | g(x, y) and g(x, y) ∈ (f(x, y)). �

Theorem 5.1.24. Every affine algebraic set X is the intersection of a finite number of
hypersurfaces.

Proof: By Hilbert’s basis theorem (Corollary A.9.4) k[x] is Noetherian. Hence Ik(X) =
(f1, . . . , fm) and X = V (f1) ∩ · · · ∩ V (fm). �

5.2 Projective Algebraic Sets

Studying affine algebraic sets is not sufficient for our applications. In particular, the set
of affine points of the Weierstrass equation of an elliptic curve (see Section 7.2) does not
form a group. Projective geometry is a way to “complete” the picture by adding certain
“points at infinity”.

For example, consider the hyperbola xy = 1 in A2(R). Projective geometry allows an
interpretation of the behaviour of the curve at x = 0 or y = 0; see Example 5.2.7.

Definition 5.2.1. Projective space over k of dimension n is

Pn(k) = {lines through (0, . . . , 0) in An+1(k)}.

A convenient way to represent points of Pn(k) is using homogeneous coordinates: Let
a0, a1, . . . , an ∈ k with not all aj = 0 and define (a0 : a1 : · · · : an) to be the equivalence
class of (n+ 1)-tuples under the equivalence relation

(a0, a1, · · · , an) ≡ (λa0, λa1, · · · , λan)

for any λ ∈ k∗. Thus Pn(k) = {(a0 : · · · : an) : ai ∈ k for 0 ≤ i ≤ n and ai 6=
0 for some 0 ≤ i ≤ n}. Write Pn = Pn(k).

In other words, the equivalence class (a0 : · · · : an) is the set of points on the line
between (0, . . . , 0) and (a0, . . . , an) with the point (0, . . . , 0) removed.

There is a map ϕ : An → Pn given by ϕ(x1, . . . , xn) = (x1 : · · · : xn : 1). Hence An is
identified with a subset of Pn.

Example 5.2.2. The projective line P1(k) is in one-to-one correspondence with A1(k)∪
{∞} since P1(k) = {(a0 : 1) : a0 ∈ k} ∪ {(1 : 0)}. The projective plane P2(k) is in
one-to-one correspondence with A2(k) ∪ P1(k).

Definition 5.2.3. A point P = (P0 : P1 : · · · : Pn) ∈ Pn(k) is defined over k if there

is some λ ∈ k
∗

such that λPj ∈ k for all 0 ≤ j ≤ n. If P ∈ Pn and σ ∈ Gal(k/k) then
σ(P) = (σ(P0) : · · · : σ(Pn)).

Exercise 5.2.4. Show that P is defined over k if and only if there is some 0 ≤ i ≤ n such
that Pi 6= 0 and Pj/Pi ∈ k for all 0 ≤ j ≤ n. Show that Pn(k) is equal to the set of points
P ∈ Pn(k) that are defined over k. Show that σ(P) in Definition 5.2.3 is well-defined
(i.e., if P = (P0, . . . , Pn) ≡ P ′ = (P ′

0, . . . , P
′
n) then σ(P) ≡ σ(P ′)).

92 CHAPTER 5. VARIETIES

Lemma 5.2.5. A point P ∈ Pn(k) is defined over k if and only if σ(P) = P for all
σ ∈ Gal(k/k).

Proof: Let P = (P0 : · · · : Pn) ∈ Pn(k) and suppose σ(P) ≡ P for all σ ∈ Gal(k/k).

Then there is some ξ : Gal(k/k) → k
∗

such that σ(Pi) = ξ(σ)Pi for all 0 ≤ i ≤ n.

One can verify2 that ξ is a 1-cocycle in k
∗
. It follows by Theorem A.7.2 (Hilbert 90)

that ξ(σ) = σ(γ)/γ for some γ ∈ k
∗
. Hence, σ(Pi/γ) = Pi/γ for all 0 ≤ i ≤ n and all

σ ∈ Gal(k/k). Hence Pi/γ ∈ k for all 0 ≤ i ≤ n and the proof is complete. �

Recall that if f is a homogeneous polynomial of degree d then f(λx0, . . . , λxn) =
λdf(x0, . . . , xn) for all λ ∈ k and all (x0, . . . , xn) ∈ An+1(k).

Definition 5.2.6. Let f ∈ k[x0, . . . , xn] be a homogeneous polynomial. A point P =
(x0 : · · · : xn) ∈ Pn(k) is a zero of f if f(x0, . . . , xn) = 0 for some (hence, every) point
(x0, . . . , xn) in the equivalence class (x0 : · · · : xn). We therefore write f(P) = 0. Let S
be a set of polynomials and define

V (S) = {P ∈ Pn(k) : P is a zero of f(x) for all homogeneous f(x) ∈ S}.

A projective algebraic set is a set X = V (S) ⊆ Pn(k) for some S ⊆ k[x]. Such a set
is also called a projective k-algebraic set. For X = V (S) and k′ an algebraic extension of
k define

X(k′) = {P ∈ Pn(k′) : f(P) = 0 for all homogeneous f(x) ∈ S}.

Example 5.2.7. The hyperbola y = 1/x can be described as the affine algebraic set
X = V (xy− 1) ⊂ A2 over R. One can consider the corresponding projective algebraic set
V (xy − z2) ⊆ P2 over R whose points consist the points of X together with the points
(1 : 0 : 0) and (0 : 1 : 0). These two points correspond to the asymptotes x = 0 and y = 0
of the hyperbola and they essentially “tie together” the disconnected components of the
affine curve to make a single closed curve in projective space.

Exercise 5.2.8. Describe the sets V (x2+y2−z2)(R) ⊂ P2(R) and V (yz−x2)(R) ⊆ P2(R).

Exercise 5.2.9. What is V (xz + y2, xyz) ⊆ P2(C)?

Exercise 5.2.10. What is V (y2 + x2, x2z − y3) ⊆ P2(C)?

A set of homogeneous polynomials does not in general form an ideal as one cannot
simultaneously have closure under multiplication and addition. Hence it is necessary to
introduce the following definition.

Definition 5.2.11. A k[x0, . . . , xn]-ideal I ⊆ k[x0, . . . , xn] is a homogeneous ideal if
for every f ∈ I with homogeneous decomposition f =

∑
i fi we have fi ∈ I.

Exercise 5.2.12. Let S ⊂ k[x] be a set of homogeneous polynomials. Define (S) to
be the k[x]-ideal generated by S in the usual way, i.e., (S) = {∑n

j=1 fj(x)sj(x) : n ∈
N, fj(x) ∈ k[x0, . . . , xn], sj(x) ∈ S}. Prove that (S) is a homogeneous ideal. Prove that
if I is a homogeneous ideal then I = (S) for some set of homogeneous polynomials S.

Definition 5.2.13. For any set X ⊆ Pn(k) define

Ik(X) =
(
{f ∈ k[x0, . . . , xn] : f is homogeneous and f(P) = 0 for all P ∈ X}

)
.

2At least, one can verify the formula ξ(στ) = σ(ξ(τ))ξ(σ). The topological condition also holds, but
we do not discuss this.

5.2. PROJECTIVE ALGEBRAIC SETS 93

We stress that Ik(X) is not the stated set of homogeneous polynomials but the ideal
generated by them. We write I(X) = Ik(X).

An algebraic set X ⊆ Pn is defined over k if I(X) can be generated by homogeneous
polynomials in k[x].

Proposition 5.2.14. Let k be a field.

1. If S1 ⊆ S2 ⊆ k[x0, . . . , xn] then V (S2) ⊆ V (S1) ⊆ Pn(k).

2. If fg is a homogeneous polynomial then V (fg) = V (f)∪V (g) (recall from Lemma A.5.4
that f and g are both homogeneous).

3. V (f) ∩ V (g) = V (f, g).

4. If X1 ⊆ X2 ⊆ Pn(k) then Ik(X2) ⊆ Ik(X1) ⊆ k[x0, . . . , xn].

5. Ik(X1 ∪X2) = Ik(X1) ∩ Ik(X2).

6. If J is a homogeneous ideal then J ⊆ Ik(V (J)).

7. If X is a projective algebraic set defined over k then V (Ik(X)) = X. If Y is another
projective algebraic set defined over k and Ik(Y) = Ik(X) then Y = X.

Exercise 5.2.15. Prove Proposition 5.2.14.

Definition 5.2.16. If X is a projective algebraic set defined over k then the homoge-
nous coordinate ring of X over k is k[X] = k[x0, . . . , xn]/Ik(X).

Note that elements of k[X] are not necessarily homogeneous polynomials.

Definition 5.2.17. Let X be an algebraic set in An (respectively, Pn) The Zariski
topology is the topology on X defined as follows: The closed sets are X ∩ Y for every
algebraic set Y ⊆ An (respectively, Y ⊆ Pn).

Exercise 5.2.18. Show that the Zariski topology satisfies the axioms of a topology.

Definition 5.2.19. For 0 ≤ i ≤ n define Ui = {(x0 : · · · : xn) ∈ Pn : xi 6= 0} =
Pn − V (xi). (These are open sets in the Zariski topology.)

Exercise 5.2.20. Show that Pn = ∪ni=0Ui (not a disjoint union).

Exercise 5.2.21. What points of P2(k) do not lie in two of the three sets U0(k), U1(k), U2(k)?

Definition. Let L ∈ GLn+1(k) (i.e., L is an (n + 1) × (n + 1) matrix over k that is
invertible). The map L : Pn → Pn given by

L(x0 : · · · : xn) = (L0,0x0 + · · ·+ L0,nxn : · · · : Ln,0x0 + · · ·+ Ln,nxn)

is called a linear change of variables on Pn over k. The inverse change of variables is
given by L−1.

Example 5.2.22. The matrix

L =

1 −1 0
0 1 0
0 0 1

gives a linear change of variables L : P2 → P2 of the form L(x0 : x1 : x2) = (y0 : y1 :
y2) = (x0 − x1 : x1 : x2). This maps the algebraic set X = V (x20 − x21 + x1x2) to
Y = V (y20 + 2y0y1 + y1y2). In other words, if P ∈ X(k) then L(P) ∈ Y (k).

94 CHAPTER 5. VARIETIES

A linear change of variable does not change the underlying geometry of an algebraic
set, but can be useful for practical computation. For instance, sometimes we will use
Exercise 5.2.23 to reduce any pair of points to affine space without changing the “shape”
of the algebraic set.

Exercise 5.2.23. Show that if P,Q ∈ Pn(k) then there is always a linear change of
variables L on Pn over k such that L(P), L(Q) ∈ Un.

We already mentioned the map ϕ : An → Pn given by ϕ(x1, . . . , xn) = (x1 : · · · : xn :
1), which has image equal to Un. A useful way to study a projective algebraic set X is
to consider X ∩Ui for 0 ≤ i ≤ n and interpret X ∩ Ui as an affine algebraic set. We now
introduce the notation for this.

Definition 5.2.24. Let ϕi : An(k)→ Ui be the one-to-one correspondence

ϕi(y1, . . . , yn) = (y1 : · · · : yi : 1 : yi+1 : · · · : yn).

We write ϕ for ϕn. Let

ϕ−1
i (x0 : · · · : xn) = (x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi).

be the map ϕ−1
i : Pn(k) → An(k), which is defined only on Ui (i.e., ϕ−1

i (X) = ϕ−1
i (X ∩

Ui)).
3

We write X ∩ An as an abbreviation for ϕ−1
n (X ∩ Un).

Let ϕ∗
i : k[x0, . . . , xn]→ k[y1, . . . , yn] be the de-homogenisation map4

ϕ∗
i (f)(y1, . . . , yn) = f ◦ ϕi(y1, . . . , yn) = f(y1, . . . , yi, 1, yi+1, . . . , yn).

We write ϕ∗ for ϕ∗
n.

Let ϕ−1∗
i : k[y1, . . . , yn]→ k[x0, . . . , xn] be the homogenisation

ϕ−1∗
i (f)(x0, . . . , xn) = x

deg(f)
i f(x0/xi, . . . , xi−1/xi, xi+1/xi, . . . , xn/xi)

where deg(f) is the total degree.
We write f as an abbreviation for ϕ−1∗

n (f). For notational simplicity we often consider
polynomials f(x, y); in this case we define f = zdeg(f)f(x/z, y/z).

We now state some elementary relations between projective algebraic sets X and their
affine parts X ∩ Ui.

Lemma 5.2.25. Let the notation be as above.

1. ϕ∗
i : k[x0, . . . , xn] → k[y1, . . . , yn] is a k-algebra homomorphism. The map ϕ−1∗

i :
k[y1, . . . , yn] → k[x0, . . . , xn] satisfies most of the properties of a k-algebra homo-
morphism, except that ϕ−1∗

i (f + g) = ϕ−1∗
i (f) +ϕ−1∗

i (g) if and only if f and g have
the same total degree.

2. Let P = (P0 : · · · : Pn) ∈ Pn(k) with Pi 6= 0 and let f ∈ k[x0, . . . , xn] be homoge-
neous. Then f(P) = 0 implies ϕ∗

i (f)(ϕ−1
i (P)) = 0.

3. Let f ∈ k[x0, . . . , xn] be homogeneous. Then ϕ−1
i (V (f)) = V (ϕ∗

i (f)). In particular,
V (f) ∩ An = V (f ◦ ϕ).

3This notation does not seem to be standard. Our notation agrees with Silverman [564], but
Hartshorne [278] has ϕi and ϕ−1

i the other way around.
4The upper star notation is extended in Definition 5.5.23.

5.2. PROJECTIVE ALGEBRAIC SETS 95

4. Let X ⊆ Pn(k). Then f ∈ Ik(X) implies ϕ∗
i (f) ∈ Ik(ϕ−1

i (X)). In particular,
f ∈ Ik(X) implies f ◦ ϕ ∈ Ik(X ∩ An).

5. If P ∈ An(k) and f ∈ k[y1, . . . , yn] then f(P) = 0 implies ϕ−1∗
i (f)(ϕi(P)) = 0. In

particular, f(P) = 0 implies f(ϕ(P)) = 0.

6. For homogeneous f ∈ k[x0, . . . , xn] then ϕ−1∗
i (ϕ∗

i (f)) | f . Furthermore, if f has a
monomial that does not include xi then ϕ

−1∗
i (ϕ∗

i (f)) = f (in particular, f ◦ ϕ = f).

Exercise 5.2.26. Prove Lemma 5.2.25.

Definition 5.2.27. Let I ⊆ k[y1, . . . , yn]. Define the homogenisation I to be the
k[x0, . . . , xn]-ideal generated by the set {f(x0, . . . , xn) : f ∈ I}.
Exercise 5.2.28. Let I ⊆ k[y1, . . . , yn]. Show that I is a homogeneous ideal.

Definition 5.2.29. Let X ⊆ An(k). Define the projective closure of X to be X =

V
(
I(X)

)
⊆ Pn.

Lemma 5.2.30. Let the notation be as above.

1. Let X ⊆ An, then ϕ(X) ⊆ X and X ∩ An = X.

2. Let X ⊆ An(k) be non-empty. Then Ik
(
X
)

= Ik(X).

Proof: Part 1 follows directly from the definitions.
Part 2 is essentially that the homogenisation of a radical ideal is a radical ideal, we

give a direct proof. Let f ∈ k[x0, . . . , xn] be such that f is homogeneous and f(X) = 0.
Write f = xd0g where g ∈ k[x0, . . . , xn] has a monomial that does not include x0. By
part 1 and X 6= ∅, g is not constant. Then g ◦ ϕ ∈ Ik(X) and so g = g ◦ ϕ ∈ Ik(X).
It follows from part 6 of Lemma 5.2.25 that f ∈ Ik(X). Hence, Ik(X) ⊆ Ik(X) and the
result follows. �

Theorem 5.2.31. Let f(x0, x1, x2) ∈ k[x0, x1, x2] be a k-irreducible homogeneous poly-
nomial. Let

X = V (f(x0, x1, x2)) ⊆ P2.

Then Ik(X) = (f(x0, x1, x2)).

Proof: Let 0 ≤ i ≤ 2 be such that f(x0, x1, x2) has a monomial that does not feature xi
(such an i must exist since f is irreducible). Without loss of generality, suppose i = 2.
Write g(y1, y2) = ϕ∗(f) = f(y1, y2, 1). By part 6 of Lemma 5.2.25 the homogenisation of
g is f .

Let Y = X∩A2 = V (g). Note that g is k-irreducible (since g = g1g2 implies, by taking
homogenisation, f = g1 g2). Let h ∈ Ik(X) then h◦ϕ ∈ Ik(Y) and so, by Corollary 5.1.23,
h ◦ ϕ ∈ (g). In other words, there is some h1(y1, y2) such that h ◦ ϕ = gh1. Taking
homogenisations gives fh1 | h and so h ∈ (f). �

Corollary 5.2.32. Let f(x, y) ∈ k[x, y] be a k-irreducible polynomial and let X = V (f) ⊆
A2. Then X = V (f) ⊆ P2.

Exercise 5.2.33. Prove Corollary 5.2.32.

Example 5.2.34. The projective closure of V (y2 = x3 + Ax + B) ⊆ An is V (y2z =
x3 +Axz2 +Bz3).

Exercise 5.2.35. Let X = V (f(x0, x1)) ⊆ A2 and let X ⊆ P2 be the projective closure
of X . Show that X −X is finite (in other words, there are only finitely many points at
infinity).

96 CHAPTER 5. VARIETIES

A generalisation of projective space, called weighted projective space, is defined as
follows: For i0, . . . , in ∈ N denote by (a0 : a1 : · · · : an) the equivalence class of elements
in kn+1 under the equivalence relation

(a0, a1, · · · , an) ≡ (λi0a0, λ
i1a1, · · · , λinan)

for any λ ∈ k∗. The set of equivalence classes is denoted P(i0, . . . , in)(k). For example, it
makes sense to consider the curve y2 = x4 + ax2z2 + z4 as lying in P(1, 2, 1). We will not
discuss this topic further in the book (we refer to Reid [498] for details), but it should
be noted that certain coordinate systems used for efficient elliptic curve cryptography
naturally live in weighted projective space.

5.3 Irreducibility

We have seen that V (fg) decomposes as V (f) ∪ V (g) and it is natural to consider V (f)
and V (g) as being ‘components’ of V (fg). It is easier to deal with algebraic sets that
cannot be decomposed in this way. This concept is most useful when working over an
algebraically closed field, but we give some of the theory in greater generality.

Definition 5.3.1. An affine k-algebraic set X ⊆ An is k-reducible if X = X1 ∪ X2

with X1 and X2 being k-algebraic sets and Xi 6= X for i = 1, 2. An affine algebraic set is
k-irreducible if there is no such decomposition. An affine algebraic set is geometrically
irreducible if X is k-irreducible. An affine variety over k is a geometrically irreducible
k-algebraic set defined over k.

A projective k-algebraic set X ⊆ Pn is k-irreducible (resp. geometrically irre-
ducible) if X is not the union X1 ∪ X2 of projective k-algebraic sets X1, X2 ⊆ Pn

(respectively, projective k-algebraic sets) such that Xi 6= X for i = 1, 2. A projective
variety over k is a geometrically irreducible projective k-algebraic set defined over k.

Let X be a variety (affine or projective). A subvariety of X over k is a subset Y ⊆ X
that is a variety (affine or projective) defined over k.

This definition matches the usual topological definition of a set being irreducible if it
is not a union of proper closed subsets.

Example 5.3.2. The algebraic set X = V (x2 + y2) ⊆ A2 over R is R-irreducible. How-
ever, over C we have X = V (x+ iy) ∪ V (x− iy) and so X is C-reducible.

Exercise 5.3.3. Show that X = V (wx − yz, x2 − yz) ⊆ P3 is not irreducible.

It is often easy to determine that a reducible algebraic set is reducible, just by exhibit-
ing the non-trivial union. However, it is not necessarily easy to show that an irreducible
algebraic set is irreducible. We now give an algebraic criterion for irreducibility and some
applications of this result.

Theorem 5.3.4. Let X be an algebraic set (affine or projective). Then X is k-irreducible
if and only if Ik(X) is a prime ideal.

Proof: (⇒): Suppose X = V (S) where S ⊆ k[x] is k-irreducible and that there are
elements f, g ∈ k[x] such that fg ∈ Ik(X). Then X ⊆ V (fg) = V (f) ∪ V (g), so X =
(X∩V (f))∪(X∩V (g)). Since X∩V (f) = V (S, f) and X∩V (g) = V (S, g) are k-algebraic
sets it follows that either X = X∩V (f) or X = X∩V (g), and so f ∈ Ik(X) or g ∈ Ik(X).

(⇐): Suppose I = Ik(X) is a prime ideal and that X = X1∪X2 where X1 and X2 are
k-algebraic sets. Let I1 = Ik(X1) and I2 = Ik(X2). By parts 3 and 4 of Proposition 5.1.16

5.3. IRREDUCIBILITY 97

or parts 4 and 5 of Proposition 5.2.14 we have I ⊆ I1, I ⊆ I2 and I = I1 ∩ I2. Since
I1I2 ⊆ I1 ∩ I2 = I and I is a prime ideal, it follows that either I1 ⊆ I or I2 ⊆ I.
Hence either I = I1 or I = I2 and so, by part 6 of Proposition 5.1.16 or part 7 of
Proposition 5.2.14, X = X1 or X = X2. �

Exercise 5.3.5. Show that V (y − x2) is irreducible in A2(k).

Exercise 5.3.6. Let X ⊂ An be an algebraic set over k. Suppose there exist polynomials
f1, . . . , fn ∈ k[t] such that X = {(f1(t), f2(t), . . . , fn(t)) : t ∈ k}. Prove that X is
geometrically irreducible.

Remark 5.3.7. A k-algebraic set X is the vanishing of polynomials in k[x1, . . . , xn].
However, we say X is defined over k if Ik(X) is generated by polynomials in k[x1, . . . , xn].
Hence, it is clear that an algebraic set defined over k is a k-algebraic set. The converse
does not hold in general. However, if X is absolutely irreducible and k is a perfect field
then these notions are equivalent (see Corollary 10.2.2 of Fried and Jarden [214] and use
the fact that when X is absolutely irreducible then the algebraic closure of k in k(X) is
k). Note that Corollary 5.1.23 proves a special case of this result.

The next few results use the notation of Definitions 5.2.24, 5.2.27 and 5.2.29.

Corollary 5.3.8. Let X ⊆ An be a variety. Then X is geometrically irreducible. Let
X ⊆ Pn be a variety. Then X ∩ An is geometrically irreducible.

Proof: The case where X is empty is trivial so suppose X 6= ∅. By Lemma 5.2.30,
I
(
X
)

= I(X). Hence, if g, h ∈ k[x0, . . . , xn] are such that gh ∈ I
(
X
)

then (g◦ϕ)(h◦ϕ) =
(gh) ◦ ϕ ∈ I(X) by part 4 of Lemma 5.2.25. Theorem 5.3.4 implies I(X) is a prime ideal
and so either g ◦ ϕ or h ◦ ϕ is in I(X). Hence either g or h is in I

(
X
)
.

For the converse, suppose X∩An 6= ∅. If gh ∈ I(X∩An) then gh = gh ∈ I(X ∩ An) ⊆
I(X). Hence g or h is in I(X) and so, by part 4 of Lemma 5.2.25, g or h is in I(X ∩An).
�

Theorem 5.3.9. Let X ⊆ Pn be an algebraic set such that X ∩An 6= ∅. Then X ∩ An ⊆
X. If X is a variety then X ∩ An = X.

Proof: If f ∈ I(X) then f ◦ ϕ ∈ I(X ∩ An) and so f ◦ ϕ ∈ I(X ∩ An). Hence, f ∈
I(X ∩ An). In other words, I(X) ⊆ I

(
X ∩ An

)
and so X ∩An ⊆ X .

Let X1 = X ∩ An ⊆ X and X2 = X ∩ V (x0). Then X = X1 ∪ X2 and so, if X is
irreducible and X ∩ An 6= ∅ then X = X1. �

Theorem 5.3.10. Let k be a field and let f(x, y) ∈ k[x, y] (or f(x, y, z) ∈ k[x, y, z]
homogeneous) have no repeated factors over k. Let X = V (f(x, y)) ⊂ A2(k) or X =
V (f(x, y, z)) ⊆ P2(k). Then X is geometrically irreducible if and only if f is irreducible
over k.

Proof: Suppose X = V (f) is geometrically irreducible but that f = gh is a factorization
in k[x, y] or k[x, y, z] with both g and h having degree ≥ 1. Since f has no repeated
factors we have that g and h have no irreducible factors in common. Now, V (f) =
V (gh) = V (g) ∪ V (h). Since V (f) is irreducible either V (g) = V (f) or V (h) = V (f).
Without loss of generality we may assume V (g) = V (f). By Hilbert’s Nullstellensatz
(Theorem 5.1.22) it follows that gm ∈ 〈f〉 for some integer m, which means that f | gm.
Now, let q be an irreducible factor of h. Then q | f and so q | gm and so q | g. But g and
h are supposed to have no common irreducible factors, so this is a contradiction. Hence,
if X is geometrically irreducible then f is k-irreducible.

Conversely, by Corollary 5.1.23 (respectively, Theorem 5.2.31) we have Ik(V (f)) = (f).
Since f is irreducible it follows that (f) is a prime ideal and so X is irreducible. �

98 CHAPTER 5. VARIETIES

Example 5.3.11. It is necessary to work over k for Theorem 5.3.10. For example, let
f(x, y) = y2 + x2(x − 1)2. Then V (f(x, y)) ⊆ A2(R) consists of two points and so is
reducible, even though f(x, y) is R-irreducible.

Lemma 5.3.12. Let X be a variety and U ⊂ X a non-empty set. If U is open (in the
Zariski topology) in X then U is dense in X (i.e., the topological closure of U in X in
the Zariski topology is X).

Proof: Let X1 be the closure of U in X and X2 = X − U . Then X = X1 ∪ X2 and
X1, X2 are closed sets. Since X is irreducible and X2 6= X it follows that X1 = X . �

Lemma 5.3.13. Let X be a variety and U a non-empty open subset of X. Then Ik(U) =
Ik(X).

Proof: Since U ⊆ X we have Ik(X) ⊆ Ik(U). Now let f ∈ Ik(U). Then U ⊆ V (f) ∩X .
Write X1 = V (f) ∩ X , which is an algebraic set, and X2 = X − U , which is also an
algebraic set. Then X = X1 ∪X2 and, since X is irreducible and X2 6= X , X = X1. In
other words, f ∈ Ik(X). �

Exercise 5.3.14. Let X be an irreducible variety. Prove that if U1, U2 ⊆ X are non-
empty open sets then U1 ∩ U2 6= ∅.

5.4 Function Fields

If X is a variety defined over k then Ik(X) is a prime ideal and so the affine or homogeneous
coordinate ring is an integral domain. One can therefore consider its field of fractions. If
X is affine then the field of fractions has a natural interpretation as a set of maps X → k.
When X is projective then a ratio f/g of polynomials does not give a well-defined function
on X unless f and g are homogeneous of the same degree.

Definition 5.4.1. Let X be an affine variety defined over k. The function field k(X)
is the set

k(X) = {f1/f2 : f1, f2 ∈ k[X], f2 6∈ Ik(X)}
of classes under the equivalence relation f1/f2 ≡ f3/f4 if and only if f1f4− f2f3 ∈ Ik(X).
In other words, k(X) is the field of fractions of the affine coordinate ring k[X] over k.

Let X be a projective variety. The function field is

k(X) = {f1/f2 : f1, f2 ∈ k[X] homogeneous of the same degree, f2 6∈ Ik(X)}

with the equivalence relation f1/f2 ≡ f3/f4 if and only if f1f4 − f2f3 ∈ Ik(X).
Elements of k(X) are called rational functions. For a ∈ k the rational function

f : X → k given by f(P) = a is called a constant function.

Exercise 5.4.2. Prove that the field of fractions of an integral domain is a field. Hence,
deduce that if X is an affine variety then k(X) is a field. Prove also that if X is a
projective variety then k(X) is a field.

We stress that, when X is projective, k(X) is not the field of fractions of k[X] and
that k[X] 6⊆ k(X). Also note that elements of the function field are not functions X → k
but maps X → k (i.e., they are not necessarily defined everywhere).

Example 5.4.3. One has k(A2) ∼= k(x, y) and k(P2) ∼= k(x, y).

5.4. FUNCTION FIELDS 99

Definition 5.4.4. Let X be a variety and let f1, f2 ∈ k[X]. Then f1/f2 is defined or
regular at P if f2(P) 6= 0. An equivalence class f ∈ k(X) is regular at P if it contains
some f1/f2 with f1, f2 ∈ k[X] (if X is projective then necessarily deg(f1) = deg(f2)) such
that f1/f2 is regular at P .

Note that there may be many choices of representative for the equivalence class of f ,
and only some of them may be defined at P .

Example 5.4.5. Let k be a field of characteristic not equal to 2. Let X be the algebraic
set V (y2 − x(x − 1)(x+ 1)) ⊂ A2(k). Consider the functions

f1 =
x(x− 1)

y
and f2 =

y

x+ 1
.

One can check that f1 is equivalent to f2. Note that f1 is not defined at (0, 0), (1, 0) or
(−1, 0) while f2 is defined at (0, 0) and (1, 0) but not at (−1, 0). The equivalence class of
f1 is therefore regular at (0, 0) and (1, 0). Section 7.3 gives techniques to deal with these
issues for curves, from which one can deduce that no function in the equivalence class of
f1 is defined at (−1, 0).

Exercise 5.4.6. Let X be a variety over k. Suppose f1/f2 and f3/f4 are equivalent
functions on X that are both defined at P ∈ X(k). Show that (f1/f2)(P) = (f3/f4)(P).

Hence, if f is a function that is defined at a point P then it makes sense to speak of
the value of the function at P . If the value of f at P is zero then P is called a zero of
f .5

Exercise 5.4.7. Let X = V (w2x2 − w2z2 − y2z2 + x2z2) ⊆ P3(k). Show that (x2 +
yz)/(x2−w2) ≡ (x2− z2)/(x2− yz) in k(X). Hence find the value of (x2− z2)/(x2− yz)
at the point (w : x : y : z) = (0 : 1 : 1 : 1). Show that both representations of the function
have the same value on the point (w : x : y : z) = (2 : 1 : −1 : 1).

Theorem 5.4.8. Let X be a variety and let f be a rational function. Then there is
a non-empty open set U ⊂ X such that f is regular on U . Conversely, if U ⊂ X is
non-empty and open and f : U → k is a function given by a ratio f1/f2 of polynomials
(homogeneous polynomials of the same degree if X is projective) that is defined for all
P ∈ U then f extends uniquely to a rational function f : X → k.

Proof: Let f = f1/f2 where f1, f2 ∈ k[X]. Define U = X − V (f2). Since f2 6= 0 in k[X]
we have U a non-empty open set, and f is regular on U .

For the converse, Let f = f1/f2 be a function on U given as a ratio of polynomials.
Then one can consider f1 and f2 as elements of k[X] and f2 non-zero on U implies f2 6= 0
in k[X]. Hence f1/f2 corresponds to an element of k(X). Finally, suppose f1/f2 and
f3/f4 are functions on X (where f1, f2, f3, f4 are polynomials) such that the restrictions
(f1/f2)|U and (f3/f4)|U are equal. Then f1f4− f2f3 is zero on U and, by Lemma 5.3.13,
(f1f4 − f2f3) ∈ Ik(X) and f1/f2 ≡ f3/f4 on X . �

Corollary 5.4.9. If X is a projective variety and X ∩An 6= ∅ then k(X) ∼= k(X ∩An).
If X is non-empty affine variety then k(X) ∼= k(X).

Proof: The result follows since X ∩ An = X − V (xn) is open in X and X is open in X .
�

5For curves we will later define the notion of a function f having a pole at a point P . This notion
does not make sense for general varieties, as shown by the function x/y on A2 at (0, 0) for example.

100 CHAPTER 5. VARIETIES

Definition 5.4.10. Let X be a variety and U ⊆ X . Define O(U) to be the elements of
k(X) that are regular on all P ∈ U(k).

Lemma 5.4.11. If X is an affine variety over k then O(X) = k[X].

Proof: (Sketch) Clearly k[X] ⊆ O(X). The converse follows since O(X) is the inter-
section of the local rings (see Definition 7.1.1) at all P ∈ X(k). We refer to Proposition
2 on page 43, Chapter 2 of [216] or Theorem I.3.2(a) of [278] for the details. �

Definition 5.4.12. Let X be a variety over k and f ∈ k(X). Let σ ∈ Gal(k/k). If
f = f1/f2 where f1, f2 ∈ k[x] define σ(f) = σ(f1)/σ(f2) where σ(f1) and σ(f2) denote
the natural Galois action on polynomials (i.e., σ(

∑
i aix

i) =
∑

i σ(ai)x
i). Some authors

write this as fσ.

Exercise 5.4.13. Prove that σ(f) is well-defined (i.e., if f ≡ f ′ then σ(f) ≡ σ(f ′)). Let
P ∈ X(k). Prove that f(P) = 0 if and only if σ(f)(σ(P)) = 0.

Remark 5.4.14. Having defined an action of G = Gal(k/k) on k(X) it is natural to
ask whether k(X)G = {f ∈ k(X) : σ(f) = f ∀σ ∈ Gal(k/k)} is the same as k(X). The
issue is whether a function being “defined over k” is the same as “can be written with
coefficients in k”. Indeed, this is true but not completely trivial.

A sketch of the argument is given in Exercise 1.12 of Silverman [564] and we give a
few extra hints here. Let X be a projective variety. One first shows that if X is defined
over k and if k′ is a finite Galois extension of k then Ik′ (X) is an induced Galois module
(see page 110 of Serre [542]) for Gal(k′/k). It follows from Section VII.1 of [542] that the
Galois cohomology group H1(Gal(k′/k), Ik′(X)) is trivial and hence, by Section X.3 of
[542], that H1(G, Ik′ (X)) = 0. One can therefore deduce, as in Exercise 1.12(a) of [564],
that k[X]G = k[X].

To show that k(X)G = k(X) let (f0 : f1) : X → P1 and let σ ∈ G. Then σ(f0) =

λσf0 +G0,σ and σ(f1) = λσf1 +G1,σ where λσ ∈ k
∗

and G0,σ, G1,σ ∈ Ik(X). One shows

first that λσ ∈ H1(G, k
∗
), which is trivial by Hilbert 90, and so λσ = σ(α)/α for some

α ∈ k. Replacing f0 by αf0 and f1 by αf1 gives λσ = 1 and one can proceed to showing
that G0,σ, G1,σ ∈ H1(G, Ik(X)) = 0 as above. The result follows.

For a different approach see Theorem 7.8.3 and Remark 8.4.11 below, or Corollary 2
of Section VI.5 (page 178) of Lang [364].

5.5 Rational Maps and Morphisms

Definition 5.5.1. Let X be an affine or projective variety over a field k and Y an affine
variety in An over k. Let φ1, . . . , φn ∈ k(X). A map φ : X → An of the form

φ(P) = (φ1(P), . . . , φn(P)) (5.1)

is regular at a point P ∈ X(k) if all φi, for 1 ≤ i ≤ n, are regular at P . A rational
map φ : X → Y defined over k is a map of the form (5.1) such that, for all P ∈ X(k) for
which φ is regular at P then φ(P) ∈ Y (k).

Let X be an affine or projective variety over a field k and Y a projective variety in Pn

over k. Let φ0, . . . , φn ∈ k(X). A map φ : X → Pn of the form

φ(P) = (φ0(P) : · · · : φn(P)) (5.2)

is regular at a point P ∈ X(k) if there is some function g ∈ k(X) such that all gφi, for
0 ≤ i ≤ n, are regular at P and, for some 0 ≤ i ≤ n, one has (gφi)(P) 6= 0.6 A rational

6This last condition is to prevent φ mapping to (0 : · · · : 0), which is not a point in Pn.

5.5. RATIONAL MAPS AND MORPHISMS 101

map φ : X → Y defined over k is a map of the form (5.2) such that, for all P ∈ X(k) for
which φ is regular at P , then φ(P) ∈ Y (k).

We stress that a rational map is not necessarily defined at every point of the domain.
In other words, it is not necessarily a function.

Exercise 5.5.2. Let X and Y be projective varieties. Show that one can write a rational
map in the form φ(P) = (φ0(P) : · · · : φn(P)) where the φi(x) ∈ k[x] are all homogeneous
polynomials of the same degree, not all φi(x) ∈ Ik(X), and for every f ∈ Ik(Y) we have
f(φ0(x), . . . , φn(x)) ∈ Ik(X).

Example 5.5.3. Let X = V (x − y) ⊆ A2 and Y = V (x− z) ⊆ P2. Then

φ(x, y) = (x : xy : y)

is a rational map from X to Y . Note that this formula for φ is not defined at (0, 0).
However, φ is regular at (0, 0) since taking g = x−1 gives the equivalent form φ(x, y) =
(x−1x : x−1xy : x−1y) = (1 : y : y/x) and y/x ≡ 1 in k(X). Also note that the image of
φ is not equal to Y (k) as it misses the point (0 : 1 : 0).

Similarly, ψ(x : y : z) = (x/y, z/y) is a rational map from Y to X . This map is not
regular at (1 : 0 : 1) but it is surjective to X . The composition ψ ◦ φ maps (x, y) to
(1/y, 1/x).

Example 5.5.4. Let X = V (y2z− (x3 +Axz2)) ⊆ P2 and Y = P1. Consider the rational
map

φ(x : y : z) = (x/z : 1).

Note that this formula for φ is defined at all points of X except P0 = (0 : 1 : 0). Let
g(x : y : z) = (x2 + Az2)/y2 ∈ k(X). Then the map (x : y : z) 7→ (gx/z : g) can be
written as (x : y : z) 7→ (1 : g) and this is defined at (0 : 1 : 0). It follows that φ is regular
at P0 and that φ(P0) = (1 : 0).

Lemma 5.5.5. Let X and Y be varieties over k and let φ : X → Y be a rational map.
Then there is an open set U ⊆ X such that φ is regular on U .

Proof: Write φ as (φ1, . . . , φn) if Y is affine or (φ0 : · · · : φn) if Y is projective. By
Theorem 5.4.8 for each φi for 1 ≤ φi ≤ n (respectively, 0 ≤ φi ≤ n) there is a non-empty
open set Ui ⊂ X such that φi is regular. Taking U = ∩iUi gives the result. �

It immediately follows that Theorem 5.4.8 generalises to rational maps.

Theorem 5.5.6. Let X and Y be varieties. Suppose φ1, φ2 : X → Y are rational maps
that are regular on non-empty open sets U1, U2 ⊆ X. Suppose further that φ1|U1∩U2 =
φ2|U1∩U2 . Then φ1 = φ2.

Exercise 5.5.7. Prove Theorem 5.5.6.

Definition 5.5.8. Let X and Y be algebraic varieties over k. A rational map φ : X → Y
defined over k is a birational equivalence over k if there exists a rational map ψ : Y →
X over k such that:

1. ψ ◦ φ(P) = P for all points P ∈ X(k) such that ψ ◦ φ(P) is defined;

2. φ ◦ ψ(Q) = Q for all points Q ∈ Y (k) such that φ ◦ ψ(Q) = Q is defined.

Varieties X and Y are birationally equivalent if there is a birational equivalence φ :
X → Y between them.

102 CHAPTER 5. VARIETIES

Exercise 5.5.9. Show that X = V (xy−1) ⊆ A2 and Y = V (x1−x2) ⊆ P2 are birationally
equivalent.

Exercise 5.5.10. Verify that birational equivalence is an equivalence relation.

Example 5.5.11. The maps ϕi : An → Pn and ϕ−1
i : Pn → An from Definition 5.2.24

are rational maps. Hence An and Pn are birationally equivalent.

Definition 5.5.12. Let X and Y be varieties over k and let U ⊆ X be open. A rational
map φ : U → Y over k which is regular at every point P ∈ U(k) is called a morphism
over k.

Let U ⊆ X and V ⊆ Y be open. If φ : U → Y is a morphism over k and ψ : V → X
is a morphism over k such that φ ◦ ψ and ψ ◦ φ are the identity on V and U respectively
then we say that U and V are isomorphic over k. If U and V are isomorphic we write
U ∼= V .

Example 5.5.13. Let X be V (xy − z2) ⊆ P2 and let φ : X → P1 be given by φ(x : y :
z) = (x/z : 1). Then φ is a morphism (for (1 : 0 : 0) replace φ by the equivalent form
φ(x : y : z) = (1 : z/x) and for (0 : 1 : 0) use φ(x : y : z) = (z/y : 1)). Indeed, φ is an
isomorphism with inverse ψ(x : z) = (x/z : z/x : 1).

Lemma 5.5.5 shows that every rational map φ : X → Y restricts to a morphism
φ : U → Y on some open set U ⊆ X .

Exercise 5.5.14. Let X = V (x2 + y2 − 1) ⊂ A2 over k. By taking a line of slope t ∈ k
through (−1, 0) give a formula for a rational map φ : A1 → X . Explain how to extend
this to a morphism from P1 to V (x2 + y2 − 1). Show that this is an isomorphism.

We now give the notion of a dominant rational map (or morphism). This is the
appropriate analogue of surjectivity for maps between varieties. Essentially, a rational
map from X to Y is dominant if its image is not contained in a proper subvariety of Y .
For example, the map ϕi : An → Pn is dominant. Birational maps are also dominant.

Definition 5.5.15. Let X and Y be varieties over k. A set U ⊆ Y (k) is dense if its
closure in the Zariski topology in Y (k) is equal to Y (k). A rational map φ : X → Y is
dominant if φ(X(k)) is dense in Y (k).

Example 5.5.16. Let φ : A2 → A2 be given by φ(x, y) = (x, x). Then φ is not dominant
(though it is dominant to V (x− y) ⊆ A2). Let φ : A2 → A2 be given by φ(x, y) = (x, xy).
Then φ is dominant, even though it is not surjective.

We now show that a morphism is a continuous map for the Zariski topology.

Lemma 5.5.17. Let X and Y be varieties over k. Let φ : X → Y be a morphism. Let
V ⊆ Y be an open set such that φ(X) ∩ V 6= ∅. Then φ−1(V) is an open set in X.
Similarly, let Z ⊆ Y be a closed set such that φ(X) ∩ Z 6= ∅. Then φ−1(Z) is closed in
X.

Exercise 5.5.18.⋆ Prove Lemma 5.5.17.

Exercise 5.5.19. Let X and Y be varieties and let φ : X → Y be a morphism. Show
that the Zariski closure of φ(X) in Y is irreducible.

Lemma 5.5.20. Let X and Y be affine varieties over k, let U ⊆ X be open, and let
φ : U → Y be a morphism. Then the composition f ◦ φ induces a well-defined ring
homomorphism from k[Y] to O(U).

5.5. RATIONAL MAPS AND MORPHISMS 103

Proof: If f ∈ k[Y] then f is regular on Y and, since φ is regular on U , f ◦ φ is regular
on U . Hence, f ◦ φ ∈ O(U).

We now show that the map is well-defined. Suppose f ≡ 0 in k[Y]. Since f vanishes on
Y it follows that, for all P ∈ U(k), f(φ(P)) = 0. Write f ◦φ = f1/f2 where f1 and f2 are
polynomials. It follows that f1 ∈ I(U) = I(X) (using Lemma 5.3.13). Hence, f ◦ φ ≡ 0
in O(U). Finally, the map is a ring homomorphism since (f1 + f2) ◦φ = (f1 ◦φ) + (f2 ◦φ)
and similarly for multiplication. �

Definition 5.5.21. Let X and Y be affine varieties over k, let U ⊆ X be open, and let
φ : U → Y be a morphism. The pullback7 is the ring homomorphism φ∗ : k[Y]→ O(U)
defined by φ∗(f) = f ◦ φ.

Lemma 5.5.22. Let X and Y be affine varieties over k, let U ⊆ X be open, and let
φ : U → Y be a morphism. Then φ is dominant if and only if φ∗ is injective.

Proof: Let f ∈ k[Y] be in the kernel of φ∗. Now φ∗(f) = 0 is the same as f ◦φ = 0 on U ,
which implies φ(U) ⊆ V (f) ∩ Y . If φ(U) is dense in Y then Y ⊆ V (f) and so f ∈ I(Y)
and φ∗ is injective. Conversely, if φ(U) is not dense in Y then there is some polynomial
f 6∈ I(Y) such that φ(U) ⊆ Y ∩ V (f). It follows that φ∗(f) = 0 and φ∗ is not injective.
�

Note that if X and φ are defined over k then φ∗ : k[Y] → O(U) restricts to φ∗ :
k[Y] → k(X). If φ∗ is injective then one can extend it to get a homomorphism of the
field of fractions of k[Y] to k(X).

Definition 5.5.23. Let X and Y be varieties over k and let φ : X → Y be a dominant
rational map defined over k. Define the pullback φ∗ : k(Y)→ k(X) by φ∗(f) = f ◦ φ.

We will now sketch a proof that φ∗ is a k-algebra homomorphism. Recall that a
k-algebra homomorphism of fields is a field homomorphism that is the identity map on k.

Theorem 5.5.24. Let X and Y be varieties over k and let φ : X → Y be a dominant
rational map defined over k. Then the pullback φ∗ : k(Y)→ k(X) is an injective k-algebra
homomorphism.

Proof: Without loss of generality we may assume that X and Y are affine. The rational
map φ is therefore given by φ(x) = (φ1(x), . . . , φn(x)). Let U ⊆ X be an open set on
which φ is regular. Then φ : U → Y is a morphism and we know φ∗ : k[Y] → O(U) is
a ring homomorphism by Lemma 5.5.20. The field of fractions of k[Y] is k(Y) and the
field of fractions of O(U) is k(X). The natural extension of φ∗ to φ∗ : k(Y) → k(X) is
well-defined.

It immediately follows that φ∗ is a ring homomorphism and that φ∗ is the identity on k.
Hence, φ∗ is a k-algebra homomorphism. Furthermore, φ∗ is injective by Lemma 5.5.22.
Finally, since φ is defined over k it restricts to an injective homomorphism from k(Y) to
k(X). �

Example 5.5.25. Consider the rational maps from Example 5.5.16. The map φ(x, y) =
(x, x) is not dominant and does not induce a well-defined function from k(x, y) to k(x, y)
since, for example, φ∗(1/(x− y)) = 1/(x− x) = 1/0.

The map φ(x, y) = (x, xy) is dominant and φ∗(f(x, y)) = f(x, xy) is a field isomor-
phism.

7Pullback is just a fancy name for “composition”; but we think of it as “pulling” a structure from the
image of φ back to the domain.

104 CHAPTER 5. VARIETIES

Exercise 5.5.26. Let K1,K2 be fields containing a field k. Let θ : K1 → K2 be a
k-algebra homomorphism. Show that θ is injective.

Theorem 5.5.27. Let X and Y be varieties over k and let θ : k(Y) → k(X) be a k-
algebra homomorphism. Then θ induces a dominant rational map φ : X → Y defined
over k.

Proof: If Y is projective it suffices to construct a rational map to an affine part, say
Y ∩An. Hence, we assume that Y ⊆ An is affine and described by coordinates (y1, . . . , yn).

The homomorphism θ maps each yi to some φi(x) ∈ k(X) for 1 ≤ i ≤ n. Define
φ : X → An by

φ(P) = (φ1(P), . . . , φn(P)).

We now show that if P ∈ X(k) and if φ is regular at P then φ(P) ∈ Y (k). Let f ∈ I(Y).
Then

f(φ(P)) = f(φ1(P), . . . , φn(P)) = f(θ(y1)(P), . . . , θ(yn)(P)).

Now, θ is a k-algebra homomorphism and f is a polynomial in k[y1, . . . , yn]. Hence

f(θ(y1), . . . , θ(yn)) = θ(f(y1, . . . , yn)).

Since f(y1, . . . , yn) ∈ I(Y) it follows that f(y1, . . . , yn) = 0 in k(Y) and so θ(f) = 0. It
follows that f(φ(P)) = θ(f)(P) = θ(0)(P) = 0 for all f ∈ I(Y) and so P ∈ Y (k) by part
5 of Proposition 5.1.16.

Finally, by Exercise 5.5.26, θ is injective. Also, φ∗ equals θ and so φ∗ is injective.
Hence, Lemma 5.5.22 implies that φ is dominant. �

Theorem 5.5.28. Let X and Y be varieties over k. Then X and Y are birationally
equivalent over k if and only if k(X) ∼= k(Y) (isomorphic as fields).

Proof: Let φ : X → Y and ψ : Y → X be the birational equivalence. First we must
deduce that φ and ψ are dominating. There are subsets U ⊆ X and V ⊆ Y such that φ is
regular on U , ψ is regular on V and ψ ◦φ is the identity on U (in other words, φ : U → V
is an isomorphism). The maps φ∗ : k[V]→ O(U) and ψ∗ : k[X]→ O(V) therefore satisfy
φ∗ψ∗(f) = f ◦ (ψ ◦ψ) = f (at least, they are equal on U ∩φ−1(V), which can be shown to
be open) and so are injective. It follows from Lemma 5.5.22 that φ and ψ are dominant.

Hence, φ induces a k-algebra homomorphism φ∗ : k(Y) → k(X) and ψ induces a
k-algebra homomorphism φ∗ : k(X) → k(Y). Finally, ψ ◦ φ induces a k-algebra homo-
morphism φ∗ψ∗ : k(X) → k(X) that is the identity (since it is the identity on a dense
open set). It follows that ψ∗ and φ∗ are isomorphisms.

For the converse, if θ : k(Y)→ k(X) is an isomorphism then we associate a dominant
rational map φ : X → Y to θ and ψ : Y → X to θ−1. Since θ−1θ is the identity it follows
that ψ ◦ φ is the identity whenever it is regular. �

Some authors prefer to study function fields rather than varieties, especially in the case
of dimension 1 (there are notable classical texts that take this point of view by Chevalley
and Deuring; see Stichtenoth [589] for a more recent version). By Theorem 5.5.28 (and
other results) the study of function fields up to isomorphism is the study of varieties up to
birational equivalence. A specific set of equations to describe a variety is called a model.

Definition 5.5.29. Let X and Y be varieties over k and let φ : X → Y be a ratio-
nal map over k given by φ(P) = (φ1(P), . . . , φn(P)) if Y is affine and (φ0(P) : · · · :
φn(P)) if Y is projective. Let σ ∈ Gal(k/k). Define σ(φ) : X → Y by σ(φ)(P) =
(σ(φ1)(P), . . . , σ(φn(P))) if Y is affine and σ(φ)(P) = (σ(φ0)(P) : · · · : σ(φn(P))) if Y is
projective. Many authors act by Galois on the right and so write the action as φσ.

5.6. DIMENSION 105

Lemma 5.5.30. Let X and Y be varieties over k and let φ : X → Y be a rational map
over k. If σ(φ) = φ for all σ ∈ Gal(k/k) then φ is defined over k.

Proof: If Y is affine then φ(P) = (φ1(P), . . . , φn(P)) where φi ∈ k(X). If σ(φ) = φ then
σ(φi) = φi for all 1 ≤ i ≤ n. Remark 5.4.14 therefore implies that φi ∈ k(X) for all i and
so φ is defined over k.

If Y is projective then φ(P) = (φ0(P) : · · · : φn(P)) where φi ∈ k(X) for 0 ≤ i ≤ n.

If φ(P) = σ(φ)(P) then, for all σ ∈ Gal(k/k), there is some xi(σ) ∈ k
∗

such that

σ(φi) = ξ(σ)φi for all 0 ≤ i ≤ n. As in Lemma 5.2.5, ξ : Gal(k/k)→ k
∗

is a 1-cocycle and
so by Hilbert 90 is a co-boundary. It follows that one can choose the φi so that σ(φi) = φi
and hence, by Remark 5.4.14, φi ∈ k(X) for 0 ≤ i ≤ n. �

5.6 Dimension

The natural notion of dimension (a point has dimension 0, a line has dimension 1, a
plane has dimension 2, etc) generalises to algebraic varieties. There are algebraic and
topological ways to define dimension. We use an algebraic approach.8

We stress that the notion of dimension only applies to irreducible algebraic sets. For
example X = V (x, y)∪V (x− 1) = V (x(x− 1), y(x− 1)) ⊆ A2 is the union of a point and
a line so has components of different dimension.

Recall the notion of transcendence degree of an extension k(X) over k from Defini-
tion A.6.3.

Definition 5.6.1. Let X be a variety over k. The dimension of X , denoted dim(X), is
the transcendence degree of k(X) over k.

Example 5.6.2. The dimension of An is n. The dimension of Pn is n.

Theorem 5.6.3. Let X and Y be varieties. If X and Y are birationally equivalent then
dim(X) = dim(Y).

Proof: Immediate from Theorem 5.5.28. �

Corollary 5.6.4. Let X be a projective variety such that X ∩ An is non-empty. Then
dim(X) = dim(X ∩An). Let X be an affine variety. Then dim(X) = dim

(
X
)
.

Exercise 5.6.5. Let f be a non-constant polynomial and let X = V (f) be a variety in
An. Show that dim(X) = n− 1.

Exercise 5.6.6. Show that if X is a non-empty variety of dimension zero then X = {P}
is a single point.

An useful alternative formulation of dimension is as follows.

Definition 5.6.7. Let R be a ring. The Krull dimension of R is the supremum of
n ∈ Z≥0 such that there exists a chain I0 ⊂ I1 ⊂ · · · ⊂ In of prime R-ideals such that
Ij−1 6= Ij for 1 ≤ j ≤ n.

Theorem 5.6.8. Let X be an affine variety over k. Then dim(X) is equal to the Krull
dimension of the affine coordinate ring k[X].

Proof: See Proposition I.1.7 and Theorem I.1.8A of [278]. �

8See Chapter 8 of Eisenbud [191] for a clear criticism of this approach.

106 CHAPTER 5. VARIETIES

Corollary 5.6.9. Let X and Y be affine varieties over k such that Y is a proper subset
of X. Then dim(Y) < dim(X).

Proof: Since Y 6= X we have Ik(X) (Ik(Y) and both ideals are prime since X and Y
are irreducible. It follows that the Krull dimension of k[X] is at least one more than the
Krull dimension of k[Y]. �

Exercise 5.6.10. Show that a proper closed subset of a variety of dimension 1 is finite.

5.7 Weil Restriction of Scalars

Weil restriction of scalars is simply the process of re-writing a system of polynomial
equations over a finite algebraic extension k′/k as a system of equations in more variables
over k. The canonical example is identifying the complex numbers A1(C) with A2(R) via
z = x + iy ∈ A1(C) 7→ (x, y) ∈ A2(R). We only need to introduce this concept in the
special case of affine algebraic sets over finite fields.

Lemma 5.7.1. Let q be a prime power, m ∈ N and fix a vector space basis {θ1, . . . , θm} for
Fqm over Fq. Let x1, . . . , xn be coordinates for An and let y1,1, . . . , y1,m, . . . , yn,1, . . . , yn,m
be coordinates for Anm. The map φ : Anm → An given by

φ(y1,1, . . . , yn,m) = (y1,1θ1 + · · ·+y1,mθm, y2,1θ1 + · · ·+y2,mθm, . . . , yn,1θ1 + · · ·+yn,mθm)

gives a bijection between Anm(Fq) and An(Fqm).

Exercise 5.7.2. Prove Lemma 5.7.1.

Definition 5.7.3. Let X = V (S) ⊆ An be an affine algebraic set over Fqm . Let φ be as
in Lemma 5.7.1. For each polynomial f(x1, . . . , xn) ∈ S ⊆ Fqm [x1, . . . , xn] write

φ∗(f) = f ◦ φ = f(y1,1θ1 + · · ·+ y1,mθm, y2,1θ1 + · · ·+ y2,mθm, . . . , yn,1θ1 + · · ·+ yn,mθm)
(5.3)

as
f1(y1,1, . . . , yn,m)θ1 + f2(y1,1, . . . , yn,m)θ2 + · · ·+ fm(y1,1, . . . , yn,m)θm (5.4)

where each fj ∈ Fq[y1,1, . . . , yn,m]. Define S′ ⊆ Fq[y1,1, . . . , yn,m] to be the set of all such
polynomials fj over all f ∈ S. The Weil restriction of scalars of X with respect to
Fqm/Fq is the affine algebraic set Y ⊆ Amn defined by

Y = V (S′).

Example 5.7.4. Let p ≡ 3 (mod 4) and define Fp2 = Fp(i) where i2 = −1. Consider the
algebraic set X = V (x1x2 − 1) ⊆ A2. The Weil restriction of scalars of X with respect to
Fp2/Fp with basis {1, i} is

Y = V (y1,1y2,1 − y1,2y2,2 − 1, y1,1y2,2 + y1,2y2,1) ⊆ A4.

Recall from Example 5.1.5 that X is an algebraic group. The multiplication operation
mult((x1, x2), (x′1, x

′
2)) = (x1x

′
1, x2x

′
2) on X corresponds to the operation

mult((y1,1, y1,2, y2,1, y2,2), (y′1,1, y
′
1,2, y

′
2,1, y

′
2,2))

= (y1,1y
′
1,1 − y1,2y′1,2, y1,1y′1,2 + y1,2y

′
1,1, y2,1y

′
2,1 − y2,2y′2,2, y2,1y′2,2 + y2,2y

′
2,1)

on Y .

5.7. WEIL RESTRICTION OF SCALARS 107

Exercise 5.7.5. Let p ≡ 3 (mod 4). Write down the Weil restriction of scalars of
X = V (x2 − 2i) ⊂ A1 with respect to Fp2/Fp.

Exercise 5.7.6. Let p ≡ 3 (mod 4). Write down the Weil restriction of scalars of
V (x21 + x22 − (1 + 2i)) ⊂ A2 with respect to Fp2/Fp.

Theorem 5.7.7. Let X ⊆ An be an affine algebraic set over Fqm . Let Y ⊆ Amn be the
Weil restriction of X. Let k ∈ N be coprime to m. Then there is a bijection between
X(Fqmk) and Y (Fqk).

Proof: When gcd(k,m) = 1 it is easily checked that the map φ of Lemma 5.7.1 gives a
a one-to-one correspondence between Anm(Fqk) and An(Fqmk).

Now, let P = (x1, . . . , xn) ∈ X and write Q = (y1,1 . . . , yn,m) for the corresponding
point in Amn. For any f ∈ S we have f(P) = 0. Writing f1, . . . , fm for the polynomials
in equation (5.4) we have

f1(Q)θ1 + f2(Q)θ2 + · · ·+ fm(Q)θm = 0.

Since {θ1, . . . , θm} is also a vector space basis for Fqmk over Fqk we have

f1(Q) = f2(Q) = · · · = fm(Q) = 0.

Hence f(Q) = 0 for all f ∈ S′ and so Q ∈ Y . Similarly, if Q ∈ Y then fj(Q) = 0 for all
such fj and so f(P) = 0 for all f ∈ S. �

Note that, as the following example indicates, when k is not coprime to m then
X(Fqmk) is not usually in one-to-one correspondence with Y (Fqk).

Exercise 5.7.8. Consider the algebraic set X from Exercise 5.7.5. Show that X(Fp4) =
{1 + i,−1 − i}. Let Y be the Weil restriction of X with respect to Fp2/Fp. Show that
Y (Fp2) = {(1, 1), (−1,−1), (i,−i), (−i, i)}.

Note that the Weil restriction of Pn with respect to Fqm/Fq is not the projective
closure of Amn. For example, considering the case n = 1, P1 has one point not contained
in A1, whereas the projective closure of Am has an (m − 1)-dimensional algebraic set of
points at infinity.

Exercise 5.7.9. Recall from Exercise 5.5.14 that there is a morphism from P1 to Y =
V (x2 + y2 − 1) ⊆ A2. Determine the Weil restriction of scalars of Y with respect to
Fp2/Fp. It makes sense to call this algebraic set the Weil restriction of P1 with respect to
Fp2/Fp.

108 CHAPTER 5. VARIETIES

Chapter 6

Tori, LUC and XTR

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Recall from Example 5.1.5 that F∗
q satisfies our informal notion of an algebraic group.

This chapter concerns certain subgroups of the multiplicative group of finite fields of
the form Fqn with n > 1. The main goal is to find short representations for elements.
Algebraic tori give short representations of elements of certain subgroups of F∗

qn . Traces
can be used to give short representations of certain algebraic group quotients in F∗

qn , and
the most successful implementations of this are called LUC and XTR. These ideas are
sometimes called torus based cryptography or trace based cryptography, though
this is misleading: the issue is only about representation of elements and is independent
of any specific cryptosystem.

6.1 Cyclotomic Subgroups of Finite Fields

Definition 6.1.1. Let n ∈ N. A complex number z is an n-th root of unity if zn = 1,
and is a primitive n-th root of unity if zn = 1 and zd 6= 1 for any divisor d | n with
1 ≤ d < n.

The n-th cyclotomic polynomial Φn(x) is the product (x − z) over all primitive
n-th roots of unity z.

Lemma 6.1.2. Let n ∈ N. Then

1. deg(Φn(x)) = ϕ(n).

2. Φn(x) ∈ Z[x].

3.

xn − 1 =
∏

d|n,1≤d≤n
Φd(x).

4. If m ∈ N is such that m 6= n then gcd(Φn(x),Φm(x)) = 1.

109

110 CHAPTER 6. TORI, LUC AND XTR

5.
Φn(x) =

∏

d|n
(xn/d − 1)µ(d)

where µ(d) is the Möbius function (Definition 4.3 of [468]).

Proof: Let z be a primitive n-th root of unity. Then every n-th root of unity is a power
of z and, for 0 ≤ i < n, zi is a primitive n-th root of unity if and only if gcd(n, i) = 1.
Therefore

Φn(x) =
∏

0≤i<n,gcd(n,i)=1

(x− zi)

and so deg(Φn(x)) = ϕ(n).
Galois theory implies Φn(x) ∈ Q[x] and, since z is an algebraic integer, it follows that

Φn(x) ∈ Z[x].1

The third fact follows since xn − 1 =
∏n−1
i=0 (x− zi) and each zi has some order d | n.

Let z be a root of gcd(Φn(x),Φm(x)). Then z has order equal to both n and m, which
is impossible if n 6= m.

Finally, writing zd for some primitive d-th root of unity, note that

∏

d|n
(xn/d − 1)µ(d) =

∏

d|n

n/d∏

j=1

(
x− zjn/d

)µ(d)

=
∏

d|n

n/d∏

j=1

(
x− zdjn

)µ(d)

=
n∏

i=1

(x− zin)
∑
d|gcd(n,i) µ(d).

Since
∑
d|n µ(d) is 0 when n > 1 and is 1 when n = 1 (Theorem 4.7 of [468]) the result

follows. �

Exercise 6.1.3. Show that Φ1(x) = x − 1,Φ2(x) = x + 1, Φ6(x) = x2 − x + 1 and
Φl(x) = xl−1 + xl−2 + · · ·+ x+ 1 if l is prime.

Exercise 6.1.4. Prove that if p | n then Φpn(x) = Φn(xp) and that if p ∤ n then
Φpn(x) = Φn(xp)/Φn(x). Prove that if n is odd then Φ2n(x) = Φn(−x).
[Hint: Use part 5 of Lemma 6.1.2.]

It is well-known that Φn(x) is irreducible over Q; we do not need this result so we
omit the proof.

Lemma 6.1.5. Let n ∈ N. The greatest common divisor of the polynomials (xn−1)/(xd−
1) over all 1 ≤ d < n such that d | n is Φn(x).

Proof: Define I = {d ∈ N : 1 ≤ d < n, d | n}. By part 3 of Lemma 6.1.2 we have
Φn(x) = (xn − 1)/f(x) where f(x) =

∏
d∈I Φd(x) = lcm(xd − 1 : d ∈ I). Hence

Φn(x) =
xn − 1

lcm(xd − 1 : d ∈ I)
= gcd

(
xn − 1

xd − 1
: d ∈ I

)
.

�

1One can find elementary proofs of this fact in any book on polynomials.

6.2. ALGEBRAIC TORI 111

Definition 6.1.6. Let n ∈ N and q a prime power. Define the cyclotomic subgroup
Gq,n to be the subgroup of F∗

qn of order Φn(q).

The subgroups Gq,n are of interest as most elements of Gq,n do not lie in any subfield
of Fqn (see Corollary 6.2.3 below). In other words, Gq,n is the “hardest part” of F∗

qn from
the point of view of the DLP. Note that Gq,n is trivially an algebraic group, by virtue of
being a subgroup of the algebraic group F∗

qn = Gm(Fqn) (see Example 5.1.5). The goal of
this subject area is to develop compact representations for the groups Gq,n and efficient
methods to compute with them.

The two most important cases are Gq,2, which is the subgroup of F∗
q2 of order q+1, and

Gq,6, which is the subgroup of F∗
q6 of order q2 − q + 1. We give compact representations

of these groups in Sections 6.3 and 6.4.

6.2 Algebraic Tori

Algebraic tori are a classical object in algebraic geometry and their relevance to cryptog-
raphy was first explained by Rubin and Silverberg [503]. An excellent survey of this area
is [504].

Recall from Theorem 5.7.7 that the Weil restriction of scalars of A1 with respect to
Fqn/Fq is An. Let n > 1 and let f : An(Fq)→ Fqn be a bijective Fq-linear function (e.g.,
corresponding to the fact that Fqn is a vector space of dimension n over Fq). For any d | n
define the norm NFqn/Fqd

(g) =
∏n/d−1
i=0 gq

di

. The equation NFqn/Fqd
(f(x1, . . . , xn)) = 1

defines an algebraic set in An.

Definition 6.2.1. The algebraic torus2 Tn is the algebraic set

V ({NFqn/Fqd
(f(x1, . . . , xn))− 1 : 1 ≤ d < n, d | n}) ⊂ An.

Note that there is a group operation on Tn(Fq), given by polynomials, inherited from
multiplication in F∗

qn . Hence (at least, ignoring for the moment the inverse map) Tn(Fq)
satisfies our informal definition of an algebraic group.

Lemma 6.2.2. Let the notation be as above.

1. Gq,n = {g ∈ F∗
qn : NFqn/Fqd

(g) = 1 for all 1 ≤ d < n such that d | n}.
2. Tn(Fq) is isomorphic as a group to Gq,n.

3. #Tn(Fq) = Φn(q).

Proof: For the first statement note that

NFqn/Fqd
(g) =

n/d−1∏

i=0

gq
di

= g(q
n−1)/(qd−1).

Recall that Φn(q) | (qn − 1)/(qd − 1) and, by Lemma 6.1.5, gcd((qn − 1)/(qd − 1) : 1 ≤
d < n, d | n) = Φn(q). Hence, all the norms are 1 if and only if gΦn(q) = 1, which proves
the first claim. The second and third statements follow immediately. �

Corollary 6.2.3. Let n ∈ N and q a prime power. Suppose g ∈ Gq,n has order r > n.
Then g does not lie in any proper subfield of Fqn .

2The plural of “torus” is “tori”.

112 CHAPTER 6. TORI, LUC AND XTR

Proof: Suppose g ∈ Fqd for some 1 ≤ d < n such that d | n. Then 1 = NFqn/Fqd
(g) =

gn/d, but this contradicts the order of g being > n. �

It follows from the general theory that Tn is irreducible and of dimension ϕ(n). Hence,
Tn is a variety and one can speak of birational maps from Tn to another algebraic set.
We refer to Section 5 of [504] for details and references.

Definition 6.2.4. The torus Tn is rational if there is a birational map from Tn to Aϕ(n).

If Tn is rational then Aϕ(n)(Fq) is a compact representation for Gq,n. Performing
discrete logarithm cryptography by transmitting elements of Aϕ(n)(Fq) is called torus
based cryptography and was developed by Rubin and Silverberg [503].

If Tn is rational then there is an induced “partial” group operation on Aϕ(n), given
by rational functions. This is not an algebraic group in general since there is not usually
a one-to-one correspondence between Aϕ(n)(Fq) and Gq,n. Nevertheless, “most” of the
elements of the group Gq,n appear in Aϕ(n)(Fq) and, for many cryptographic purposes,
the partial group law is sufficient. In practice, however, working with the partial group
operation on Aϕ(n) is not usually as efficient as using other representations for the group.
The main application of tori is therefore the compact representation for elements of certain
subgroups of F∗

qn .
It is not known if Tn is rational for all n ∈ N (we refer to [504] for more details and

references about when Tn is known to be rational). The cryptographic applications of
T2 and T6 rely on the well-known fact that these tori are both rational. The details are
given in the following sections.

As mentioned in Section 4.3, sometimes it is convenient to consider quotients of alge-
braic groups by an equivalence relation. In the following sections we describe algebraic
group quotients (more commonly known by the names LUC and XTR) for Gq,2 and Gq,6,
but we construct them directly without using the theory of tori.

6.3 The Group Gq,2

Define Fq2 = Fq(θ) where
θ2 +Aθ +B = 0 (6.1)

for some A,B ∈ Fq such that x2 + Ax + B is irreducible over Fq (e.g., if q is odd then
A2 − 4B is not a square in Fq). In practice there are performance advantages from using
a simpler equation, such as θ2 = B or θ2 + θ = B where B is “small”. Every element of
Fq2 is of the form u+ vθ where u, v ∈ Fq.

The conjugate of θ is θ = θq = −A − θ. We have θ + θ = −A and θθ = B. The
conjugate of an element g = u+ vθ ∈ Fq2 is u+ vθ and g has norm

NFq2/Fq
(g) = (u + vθ)(u + vθ) = u2 −Auv +Bv2. (6.2)

The group Gq,2 is defined to be the set of elements g ∈ Fq2 such that gq+1 = 1.
Equivalently this is the set of u+ vθ such that u2 −Auv +Bv2 = 1.

Exercise 6.3.1. Show that if g = u+vθ ∈ Gq,2 then g−1 = gq = u+vθ = (u−Av)+(−v)θ.
Hence, inversion in Gq,2 is cheaper than a general group operation (especially if A = 0 or
A is “small”).

Exercise 6.3.2. Suppose q is not a power of 2. Suppose Fq2 = Fq(θ) where θ2+Aθ+B = 0
and multiplying an element of Fq by A or B has negligible cost (e.g., A = 0 and B =
1). Show that one can compute a product (respectively: squaring; inversion) in F∗

q2

6.3. THE GROUP GQ,2 113

using 3 multiplications (respectively: 3 squarings; one inversion, 3 multiplications and 2
squarings) in Fq. Ignore the cost of additions and multiplication by small constants such
as 2 (since they are significantly faster to perform than multiplications etc).

Exercise 6.3.3.⋆ Suppose q ≡ 3 (mod 4) is prime. Show that one can represent Fq2
as Fq(θ) where θ2 + 1 = 0. Show that, using this representation, one can compute
a product (respectively: squaring; inversion; square root) in F∗

q2 using 3 multiplications

(respectively: 2 multiplications; one inversion, 2 squarings and 2 multiplications; 2 square
roots, one inversion, one Legendre symbol, one multiplication and 2 squarings) in Fq.
Ignore the cost of additions.

6.3.1 The Torus T2

Recall thatGq,2 can be represented as the Fq-points of the algebraic torus T2 = V (NFq2/Fq
(f(x, y))−

1) ⊂ A2, where f : A2(Fq) → Fq2 . By equation (6.2), an affine equation for T2 is
V (x2−Axy+By2− 1). Being a conic with a rational point, it is immediate from general
results in geometry (see Exercise 5.5.14 for a special case) that T2 is birational with A1.

The next two results give a more algebraic way to show that T2 is rational. Rather
than directly constructing a birational map from T2 to A1 we go via Gq,2. Lemma 6.3.4
provides a map from A1(Fq) to Gq,2 while Lemma 6.3.6 provides a map from Gq,2 to
A1(Fq).

Lemma 6.3.4. The set Gq,2 ⊆ F∗
q2 is equal to the set

{(a+ θ)/(a+ θ) : a ∈ Fq} ∪ {1}.

Proof: Clearly, every element g = (a+ θ)/(a+ θ) satisfies gg = 1. It is also easy to check
that (a+ θ)/(a+ θ) = (a′ + θ)/(a′ + θ) implies a = a′. Hence we have obtained q distinct
elements of Gq,2. The missing element is evidently 1 and the result follows. �

Exercise 6.3.5. Suppose q is odd. Determine the value for a such that (a+ θ)/(a+ θ) =
−1.

Lemma 6.3.6. Let g = u + vθ ∈ Gq,2, g 6= ±1. Then u + vθ = (a + θ)/(a + θ) for the
unique value a = (u + 1)/v.

Proof: The value a must satisfy

a+ θ = (u+ vθ)(a+ θ) = ua+ uθ + avθ + vθθ = (ua−Au +Bv) + θ(av − u).

Equating coefficients of θ gives av = u + 1 and the result follows as long as v 6= 0 (i.e.,
g 6= ±1). �

The above results motivate the following definition.

Definition 6.3.7. The T2 decompression map is the function decomp2 : A1 → Gq,2
given by decomp2(a) = (a+ θ)/(a+ θ).

The T2 compression map is the function comp2 : Gq,2 − {1,−1} → A1 given by
comp2(u+ vθ) = (u+ 1)/v.

Lemma 6.3.8. The maps comp2 and decomp2 are injective. The compression map is
not defined at ±1. If g ∈ Gq,2 − {1,−1} then decomp2(comp2(g)) = g.

Exercise 6.3.9. Prove Lemma 6.3.8.

114 CHAPTER 6. TORI, LUC AND XTR

Alert readers will notice that the maps comp2 and decomp2 are between Gq,2 and
A1, rather than between T2 and A1. For completeness we now give a map from Gq,2 to
T2 ⊂ A2. From this one can deduce birational maps between T2 and A1, which prove
that T2 is indeed rational.

Lemma 6.3.10. An element of the form (a+θ)/(a+θ) ∈ Gq,2 corresponds to the element
(

a2 −B
a2 − aA+B

,
2a−A

a2 − aA+B

)

of T2.

Proof: Let (x, y) be the image point in T2. In other words

(a+ θ)/(a+ θ) = x+ yθ

and so a+ θ = (x+ yθ)(a+ θ) = (ax+By−Ax) + θ(ay− x). Equating coefficients gives
the result. �

Exercise 6.3.11. Prove that T2 is rational.

We now present the partial group operations on A1 induced by the map from A1 to
Gq,2. We stress that A1 is not a group with respect to these operations, since the identity
element of Gq,2 is not represented as an element of A1.

Lemma 6.3.12. Let the notation be as above. For a, b ∈ A1 define a ⋆ b = (ab−B)/(a+
b−A) and a′ = A−a. Then a⋆ b is the product and a′ is the inverse for the partial group
law.

Proof: The partial group law on A1 is defined by comp2(decomp2(a)decomp2(b)). Now,

decomp2(a)decomp2(b) =

(
a+ θ

a+ θ

)(
b+ θ

b+ θ

)
=
ab−B + (a+ b−A)θ

ab−B + (a+ b−A)θ
.

The formula for a ⋆ b follows.
Similarly,

decomp2(a)−1 =
a+ θ

a+ θ
=
a+ (−A− θ)
a+ (−A− θ)

,

which gives the formula for a′. �

It follows that one can compute directly with the compressed representation of ele-
ments of T2(Fq). Note that computing the partial group law on A1 requires an inversion,
so is not very efficient. For cryptographic applications one is usually computing comp2(gn)
from comp2(g); to do this one decompresses to obtain g ∈ Gq,2, then computes gn us-
ing any one of a number of techniques, and finally applies comp2 to obtain a compact
representation.3

6.3.2 Lucas Sequences

Lucas4 sequences can be used for efficient computation in quadratic fields. We give the
details for Gq,2 ⊂ F∗

q2 . The name LUC cryptosystem is applied to any cryptosystem using
Lucas sequences to represent elements in an algebraic group quotient of Gq,2. Recall the
trace TrFq2/Fq (g) = g + gq for g ∈ Fq2 .

3This is analgous to using projective coordinates for efficient elliptic curve arithmetic; see Exer-
cise 9.1.5.

4They are named after Edouard Lucas (1842-1891); who apparently died due to a freak accident
involving broken crockery. Lucas sequences were used for primality testing and factorisation before their
cryptographic application was recognised.

6.3. THE GROUP GQ,2 115

Definition 6.3.13. Let g ∈ F∗
q2 satisfy gq+1 = 1. For i ∈ Z define Vi = TrFq2/Fq (g

i).

Lemma 6.3.14. Let g = v1 + w1θ with v1, w1 ∈ Fq and θ as in equation (6.1). Suppose
gq+1 = 1 and let Vi be as in Definition 6.3.13. Then, for i, j ∈ Z,

1. V0 = 2 and V1 = TrFq2/Fq (g) = 2v1 −Aw1.

2. V−i = Vi.

3. Vi+1 = V1Vi − Vi−1.

4. V2i = V 2
i − 2.

5. V2i−1 = ViVi−1 − V1.
6. V2i+1 = ViVi+1 − V1.
7. V2i+1 = V1V

2
i − ViVi−1 − V1.

8. Vi+j = ViVj − Vi−j .

Proof: Let g = gq = v1+w1θ. Then TrFq2/Fq (g) = g+g = (v1+w1θ)+(v1+w1(−θ−A)) =

2v1 − Aw1. Similarly, g0 = 1 and the first statement is proven. The second statement
follows from g−1 = g. Statements 3 to 6 are all special cases of statement 8, which follows
from the equation

Vi+j = gi+j + gi+j = (gi + gi)(gj + gj)− gjgj(gi−j + gi−j).

(An alternative proof of Statement 3 is to use the fact that g satisfies g2 = V1g − 1.)
Statement 7 then follows from 3 and 6. �

Exercise 6.3.15. Define Ui = (gi−gi)/(g−g). Prove that Ui+1 = TrFq2/Fq (g)Ui−Ui−1,
U2i = ViUi, Ui+j = UiUj+1 − Ui−1Uj .

Definition 6.3.16. Denote by Gq,2/〈σ〉 the set of equivalence classes of Gq,2 under the
equivalence relation g ≡ σ(g) = gq = g−1. Denote the class of g ∈ Gq,2 by [g] = {g, gq}.

The main observation is that TrFq2/Fq (g) = TrFq2/Fq(g
q) and so a class [g] can be

identified with the value V = TrFq2/Fq (g). This motivates Definition 6.3.18. When q is

odd, the classes [1] and [−1] correspond to V = 2 and V = −2 respectively; apart from
these cases, the other possible values for V are those for which the polynomial x2−V x+1
is irreducible over Fq.

Exercise 6.3.17. Prove that if TrFq2/Fq (g) = TrFq2/Fq(g
′) for g, g′ ∈ Gq,2 then g′ ∈

{g, gq}. Hence, show that when q is odd there are 2 + (q − 1)/2 values for TrFq2/Fq (g)
over g ∈ Gq,2.

The set Gq,2/〈σ〉 is not a group, however for a class [g] ∈ Gq,2/〈σ〉 and n ∈ N one can
define [g]n to be [gn].

Definition 6.3.18. Let G′
q,2 = {TrFq2/Fq (g) : g ∈ Gq,2}. For V ∈ G′

q,2 and n ∈ N define

[n]V = TrFq2/Fq (g
n) for any g ∈ Gq,2 such that V = TrFq2/Fq (g).

It follows that we may treat the setG′
q,2 as an algebraic group quotient. One method to

efficiently compute [n]V for n ∈ N is to take a root g ∈ Fq2 of x2−V x+1 = 0, compute gn

in Fq2 using the square-and-multiply method, and then compute TrFq2/Fq(g
n). However,

we want to be able to compute [n]V directly using an analogue of the square-and-multiply

116 CHAPTER 6. TORI, LUC AND XTR

method.5 Lemma 6.3.14 shows that, although V2n is determined by Vn and n, Vn+1 is
not determined by Vn alone. Hence it is necessary to develop an algorithm that works on
a pair (Vn, Vn−1) of consecutive values. Such algorithms are known as ladder methods.
One starts the ladder computation with (V1, V0) = (V, 2).

Lemma 6.3.19. Given (Vi, Vi−1) and V one can compute (V2i, V2i−1) (i.e., “squaring”)
or (V2i+1, V2i) (i.e., “square-and-multiply”) in one multiplication, one squaring and two
or three additions in Fq.

Proof: One must compute V 2
i and ViVi−1 and then apply part 4 and either part 5 or 7

of Lemma 6.3.14. �

Exercise 6.3.20. Write the ladder algorithm for computing [n]V using Lucas sequences
in detail.

The storage requirement of the ladder algorithm is the same as when working in Fq2 ,
although the output value is compressed to a single element of Fq. Note however that
computing a squaring alone in Fq2 already requires more computation (at least when q is
not a power of 2) than Lemma 6.3.19.

We have shown that for V ∈ G′
q,2 one can compute [n]V using polynomial operations

starting with the pair (V, 2). Since G′
q,2 is in one-to-one correspondence with Gq,2/〈σ〉, it

is natural to consider G′
q,2 as being an algebraic group quotient.

Performing discrete logarithm based cryptography in G′
q,2 is sometimes called the

LUC cryptosystem.6 To solve the discrete logarithm problem in G′
q,2 one usually lifts

the problem to the covering group Gq,2 ⊂ F∗
q2 by taking one of the roots in Fq2 of the

polynomial x2 − V x+ 1.

Example 6.3.21. Define F372 = F37(θ) where θ2− 3θ+ 1 = 0. The element g = −1 + 3θ
has order 19 and lies in G37,2. Write V = TrF372/F37

(g) = 7. To compute [6]V one uses
the addition chain (V1, V0) = (7, 2) → (V3, V2) = (26, 10) → (V6, V5) = (8, 31); this is
because 6 = (110)2 in binary so the intermediate values for i are (1)2 = 1 and (11)2 = 3.

Exercise 6.3.22. Using the same values as Example 6.3.21 compute [10]V .

Exercise 6.3.23.⋆ Compare the number of Fq multiplications and squarings to compute
a squaring or a squaring-and-multiplication in the quotient G′

q,2 using Lucas sequences
with the cost for general arithmetic in Gq,2 ⊂ Fq2 .

6.4 The Group Gq,6

The group Gq,6 is the subgroup of F∗
q6 of order Φ6(q) = q2− q+ 1. The natural represen-

tation of elements of Gq,6 requires 6 elements of Fq.
Assume (without loss of generality) that Fq6 = Fq3(θ) where θ ∈ Fq2 and θ2+Aθ+B =

0 for some A,B ∈ Fq.

5In practice it is often more efficient to use other processes instead of the traditional square-and-
multiply method. We refer to Chapter 3 of [579] for more details.

6The original LUC cryptosystem due to Smith and Lennon [574] was using Lucas sequences modulo
a composite integer N ; we refer to Section 6.6 for further discussion. The finite field version is only very
briefly mentioned in [574], but is further developed in [575].

6.4. THE GROUP GQ,6 117

6.4.1 The Torus T6

Recall that T6 is a two dimensional algebraic set in A6 defined by the intersection of the
kernels of the norm maps NFq6/Fq3

and NFq6/Fq2
. It is known that T6 is rational, so the

goal is to represent elements of Gq,6 using only two elements of Fq.
The kernel of the norm map NFq6/Fq3

is identified with T2(Fq3) ⊂ A2(Fq3). As in

Section 6.3.1, T2 is birational to A1(Fq3) (which can then be identified with A3(Fq)) via

the map decomp2(a) = (a+ θ)/(a+ θ) where Fq6 = Fq3(θ). The next step is to compute
the kernel of the norm map with respect to Fq6/Fq2 .

Lemma 6.4.1. The Weil restriction of the kernel of NFq6/Fq2
on T2(Fq3) is birational

with a quadratic hypersurface U in A3(Fq).

Proof: First, we represent an element of T2(Fq3) − {1} as a single value a ∈ Fq3 . Now
impose the norm equation on the image of decomp2(a)

NFq6/Fq2
(decomp2(a)) =

(
a+ θ

a+ θ

)(
a+ θ

a+ θ

)q2 (
a+ θ

a+ θ

)q4
=

(
a+ θ

a+ θ

)(
aq

2

+ θ

aq2 + θ

)(
aq

4

+ θ

aq4 + θ

)
.

To solve NFq6/Fq2
(decomp2(a)) = 1 one clears the denominator and equates coefficients

of θ, giving

a1+q
2+q4 + θ(a1+q

2

+ a1+q
4

+ aq
2+q4) + θ2(a+ aq

2

+ aq
4

) + θ3

= a1+q
2+q4 + θ(a1+q

2

+ a1+q
4

+ aq
2+q4) + θ

2
(a+ aq

2

+ aq
4

) + θ
3
.

The crucial observations are that the cubic terms in a cancel and that θ2−θ2 = −A(θ−θ)
and θ3 − θ3 = (A2 −B)(θ − θ). Hence we obtain a single equation in a.

Now, we identify a ∈ A1(Fq3) with a 3-tuple (a0, a1, a2) ∈ A3(Fq). Using the fact that
a 7→ aq corresponds to an Fq-linear map on A3(Fq), it follows that the single equation
given above is actually a quadratic polynomial in (a0, a1, a2). In other words, the values
(a0, a1, a2) corresponding to solutions of the norm equation are points on a quadratic
hypersurface in A3(Fq), which we call U . �

The general theory (see Rubin and Silverberg [504]) implies that U is irreducible, but
we do not prove this. It remains to give a rational parameterisation pU : U → A2 of the
hypersurface. This is done using essentially the same method as Example 5.5.14.

Lemma 6.4.2. An irreducible quadratic hypersurface U ⊂ A3 over a field k is birational
over k to A2.

Proof: (Sketch) Let P = (xP , yP , zP) be a point on U and change variables so that the
tangent plane T to U at P is x = xP . We have not discussed T in this book; the only
property we need is that T contains every line through P that is not contained in U and
that intersects U at P with multiplicity 2.

Let Q ∈ U(k) be such that Q 6= P and such that the line between P and Q is not
contained in U (this is generically the case for an irreducible quadratic hypersurface).
Then the line between P and Q does not lie in T and so is given by an equation of the
form7

(x, y, z) = P + t(1, a, b) (6.3)

for some a, b ∈ k (in other words, the equations x = xP + t, y = yP + at, etc). Such a
line hits U at precisely one point Q ∈ U(k) with Q 6= P . Writing U = V (F (x, y, z)) it

7Here, and below, P +Q denotes the usual coordinate-wise addition of 3-tuples over a field.

118 CHAPTER 6. TORI, LUC AND XTR

follows that F (xP + t, yP + at, zP + bt) = 0 has the form t(h(a, b)t− g(a, b)) = 0 for some
quadratic polynomial h(a, b) ∈ k[a, b] and some linear polynomial g(a, b) ∈ k[a, b]. Hence
we have a rational map A2 → U given by

(a, b) 7→ P + g(a,b)
h(a,b)(1, a, b).

The inverse is the rational map

pU (xQ, yQ, zQ) = ((yQ − yP)/(xQ − xP), (zQ − zP)/(xQ − xP))

such that pU : U → A2. �

Recall the map comp2 : Gq3,2 → A1(Fq3) from the study of T2. We identify A1(Fq3)
with A3(Fq). The image of comp2 is U , which is birational via pU to A2. This motivates
the following definition.

Definition 6.4.3. The T6 compression map is comp6 : Gq,6 → A2 is given by comp6 =
pUcomp2. The inverse of comp6 is the T6 decompression map decomp6 = decomp2 p

−1
U .

Example 6.4.4. Let q ≡ 2, 5 (mod 9) be an odd prime power so that Fq6 = Fq(ζ9) where
ζ9 is a primitive 9-th root of unity (see Exercise 6.4.5). Let θ = ζ39 and α = ζ9 + ζ−1

9 .
Then Fq2 = Fq(θ) and Fq3 = Fq(α). Note that α3 − 3α + 1 = 0. Identify A3(Fq) with
A1(Fq3) by f : (x, y, z) 7→ x + yα + z(α2 − 2). As in the proof of Lemma 6.4.1 one can
verify that the equation

NFq6/Fq2
((f(x, y, z) + θ)/(f(x, y, z) + θ)) = 1

is equivalent to

F (x, y, z) = x2 − x− y2 + yz − z2 = 0.

Denote by U the hyperplane V (F (x, y, z)) in A3. Let P = (0, 0, 0). The tangent plane to
U at P is given by the equation x = 0. Note that, since −3 is not a square in Fq, the only
solution to F (0, y, z) = 0 over Fq is (y, z) = (0, 0) (but this statement is not true over Fq;
U contains, for example, the line (0,−ζ3t, t)). Given a, b ∈ Fq the line (t, at, bt) hits U at
t = 0 and

t = 1/(1− a2 + ab− b2).

One therefore defines a birational map g : A2 → A3 by

g : (a, b) 7→
(

1

1− a2 + ab− b2 ,
a

1− a2 + ab− b2 ,
b

1− a2 + ab− b2
)
.

Finally, the map decomp6 from A2 to Gq,6 is (f(g(a, b)) + θ)/((f(g(a, b)) + θ). It is then
straightforward to compute comp6.

Exercise 6.4.5. Let q be a prime power and ζ9 a primitive 9-th root of unity in Fq.
Show that Fq(ζ9) = Fq6 if and only if q ≡ 2, 5 (mod 9).

In principle one can write down the partial group operations on A2 induced from
Gq,6, but this is not an efficient way to compute. Instead, to compute comp6(gn) from
comp6(g) one decompresses to obtain an element g ∈ Gq,6 (or Gq3,2), computes gn, and
then compresses again.

6.4. THE GROUP GQ,6 119

6.4.2 XTR

An excellent survey of work in this area is the thesis of Stam [579].
The Galois group of Fq6/Fq2 is cyclic of order 3 and generated by the q2-power Frobe-

nius map σ. One can consider the set Gq,6/〈σ〉 = Gq,6/Gal(Fq6/Fq2) of equivalence classes
under the relation g ≡ σi(g) for 0 ≤ i ≤ 2. This gives an algebraic group quotient. which
was named XTR8 by Lenstra and Verheul. The goal is to give a compressed representa-
tion for this quotient; this is achieved by using the trace with respect to Fq6/Fq2 .

Lemma 6.4.6. Let g ∈ Gq,6. Let t = TrFq6/Fq2 (g) ∈ Fq2 . Then NFq6/Fq2
(g) = g1+q

2+q4 =

1 and the characteristic polynomial of g over Fq2 is χg(x) = x3 − tx2 + tqx− 1.

Proof: The first claim follows since gq
2−q+1 = 1 and (q2−q+1)(q2 +q+1) = q4 +q2 +1.

Now, write (x − g)(x− gq2)(x − gq4) = x3 − tx2 + sx − 1. Since this polynomial is fixed

by Gal(Fq6/Fq2) it follows that s, t ∈ Fq2 . Indeed, t = TrFq6/Fq2 (g) = g + gq
2

+ gq
4

=

g + gq−1 + g−q. Also

s = g1+q
2

+ g1+q
4

+ gq
2+q4 = gq + g1−q + g−1.

Finally, sq = gq
2

+ gq
2−q + g−q = t, from which we have s = tq. �

This result shows that one can represent an equivalence class of g ∈ Gq,6/Gal(Fq6/Fq2)
using a single element t ∈ Fq2 , as desired. It remains to explain how to perform exponen-
tiation in the quotient (as usual, the quotient structure is not a group and so it makes no
sense to try to compute a general group operation on it).

Exercise 6.4.7. Write f(x) = x3 − tx2 + tqx− 1 for t ∈ Fq2 . Prove that if f(a) = 0 for

a ∈ Fq then f(a−q) = 0. Hence prove that either f(x) is irreducible over Fq2 or splits
completely over Fq2 .

Definition 6.4.8. Fix g ∈ Gq,6. For n ∈ Z write tn = TrFq6/Fq2 (gn).

Lemma 6.4.9. Let the notation be as above. Then, for n,m ∈ Z,

1. t−n = tnq = tqn.

2. tn+m = tntm − tqmtn−m + tn−2m.

Proof: We have tn = gn + gn(q−1) + gn(−q) The first statement follows from the proof of
Lemma 6.4.6, where it is proved that tq = gq + g1−q + g−1 = TrFq6/Fq2 (g−1).

For the second statement, an elementary calculation verifies that

tntm − tn+m = (gn + gn(q−1) + g−nq)(gm + gm(q−1) + g−mq)− (gn+m + g(n+m)(q−1) + g−(n+m)q)

= gn+m(q−1) + gn−mq + gn(q−1)+m + gn(q−1)−mq + g−nq+m + g−nq+m(q−1).

This is equal to tqmtn − tn−2m. �

It remains to give a ladder algorithm to compute tn. In this case one can work with
triples (tn+1, tn, tn−1) of ‘adjacent’ values centered at tn. This is the XTR represen-
tation of Lenstra and Verheul. Note that, given t1 = TrFq6/Fq2 (g) one can compute the

triple (t1, t0, t−1) = (t1, 3, t
q
1). Given a triple (tn+1, tn, tn−1) and t1 one can compute the

triple centered at t2n or t2n+1 using the following exercise.

Exercise 6.4.10. Prove that

8XTR is an abbreviation for ECSTR, which stands for “Efficient and Compact Subgroup Trace Rep-
resentation”.

120 CHAPTER 6. TORI, LUC AND XTR

1. t2n−1 = tn−1tn − tq1tqn + tqn+1;

2. t2n = t2n − 2tqn;

3. t2n+1 = tn+1tn − t1tqn + tqn−1.

Exercise 6.4.11. If one uses triples (tn+1, tn, tn−1) as above then what is the cost of a
square or square-and-multiply in Gq,6?

Exercise 6.4.12.⋆ Give a more efficient ladder for XTR, for which the cost of squaring
and square-and-multiply are the same.

In other words, one can compute TrFq6/Fq2 (gn) from t = TrFq6/Fq2 (g) using polynomial

arithmetic and so Gq,6/Gal(Fq6/Fq2) is an algebraic group quotient. Performing discrete
logarithm based cryptography in this setting is called the XTR cryptosystem. To solve
the discrete logarithm problem in Gq,6/Gal(Fq6/Fq2) one usually lifts the problem to the
covering group Gq,6 ⊂ F∗

q6 by taking any root of the polynomial x3− tx2 + tqx− 1. For

further details about efficient arithmetic using XTR we refer to [579].

Exercise 6.4.13. Represent F672 as F67(i) where i2 = −1. Given that t1 = TrF676/F672
(g) =

48 + 63i for some g ∈ G67,6 compute t7 = TrF676/F672
(g7).

Exercise 6.4.14. (The Gong-Harn cryptosystem [259]) Consider the quotient G′
q,3 =

Gq,3/〈σ〉 where σ is the q-power Frobenius in Fq3 . Fix g ∈ Gq,3 and define tn = gn +

gnq + gnq
2 ∈ Fq. Show that the characteristic polynomial for g is x3 − t1x2 + t−1x − 1.

Hence, show that an element of G′
q,3 can be represented using two elements of Fq. Show

that
tn+m = tntm − tn−mt−m + tn−2m

Hence develop a ladder algorithm for exponentiation in G′
q,3.

Exercise 6.4.15. (Shirase, Han, Hibino, Kim and Takagi [551]) Let q = 3m with m
odd. Show that (q − √3q + 1)(q +

√
3q + 1) = q2 − q + 1. Let g ∈ F∗

36m have order

dividing q − √3q + 1. Show that gq+1 = g
√
3q and gq

3+1 = 1. Let t = TrFq6/Fq2 (g) and

s = TrFq6/Fq (g). Show that the roots of x2 − sx+ s
√
3q are t and tq.

Hence, one can use s as a compressed representative for g; requiring only half the
storage of XTR. To compute TrFq6/Fq (g

n) one solves the quadratic to obtain t, computes

TrFq6/Fq2 (gn) using the XTR formulae, and then performs the further compression.

6.5 Further Remarks

Granger and Vercauteren [266] have proposed an index calculus algorithm for Tn(Fpm)
where m > 1. Kohel [351] has shown that one might map the discrete logarithm problem
in an algebraic torus Tn(Fq) to the discrete logarithm problem in the generalised Jacobian
(which is a certain type of divisor class group) of a singular hyperelliptic curve over Fq.
This latter problem might be attacked using an index calculus method such as Gaudry’s
algorithm (see Section 15.6.3). It seems this approach will not be faster than performing
index calculus methods in F∗

pn , but further investigation would be of interest.

6.6 Algebraic Tori over Rings

Applications in factoring and primality testing motivate the study of tori over Z/NZ.
As mentioned in Section 4.4, the simplest approach is to restrict to N being square-free

6.6. ALGEBRAIC TORI OVER RINGS 121

and to use the Chinese remainder theorem to define the groups. First we explain how to
construct rings isomorphic to the direct product of finite fields.

Example 6.6.1. Let N =
∏k
i=1 pi be square-free. Let F (x) = x2 + Ax+ B ∈ Z[x] be a

quadratic polynomial such that F (x) is irreducible modulo pi for all 1 ≤ i ≤ k. Define
R = (Z/NZ)[x]/(F (x)). By the Chinese remainder theorem, R ∼= ⊕Fp2i . We will usually

write θ for the image of x in R and θ = −A− x = Bx−1.
Define GN,2 to be the subgroup of R∗ of order

∏k
i=1(pi + 1) isomorphic to the direct

sum of the groups Gpi,2. Note that GN,2 is not usually cyclic.

We would like to represent a “general” element ofGN,2 using a single element of Z/NZ.
In other words, we would like to have a map from Z/NZ to GN.2. One can immediately
apply Definition 6.3.7 to obtain the map a 7→ (a+ θ)/(a+ θ). Since the reduction modulo
pi of this map correctly maps to Gpi,2, for each prime pi, it follows that it correctly maps
to GN,2. Hence, we can identify T2(Z/NZ) with Z/NZ. The group operation ⋆ from
Lemma 6.3.12 can also be applied in Z/NZ and its correctness follows from the Chinese
remainder theorem.

Note that the image of Z/NZ in GN.2 under this map has size N =
∏
pi, whereas

GN,2 has order
∏
i(pi + 1). Hence, there are many elements of GN,2 that are missed by

the decompression map. Note that these “missed” elements are those which correspond
to the identity element of Gpi,2 for at least one prime pi. In other words, they are of the
form g = u+ vθ where gcd(v,N) > 1.

Similarly, Lucas sequences can be used modulo N when N is square-free, and their
properties follow from the properties modulo pi for all prime factors pi of N . However,
one should be careful when interpreting the Galois theory. In Section 6.3.2 the non-trivial
element of Gal(Fq2/Fq) is written as σ(g) = gq, but this formulation does not naturally

generalise to the ring R of Example 6.6.1. Instead, define σ(u + vθ) = u + vθ so that
σ : R → R is a ring homomorphism and σ(g) (mod pi) = σ(g (mod pi)). One can then
define the trace map TrR/(Z/NZ)(g) = g + σ(g). The theory of Section 6.3.2 can then
immediately be adapted to give Lucas sequences modulo N .

Exercise 6.6.2. Let N =
∏k
i=1 pi be a square-free integer and let R be as in Exam-

ple 6.6.1. Let g ∈ GN,2. Determine how many elements h ∈ GN,2, in general, satisfy
TrR/(Z/NZ)(h) = TrR/(Z/NZ)(g). Show that roughly N/2k of the values V ∈ Z/NZ corre-
spond to the trace of an element in GN,2.

Using similar methods to the above it is straightforward to adapt the torus T6 and
XTR to the ring Z/NZ when N is square-free. We leave the details to the reader.

122 CHAPTER 6. TORI, LUC AND XTR

Chapter 7

Curves and Divisor Class
Groups

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

The purpose of this chapter is to develop some basic theory of divisors and functions
on curves. We use this theory to prove that the set of points on an elliptic curve over a
field is a group. There exist more elementary proofs of this fact, but I feel the approach
via divisor class groups gives a deeper understanding of the subject.

We start by introducing the theory of singular points on varieties. Then we define
uniformizers and the valuation of a function at a point on a curve. When working over
a field k that is not algebraically closed it turns out to be necessary to consider not just
points on C defined over k but also those defined over k (alternatively, one can generalise
the notion of point to places of degree greater than one; see [589] for details). We then
discuss divisors, principal divisors and the divisor class group. The hardest result is that
the divisor of a function has degree zero; the proof for general curves is given in Chapter 8.
Finally, we discuss the “chord and tangent” group law on elliptic curves.

7.1 Non-Singular Varieties

The word “local” is used throughout analysis and topology to describe any property
that holds in a neighbourhood of a point. We now develop some tools to study “local”
properties of points of varieties. The algebraic concept of “localisation” is the main
technique used.

Definition 7.1.1. Let X be a variety over k. The local ring over k of X at a point
P ∈ X(k) is

OP,k(X) = {f ∈ k(X) : f is regular at P}.
Define

mP,k(X) = {f ∈ OP,k(X) : f(P) = 0} ⊆ OP,k(X).

123

124 CHAPTER 7. CURVES AND DIVISOR CLASS GROUPS

When the variety X and field k are clear from the context we simply write OP and mP .

Lemma 7.1.2. Let the notation be as above. Then

1. OP,k(X) is a ring;

2. mP,k(X) is an OP,k(X)-ideal;

3. mP,k(X) is a maximal ideal;

4. OP,k(X) is a Noetherian local ring.

Proof: The first three parts are straightforward. The fourth part follows from the fact
that, if X is affine, OP,k(X) is the localisation of k[X] (which is Noetherian) at the
maximal ideal m = {f ∈ k[X] : f(P) = 0}. Lemma A.9.5 shows that the localisation
of a Noetherian ring at a maximal ideal is Noetherian. Similarly, if X is projective then
OP,k(X) is isomorphic to a localisation of R = k[ϕ−1

i (X)] (again, Noetherian) where i is
such that P ∈ Ui. �

Note that, for an affine variety X ,

k ⊆ k[X] ⊆ OP (X) ⊆ k(X).

Remark 7.1.3. We remark that OP,k(X) and mP,k(X) are defined in terms of k(X)
rather than any particular model for X . Hence, if φ : X → Y is a birational map over
k of varieties over k and φ is defined at P ∈ X(k) then OP,k(X) is isomorphic as a ring
to Oφ(P),k(Y) (precisely, if f ∈ Oφ(P),k(Y) then φ∗(f) = f ◦ φ ∈ OP,k(X)). Similarly,
mP,k(X) and mφ(P),k(Y) are isomorphic.

Let X be a projective variety, let P ∈ X(k), and let i such that P ∈ Ui. By Corol-
lary 5.4.9, k(X) ∼= k(ϕ−1

i (X)) and so OP,k(X) ∼= Oϕ−1
i (P),k(ϕ−1

i (X ∩ Ui)). It is therefore

sufficient to consider affine varieties when determining local properties of a variety.

Example 7.1.4. Let X ⊆ An be an affine variety and suppose P = (0, . . . , 0) ∈ X(k).
Then OP = OP,k(X) is the set of equivalence classes

{f1(x1, . . . , xn)/f2(x1, . . . , xn) : f1, f2 ∈ k[x1, . . . , xn], f2(0, . . . , 0) 6= 0}.

In other words, the ratios of polynomials such that the denominators always have non-
zero constant coefficient. Similarly, mP is the OP -ideal generated by x1, . . . , xn. Since
f1(x1, . . . , xn) can be written in the form f1 = c + h(x1, . . . , xn) where c ∈ k is the
constant coefficient and h(x1, . . . , xn) ∈ mP , it follows that OP /(x1, . . . , xn) ∼= k. Hence
mP is a maximal ideal.

Exercise 7.1.5. Let X ⊆ An be a variety over k and let P = (P1, . . . , Pn) ∈ X(k). Con-
sider the translation morphism φ : X → An given by φ(x1, . . . , xn) = (x1−P1, . . . , xn−
Pn). Show that φ(P) = (0, . . . , 0) and that φ maps X to a variety Y that is isomorphic
to X . Show further that Oφ(P),k(φ(X)) is isomorphic to OP,k(X) as a k-algebra.

We now introduce the notion of singular points and non-singular varieties. These
concepts are crucial in our discussion of curves: on a non-singular curve one can define
the order of a pole or zero of a function in a well-behaved way. Since singularity is a
local property of a point (i.e., it can be defined in terms of OP) it is sufficient to restrict
attention to affine varieties. Before stating the definition we need a lemma.

Lemma 7.1.6. Let X ⊆ An be an affine variety over k and let P ∈ X(k). Then
the quotient ring OP,k(X)/mP,k(X) is isomorphic to k as a k-algebra. Furthermore the
quotient mP,k(X)/mP,k(X)2 of OP,k(X)-ideals is a k-vector space of dimension at most
n.

7.1. NON-SINGULAR VARIETIES 125

Exercise 7.1.7. Prove Lemma 7.1.6.

As the following example shows, the dimension of the vector space mP,k(X)/mP,k(X)2

carries information about the local geometry of X at the point P .

Example 7.1.8. Let X = A2 and P = (0, 0) ∈ X(k). We have mP = (x, y), m2
P =

(x2, xy, y2) and so the k-vector space mP /m
2
P has dimension 2. Note that X has dimension

2.
Let X = V (y2 − x) ⊆ A2, which has dimension 1. Let P = (0, 0) ∈ X(k). Then

mP = (x, y) and {x, y} span the k-vector space mP /m
2
P . Since x = y2 in k(X) it follows

that x ∈ m2
P and so x = 0 in mP /m

2
P . Hence mP /m

2
P is a one-dimensional vector space

over k with basis vector y.
Consider now X = V (y2 − x3) ⊆ A2, which has dimension 1. Let P = (0, 0). Again,

{x, y} spans mP /m
2
P over k. Unlike the previous example, there is no linear dependence

among the elements {x, y} (as there is no polynomial relation between x and y having a
non-zero linear component). Hence mP /m

2
P has basis {x, y} and has dimension 2.

Exercise 7.1.9. Let X = V (x4 + x + yx − y2) ⊆ A2 over k and let P = (0, 0). Find a
basis for the k-vector space mP,k(X)/mP,k(X)2. Repeat the exercise for X = V (x4 +x3 +
yx− y2).

Example 7.1.8 motivates the following definition. One important feature of this defi-
nition is that it is in terms of the local ring at a point P and so applies equally to affine
and projective varieties.

Definition 7.1.10. Let X be a variety (affine or projective) over k and let P ∈ X(k)
be point. Then P is non-singular if dimk mP,k(X)/mP,k(X)2 = dim(X) and is singular

otherwise.1 The variety X is non-singular or smooth if every point P ∈ X
(
k
)

is
non-singular.

Indeed, it follows from the arguments in this section that if P ∈ X(k) then P is
non-singular if and only if dimk mP,k(X)/mP,k(X)2 = dim(X). The condition of Defini-
tion 7.1.10 is inconvenient for practical computation. Hence, we now give an equivalent
condition (Corollary 7.1.13) for a point to be singular.

Suppose X ⊆ An is an affine variety and let P = (0, . . . , 0). The key idea for Theo-
rem 7.1.12 is to consider the map θ : k[x1, . . . , xn]→ kn defined by

θ(f(x1, . . . , xn)) =

(
∂f

∂x1
(P), . . . ,

∂f

∂xn
(P)

)
.

This is essentially the same map as used in the proof of Lemma 7.1.6, but there it was
defined on mP,k(X) ⊆ OP,k(X) whereas θ is defined on k[x1, . . . , xn]. Note that θ is
k-linear. Let m0(An) be the k[x1, . . . , xn]-ideal (x1, . . . , xn). Then θ(m0(An)) = kn,
ker(θ) = m0(An)2 and θ induces an isomorphism of k-vector spaces m0(An)/m0(An)2 ∼=
kn.

Lemma 7.1.11. Let X ⊆ An be an affine variety over k and let P ∈ X(k). Define2

m = {f ∈ k[X] : f(P) = 0}. Then k[X]/m ∼= k and m/m2 ∼= mP,k(X)/mP,k(X)2 as
k-vector spaces.

1The dimension of the vector space mP,k(X)/mP,k(X)2 is always greater than or equal to dim(X), but
we don’t need this.

2We stress that m is different from the ideals mP,k(X) and m0(An) above. One has m ⊆ mP,k(X) and,
for P = (0, . . . , 0), m = m0(An)/Ik(X).

126 CHAPTER 7. CURVES AND DIVISOR CLASS GROUPS

Proof: We assume without loss of generality that P = (0, . . . , 0). Since k[X] = k[x1, . . . , xn]/Ik(X)
it follows that m is the k[X]-ideal (x1, . . . , xn). The first statement is then immediate.
For the second statement note that one has k[X] ⊆ OP,k(X), m = mP,k(X) ∩ k[X] and
mP,k(X) is the OP,k(X)-ideal generated by m. Similarly, m2 = mP,k(X)2 ∩ k[X].

We now construct a ring isomorphism ω : OP,k(X)/mP,k(X)2 → k[X]/m2. Every
f ∈ OP,k(X) has a representation f1/f2 where f1, f2 ∈ k[X] and f2(P) 6= 0. Write
f2 = a0 + f3 + f4 where a0 ∈ k, a0 6= 0, f3 ∈ m and f4 ∈ m2. Define g = a−1

0 −a−2
0 f3 6∈ m.

Then f2g − 1 ∈ m2 and so g is f−1
2 in k[X]/m2. It follows that

f1/f2 ≡ f1g
in OP,k(X)/mP,k(X)2. Hence, if f = f1/f2 ∈ OP,k(X) with f1, f2 ∈ k[X] then we define
ω(f) = f1g. One can verify that ω is a well-defined ring homomorphism, that ω is
surjective, and that ker(ω) = mP,k(X)2. Hence ω is an isomorphism of rings as claimed.

Finally, if f = f1/f2 ∈ mP,k(X) with f1, f2 ∈ k[X] then f1 ∈ m and f2 ∈ k[X] − m

and so ω(f) ∈ m. It follows that mP,k(X)/mP,k(X)2 ∼= m/m2. �

Theorem 7.1.12. Let X = V (f1, . . . , fm) ⊆ An be a variety defined over k and let
P ∈ X(k). Let d1 be the dimension of the k-vector space mP,k/m

2
P,k. Let d2 be the rank

of the Jacobian matrix

JX,P =

(
∂fi
∂xj

(P)

)

1≤i≤m
1≤j≤n

.

Then d1 + d2 = n.

Proof: By Exercise 7.1.5 we may assume without loss of generality that P = (0, . . . , 0).
Let the notation be as in Lemma 7.1.11. We have d1 = dimk(m/m2). Recall the map
θ : k[x1, . . . , xn]→ kn from above, which gives an isomorphism from m0(An)/m0(An)2 to
kn.

Now, m is the image of m0(An) in k[X] = k[x1, . . . , xn]/Ik(X). Similarly, m2 is the im-
age of m0(An)2 in k[X]. Hence m/m2 is isomorphic as a k-vector space to m0(An)/(m0(An)2, Ik(X)).
Similarly, the span of the rows of the matrix JX,P in kn is θ(Ik(X)), which is isomor-
phic as a k-vector space to (Ik(X),m0(An)2)/m0(An)2. One therefore has dimk(m/m

2) +
rank(JX,P) = n. �

Corollary 7.1.13. Let X = V (f1(x), . . . , fm(x)) ⊆ An be an affine variety over k of
dimension d. Let P ∈ X(k). Then P ∈ X(k) is a singular point of X if and only if
the Jacobian matrix JX,P has rank not equal to n− d. The point is non-singular if the
rank of JX,P is equal to n− d.
Corollary 7.1.14. Let X = V (f(x1, . . . , xn)) ⊆ An be irreducible and let P ∈ X(k).
Then P is singular if and only if

∂f

∂xj
(P) = 0

for all 1 ≤ j ≤ n
Exercise 7.1.15. Prove Corollaries 7.1.13 and 7.1.14.

Exercise 7.1.16. Let k be a field such that char(k) 6= 2 and let F (x) ∈ k[x] be such that
gcd(F (x), F ′(x)) = 1. Show that

X : y2 = F (x)

is non-singular as an affine algebraic set. Now consider the projective closure X ⊆ P2.
Show that if deg(F (x)) ≥ 4 then there is a unique point in X−X and that it is a singular
point.

7.2. WEIERSTRASS EQUATIONS 127

Finally we can define what we mean by a curve.

Definition 7.1.17. A curve is a projective non-singular variety of dimension 1. A plane
curve is a curve that is given by an equation V (F (x, y, z)) ⊆ P2.

Remark 7.1.18. We stress that in this book a curve is always projective and non-
singular. Note that many authors (including Hartshorne [278] and Silverman [564]) allow
affine and/or singular dimension 1 varieties X to be curves. A fact that we won’t prove is
that every finitely generated, transcendence degree 1 extension K of an algebraic closed
field k is the function field k(C) of a curve (see Theorem I.6.9 of Hartshorne [278]; note
that working over k is essential as there are finitely generated, transcendence degree 1
extensions of k that are not k(C) for a curve C defined over k). It follows that every
irreducible algebraic set of dimension 1 over k is birational over k to a non-singular curve
(see Theorem 1.1 of Moreno [439] for the details). Hence, in practice one often writes
down an affine and/or singular equation X that is birational to the projective, non-
singular curve C one has in mind. In our notation, the commonly used phrase “singular
curve” is an oxymoron. Instead one can say “singular equation for a curve” or “singular
model for a curve”.

The following result is needed in a later proof.

Lemma 7.1.19. Let C be a curve over k. Let P,Q ∈ C(k). Then OP,k ⊆ OQ,k implies
P = Q.

Proof: By Exercise 5.2.23 we may assume that P,Q ∈ Un(k) ⊆ Pn(k) and applying
ϕ−1
n we have P,Q ∈ ϕ−1

n (C) ⊆ An(k). Let R = k[ϕ−1
n (C)] and define m = mP,k ∩ R =

{f ∈ R : f(P) = 0} as in Lemma 7.1.11. By Lemma 7.1.11, R/m ∼= k and so m is a
maximal R-ideal. Finally, P ∈ V (m) since every polynomial in mP,k vanishes at P , and
by the Nullstellensatz V (m) = {P}.

If OP,k ⊆ OQ,k then the inclusion map gives rise to OP,k → OQ,k/mQ,k with kernel

OP,k ∩ mQ,k. In other words, OP,k/(OP,k ∩ mQ,k) injects into OQ,k/mQ,k ∼= k. Hence
OP,k ∩ mQ,k is a maximal ideal and so mP,k ⊆ mQ,k. Therefore m ⊆ n := mQ,k ∩R. But
m is maximal in R and 1 6∈ n so m = n. Since V (m) = {P} and V (n) = {Q} we have
P = Q.

The above proof was influenced by Lemma I.6.4 of Hartshorne [278], but it was pointed
out to me by Noel Robinson that there should be a simpler proof: If P 6= Q then one can
write down a function f such that f ∈ OP,k but f 6∈ OQ,k as follows: Letting, as above,
P = (a1, . . . , an) and Q = (b1, . . . , bn) in some affine patch, then P 6= Q implies ai 6= bi
for some index i. Then the function f = 1/(xi − bi) has a pole at Q but is regular at P .
�

7.2 Weierstrass Equations

Definition 7.2.1. Let a1, a2, a3, a4, a6 ∈ k. A Weierstrass equation is a projective
algebraic set E over k given by

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3. (7.1)

The affine Weierstrass equation is

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (7.2)

128 CHAPTER 7. CURVES AND DIVISOR CLASS GROUPS

Exercise 7.2.2. Let E be a Weierstrass equation as in Definition 7.2.1. Let ι(x : y :
z) = (x : −y − a1x − a3z : z). Show that if P ∈ E(k) then ι(P) ∈ E(k) and that ι is an
isomorphism over k from E to itself.

Lemma 7.2.3. Let H(x), F (x) ∈ k[x], deg(F) = 3, deg(H) ≤ 1. Then E(x, y) =
y2 +H(x)y − F (x) is irreducible over k.

Proof: A non-trivial factorisation of E(x, y) in k[x, y] must be of the form E(x, y) =
(y + M(x))(y + N(x)) for some M(x), N(x) ∈ k[x]. Then deg(M) + deg(N) = 3 and,
without loss of generality, deg(M) ≥ 2 and deg(N) ≤ 1. But then deg(M + N) ≥ 2,
which is incompatible with M +N = H . �

Theorem 5.3.10 therefore implies a Weierstrass equation describes a projective variety.
By Exercise 5.6.5, the variety has dimension 1. Not every Weierstrass equation gives a
curve, since some of them are singular. We now give conditions for when a Weierstrass
equation is non-singular.

Exercise 7.2.4. Show that a Weierstrass equation has a unique point with z = 0. Show
that this point is not a singular point.

Definition 7.2.5. Let E be a Weierstrass equation over k. The point (0 : 1 : 0) ∈ E(k)
is denoted by OE and is called the point at infinity.

Exercise 7.2.6. Show that if char(k) 6= 2, 3 then every Weierstrass equation over k is
isomorphic over k to a Weierstrass equation

y2z = x3 + a4xz
2 + a6z

3 (7.3)

for some a4, a6 ∈ k. This is called the short Weierstrass form. Show that this equation
is non-singular if and only if the discriminant 4a34 + 27a26 6= 0 in k.

Exercise 7.2.7. Show that if char(k) = 2 then every Weierstrass equation over k is
isomorphic over k to a Weierstrass equation

y2z + xyz = x3 + a2x
2z + a6z

3 or y2z + yz2 = x3 + a4xz
2 + a6z

3. (7.4)

The former is non-singular if a6 6= 0 and the latter is non-singular for all a4, a6 ∈ k.

Formulae to determine whether a general Weierstrass equation is singular are given in
Section III.1 of [564].

Definition 7.2.8. An elliptic curve is a curve given by a non-singular Weierstrass
equation.

The following easy result is useful for explicit calculations.

Lemma 7.2.9. Let E be an elliptic curve over k. Then every function f ∈ k(E) restricts
to a function on the affine Weierstrass equation of E that is equivalent to a function of
the form

a(x) + b(x)y

c(x)
(7.5)

where a(x), b(x), c(x) ∈ k[x]. Conversely, every such function on the affine curve corre-
sponds to a unique3 function on the projective curve.

3By unique we mean that there is only one function on the projective curve corresponding to a given
function on the affine curve. The actual polynomials a(x), b(x) and c(x) are, of course, not unique.

7.3. UNIFORMIZERS ON CURVES 129

Proof: Write U for the affine algebraic set obtained from E by setting z = 1. Note that
U
(
k
)
6= ∅. Corollary 5.4.9 shows that k(E) ∼= k(U) and so it is sufficient to consider

functions on U . Every such function can be written in the form of equation (7.5) since
any denominators can be cleared by multiplying through by appropriate polynomials (the
polynomial (a(x) + b(x)y)(a(x) + b(x)ι(y)) is a polynomial in x only) and yn for n > 1
can be replaced using the equation y2 = (x3 +a2x

2 +a4x+a6)−y(a1x+a3). Both claims
of the Lemma follow immediately. �

7.3 Uniformizers on Curves

Let C be a curve over k with function field k(C). It is necessary to formalise the notion
of multiplicity of a zero or pole of a function at a point. The basic definition will be that
f ∈ OP,k(C) has multiplicity m at P if f ∈ mm

P,k
and f 6∈ mm+1

P,k
. However, there are

a number of technicalities to be dealt with before we can be sure this definition makes
sense. We introduce uniformizers in this section as a step towards the rigorous treatment
of multiplicity of functions.

First we recall the definition of non-singular from Definition 7.1.10: Let C be a non-
singular curve over k and P ∈ C(k), then the quotient mP,k(C)/mP,k(C)2 (which is a
k-vector space by Lemma 7.1.6) has dimension one as a k-vector space.

Lemma 7.3.1. Let C be a curve (in particular, non-singular) over a field k and let
P ∈ C(k). Then the ideal mP,k(C) is principal as an OP,k(C)-ideal.

Proof: Write m for mP,k(C). Since C is non-singular, dimk mP,k(C)/mP,k(C)2 = 1. Let
x ∈ m be such that {m2+x} is a k-vector space basis for m/m2. Let n be the OP,k(C)-ideal
(x). Then n ⊆ m. For every y ∈ m we have y = f + ux where u ∈ k and f ∈ m2. Hence,
m = (n,m2). Let A be the OP,k(C)-module m/n. We want to prove that A = 0. This
follows by Nakayama’s Lemma (see Proposition 2.6 of [15]) but we give a direct proof.

First note that mA = m(m/n) = (m2, n)/n = A (the middle equality since y(n + z) =
n + yz for all y, z ∈ m). Suppose now that A 6= 0. Since OP,k(C) is Noetherian it follows
that m is finitely generated as an OP,k(C)-module and so A is finitely generated as an
OP,k(C)-module. Let {a1, . . . , ak} be a minimal set of generators for A. Since A = mA
we have

a1 =

k∑

j=1

mjaj

for mj ∈ m. Hence,

a1(1−m1) =
k∑

j=2

mjaj .

Note that 1−m1 6∈ m and so, since m is a maximal ideal, (1−m1) is a unit in OP,k(C).
Hence, a1 ∈ (a2, . . . , ak), which contradicts the minimality of the generating set. Hence
A = 0 and m = n = (x). �

Definition 7.3.2. Let C be a curve (in particular, non-singular) over k and P ∈ C(k).
A uniformizer (or uniformizing parameter) at P is an element tP ∈ OP,k(C) such
that mP,k(C) = (tP) as an OP,k(C)-ideal.

One can choose tP to be any element of mP,k(C) − mP,k(C)2; in other words, the
uniformizer is not unique. If P is defined over k then one can take tP ∈ mP,k(C) −

130 CHAPTER 7. CURVES AND DIVISOR CLASS GROUPS

mP,k(C)2, i.e., take the uniformizer to be defined over k; this is typically what one does
in practice.

For our presentation it is necessary to know uniformizers on P1 and on a Weierstrass
equation. The next two examples determine such uniformizers.

Example 7.3.3. Let C = P1. For a point (a : 1) ∈ U1 ⊆ P1 one can work instead with
the point a on the affine curve A1 = ϕ−1

1 (U1). One has ma = (x− a) and so ta = (x− a)
is a uniformizer at a. In terms of the projective equation one has ta = (x− az)/z being a
uniformizer. For the point∞ = (1 : 0) ∈ U0 ⊆ P1 one again works with the corresponding
point 0 ∈ ϕ−1

0 (U0). The uniformizer is ta = z which, projectively, is ta = z/x. A common
abuse of notation is to say that 1/x is a uniformizer at ∞ on A1 = ϕ−1

1 (U1).

Example 7.3.4. We determine uniformizers for the points on an elliptic curve. First
consider points (xP , yP) on the affine equation

E(x, y) = y2 + a1xy + a3y −
(
x3 + a2x

2 + a4x+ a6
)
.

Without loss of generality we can translate the point to P0 = (0, 0), in which case write
a′1, . . . , a

′
6 for the coefficients of the translated equation E′(x, y) = 0 (i.e., E′(x, y) =

E(x+xP , y+ yP)). One can verify that a′6 = 0, a′3 = (∂E/∂y)(P) and a′4 = (∂E/∂x)(P).
Then mP0 = (x, y) and, since the curve is not singular, at least one of a′3 or a′4 is non-zero.

If a′3 = 0 then4

x(x2 + a′2x+ a′4 − a′1y) = y2.

Since (x2 + a′2x+ a′4 − a′1y)(P0) = a′4 6= 0 we have (x2 + a′2x+ a′4 − a′1y)−1 ∈ OP0 and so

x = y2(a′4 + a′2x+ x2 − a′1y)−1.

In other words, x ∈ (y2) ⊆ m2
P0

and y is a uniformizer at P0.
Similarly, if a′4 = 0 then y(a′3 + a′1x + y) = x2(x + a′2) and so y ∈ (x2) ⊆ m2

P0
and

x is a uniformizer at P0. If a′3, a
′
4 6= 0 then either x or y can be used as a uniformizer.

(Indeed, any linear combination ax + by except a′3y − a′4x can be used as a uniformizer;
geometrically, any line through P , except the line which is tangent to the curve at P , is
a uniformizer.)

Now consider the point at infinity OE = (x : y : z) = (0 : 1 : 0) on E. Taking y = 1
transforms the point to (0, 0) on the affine curve

z + a1xz + a3z
2 = x3 + a2x

2z + a4xz
2 + a6z

3. (7.6)

It follows that

z(1 + a1x+ a3z − a2x2 − a4xz − a6z2) = x3

and so z ∈ (x3) ⊆ m3
P and so x is a uniformizer (which corresponds to x/y in homogeneous

coordinates).
In practice it is not necessary to move P to (0, 0) and compute the a′i. We have shown

that if P = (xP , yP) then tP = x − xP is a uniformizer unless P = OE , in which case
tP = x/y, or P = ι(P),5 in which case tP = y − yP .

Lemma 7.3.5. Let C be a curve over k, let P ∈ C(k) and let tP be a uniformizer at P .
Let σ ∈ Gal(k/k). Then σ(tP) is a uniformizer at σ(P).

4We will see later that a′3 = 0 implies (0, 0) has order 2 (since −(x, y) = (x,−y − a′1x− a′3)).
5i.e., has order 2.

7.4. VALUATION AT A POINT ON A CURVE 131

Proof: Since σ(f)(σ(P)) = σ(f(P)) the map f 7→ σ(f) is an isomorphism of local rings
σ : OP,k(C)→ Oσ(P),k(C). It also follows that σ(mP) = mσ(P). Since mP = (tP) one has

mσ(P) = (σ(tP)), which completes the proof. �

We now give an application of uniformizers. It will be used in several later results.

Lemma 7.3.6. Let C be a non-singular curve over k and let φ : C → Y ⊆ Pn be a
rational map for any projective variety Y . Then φ is a morphism.

Exercise 7.3.7. Prove Lemma 7.3.6.

7.4 Valuation at a Point on a Curve

The aim of this section is to define the multiplicity of a zero or pole of a function on a
curve. For background on discrete valuation rings see Chapter 1 of Serre [542], Section
I.7 of Lang [365] or Sections XII.4 and XII.6 of Lang [367].

Definition 7.4.1. Let K be a field. A discrete valuation on K is a function v : K∗ → Z
such that:

1. for all f, g ∈ K∗, v(fg) = v(f) + v(g);

2. for all f, g ∈ K∗ such that f + g 6= 0, v(f + g) ≥ min{v(f), v(g)};
3. there is some f ∈ K∗ such that v(f) = 1 (equivalently, v is surjective to Z).

Lemma 7.4.2. Let K be a field and v a discrete valuation.

1. v(1) = 0.

2. If f ∈ K∗ then v(1/f) = −v(f).

3. Rv = {f ∈ K∗ : v(f) ≥ 0} ∪ {0} is a ring, called the valuation ring.

4. mv = {f ∈ K∗ : v(f) > 0} is a maximal ideal in Rv, called the maximal ideal of
the valuation.

5. If f ∈ K is such that f 6∈ Rv then 1/f ∈ mv.

6. Rv is a local ring.

Exercise 7.4.3. Prove Lemma 7.4.2.

Lemma 7.4.4. Let C be a curve over k and P ∈ C(k). For every non-zero function
f ∈ OP,k(C) there is some m ∈ N such that f 6∈ mmP,k.

Proof: We drop the terms k and C in OP,k(C) and mP,k(C). If f 6∈ mP then m = 1
and we are done, so suppose f ∈ mP . Let tP be a uniformizer at P . Then f = tP f1
for some f1 ∈ OP . If f1 6∈ mP then f 6∈ m2

P and we are finished. If f1 ∈ mP then
f1 = tP f2 for some f2 ∈ OP . Continuing this way, if f ∈ mmP for all m ∈ N one
obtains an infinite sequence of functions fi ∈ mP . Consider the chain of OP -ideals
(f1) ⊆ (f2) ⊆ · · · . We have (fi) 6= (fi+1) since fi = tP fi+1 and t−1

P 6∈ OP (if t−1
P (P) ∈ k

then 1 = 1(P) = (tP t
−1
P)(P) = tP (P)t−1

P (P) = 0, which is a contradiction). Since OP is
Noetherian (Lemma 7.1.2) the ascending chain of ideals is finite, hence f ∈ mmP for some
m ∈ N. �

Definition 7.4.5. Let C be a curve over k and P ∈ C(k). Let mP = mP,k(C) be as
in Definition 7.1.1 and define m0

P = OP,k(C). Let f ∈ OP,k(C) be such that f 6= 0 and
define the order of f at P to be vP (f) = max{m ∈ Z≥0 : f ∈ mmP }. If vP (f) = 1 then
f has a simple zero at P . (We exclude the constant function f = 0, though one could
define vP (0) =∞.)

132 CHAPTER 7. CURVES AND DIVISOR CLASS GROUPS

We stress that vP (f) is well-defined. If f, h ∈ OP,k(C) and f ≡ h then f − h = 0 in
OP,k(C). Hence, if f ∈ mmP then h ∈ mmP (and vice versa).

Exercise 7.4.6. Show that vP (f) does not depend on the underlying field. In other
words, if k′ is an algebraic extension of k in k then vP (f) = max{m ∈ Z≥0 : f ∈
mP,k′(C)m}.

Lemma 7.4.7. Let C be a curve over k and P ∈ C(k). Let tP ∈ OP,k(C) be any
uniformizer at P . Let f ∈ OP,k(C) be such that f 6= 0. Then vP (f) = max{m ∈ Z≥0 :

f/tmP ∈ OP,k(C)} and f = t
vP (f)
P u for some u ∈ OP,k(C)∗.

Exercise 7.4.8. Prove Lemma 7.4.7.

Writing a function f as t
vP (f)
P u for some u ∈ OP,k(C)∗ is analogous to writing a

polynomial F (x) ∈ k[x] in the form F (x) = (x − a)mG(x) where G(x) ∈ k[x] satisfies
G(a) 6= 0. Hopefully the reader is convinced that this is a powerful tool. For example, it
enables a simple proof of Exercise 7.4.9. Further, one can represent a function f as a formal
power series

∑∞
n=vP (f) ant

n
P where an ∈ k; see Exercises 2-30 to 2-32 of Fulton [216]. Such

expansions will used in Chapters 25 and 26 but we don’t develop the theory rigorously.

Exercise 7.4.9. Let C be a curve over k and P ∈ C(k). Let f, h ∈ OP,k(C) be such that
f, h 6= 0. Show that vP (fh) = vP (f) + vP (h).

Lemma 7.4.10. Let C be a curve over k, let P ∈ C(k) and let f ∈ k(C). Then f can
be written as f1/f2 where f1, f2 ∈ OP,k(C).

Proof: Without loss of generality C is affine. By definition, f = f1/f2 where f1, f2 ∈
k[C]. Since k[C] ⊂ k[C] ⊂ OP,k(C) the result follows. �

Definition 7.4.11. Let C be a curve over k and let f ∈ k(C). A point P ∈ C(k) is
called a pole of f if f 6∈ OP,k(C). If f = f1/f2 ∈ k(C) where f1, f2 ∈ OP,k(C) then define
vP (f) = vP (f1)− vP (f2).

Exercise 7.4.12. Show that if P ∈ C(k) is a pole of f ∈ k(C) then vP (f) < 0 and P is
a zero of 1/f .

Lemma 7.4.13. For every function f ∈ k(C) the order vP (f) of f at P is independent
of the choice of representative of f .

Proof: Suppose f1/f2 ≡ g1/g2 where f1, f2, g1, g2 ∈ OP . Then f1g2 − f2g1 ∈ Ik(C) and
so f1g2 = f2g1 in OP . Since vP is well-defined in OP we have vP (f1g2) = vP (f2g1).
Applying Exercise 7.4.9 gives vP (f1) + vP (g2) = vP (f2) + vP (g1). Re-arranging and
applying Definition 7.4.11 proves the result. �

We now give some properties of vP (f).

Lemma 7.4.14. Let P ∈ C(k). Then vP is a discrete valuation on k(C). Furthermore,
the following properties hold.

1. If f ∈ k
∗
then vP (f) = 0.

2. If c ∈ k and if vP (f) < 0 then vP (f + c) = vP (f).

3. If f1, f2 ∈ k(C)∗ are such that vP (f1) 6= vP (f2) then vP (f1+f2) = min{vP (f1), vP (f2)}.
4. Suppose C is defined over k and let P ∈ C(k). Let σ ∈ Gal(k/k). Then vP (f) =

vσ(P)(σ(f)).

7.5. VALUATIONS AND POINTS ON CURVES 133

Proof: Let tP be a uniformizer at P . Then vP (tP) = 1, which proves the third property
of Definition 7.4.1. The property vP (fg) = vP (f) + vP (g) follows by the same argument
as Exercise 7.4.9. Similarly, iff = tvPu1 and g = twPu2 with v ≤ w and g 6= −f then f+g =
tvP (u1 + tw−v

P u2) so vP (f + g) ≥ min{vP (f), vP (g)}. Hence vP satisfies Definition 7.4.1.
We turn to the rest of the proof. The third statement is just a refinement of the

above argument. Without loss of generality, vP (f1) < vP (f2). Then f1 = tvPu1 and
f2 = tv+mP u2 for some u1, u2 ∈ O∗

P , v ∈ Z and m ∈ N. Then f1 + f2 = tvP (u1 + tmP u2) 6= 0
and u1 + tmP u2 ∈ O∗

P so vP (f1 + f2) = vP (f1).
The first statement follows since f(P) 6= 0. Statement 2 is just a special case of

statement 3.
For the fourth statement, recall from Lemma 7.3.5 that one can take tσ(P) = σ(tP). If

f = tvPu where u(P) 6= 0 then σ(f) = σ(tP)vσ(u) and σ(u)(σ(P)) = σ(u(P)) 6= σ(0) = 0
(see Exercise 5.4.13). The result follows. �

Having shown that every vP is a discrete valuation on k(C) it is natural to ask whether
every discrete valuation on k(C) is vP for some point P ∈ C(k). To make this true over
fields that are not algebraically closed requires a more general notion of a point of C
defined over k. Instead of doing this, we continue to work with points over k and show in
Theorem 7.5.2 that every discrete valuation on k(C) is vP for some P ∈ C(k). But first
we give some examples.

Example 7.4.15. Let E : y2 = x(x − 1)(x + 1) over k and let P = (1, 0) ∈ E(k). We
determine vP (x), vP (x− 1), vP (y) and vP (x + y − 1).

First, x(P) = 1 so vP (x) = 0. For the rest, since P = ι(P) we take the uniformizer to
be tP = y. Hence vP (y) = 1. Since

x− 1 = y2/(x(x + 1))

and 1/(x(x+ 1)) ∈ OP we have vP (x− 1) = 2.
Finally, f(x, y) = x + y − 1 = y + (x − 1) so vP (f(x, y)) = min{vP (y), vP (x − 1)} =

min{1, 2} = 1. One can see this directly by writing f(x, y) = y(1 + y/x(x+ 1)).

Lemma 7.4.16. Let E be an elliptic curve. Then vOE (x) = −2 and vOE (y) = −3.

Proof: We consider the projective equation, so that the functions become x/z and y/z
then set y = 1 so that we are considering x/z and 1/z on

z + a1xz + a3z
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

As in Example 7.3.4 we have z ∈ (x3) and so vOE (x) = 1, vOE (z) = 3. This implies
vOE (1/z) = −3 and vOE (x/z) = −2 as claimed. �

7.5 Valuations and Points on Curves

Let C be a curve over k and P ∈ C(k). We have shown that vP (f) is a discrete valuation
on k(C). The aim of this section is to show (using the weak Nullstellensatz) that every
discrete valuation v on k(C) arises as vP for some point P ∈ C(k).

Lemma 7.5.1. Let C be a curve over k and let v be a discrete valuation on k(C). Write
Rv,mv for the corresponding valuation ring and maximal ideal (over k). Suppose C ⊂ Pn

with coordinates (x0 : · · · : xn). Then there exists some 0 ≤ i ≤ n such that k[ϕ−1
i (C)] is

a subring of Rv (where ϕ−1
i is as in Definition 5.2.24).

134 CHAPTER 7. CURVES AND DIVISOR CLASS GROUPS

Proof: First we prove there exists some 0 ≤ i ≤ n such that x0/xi, . . . , xn/xi ∈ Rv. To
do this define Si = {j : 0 ≤ j ≤ n, xi/xj ∈ Rv}. We claim that S0 ∩ · · · ∩ Sn 6= ∅ and
prove this by induction. First, note that i ∈ Si so S0 6= ∅. Suppose, that j ∈ S0∩· · ·∩Sk
for k ≥ 0. If j ∈ Sk+1 then we are done. If j 6∈ Sk+1 then we have xk+1/xj 6∈ Rv and so
xj/xk+1 ∈ Rv. Since xi/xj ∈ Rv for 0 ≤ i ≤ k by the inductive hypothesis it follows that
(xi/xj)(xj/xk+1) = xi/xk+1 ∈ Rv for 0 ≤ i ≤ k + 1. It follows that S0 ∩ · · · ∩ Sk+1 6= ∅.

To prove the result, suppose i is such that x0/xi, . . . , xn/xi ∈ Rv Then k[ϕ−1
i (C)] =

k[x0/xi, . . . , xn/xi] is a subring of Rv. �

Theorem 7.5.2. Let C be a curve over k and let v be a discrete valuation on k(C). Then
v = vP for some P ∈ C(k).

Proof: (Sketch) Let Rv be the valuation ring of v and mv the maximal ideal. Let i be as
in Lemma 7.5.1 so that R = k[ϕ−1

i (C)] ⊆ Rv. Note that R is the affine coordinate ring
of an affine curve.

By Lemma A.9.2, m = R∩mv is a prime ideal in R. Furthermore, m 6= ∅ and m 6= R.
Since R has Krull dimension 1, m is a maximal ideal.

Theorem 5.1.20 (weak Nullstellensatz) shows that m is equal to mP ∩ k[ϕ−1
i (C)] for

some point P ∈ C(k). It follows that the restriction of v to k[ϕ−1
i (C)] is equal to vP .

Finally, since k(C) is the field of fractions of k[ϕ−1
i (C)] it follows that v = vP .

For full details see Corollary I.6.6 of Hartshorne [278] or Theorem VI.9.1 of Loren-
zini [394]. �

7.6 Divisors

A divisor is just a notation for a finite multi-set of points. As always, we work with points
over an algebraically closed field k.

Definition 7.6.1. Let C be a curve over k (necessarily non-singular and projective). A
divisor on C is a formal sum

D =
∑

P∈C(k)

nP (P) (7.7)

where nP ∈ Z and only finitely many nP 6= 0. The divisor with all nP = 0 is written
0. The support of the divisor D in equation (7.7) is Supp(D) = {P ∈ C(k) : nP 6= 0}.
Note that many authors use the notation |D| for the support of D. Denote by Divk(C)
the set of all divisors on C. Define −D =

∑
P (−nP)(P). If D′ =

∑
P∈C(k) n

′
P (P) then

define
D +D′ =

∑

P∈C(k)

(nP + n′
P)(P).

Write D ≥ D′ if nP ≥ n′
P for all P . So D ≥ 0 if nP ≥ 0 for all P , and such a divisor is

called effective.

Example 7.6.2. Let E : y2 = x3 + 2x− 3 over Q and let P = (2, 3), Q = (1, 0) ∈ E(Q).
Then

D = 5(P)− 7(Q)

is a divisor on E. The support of D is Supp(D) = {P,Q} and D is not effective.

Definition 7.6.3. The degree of a divisor D =
∑

P nP (P) is the integer

deg(D) =
∑

P∈C(k)

nP .

7.7. PRINCIPAL DIVISORS 135

(We stress that this is a finite sum.) We write Div0
k
(C) = {D ∈ Divk(C) : deg(D) = 0}.

Lemma 7.6.4. Divk(C) is a group under addition, and Div0
k
(C) is a subgroup.

Exercise 7.6.5. Prove Lemma 7.6.4.

Definition 7.6.6. Let C be a curve over k and let D =
∑

P∈C(k) nP (P) be a divisor

on C. For σ ∈ Gal(k/k) define σ(D) =
∑

P nP (σ(P)). Then D is defined over k if
σ(D) = D for all σ ∈ Gal(k/k). Write Divk(C) for the set of divisors on C that are
defined over k.

Since Gal(k/k) is an enormous and complicated object it is important to realise that
testing the field of definition of any specific divisor is a finite task. There is an extension
k′/k of finite degree containing the coordinates of all points in the support of D. Let k′′

be the Galois closure of k′. Since k′′ is normal over k, any σ ∈ Gal(k/k) is such that
σ(k′′) = k′′. Hence, it is sufficient to study the behaviour of D under σ ∈ Gal(k′′/k).

Example 7.6.7. Let C : x2 + y2 = 6 over Q and let P = (1 +
√

2, 1 −
√

2), Q =
(1−

√
2, 1 +

√
2) ∈ C(Q(

√
2)) ⊆ C(Q). Define

D = (P) + (Q).

It is sufficient to consider σ(D) for σ ∈ Gal(Q(
√

2)/Q). The only non-trivial element is
σ(
√

2) = −
√

2 and one sees that σ(P) = Q and σ(Q) = P . Hence σ(D) = D for all
σ ∈ Gal(Q(

√
2)/Q) and D is defined over Q. Note that C(Q) = ∅, so this example shows

it is possible to have Divk(C) 6= {0} even if C(k) = ∅.

7.7 Principal Divisors

This section contains an important and rather difficult result, namely that the number of
poles of a function on a curve (counted according to multiplicity) is finite and equal to the
number of zeros (counted according to multiplicity). The finiteness condition is essential
to be able to represent the poles and zeroes of a function as a divisor. The other condition
is required to show that the set of all divisors of functions is a subgroup of Div0

k(C).

In this chapter, finite poles and finite zeroes is only proved for plane curves and
deg(div(f)) = 0 is proved only for elliptic curves. The general results are given in Sec-
tion 8.3 in the next Chapter.

Theorem 7.7.1. Let C be a curve over k and f ∈ k(C)∗. Then f has finitely many poles
and zeroes.

Proof: (Special case of plane curves.) Let C = V (F (x, y, z)) ⊆ P2 where F is irreducible.
If F (x, y, z) = z then the result follows from Exercise 5.2.35 (there are only finitely many
points at infinity). So we can restrict to the affine case C = V (F (x, y)).

Let f = f1(x, y)/f2(x, y) with f1, f2 ∈ k[x, y]. Then f is regular whenever f2(P) 6= 0
so the poles of f are contained in C ∩ V (f2). Without loss of generality, f2(x, y) contains
monomials featuring x. The resultant Rx(f2(x, y), F (x, y)) is a polynomial in y with a
finite number of roots hence C ∩ V (f2) is finite.

To show there are finitely many zeroes write f = f1/f2. The zeroes of f are contained
in C ∩ (V (f1) ∪ V (f2)) and the argument above applies. �

136 CHAPTER 7. CURVES AND DIVISOR CLASS GROUPS

Definition 7.7.2. Let f ∈ k(C)∗ and define the divisor of a function (this is a divisor
by Theorem 7.7.1)

div(f) =
∑

P∈C(k)

vP (f)(P).

The divisor of a function is also called a principal divisor. Note that some authors
write div(f) as (f). Let

Prink(C) = {div(f) : f ∈ k(C)∗}.

Exercise 7.7.3. Show that the zero element of Divk(C) lies in Prink(C).

Lemma 7.7.4. Let C be a curve over k and let f, f ′ ∈ k(C)∗.

1. div(ff ′) = div(f) + div(f ′).

2. div(1/f) = −div(f).

3. div(f + f ′) ≥∑P min{vP (f), vP (f ′)}(P).

4. div(fn) = ndiv(f) for n ∈ Z.

5. Let f ∈ k(C) and let σ ∈ Gal(k/k). Then div(σ(f)) = σ(div(f)).

Exercise 7.7.5. Prove Lemma 7.7.4.

Lemma 7.7.6. With notation as above, Prink(C) is a subgroup of Divk(C) under addi-
tion.

Exercise 7.7.7. Prove Lemma 7.7.6.

Lemma 7.7.8. In P1(k) every degree 0 divisor is principal.

Proof: Let D =
∑n

i=1 ei(xi : zi) where
∑n

i=1 ei = 0. Define

f(x, z) =

n∏

i=1

(xzi − zxi)ei . (7.8)

Since
∑n
i=1 ei = 0 it follows that f(x, z) is a ratio of homogeneous polynomials of the

same degree and therefore a rational function on P1. Using the uniformizers on P1 from
Example 7.3.3 one can verify that vPi(f) = ei when Pi = (xi : zi) and hence that
D = div(f). �

Note that if D is defined over k then one can show that the function f(x, z) in equa-
tion (7.8) is defined over k.

Exercise 7.7.9. Prove that if f ∈ k(P1) then deg(div(f)) = 0.

Lemma 7.7.10. Let E : y2 + H(x)y = F (x) be a Weierstrass equation over k and let
P = (xi, yi) ∈ E(k) be a non-singular point. Then div(x− xi) = (P) + (ι(P)) − 2(OE).

Proof: There are one or two points P ∈ E(k) with x-coordinate equal to xi, namely
P = (xi, yi) and ι(P) = (xi,−yi − H(xi)) (and these are equal if and only if 2yi +
H(xi) = 0). By Example 7.3.4 one can take the uniformizer tP = tι(P) = (x − xi)
unless (∂E/∂y)(P) = 2yi + H(xi) = 0, in which case the uniformizer is tP = (y − yi).
In the former case we have vP (x − xi) = vι(P)(x − xi) = 1. In the latter case write

7.7. PRINCIPAL DIVISORS 137

F (x) = (x−xi)g(x)+F (xi) = (x−xi)g(x)+y2i +H(xi)yi and H(x) = (x−xi)a1+H(xi).
Note that a1yi − g(xi) = (∂E/∂x)(P) 6= 0 and so g1(x) := 1/(a1y − g(x)) ∈ OP . Then

0 = y2 +H(x)y − F (x)

= (y − yi)2 + 2yyi − y2i + (x− xi)a1y +H(xi)y − (x− xi)g(x) − y2i −H(xi)yi

= (y − yi)2 + (x− xi)(a1y − g(x)) + (y − yi)(2yi +H(xi)).

Hence, x − xi = (y − yi)
2g1(x) and vP (x − xi) = 2. Finally, the function (x − xi)

corresponds to
x− xiz

z
=
x

z
− xi

on the projective curve E. Since vOE (x/z) = −2 it follows from part 2 of Lemma 7.4.14
that vOE (x − xi) = −2. Hence, if P = (xi, yi) then, in all cases, div(x − xi) = (P) +
(ι(P)) − 2(OE) and deg(div(x − xi)) = 0. �

Exercise 7.7.9 and Lemma 7.7.10 determine the divisor of certain functions, and in
both cases they turns out to have degree zero. This is not a coincidence. Indeed, we now
state a fundamental6 result which motivates the definition of the divisor class group.

Theorem 7.7.11. Let C be a curve over k. Let f ∈ k(C)∗. Then deg(div(f)) = 0.

Theorem 7.7.11 is proved for general curves in Theorem 8.3.14. Exercise 7.7.9 already
proved it for P1. We prove Theorem 7.7.11 in the case of elliptic curves in this section
(essentially, using the same method as Charlap and Robbins [127]). First, we state and
prove a lemma.

Lemma 7.7.12. Let E : y2 +H(x)y = F (x) be a Weierstrass equation over k. Recall the
morphism ι(x, y) = (x,−y−H(x)) from Exercise 7.2.2. For f ∈ k(E) define ι∗(f) = f ◦ι.
Let P ∈ E(k) be a non-singular point, Q = ι(P) and let tQ be a uniformizer at Q. Then
ι∗tQ is a uniformizer at P and vQ(f) = vP (ι∗(f)).

Proof: One can verify that ι∗ is a field automorphism of k(C). By definition, (ι∗f)(P) =
f(ι(P)) = f(Q). and so ι∗ gives an isomorphism ι∗ : OQ → OP . The result follows. �

We can now give a proof of Theorem 7.7.11 for elliptic curves. In some sense, our proof
reduces the problem to a polynomial function on P1 (and the result for P1 is already known
by Exercise 7.7.9). The proof given in Theorem 8.3.14 essentially follows the same logic
of reducing to P1.
Proof: (Proof of Theorem 7.7.11 in the case of elliptic curves.) Write E(x, y) = y2 +
H(x)y − F (x).

First consider a polynomial a(x) ∈ k[x] of degree d as a function on the affine elliptic
curve y2 + H(x)y = F (x) (obtained by taking z = 1). The function has no poles on the
affine part E ∩A2. Write a(x) =

∏n
i=1(x−xi)ei where all xi ∈ k are distinct, ei ∈ N, and∑n

i=1 ei = d. It suffices to compute the divisor of (x− xi) and show that it has degree 0.
The result therefore follows from Lemma 7.7.10.

Now consider a function of the form a(x) + b(x)y on the affine curve E ∩ A2. By
Lemma 7.7.12 one has vP (a(x) + b(x)y) = vι(P)(a(x) + b(x)(−y − H(x))) for all points

6This innocent-looking fact is actually the hardest result in this chapter to prove. There are several
accessible proofs of the general result: Stichtenoth (Theorem I.4.11 of [589]; also see Moreno [439] Lemma
2.2) gives a proof based on “weak approximation” of valuations and this is probably the simplest proof for a
reader who has already got this far through the current book; Fulton [216] gives a proof for projective plane
curves based on Bézout’s theorem; Silverman [564], Shafarevich [543], Hartshorne [278] and Lorenzini [394]
all give proofs that boil down to ramification theory of f : C → P1, and this is the argument we will give
in the next chapter.

138 CHAPTER 7. CURVES AND DIVISOR CLASS GROUPS

P ∈ E(k). Hence, if div(a + by) =
∑
P nP (P) then div(a + b(−y −H)) =

∑
P nP (ι(P))

and deg(div(a+ by)) = deg(div(a+ b(−y −H))).
Since (a+ by)(a+ b(−y−H)) = a2 + ab(y− y−H) + b2(−y2−Hy) = a2−Hab−Fb2

is independent of y it follows by the first part of the proof that the affine parts of the
divisors of the functions (a+ by) and a+ b(−y −H) have degree

max{2 deg(a), deg(H) + deg(a) + deg(b), 3 + 2 deg(b)}. (7.9)

One can check that the degree in equation (7.9) is 2 deg(a) when deg(a) ≥ deg(b) + 2 and
is 3 + 2 deg(b) when deg(a) ≤ deg(b) + 1.

To study the behaviour at infinity consider (a(x, z)+b(x, z)y)/zd where d = max{deg(a), deg(b)+
1}. By the same argument as before one has vOE (a(x, z)/zd) = −2 deg(a). Similarly,
vOE (b(x, z)y/zd) = vOE (b(x, z)/zd−1) + vOE (y/z) = −2 deg(b) − 3. It follows by part 3
of Lemma 7.4.14 that deg(div((a(x, z) + b(x, z)y)/zd)) = 0.

Finally, consider f(x, y, z) = f1(x, y, z)/f2(x, y, z) where f1 and f2 are homogeneous
of degree d. By the above, deg(div(f1(x, y, z)/zd)) = deg(div(f2(x, y, z)/zd)) = 0 and the
result follows. �

Corollary 7.7.13. Let C be a curve over k and let f ∈ k(C)∗. The following are
equivalent:

1. div(f) ≥ 0.

2. f ∈ k∗.

3. div(f) = 0.

Proof: Certainly statement 2 implies statement 3 and 3 implies 1. So it suffices to prove
1 implies 2. Let f ∈ k(C)∗ be such that div(f) ≥ 0. Then f is regular everywhere, so
choose some P0 ∈ C(k) and define h = f − f(P0) ∈ k(C). Then h(P0) = 0. If h = 0 then
f is the constant function f(P0) and, since f is defined over k, it follows that f ∈ k∗. To
complete the proof suppose that h 6= 0 in k(C). Since deg(div(h)) = 0 by Theorem 7.7.11
it follows that h must have at least one pole. But then f has a pole, which contradicts
div(f) ≥ 0. �

Corollary 7.7.14. Let C be a curve over k. Let f, h ∈ k(C)∗. Then div(f) = div(h) if
and only if f = ch for some c ∈ k∗.

Exercise 7.7.15. Prove Corollary 7.7.14.

7.8 Divisor Class Group

We have seen that Prink(C) = {div(f) : f ∈ k(C)∗} is a subgroup of Div0
k(C). Hence,

since all the groups are Abelian, one can define the quotient group; we call this the divisor
class group. It is common to use the notation Pic for the divisor class group since the
divisor class group of a curve is isomorphic to the Picard group of a curve (even though
the Picard group is usually defined differently, in terms of line bundles).

Definition 7.8.1. The (degree zero) divisor class group of a curve C over k is
Pic0k(C) = Div0

k(C)/Prink(C).
We call two divisors D1, D2 ∈ Div0

k(C) linearly equivalent and write D1 ≡ D2

if D1 − D2 ∈ Prink(C). The equivalence class (called a divisor class) of a divisor
D ∈ Div0

k(C) under linear equivalence is denoted D.

Example 7.8.2. By Lemma 7.7.8, Pic0k(P1) = {0}.

7.8. DIVISOR CLASS GROUP 139

Theorem 7.8.3. Let C be a curve over k and let f ∈ k(C). If σ(f) = f for all σ ∈
Gal(k/k) then f ∈ k(C). If div(f) is defined over k then f = ch for some c ∈ k and
h ∈ k(C).

Proof: The first claim follows from Remark 5.4.14 (also see Remark 8.4.11 of Section 8.4).
For the second statement, let div(f) be defined over k. Then div(f) = σ(div(f)) =

div(σ(f)) where the second equality follows from part 4 of Lemma 7.4.14. Corollary 7.7.14

implies σ(f) = c(σ)f for some c(σ) ∈ k
∗
. The function c : Gal(k/k) → k

∗
is a 1-cocycle

(the fact that c(στ) = σ(c(τ))c(σ) is immediate, the fact that c : Gal(k/k) → k
∗

is
continuous also follows). Hence, Theorem A.7.2 (Hilbert 90) implies that c(σ) = σ(γ)/γ

for some γ ∈ k
∗
. In other words, taking h = f/γ ∈ k(C), we have

σ(h) = σ(f)/σ(γ) = f/γ = h.

By the first part of the theorem h ∈ k(C). �

Theorem 7.8.3 has the following important corollary, namely that Pic0k(C) is a sub-
group of Pic0k′(C) for every extension k′/k.

Corollary 7.8.4. Let C be a curve over k and let k′/k be an algebraic extension. Then
Pic0k(C) injects into Pic0k′(C).

Proof: Suppose a divisor class D ∈ Pic0k(C) becomes trivial in Pic0k′(C). Then there is
some divisor D on C defined over k such that D = div(f) for some f ∈ k′(C)∗. But
Theorem 7.8.3 implies D = div(h) for some h ∈ k(C) and so the divisor class is trivial in
Pic0k(C). �

Corollary 7.8.5. Let k be a finite field. Let C be a curve over k. Define

Pic0
k
(C)Gal(k/k) =

{
D ∈ Pic0

k
(C) : σ(D) = D for all σ ∈ Gal(k/k)

}
.

Then Pic0
k
(C)Gal(k/k) = Pic0k(C).

Proof: (Sketch) Let G = Gal(k/k). Theorem 7.8.3 already showed that Prink(C)G =
Prink(C) but we re-do the proof in a more explicitly cohomological way, as we need further
consequences of the argument.

Take Galois cohomology of the exact sequence

1→ k
∗ → k(C)∗ → Prink(C)→ 0

to get

1→ k∗ → (k(C)∗)G → Prink(C)G → H1(G, k
∗
)→ H1(G, k(C)∗)→ H1(G,Prink(C))→ H2(G, k

∗
).

Since (k(C)∗)G = k(C) (Theorem 7.8.3) andH1(G, k
∗
) = 0 (Hilbert 90) we have Prink(C)G =

Prink(C). Further, H2(G, k
∗
) = 0 when k is finite (see Section X.7 of [542]) and

H1(G, k(C)∗) = 0 (see Silverman Exercise X.10). Hence, H1(G,Prink(C)) = 0.
Now, take Galois cohomology of the exact sequence

1→ Prink(C)→ Div0
k
(C)→ Pic0

k
(C)→ 0

to get
Prink(C)→ Div0

k
(C)G → Pic0

k
(C)G → H1(G,Prink(C)) = 0.

Now, Div0
k
(C)G = Div0

k(C) by definition and so the result follows. �

140 CHAPTER 7. CURVES AND DIVISOR CLASS GROUPS

We minimise the use of the word Jacobian in this book, however we make a few
remarks here. We have associated to a curve C over a field k the divisor class group
Pic0k(C). This group can be considered as an algebraic group. To be precise, there is a
variety JC (called the Jacobian variety of C) that is an algebraic group (i.e., there is a
morphism7 + : JC × JC → JC) and such that, for any extension K/k, there is a bijective
map between Pic0K(C) and JC(K) that is a group homomorphism.

One can think of Pic0 as a functor that, given a curve C over k, associates with every
field extension k′/k a group Pic0k′(C). The Jacobian variety of the curve is a variety JC
over k whose k′-rational points JC(k′) are in one-to-one correspondence with the elements
of Pic0k′(C) for all k′/k. For most applications it is sufficient to work in the language of
divisor class groups rather than Jacobians (despite our remarks about algebraic groups
in Chapter 4).

7.9 Elliptic Curves

The goal of this section is to show that the ‘traditional’ chord-and-tangent rule for
elliptic curves does give a group operation. Our approach is to show that this operation
coincides with addition in the divisor class group of an elliptic curve. Hence, elliptic
curves are an algebraic group.

First we state the chord-and-tangent rule without justifying any of the claims or as-
sumptions made in the description. The results later in the section will justify these
claims (see Remark 7.9.4). For more details about the chord-and-tangent rule see Wash-
ington [626], Cassels [122], Reid [497] or Silverman and Tate [567].

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the affine part of an elliptic curve
E. Draw the line l(x, y) = 0 between P1 and P2 (if P1 6= P2 then this is called a chord; if
P1 = P2 then let the line be the tangent to the curve at P1). Denote by R the third point8

of intersection (counted according to multiplicities) of the line with the curve E. Now
draw the line v(x) = 0 between OE and R (if R = OE then this is the “line at infinity”
and if R is an affine point this is a vertical line so a function of x only). Denote by S the
third point of intersection of this line with the curve E. Then one defines P1 + P2 to be
S. Over the real numbers this operation is illustrated in Figure 7.1.

We now transform the above geometric description into algebra, and show that the
points R and S do exist. The first step is to write down the equation of the line between
P1 = (x1, y1) and P2 = (x2, y2). We state the equation of the line as a definition and then
show that it corresponds to a function with the correct divisor.

Definition 7.9.1. Let E(x, y) be a Weierstrass equation for an elliptic curve over k. Let
P1 = (x1, y1), P2 = (x2, y2) ∈ E(k) ∩ A2. If P1 = ι(P2) then the line between P1 and P2

is9 v(x) = x− x1.

If P1 6= ι(P2) then there are two subcases. If P1 = P2 then define λ = (3x21 + 2a2x1 +
a4)/(2y1+a1x1+a3) and if P1 6= P2 then define λ = (y2−y1)/(x2−x1). The line between
P1 and P2 is then

l(x, y) = y − λ(x − x1)− y1.

We stress that whenever we write l(x, y) then we are implicitly assuming that it is not
a vertical line v(x).

7To make this statement precise requires showing that JC × JC is a variety.
8Possibly this point is at infinity.
9This includes the case P1 = P2 = ι(P1).

7.9. ELLIPTIC CURVES 141

Figure 7.1: Chord and tangent rule for elliptic curve addition.

.5

P2

P1

R

S

Warning: Do not confuse the line v(x) with the valuation vP . The notation v(P) means
the line evaluated at the point P . The notation vP (x) means the valuation of the function
x at the point P .

Exercise 7.9.2. Let the notation be as in Definition 7.9.1. Show that if P1 = ι(P2) then
v(P1) = v(P2) = 0 and if P1 6= ι(P2) then l(P1) = l(P2) = 0.

Lemma 7.9.3. Let P1 = (x1, y1) ∈ E(k) and let P2 = ι(P1). Let v(x) = (x − x1) as in
Definition 7.9.1. Then div(v(x)) = (P1) + (P2)− 2(OE).

Let P1 = (x1, y1), P2 = (x2, y2) ∈ E(k) be such that P1 6= ι(P2) and let l(x, y) =
y−λ(x−x1)−y1 be as in Definition 7.9.1. Then there exists x3 ∈ k such that E(x, λ(x−
x1) + y1) = −∏3

i=1(x − xi) and div(l(x, y)) = (P1) + (P2) + (R) − 3(OE) where R =
(x3, λ(x3 − x1) + y1).

Proof: The first part is just a restatement of Lemma 7.7.10.

For the second part, set G(x) = −E(x, λ(x − x1) + y1), which is a monic polynomial
over k of degree 3. Certainly x1 and x2 are roots of G(x) over k so if x1 6= x2 then
G(x) has a third root x3 over k. In the case x1 = x2 we have P1 = P2 6= ι(P2).
Make a linear change of variables so that (x1, y1) = (x2, y2) = 0. The curve equation is
E(x, y) = y2 + a1xy + a3y − (x3 + a2x

2 + a4x) and a3 6= 0 since (0, 0) 6= ι(0, 0). Now, by
definition, l(x, y) = a4x/a3 and one has

G(x) = E(x, a4x/a3) = (a4x/a3)2 + a1x(a4x/a3) + a4x− (x3 + a2x
2 + a4x)

which is divisible by x2. Hence G(x) splits completely over k.

For the final part we consider l(x, y) as a function on the affine curve. By Lemma 7.4.14
and Lemma 7.4.16 we have vOE (l(x, y)) = min{vOE (y), vOE (x), vOE (1)} = −3. Since
deg(div(l(x, y))) = 0 there are three affine zeroes counted according to multiplicity.

Define l(x, y) = y+ (a1x+ a3) +λ(x− x1) + y1. Note that l = −l ◦ ι so vP (l(x, y)) =
vι(P)(l(x, y)) (also see Lemma 7.7.12). One can check that

l(x, y)l(x, y) = −E(x, λ(x − x1) + y1) =

3∏

i=1

(x− xi) (7.10)

142 CHAPTER 7. CURVES AND DIVISOR CLASS GROUPS

where the first equality is equivalence modulo E(x, y), not equality of polynomials. Hence,
for any point P ∈ E(k),

vP (l(x, y)) + vP (l(x, y)) = vP

(
3∏

i=1

(x− xi)
)
.

Write Pi = (xi, yi), let ei be the multiplicity of xi in the right hand side of equation (7.10)
and recall that vPi(x − xi) = 1 if Pi 6= ι(Pi) and 2 otherwise. Also note that l(Pi) = 0
implies l(Pi) 6= 0 unless Pi = ι(Pi), in which case vPi(l(x, y)) = vPi(l(x, y)). It follows
that vPi(l(x, y)) = ei, which proves the result. �

Remark 7.9.4. It follows from the above results that it does make sense to speak of
the “third point of intersection” R of l(x, y) with E and to call l(x, y) a tangent line in
the case when P1 = P2. Hence, we have justified the assumptions made in the informal
description of the chord-and-tangent rule.

Exercise 7.9.5. Let E(x, y, z) be a Weierstrass equation for an elliptic curve. The line
z = 0 is called the line at infinity on E. Show that z = 0 only passes through (0, 0) on
the affine curve given by the equation E(x, 1, z) = 0.

Exercise 7.9.6. Prove that the following algebraic formulae for the chord-and-tangent
rule are correct. Let P1, P2 ∈ E(k), we want to compute S = P1 + P2. If P1 = OE then
S = P2 and if P2 = OE then S = P1. Hence we may now assume that P1 = (x1, y1) and
P2 = (x2, y2) are affine. If y2 = −y1 −H(x1) then S = OE . Otherwise, set λ to be as in
Definition 7.9.1 and compute x3 = λ2 + a1λ − a2 − x1 − x2 and y3 = −λ(xS − x1)− y1.
The sum is S = (x3, y3).

Before proving the main theorem, we state the following technical result, whose proof
is postponed to the next chapter (Corollary 8.6.5).

Theorem 7.9.7. Let P1, P2 ∈ E(k) be a points on an elliptic curve such that P1 6= P2.
Then (P1)− (P2) is not a principal divisor.

We now consider the divisor class group Pic0k(E). The following result is usually
obtained as a corollary to the Riemann-Roch theorem, but we give an ad-hoc proof for
elliptic curves. One can consider this result as the Abel-Jacobi map in the case of genus
1 curves.

Theorem 7.9.8. There is a one-to-one correspondence between E(k) and Pic0k(E), namely
P 7→ (P)− (OE).

Proof: We first show that the map is injective. Suppose (P1) − (OE) ≡ (P2) − (OE).
Then (P1)− (P2) is principal, and so Theorem 7.9.7 implies P1 = P2.

It remains to show that the map is surjective. Let D =
∑

P nP (P) be any effective
divisor on E. We prove that D is equivalent to a divisor of the form

(P) + (deg(D)− 1)(OE). (7.11)

We will do this by replacing any term (P1) + (P2) by a term of the form (S) + (OE) for
some point S.

The key equations are (P) + (ι(P)) = 2(OE) + div(v(x)) where v(x) is as in Defi-
nition 7.9.1, or, if P1 6= ι(P2), (P1) + (P2) = (S) + (OE) + div(l(x, y)/v(x)). The first
equation allows us to replace any pair (P) + (ι(P)), including the case P = ι(P), by
2(OE). The second equation allows us to replace any pair (P1) + (P2), where P1 6= ι(P2)

7.9. ELLIPTIC CURVES 143

(but including the case P1 = P2) with (S)+(OE). It is clear that any pair of affine points
is included in one of these two cases, and so repeating these operations a finite number
of times reduces any effective divisor to the form in equation (7.11).

Finally, let D be a degree zero divisor on E. Write D = D1 − D2 where D1 and
D2 are effective divisors of the same degree. By the above argument we can write D1 ≡
(S1) + (deg(D1)− 1)(OE) and D2 ≡ (S2) + (deg(D1)− 1)(OE). Hence D ≡ (S1)− (S2).
Finally, adding the divisor of the vertical line function through S2 and subtracting the
divisor of the line between S1 and ι(S2) gives D ≡ (S)−(OE) for some point S as required.
�

Since E(k) is in bijection with the group Pic0k(E) it follows that E(k) is a group, with
the group law coming from the divisor class group structure of E. It remains to show
that the group law is just the chord-and-tangent rule. In other words, this result shows
that the chord-and-tangent rule is associative. Note that many texts prove that both
E(k) and Pic0k(E) are groups and then prove that the map P 7→ (P) − (OE) is a group
homomorphism; whereas we use this map to prove that E(k) is a group.

Theorem 7.9.9. Let E be an elliptic curve over a field k. The group law induced on
E(k) by pulling back the divisor class group operations via the bijection of Theorem 7.9.8
is the chord-and-tangent rule.

Proof: Let P1, P2 ∈ E(k). To add these points we map them to divisor classes (P1)−(OE)
and (P2) − (OE) in Pic0k(E). Their sum is (P1) + (P2)− 2(OE), which is reduced to the
form (S)− (OE) by applying the rules in the proof of Theorem 7.9.8. In other words, we
get (P1) + (P2) − 2(OE) = (S) − (OE) + div(f(x, y)) where f(x, y) = v(x) if P1 = ι(P2)
or f(x, y) = l(x, y)/v(x) in the general case, where l(x, y) and v(x) are the lines from
Definition 7.9.1. Since these are precisely the same lines as in the description of the
chord-and-tangent rule it follows that the point S is the same point as produced by the
chord-and-tangent rules. �

A succinct way to describe the elliptic curve addition law (since there is a single
point at infinity) is that three points sum to zero if they lie on a line. This is simply a
restatement of the fact that if P , Q and R line on the line l(x, y, z) = 0 then the divisor
(P) + (Q) + (R)− 3(OE) is a principal divisor.

Exercise 7.9.10. One can choose any k-rational point P0 ∈ E(k) and define a group law
on E(k) such that P0 is the identity element. The sum of points P and Q is defined as
follows: let l be the line through P and Q (taking the tangent if P = Q, which uniquely
exists since E is non-singular). Then l hits E at a third point (counting multiplicities)
R. Draw a line v between P0 and R. This hits E at a third point (again counting with
multiplicities) S. Then P + Q is defined to be the point S. Show that this operation
satisfies the axioms of a group.

144 CHAPTER 7. CURVES AND DIVISOR CLASS GROUPS

Chapter 8

Rational Maps on Curves and
Divisors

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptogra-
phy” by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

The purpose of this chapter is to develop some tools in the theory of algebraic curves
that are needed for the applications (especially, hyperelliptic curve cryptography). The
technical machinery in this chapter is somewhat deeper than the previous one and readers
can skip this chapter if they wish.

The reader should note that the word “curve” in this chapter always refers to a non-
singular curve.

8.1 Rational Maps of Curves and the Degree

Lemma 8.1.1. Let C be a curve over k and f ∈ k(C). One can associate with f a rational
map φ : C → P1 over k by φ = (f : 1). (Indeed, this is a morphism by Lemma 7.3.6.)
Denote by∞ the constant map∞(P) = (1 : 0). Then there is a one-to-one correspondence
between k(C) ∪ {∞} and the set of morphisms φ : C → P1.

Exercise 8.1.2. Prove Lemma 8.1.1.

Note that since k(C) ∪ {∞} is not a field, it does not make sense to interpret the set
of rational maps φ : C → P1 as a field.

Lemma 8.1.3. Let C1 and C2 be curves over k (in particular, non-singular and projec-
tive) and let φ : C1 → C2 be a non-constant rational map over k. Then φ is a dominant
morphism.

Proof: By Lemma 7.3.6, φ is a morphism. By Lemma 5.5.17 and Exercise 5.5.19 we
know that the Zariski closure Z of φ(C1) is an irreducible algebraic set. Suppose Z 6= C2.
We may intersect with an affine space so that Z∩An 6= ∅. It follows that Z∩An 6= C2∩An

145

146 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

(otherwise their projective closures are equal and Z = C2). Hence Ik(C2) (Ik(Z). By
Theorem 5.6.8 it follows that dim(Z) = 0 and so, by Exercise 5.6.6, Z = {P} for some
P ∈ C2(k). �

The notion of degree of a mapping is fundamental in algebra and topology; a degree
d map is “d-to-one on most points”.

Example 8.1.4. Let k be a field of characteristic not equal to 2. The morphism φ :
A1(k) → A1(k) given by φ(x) = x2 is clearly two-to-one away from the point x = 0. We
say that φ has degree 2.

Example 8.1.4 suggests several possible definitions for degree: the first in terms of the
number of pre-images of a general point in the image; the second in terms of the degrees
of the polynomials defining the map. A third definition is to recall the injective field
homorphism φ∗ : k(A1) → k(A1) . One sees that φ∗(k(A1)) = k(x2) ⊆ k(x) and that
[k(x) : k(x2)] = 2. This latter formulation turns out to be a suitable definition for degree.

Theorem 8.1.5. Let C1, C2 be curves over k. Let φ : C1 → C2 be a non-constant rational
map over k. Then k(C1) is a finite algebraic extension of φ∗(k(C2)).

Proof: By Lemma 8.1.3, φ is a dominant morphism and hence by Theorem 5.5.24,
φ∗ : k(C2) → k(C1) is an injective field homorphism. It follows that φ∗(k(C2)) is a
subfield of k(C1). Since φ∗(k(C2)) is isomorphic to k(C2) it has transcendence degree
1. Since k(C1) also has transcendence degree 1 it follows from Theorem A.6.5 that
k(C1)/φ∗(k(C2)) is an algebraic extension. Finally, k(C1) is a finite algebraic extension
of φ∗(k(C2)) since k(C1) is finitely generated over k. �

Definition 8.1.6. Let φ : C1 → C2 be a non-constant rational map of curves over k.
The degree of φ is [k(C1) : φ∗(k(C2))].

Let F be a field such that φ∗(k(C2)) ⊂ F ⊂ k(C1) and k(C1)/F is separable and
F/φ∗(k(C2)) is purely inseparable (recall the notion of separability from Section A.6).
The separable degree of φ is degs(φ) = [k(C1) : F] and the inseparable degree of φ
is degi(φ) = [F : φ∗(k(C2))].

A non-constant rational map of curves is called separable (respectively, inseparable)
if its inseparable (resp., separable) degree is 1.

Example 8.1.7. Let k = Fp. The Frobenius map πp : A1(k) → A1(k) is given by
πp(x) = xp. Since k(A1) = k(x) and π∗

p(k(A1)) = k(xp) it follows that k(x)/π∗
p(k(A1)) =

k(x)/k(xp) is inseparable of degree p. Hence degs(πp) = 1 and deg(πp) = degi(πp) = p.
Note that πp is one-to-one on A1(Fp), not p-to-one.

Lemma 8.1.8. Let φ : A1 → A1 be a non-constant morphism over k given by φ(x) = a(x)
for some polynomial a(x) ∈ k[x]. Then deg(φ) = degx(a(x)).

Proof: Let θ = a(x). We have φ∗(k(A1)) = k(θ) ⊆ k(x) and we are required to determine
[k(x) : k(θ)]. We claim the minimal polynomial of x over k(θ) is given by

F (T) = a(T)− θ.

First, it is clear that F (x) = 0. Second, it follows from Eisenstein’s criteria (see Propo-
sition III.1.14 of [589], Theorem IV.3.1 of [367] or Theorem III.6.15 of [301]), taking for
example the place (i.e., valuation) at infinity in k(θ), that F (T) is irreducible. Since
degT (F (T)) = degx(a(x)) the result follows. �

Lemma 8.1.9. Let φ : A1 → A1 be a non-constant rational map over k given by φ(x) =
a(x)/b(x) where gcd(a(x), b(x)) = 1. Then deg(φ) = max{degx(a(x)), degx(b(x))}.

8.1. RATIONAL MAPS OF CURVES AND THE DEGREE 147

Proof: Let θ = a(x)/b(x) so that φ∗(k(A1)) = k(θ) ⊆ k(x). Since k(θ) = k(1/θ) we
may assume degx(a(x)) ≥ degx(b(x)). If these degrees are equal then one can reduce
the degree of a(x) by using k(a(x)/b(x)) = k((a(x) − cb(x))/b(x)) for a suitable c ∈ k;
replacing θ by 1/θ again we may assume that degx(a(x)) > degx(b(x)). We may also
assume that a(x) and b(x) are monic.

We claim the minimal polynomial of x over k(θ) is given by

F (T) = a(T)− θb(T).

To see this, first note that F (x) = 0. Now, a(T)− θb(T) is irreducible in k[θ, T] since it
is linear in θ. The irreducibility of F (T) in k(θ)[T] then follows from the Gauss Lemma
(see, for example, Lemma III.6.13 of Hungerford [301]). �

Exercise 8.1.10. Let C1 : y2 = x3 and C2 : Y 2 = X over a field k of characteristic not
equal to 2 and consider the map φ : C1 → C2 such that φ(x, y) = (x, y/x). Show that
deg(φ) = 1.

Exercise 8.1.11. Let C1 : y2 = x6 + 2x2 + 1 and C2 : Y 2 = X3 + 2X+ 1 over a field k of
characteristic not equal to 2 and consider the map φ : C1 → C2 such that φ(x, y) = (x2, y).
Show that deg(φ) = 2.

Exercise 8.1.12. Let C1, C2 and C3 be curves over k and let ψ : C1 → C2 and φ : C2 →
C3 be morphisms over k. Show that deg(φ ◦ ψ) = deg(φ) deg(ψ).

Lemma 8.1.13. Let C1 and C2 be curves over k (in particular, smooth and projective).
Let φ : C1 → C2 be a birational map over k. Then φ has degree 1.

Proof: Write φ−1 for the rational map from C2 to C1 such that φ−1 ◦φ is the identity on
an open subset of C1. Then (φ−1 ◦φ)∗ is the identity map on k(C1) and it also factors as
φ∗ ◦ (φ−1)∗. Since 1 = [k(C1) : (φ−1 ◦φ)∗k(C1)] = [k(C1) : φ∗k(C2)][k(C2) : (φ−1)∗k(C1)]
the result follows. �

For Lemma 8.1.15 (and Lemma 8.2.6) we need the following technical result. This is
a special case of weak approximation; see Stichtenoth [589] for a presentation that uses
similar techniques to obtain most of the results in this chapter.

Lemma 8.1.14. Let C be a curve over k and let Q,Q′ ∈ C(k) be distinct points. Then
there is a function f ∈ k(C) such that vQ(f) = 0 and vQ′(f) > 0.

Proof: By Lemma 7.1.19 we have OQ′,k 6⊆ OQ,k (and vice versa). Hence, there exists a
function u ∈ OQ,k − OQ′,k. Then vQ(u) ≥ 0 while vQ′ (u) < 0. If u(Q) = −1 then set

f = 1/(1 + u2) else set f = 1/(1 + u). Then vQ(f) = 0 and vQ′(f) > 0 as required. �

Lemma 8.1.15. Let C1 and C2 be curves over k (in particular, smooth and projective).
Let φ : C1 → C2 be a rational map over k of degree 1. Then φ is an isomorphism.

Proof: Since φ has degree 1 it follows that φ∗(k(C2)) = k(C1) and so k(C2) ∼= k(C1).
The inverse of φ∗ induces a rational map φ−1 : C2 → C1. Since C1 and C2 are non-
singular and projective it follows from Lemma 7.3.6 that φ : C1 → C2 and φ−1 : C2 → C1

are actually morphisms. It follows that φ−1 ◦ φ : C1 → C1 and φ ◦ φ−1 : C2 → C2 are
morphisms.

It remains to show that these maps are both the identity. Without loss of generality
we consider ψ = φ−1 ◦ φ. Suppose for contradiction that there are points P,Q ∈ C1(k)
such that ψ(P) = Q 6= P . There exists a function f on C1 such that f(P) = 0 and
f(Q) 6= 0 (see Lemma 8.1.14). But ψ∗ is the identity map on k(C1). Hence ψ∗(f) = f .
But ψ∗(f) = f ◦ ψ and so 0 = f(P) = (f ◦ ψ)(P) = f(Q) 6= 0, which is a contradiction.
�

148 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

8.2 Extensions of Valuations

Let φ : C1 → C2 be a non-constant morphism of curves over k. Then F1 = k(C1) is a
finite extension of F2 = φ∗(k(C2)). We now study the preimages of points Q ∈ C2(k)
under φ and a notion of multiplicity of preimages of Q (namely, ramification indices).
The main result is Theorem 8.2.12.

There are several approaches to these results in the literature. One method, which
unifies algebraic number theory and the theory of curves, is to note that if U is an open
subset of C then k[U] is a Dedekind domain. The splitting of the maximal ideal mQ of k[U]
(for Q ∈ U) in the integral closure of φ∗(k[U]) in k(C1) yields the results. Details of this
approach are given in Section VII.5 of Lorenzini [394], Section I.4 of Serre [542] (especially
Propositions I.10 and I.11), Chapter 1 of Lang [365] and Chapter XII of Lang [367]. An
analogous ring-theoretic formulation is used in Proposition II.6.9 of Hartshorne [278].
A different method is to study extensions of valuations directly, for example see Section
III.1 of Stichtenoth [589]. Note that, since we consider points over k, the notion of residue
degree does not arise, which simplifies the presentation compared with many texts.

Definition 8.2.1. Let F2 be a field of transcendence degree 1 over k. Let F1/F2 be a
finite extension. Let v be a discrete valuation on F2. A valuation v′ on F1 is an extension
of v (or, v is the restriction of v′) if {f ∈ F2 : v(f) ≥ 0} = {f ∈ F2 : v′(f) ≥ 0}. We
write v′ | v if this is the case.

Note that if v′ is an extension of v as above then one does not necessarily have
v′(f) = v(f) for all f ∈ F2 (indeed, we will see later that v′(f) = ev(f) for some e ∈ N).

Lemma 8.2.2. Let F1/F2 be a finite extension and let v′ | v be valuations on F1 and
F2 respectively. Then Rv is a subring of Rv′ , Rv = Rv′ ∩ F2 and mv = mv′ ∩ F2. In
particular, for f ∈ F2, v(f) = 0 if and only if v′(f) = 0.

Exercise 8.2.3. Prove Lemma 8.2.2.

Theorem 8.2.4. Let F1/F2 be a finite extension of fields and let v be a valuation on F2.
Then there is at least one (and only finitely many) valuation v′ of F1 such that v′ | v.

Proof: See Theorem XII.4.1 and Corollary XII.4.9 of Lang [367] or Proposition III.1.7(b)
of Stichtenoth [589]. �

Let φ : C1 → C2 be a morphism of curves and let F2 = φ∗(k(C2)) and F1 = k(C1). We
now explain the relation between extensions of valuations from F2 to F1 and pre-images
of points under φ.

Lemma 8.2.5. Let φ : C1 → C2 be a non-constant morphism of curves over k (this is
short-hand for C1, C2 and φ all being defined over k). Let P ∈ C1(k) and Q ∈ C2(k).
Denote by v the valuation on φ∗(k(C2)) ⊆ k(C1) defined by v(φ∗(f)) = vQ(f) for f ∈
k(C2). If φ(P) = Q then vP is an extension of v.

Proof: Let f ∈ k(C2). Since φ(P) = Q we have φ∗(f) = f ◦ φ regular at P if and only if
f is regular at Q. Hence vP (φ∗(f)) ≥ 0 if and only if vQ(f) ≥ 0. It follows that vP | v. �

Lemma 8.2.6. Let the notation be as in Lemma 8.2.5. In particular, P ∈ C1(k), Q ∈
C2(k), vP is the corresponding valuation on F1 = k(C1) and v is the valuation on φ∗(k(C2))
corresponding to vQ on k(C2). Then vP | v implies φ(P) = Q.

Proof: Suppose φ(P) = Q′ 6= Q. By Lemma 8.1.14 there is some f ∈ k(C2) such that
f(Q) 6= 0 and f(Q′) = 0. Then 0 = vQ(f) = v(φ∗(f)) = vP (φ∗(f)) (the last equality

8.2. EXTENSIONS OF VALUATIONS 149

by Lemma 8.2.2 and since vP | v). But φ∗(f)(P) = f ◦ φ(P) = f(Q′) = 0, which is a
contradiction. �

In other words, Lemmas 8.2.5 and 8.2.6 show that φ(P) = Q if and only if the maximal
ideal mP in OP ⊆ k(C1) contains φ∗(mQ) where mQ is the maximal ideal in OQ ⊆ k(C2).
This is the connection between the behaviour of points under morphisms and the splitting
of ideals in Dedekind domains.

We already know that a non-constant morphism of curves is dominant, but the next
result makes the even stronger statement that a morphism is surjective.

Theorem 8.2.7. Let C1 and C2 be curves over k (in particular, they are projective and
non-singular). Let φ : C1 → C2 be a non-constant morphism of curves over k. Then φ is
surjective from C1(k) to C2(k).

Proof: Let Q ∈ C2(k) and let v be the corresponding valuation on φ∗(k(C2)). By
Theorem 8.2.4 there is a valuation v′ on k(C1) that extends v. Theorem 7.5.2 shows that
v′ = vP for some P ∈ C1(k). Finally, Lemma 8.2.6 shows that φ(P) = Q. �

Definition 8.2.8. Let C1 and C2 be curves over k and let φ : C1 → C2 be a non-constant
rational map over k. Let P ∈ C1(k). The ramification index of φ at P is

eφ(P) = vP (φ∗(tφ(P)))

where tφ(P) is a uniformizer on C2 at φ(P). If eφ(P) = 1 for all P ∈ C1(k) then φ is
unramified.

We now show that this definition agrees with Definition III.1.5 of Stichtenoth [589].

Lemma 8.2.9. Let φ : C1 → C2 be a non-constant morphism of curves over k. Let
P ∈ C1(k), Q = φ(P) ∈ C2(k) and f ∈ k(C2). Then

vP (φ∗(f)) = eφ(P)vQ(f).

Proof: Let vQ(f) = n and write f = tnQh for some h ∈ k(C2) such that h(Q) 6= 0.
Then φ∗(f) = φ∗(tQ)nφ∗(h) and vP (φ∗(h))) = 0. The result follows since vP (φ∗(tQ)n) =
nvP (φ∗(tQ)). �

Exercise 8.2.10. Let φ : C1 → C2 be a non-constant rational map of curves over k. Let
P ∈ C1(k), Q = φ(P), and suppose eφ(P) = 1. Show that t ∈ k(C2) is a uniformizer at
Q if and only if φ∗(t) is a uniformizer at P .

Exercise 8.2.11. Let φ : C1 → C2 be an isomorphism of curves over k. Show that φ is
unramified.

The following result is of fundamental importance.

Theorem 8.2.12. Let C1 and C2 be curves over k and let φ : C1 → C2 be a non-constant
rational map over k. Then for all Q ∈ C2(k) we have

∑

P∈C1(k):φ(P)=Q

eφ(P) = deg(φ).

Proof: As mentioned above, one can see this by noting that φ∗(OQ) and φ∗(k[U]) (for
an open set U ⊆ C2 with Q ∈ U) are Dedekind domains and studying the splitting of
mQ in their integral closures in k(C1). For details see any of Proposition 1.10 and 1.11
of Serre [542], Corollary XII.6.3 of Lang [367], Proposition I.21 of Lang [365], Theorem
III.3.5 of Lorenzini [394], Proposition II.6.9 of Hartshorne [278], or Theorem III.1.11 of
Stichenoth [589]. �

150 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

Corollary 8.2.13. If φ : C1 → C2 is a rational map of degree d and Q ∈ C2(k) then
there are at most d points P ∈ C1(k) such that φ(P) = Q.

Furthermore, if φ is separable then there is an open subset U ⊆ C2 such that for all
Q ∈ U one has #φ−1(Q) = d.

Proof: The first statement is immediate. The second follows by choosing U to be the
complement of points corresponding to factors of the discriminant of k(C1)/φ∗(k(C2));
see Proposition VII.5.7 of Lorenzini [394]. �

Example 8.2.14. Consider φ : A1 → A1 given by φ(x) = x2 as in Example 8.1.4. This
extends to the morphism φ : P1 → P1 given by φ((x : z)) = (x2/z2 : 1), which is regular
at ∞ = (1 : 0) via the equivalent formula (1 : z2/x2). One has φ−1((a : 1)) = {(√a :
1), (−√a : 1)}, φ−1((0 : 1)) = {(0 : 1)} and φ−1((1 : 0)) = {(1 : 0)}. At a point
Q = (a : 1) with a 6= 0 one has uniformizer tQ = x/z − a and

φ∗(tQ) = x2/z2 − a = (x/z −√a)(x/z +
√
a).

Writing P = (
√
a : 1) one has φ(P) = Q and eφ(P) = 1. However, one can verify that

eφ((0 : 1)) = eφ((1 : 0)) = 2.

Lemma 8.2.15. Let φ : C1 → C2 and ψ : C2 → C3 be non-constant morphisms of curves
over k. Let P ∈ C1(k). Then eψ◦φ(P) = eφ(P)eψ(φ(P)).

Exercise 8.2.16. Prove Lemma 8.2.15.

Exercise 8.2.17. Let φ : C1 → C2 be defined over k. Let P ∈ C1(k) and let σ ∈
Gal(k/k). Show that eφ(σ(P)) = eφ(P).

8.3 Maps on Divisor Classes

We can now define some important maps on divisors that will be used in several proofs
later. In particular, this will enable an elegant proof of Theorem 7.7.11 for general curves.

Definition 8.3.1. Let φ : C1 → C2 be a non-constant morphism over k. Define the
pullback

φ∗ : Divk(C2)→ Divk(C1)

as follows. For Q ∈ C2(k) define φ∗(Q) =
∑

P∈φ−1(Q) eφ(P)(P) and extend φ∗ to Divk(C2)
by linearity, i.e.,

φ∗

 ∑

Q∈C2(k)

nQ(Q)

 =

∑

Q∈C2(k)

nQφ
∗(Q).

Note that, since Divk(C2) and Divk(C1) are not varieties, it does not make sense to
ask whether φ∗ is a rational map or morphism.

Example 8.3.2. Consider φ : A1 → A1 given by φ(x) = x2. Let D = (0) + (1) be a
divisor on A1. Then φ∗(D) = 2(0) + (1) + (−1).

Let φ : C1 → C2 be a non-constant morphism over k and let P ∈ C2(k). Then
the divisor φ∗(P) is also called the conorm of P with respect to k(C1)/φ∗(k(C2)) (see
Definition III.1.8 of Stichtenoth [589]).

Lemma 8.3.3. Let C be a curve over k and let f ∈ k(C)∗ be a non-constant rational
function. Define the rational map φ : C → P1 by φ = (f : 1) (in future we will write f
instead of φ). Then φ is a morphism and div(f) = φ∗((0 : 1)− (1 : 0)).

8.3. MAPS ON DIVISOR CLASSES 151

Proof: That φ is a morphism follows from Lemma 7.3.6. Let P ∈ C(k) be such that
f(P) = 0 (i.e., φ(P) = (0 : 1)). We prove that vP (f) = eφ(P). Recall that t = x/z is a
uniformizer at (0 : 1). By definition, eφ(P) = vP (t ◦ φ). Now t ◦ φ = x(f : 1)/z(f : 1) =
f/1 = f . Hence, eφ(P) = vP (f). One handles poles of f analogously using the formula
eφ(P) = vP (1/f). �

There is a natural map φ∗ on divisors that is called the pushforward (it is called the
divisor-norm map in Section VII.7 of Lorenzini [394]).

Definition 8.3.4. Let φ : C1 → C2 be a non-constant morphism of curves. Define the
pushforward

φ∗ : Divk(C1)→ Divk(C2)

by φ∗(P) = φ(P) and extend to the whole of Divk(C1) by linearity.

It remains to find a map from k(C1) to k(C2) that corresponds (in the sense of property
4 of Theorem 8.3.8) to the pushforward. This is achieved using the norm map with respect
to the extension k(C1)/φ∗(k(C2)). As we will show in Lemma 8.3.13 this norm satisfies,
for f ∈ k(C1) and Q ∈ C2(k), Nk(C1)/φ∗(k(C2))(f)(Q) =

∏
φ(P)=Q f(P)eφ(P).

Definition 8.3.5. Let C1, C2 be curves over k and let φ : C1 → C2 be a non-constant
rational map. Let Nk(C1)/φ∗k(C2) be the usual norm map in field theory (see Section A.6).
Define

φ∗ : k(C1)→ k(C2)

by φ∗(f) = (φ∗)−1(Nk(C1)/φ∗(k(C2))(f)).

Note that the definition of φ∗(f) makes sense since Nk(C1)/φ∗k(C2)(f) ∈ φ∗(k(C2)) and
so is of the form h ◦ φ for some h ∈ k(C2). So φ∗(f) = h.

Example 8.3.6. Let C1 = C2 = A1 and φ : C1 → C2 be given by φ(x) = x2. Then
φ∗(k(C2)) = k(x2) and k(C1) = φ∗(k(C2))(x). Let f(x) = x2/(x− 1). Then

Nk(C1)/φ∗k(C2)(f) = f(x)f(−x) =
x2

(x− 1)

(−x)2

(−x− 1)
=

x4

−x2 + 1
,

which is h ◦ φ for h(X) = X2/(1−X). Hence φ∗(f(x)) = −f(x).

Exercise 8.3.7. Let C1 = V (y2 = x2 + 1) ⊆ A2, C2 = A1 and let φ : C1 → C2 be given
by φ(x, y) = x. Let f(x, y) = x/y. Show that

Nk(C1)/φ∗k(C2)(f) =
−x2
x2 + 1

and so φ∗(f) = h(X) where h(X) = −X2/(X2 + 1).

We now state the main properties of the pullback and pushforward.

Theorem 8.3.8. Let φ : C1 → C2 be a non-constant morphism of curves over k. Then

1. deg(φ∗(D)) = deg(φ) deg(D) for all D ∈ Div(C2).

2. φ∗(div(f)) = div(φ∗f) for all f ∈ k(C2)∗.

3. deg(φ∗(D)) = deg(D) for all D ∈ Div(C1).

4. φ∗(div(f)) = div(φ∗(f)) for all f ∈ k(C1)∗.

5. φ∗(φ∗(D)) = deg(φ)D for D ∈ Div(C2).

152 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

6. If ψ : C2 → C3 is another non-constant rational map of curves over k then (ψ◦φ)∗ =
φ∗ ◦ ψ∗ and (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

Proof: (Sketch)

1. Follows from Theorem 8.2.12.

2. Follows from Lemma 8.2.9.

3. Follows directly from the definition.

4. First note that

φ∗(div(f)) =
∑

P∈C1(k)

vP (f)(φ(P)) =
∑

Q∈C2(k)

 ∑

P∈C1(k):φ(P)=Q

vP (f)

 (Q).

To complete the proof it suffices to show that
∑

P∈C1(k):φ(P)=Q vP (f) = vQ(φ∗(f)).
This requires some theory that has not been presented in the book, so we sketch
the details here.

Write L = k(C1), K = φ∗(k(C2)) ⊆ L. Fix Q ∈ C2(k) and write v for the
valuation on K corresponding to vQ on k(C2). Write A = φ∗(OQ,k(C2)) ⊆ K,
which is a Dedekind domain, and let B be the integral closure of A in L. Write m

for the maximal ideal of A corresponding to mQ,k(C2). If P ∈ C1(k) is such that
φ(P) = Q then m = mP,k(C1) ∩A. Suppose first that L/K is Galois. Then for any
B-ideal I one can define the norm NL/K(I) =

∏
σ∈Gal(L/K) σ(I). Lemma IV.6.4

of Lorenzini [394] implies that NL/K(mP,k(C1)) = m. When L/K is not Galois
then one can define NL/K by NL/K(mP,k(C1)) = m. Proposition IV.6.9 of [394]
shows (also see Proposition I.22 of [365] in the case when L/K is separable) that
NL/K((f)) = (NL/K(f)), where (f) denotes the principal B-ideal generated by f
and where NL/K(f) denotes the usual field-theoretic norm. Since

NL/K((f)) =
∏

mP⊇m

m
vP (f)
P and (NL/K(f)) = mv(NL/K(f))

(where the latter are A-ideals) the result follows.

5. Follows easily from Theorem 8.2.12.

6. The first statement follows from Lemma 8.2.15 and the second is straightforward
from the definition.

�

Exercise 8.3.9. Give all the details in the proof of Theorem 8.3.8.

Corollary 8.3.10. Let φ : C1 → C2 be a non-constant morphism of curves over k. Then
the induced maps φ∗ : Pic0k(C2) → Pic0k(C1) and φ∗ : Pic0k(C1) → Pic0k(C2) on divisor
class groups are well-defined group homomorphisms.

Proof: The maps φ∗ and φ∗ are well-defined on divisor classes by parts 2 and 4 of
Theorem 8.3.8. The homomorphic property follows from the linearity of the definitions.
�

Exercise 8.3.11. Show that if φ : C1 → C2 is an isomorphism of curves over k then
Pic0k(C1) ∼= Pic0k(C2) (isomorphic as groups). Give an example to show that the converse
is not true.

8.3. MAPS ON DIVISOR CLASSES 153

A further corollary of this result is that a rational map φ : E1 → E2 between elliptic
curves such that φ(OE1) = OE2 is automatically a group homomorphism (see Theo-
rem 9.2.1).

Exercise 8.3.12. Let φ : P1 → P1 be defined by φ((x : z)) = (x2/z2 : 1). Let D = (−1 :
1) + (1 : 0)− (0 : 1). Compute φ∗(D), φ∗(D), φ∗φ∗(D) and φ∗φ∗(D).

We now make an observation that was mentioned when we defined φ∗ on k(C1).

Lemma 8.3.13. Let φ : C1 → C2 be a non-constant morphism of curves over k. Let
f ∈ k(C1)∗ and Q ∈ C2(k). Suppose that vP (f) = 0 for all points P ∈ C1(k) such that
φ(P) = Q. Then

Nk(C1)/φ∗(k(C2))(f)(Q) =
∏

P∈C1(k):φ(P)=Q

f(P)eφ(P).

(Later in the book we will introduce the notation f(φ∗(Q)) for the right hand side.) An-
other formulation would be “f of conorm of Q equals norm of f at Q”.

Proof: (Sketch) This uses similar ideas to the proof of part 4 of Theorem 8.3.8. We work
over k.

As always, k(C1) is a finite extension of φ∗(k(C2)). Let A = φ∗(OQ(C2)) and let B be
the integral closure of A in k(C1). Then B is a Dedekind domain and the ideal φ∗(mQ)

splits as a product
∏
im

eφ(Pi)
Pi

where Pi ∈ C1(k) are distinct points such that φ(Pi) = Q.

By assumption, f has no poles at Pi and so f ∈ B. Note that f(Pi) = ci ∈ k if and
only if f ≡ ci (mod mPi). Hence, the right hand side is

∏

i

f(Pi)
eφ(Pi) =

∏

i

c
eφ(Pi)
i =

∏

i

(f (mod mPi))
eφ(Pi).

It remains to prove that this is equal to the norm of f evaluated at Q and we sketch
this when the extension is Galois and cyclic (the general case is simple linear algebra).
The elements σ ∈ Gal(k(C1)/φ∗(k(C2))) permute the mPi and the ramification indices
eφ(Pi) are all equal. Since ci ∈ k ⊂ φ∗(k(C2)) we have f ≡ ci (mod mPi) if and only if
σ(f) ≡ ci (mod σ(mPi)). Hence

Nk(C1)/φ∗(k(C2))(f) =
∏

σ∈Gal(k(C1)/φ∗(k(C2)))

σ(f) ≡
∏

i

c
eφ(Pi)
i (mod mP1)

and since Nk(C1)/φ∗(k(C2))(f) ∈ φ∗(k(C2)) this congruence holds modulo φ∗(mQ). The
result follows. �

We now give an important application of Theorem 8.3.8, already stated as Theo-
rem 7.7.11.

Theorem 8.3.14. Let C be a curve over k and let f ∈ k(C)∗. Then f has only finitely
many zeroes and poles (i.e., div(f) is a divisor) and deg(div(f)) = 0.

Proof: Let D = (0 : 1)− (1 : 0) on P1. Interpreting f as a rational map f : C → P1 as
in Lemma 8.1.1 we have div(f) = f∗(D) and, by part 1 of Theorem 8.3.8, deg(f∗(D)) =
deg(f) deg(D) = 0. One also deduces that f has, counting with multiplicity, deg(f) poles
and zeroes. �

Exercise 8.3.15. Let φ : C1 → C2 be a rational map over k. Show that if D ∈ Divk(C1)
(respectively, D ∈ Divk(C2)) then φ∗(D) (resp., φ∗(D)) is defined over k.

154 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

8.4 Riemann-Roch Spaces

Definition 8.4.1. Let C be a curve over k and let D =
∑
P nP (P) be a divisor on C.

The Riemann-Roch space of D is

Lk(D) = {f ∈ k(C)∗ : vP (f) ≥ −nP for all P ∈ C(k)} ∪ {0}.

We denote Lk(D) by L(D).

Lemma 8.4.2. Let C be a curve over k and let D be a divisor on C. Then

1. Lk(D) is a k-vector space.

2. D ≤ D′ implies Lk(D) ⊆ Lk(D′).

3. Lk(0) = k, Lk(D) = {0} if deg(D) < 0.

4. Let P0 ∈ C(k). Then dimk(Lk(D+P0)/Lk(D)) ≤ 1 and if D′ ≥ D then dimk(Lk(D′)/Lk(D)) ≤
deg(D′)− deg(D).

5. Lk(D) is finite dimensional and if D = D+−D−, where D+, D− are effective, then
dimk Lk(D) ≤ deg(D+) + 1.

6. If D′ = D + div(f) for some f ∈ k(C)∗ then Lk(D) and Lk(D′) are isomorphic as
k-vector spaces.

Proof: (Sketch)

1. Straightforward from the definition and part 3 of Lemma 7.4.14.

2. Write D =
∑

P∈C(k) nP (P) and D′ =
∑
P n

′
P (P). Then D ≤ D′ implies nP ≤ n′

P .

If f ∈ Lk(D) then vP (f) ≥ −nP ≥ n′
P and so f ∈ Lk(D′).

3. Clearly k ⊆ Lk(0). The converse follows from Corollary 7.7.13. The second state-
ment follows since deg(div(f)) = 0.

4. Write D =
∑

P∈C(k) nP (P). Note that Lk(D) is a k-vector subspace of Lk(D+P0).

Let t ∈ k(C)∗ be a function such that vP0 (f) = nP0 + 1 (e.g., take t to be a power
of a uniformizer at P0). If f ∈ Lk(D + P0) then ft ∈ OP,k(C). We therefore have
a k-linear map ψ : Lk(D + P0) → k given by ψ(f) = (ft)(P0). The kernel of ψ is
Lk(D) and the first part of the statement follows. The second statement follows by
induction.

5. First, note that Lk(D) ⊆ Lk(D+). We then compute dimk Lk(D+) = 1+dimk(Lk(D+)/Lk(0)).
By the previous part this is ≤ 1 + deg(D+)− deg(0) = 1 + deg(D+).

6. The linear map Lk(D)→ Lk(D′) is given by h 7→ h/f .

�

Exercise 8.4.3. Fill in the gaps in the proof of Lemma 8.4.2.

Exercise 8.4.4. Let D =
∑

P∈C(k) nP (P) be a divisor on C. Explain why {f ∈ k(C)∗ :

vP (f) = nP for all P ∈ C(k)} ∪ {0} is not usually a k-vector space.

Definition 8.4.5. Let C be a curve over k and let D be a divisor on C. Define

ℓk(D) = dimk Lk(D).

Write ℓ(D) = ℓk(D).

8.5. DERIVATIONS AND DIFFERENTIALS 155

Exercise 8.4.6. Show that ℓk(0) = 1 and, for f ∈ k(C), ℓk(div(f)) = 1.

Theorem 8.4.7. (Riemann’s theorem) Let C be a curve over k (in particular, non-
singular and projective) . Then there exists a unique minimal integer g such that, for all
divisors D on C over k

ℓk(D) ≥ deg(D) + 1− g.

Proof: See Proposition I.4.14 of Stichtenoth [589], Section 8.3 (page 196) of Fulton [216]
or Theorem 2.3 of Moreno [439]. �

Definition 8.4.8. The number g in Theorem 8.4.7 is called the genus of C.

Note that the genus is independent of the model of the curve C and so one can associate
the genus with the function field or birational equivalence class of the curve.

Exercise 8.4.9. Show that on P1 over k one has ℓk(D) = deg(D) + 1 for all divisors D
and so the genus of P1 is zero. Note that if D is defined over k then ℓk(D) = deg(D) + 1
too. (More results about genus zero are given in Section 8.6.)

Exercise 8.4.10. Let k be a field and let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 be

an elliptic curve over k. Determine the spaces Lk(nOE) and their dimensions ℓk(nOE)
for n = 0, 1, 2, 3, 4, 5, 6.

Remark 8.4.11. We give an alternative justification for Remark 5.4.14. Suppose f ∈
k(C) is such that σ(f) = f for all σ ∈ Gal(k/k). Write D = div(f). Note that D is defined
over k. Then f ∈ Lk(D), which has dimension 1 by Exercise 8.4.6. Now, performing the
Brill-Noether proof of Riemann’s theorem (e.g., see Section 8.5 of Fulton [216]) one can
show that Lk(D) contains a function h ∈ k(C). It follows that div(h) = D and that
f = ch for some c ∈ k. Hence Theorem 7.8.3 is proved.

8.5 Derivations and Differentials

Differentials arise in differential geometry: a manifold is described by open patches home-
omorphic to Rn (or Cn for complex manifolds) with coordinate functions x1, . . . , xn and
the differentials dxi arise naturally. It turns out that differentials can be described in a
purely formal way (i.e., without reference to limits).

When working over general fields (such as finite fields) it no longer makes sense to
consider differentiation as a process defined by limits. But the formal description of
differentials makes sense and the concept turns out to be useful.

We first explain how to generalise partial differentiation to functions on curves. We can
then define differentials. Throughout this section, if F (x, y) is a polynomial or rational
function then ∂F/∂x denotes standard undergraduate partial differentiation.

Definition 8.5.1. Let C be a curve over k. A derivation on k(C) is a k-linear map
(treating k(C) as a k-vector space) δ : k(C)→ k(C) such that δ(f1f2) = f1δ(f2)+f2δ(f1).

Lemma 8.5.2. Let δ : k(C)→ k(C) be a derivation. Then

1. If c ∈ k then δ(c) = 0.

2. If x ∈ k(C) and n ∈ Z then δ(xn) = nxn−1δ(x).

3. If char(k) = p and x ∈ k(C) then δ(xp) = 0.

4. If h ∈ k(C) then δ′(f) = hδ(f) is a derivation.

156 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

5. If x, y ∈ k(C) then δ(x/y) = (yδ(x)− xδ(y))/y2.

6. If x, y ∈ k(C) and F (u, v) ∈ k[u, v] is a polynomial then δ(F (x, y)) = (∂F/∂x)δ(x)+
(∂F/∂y)δ(y).

Exercise 8.5.3. Prove Lemma 8.5.2.

Definition 8.5.4. Let C be a curve over k. A function x ∈ k(C) is a separating
element (or separating variable) if k(C) is a finite separable extension of k(x).

Note that if x ∈ k(C) is such that x 6∈ k then k(C)/k(x) is finite; hence the non-trivial
condition is that k(C)/k(x) is separable.

Example 8.5.5. For P1(Fp), x is a separating element (since k(P1) = k(x)) and xp is not
a separating element (since k(P1)/k(xp) = k(x)/k(xp) is not separable). The mapping
δ(f) = ∂f/∂x is a derivation.

The following exercise shows that separating elements exist for elliptic and hyperel-
liptic curves. For general curves we need Lemma 8.5.7.

Exercise 8.5.6. Let k be any field and let C be a curve given by an equation of the
form y2 + H(x)y = F (x) with H(x), F (x) ∈ k[x]. Show that if either H(x) 6= 0 or if
char(k) 6= 2 then x is a separating element of k(C).

Lemma 8.5.7. Let C be a curve over k, where k is a perfect field. Then there exists a
separating element x ∈ k(C).

Proof: Let L = k(x1, . . . , xn) be any field extension of transcedence degree 1 of a
perfect field k. We show that L is a separable extension of k(x) for some x. First,
note that either {x1, . . . , xn} is algebraically dependent (and so there is a polynomial
F (x1, . . . , xn) = 0 of minimal degree, hence irreducible), or else L = k(x1) and we’re
done. In the former case, write F =

∑
i fimi where fi ∈ k and mi are monomials in

x1, . . . , xn.
We claim that F is separable in at least one variable (i.e., ∂F/∂xi 6= 0). To show this,

suppose F is not separable in any variable. Then all monomials are p-powers, mi = npi .

Since k is perfect f
1/p
i ∈ k. Hence F = (

∑
i f

1/p
i ni)

p is not irreducible.
Re-order the variables so that F is separable in xn. Then k(x1, . . . , xn)/k(x1, . . . , xn−1)

is a separable extension. Applying the argument inductively to k(x1, . . . , xn−1) proves
the result. �

Lemma 8.5.8. Let C be a curve over k, let P ∈ C(k) and let tP be a uniformizer at P .
Then tp is a separating element of k(C).

Proof: Let p = char(k). Then vP (tP) = 1 6≡ 0 (mod p) and so, by Proposition
III.9.2(a) of Stichtenoth [589], tP is a separating element. �

Suppose now that C is a curve over k and x is a separating element. We wish to
extend δ(f) = ∂f/∂x from k(x) to the whole of k(C). The natural approach is to use
property 6 of Lemma 8.5.2: If f ∈ k(C) then k(x, f)/k(x) is finite and separable; write
F (T) for the minimal polynomial of f over k(x) in k(C); since the extension is separable
we have ∂F/∂T 6= 0; as a function on C we have F (x, f) = 0 and so

0 = δ(F (x, f)) =
∂F

∂x
δ(x) +

∂F

∂T
δ(f). (8.1)

This motivates the following definition.

8.5. DERIVATIONS AND DIFFERENTIALS 157

Definition 8.5.9. Let C be a curve over k and let x ∈ k(C) be a separating element.
Let y ∈ k(C). Let F (x, T) be a rational function such that F (x, y) = 0. Define

∂y

∂x
= −(∂F/∂x)/(∂F/∂T)

evaluated at y.

Lemma 8.5.10. The value ∂y/∂x in Definition 8.5.9 is well-defined. More precisely, if F
and F ′ are rational functions such that F (x, y) = F ′(x, y) = 0 then (∂F/∂x)/(∂F/∂y) =
(∂F ′/∂x)/(∂F ′/∂y) and if z ≡ y in k(C) then ∂z/∂x ≡ ∂y/∂x.
Proof: The first claim follows from equation (8.1). For the second claim, if z = y in k(C)
then they satisfy the same minimal polynomial. �

It remains to show that this construction does give a derivation.

Lemma 8.5.11. Let C be a curve over k and x ∈ k(C) a separating element. The
function δ : k(C)→ k(C) defined by δ(y) = ∂y/∂x as in Definition 8.5.9 is k-linear and
satisfies the product rule.

Furthermore, if f = H(y) ∈ k(C) is another function, where H(T) ∈ k(x)[T] is a
polynomial, then

δ(f) =
∂H

∂x
− (∂F/∂x)/(∂F/∂T)

∂H

∂T
(8.2)

evaluated at y, where F is as in Definition 8.5.9.

Proof: (Sketch; see Proposition IV.1.4 of Stichtenoth for details.)
Consider the two maps D1, D2 : k(x)[T]→ k(x)[T] defined by

D1

(∑

i

uiT
i

)
=
∑

i

∂ui
∂x

T i , D2

(∑

i

uiT
i

)
=
∑

i

iuiT
i−1.

(So D1 corresponds to ∂/∂x while D2 will correspond to ∂/∂y.) One can verify that
D1 and D2 are k-linear maps. Furthermore, one can verify that if u, v ∈ k(x)[T] then
D1(uv) = uD1(v) + vD1(u) and D2(uv) = uD2(v) + vD2(u).

We re-write equation (8.2) as

δ(f) = D1(H)−D1(F)/D2(F)D2(H) (8.3)

evaluated at y. One can show that δ is well-defined, in the sense that if H(T) =
Q(T)F (T) + R(T) for Q,R ∈ k(x)[T] then f = H(y) = R(y) and the value of δ(f)
is the same regardless of whether H or R is used to compute it.

Let y be such that k(C) = k(x)(y) and write F (T) ∈ k(x)[T] for the minimal polyno-
mial of y. For any f ∈ k(C) we have f = H(y) for some polynomial H(T) ∈ k(x)[T] and
so define δ(f) using equation (8.3). We show that δ is a derivation. The k-linearity of δ
is clear. To show that δ satisfies the product rule let g, h ∈ k(C) and write g = G(y) and
h = H(y) for G[T], H [T] ∈ k(x)[T]. Then note that

δ(gh) = D1(GH)− D1(F)

D2(F)
D2(GH)

= GD1(H) +HD1(G)− D1(F)

D2(F)
(GD2(H) +HD2(G))

= G

(
D1(H)− D1(F)

D2(F)
D2(H)

)
+H

(
D1(G)− D1(F)

D2(F)
D2(G)

)

= gδ(h) + hδ(g).

158 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

The equivalence of the two definitions (i.e., equations (8.2) and (8.3)) follows from the
uniqueness of derivations extending k(x) (Lemma IV.1.3 of Stichtenoth [589]). �

Example 8.5.12. Let C : y2 = x3 + x + 1 over Q. Note that x is a separating element.
To compute ∂y/∂x one uses the fact that F (x, y) = y2 − (x3 + x+ 1) = 0 in k(C) and so
∂y/∂x = (3x2 + 1)/(2y).

Consider the function f(x, y) = xy and let δ(f) = ∂f/∂x. Then δ(f) = xδ(y) + y =
x(3x2 + 1)/(2y) + y = (3x3 + x+ 2y2)/(2y) = (5x3 + 3x+ 2)/(2y).

Exercise 8.5.13. Let k(C) be as in Example 8.5.12. Show that δ(y/x) = (x3 − x −
2)/(2yx2).

Lemma 8.5.14. Let C be a curve over k and let x, y ∈ k(C) be separating elements.
Then the corresponding derivations on k(C) satisfy the chain rule, namely

∂f

∂y
=
∂f

∂x

∂x

∂y
.

In particular, if x, y ∈ k(C) are separating elements then ∂x/∂y = 1/(∂y/∂x) 6= 0.
Let t ∈ k(C). Then ∂t/∂x = 0 if and only if t is not a separating element.

Proof: See Lemma IV.1.6 of Stichtenoth [589]. �

Exercise 8.5.15. Let C = P1 over Fp with variable x and let δ(f) = ∂f/∂x. Show that
δ(xp) = 0.

Now we have defined ∂f/∂x for general f ∈ k(C) we can introduce the differentials
on a curve over a field. Our definition is purely formal and the symbol dx is not assumed
to have any intrinsic meaning. We essentially follow Section IV.1 of Stichtenoth [589]; for
a slightly different approach see Section 8.4 of Fulton [216].

Definition 8.5.16. Let C be a curve over k. The set of differentials Ωk(C) (some
authors write Ω1

k(C)) is the quotient of the free k(C)-module on symbols dx for x ∈ k(C)
under the relations

1. dx 6= 0 if x is a separating element,

2. If x is a separating element and h1, h2 ∈ k(C) then h1dx+ h2dx = (h1 + h2)dx.

3. If x is a separating element and y ∈ k(C) then dy = (∂y/∂x)dx,

In other words, differentials are equivalence classes of formal symbols

{
m∑

i=1

hidxi : xi, hi ∈ k(C)

}

where one may assume the xi are all separating elements.

Lemma 8.5.17. Let C be a curve over k and x, y ∈ k(C) separating elements.

1. dx = 0 if x is not a separating element.

2. d(x+ y) = dx+ dy.

3. d(λx) = λdx and dλ = 0 for all λ ∈ k.

4. d(xy) = xdy + ydx.

5. If x is a separating element and y ∈ k(C) then dx+ dy = (1 + (∂y/∂x))dx.

8.5. DERIVATIONS AND DIFFERENTIALS 159

6. For n ∈ Z, d(xn) = nxn−1dx.

7. d(x/y) = (ydx− xdy)/y2

8. If f ∈ k(C) then d(f(x)) = (∂f/∂x)dx.

9. For i ∈ Z, d(f(x)yi) = (∂f/∂x)yidx+ f(x)iyi−1dy.

10. If F (x, y) is a rational function in x and y then dF (x, y) = (∂F/∂x)dx+(∂F/∂y)dy.

Exercise 8.5.18. Prove Lemma 8.5.17.

Exercise 8.5.19. Let C be a curve over k. Let x1, x2 ∈ k(C) be separating elements
and h1, h2 ∈ k(C). Show that h1dx1 is equivalent to h2dx2 if and only if

h2 = h1
∂x1
∂x2

.

Example 8.5.20. We determine Ωk(P1). Since k(P1) = k(x) the differentials are d(f(x)) =
(∂f/∂x)dx for f(x) ∈ k(x). Hence, they are a 1-dimensional vector space over k(C).

The following theorem, that all differentials on a curve are multiples of dx where x is
a separating element, is a direct consequence of the definition.

Theorem 8.5.21. Let C be a curve over k and let x be a separating element. Let
ω ∈ Ωk(C). Then ω = hdx for some h ∈ k(C).

Exercise 8.5.22. Prove Theorem 8.5.21.

This result shows that Ωk(C) is a k(C)-vector space of dimension 1 (we know that
Ωk(C) 6= {0} since dx 6= 0 if x is a separating element). Therefore, for any ω1, ω2 ∈ Ωk(C)
with ω2 6= 0 there is a unique function f ∈ k(C) such that ω1 = fω2. We define ω1/ω2 to
be f . (See Proposition II.4.3 of Silverman [564]).

We now define the divisor of a differential by using uniformizers. Recall from Lemma 8.5.8
that a uniformizer tP is a separating element and so dtP 6= 0.

Definition 8.5.23. Let C be a curve over k. Let ω ∈ Ωk(C), ω 6= 0 and let P ∈ C(k)
have uniformizer tP ∈ k(C). Then the order of ω at P is vP (ω) := vP (ω/dtP). The
divisor of a differential is

div(ω) =
∑

P∈C(k)

vP (ω)(P).

Lemma 8.5.24. Let C be a curve over k and let ω be a differential on C. Then vP (ω) 6= 0
for only finitely many P ∈ C(k) and so div(ω) is a divisor.

Proof: See Proposition II.4.3(e) of Silverman [564]. �

Exercise 8.5.25. Show that vP (hdx) = vP (h) + vP (dx) and vP (df) = vP (∂f/∂tP).

Lemma 8.5.26. The functions vP (ω) and div(ω) in Definition 8.5.23 are well-defined
(both with respect to the choice of representative for ω and choice of tP).

Exercise 8.5.27. Prove Lemma 8.5.26.

Lemma 8.5.28. Let C be a curve over k and ω, ω′ ∈ Ωk(C). Then

1. deg(div(ω)) = deg(div(ω′)).

160 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

2. div(ω) is well-defined up to principal divisors (i.e., div(ω) = div(ω′) + div(f) for
some f ∈ k(C)∗).

Exercise 8.5.29. Prove Lemma 8.5.28.

Definition 8.5.30. Any divisor div(ω) is called a canonical divisor. The set {div(ω) :
ω ∈ Ωk(C)} is the canonical divisor class.

Example 8.5.31. We determine the canonical class of C = P1.
Let ω = dx. Since x is a uniformizer at the point 0 we have v0(ω) = v0(dx/dx) = 0.

More generally, for P ∈ k we have (x−P) a uniformizer and vP (ω) = vP (dx/d(x−P)) =
vP (1) = 0. Finally, a uniformizer at ∞ is t = 1/x and dt = (−x−2)dx so v∞(ω) =
v∞(−x2) = −2. Hence div(ω) = −2∞ and the degree of div(ω) is -2.

Example 8.5.32. We determine the divisor of a differential on an elliptic curve E in
Weierstrass form. Rather than computing div(dx) it is easier to compute div(ω) for

ω =
dx

2y + a1x+ a3
.

Let P ∈ E(k). There are three cases, if P = OE then one can take uniformizer t = x/y, if
P = (xP , yP) = ι(P) then take uniformizer (y−yP) (and note that vP (2y+a1x+a3) = 1
in this case) and otherwise take uniformizer (x−xP) and note that vP (2y+a1x+a3) = 0.

We deal with the general case first. Since dx/d(x−xP) = ∂x/∂(x−xP) = 1 it follows
that vP (ω) = 0. For the case, P = OE write x = t−2f and y = t−3h for some functions
f, h ∈ k(E) regular at OE and with f(OE), h(OE) 6= 0. One can verify that

ω

dt
=

−2t−3f + t−2f ′

2t−3h+ a1t−2f + a3
=

−2f + tf ′

2h+ a1tf + a3t3

and so vOE (ω) = 0. Finally, when P = ι(P) we must consider

dx

d(y − yP)
=

1

∂y/∂x
=

2y + a1x+ a3
3x2 + 2a2x+ a4

.

It follows that ω = (1/(3x2 + 2a2x + a4))d(y − yP) and, since P is not a singular point,
3x2P + 2a2xP + a4 6= 0 and so vP (ω) = 0.

In other words, we have shown that div(ω) = 0. One can verify that

div(dx) = (P1) + (P2) + (P3)− 3(OE)

where P1, P2, P3 are the three affine points of order 2 in E(k).

Exercise 8.5.33. Show that

dx

2y + a1x+ a3
=

dy

3x2 + 2a2x+ a4 − a1y
on an elliptic curve.

Definition 8.5.34. Let φ : C1 → C2 be a non-constant morphism of curves over k.
Define the function φ∗ : Ωk(C2)→ Ωk(C1) by

φ∗(fdx) = φ∗(f)d(φ∗(x)).

Lemma 8.5.35. The function φ∗ of Definition 8.5.34 is k-linear and φ∗ is injective (=
non-zero) if and only if φ is separable.

8.6. GENUS ZERO CURVES 161

Proof: The linearity follows since dx is k-linear. The second part follows since if x is
separating for k(C2) and φ is separable then k(C1)/φ∗k(C2) and φ∗k(C2)/k(φ∗(x)) are
separable. Hence, φ∗(x) is a separating element for k(C1) and dφ∗(x) 6= 0. The reverse
implication is also straightforward. �

Lemma 8.5.36. Let φ : C1 → C2 be an unramified morphism of curves over k and let
ω ∈ Ωk(C2). Then φ∗(div(ω)) = div(φ∗(ω)).

Proof: Let P ∈ C1(k) and Q = φ(P). Let tQ be a uniformizer at Q. Since φ is unramified
it follows that tP = φ∗(tQ) is a uniformizer at P . Let f ∈ k(C2). It suffices to show that
vP (φ∗(df)) = vQ(df).

Recall from Exercise 8.5.25 that vQ(df) = vQ(∂f/∂tQ). If F (x, y) is a rational function
such that F (tQ, f) = 0 then 0 = F (tQ, f)◦φ = F (tQ◦φ, f ◦φ) = F (tP , φ

∗(f)) = 0. Hence,
by definition,

∂φ∗(f)/∂tP = −(∂F/∂x)/(∂F/∂y) = ∂f/∂tQ

and so vP (dφ∗(f)) = vP (∂φ∗(f)/∂tP) = vQ(f). �

Corollary 8.5.37. Let φ : C1 → C2 be an isomorphism of curves over k and let ω ∈
Ωk(C2). Then deg(div(ω)) = deg(div(φ∗(ω))).

8.6 Genus Zero Curves

Theorem 8.6.1. Let C be a curve over k (i.e., projective non-singular). The following
are equivalent.

1. C is birationally equivalent over k to P1.

2. The divisor class group of C over k is trivial and #C(k) ≥ 2.

3. There is a point P ∈ C(k) with ℓk(P) ≥ 2.

Proof: (1 ⇒ 2): Let C be birational to P1 over k. By Lemma 7.3.6 there is a
morphism from P1 to C and by Lemma 8.2.7 it is surjective. Since #P1(k) ≥ 2 it follows
that #C(k) ≥ 2. Also, since the divisor class group of P1 is trivial it follows from
Exercise 8.3.11 that Pic0k(C) = {0}.

(2 ⇒ 3): Let P,Q ∈ C(k) be distinct. Since (Q) − (P) is principal there exists a
function h with div(h) = (Q) − (P) and so ℓk(P) is spanned by at least {1, h} (which is
a linearly independent set).

(3⇒ 1): Let P0 ∈ C(k) be such that ℓk(P0) ≥ 2. Then there is some function h ∈ k(C)
and a point P ∈ C(k) such that div(h) = (P) − (P0). For any R ∈ C(k), R 6= P0, the
function h − h(R) has a simple pole at P0 and a simple zero at R. One can therefore
deduce that h gives an injective rational map h : C → P1. Unfortunately, it is not trivial
to write down the inverse rational map h′ : P1 → C, so to complete the proof we show
that k(C) ∼= k(P1).

Let f be any function on C. Then g = fhvP0 (f) has no zero or pole at P0. Write

g′ =
∏

R∈C(k)

(h− h(R))vR(g).

Then vR(g) = vR(g′) and so div(g′) = div(g) and g′ = cg for some c ∈ k∗. In other words,
f is a rational function of h, and so f ∈ k(h). Since f was arbitrary, k(C) = k(h) and so,
by Theorem 5.5.28, C is birational to P1. �

162 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

Definition 8.6.2. A curve satisfying any of the above equivalent conditions is called a
genus 0 curve.

Exercise 8.6.3. Write down a curve C over a field k such that the divisor class group
Pic0k(C) is trivial but C is not birationally equivalent over k to P1.

Theorem 8.6.4. An elliptic curve does not have genus 0.

Proof: We have seen in Examples 8.5.31 and 8.5.32 that the canonical divisor classes
on P1 and an elliptic curve have different degree. It follows that P1 is not isomorphic to an
elliptic curve. And since a birational map of smooth projective curves is an isomorphism
(Lemma 8.1.13 and Lemma 8.1.15) the result follows from Corollary 8.5.37.

There are a number of other proofs of this result: For example, Lemma 11.3 of Wash-
ington [626] gives an elementary one; it also follows from the general theorem that a
non-singular plane curve of degree d has genus d(d − 1)/2 or from the Hurwitz genus
formula (see below). �

Corollary 8.6.5. Let E be an elliptic curve and P1, P2 ∈ E(k). If P1 6= P2 then (P1)−
(P2) is not a principal divisor.

8.7 Riemann-Roch Theorem and Hurwitz Genus For-
mula

In this section we state, without proof, two very important results in algebraic geometry.
Neither will play a crucial role in this book.

Lemma 8.7.1. Let C be a curve over k of genus g and let ω ∈ Ωk(C). Then

1. deg(div(ω)) = 2g − 2.

2. ℓk(div(ω)) = g.

Proof: See Corollary I.5.16 of Stichtenoth [589] or Corollary 11.16 of Washington [626].
For non-singular plane curves see Sections 8.5 and 8.6 of Fulton [216]. �

Theorem 8.7.2. (Riemann-Roch) Let C be a non-singular projective curve over k of
genus g, ω ∈ Ωk(C) a differential and D a divisor. Then

ℓk(D) = deg(D) + 1− g + ℓk(div(ω)−D).

Proof: There are several proofs. Section 8.6 of Fulton [216] gives the Brill-Noether proof
for non-singular plane curves. Theorem I.5.15 of Stichtenoth [589] and Theorem 2.5 of
Moreno [439] give proofs using repartitions. �

Some standard applications of the Riemann-Roch theorem are to prove that every
genus 1 curve with a rational point is birational to an elliptic curve in Weierstrass form,
and to prove that every hyperelliptic curve of genus g is birational to an affine curve of
the form y2 +H(x)y = F (x) with deg(H(x)) ≤ g + 1 and deg(F (x)) ≤ 2g + 2.

Theorem 8.7.3. (Hurwitz genus formula) Let φ : C1 → C2 be a rational map of curves
over k. Let gi be the genus of Ci. Suppose that k is a field of characteristic zero or
characteristic coprime to all eφ(P). Then

2g1 − 2 = deg(φ)(2g2 − 2) +
∑

P∈C1(k)

(eφ(P)− 1).

8.7. RIEMANN-ROCH THEOREM AND HURWITZ GENUS FORMULA 163

Proof: See Theorem III.4.12 and Corollary III.5.6 of Stichtenoth [589], Theorem II.5.9
of Silverman [564] or Exercise 8.36 of Fulton [216]. �

A variant of the above formula is known in the case where some of the eφ(P) are
divisible by char(k).

164 CHAPTER 8. RATIONAL MAPS ON CURVES AND DIVISORS

Chapter 9

Elliptic Curves

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptogra-
phy” by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

This chapter summarises the theory of elliptic curves. Since there are already many
outstanding textbooks on elliptic curves (such as Silverman [564] and Washington [626])
we do not give all the details. Our focus is on facts relevant for the cryptographic appli-
cations, especially those for which there is not already a suitable reference.

9.1 Group law

Recall that an elliptic curve over a field k is given by a non-singular affine Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (9.1)

where a1, a2, a3, a4, a6 ∈ k. There is a unique point OE on the projective closure that
does not lie on the affine curve.

We recall the formulae for the elliptic curve group law with identity element OE : For
all P ∈ E(k) we have P + OE = OE + P = P so it remains to consider the case where
P1, P2 ∈ E(k) are such that P1, P2 6= OE . In other words, P1 and P2 are affine points and
so write P1 = (x1, y1) and P2 = (x2, y2). Recall that Lemma 7.7.10 shows the inverse of
P1 = (x1, y1) is ι(P1) = (x1,−y1−a1x1−a3). Hence, if x1 = x2 and y2 = −y1−a1x1−a3
(i.e., P2 = −P1) then P1 + P2 = OE . In the remaining cases let

λ =

{
3x2

1+2a2x1+a4−a1y1
2y1+a1x1+a3

if P1 = P2
y2−y1
x2−x1

if P1 6= ±P2.
(9.2)

and set x3 = λ2 + a1λ − x1 − x2 − a2 and y3 = −λ(x3 − x1) − y1 − a1x3 − a3. Then
P1 + P2 = (x3, y3).

165

166 CHAPTER 9. ELLIPTIC CURVES

Exercise 9.1.1. It is possible to “unify” the two cases in equation (9.2). Show that if
P1 = (x1, y1) and P2 = (x2, y2) lie on y2 + (a1x + a3)y = x3 + a2x

2 + a4x + a6 and
y2 6= −y1 − a1x1 − a3 then P1 + P2 can be computed using the fomula

λ =
x21 + x1x2 + x22 + a2(x1 + x2) + a4 − a1y1

y1 + y2 + a1x2 + a3
(9.3)

instead of equation (9.2).

Definition 9.1.2. Let E be an elliptic curve over a field k and let P ∈ E(k). For n ∈ N
define [n]P to be P + · · ·+ P where P appears n times. In particular, [1] is the identity
map. Define [0]P = OE and [−n]P = [n](−P).

The n-torsion subgroup is

E[n] = {P ∈ E(k) : [n]P = OE}.

We write E(k)[n] for E[n] ∩E(k).

Exercise 9.1.3. Let E : y2 + y = x3 be an elliptic curve over F2. Let m ∈ N and
P = (xP , yP) ∈ E(F2m). Show that [2]P = (x4P , y

4
P +1). (We will show in Example 9.11.6

that this curve is supersingular.)

Exercise 9.1.4. Let E : y2 + xy = x3 + a2x
2 + a6 be an elliptic curve over F2m for

m ∈ N. Show that there is a point P = (xP , yP) ∈ E(F2m) if and only if TrF2m/F2
(xP +

a2 + a6/x
2
P) = 0. Given Q = (xQ, yQ) ∈ E(F2m) show that the slope of the tangent

line to E at Q is λQ = xQ + yQ/xQ. Show that yQ = xQ(λQ + xQ). Hence show that if
P = [2]Q then TrF2m/F2

(xP) = TrF2m/F2
(a2), xP = x2Q+a6/x

2
Q and TrF2m/F2

(a6/x
2
P) = 0.

Conversely, show that if P = (xP , yP) ∈ E(F2m) is such that TrF2m/F2
(xP) = TrF2m/F2

(a2)
and TrF2m/F2

(a6/x
2
P) = 0 then P = [2]Q for some Q ∈ E(F2m).

(Point halving) Given P = (xP , yP) ∈ E(F2m) such that TrF2m/F2
(xP) = TrF2m/F2

(a2)
show that there are two solutions λQ ∈ F2m to the equation λ2Q + λQ = xP + a2. For

either solution let xQ =
√
xP (λP + λQ + xP + 1), where λP = xP + yP /xP , and yQ =

xQ(λQ + xQ). Show that [2](xQ, yQ) = P .

One can consider Weierstrass equations over k that have a singular point in the affine
plane (recall that there is a unique point at infinity OE and it is non-singular). By a
change of variable one may assume that the singular point is (0, 0) and the equation is
C : y2 + a1xy = x3 + a2x

2. Let G = C(k)∪{OE}−{(0, 0)}. It turns out that the elliptic
curve group law formulae give rise to a group law on G. There is a morphism over k
from C to P1 and the group law on G corresponds to either the additive group Ga or the
multiplicative group Gm; see Section 9 of [122], Section 2.10 of [626] or Proposition III.2.5
of [564] for details.

Since an elliptic curve is a projective variety it is natural to consider addition formulae
on projective coordinates. In the applications there are good reasons to do this (for
example, to minimise the number of inversions in fast implementations of elliptic curve
cryptography, or in the elliptic curve factoring method).

Exercise 9.1.5. Let P1 = (x1 : y1 : z1) and P2 = (x2 : y2 : z2) be points on the elliptic
curve E : y2z = x3 + a4xz

2 + a6z
3 over k. Let

u = x1z2 − x2z1.

9.2. MORPHISMS BETWEEN ELLIPTIC CURVES 167

Show that (x3 : y3 : z3) is a projective representation for P1 + P2 where

x3 = z1z2(y1z2 − y2z1)2u− (x1z2 + x2z1)u3 (9.4)

y3 = −z1z2(y1z2 − y2z1)3 + (2x1z2 + x2z1)(y1z2 − y2z1)u2 − y1z2u3 (9.5)

z3 = z1z2u
3 (9.6)

(as long as the resulting point is not (0, 0, 0)).

The elliptic curve addition formula of equations (9.3) and (9.4)-(9.6) are undefined
on certain inputs (such as P = OE or P2 = −P1) and so one currently needs to make
decisions (i.e., use “if” statements) to compute on elliptic curves. This does not agree
with the definition of an algebraic group (informally, that the group operation is given
by polynomial equations; formally that there is a morphism E × E → E). However, it
can be shown (see Theorem III.3.6 of Silverman [564]) that elliptic curves are algebraic
groups.

To make this concrete let E be an elliptic curve over k written projectively. A com-
plete system of addition laws for E(k) is a set of triples of polynomials

{(fi,x(x1, y1, z1, x2, y2, z2), fi,y(x1, y1, z1, x2, y2, z2), fi,z(x1, y1, z1, x2, y2, z2)) : 1 ≤ i ≤ k}

such that, for all points P,Q ∈ E(k), at least one of (fi,x(P,Q), fi,y(P,Q), fi,z(P,Q))
is defined and all triples defined at (P,Q) give a projective representation of the point
P +Q.

A rather surprising fact, due to Bosma and Lenstra [92], is that one can give a complete
system of addition laws for E(k) using only two triples of polynomials. The resulting
equations are unpleasant and not useful for practical computation.

9.2 Morphisms Between Elliptic Curves

The goal of this section is to show that a morphism between elliptic curves is the compo-
sition of a group homomorphism and a translation. In other words, all geometric maps
between elliptic curves have a group-theoretic interpretation.

Theorem 9.2.1. Let E1 and E2 be elliptic curves over k and let φ : E1 → E2 be a
morphism of varieties such that φ(OE1) = OE2 . Then φ is a group homomorphism.

Proof: (Sketch) The basic idea is to note that φ∗ : Pic0k(E1)→ Pic0k(E2) (where Pic0k(Ei)
denotes the degree zero divisor class group of Ei over k) is a group homomorphism and
φ∗((P) − (OE1)) = (φ(P)) − (OE2). We refer to Theorem III.4.8 of [564] for the details.
�

Definition 9.2.2. Let E be an elliptic curve over k and let Q ∈ E(k). We define the
translation map to be the function τQ : E → E given by τQ(P) = P +Q.

Clearly, τQ is a rational map that is defined everywhere on E and so is a morphism.
Since τQ has inverse map τ−Q it follows that τQ is an isomorphism of the curve E to itself
(though be warned that in the next section we will define isomorphism for pointed curves
and τQ will not be an isomorphism in this sense).

Corollary 9.2.3. Let E1 and E2 be elliptic curves over k and let φ : E1 → E2 be a
rational map. Then φ is the composition of a group homomorphism and a translation
map.

168 CHAPTER 9. ELLIPTIC CURVES

Proof: First, by Lemma 7.3.6 a rational map to a projective curve is a morphism. Now
let φ(OE1) = Q ∈ E2(k). The composition ψ = τ−Q ◦ φ is therefore a morphism. By as
in Theorem 9.2.1 it is a group homomorphism. �

Hence, every rational map between elliptic curves corresponds naturally to a map of
groups. Theorem 9.6.19 gives a partial converse.

Example 9.2.4. Let E : y2 = x3 + x and Q = (0, 0). We determine the map τQ on E.
Let P = (x, y) ∈ E(k) be a point such that P is neither Q nor OE . To add P and Q

to obtain (x3, y3) we compute λ = (y − 0)/(x− 0) = y/x. It follows that

x3 = λ2 − x− 0 =
y2

x2
− x =

y2 − x3
x2

=
1

x

and

y3 = −λ(x3 − 0)− 0 =
−y
x2
.

Hence τQ(x, y) = (1/x,−y/x2) away from {OE , Q}. It is clear that τQ is a rational map
of degree 1 and hence an isomorphism of curves by Lemma 8.1.15. Indeed, it is easy to
see that the inverse of τQ is itself (this is because Q has order 2).

One might wish to write τQ projectively (we write the rational map in the form
mentioned in Exercise 5.5.2). Replacing x by x/z and y by y/z gives τQ(x/z, y/z) =
(z/x,−yz/x2) from which we deduce

τQ(x : y : z) = (xz : −yz : x2). (9.7)

Note that this map is not defined at either OE = (0 : 1 : 0) or Q = (0 : 0 : 1), in the sense
that evaluating at either point gives (0 : 0 : 0).

To get a map defined at Q one can multiply the right hand side of equation (9.7)
through by y to get

(xyz : −y2z : x2y) = (xyz : −x3 − xz2 : x2y)

and dividing by x gives τQ(x : y : z) = (yz : −x2 − z2 : xy). One can check that
τQ(0 : 0 : 1) = (0 : −1 : 0) = (0 : 1 : 0) as desired. Similarly, to get a map defined at OE
one can multiply (9.7) by x, re-arrange, and divide by z to get

τQ(x : y : z) = (x2 : −xy : y2 − xz),

which gives τQ(0 : 1 : 0) = (0 : 0 : 1) as desired.

9.3 Isomorphisms of Elliptic Curves

We have already defined isomorphisms of algebraic varieties. It is natural to ask when
two Weierstrass equations are isomorphic. Since one can compose any isomorphism with
a translation map it is sufficient to restrict attention to isomorphisms φ : E → Ẽ such
that φ(OE) = OẼ .

Formally, one defines a pointed curve to be a curve C over a field k together with
a fixed k-rational point P0. An isomorphism of pointed curves φ : (C,P0)→ (C̃, P̃0)

is an isomorphism φ : C → C̃ over k of varieties such that φ(P0) = P̃0. When one refers
to an elliptic curve one usually means the pointed curve (E,OE).

Definition 9.3.1. Let (E,OE) and (Ẽ,OẼ) be elliptic curves over k. An isomorphism

of elliptic curves φ : E → Ẽ is an isomorphism over k of algebraic varieties such that
φ(OE) = OẼ . If there is an isomorphism from E to Ẽ then we write E ∼= Ẽ.

9.3. ISOMORPHISMS OF ELLIPTIC CURVES 169

By Theorem 9.2.1, an isomorphism of elliptic curves is a group homomorphism over
k.

Exercise 9.3.2. Let E1 and E2 be elliptic curves over k. Show that if E1 is isomorphic
over k to E2 then E1(k) is isomorphic as a group to E2(k). In particular, if k = Fq is a
finite field then #E1(Fq) = #E2(Fq).

Note that the translation map τQ is not considered to be an isomorphism of the pointed
curve (E,OE) to itself, unless Q = OE in which case τQ is the identity map.

Exercise 9.3.3. Exercises 7.2.6 and 7.2.7 give simplified Weierstrass models for elliptic
curves when char(k) 6= 3. Verify that there are isomorphisms, from a general Weierstrass
equation to these models, that fix OE .

Theorem 9.3.4. Let k be a field and E1, E2 elliptic curves over k. Every isomorphism
from E1 to E2 defined over k restricts to an affine isomorphism of the form

φ(x, y) = (u2x+ r, u3y + su2x+ t) (9.8)

where u, r, s, t ∈ k. The isomorphism is defined over k if and only if u, r, s, t ∈ k.

Proof: See Proposition III.3.1(b) of [564]. �

Definition 9.3.5. Suppose char(k) 6= 2, 3 and let a4, a6 ∈ k be such that 4a34 + 27a26 6= 0.
For the short Weierstrass equation y2z = x3 + a4xz

2 + a6z
3, define the j-invariant

j(E) = 1728
4a34

4a34 + 27a26
.

Suppose char(k) = 2 and a2, a6 ∈ k with a6 6= 0. For the short Weierstrass equation
y2z + xyz = x3 + a2x

2z + a6z
3 define the j-invariant

j(E) = 1/a6

and for E : y2z + yz2 = x3 + a4xz
2 + a6z

3 (we now allow a6 = 0) define j(E) = 0.

We refer to Section III.1 of [564] for the definition of the j-invariant for general Weier-
strass equations.

Theorem 9.3.6. Let k be a field and E1, E2 elliptic curves over k. Then there is an
isomorphism from E1 to E2 defined over k if and only if j(E1) = j(E2).

Proof: See Proposition III.1.4(b) of [564] or Theorem 2.19 of [626]. �

Exercise 9.3.7. Let E : y2 = x3 + a4x + a6 be an elliptic curve. Show that j(E) = 0 if
and only if a4 = 0 and j(E) = 1728 if and only if a6 = 0. Suppose char(k) 6= 2, 3. Let
j ∈ k, j 6= 0, 1728. Show that the elliptic curve

E : y2 = x3 +
3j

1728− j x+
2j

1728− j

has j(E) = j. The discriminant of E is 28 · 35/(1728− j)3.

Exercise 9.3.8. Let E1 : y2 + y = x3, E2 : y2 + y = x3 + 1 and E3 : y2 + y = x3 + x
be elliptic curves over F2. Since j(E1) = j(E2) = j(E3) = 0 it follows that there are
isomorphisms over F2 from E1 to E2 and from E1 to E3. Write down such isomorphisms.

170 CHAPTER 9. ELLIPTIC CURVES

Exercise 9.3.9. Let E1, E2 be elliptic curves over Fq that are isomorphic over Fq. Show
that the discrete logarithm problem in E1(Fq) is equivalent to the discrete logarithm
problem in E2(Fq). In other words, the discrete logarithm problem on Fq-isomorphic
curves has exactly the same security.

To reduce storage in some applications it might be desirable to choose a model for
elliptic curves with coefficients as small as possible. Let p > 3 be prime. It has been
proven (see Section 5 of Banks and Shparlinski [27]) that “almost all” Fp-isomorphism
classes of elliptic curves over Fp have a model of the form y2 = x3 + a4x + a6 where
1 ≤ a4, a6 ≤ p1/2+o(1). Since there are O(p) isomorphism classes this result is optimal.
Note that finding such a “small” pair (a4, a6) for a given j-invariant may not be easy.

9.4 Automorphisms

Definition 9.4.1. Let E be an elliptic curve over k. An automorphism of E is an
isomorphism from (E,OE) to itself defined over k. The set of all automorphisms of E is
denoted Aut(E).

We stress that an automorphism maps OE to OE . Under composition, Aut(E) forms
a group, The identity of the group is the identity map.

Example 9.4.2. The map φ(P) = −P is an automorphism that is not the identity map.
On y2 = x3 + 1 over k the map ρ(x, y) = (ζ3x, y) is an automorphism where ζ3 ∈ k
satisfies ζ33 = 1.

Exercise 9.4.3. Show that if E1 and E2 are elliptic curves over k that are isomorphic
over k then Aut(E1) ∼= Aut(E2).

Theorem 9.4.4. Let E be an elliptic curve over k. Then #Aut(E) is even and #Aut(E) |
24. More precisely

• #Aut(E) = 2 if j(E) 6= 0, 1728,

• #Aut(E) = 4 if j(E) = 1728 and char(k) 6= 2, 3,

• #Aut(E) = 6 if j(E) = 0 and char(k) 6= 2, 3,

• #Aut(E) = 12 if j(E) = 0 and char(k) = 3,

• #Aut(E) = 24 if j(E) = 0 and char(k) = 2.

(Note that when char(k) = 2 or 3 then 0 = 1728 in k.)

Proof: See Theorem III.10.1 and Proposition A.1.2 of [564]. �

Exercise 9.4.5. Consider E : y2 + y = x3 over F2. Let u ∈ F2 satisfy u3 = 1, s ∈ F2

satisfy s4 + s = 0 and t ∈ F2 satisfy t2 + t = s6. Show that u, s ∈ F22 , t ∈ F24 and that

φ(x, y) = (u2x+ s2, y + u2sx+ t)

is an automorphism of E. Note that one can replace u2 by u and/or swap s and s2. Show
that every automorphism arises this way and so #Aut(E) = 24. Show that if φ ∈ Aut(E)
then either φ2 = ±1 or φ3 = ±1. Show that Aut(E) is non-Abelian.

9.5. TWISTS 171

9.5 Twists

Twists of elliptic curves have several important applications such as point compression in
pairing-based cryptography (see Section 26.6.2), and efficient endomorphisms on elliptic
curves (see Exercise 11.3.24).

Definition 9.5.1. Let E be an elliptic curve over k. A twist of E is an elliptic curve Ẽ
over k such that there is an isomorphism φ : E → Ẽ over k of pointed curves (i.e., such

that φ(OE) = OẼ). Two twists Ẽ1 and Ẽ2 of E are equivalent if there is an isomorphism

from Ẽ1 to Ẽ2 defined over k. A twist Ẽ of E is called a trivial twist if Ẽ is equivalent
to E. Denote by Twist(E) the set of equivalence classes of twists of E.

Example 9.5.2. Let k be a field such that char(k) 6= 2. Let E : y2 = x3 + a4x + a6
over k and let d ∈ k∗. Define the elliptic curve E(d) : y2 = x3 + d2a4x + d3a6. The map
φ(x, y) = (dx, d3/2y) is an isomorphism from E to E(d). Hence E(d) is a twist of E. Note
that E(d) is a trivial twist if

√
d ∈ k∗.

If k = Q then there are infinitely many non-equivalent twists E(d), since one can let d
run over the square-free elements in N.

Exercise 9.5.3. Let q be an odd prime power and let E : y2 = x3 + a4x + a6 over Fq.
Let d ∈ F∗

q . Show that the twist E(d) of E by d is not isomorphic over Fq to E if and
only if d is a non-square (i.e., the equation u2 = d has no solution in Fq). Show also that
if d1 and d2 are non-squares in F∗

q then E(d1) and E(d2) are isomorphic over Fq. Hence,
there is is a unique Fq-isomorphism class of elliptic curves arising in this way. Any curve
in this isomorphism class is called a quadratic twist of E.

Exercise 9.5.4. Show that if E : y2 = x3 + a4x+ a6 over Fq has q + 1− t points then a
quadratic twist of E has q + 1 + t points over Fq.

Exercise 9.5.5. Let F (x) = x3 + a2x
2 + a4x + a6 and let E : y2 + (a1x + a3)y =

F (x) be an elliptic curve over F2n . Let α ∈ F2n be such that TrF2n/F2
(α) = 1. Define

Ẽ : y2 + (a1x + a3)y = F (x) + α(a1x + a3)2. For the special case (see Exercise 7.2.7)

E : y2 + xy = x3 + a2x
2 + a6 this is Ẽ : y2 + xy = x3 + (a2 + α)x2 + a6.

Show that Ẽ is isomorphic to E over F22n but not over F2n . Hence, it makes sense to
call Ẽ a quadratic twist of E. Show, using Exercise 2.14.7, that #E(F2n)+#Ẽ(F2n) =

2(2n + 1). Hence, if #E(F2n) = 2n + 1− t then #Ẽ(F2n) = 2n + 1 + t.

Let E and Ẽ be elliptic curves over k. Let φ : E → Ẽ be an isomorphism that is
not defined over k. Then φ−1 : Ẽ → E is also an isomorphism that is not defined over
k. One can therefore consider σ(φ−1) : Ẽ → E for any σ ∈ Gal(k/k). The composition
ψ(σ) = σ(φ−1) ◦ φ is therefore an automorphism of E.

Exercise 9.5.6. Let E and Ẽ be elliptic curves over k. Show that if φ : E → Ẽ is an
isomorphism that is not defined over k then there exists some σ ∈ Gal(k/k) such that
σ(φ−1) ◦ φ is not the identity.

One can show that σ 7→ σ(φ−1) ◦ φ is a 1-cocycle with values in Aut(E). We refer
to Section X.2 of Silverman [564] for further discussion of this aspect of the theory (note
that Silverman considers twists for general curves C and his definition of Twist(C) is not
for pointed curves).

Lemma 9.5.7. Let E be an elliptic curve over a finite field k where char(k) 6= 2, 3 and
j(E) 6= 0, 1728. Then #Twist(E) = 2.

172 CHAPTER 9. ELLIPTIC CURVES

Proof: Let Ẽ/k be isomorphic to E. Without loss of generality E and Ẽ are given in
short Weierstrass form y2 = x3+a4x+a6 and Y 2 = X3+a′4X+a′6 with a4, a

′
4, a6, a

′
6 6= 0.

Since Ẽ ∼= E over k it follows from Theorem 9.3.4 that a′4 = u4a4 and a′6 = u6a6 for some

u ∈ k
∗
. Hence u2 = a′6a4/(a6a

′
4) ∈ k∗. Since k is finite and char(k) 6= 2 the result follows

from the fact that [k∗ : (k∗)2] = 2. �

An immediate consequence of Lemma 9.5.7 is that the number of Fq-isomorphism
classes of elliptic curves over Fq is approximately 2q.

Exercise 9.5.8.⋆ Let k be a finite field such that char(k) ≥ 5 and let E be an elliptic
curve over k. Show that #Twist(E) = #(k∗/(k∗)d) where d = 2 if j(E) 6= 0, 1728, d = 4
if j(E) = 1728, d = 6 if j(E) = 0.

Due to Theorem 9.4.4 one might be tempted to phrase Lemma 9.5.7 and Exercise 9.5.8
as #Twist(E) = #Aut(E), but the following example shows that this statement is not
true in general.

Exercise 9.5.9. Let E : y2 + y = x3 over F2. Show that the number of non-equivalent
twists of E over F2 is 4, whereas #Aut(E) = 24.

Exercise 9.5.10. Let E : y2 = x3 + x over F19 (note that j(E) = 1728). Show that
#Twist(E) = 2. Now consider the same curve over F192 . Show that #Twist(E) = 4.
Show that the group orders of the twists are 192 + 1 (twice) and (19± 1)2.

9.6 Isogenies

We now return to more general maps between elliptic curves. Recall from Theorem 9.2.1
that a morphism φ : E1 → E2 of elliptic curves such that φ(OE1) = OE2 is a group homo-
morphism. Hence, isogenies are group homomorphisms. Chapter 25 discusses isogenies
in further detail. In particular, Chapter 25 describes algorithms to compute isogenies
efficiently.

Definition 9.6.1. Let E1 and E2 be elliptic curves over k. An isogeny over k is a
morphism φ : E1 → E2 over k such that φ(OE1) = OE2 . The zero isogeny is the
constant map φ : E1 → E2 given by φ(P) = OE2 for all P ∈ E1(k). If φ(x, y) =
(φ1(x, y), φ2(x, y)) is an isogeny then define −φ by (−φ)(x, y) = −(φ1(x, y), φ2(x, y)).
where −(X,Y) denotes, as always, the inverse for the group law. The kernel of an
isogeny is ker(φ) = {P ∈ E1(k) : φ(P) = OE2}. The degree of a non-zero isogeny is
the degree of the morphism. The degree of the zero isogeny is 0. If there is an isogeny
(respectively, isogeny of degree d) between two elliptic curves E1 and E2 then we say that
E1 and E2 are isogenous (respectively, d-isogenous). A non-zero isogeny is separable
if it is separable as a morphism (see Definition 8.1.6). Denote by Homk(E1, E2) the set
of isogenies from E1 to E2 defined over k. Denote by Endk(E1) the set of isogenies from
E1 to E1 defined over k; this is called the endomorphism ring of the elliptic curve.

Exercise 9.6.2. Show that if φ : E1 → E2 is an isogeny then so is −φ.

Theorem 9.6.3. Let E1 and E2 be elliptic curves over k. If φ : E1 → E2 is a non-zero
isogeny over k then φ : E1(k)→ E2(k) is surjective.

Proof: This follows from Theorem 8.2.7. �

We now relate the degree to the number of points in the kernel. First we remark the
standard group theoretical fact that, for all Q ∈ E2(k), #φ−1(Q) = # ker(φ) (this is just
the fact that all cosets have the same size).

9.6. ISOGENIES 173

Lemma 9.6.4. A non-zero separable isogeny φ : E1 → E2 over k of degree d has
ker(φ) = d.

Proof: It follows from Corollary 8.2.13 that a separable degree d map φ has #φ−1(Q) = d
for a generic point Q ∈ E2(k). Hence, by the above remark, #φ−1(Q) = d for all points
Q and # ker(φ) = d. (Also see Proposition 2.21 of [626] for an elementary proof.) �

A morphism of curves φ : C1 → C2 is called unramified if eφ(P) = 1 for all P ∈ C1(k).
Let φ : E1 → E2 be a separable isogeny over k and let P ∈ E1(k). Since φ(P) = φ(P +R)
for all R ∈ ker(φ) it follows that a separable morphism of elliptic curves is unramified
(this also follows from the Hurwitz genus formula).

Exercise 9.6.5. Let E1 and E2 be elliptic curves over k and suppose φ : E1 → E2 is an
isogeny over k. Show that ker(φ) is defined over k (in the sense that P ∈ ker(φ) implies
σ(P) ∈ ker(φ) for all σ ∈ Gal(k/k)).

Lemma 9.6.6. Let E1 and E2 be elliptic curves over k. Then Homk(E1, E2) is a group
with addition defined by (φ1 + φ2)(P) = φ1(P) + φ2(P). Furthermore, Endk(E1) =
Homk(E1, E1) is a ring with addition defined in the same way and with multiplication
defined by composition.

Proof: The main task is to show that if φ1, φ2 : E1 → E2 are morphisms then so is
(φ1 + φ2). The case φ2 = −φ1 is trivial, so assume φ2 6= −φ1. Let U be an open set
such that: φ1 and φ2 are regular on U ; P ∈ U implies φ1(P) 6= OE2 and φ2(P) 6=
OE2 ; φ1(P) 6= −φ2(P). That such an open set exists is immediate for all but the final
requirement; but one can also show that the points such that φ1(x, y) = −φ2(x, y) form a
closed subset of E1 as long as φ1 6= −φ2. Then using equation (9.3) one obtains a rational
map (φ1 + φ2) : E1 → E2. Finally, since composition of morphisms is a morphism it is
easy to check that Endk(E1) is a ring. �

By Exercise 8.1.12, if φ1 : E1 → E2 and φ2 : E2 → E3 are non-constant isogenies then
deg(φ2 ◦ φ1) = deg(φ2) deg(φ1). This fact will often be used.

An important example of an isogeny is the multiplication by n map.

Exercise 9.6.7. Show that [n] is an isogeny.

Example 9.6.8. Let E : y2 = x3 +x. Then the map [2] : E → E is given by the rational
function

[2](x, y) =

(
(x2 − 1)2

4(x3 + x)
,
y(x6 + 5x4 − 5x2 − 1)

8(x3 + x)2

)
.

The kernel of [2] is OE together with the three points (xP , 0) such that x3P + xP = 0. In
other words, the kernel is the set of four points of order dividing 2.

We now give a simple example of an isogeny that is not [n] for some n ∈ N. The
derivation of a special case of this example is given in Example 25.1.5.

Example 9.6.9. Let A,B ∈ k be such that B 6= 0 and D = A2 − 4B 6= 0. Consider
the elliptic curve E : y2 = x(x2 + Ax + B) over k, which has the point (0, 0) of order 2.

There is an elliptic curve Ẽ and an isogeny φ : E → Ẽ such that ker(φ) = {OE , (0, 0)}.
One can verify that

φ(x, y) =

(
y2

x2
,
y(B − x2)

x2

)
=

(
x2 +Ax+B

x
, y
B − x2
x2

)

has the desired kernel, and the image curve is Ẽ : Y 2 = X(X2 − 2AX +D).

174 CHAPTER 9. ELLIPTIC CURVES

Before proving the next result we need one exercise (which will also be used later).

Exercise 9.6.10. Let y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 be an elliptic curve over

k. Show that if char(k) = 2 and a1 = 0 then there are no points (x, y) of order 2. Show
that if char(k) = 2 and a1 6= 0 then (x, y) has order 2 if and only if x = a3/a1. Hence, if
char(k) = 2 then #E[2] ∈ {1, 2}.

Show that if char(k) 6= 2 then (x, y) has order 2 if and only if 2y+a1x+a3 = 0. Show
that this is also equivalent to

4x3 + (a21 + 4a2)x2 + (2a1a3 + 4a4)x+ (a23 + 4a6) = 0. (9.9)

Note that when a1 = a3 = 0 this polynomial is simply 4 times the right hand side of the
elliptic curve equation. Show that this polynomial has distinct roots and so if char(k) 6= 2
then #E[2] = 4.

Lemma 9.6.11. Let E and Ẽ be elliptic curves over k. If n ∈ N then [n] is not the zero

isogeny. Further, Homk(E, Ẽ) is torsion-free as a Z-module (i.e., if φ ∈ Homk(E, Ẽ) is
non-zero then [n] ◦ φ is non-zero for all n ∈ Z, n 6= 0) and Endk(E) has no zero divisors.

Proof: First, suppose φ1, φ2 : E → E are non-zero isogenies such that [0] = φ1 ◦ φ2. By
Theorem 9.6.3, φ1, φ2 and hence φ1 ◦ φ2 are surjective over k. Since the zero isogeny is
not surjective it follows that there are no zero divisors in Endk(E).

Now, consider any n ∈ N and note that n = 2km for some k ∈ Z≥0 and some odd
m ∈ N. By Exercise 9.6.10 we know that [2] is not zero over k (when char(k) 6= 2 this
is immediate since there are at most 3 points of order 2; when char(k) = 2 one must
show that if equation (9.9) is identically zero then the Weierstrass equation is singular).
It follows that [2k] = [2] ◦ [2] ◦ · · · ◦ [2] is not zero either (since if [2] is non-zero then
it is surjective on E(k)). Finally, since there exists P ∈ E(k) such that P 6= OE but
[2]P = OE we have [m]P = P 6= OE and so [m] is not the zero isogeny. It follows that
[n] = [m] ◦ [2k] is not the zero isogeny.

Similarly, if [0] = [n]φ for φ ∈ Homk(E, Ẽ) then either [n] or φ is the zero isogeny. �

Lemma 9.6.12. Let E : y2+a1xy+a3y = x3+a2x
2+a4x+a6 and Ẽ : Y 2+ã1XY +ã3Y =

X3 + ã2X
2 + ã4X + ã6 be elliptic curves over k. Let φ : E → Ẽ be an isogeny of elliptic

curves over k. Then φ may be expressed by a rational function in the form

φ(x, y) = (φ1(x), yφ2(x) + φ3(x))

where

2φ3(x) = −ã1φ1(x) − ã3 + (a1x+ a3)φ2(x).

In particular, if char(k) 6= 2 and a1 = a3 = ã1 = ã3 = 0 then φ3(x) = 0, while if
char(k) = 2 then φ2(x) = (ã1φ1(x) + ã3)/(a1x+ a3).

Proof: Certainly, φ may be written as φ(x, y) = (φ1(x) + yf(x), yφ2(x) + φ3(x)) where
φ1(x), f(x), φ2(x) and φ3(x) are rational functions.

Since φ is a group homomorphism it satisfies φ(−P) = −φ(P). Writing P = (x, y)
the left hand side is

φ(−(x, y)) = φ(x,−y − a1x− a3)

= (φ1(x) + (−y − a1x− a3)f(x), (−y − a1x− a3)φ2(x) + φ3(x))

9.6. ISOGENIES 175

while the right hand side is

−φ(P) = (φ1(x) + yf(x),−yφ2(x)− φ3(x) − ã1(φ1(x) + yf(x))− ã3).

It follows that (2y + a1x + a3)f(x) is a function that is zero for all points (x, y) ∈ E(k).
Since 2y + a1x + a3 is not the zero function (if it was zero then k(E) = k(x, y) = k(y),
which contradicts Theorem 8.6.4) it follows that f(x) = 0.

It then follows that

2φ3(x) = −ã1φ1(x) − ã3 + (a1x+ a3)φ2(x).

�

Lemma 9.6.12 will be refined in Theorem 9.7.5.

Lemma 9.6.13. Let φ : E → Ẽ be as in Lemma 9.6.12 where φ1(x) = a(x)/b(x). Then
the degree of φ is max{degx(a(x)), degx(b(x))}.

Corollary 25.1.8 will give a more precise version of this result in a special case.
Proof: We have k(E) = k(x, y) being a quadratic extension of k(x), and k(Ẽ) = k(x̃, ỹ)
being a quadratic extension of k(x̃). Now φ1(x) gives a morphism φ1 : P1 → P1 and this
morphism has degree d = max{degx(a(x)), degx(b(x))} by Lemma 8.1.9. It follows that
k(x) is a degree d extension of φ∗1k(x̃). We therefore have the following diagram of field
extensions

k(E)

k(Ẽ) k(x)

k(x̃)

2

�
��

2

�
�
�
d

and it follows that [k(E) : φ∗k(Ẽ)] = d. �

Example 9.6.14. Let p be a prime and let q = pm for some m ∈ N. Let E be an
elliptic curve over Fq. The q-power Frobenius map is the rational map πq : E → E
such that πq(OE) = OE and πq(x, y) = (xq , yq). Since πq is a morphism that fixes OE
it is an isogeny (this can also be easily seen by explicit computation). If E has equation
y2 = F (x) (and so q is odd) then one can write πq in the form of Lemma 9.6.12 as
πq(x, y) = (xq , yF (x)(q−1)/2). Note that πq is the identity map on E(Fq) but is not the
identity on E(Fq).

Corollary 9.6.15. Let the notation be as in Example 9.6.14. The q-power Frobenius
map is inseparable of degree q.

Exercise 9.6.16. Prove Corollary 9.6.15.

Theorem 9.6.17. Let p be a prime and E, Ẽ elliptic curves over Fp. Let ψ : E → Ẽ be
a non-zero isogeny. Then there is an integer m and an elliptic curve E(q) (namely, the
curve obtained by applying the q = pm-power Frobenius map to the coefficients of E; the
reader should not confuse the notation E(q) with the quadratic twist E(d)) and a separable

isogeny φ : E(q) → Ẽ of degree deg(ψ)/q such that ψ = φ ◦ πq where πq : E → E(q) is the
q-power Frobenius morphism.

176 CHAPTER 9. ELLIPTIC CURVES

Proof: See Corollary II.2.12 of [564]. �

The following result is needed to obtain many useful results in this chapter and in
Chapter 25.

Theorem 9.6.18. Let E1, E2, E3 be elliptic curves over k and φ : E1 → E2, ψ : E1 → E3

isogenies over k. Suppose ker(φ) ⊆ ker(ψ) and that ψ is separable. Then there is a unique
isogeny λ : E2 → E3 defined over k such that ψ = λ ◦ φ.
Proof: (Sketch) See Corollary III.4.11 of [564] for the case where k is algebraically
closed. The proof uses the fact that k(E1) is a Galois extension of φ∗(k(E2)) (with
Galois group isomorphic to ker(φ)). Furthermore, one has ψ∗(k(E3)) ⊆ φ∗(k(E2)) ⊆
k(E1). The existence and uniqueness of the morphism λ follows from the Galois extension
φ∗(k(E2))/ψ∗(k(E3)) and Theorem 5.5.27. The uniqueness of λ implies it is actually
defined over k, since

ψ = σ(ψ) = σ(λ) ◦ σ(φ) = σ(λ) ◦ φ.
for all σ ∈ Gal(k/k). �

Let E and Ẽ be elliptic curves over k. Not every group homomorphism E(k)→ Ẽ(k)
is an isogeny. In particular, a non-zero isogeny has finite degree and hence finite kernel,
whereas one can have groups such as E(Q) ∼= Z and Ẽ(Q) ∼= Z/2Z for which there is a

non-zero group homomorphism E(Q) → Ẽ(Q) whose kernel is infinite. It is natural to
ask whether every group homomorphism with finite kernel is an isogeny. The following
result shows that this is the case (the condition of being defined over k can be ignored by
taking a field extension).

Theorem 9.6.19. Let E be an elliptic curve over k. Let G ⊆ E(k) be a finite group
that is defined over k (i.e., σ(P) ∈ G for all P ∈ G and σ ∈ Gal(k/k)). Then there is a

unique (up to isomorphism over k) elliptic curve Ẽ over k and a (not necessarily unique)

isogeny φ : E → Ẽ over k such that ker(φ) = G.

Proof: See Proposition III.4.12 and Exercise 3.13(e) of [564]. We will give a constructive
proof (Vélu’s formulae) in Section 25.1.1, which also proves that the isogeny is defined
over k. �

The elliptic curve Ẽ in Theorem 9.6.19 is sometimes written E/G. As noted, the
isogeny in Theorem 9.6.19 is not necessarily unique, but Exercise 9.6.20 shows the only
way that non-uniqueness can arise.

Exercise 9.6.20. Let the notation be as in Theorem 9.6.19. Let ψ : E → Ẽ be another
isogeny over k such that ker(ψ) = G. Show that ψ = λ ◦ φ where λ is an automorphism

of Ẽ (or, if k is finite, the composition of an isogeny and a Frobenius map). Similarly,
if ψ : E → E2 is an isogeny over k with ker(ψ) = G then show that ψ = λ ◦ φ where

λ : Ẽ → E2 is an isomorphism over k of elliptic curves.

We now present the dual isogeny. Let φ : E → Ẽ be an isogeny over k. Then there
is a group homomorphism φ∗ : Pic0

k
(Ẽ)→ Pic0

k
(E). Since Pic0

k
(E) is identified with E(k)

in a standard way (and similarly for Ẽ) one gets a group homomorphism from Ẽ(k) to
E(k). Indeed, the next result shows that this is an isogeny of elliptic curves; this is not
trivial as φ∗ is defined set-theoretically and it is not possible to interpret it as a rational
map in general.

Theorem 9.6.21. Let E and Ẽ be elliptic curves over k. Let φ : E → Ẽ be a non-zero
isogeny over k of degree m. Then there is a non-zero isogeny φ̂ : Ẽ → E over k such that

φ̂ ◦ φ = [m] : E → E.

9.6. ISOGENIES 177

Indeed, φ̂ is unique (see Exercise 9.6.22).

Proof: Let α1 : E(k) → Pic0k(E) be the canonical map P 7→ (P) − (OE) and similarly

for α2 : Ẽ → Pic0k(Ẽ). We have φ̂ = α−1
1 ◦ φ∗ ◦ α2 as above. We refer to Theorem III.6.1

of [564] (or Section 21.1 of [626] for elliptic curves over C) for the details. �

Exercise 9.6.22. Suppose as in Theorem 9.6.21 that φ : E → Ẽ is a non-zero isogeny
over k of degree m. Show that if ψ : Ẽ → E is any isogeny such that ψ ◦ φ = [m] then

ψ = φ̂.

Definition 9.6.23. Let E and Ẽ be elliptic curves over k and let φ : E → Ẽ be a
non-zero isogeny over k. The isogeny φ̂ : Ẽ → E of Theorem 9.6.21 is called the dual
isogeny.

Example 9.6.24. Let E be an elliptic curve over Fq and πq : E → E the q-power
Frobenius map. The dual isogeny π̂q is called the Verschiebung. Since π̂q ◦ πq = [q]
it follows that π̂q(x, y) = [q](x1/q, y1/q). Example 9.10.2 gives another way to write the
Verschiebung.

Exercise 9.6.25. Let E : y2 = x3 + a6 over k with char(k) 6= 2, 3. Let ζ3 ∈ k be such
that ζ23 + ζ3 + 1 = 0 and define the isogeny ρ(OE) = OE and ρ(x, y) = (ζ3x, y). Show
that ρ̂ = ρ2 (where ρ2 means ρ ◦ ρ).

Exercise 9.6.26. Recall E, Ẽ and φ from Example 9.6.9. Show that φ̂ : Ẽ → E is given
by

φ̂(X,Y) =

(
Y 2

4X2
,
Y (D −X2)

8X2

)

and that φ̂ ◦ φ(x, y) = [2](x, y).

We list some properties of the dual isogeny.

Theorem 9.6.27. Let φ : E → Ẽ be a non-zero isogeny of elliptic curves over k.

1. Let d = deg(φ). Then deg(φ̂) = d, φ̂ ◦ φ = [d] on E and φ ◦ φ̂ = [d] on Ẽ.

2. Let ψ : Ẽ → E3 be an isogeny. Then ψ̂ ◦ φ = φ̂ ◦ ψ̂.

3. Let ψ : E → Ẽ be an isogeny. Then φ̂+ ψ = φ̂+ ψ̂.

4.
̂̂
φ = φ.

Proof: See Theorem III.6.2 of [564]. �

Corollary 9.6.28. Let E be an elliptic curve over k and let m ∈ Z. Then [̂m] = [m] and
deg([m]) = m2.

Proof: The first claim follows by induction from part 3 of Theorem 9.6.27. The second

claim follows from part 1 of Theorem 9.6.27 and since [̂1] = [1]: write d = deg([m]) and

use [d] = [̂m][m] = [m2]; since Endk(E) is torsion-free (Lemma 9.6.11) it follows that
d = m2. �

An important consequence of Corollary 9.6.28 is that it determines the possible group
structures of elliptic curves over finite fields. We return to this topic in Theorem 9.8.2.

We end this section with another example of an isogeny.

178 CHAPTER 9. ELLIPTIC CURVES

Exercise 9.6.29. Let k be a field such that char(k) 6= 2, 3. Let E be an elliptic curve
over k with a subgroup of order 3 defined over k. Show that, after a suitable change of
variable, one has a point P = (0, v) such that [2]P = (0,−v) and v2 ∈ k. Show that E is
k-isomorphic to a curve of the form

y2 = x3 + 1
a6

(
a4
2 x+ a6

)2

Show that there is a k-isomorphism to a curve of the form

Y 2 = X3 +A(X + 1)2

where A 6= 0, 274 .

Exercise 9.6.30. (Doche, Icart and Kohel [183]) Let k be a field such that char(k) 6= 2, 3.
Let u ∈ k be such that u 6= 0, 94 . Consider the elliptic curve E : y2 = x3 + 3u(x+ 1)2 as

in Exercise 9.6.29. Then (0,
√

3u) has order 3 and G = {OE, (0,±
√

3u)} is a k-rational
subgroup of E(k). Show that

φ(x, y) =

(
x3 + 4ux2 + 12u(x+ 1)

x2
, y

(
1− 12u

x+ 2

x3

))

is an isogeny from E to Ẽ : Y 2 = X3− u(3X − 4u+ 9)2 with ker(φ) = G. Determine the

dual isogeny to φ and show that φ̂ ◦ φ = [3].

Exercise 9.6.31. Let φ1, φ2 : E → E′ be isogenies of degree d such that ker(φ̂1) =

ker(φ̂2). Show that there exists λ ∈ Aut(E) such that φ2 = φ1 ◦ λ.
[Hint: Use Exercise 9.6.20.]

9.7 The Invariant Differential

Let E over k be an elliptic curve. Recall the differential

ωE =
dx

2y + a1x+ a3
(9.10)

on the Weierstrass equation for E, which was studied in Example 8.5.32. We showed that
the divisor of ωE is 0. LetQ ∈ E(k) and τQ be the translation map. Then τ∗Q(ωE) ∈ Ωk(E)
and so, by Theorem 8.5.21, τ∗Q(ωE) = fωE for some f ∈ k(E). Lemma 8.5.36 implies
τ∗Q(div(ωE)) = 0 and so div(f) = 0. It follows that τ∗Q(ωE) = cωE for some c ∈ k∗. The
following result shows that c = 1 and so ωE is fixed by translation maps. This explains
why ωE is called the invariant differential.

Theorem 9.7.1. Let E be an elliptic curve in Weierstrass form and let ωE be the dif-
ferential in equation (9.10). Then τ∗Q(ωE) = ωE for all Q ∈ E(k).

Proof: See Proposition III.5.1 of [564]. �

An important fact is that the action of isogenies on differentials is linear.

Theorem 9.7.2. Let E, Ẽ be elliptic curves over k and ωẼ the invariant differential on

Ẽ. Suppose φ, ψ : E → Ẽ are isogenies. Then

(φ+ ψ)∗(ωẼ) = φ∗(ωẼ) + ψ∗(ωẼ).

9.7. THE INVARIANT DIFFERENTIAL 179

Proof: See Theorem III.5.2 of [564]. �

A crucial application is to determine when certain isogenies are separable. In particu-
lar, if E is an elliptic curve over Fpn then [p] is inseparable on E while πpn−1 is separable
(where πpn is the pn-power Frobenius).

Corollary 9.7.3. Let E be an elliptic curve over k. Let m ∈ Z. Then [m] is separable
if and only if m is coprime to the characteristic of k. Let k = Fq and πq be the q-power
Frobenius. Let m,n ∈ Z. Then m+ nπq is separable if and only if m is coprime to q.

Proof: (Sketch) Theorem 9.7.2 implies [m]∗(ωE) = mωE. So [m]∗ maps Ωk(E) to
{0} if and only if the characteristic of k divides m. The first part then follows from
Lemma 8.5.35. The second part follows by the same argument, using the fact that πq is
inseparable and so π∗

q (ωE) = 0. For full details see Corollaries III.5.3 to III.5.5 of [564].
�

This result has the following important consequence.

Theorem 9.7.4. Let E and Ẽ be elliptic curves over a finite field Fq. If φ : E → Ẽ is

an isogeny over Fq then #E(Fq) = #Ẽ(Fq).

Proof: Let πq be the q-power Frobenius map on E. For P ∈ E(Fq) we have πq(P) = P
if and only if P ∈ E(Fq). Hence, E(Fq) = ker(πq − 1). Since πq − 1 is separable it follows
that #E(Fq) = deg(πq−1). Since πq−1 is separable it follows that #E(Fq) = deg(πq−1).

Now, returning to the problem of the Theorem, write πq and π̂q for the q-power

Frobenius maps on E and Ẽ respectively. Since φ is defined over Fq it follows that
π̂q ◦ φ = φ ◦ πq. Hence, (π̂q − 1) ◦ φ = φ ◦ (πq − 1) and so (applying Exercise 8.1.12
twice) deg(π̂q − 1) = deg(πq − 1). The result follows since #E(Fq) = deg(πq − 1) and

#Ẽ(Fq) = deg(π̂q − 1). �

The converse (namely, if E and Ẽ are elliptic curves over Fq and #E(Fq) = #Ẽ(Fq)
then there is an isogeny from E to Ẽ over Fq) is Tate’s isogeny theorem [601]. This can be
proved for elliptic curves using the theory of complex multiplication (see Remark 25.3.10).

We now give a refinement of Lemma 9.6.12. This result shows that a separable isogeny
is determined by φ1(x) when char(k) 6= 2.

Theorem 9.7.5. Let the notation be as in Lemma 9.6.12. Let φ : E → Ẽ be a separable
isogeny over k. Then φ may be expressed by a rational function in the form

φ(x, y) = (φ1(x), cyφ1(x)′ + φ3(x))

where φ1(x)′ = dφ1(x)/dx is the (formal) derivative of the rational function φ1(x), where

c ∈ k
∗
is a non-zero constant, and where

2φ3(x) = −ã1φ1(x)− ã3 + c(a1x+ a3)φ1(x)′.

Proof: Let ωE = dx/(2y + a1x + a3) be the invariant differential on E and ωẼ =

dX/(2Y + ã1X+ ã3) be the invariant differential on Ẽ. Since φ is separable, then φ∗(ωẼ)
is non-zero. Furthermore, since φ is unramified, Lemma 8.5.36 implies that div(φ∗(ωẼ)) =
φ∗(div(ωẼ)) = 0. Hence, φ∗(ωẼ) is a multiple of ωE and so

dx/(2y + a1x+ a3) = cφ∗(dX/(2Y + ã1X + ã3)).

for some non-zero constant c ∈ k.
By Lemma 9.6.12, X = φ1(x), Y = yφ2(x) + φ3(x) and

2φ3(x) = −ã1φ1(x) − ã3 + (a1x+ a3)φ2(x).

180 CHAPTER 9. ELLIPTIC CURVES

Now, since dX/dx = φ1(x)′,

φ∗(dX/(2Y + ã1X + ã3)) = φ1(x)′dx/(2(yφ2(x) + φ3(x)) + ã1φ1(x) + ã3).

Hence, substituting for φ3(x),

φ∗(dX/(2Y + ã1X + ã3)) = φ1(x)′dx/((2y + a1x+ a3)φ2(x))

= (φ1(x)′/φ2(x))dx/(2y + a1x+ a3).

It follows that φ2(x) = cφ1(x)′ for some c ∈ k
∗
, which proves the result. �

In Section 25.1.1 we will make use of Theorem 9.7.5 in the case c = 1.

Exercise 9.7.6. Let the notation be as in Theorem 9.7.5 and suppose char(k) = 2. Show
that there are only two possible values for the rational function φ3(x).

9.8 Multiplication by n and Division Polynomials

Corollary 9.6.28 showed the fundamental fact that deg([m]) = m2 and so there are at
most m2 points of order dividing m on an elliptic curve. There are several other expla-
nations for this fact. One explanation is to consider elliptic curves over C: as a Riemann
surface they are a complex torus C/L where L is a rank 2 lattice (see Chapter 5 of Sil-
verman [564], especially Proposition 5.4) and it follows that there are m2 points of order
m (this argument generalises immediately to Abelian varieties).

Another reason for this fact is because the group law is given by rational functions
whose denominators are essentially quadratic polynomials in each variable. For compar-
ison, see Exercise 9.8.1 which shows that a group law given by linear polynomials only
has m points of order m.

Exercise 9.8.1. Consider the multiplicative group Gm(k) = k∗ . The group operation
(x1, x2) 7→ x1x2 is linear in each of x1 and x2. The elements of order m are the roots of
the polynomial xm − 1. Show that there are m points of order m if gcd(m, char(k)) = 1,
and if p = char(k) then there is 1 point of order p.

It follows from Corollary 9.6.28 that #E[m] ≤ m2, and elementary group theory
implies #E[m] is therefore a divisor of m2. Theorem 9.8.2 follows. A more precise
version of this result is Theorem 9.10.13.

Theorem 9.8.2. Let E be an elliptic curve over a finite field Fq. Then E(Fq) is isomor-
phic as a group to a product of cyclic groups of order n1 and n2 such that n1 | n2.

Proof: (Sketch) Since E(Fq) is a finite Abelian group we apply the classification of finite
Abelian groups (e.g., Theorem II.2.1 of [301]). Then use the fact that there are at most
m2 points in E(Fq) of order m for every m ∈ N. �

Since #E[m] ≤ m2 (and, by Corollary 9.7.3, is equal to m2 when m is coprime to
the characteristic) it is natural to seek polynomials whose roots give the (affine) points of
order dividing m. We already saw such polynomials in Exercise 9.6.10 for the case m = 2
(and this gave an alternative proof that, in general, there are three points (x, y) over k of
order 2 on an elliptic curve; namely the points (x, 0) where x is a root of the polynomial
in equation (9.9)). Since [m]P = OE if and only if [m](−P) = OE one might expect to
use polynomials in k[x], but when m is even it turns out to be more convenient to have
polynomials that feature the variable y (one reason being that this leads to polynomials of
lower degree). When m is odd the polynomials will be univariate and of degree (m2−1)/2
as expected. We now determine these polynomials, first for the cases m = 3 and m = 4.

9.8. MULTIPLICATION BY N AND DIVISION POLYNOMIALS 181

Exercise 9.8.3. Let E : y2 = x3 + a2x
2 + a4x + a6 be an elliptic curve over k (with

char(k) 6= 2). Show that if char(k) = 3, a2 = 0 and a4 6= 0 then there is no point (x, y)
of order 3. Show that if char(k) = 3 and a2 6= 0 then (x, y) has order 3 if and only if
x3 = a6 − a24/(4a2). Hence if char(k) = 3 then #E[3] ∈ {1, 3}.

Show that if char(k) 6= 3 then (x, y) has order 3 if and only if

3x4 + 4a2x
3 + 6a4x

2 + 12a6x+ (4a2a6 − a24) = 0.

Exercise 9.8.4. Let E : y2 = x3 + a4x+ a6 be an elliptic curve over k with char(k) 6= 2.
Show that if P = (x, y) ∈ E(k) satisfies P ∈ E[4] and P 6∈ E[2] then [2]P is of the form
(x2, 0) for some x2 ∈ k. Hence show that x satisfies

x6 + 5a4x
4 + 20a6x

3 − 5a24x
2 − 4a4a6x− (a34 + 8a26).

We now state the polynomials whose roots give affine points of order dividing m for
the case of elliptic curves in short Weierstrass form. The corresponding polynomials for
elliptic curves over fields of characteristic 2 are given in Section 4.4.5.a of [16] and Section
III.4.2 of [65]. Division polynomials for elliptic curves in general Weierstrass form are
discussed in Section III.4 of [65].

Definition 9.8.5. Let E : y2 = x3+a4x+a6 be an elliptic curve over k with char(k) 6= 2.
The division polynomials are defined by

ψ1(x, y) = 1

ψ2(x, y) = 2y

ψ3(x, y) = 3x4 + 6a4x
2 + 12a6x− a24

ψ4(x, y) = 4y(x6 + 5a4x
4 + 20a6x

3 − 5a24x
2 − 4a4a6x− (a34 + 8a26))

ψ2m+1(x, y) = ψm+2(x, y)ψm(x, y)3 − ψm−1(x, y)ψm+1(x, y)3 , (m ≥ 2)

ψ2m(x, y) = 1
2yψm(x, y)(ψm+2(x, y), ψm−1(x, y)2 − ψm−2(x, y)ψm+1(x, y)2) , (m ≥ 3).

Lemma 9.8.6. Let E be an elliptic curve in short Weierstrass form over k with char(k) 6=
2. Let m ∈ N. Then ψm(x, y) ∈ k[x, y]. If m is odd then ψm(x, y) is a polynomial in x

only and ψm(x, y) = mx(m
2−1)/2 + · · · ∈ k[x]. If m is even then ψm(x, y) = yh(x) where

h(x) = mx(m
2−4)/2 + · · · ∈ k[x].

Proof: The cases m = 2, 3 and 4 are clear by inspection. The rest are easily proved by
induction. �

Theorem 9.8.7. Let E be an elliptic curve in short Weierstrass form over k with
char(k) 6= 2, 3. Let m ∈ N and ψm(x, y) as above. Then P = (xP , yP) ∈ E(k) sat-
isfies [m]P = OE if and only if ψm(xP , yP) = 0. Furthermore, there are polynomials
Am(x) ∈ k[x] and Bm(x, y) ∈ k[x, y] such that

[m](x, y) =

(
Am(x)

ψm(x, y)2
,
Bm(x, y)

ψm(x, y)3

)
.

Proof: The first claim has already been proved for m = 3 and m = 4 in Exercises 9.8.3
and 9.8.4. The general result can be proved in various ways: Section 9.5 of Washing-
ton [626] gives a proof for elliptic curves over C and then deduces the result for general
fields of characteristic not equal to 2, Charlap and Robbins [127] give a proof (Sections
7 to 9) using considerations about divisors and functions, other sources (such as Exercise
3.7 of [564]) suggest a (tedious) verification by induction. �

182 CHAPTER 9. ELLIPTIC CURVES

9.9 Endomorphism Structure

The aim of this section is to discuss the structure of the ring Endk(E). Note that Z ⊆
Endk(E) and that, by Lemma 9.6.11, Endk(E) is a torsion-free Z-module. For an isogeny
φ : E → E and an integer m ∈ Z we write mφ for the isogeny [m] ◦ φ.

To understand the endomorphism rings of elliptic curves one introduces the Tate
module Tl(E). This is defined, for any prime l 6= char(k), to be the inverse limit of the
groups E[li] (this is the same process as used to construct the p-adic (= l-adic) numbers Zl
as the inverse limit of the rings Z/liZ). More precisely, for each i ∈ N fix a pair {Pi,1, Pi,2}
of generators for E[li] such that Pi−1,j = [l]Pi,j for i > 1 and j ∈ {1, 2}. Via this basis
we can identify E[li] with (Z/liZ)2. Indeed, this is an isomorphism of (Z/liZ)-modules.
It follows that Tl(E) is a Zl-module that is isomorphic to Z2

l as a Zl-module. Hence, the
set EndZl(Tl(E)) of Zl-linear maps from Tl(E) to itself is isomorphic as a Zl-module to
M2(Zl). We refer to Section III.7 of Silverman [564] for the details.

An isogeny φ : E → Ẽ gives rise to a linear map from E[li] to Ẽ[li] for each i. Writing

φ(Pi,1) = [a]P̃i,1 + [b]P̃i,2 and φ(Pi,2) = [c]P̃i,1 + [d]P̃i,2 (where {P̃i,1, P̃i,2} is a basis for

Ẽ[li]) we can represent φ as a matrix (a bc d) ∈ M2(Z/liZ). It follows that φ corresponds
to an element φl ∈M2(Zl).

Write HomZl(Tl(E1), Tl(E2)) for the set of Zl-module homomorphisms from Tl(E1) to
Tl(E2). Since Tl(E) is isomorphic to M2(Zl) it follows that HomZl(Tl(E1), Tl(E2)) is a
Zl-module of rank 4. An important result is that

Homk(E1, E2)⊗ Zl −→ HomZl(Tl(E1), Tl(E2))

is injective (Theorem III.7.4 of [564]). It follows that Homk(E1, E2) is a Z-module of rank
at most 4.

The map φ 7→ φ̂ is an involution in Endk(E) and φ ◦ φ̂ = [d] where d > 0. This
constrains what sort of ring Endk(E) can be (Silverman [564] Theorem III.9.3). The
result is as follows (for the definitions of orders in quadratic fields see Section A.12 and
for quaternion algebras see Vignéras [622]).

Theorem 9.9.1. Let E be an elliptic curve over a field k. Then Endk(E) is either Z, an
order in an imaginary quadratic field, or an order in a definite quaternion algebra.

Proof: See Corollary III.9.4 of [564]. �

When k is a finite field then the case Endk(E) = Z is impossible (see Theorem V.3.1
of [564]).

Example 9.9.2. Let E : y2 = x3 + x over Fp where p ≡ 3 (mod 4) is prime. Then
ξ(x, y) = (−x, iy) is an isogeny where i ∈ Fp2 satisfies i2 = −1. One can verify that
ξ2 = ξ ◦ ξ = [−1]. One can show that #E(Fp) = p + 1 (Exercise 9.10.5) and then
Theorem 9.10.3 implies that the Frobenius map πp(x, y) = (xp, yp) satisfies π2

p = [−p].
Finally, we have ξ ◦ πp(x, y) = (−xp, iyp) = −πp ◦ ξ(x, y). Hence, EndFp

(E) is not a

commutative ring. Indeed, it is isomorphic to a subring of the quaternion algebra (be
warned that we are recycling the symbol i here) Q[i, j] with i2 = −1, j2 = −p, ij = −ji.
Note that EndFp(E) is isomorphic to an order, containing Z[

√−p], in the ring of integers
of the imaginary quadratic field Q(

√−p).

Every endomorphism on an elliptic curve satisfies a quadratic characteristic polyno-
mial with integer coefficients.

9.10. FROBENIUS MAP 183

Theorem 9.9.3. Let E be an elliptic curve over k and φ ∈ Endk(E) be a non-zero
isogeny. Let d = deg(φ). Then there is an integer t such that φ2− tφ+d = 0 in Endk(E).
In other words, for all P ∈ E(k),

φ(φ(P)) − [t]φ(P) + [d]P = OE .

Proof: (Sketch) Choose an auxiliary prime l 6= char(k). Then φ acts on the Tate
module Tl(E) and so corresponds to a matrix M ∈ HomZl(Tl(E), Tl(E)). Such a matrix
has a determinant d and a trace t. The trick is to show that d = deg(φ) and t =
1 + deg(φ)− deg(1−φ) (which are standard facts for 2× 2 matrices when deg is replaced
by det). These statements are independent of l. Proposition V.2.3 of Silverman [564]
gives the details (this proof uses the Weil pairing). A slightly simpler proof is given in
Lemma 24.4 of [122]. �

Definition 9.9.4. The integer t in Theorem 9.9.3 is called the trace of the endomor-
phism.

Exercise 9.9.5. Show that if φ ∈ Endk(E) satisfies the equation T 2 − tT + d = 0 then

so does φ̂.

Lemma 9.9.6. Suppose φ ∈ Endk(E) has characteristic polynomial P (T) = T 2−tT+d ∈
Z[T]. Let α, β ∈ C be the roots of P (T). Then, for n ∈ N, φn satisfies the polynomial
(T − αn)(T − βn) ∈ Z[T].

Proof: This is a standard result: let M be a matrix representing φ (or at least, repre-
senting the action of φ on the Tate module for some l) in Jordan form M = (

α γ
0 β). Then

Mn has Jordan form (α
n ∗
0 βn) and the result follows by the previous statements. �

9.10 Frobenius map

We have seen that the q-power Frobenius on an elliptic curve over Fq is a non-zero isogeny
of degree q (Corollary 9.6.15) and that isogenies on elliptic curves satisfy a quadratic
characteristic polynomial. Hence there is an integer t such that

π2
q − tπq + q = 0. (9.11)

Definition 9.10.1. The integer t in equation (9.11) is called the trace of Frobenius.
The polynomial P (T) = T 2 − tT + q is the characteristic polynomial of Frobenius.

Note that EndFq (E) always contains the order Z[πq], which is an order of discriminant
t2 − 4q.

Example 9.10.2. Equation (9.11) implies

([t]− πq) ◦ πq = [q]

and so we have π̂q = [t]− πq.

Theorem 9.10.3. Let E be an elliptic curve over Fq and let P (T) be the characteristic
polynomial of Frobenius. Then #E(Fq) = P (1).

Proof: We have E(Fq) = ker(πq−1) and, since πq−1 is separable, #E(Fq) = deg(πq−1).
Now, P (1) = 1 + q − t where, as noted in the proof of Theorem 9.9.3, t = 1 + deg(πq)−
deg(1− πq). �

184 CHAPTER 9. ELLIPTIC CURVES

Exercise 9.10.4. Let p ≡ 2 (mod 3). Show that the elliptic curve E : y2 = x3 + a6 for
a6 ∈ F∗

p has p+ 1 points over Fp.
[Hint: re-arrange the equation.]

Exercise 9.10.5. Let p ≡ 3 (mod 4) and a4 ∈ F∗
p. Show that E : y2 = x3 + a4x over Fp

has #E(Fp) = p+ 1.
[Hint: Write the right hand side as x(x2 + a4) and use the fact that (−1

p) = −1.]

We now give an example where the Frobenius map, as an endomorphism, is the same
as the map [n] for some integer n.

Example 9.10.6. Let p ≡ 3 (mod 4) be prime, let g ∈ Fp2 be a primitive root and
E : y2 = x3 + g2x. Let u = 1/

√
g ∈ Fp4 . Consider the map φ(x, y) = (u2x, u3y) that

maps E to Ẽ : Y 2 = X3 + (u4g2)X = X3 +X . By Exercise 9.10.5, #Ẽ(Fp) = p+ 1 and

the p-power Frobenius map π̃p on Ẽ satisfies (π̃p)
2 = −p.

Define ψ ∈ EndFp
(E) by ψ = φ−1 ◦ π̃p ◦ φ. Then ψ(x, y) = (w1x

p, w2y
p) where w1 =

u2p/u2 and w2 = u3p/u3. One can verify that w1, w2 ∈ Fp2 (just show that wp
2

i = wi)

and that wp+1
1 = 1 and wp+1

2 = −1. Finally, one has ψ(ψ(x, y)) = ψ(w1x
p, w2y

p) =

(wp+1
1 xp

2

, wp+1
2 yp

2

) = (xp
2

,−yp2) = −πp2(x, y) on E. On the other hand, by definition

ψ2 = φ−1 ◦ (π̃p)
2 ◦ φ = φ−1 ◦ [−p] ◦ φ = [−p]

on E. Hence we have shown that πp2 = [p] on E. The characteristic polynomial of πp2 is
therefore (T − p)2 and so #E(Fp2) = p2 − 2p+ 1.

As we will see in Section 9.11, this curve is supersingular and so EndFp
(E) is an order

in a quaternion algebra. Since πp2 ∈ Z in EndFp
(E) the quaternion algebra structure

comes from other endomorphisms. We already met ψ ∈ EndFp2
(E) such that ψ2 = −p.

The endomorphism ring also contains the map ξ(x, y) = (−x, iy) where i ∈ Fp2 satisfies
i2 = −1. One can verify that ξ2 = −1 and ξψ = −ψξ (since ip = −i as p ≡ 3 (mod 4));
as was seen already in Example 9.9.2.

Theorem 9.10.7. (Hasse) Let E be an elliptic curve over Fq and denote by t the trace
of the q-power Frobenius map. Then |t| ≤ 2

√
q.

Proof: (Sketch) The idea is to use the fact that deg : End(E) → Z is a positive def-
inite quadratic form. See Theorem V.1.1 of [564], Theorem 4.2 of [626], Theorem 1 of
Chapter 25 of [122] or Theorem 13.4 of [127]. �

In other words, the number of points on an elliptic curve over Fq lies in the Hasse
interval [q + 1− 2

√
q, q + 1 + 2

√
q].

Corollary 9.10.8. Let E be an elliptic curve over Fq and let P (T) be the characteristic
polynomial of Frobenius. Let α, β ∈ C be such that P (T) = (T − α)(T − β). Then
β = q/α = α and |α| = |β| = √q.

Proof: It follows from the proof of Theorem 9.10.7 that if P (T) ∈ Z[T] has a real
root then it is a repeated root (otherwise, the quadratic form is not positive definite).
Obviously, if the root α is not real then β = α. Since the constant coefficient of P (T) is
q it follows that q = αβ = αα = |α|2 and similarly for β. �

The case of repeated roots of P (T) only happens when α = ±√q ∈ Z and P (T) =
(T ± √q)2. The condition |α| = |β| =

√
q is known as the Riemann hypothesis for

elliptic curves. This concept has been generalised to general varieties over finite fields
as part of the Weil conjectures (proved by Deligne).

9.10. FROBENIUS MAP 185

Corollary 9.10.9. Let E be an elliptic curve over Fq and let P (T) = (T − α)(T − β) be
the characteristic polynomial of Frobenius. Let n ∈ N. Then #E(Fqn) = (1−αn)(1−βn).

Proof: We haveE(Fqn) = ker(πqn−1) = ker(πnq−1). The result follows from Lemma 9.9.6.
�

Corollary 9.10.9 shows that for practical calculations we can identify the isogeny πq
with a complex number α that is one of the roots of P (T). The name “complex multiplica-
tion” for endomorphisms of elliptic curves that are not in Z comes from this identification.
When working with elliptic curves over C the analogy is even stronger, see Theorem 5.5
of [564].

Exercise 9.10.10. Let E be an elliptic curve over Fq. Write #E(Fqn) = qn − tn + 1 for
n ∈ N. Show that for i, j ∈ N with i < j we have titj = ti+j + qitj−i. Some special cases
are

t2n = t2n − 2qn , tn+1 = tnt1 − qtn−1.

Hence give an algorithm to efficiently compute tn for any value n, given q and t1.

Exercise 9.10.11. Let Ea : y2 + xy = x3 + ax2 + 1 over F2 where a ∈ {0, 1}. Show that
#Ea(F2) = 2 + (−1)a + 1 so P (T) = T 2 + (−1)aT + 2. These curves are called Koblitz
curves (Koblitz called them anomalous binary curves). Show that if n is composite
then #Ea(F2n) is not of the form 2r or 4r where r is prime. Hence, find all 3 < n < 200
such that #E0(F2n) = 2r or #E1(F2n) = 4r where r is prime.

We have seen that the number of points on an elliptic curve over a finite field lies in
the Hasse interval. An important result of Waterhouse [627] specifies exactly which group
orders arise.

Theorem 9.10.12. (Waterhouse) Let q = pm where p is prime and let t ∈ Z be such
that |t| ≤ 2

√
q. Then there is an elliptic curve over Fq with #E(Fq) = q − t + 1 if and

only if one of the following conditions holds:

1. gcd(t, p) = 1;

2. m is even and t = ±2
√
q;

3. m is even, p 6≡ 1 (mod 3) and t = ±√q;

4. m is odd, p = 2, 3 and t = ±p(m+1)/2;

5. Either m is odd or (m is even and p 6≡ 1 (mod 4)) and t = 0.

Proof: The proof given by Waterhouse relies on Honda-Tate theory; one shows that the
above cases give precisely the polynomials T 2 − tT + q with roots being Weil numbers.
See Theorem 4.1 of [627]. �

In the cases gcd(t, p) 6= 1 (i.e., p | t) the elliptic curve is said to be supersingular.
This case is discussed further in Section 9.11.

We know from Theorem 9.8.2 that the group structure of an elliptic curve over a finite
field Fq is of the form Z/n1Z×Z/n2Z for some integers n1, n2 such that n1 | n2. It follows
from the Weil pairing (see Exercise 26.2.5 or Section 3.8 of [564]) that n1 | (q − 1).

The following result gives the group structures of elliptic curves.1

1This result has been discovered by several authors. Schoof determined the group structures of su-
persingular elliptic curves in his thesis. The general statement was given by Tsfasman [610] in 1985,
Rück [505] in 1987 and Voloch [623] in 1988.

186 CHAPTER 9. ELLIPTIC CURVES

Theorem 9.10.13. Let q = pm where p is prime, let t ∈ Z be such that |t| ≤ 2
√
q and

let N = q − t + 1 be a possible group order for an elliptic curve as in Theorem 9.10.12.
Write N =

∏
l l
hl for the prime factorisation of N . Then the possible group structures

of elliptic curves over Fq with N points are (i.e., only these cases are possible, and every
case does arise for every q)

Z/phpZ×
∏

l 6=p

(
Z/lalZ× Z/lhl−alZ

)

where

1. if gcd(t, p) = 1 then 0 ≤ al ≤ min{vl(q − 1), ⌊hl/2⌋} where vl(q − 1) denotes the
integer b such that lb‖(q − 1),

2. if t = ±2
√
q then al = hl/2 (i.e., the group is (Z/(

√
q ± 1)Z)2),

3. if t = ±√q or t = ±p(m+1)/2 then the group is cyclic (i.e., all al = 0),

4. if t = 0 then either the group is cyclic (i.e., all al = 0) or is Z/2Z×Z/((q+ 1)/2)Z
(i.e., all al = 0 except a2 = 1).

Proof: See Voloch [623] or Theorem 3 of Rück [505] (note that it is necessary to prove that
Rück’s conditions imply those written above by considering possible divisors d | (q − 1)
and d | (q − t+ 1) in the supersingular cases). �

Exercise 9.10.14. Let q be a prime power, gcd(t, q) = 1, and N = q + 1 − t a possible
value for #E(Fq). Show that there exists an elliptic curve over Fq with N points and
which is cyclic as a group.

If E is an elliptic curve defined over Fq and ℓ is a prime such that gcd(ℓ, q) = 1, then
πq acts linearly on E[ℓ]. Considering E[ℓ] as a 2-dimensional vector space over Fℓ we can
represent πq as a 2 × 2 matrix with entries in Fℓ. Since (π2

q − tπq + q)(Q) = OE for all
Q ∈ E[ℓ], it follows that the matrix satisfies the characteristic polynomial P (T) (mod ℓ).
If E[ℓ] contains a cyclic subgroup 〈Q〉 defined over Fq then πq(Q) = [λ]Q for some λ ∈ Z.
Hence, OE = (π2

q − tπq + q)(Q) = [λ2 − tλ+ q]Q and so P (λ) ≡ 0 (mod ℓ). Conversely, if
P (T) ≡ (T −λ)(T −µ) (mod ℓ) then, for any Q ∈ E[ℓ] we have (πq−λ)(πq−µ)(Q) = OE .
Writing Q′ = πq(Q)−[µ]Q we have either Q′ = OE (in which case 〈Q〉 is a cyclic subgroup
fixed by πq), or πq(Q

′)− [λ]Q′ = OE (in which case 〈Q′〉 is such a group).
Atkin classified the splitting of the ℓ-division polynomials in Fq[X] in terms of the

Frobenius map and its characteristic polymomial modulo ℓ. We refer to Proposition 6.2
of Schoof [530] for the details.

Another useful result, which relates group structures and properties of the endomor-
phism ring, is Theorem 9.10.16. Exercise 9.10.15 shows that the final condition makes
sense.

Exercise 9.10.15. Let E be an elliptic curve over Fq and let t = q+ 1−#E(Fq). Show
that if n2 | (q + 1− t) and n | (q − 1) then n2 | (t2 − 4q).

Theorem 9.10.16. Let p be a prime, q = pm, E an elliptic curve over Fq, and t =
q + 1 − #E(Fq). Let n ∈ N be such that p ∤ n. Then E[n] ⊆ E(Fq) if and only if
n2 | (q + 1 − t), n | (q − 1), and (either t = ±2

√
q (equivalently, πq ∈ Z) or EndFq(E)

contains the order of discriminant (t2 − 4q)/n2).

Proof: If the kernel of πq − 1 contains the kernel of [n] then, by Theorem 9.6.18, there
is an isogeny ψ ∈ EndFq (E) such that πq − 1 = ψ ◦ [n]. We write ψ = (πq − 1)/n. The
result follows easily; see Proposition 3.7 of Schoof [529] for the details. �

9.10. FROBENIUS MAP 187

Exercise 9.10.17. Let E be an elliptic curve over Fq with2 gcd(q, t) = 1, where #E(Fq) =
q + 1− t. Deduce from Theorem 9.10.16 that if EndFq

(E) = Z[πq] then E(Fq) is a cyclic
group.

9.10.1 Complex Multiplication

A lot of information about the numbers of points on elliptic curves arises from the theory
of complex multiplication. We do not have space to develop this theory in detail. Some
crucial tools are the lifting and reduction theorems of Deuring (see Sections 13.4 and
13.5 of Lang [366] or Chapter 10 of Washington [626]). We summarise some of the most
important ideas in the following theorem.

Theorem 9.10.18. Let O be an order in an imaginary quadratic field K. Then there is
a number field L containing K (called the ring class field) and an elliptic curve E over L
with EndL(E) ∼= O.

Let p be a rational prime that splits completely in L, and let ℘ be a prime of OL above
p (so that OL/℘ ∼= Fp). If E has good reduction modulo ℘ (this holds if ℘ does not divide
the discriminant of E), write E for the elliptic curve over Fp obtained as the reduction
of E modulo ℘. Then EndFp

(E) ∼= O and there is an element π ∈ O such that p = ππ

(where the overline denotes complex conjugation). Furthermore,

#E(Fp) = p+ 1− (π + π). (9.12)

Conversely, every elliptic curve E over Fp such that EndFp
(E) ∼= O arises in this way as

a reduction modulo ℘ of an elliptic curve over L.

Proof: This is Theorem 14.16 of Cox [157]; we refer to the books [157, 366] for much
more information about complex multiplication and elliptic curves. �

Remark 9.10.19. An important consequence of the theory of complex multiplication is
that the weighted number of Fq-isomorphism classes of elliptic curves over Fq with number
of points equal to q+1− t is the Hurwitz class number3 H(t2−4q) (see Theorem 14.18 of
Cox [157], Section 1.5 of Lenstra [377] or Schoof [529]). The Hurwitz class number is the
sum of the (weighted) class numbers of the orders containing the order of discriminant
t2 − 4q (see the references mentioned or Section 5.3.2 of Cohen [136]).

These results imply that the number of elliptic curves over Fq with q + 1 − t points

is O(u log(u) log(log(u))), where u =
√

4q − t2. The bound h(−D) <
√
D log(D) for fun-

damental discriminants is Exercise 5.27 of Cohen [136]; the case of general discriminants
was discussed by Lenstra [377] and the best result is due to McKee [413].

Example 9.10.20. Let p ≡ 1 (mod 4) be prime and let a4 ∈ Z be such that p ∤ a4. Let
E : y2 = x3 + a4x be an elliptic curve over Q and denote by E the elliptic curve over Fp
obtained as the reduction of E modulo p. We will determine #E(Fp).

The curve E has the endomorphism ψ(x, y) = (−x, iy) (where i ∈ Q satisfies i2 = −1)
satisfying ψ2(x, y) = (x,−y) = [−1](x, y) and so EndQ(E) contains Z[ψ] ∼= Z[i]. Since
Z[i] is a maximal order it follows that EndQ(E) = Z[i].

Note that every prime p ≡ 1 (mod 4) can be written as p = a2 + b2 for a, b ∈ Z
(see Theorem 1.2 of Cox [157]). Note that there are eight choices for the pair (a, b) in
p = a2 + b2, namely (±a,±b), (±b,±a) with all choices of sign independent (note that
a 6= b since p is odd).

2In fact, if gcd(q, t) 6= 1 then the condition EndFq
(E) = Z[πq] never holds.

3Lenstra and Schoof call it the Kronecker class number.

188 CHAPTER 9. ELLIPTIC CURVES

In other words p = (a+ bi)(a− bi) where i2 = −1. By Theorem 9.10.18 the reduction
modulo p of E has #E(Fp) = p+ 1− (π + π) where ππ = p. Hence π = a+ bi for one of
the pairs (a, b) and #E(Fp) = p+ 1− t where

t ∈ {2a,−2a, 2b,−2b}.

The correct value can usually be determined by testing whether [p+ 1− t]P = OE for a
random point P ∈ E(Fp). Section 4.4 of Washington [626] gives much more detail about
this case.

In practice, one uses the Cornacchia algorithm to compute the integers a and b such
that p = a2 + b2 and so it is efficient to compute #E(Fp) for elliptic curves of the form
y2 = x3 + a4x for very large primes p. This idea can be extended to many other curves
and is known as the complex multiplication method or CM method.

Exercise 9.10.21. Determine the number of points on E : y2 = x3 + a4x modulo
p = 1429 = 232 + 302 for a4 = 1, 2, 3, 4.

Exercise 9.10.22. Let p be an odd prime such that p ≡ 1 (mod 3). Then there exist
integers a, b such that p = a2 + ab+ b2 (see Chapter 1 of [157] and note that p = x2 + 3y2

implies p = (x−y)2+(x−y)(2y)+(2y)2). Show that the number of points on y2 = x3+a6
over Fp is p+ 1− t where

t ∈ {±(2a+ b),±(2b+ a),±(b− a)}.

Example 9.10.23. The six values a6 = 1, 2, 3, 4, 5, 6 all give distinct values for #E(F7)
for the curve E : y2 = x3 + a6, namely 12, 9, 13, 3, 7, 4 respectively.

9.10.2 Counting Points on Elliptic Curves

A computational problem of fundamental importance is to compute #E(Fq) where E is
an elliptic curve over a finite field Fq. Due to lack of space we are unable to give a full
treatment of this topic.

We know that #E(Fq) lies in the Hasse interval [q + 1 − 2
√
q, q + 1 + 2

√
q]. In

many cases, to determine #E(Fq) it suffices to determine the order n of a random point
P ∈ E(Fq). Determining all multiples of n that lie in the Hasse interval for a point in

E(Fq) can be done using the baby-step-giant-step algorithm in Õ(q1/4) bit operations
(see Exercise 13.3.11). If there is only one multiple of n in the Hasse interval then we
have determined #E(Fq). This process will not determine #E(Fq) uniquely if n ≤ 4

√
q.

Mestre suggested determining the order of points on both E(Fq) and its quadratic twist.

This leads to a randomised algorithm to compute #E(Fq) in Õ(q1/4) bit operations. We
refer to Section 3 of Schoof [530] for details.

A polynomial-time algorithm to compute #E(Fq) was given by Schoof [528, 530].
Improvements have been given by numerous authors, especially Atkin and Elkies. The
crucial idea is to use equation (9.11). Indeed, the basis of Schoof’s algorithm is that if P
is a point of small prime order l then one can compute t (mod l) by solving the (easy)
discrete logarithm problem

πq(πq(P)) + [q]P = [t (mod l)]πq(P).

One finds a point P of order l using the division polynomials ψl(x, y) (in fact, Schoof
never writes down an explicit P , but rather works with a “generic” point of order l by
performing polynomial arithmetic modulo ψl(x, y)). Note that, when l is odd, ψl(x, y)

9.11. SUPERSINGULAR ELLIPTIC CURVES 189

is a polynomial in x only. Repeating this idea for different small primes l and applying
the Chinese remainder theorem gives t. We refer to [530], Chapters VI and VII of [64],
Chapter VI of [65] and Chapter 17 of [16] for details and references.

Exercise 9.10.24. Let E : y2 = F (x) over Fq. Show that one can determine t (mod 2)
by considering the number of roots of F (x) in Fq.

There are a number of point counting algorithms using p-adic ideas. We do not have
space to discuss these algorithms. See Chapter VI of [65] and Chapter IV of [16] for
details and references.

9.11 Supersingular Elliptic Curves

This section is about a particular class of elliptic curves over finite fields that have quite
different properties to the general case. For many cryptographic applications these ellip-
tic curves are avoided, though in pairing-based cryptography they have some desirable
features.

Exercise 9.11.1. Let q = pm where p is prime and let E be an elliptic curve over Fq.
Show using Exercise 9.10.10 that if #E(Fq) ≡ 1 (mod p) then #E(Fqn) ≡ 1 (mod p) for
all n ∈ N. Hence, show that E[p] = {OE} for such an elliptic curve.

Theorem 9.11.2. Let E be an elliptic curve over Fpm where p is prime. The following
are equivalent:

1. #E(Fpm) = pm + 1− t where p | t;

2. E[p] = {OE};

3. EndFp
(E) is not commutative (hence, by Theorem 9.9.1, it is an order in a quater-

nion algebra);

4. The characteristic polynomial of Frobenius P (T) = T 2 − tT + pm factors over C
with roots α1, α2 such that αi/

√
pm are roots of unity. (Recall that a root of unity

is a complex number z such that there is some n ∈ N with zn = 1.)

Proof: The equivalence of Properties 1, 2 and 3 is shown in Theorem 3.1 of Silver-
man [564]. Property 4 is shown in Proposition 13.6.2 of Husemöller [302]. �

Definition 9.11.3. An elliptic curve E over Fpm is supersingular if it satisfies any of
the conditions of Theorem 9.11.2. An elliptic curve is ordinary if it does not satisfy any
of the conditions of Theorem 9.11.2.

We stress that a supersingular curve is not singular as a curve. The name “super-
singular” originates from the theory of “singular invariants” in the theory of modular
functions.

Example 9.11.4. Let p ≡ 2 (mod 3) be prime and let a6 ∈ F∗
p. The elliptic curve

E : y2 = x3 + a6 is supersingular since, by Exercise 9.10.4, it has p + 1 points. Another
way to show supersingularity for this curve is to use the endomorphism ρ(x, y) = (ζ3x, y)
as in Exercise 9.6.25 (where ζ3 ∈ Fp2 is such that ζ23 + ζ3 + 1 = 0). Since ρ does not
commute with the p-power Frobenius map πp (specifically, πpρ = ρ2πp, since ζ3 6∈ Fp) the
endomorphism ring is not commutative.

To determine the quaternion algebra one can proceed as follows. First show that ρ
satisfies the characteristic polynomial T 2+T+1 = 0 (since ρ3(P) = P for all P ∈ E(Fp)).

190 CHAPTER 9. ELLIPTIC CURVES

Then consider the isogeny φ = [1] − ρ, which has dual φ̂ = [1] − ρ2. The degree d of φ

satisfies [d] = φφ̂ = (1− ρ)(1− ρ2) = 1− ρ− ρ2 + 1 = 3. Hence φ has degree 3. The trace
of φ is t = 1 + deg(φ)−deg(1−φ) = 1 + 3−deg(ρ) = 3. One can show that (ρφ)2 = [−3]
and so the quaternion algebra is Q[i, j] with i2 = −3 and j2 = −p.

Example 9.11.5. Let p ≡ 3 (mod 4) be prime and a4 ∈ F∗
p. Exercise 9.10.5 implies that

E : y2 = x3 + a4x is supersingular. An alternative proof of supersingularity follows from
Example 9.9.2; since ξ(x, y) = (−x, iy) does not commute with the p-power Frobenius.

Example 9.11.6. Let Fq be a finite field of characteristic 2 and F (x) ∈ Fq[x] a monic
polynomial of degree 3. Then E : y2 + y = F (x) is supersingular. This follows from the
fact that (x, y) ∈ E(Fqn) if and only if (x, y + 1) ∈ E(Fqn) and hence #E(Fqn) is odd for
all n. It follows that there are no points of order 2 in E(F2) and so E is supersingular.

Exercise 9.11.7. Use Waterhouse’s theorem to show that, for every prime p and m ∈ N,
there exists a supersingular curve over Fpm .

Bröker [107] has given an algorithm to construct supersingular elliptic curves over finite
fields using the CM method. The basic algorithm also appeared as Algorithm A2 in Sakai,
Ohgishi and Kasahara [509]. The method has expected polynomial-time complexity,
assuming a generalisation of the Riemann hypothesis is true.

Property 4 of Theorem 9.11.2 implies that if E is a supersingular curve then πmq = [pM]
for some m,M ∈ N. In other words, πmq ∈ Z. In examples we have seen π2 = [−q]. A
natural question is how large the integer m can be.

Lemma 9.11.8. Let E be a supersingular elliptic curve over Fq and let P (T) ∈ Z[T]
be the characteristic polynomial of Frobenius. Then every non-square factor of 1

qP (T
√
q)

divides Φm(T 2) in R[T] for some m ∈ {1, 2, 3, 4, 6}, where Φm(x) is the m-th cyclotomic
polynomial (see Section 6.1).

Proof: Waterhouse’s theorem gives the possible values for the characteristic polynomial
P (T) = T 2 − tT + q of Frobenius. The possible values for t are 0, ±√q, ±2

√
q, ±√2q

(when q is a power of 2) or ±√3q (when q is a power of 3).
By part 4 of Theorem 9.11.2, every root α of P (T) is such that α/

√
q is a root of

unity. If P (T) = (T − α)(T − β) then

(T − α/√q)(T − β/√q) = 1
qP (T

√
q).

So, write Q(T) = P (T
√
q)/q ∈ R[T]. The first three values for t in the above list give

Q(T) equal to T 2 + 1, T 2 ± T + 1 and T 2 ± 2T + 1 = (T ± 1)2 respectively. The result
clearly holds in these cases (the condition about “non-square factors” is needed since
(T ± 1) divides Φ1(T 2) = (T − 1)(T + 1) but (T ± 1)2 does not divide any cyclotomic
polynomial).

We now deal with the remaining two cases. Let t = ±2(m+1)/2 where q = 2m. Then
Q(T) = T 2 ±

√
2T + 1 and we have

(T 2 +
√

2T + 1)(T 2 −
√

2T + 1) = T 4 + 1 = Φ4(T 2).

Similarly, when t = ±3(m+1)/2 and q = 3m then Q(T) = T 2 ±
√

3T + 1 and

(T 2 +
√

3T + 1)(T 2 −
√

3T + 1) = T 4 − T 2 + 1 = Φ6(T 2).

�

9.11. SUPERSINGULAR ELLIPTIC CURVES 191

Corollary 9.11.9. Let E be a supersingular elliptic curve over Fq. Then there is an
integer m ∈ {1, 2, 3, 4, 6} such that πmq ∈ Z and the exponent of the group E(Fq) divides
(qm− 1). Furthermore, the cases m = 3, 4, 6 only occur when q is a square, a power of 2,
or a power of 3 respectively.

Exercise 9.11.10. Prove Corollary 9.11.9.

Lemma 9.11.11. Let p > 3 be prime, let E/Fp be a supersingular elliptic curve and let
O = EndFp

(E). Then j(E) ∈ Fp if and only if
√−p ∈ O.

Proof: (⇒) j(E) ∈ Fp implies E is defined over Fp and so O contains a Frobenius element
π satisfying (by Theorem 9.10.12, since p > 3) the characteristic polynomial π2 + p = 0.

(⇐) Let ψ ∈ EndFp
(E) satisfy ψ2 = [−p]. Then ψ is an isogeny of degree p and

ψ̂ ◦ ψ = [p]. Since E is supersingular it follows that ψ has trivial kernel and so is
inseparable. Hence, by Theorem 9.6.17, ψ composes as

E
π−→ E(p) λ−→ E

where π is the p-power Frobenius map and E(p) is the image curve of Frobenius. Now
deg(λ) = 1 and so λ is an isomorphism. Hence, j(E) = j(E(p)) = j(E)p. Hence,
j(E) ∈ Fp. �

In general, the endomorphism ring of a supersingular elliptic curve is generated over
Z by the Frobenius map and some “complex multiplication” isogeny. However, as seen
in Example 9.10.6, the Frobenius can lie in Z, in which case two independent “complex
multiplications” are needed (though, as in Example 9.10.6, one of them will be very closely
related to a Frobenius map on a related elliptic curve).

It is known that the endomorphism ring Endk(E) of a supersingular elliptic curve
E over a finite field k is a maximal order in a quaternion algebra (see Theorem 4.2
of Waterhouse [627]) and that the quaternion algebra is ramified at exactly p and ∞.
Indeed, [627] (Theorem 4.1) shows that when t = ±2

√
q then all endomorphisms are

defined over Fq and every maximal order arises. In other cases not all endomorphisms
are defined over Fq and the maximal order is an order that contains πq and is maximal
at p (i.e., the index is not divisible by p).

We now present some results on the number of supersingular curves over finite fields.

Theorem 9.11.12. Let Fq be a field of characteristic p and E/Fq a supersingular elliptic
curve. Then j(E) ∈ Fp2 . Furthermore:

1. The number of Fq-isomorphism classes of supersingular elliptic curves over Fp2 is 1
if p = 2, 3 and ⌊p/12⌋+ǫp where ǫp = 0, 1, 1, 2 respectively if p ≡ 1, 5, 7, 11 (mod 12).

2. The number of Fq-isomorphism classes of supersingular elliptic curves over Fp is 1
if p = 2, 3 and is equal to the Hurwitz class number H(−4p) if p > 3. Furthermore,

H(−4p) =

1
2h(−4p) if p ≡ 1 (mod 4),
h(−p) if p ≡ 7 (mod 8),
2h(−p) if p ≡ 3 (mod 8)

where h(d) is the usual ideal class number of the quadratic field Q(
√
d).

Proof: The claim that j(E) ∈ Fp2 is Theorem V.3.1(a)(iii) of [564] or Theorem 5.6 of
[302]. The formula for the number of supersingular j-invariants in Fp2 is Theorem 4.1(c)

192 CHAPTER 9. ELLIPTIC CURVES

of [564] or Section 13.4 of [302]. The statement about the number of supersingular j-
invariants in Fp is given in Theorem 14.18 of Cox [157] (the supersingular case is handled
on page 322). The precise formula for H(−4p) is equation (1.11) of Gross [268]. (Gross
also explains the relation between isomorphism classes of supersingular curves and Brandt
matrices.) �

Lemma 9.11.13. Let E1, E2 be elliptic curves over Fq. Show that if E1 and E2 are
ordinary, #E1(Fq) = #E2(Fq) and j(E1) = j(E2) then they are isomorphic over Fq.

Proof: (Sketch) Since j(E1) = j(E2) the curves are isomorphic over Fq. If #E1(Fq) =
q + 1− t and E2 is not isomorphic to E1 over Fq, then E2 is a non-trivial twist of E1. If
j(E1) 6= 0, 1728 then #E2(Fq) = q + 1 + t 6= #E1(Fq), since t 6= 0 (this is where we use
the fact that E1 is ordinary). In the cases j(E1) = 0, 1728 one needs to use the formulae
of Example 9.10.20 and Exercise 9.10.22 and show that these group orders are distinct
when t 6= 0.

An alternative proof, using less elementary methods, is given in Proposition 14.19
(page 321) of Cox [157]. �

Exercise 9.11.14. Give an example of supersingular curves E1, E2 over Fp such that
j(E1) = j(E2), #E1(Fp) = #E2(Fp) and E1 is not isomorphic to E2 over Fp.

9.12 Alternative Models for Elliptic Curves

We have introduced elliptic curves using Weierstrass equations, but there are many dif-
ferent models and some of them have computational advantages. We present the Mont-
gomery model and the twisted Edwards model. A mathematically important model,
which we do not discuss directly, is the intersection of two quadratic surfaces; see Sec-
tion 2.5 of Washington [626] for details. It is not the purpose of this book to give an
implementation guide, so we refrain from providing the optimised addition algorithms.
Readers are advised to consult Sections 13.2 and 13.3 of [16] or the Explicit Formulas
Database [51].

9.12.1 Montgomery Model

This model, for elliptic curves over fields of odd characteristic, was introduced by Mont-
gomery [436] in the context of efficient elliptic curve factoring using (x : z) coordinates.
It is a very convenient model for arithmetic in (a projective representation of) the al-
gebraic group quotient E(k) modulo the equivalence relation P ≡ −P . Versions of the
Montgomery model have been given in characteristic 2 but they are not so successful; we
refer to Stam [578] for a survey.

Definition 9.12.1. Let k be a field such that char(k) 6= 2. Let A,B ∈ k, B 6= 0. The
Montgomery model is

By2 = x3 + Ax2 + x. (9.13)

According to Definition 7.2.8, when B 6= 1, the Montgomery model is not an elliptic
curve. However, the theory all goes through in the more general case, and so we refer to
curves in Montgomery model as elliptic curves.

Exercise 9.12.2. Show that the Montgomery model is non-singular if and only if B(A2−
4) 6= 0.

9.12. ALTERNATIVE MODELS FOR ELLIPTIC CURVES 193

Exercise 9.12.3. Show that there is a unique point at infinity on the Montgomery model
of an elliptic curve. Show that this point is not singular, and is always k-rational.

Lemma 9.12.4. Let k be a field such that char(k) 6= 2. Let E : y2 = x3 +a2x
2 +a4x+a6

be an elliptic curve over k in Weierstrass form. There is an isomorphism over k from E
to a Montgomery model if and only if F (x) = x3 + a2x

2 + a4x + a6 has a root xP ∈ k
such that (3x2P + 2a2xP + a4) is a square in k. This isomorphism maps OE to the point
at infinity on the Montgomery model and is a group homomorphism.

Proof: Let P = (xP , 0) ∈ E(k). First move P to (0, 0) by the change of variable
X = x− xP . The map (x, y) 7→ (x− xP , y) is an isomorphism to y2 = X3 + a′2X

2 + a′4X
where a′2 = 3xP + a2 and a′4 = 3x2P + 2a2xP + a4. Let w =

√
a′4, which lies in k by

the assumption of the Lemma. Consider the isomorphism (X, y) 7→ (U, V) = (X/w, y/w)
that maps to

(1/w)V 2 = U3 + (a′2/w)U2 + U.

Taking A = a′2/w,B = 1/w ∈ k gives the result.

Conversely, suppose By2 = x3 +Ax2 + x is a Montgomery model of an elliptic curve
over k. Multiplying though by B3 gives (B2y)2 = (Bx)3 + AB(Bx)2 + B2(Bx) and so
(U, V) = (Bx,B2y) satisfies the Weierstrass equation V 2 = U3 + ABU2 + B2U . Taking
a2 = AB, a4 = B2 and a6 = 0 one can check that the conditions in the statement of the
Lemma hold (the polynomial F (x) has the root 0, and a′4 = B2 is a square).

The maps extend to the projective curves and map (0 : 1 : 0) to (0 : 1 : 0). The fact
that they are group homomorphisms follows from a generalisation of Theorem 9.2.1. �

When the conditions of Lemma 9.12.4 hold we say that the elliptic curve E can be
written in Montgomery model. Throughout this section, when we refer to an elliptic
curve E in Montgomery model, we assume that E is specified by an affine equation as in
equation (9.13).

Lemma 9.12.5. Let P1 = (x1, y2), P2 = (x2, y2) be points on the elliptic curve By2 =
x3 +Ax2 + x such that x1 6= x2 and x1x2 6= 0. Then P1 + P2 = (x3, y3) where

x3 = B(x2y1 − x1y2)2/(x1x2(x2 − x1)2).

Writing P1 − P2 = (x4, y4) one finds

x3x4 = (x1x2 − 1)2/(x1 − x2)2.

For the case P2 = P1 we have [2](x1, y1) = (x3, y3) where

x3 = (x21 − 1)2/(4x1(x21 +Ax1 + 1)).

Proof: The standard addition formula gives x3 = B((y2−y1)/(x2−x1))2−(A+x1+x2),
which yields

x3(x2 − x1)2 = By21 +By22 − 2By1y2 − (A+ x1 + x2)(x2 − x1)2

= −2By1y2 + 2Ax1x2 + x21x2 + x1x
2
2 + x1 + x2

= x2

x1
By21 + x1

x2
By22 − 2By1y2

= B(x2y1 − x1y2)2/(x1x2).

194 CHAPTER 9. ELLIPTIC CURVES

Replacing P2 by −P2 gives P1−P2 = (x4, y4) with x4(x2−x1)2 = B(x2y1+x1y2)2/(x1x2).
Multiplying the two equations gives

x3x4(x2 − x1)4 = B2(x2y1 − x1y2)2(x2y1 + x1y2)2/(x1x2)2

=

(
x2By

2
1

x1
− x1By

2
2

x2

)2

= (x1x2(x1 − x2) + (x2 − x1))2

from which we deduce that x3x4(x2 − x1)2 = (x1x2 − 1)2. In the case P1 = P2 we have
x34By21 = (3x21+2Ax1+1)2−(A+2x1)4By21 , which implies 4x1x3(x21+Ax1+1) = (x21−1)2.
�

In other words, one can compute the x-coordinate of [2]P using only the x-coordinate
of P . Similarly, given the x-coordinates of P1, P2 and P1−P2 (i.e., x1, x2 and x4) one can
compute the x-coordinate of P1+P2. The next exercise shows how to do this projectively.

Exercise 9.12.6. Let P = (xP , yP) ∈ E(Fq) be a point on an elliptic curve given in a
Montgomery model. Define X1 = xP , Z1 = 1, X2 = (X2

1 − 1)2, Z2 = 4x1(x21 + Ax1 + 1).
Given (Xn, Zn), (Xm, Zm), (Xm−n, Zm−n) define

Xn+m = Zm−n(XnXm − ZnZm)2

Zn+m = Xm−n(XnZm −XmZn)2

and

X2n = (X2
n − Z2

n)2

Z2n = 4XnZn(X2
n + AXnZn + Z2

n).

Show that the x-coordinate of [m]P is Xm/Zm.

Exercise 9.12.7.⋆ Write a “double and add” algorithm to compute the x-coordinate of
[n]P using the projective Montgomery addition formula. Give alternative versions of the
Montgomery addition formulae that show that each iteration of your algorithm requires
only 7 multiplications and 4 squarings in Fq.

The most efficient formulae for exponentiation using a ladder algorithm on Mont-
gomery curves are given in Section 6.2 of Gaudry and Lubicz [247] (also see [51]).

Exercise 9.12.8. Let E : By2 = x(x2 + a2x + a4) be an elliptic curve over k (where
char(k) 6= 2). Show that the solutions (x, y) ∈ E(k) to [2](x, y) = (0, 0) are the points
(
√
a4,±

√
a4(a2 + 2

√
a4)/B) and (−√a4,±

√
a4(a2 − 2

√
a4)/B).

Lemma 9.12.9. (Suyama) If E is an elliptic curve given by a Montgomery model then
4 | #E(Fq).

Proof: If A2 − 4 = (A − 2)(A + 2) is a square then the full 2-torsion is over Fq. If
(A − 2)(A+ 2) is not a square then one of (A ± 2) is a square in Fq and the other isn’t.

If B(A+ 2) is a square then (1,
√

(A+ 2)/B) is defined over Fq and, by Exercise 9.12.8,

has order 4. Similarly, if B(A− 2) is a square then (−1,
√

(A− 2)/B) is defined over Fq
and has order 4. �

Let E : By2 = x3 + Ax2 + x be an elliptic curve over k in Montgomery model. If
u ∈ k∗ then E is isomorphic to E(u) : (uB)Y 2 = X3 +AX2 +X where the corresponding
isomorphism φ : E → E(u) is φ(x, y) = (x, y/

√
u). If u is not a square in k then φ is not

defined over k and so E(u) is the quadratic twist of E.

9.12. ALTERNATIVE MODELS FOR ELLIPTIC CURVES 195

Exercise 9.12.10. Show that every elliptic curve E in Montgomery model over a finite
field Fq is such that either E or its quadratic twist E(d) has a point of order 4.

Theorem 9.12.11. Let E be an elliptic curve over Fq (char(Fq) 6= 2) such that 4 |
#E(Fq). Then E is either isomorphic or 2-isogenous over Fq to an elliptic curve in
Montgomery model.

Proof: Suppose P ∈ E(Fq) has order 4. Write P0 = [2]P and change coordinates so that
P0 = (0, 0). By Exercise 9.12.8 it follows that a4 is a square in Fq and so by Lemma 9.12.4
is isomorphic to an elliptic curve in Montgomery model.

Suppose now that there is no point of order 4 in E(Fq). Then #E(Fq)[2] = 4 and
so all points of order 2 are defined over Fq. In other words, one can write E as y2 =
x(x − a)(x − b) = x(x2 − (a + b)x + ab) where a, b ∈ Fq. Now take the 2-isogeny as in
Example 9.6.9. This maps E to E′ : Y 2 = X(X2+2(a+b)X+(a−b)2). By Lemma 9.12.4
it follows that E′ is isomorphic to an elliptic curve in Montgomery model. �

We have already seen the quadratic twist of a Montgomery model. It is natural to
consider whether there are other twists.

Theorem 9.12.12. Let q = pn where p > 3 is prime. If E/Fq is an ordinary elliptic curve
admitting a Montgomery model then only one non-trivial twist also admits a Montgomery
model. Furthermore, this twist is the quadratic twist.

Proof: When j(E) 6= 0, 1728 then the quadratic twist is the only non-trivial twist, so
there is nothing to prove. So we consider j(E) = 1728 and j(E) = 0. The crucial
observation will be that the other twists E′ do not satisfy 4 | #E′(Fq).

By Example 9.10.20, if j(E) = 1728 then q ≡ 1 (mod 4), q = a2 + b2 for some a, b ∈ Z,
and the group orders are q+1±2a and q+1±2b. Note that, without loss of generality, the
solution (a, b) to q = a2+b2 is such that a is odd and b is even. Then 2a 6≡ 2b (mod 4) and
so only one of q+1+2a and q+1+2b is divisible by 4. Since q+1+2a ≡ q+1−2a (mod 4)
(and similarly for the other case) it follows that only one pair of quadratic twists can be
given in Montgomery model.

By Exercise 9.10.22, if j(E) = 0 then q ≡ 1 (mod 3), q = a2+ab+b2 for some a, b ∈ Z,
and the possible group orders are

q + 1± (a− b), q + 1± (2a+ b), q + 1± (2b+ a).

Without loss of generality a is odd and b may be either odd or even. If a and b are both
odd then 2a− b and 2b− a are both odd and so q + 1± (a+ b) is the only pair of group
orders that are even. Similarly, if a is odd and b is even then a+ b and 2b + a are both
odd and so q+ 1± (2a+ b) is the only pair of group orders that are even. This completes
the proof. �

Example 9.12.13. The elliptic curve y2 = x3 + a4x is isomorphic over k to the curve√
a4Y

2 = X3 +X in Montgomery form via (x, y) 7→ (X,Y) = (x/
√
a4, y/a4).

The elliptic curve y2 = x3 + a6 is isomorphic over k to the curve

1/(
√

3(−a6)1/3)Y 2 = X3 +
√

3X2 +X

in Montgomery model. To see this, consider the point P = ((−a6)1/3, 0) and move it to

(0, 0) via W = x− a1/36 , giving y2 = W 3 + 3(−a6)1/3W 2 + 3(−a6)2/3W .

196 CHAPTER 9. ELLIPTIC CURVES

9.12.2 Edwards Model

Euler and Gauss considered the genus 1 curve x2 + y2 = 1− x2y2 and described a group
operation on its points. Edwards generalised this to a wide class of elliptic curves (we
refer to [190] for details and historical discussion). Further extensions were proposed by
Bernstein, Birkner, Joye, Lange, and Peters (see [48] and its references). Edwards curves
have several important features: they give a complete group law on E(Fq) for some fields
Fq (in other words, there is a single rational map + : E×E → E that computes addition
for all4 possible inputs in E(Fq)×E(Fq)) and the addition formulae can be implemented
extremely efficiently in some cases. Hence this model for elliptic curves is very useful for
many cryptographic applications.

Definition 9.12.14. Let k be a field such that char(k) 6= 2. Let a, d ∈ k satisfy a 6=
0, d 6= 0, a 6= d. The twisted Edwards model is

ax2 + y2 = 1 + dx2y2.

Exercise 9.12.15. Show that a curve in twisted Edwards model is non-singular as an
affine curve. Show that if any of the conditions a 6= 0, d 6= 0 and a 6= d are not satisfied
then the affine curve has a singular point.

Bernstein, Lange and Farashahi [55] have also formulated an Edwards model for elliptic
curves in characteristic 2.

The Weierstrass model of an elliptic curve over k (where char(k) 6= 2) is of the form
y2 = F (x) and it would be natural to write the twisted Edwards model in the form
y2 = (1− ax2)/(1− dx2). A natural formulation of the group law would be such that the
inverse of a point (x, y) is (x,−y). This leads to having identity element (x, y) = (1/

√
a, 0).

Instead, for historical reasons, it is traditional to think of the curve as

x2 = (1− y2)/(a− dy2).

The identity element is then (0, 1) and the inverse of (x, y) is (−x, y).
The group operation on twisted Edwards models is

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
. (9.14)

This is shown to be a group law in [52, 48]. A geometric description of the Edwards group
law on the singular curve is given by Arène, Lange, Naehrig and Ritzenthaler [12]. An
inversion-free (i.e., projective) version and explicit formulae for efficient arithmetic are
given in [48].

Exercise 9.12.16. Let E be a curve over k in twisted Edwards model. Show that
(0,−1) ∈ E(k) has order 2 and that (±1/

√
a, 0) ∈ E(k) have order 4.

Exercise 9.12.17. Determine the points at infinity on a curve in twisted Edwards model
and show they are singular.

We now give a non-singular projective model for twisted Edwards models that allows
us to view the points at infinity and determine their orders.

4Note that this is a stronger statement than the unified group law of Exercise 9.1.1 as the group law on
(twisted) Edwards curve also includes addition of a point with its inverse or the identity element. Also,
the group law on (twisted) Edwards curves achieves this with no loss of efficiency, unlike Exercise 9.1.1.
On the other hand, we should mention that the group law on (twisted) Edwards curves is never complete
for the group E(Fq).

9.12. ALTERNATIVE MODELS FOR ELLIPTIC CURVES 197

Lemma 9.12.18. Let k be a field of characteristic not equal to 2. Let a, d ∈ k with
a, d 6= 0. There are four points at infinity over k on a twisted Edwards model over k and
they all have order dividing 4.

Proof: (Sketch) The rational map φ(x, y) = (X0 = xy,X1 = x,X2 = y,X3 = 1) maps a
twisted Edwards curve to the projective algebraic set

X = V (aX2
1 +X2

2 −X2
3 − dX2

0 , X1X2 −X0X3) ⊂ P3.

It can be shown that X is irreducible and of dimension 1.
The points at infinity on the affine twisted Edwards model correspond to the points

(1 : ±
√
d/a : 0 : 0) and (1 : 0 : ±

√
d : 0)

with X3 = 0. To see that the points at infinity on X are non-singular, set X0 = 1 and
obtain the Jacobian matrix

(
2aX1 2X2 −2X3

X2 X1 −1

)
,

which is seen to have rank 2 when evaluated at the points (±
√
d/a, 0, 0) and (0,±

√
d, 0).

Let (X0 : X1 : X2 : X3) and (Z0 : Z1 : Z2 : Z3) be points on X and define the values

S1 = (X1Z2+Z1X2), S2 = (X2Z2−aX1Z1), S3 = (X3Z3+dX0Z0), S4 = (X3Z3−dX0Z0).

The group law formula on the affine twisted Edwards curve corresponds to the formula

(X0 : X1 : X2 : X3) + (Z0 : Z1 : Z2 : Z3) = (S1S2 : S1S4 : S2S3 : S3S4).

One can verify that (0 : 0 : 1 : 1) is the identity by computing

(X0 : X1 : X2 : X3) + (0 : 0 : 1 : 1) = (X1X2 : X1X3 : X2X3 : X2
3).

When X3 6= 0 one replaces the first coordinate X1X2 by X0X3 and divides by X3 to get
(X0 : X1 : X2 : X3). When X3 = 0 one multiplies through by X0, replaces X0X3 by
X1X2 everywhere, and divides by X1X2.

Similarly, one can verify that (0 : 0 : −1 : 1) and (1 : ±
√
d/a : 0 : 0) have order 2, and

(1 : 0 : ±
√
d : 0) have order 4. �

We now show that the Edwards group law is complete for points defined over k in
certain cases.

Lemma 9.12.19. Let k be a field, char(k) 6= 2 and let a, d ∈ k be such that a 6= 0, d 6=
0, a 6= d. Suppose a is a square in k∗ and d is not a square in k∗. Then the affine group
law formula for twisted Edwards curves of equation (9.14) is defined for all points over k.

Proof: Let ǫ = dx1x2y1y2. Suppose, for contradiction, that ǫ = ±1. Then x1, x2, y1, y2 6=
0. One can show, by substituting ax22 + y22 = 1 + dx22y

2
2 , that

dx21y
2
1(ax22 + y22) = ax21 + y21 .

Adding ±2
√
aǫx1y1 to both sides and inserting the definition of ǫ gives

(
√
ax1 ± ǫy1)2 = dx21y

2
1(
√
ax2 ± y2)2.

Hence, if either
√
ax2 + y2 6= 0 or

√
ax2 − y2 6= 0 then one can deduce that d is a square

in k∗. On the other hand, if
√
ax2 + y2 =

√
ax2 − y2 = 0 one deduces that x2 = 0. Both

cases are a contradiction. �

It turns out that twisted Edwards curves and Montgomery curves cover exactly the
same k-isomorphism classes of elliptic curves.

198 CHAPTER 9. ELLIPTIC CURVES

Lemma 9.12.20. Let M : By2 = x3 + Ax2 + x be a Montgomery model for an elliptic
curve over k (so B 6= 0 and A2 6= 4). Define a = (A + 2)/B and d = (A − 2)/B. Then
a 6= 0, d 6= 0 and a 6= d. The map (x, y) 7→ (X = x/y, Y = (x− 1)/(x+ 1)) is a birational
map over k from M to the twisted Edwards curve

E : aX2 + Y 2 = 1 + dX2Y 2.

Conversely, if E is as above then define A = 2(a+ d)/(a− d) and B = 4/(a− d). Then
(X,Y) 7→ (x = (1 +Y)/(1−Y), y = (1 +Y)/(X(1−Y))) is a birational map over k from
E to M .

Exercise 9.12.21. Prove Lemma 9.12.20.

The birational map in Lemma 9.12.20 is a group homomorphism. Indeed, the proofs
of the group law in [52, 49] use this birational map to transfer the group law from the
Montgomery model to the twisted Edwards model.

Exercise 9.12.22. Show that the birational map from Montgomery model to twisted
Edwards model in Lemma 9.12.20 is undefined only for points P of order dividing 2 and
P = (−1,±

√
(A− 2)/B) (which has order 4). Show that the map from Edwards model

to Montgomery model is undefined only for points P = (0,±1) and points at infinity.

Exercise 9.12.23. Show that a non-trivial quadratic twist of the twisted Edwards model
ax2 + y2 = 1 + dx2y2 over k is aux2 + y2 = 1 + dux2y2 where u ∈ k∗ is a non-square.

Exercise 9.12.24. Show that if an elliptic curve E can be written in twisted Edwards
model then the only non-trivial twist of E that can also be written in twisted Edwards
model is the quadratic twist.

Example 9.12.25. The curve

x2 + y2 = 1− x2y2

has an automorphism ρ(x, y) = (ix, 1/y) (which fixes the identity point (0, 1)) for i =√
−1. One has ρ2 = −1. Hence this curve corresponds to a twist of the Weierstrass curve

y2 = x3 + x having j-invariant 1728.

Example 9.12.26. Elliptic curves with CM by D = −3 (equivalently, j-invariant 0) can
only be written in Edwards model if

√
3 ∈ Fq. Taking d = (

√
3 + 2)/(

√
3 − 2) gives the

Edwards curve

E : x2 + y2 = 1 + dx2y2,

which has j-invariant 0. We construct the automorphism corresponding to ζ3 in stages.
First we give the isomorphism φ : E → M where M : BY 2 = X3 + AX2 + X is the
curve in Montgomery model with A = 2(1 + d)/(1 − d) and B = 4/(1− d). This map is
φ(x, y) = ((1 + y)/(1− y), (1 + y)/(x(1 − y))) as in Lemma 9.12.20. The action of ζ3 on
M is given by

ζ(X,Y) = (ζ3X + (1− ζ3)/
√

3, Y).

Then we apply φ−1(X,Y) = (X/Y, (X − 1)/(X + 1)).

9.12.3 Jacobi Quartic Model

Exercises 9.12.27 and 9.12.29 give some details of the Jacobi quartic model.

9.13. STATISTICS OF ELLIPTIC CURVES OVER FINITE FIELDS 199

Exercise 9.12.27. Let k be a field of characteristic not equal to 2 and let a, d ∈ k be
such that a2 6= d. Show that the algebraic set

C : y2 = dx4 + 2ax2 + 1 (9.15)

is irreducible. Show that the point at infinity on C is singular and that the affine curve
is non-singular over k. Verify that the map φ(x, y) = (X,Y) = (a+ (y + 1)/x2, X/x) is a
birational map over k from C to

E : 2Y 2 = X
(
X2 − 2aX + (a2 − d)

)
. (9.16)

Show that if d is a square then E(k) contains E[2].

Definition 9.12.28. Let k be a field of characteristic not equal to 2 and let a, d ∈ k
be such that a2 6= d. The affine curve of equation (9.15) is called the Jacobi quartic
model. (By Exercise 9.12.27 it is birational to some elliptic curve.)

Addition formulae for Jacobi quartic curves are given by Hisil, Wong, Carter and
Dawson [286].

Exercise 9.12.29. Let q = pm where p > 2 is prime. Show that every elliptic curve over
Fq with 2 | #E(Fq) has a twist that is birational over Fq to a curve in Jacobi quartic
form.

9.13 Statistical Properties of Elliptic Curves over Fi-

nite Fields

There are a number of questions, relevant for cryptography, about the set of all elliptic
curves over Fq.

The theory of complex multiplication states that if |t| < 2
√
q and gcd(t, q) = 1

then the number of isomorphism classes of elliptic curves E over Fq with #E(Fq) =
q + 1 − t is given by the Hurwitz class number H(t2 − 4q). Theorem 9.11.12 gave a
similar result for the supersingular case. As noted in Section 9.10.1, this means that
the number of Fq-isomorphism classes of elliptic curves over Fq with q + 1 − t points is

O(D log(D) log(log(D))), where D =
√

4q − t2. We now give Lenstra’s bounds on the
number of Fq-isomorphism classes of elliptic curves with group orders in a subset of the
Hasse interval.

Since the number of elliptic curves in short Weierstrass form (assuming now that
2 ∤ q) that are Fq-isomorphic to a given curve E is (q − 1)/#Aut(E), it is traditional
to count the number of Fq-isomorphism classes weighted by #Aut(E) (see Section 1.4 of
Lenstra [377] for discussion and precise definitions). In other words, each Fq-isomorphism
class of elliptic curves with j(E) = 0 or j(E) = 1728 contributes less than one to the total.
This makes essentially no difference to the asymptotic statements in Theorem 9.13.1. The
weighted sum of all Fp-isomorphism classes of elliptic curves over Fp is p.

Theorem 9.13.1. (Proposition 1.9 of Lenstra [377] with the improvement of Theorem 2
of McKee [413]) There exists a constant C1 ∈ R>0 such that, for any prime p > 3 and
any S ⊂ [p + 1 − 2

√
p, p+ 1 + 2

√
p] ∩ Z, the weighted sum of Fp-isomorphism classes of

elliptic curves E/Fp with #E(Fp) ∈ S is at most C1#S
√
p log(p) log(log(p)).

There exists a constant C2 ∈ R>0 such that, for any prime p > 3 and any S ⊂
[p+ 1−√p, p+ 1 +

√
p]∩Z, the weighted sum of Fp-isomorphism classes of elliptic curves

E/Fp with #E(Fp) ∈ S is at least C2(#S − 2)
√
p/ log(p).

200 CHAPTER 9. ELLIPTIC CURVES

Lenstra also gave a result about divisibility of the group order by small primes.

Theorem 9.13.2. (Proposition 1.14 of [377]) Let p > 3 and l 6= p be primes. Then the
weighted sum of all elliptic curves E over Fp such that l | #E(Fp) is p/(l − 1) +O(l

√
p)

if p 6≡ 1 (mod l) and pl/(l2 − 1) +O(l
√
p) if p ≡ 1 (mod l). (Here the constants in the O

are independent of l and p.)

This result was generalised by Howe [295] to count curves with N | #E(Fq) where N
is not prime.

For cryptography it is important to determine the probability that a randomly chosen
elliptic curve over Fq (i.e., choosing coefficients a4, a6 ∈ Fq uniformly at random) is prime.
A conjectural result was given by Galbraith and McKee [225].

Conjecture 9.13.3. Let P1 be the probability that a number within 2
√
p of p+1 is prime.

Then the probability that an elliptic curve over Fp (p prime) has a prime number of points
is asymptotic to cpP1 as p→∞, where

cp =
2

3

∏

l>2

(
1− 1

(l − 1)2

) ∏

l|(p−1),l>2

(
1 +

1

(l + 1)(l − 2)

)
.

Here the products are over all primes l satisfying the stated conditions.

Galbraith and McKee also give a precise conjecture for the probability that a random
elliptic curve E over Fp has #E(Fp) = kr where r is prime and k ∈ N is small.

Related problems have also been considered. For example, Koblitz [345] studies the
probability that #E(Fp) is prime for a fixed elliptic curve E over Q as p varies. A similar
situation arises in the Sato-Tate distribution; namely the distribution on [−1, 1] arising
from (#E(Fp)− (p+ 1))/(2

√
p) for a fixed elliptic curve E over Q as p varies. We refer to

Murty and Shparlinski [447] for a survey of other results in this area (including discussion
of the Lang-Trotter conjecture).

9.14 Elliptic Curves over Rings

The elliptic curve factoring method (and some other theoretical applications in cryp-

tography) use elliptic curves over the ring Z/NZ. When N =
∏k
i=1 pi is square-free5

one can use the Chinese remainder theorem to interpret a triple (x, y, z) such that
y2z + a1xyz + a3yz

2 ≡ x3 + a2x
2z + a4xz

2 + a6z
3 (mod N) as an element of the di-

rect sum ⊕ki=1E(Fpi) of groups of elliptic curves over fields. It is essential to use the
projective representation, since there can be points that are the point at infinity modulo
p1 but not the point at infinity modulo p2 (in other words, p1 | z but p2 ∤ z). Considering
triples (x, y, z) such that gcd(x, y, z) = 1 (otherwise, the point modulo some prime is
(0, 0, 0)) up to multiplication by elements in (Z/NZ)∗ leads to a projective elliptic curve
point in E(Z/NZ). The usual formulae for the group operations can be used modulo N
and, when they are defined, give a group law. We refer to Section 2.11 of Washington [626]
for a detailed discussion, including a set of formulae for all cases of the group law. For a
more theoretical discussion we refer to Lenstra [377, 378].

5The non-square-free case is more subtle. We do not discuss it.

Chapter 10

Hyperelliptic Curves

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Hyperelliptic curves are a natural generalisation of elliptic curves, and it was suggested
by Koblitz [346] that they might be useful for public key cryptography. Note that there
is not a group law on the points of a hyperelliptic curve; instead we use the divisor
class group of the curve. The main goals of this chapter are to explain the geometry of
hyperelliptic curves, to describe Cantor’s algorithm [118] (and variants) to compute in
the divisor class group of hyperelliptic curves, and then to state some basic properties of
the divisor class group.

Definition 10.0.1. Let k be a perfect field. Let H(x), F (x) ∈ k[x] (we stress that
H(x) and F (x) are not assumed to be monic). An affine algebraic set of the form C :
y2 +H(x)y = F (x) is called a hyperelliptic equation. The hyperelliptic involution
ι : C → C is defined by ι(x, y) = (x,−y −H(x)).

Exercise 10.0.2. Let C be a hyperelliptic equation over k. Show that if P ∈ C(k) then
ι(P) ∈ C(k).

When the projective closure (in an appropriate space) of the algebraic set C in Defini-
tion 10.0.1 is irreducible, dimension 1, non-singular and of genus g ≥ 2 then we will call it
a hyperelliptic curve. By definition, a curve is projective and non-singular. We will give
conditions for when a hyperelliptic equation is non-singular. Exercise 10.1.20 will give a
projective non-singular model, but in practice one can work with the affine hyperelliptic
equation. To “see” the points at infinity we will move them to points on a related affine
equation, namely the curve C† of equation (10.3).

The classical definition of a hyperelliptic curve (over an algebraically closed field k)
is that it is a non-singular projective irreducible curve C over k (usually of genus g ≥ 2)
with a degree 2 rational map φ : C → P1 over k. This is equivalent to C having an
(affine) equation of the form y2 + H(x)y = F (x) over k. When C is defined over a
non-algebraically closed field k then the existence of a rational map φ : C → P1 over k
does not imply the existence of such a map over k, and so C might not have an equation

201

202 CHAPTER 10. HYPERELLIPTIC CURVES

over k of this form. This subtlety does not arise when working over finite fields (to show
this, combine Theorem 10.7.4 with the Riemann-Roch theorem), hence we will define
hyperelliptic curves using a generalisation of the Weierstrass equation.

The genus has already been defined (see Definition 8.4.8) as a measure of the com-
plexity of a curve. The treatment of the genus in this chapter is very “explicit”. We
will give precise conditions (Lemmas 10.1.6 and 10.1.8) that explain when the degree of
a hyperelliptic equation is minimal. From this minimal degree we define the genus. In
contrast, the approach of most other authors is to use the Riemann-Roch theorem.

We remark that one can also consider the algebraic group quotient Pic0Fq (C)/[−1] of
equivalence classes {D,−D} where D is a reduced divisor. For genus 2 curves this object
can be described as a variety, called the Kummer surface. It is beyond the scope of this
book to give the details of this case. We refer to Chapter 3 of Cassels and Flynn [123] for
background. Gaudry [244] and Gaudry and Lubicz [247] have given fast algorithms for
computing with this algebraic group quotient.

10.1 Non-Singular Models for Hyperelliptic Curves

Consider the singular points on the affine curve C(x, y) = y2 + H(x)y − F (x) = 0. The
partial derivatives are ∂C(x, y)/∂y = 2y + H(x) and ∂C(x, y)/∂x = H ′(x)y − F ′(x),
so a singular point in particular satisfies 2F ′(x) + H(x)H ′(x) = 0. If H(x) = 0 and if
the characteristic of k is not 2 then C is non-singular over k if and only if F (x) has no
repeated root in k.

Exercise 10.1.1. Show that the curve y2 +H(x)y = F (x) over k has no affine singular
points if and only if one of the following conditions hold.

1. char(k) = 2 and H(x) is a non-zero constant.

2. char(k) = 2, H(x) is a non-zero polynomial and gcd(H(x), F ′(x)2−F (x)H ′(x)2) =
1.

3. char(k) 6= 2, H(x) = 0 and gcd(F (x), F ′(x)) = 1.

4. char(k) 6= 2, H(x) 6= 0 and gcd(H(x)2 + 4F (x), 2F ′(x) + H(x)H ′(x)) = 1 (this
applies even when H(x) = 0 or H ′(x) = 0).

We will now give a simple condition for when a hyperelliptic equation is geometrically
irreducible and of dimension 1.

Lemma 10.1.2. Let C(x, y) = y2 + H(x)y − F (x) over k be a hyperelliptic equation.
Suppose that deg(F (x)) is odd. Suppose also that there is no point P = (xP , yP) ∈
C(k) such that (∂C(x, y)/∂x)(P) = (∂C(x, y)/∂y)(P) = 0. Then the affine algebraic set
V (C(x, y)) is geometrically irreducible. The dimension of V (C(x, y)) is 1.

Proof: From Theorem 5.3.10, C(x, y) = 0 is k-reducible if and only if C(x, y) factors over
k[x, y]. By considering C(x, y) as an element of k(x)[y] it follows that such a factorisation
must be of the form C(x, y) = (y − a(x))(y − b(x)) with a(x), b(x) ∈ k[x]. Since deg(F)
is odd it follows that deg(a(x)) 6= deg(b(x)) and that at least one of a(x) and b(x) is
non-constant. Hence a(x)− b(x) is a non-constant polynomial, so let xP ∈ k be a root of
a(x)− b(x) and set yP = a(xP) = b(xP) so that (xP , yP) ∈ C(k). It is then easy to check
that both partial derivatives vanish at P . Hence, under the conditions of the Lemma,
V (C(x, y)) is k-irreducible and so is an affine variety.

10.1. NON-SINGULAR MODELS FOR HYPERELLIPTIC CURVES 203

Now that V (C(x, y)) is known to be a variety we can consider the dimension. The
function field of the affine variety is k(x)(y), which is a quadratic algebraic extension of
k(x) and so has transcendence degree 1. Hence the dimension of is 1. �

The proof of Lemma 10.1.2 shows that a hyperelliptic equation y2 + H(x)y − F (x)
corresponds to a geometrically irreducible curve as long as it does not factorise as (y −
a(x))(y − b(x)) over k[x]. In practice it is not hard to determine whether or not there
exist polynomials a(x), b(x) ∈ k[x] such that H(x) = −a(x)−b(x) and F (x) = −a(x)b(x).
So determining if a hyperelliptic equation is geometrically irreducible is easy.

Let H(x), F (x) ∈ k[x] be such that y2 +H(x)y = F (x) is a non-singular affine curve.
Define D = max{deg(F (x)), deg(H(x)) + 1}. The projective closure of C in P2 is given
by

y2zD−2 + zD−1H(x/z)y = zDF (x/z). (10.1)

Exercise 10.1.3. Show that if D > 2 then there are at most two points at infinity on
the curve of equation (10.1). Show further that if D > 3 and deg(F) > deg(H) + 1 then
there is a unique point (0 : 1 : 0) at infinity, which is a singular point.

In Definition 10.1.15 we will define the genus of a hyperelliptic curve in terms of the
degree of the hyperelliptic equation. To do this it will be necessary to have conditions
that ensure that this degree is minimal. Example 10.1.4 and Exercise 10.1.5 show how a
hyperelliptic equation that is a variety can be isomorphic to an equation of significantly
lower degree (remember that isomorphism is only defined for varieties).

Example 10.1.4. The curve y2 + xy = x200 + x101 + x3 + 1 over F2 (which is irreducible
and non-singular) is isomorphic over F2 to the curve Y 2 + xY = x3 + 1 via the map
(x, y) 7→ (x, Y + x100).

Exercise 10.1.5. Let k be any field. Show that the affine algebraic variety y2 + (1 −
2x3)y = −x6 + x3 + x+ 1 is isomorphic to a variety having an equation of total degree 2.
Show that the resulting curve has genus 0.

Lemma 10.1.6. Let k be a perfect field of characteristic 2 and h(x), f(x) ∈ k[x]. Suppose
the hyperelliptic equation C : y2 + h(x)y = f(x) is a variety. Then it is isomorphic over
k to Y 2 +H(x)Y = F (x) where one of the following conditions hold:

1. deg(F (x)) > 2 deg(H(x)) and deg(F (x)) is odd;

2. deg(F (x)) = 2 deg(H(x)) = 2d and the equation u2 +Hdu+ F2d has no solution in
k (where H(x) = Hdx

d +Hd−1x
d−1 + · · ·+H0 and F (x) = F2dx

2d + · · ·+ F0);

3. deg(F (x)) < deg(H(x)).

Proof: Let dH = deg(H(x)) and dF = deg(F (x)). The change of variables y = Y + cxi

transforms y2 + H(x)y = F (x) to Y 2 + H(x)Y = F (x) + c2x2i + H(x)cxi. Hence,
if deg(F (x)) > 2 deg(H(x)) and deg(F (x)) is even then one can remove the leading
coefficient by choosing i = deg(F (x))/2 and c =

√
F2i (remember that char(k) = 2 and k

is perfect so c ∈ k). Similarly, if deg(H(x)) ≤ j = deg(F (x)) < 2 deg(H(x)) then one can
remove the leading coefficient Fjx

i from F by taking i = j−deg(H(x)) and c = Fj/HdH .
Repeating these processes yields the first and third claims. The second case follows easily.
�

Note that in the second case in Lemma 10.1.6 one can lower the degree using a k-
isomorphism. Hence, geometrically (i.e., over k) one can assume that a hyperelliptic
equation is of the form of case 1 or 3.

204 CHAPTER 10. HYPERELLIPTIC CURVES

Example 10.1.7. The affine curve y2 + x3y = x6 + x + 1 is isomorphic over F22 to
Y 2 + x3Y = x + 1 via Y = y + ux3 where u ∈ F22 satisfies u2 + u = 1. (Indeed, these
curves are quadratic twists; see Definition 10.2.2.)

Lemma 10.1.8. Let k be a field such that char(k) 6= 2. Every hyperelliptic curve over
k is isomorphic over k to an equation of the form y2 + (Hdx

d + · · · + H0)y = F2dx
2d +

F2d−1x
2d−1 + · · ·+ F0 where either:

1. Hd = 0 and (F2d 6= 0 or F2d−1 6= 0);

2. Hd 6= 0 and (F2d 6= −(Hd/2)2 or F2d−1 6= −HdHd−1/2).

Proof: If Hd = F2d = F2d−1 = 0 then just replace d by d − 1. If Hd 6= 0 and both
F2d = −(Hd/2)2 and F2d−1 = −HdHd−1/2 then the morphism (x, y) 7→ (x, Y = y+Hd

2 x
d)

maps the hyperelliptic equation to

(Y − Hd
2 x

d)2 + (Hdx
d + · · ·+H0)(Y − Hd

2 x
d)− (F2dx

2d + F2d−1x
2d−1 + · · ·+ F0).

This can be shown to have the form

Y 2 + h(x)Y = f(x)

with deg(h(x)) ≤ d−1 and deg(f(x)) ≤ 2d−2. (This is what happened in Exercise 10.1.5.)
�

Exercise 10.1.9. Show that the hyperelliptic curve y2 + (2x3 + 1)y = −x6 + x5 + x+ 1
is isomorphic to Y 2 + Y = x5 + x3 + x+ 1.

10.1.1 Projective Models for Hyperelliptic Curves

For the rest of the chapter we will assume that our hyperelliptic equations are k-irreducible
and non-singular as affine algebraic sets. We also assume that when char(k) = 2 one of
the conditions of Lemma 10.1.6 holds and when char(k) 6= 2 one of the conditions of
Lemma 10.1.8 holds. The interpretation of deg(H(x)) and deg(F (x)) in terms of the
genus of the curve will be discussed in Section 10.1.3.

There are several ways to write down a non-singular projective model for a hyperel-
liptic curve. The simplest is to use weighted projective space.

Definition 10.1.10. Let k be a perfect field and H(x), F (x) ∈ k[x]. Let C : y2 +
H(x)y = F (x) be a hyperelliptic equation. Write Hj for the coefficients of H(x) and
Fj for the coefficients of F (x). Define dH = deg(H(x)) and dF = deg(F (x)). Let
d = max{dH , ⌈dF /2⌉} and suppose d > 0. Set Hd = · · · = HdH+1 = 0 and F2d = · · · =
FdF+1 = 0 if necessary.

The weighted projective hyperelliptic equation is the equation

Y 2+(HdX
d+Hd−1X

d−1Z+· · ·+H0Z
d)Y = F2dX

2d+F2d−1X
2d−1Z+· · ·+F0Z

2d (10.2)

in weighted projective space where X and Z have weight 1 and Y has weight d.

Points (x, y) on the affine equation correspond to points (x : y : 1) on the weighted
projective equation. If the original affine algebraic set is non-singular then the corre-
sponding points on the weighted projective model are also non-singular (since singularity
is a local property). The map ι on C extends to ι(X : Y : Z) = (X : −Y −H(X,Z) : Z)
where H(X,Z) is the degree d homogenisation of H(x). Points with Z = 0 correspond to
the points at infinity. Lemma 10.1.11 shows that there are at most two points at infinity
on this equation and that they are not singular on this equation.

10.1. NON-SINGULAR MODELS FOR HYPERELLIPTIC CURVES 205

Lemma 10.1.11. The points at infinity on equation (10.2) are of the form (1 : α :
0) where α ∈ k satisfies α2 + Hdα − F2d = 0. If the conditions of Lemma 10.1.6 or
Lemma 10.1.8 hold as appropriate, then the points at infinity are non-singular.

Proof: Let Z = 0. If X = 0 then Y = 0 (which is not a projective point) so we may
assume that X = 1. The points at infinity are therefore as claimed.

To study non-singularity, make the problem affine by setting X = 1. The equation is

C† : Y 2 + (Hd +Hd−1Z + · · ·H0Z
d)Y = F2d + F2d−1Z + · · ·F0Z

d. (10.3)

The partial derivatives evaluated at (α, 0) are 2α + Hd and Hd−1α − F2d−1. When
char(k) 6= 2 the point being singular would imply Hd = −2α in which case F2d =
α2 + Hdα = −α2 = −(Hd/2)2 and F2d−1 = Hd−1α = −HdHd−1/2. One easily sees that
these equations contradict the conditions of Lemma 10.1.8.

When char(k) = 2 the point being singular would imply Hd = 0 (and so α2 = F2d)
and Hd−1α = F2d−1. First consider the case F2d = 0. Then α = 0 and so F2d−1 = 0, but
this contradicts the definition of d. Now consider the case F2d 6= 0, so that α 6= 0. Since
deg(H(x)) ≤ d − 1 we are in case 1 of Lemma 10.1.6, but then deg(F (x)) must be odd,
which is a contradiction. �

Example 10.1.12. Let k be a perfect field with char(k) 6= 2. The curve y2 = F (x)
where deg(F (x)) is odd has a single point (1 : 0 : 0) at infinity.

Exercise 10.1.13. Let C be a hyperelliptic equation as in Definition 10.0.1. Let d =
max{deg(H(x)), ⌈deg(F (x))/2⌉}. Show that the curve C† : Y 2 + H(Z)Y = F (Z) in
equation (10.3) has max{deg(H(Z)), ⌈deg(F (Z))/2⌉} = d.

Theorem 10.1.14 justifies the use of the word “curve”.

Theorem 10.1.14. Let C(x, y) = y2 + H(x)y − F (x) over k be a hyperelliptic equation
that is geometrically irreducible as an affine algebraic set. Suppose there is no point P =
(xP , yP) ∈ C(k) such that (∂C(x, y)/∂x)(P) = (∂C(x, y)/∂y)(P) = 0. Suppose further
that the conditions of Lemma 10.1.6 or Lemma 10.1.8 hold as appropriate. Then the
associated weighted projective algebraic set of equation (10.2) is geometrically irreducible,
has dimension 1, is non-singular, and is birational to the hyperelliptic equation.

Recall that Lemma 10.1.2 gave some conditions for when the affine algebraic set
V (C(x, y)) is k-irreducible.
Proof: It follows immediately that the projective algebraic set of equation (10.2) is
k-irreducible and has dimension 1. Non-singularity has been explained already. The
birational map from the weighted projective equation to C is simply φ(X : Y : Z) =
(X/Z, Y/Zd). �

From a practical point of view one does not need to work with weighted projective
space. Let C : y2 + H(x)y = F (x) be the original curve and let C† be the curve of
equation (10.3). Consider the birational map ρ : C → C† given by (Z, Y) = ρ(x, y) =
(1/x, y/xd). Then C and C† give two “affine parts” of the projective curve and every
point on the curve lies on at least one of these affine algebraic sets. This birational map
corresponds to the isomorphism (X : Y : Z) 7→ (Z : Y : X) from the weighted projective
model of C to the weighted projective model of C†.

We can finally give a formal definition for a hyperelliptic curve. Technically, we should
distinguish the terms “hyperelliptic equation” and “hyperelliptic curve”, since the former
is an affine variety whose “obvious” projective closure is singular. In practice, we abuse
notation and call the affine hyperelliptic equation a hyperelliptic curve.

206 CHAPTER 10. HYPERELLIPTIC CURVES

Definition 10.1.15. Let k be a perfect field. Let H(x), F (x) ∈ k[x] be such that:

• deg(H(x)) ≥ 3 or deg(F (x)) ≥ 5;

• the affine hyperelliptic equation y2+H(x)y = F (x) is k-irreducible and non-singular;

• the conditions of Lemma 10.1.6 and Lemma 10.1.8 hold.

The non-singular projective curve of equation (10.2) is called a hyperelliptic curve.
The genus of the hyperelliptic curve is g = max{deg(H(x))− 1, ⌊deg(F (x))− 1)/2⌋} (see
Section 10.1.3 for justification of this).

It looks like Definition 10.1.15 excludes some potentially interesting equations (such
as y2 +H(x)y = F (x) where deg(F (x)) = 4 and deg(H(x)) = 2). In fact, it can be shown
that all the algebraic sets excluded by the definition are either k-reducible, singular over
k, or birational over k to a curve of genus 0 or 1 over k.

The equation α2 + Hdα − F2d = 0 in Lemma 10.1.11 can have a k-rational repeated
root, two roots in k, or two conjugate roots in k. It follows that there are three possible
behaviours at infinity: a single k-rational point, two distinct k-rational points, a pair
of distinct points defined over a quadratic extension of k (which are Galois conjugates).
These three cases correspond to the fact that the place at infinity in k[x] is ramified, split
or inert respectively in the field extension k(C)/k(x). A natural terminology for the three
types of behaviour at infinity is therefore to call them ramified, split and inert.

Definition 10.1.16. Let C be a hyperelliptic curve as in Definition 10.1.15. We denote
the points at infinity on the associated hyperelliptic curve by ∞+ = (1 : α+ : 0) and
∞− = (1 : α− : 0) (when there is only one point, set ∞ = ∞+ = ∞− = (1 : α : 0)). If
there is a single point at infinity then equation (10.2) is called a ramified model of a
hyperelliptic curve. If there are two distinct points at infinity then when α+, α− ∈ k
equation (10.2) is called a split model of a hyperelliptic curve and when α+, α− 6∈ k
it is an inert model of a hyperelliptic curve.

One finds in the literature the names imaginary hyperelliptic curve (respec-
tively, real hyperelliptic curve) for ramified model and split model respectively. Ex-
ercise 10.1.18 classifies ramified hyperelliptic models. Exercise 10.1.19 shows that if
C(k) 6= ∅ then one may transform C into a ramified or split model. Hence, when working
over finite fields, it is not usually necessary to deal with curves having an inert model.

Exercise 10.1.17. With notation as in Definition 10.1.16 show that ι(∞+) =∞−.

Exercise 10.1.18. Let C : y2 +H(x)y = F (x) be a hyperelliptic curve over k satisfying
all the conditions above. Let d = max{deg(H(x)), ⌈deg(F (x))/2⌉}. Show that this is a
ramified model if and only if (deg(H(x)) < d and deg(F (x)) = 2d − 1) or (char(k) 6= 2,
deg(F (x)) = 2d, deg(H(x)) = d and F2d = −(Hd/2)2).

Exercise 10.1.19. Let C : y2 + H(x)y = F (x) be a hyperelliptic curve over k and let
P ∈ C(k). Define the rational map

ρP (x, y) = (1/(x− xP), y/(x− xP)d).

Then ρP : C → C′ where C′ is also a hyperelliptic curve. Show that ρP is just the
translation map P 7→ (0, yP) followed by the map ρ and so is an isomorphism from C to
C′.

Show that if P = ι(P) then C is birational over k (using ρP) to a hyperelliptic curve
with ramified model. Show that if P 6= ι(P) then C is birational over k to a hyperelliptic
curve with split model.

10.1. NON-SINGULAR MODELS FOR HYPERELLIPTIC CURVES 207

We now indicate a different projective model for hyperelliptic curves.

Exercise 10.1.20. Let the notation and conditions be as above. Assume C : y2 +
H(x)y = F (x) is irreducible and non-singular as an affine curve. Let Y,Xd, Xd−1 . . . , X1, X0

be coordinates for Pd+1 (one interprets Xi = xi). The projective hyperelliptic equa-
tion is the projective algebraic set in Pd+1 given by

Y 2 + (HdXd +Hd−1Xd−1 + · · ·+H0X0)Y = F2dX
2
d + F2d−1XdXd−1 + · · ·+ F1X1X0 + F0X

2
0 ,

X2
i = Xi−1Xi+1 , for 1 ≤ i ≤ d− 1,

XdXi = X⌈(d+i)/2⌉X⌊(d+i)/2⌋ , for 0 ≤ i ≤ d− 2.
(10.4)

1. Give a birational map (assuming for the moment that the above model is a variety)
between the affine algebraic set C and the model of equation (10.4).

2. Show that the hyperelliptic involution ι extends to equation (10.4) as

ι(Y : Xd : · · · : X0) = (−Y −HdXd −Hd−1Xd−1 − · · · −H0X0 : Xd : · · · : X0)

3. Show that the points at infinity on equation (10.4) satisfy X0 = X1 = X2 = · · · =
Xd−1 = 0 and Y 2 +HdXdY −F2dX

2
d = 0. Show that if F2d = Hd = 0 then there is

a single point at infinity.

4. Show that if the conditions of Lemma 10.1.6 or Lemma 10.1.8 hold then equa-
tion (10.4) is non-singular at infinity.

5. Show that equation (10.4) is a variety.

10.1.2 Uniformizers on Hyperelliptic Curves

The aim of this section is to determine uniformizers for all points on hyperelliptic curves.
We begin in Lemma 10.1.21 by determining uniformizers for the affine points of a hyper-
elliptic curve.

Lemma 10.1.21. Let P = (xP , yP) ∈ C(k) be a point on a hyperelliptic curve. If
P = ι(P) then (y − yP) is a uniformizer at P (and vP (x − xP) = 2). If P 6= ι(P) then
(x− xP) is a uniformizer at P .

Proof: We have

(y − yP)(y + yP +H(xP)) = y2 +H(xP)y − (y2P +H(xP)yP)

= F (x) + y(H(xP)−H(x))− F (xP).

Now, use the general fact for any polynomial that F (x) = F (xP)+(x−xP)F ′(xP) (mod (x−
xP)2). Hence, the above expression is congruent modulo (x− xP)2 to

(x− xP)(F ′(xP)− yH ′(xP)) (mod (x− xP)2).

When P = ι(P) then (y − yP)(y + (yP +H(xP))) = (y − yP)2. Note also that F ′(xP)−
yPH

′(xP) is not zero since 2yP +H(xP) = 0 and yet C is not singular. Writing G(x, y) =
(y − yP)2/(x− xP) ∈ k[x, y] we have G(xP , yP) 6= 0 and

x− xP = (y − yP)2
1

G(x, y)
.

208 CHAPTER 10. HYPERELLIPTIC CURVES

Hence, a uniformizer at P is (y − yP) and vP (x− xP) = 2.

For the case P 6= ι(P) note that vP (y − yP) > 0 and vP (y + yP + H(xP)) = 0. It
follows that vP (y − yP) ≥ vP (x − xP). �

We now consider uniformizers at infinity on a hyperelliptic curve C over k. The easiest
way to proceed is to use the curve C† of equation (10.3).

Lemma 10.1.22. Let C be a hyperelliptic curve and let ρ : C → C† be as in equa-
tion (10.3). Let P = ρ(∞+) = (0, α+) ∈ C†(k). If ι(∞+) = ∞+ (i.e., if there is one
point at infinity) then Y − α+ is a uniformizer at P on C† and so (y/xd) − α+ is a
uniformizer at ∞+ on C. If ι(∞+) 6=∞+ then Z is a uniformizer at P on C† (i.e., 1/x
is a uniformizer at ∞+ on C).

Proof: Note that if ι(∞+) = ∞+ then ι(P) = P and if ι(∞+) 6= ∞+ then ι(P) 6= P .
It immediately follows from Lemma 10.1.21 that Y − α+ or Z is a uniformizer at P on
C†. Lemma 8.1.13, Exercise 8.2.11 and Lemma 8.2.9 show that for any f ∈ k(C†) and
P ∈ C(k), vP (f ◦ ρ) = vρ(P)(f). Hence, uniformizers at infinity on C are (Y − α+) ◦ ρ =

(y/xd)− α+ or Z ◦ ρ = 1/x. �

Exercise 10.1.23. Let C be a hyperelliptic curve in ramified model. Show that v∞(x) =
−2. Show that if the curve has equation y2 = F (x) where deg(F (x)) = 2g + 1 then xg/y
is an alternative uniformizer at infinity.

Now suppose C is given as a split or inert model. Show that v∞+(x) = v∞−(x) = −1.

Exercise 10.1.24. Let C be a hyperelliptic curve (ramified, split or inert). If u(x) =
(x − x0) is a function on C and P0 = (x0, y0) ∈ C(k) then div(u(x)) = (P0) + (ι(P0)) −
(∞+)− (∞−).

Exercise 10.1.25. Let C be a hyperelliptic curve of genus g. Show that if C is in ramified
model then v∞(y) = −(2g+1) and if C is in split model then v∞+(y) = v∞−(y) = −(g+1).

Exercise 10.1.26. Let C be a hyperelliptic curve. Let A(x), B(x) ∈ k[x] and let P =
(xP , yP) ∈ C(k) be a point on the affine curve. Show that vP (A(x) − yB(x)) is equal to
e where (x− xP)e‖(A(x)2 +H(x)A(x)B(x) − F (x)B(x)2).

Exercise 10.1.27. Describe uniformizers at infinity in terms of the model of equa-
tion (10.4).

We now describe a polynomial that will be crucial for arithmetic on hyperelliptic
curves with a split model. Essentially, G+(x) is a function that cancels the pole of y at
∞+. This leads to another choice of uniformizer at ∞+ for these models.

Exercise 10.1.28. Let C : y2 + H(x)y = F (x) be a hyperelliptic curve in split model
over k of genus g. Let α+, α− ∈ k be the roots of Y 2 +HdY −F2d. Show that there exists
a polynomial G+(x) = α+xd + · · · ∈ k[x] of degree d = g + 1 such that deg(G+(x)2 +
H(x)G+(x) − F (x)) ≤ d − 1 = g. Similarly, show that there is a polynomial G−(x) =
α−xd + · · · such that deg(G−(x)2 +H(x)G−(x)− F (x)) ≤ d− 1 = g. Indeed, show that
G−(x) = −G+(x) −H(x).

Exercise 10.1.29. Let C : y2 + H(x)y = F (x) be a hyperelliptic curve in split model
over k of genus g and let G+(x) be as in Exercise 10.1.28. Show that v∞+(y−G+(x)) ≥ 1.

10.2. ISOMORPHISMS, AUTOMORPHISMS AND TWISTS 209

10.1.3 The Genus of a Hyperelliptic Curve

In Lemma 10.1.6 and Lemma 10.1.8 we showed that some hyperelliptic equations y2 +
h(x)y = f(x) are birational to hyperelliptic equations y2+H(x)y = F (x) with deg(F (x)) <
deg(f(x)) or deg(H(x)) < deg(h(x)). Hence, it is natural to suppose that the geometry
of the curve C imposes a lower bound on the degrees of the polynomials H(x) and F (x)
in its curve equation. The right measure of the complexity of the geometry is the genus.

Indeed, the Riemann-Roch theorem implies that if C is a hyperelliptic curve over k
of genus g and there is a function x ∈ k(C) of degree 2 then C is birational over k to
an equation of the form y2 + H(x)y = F (x) with deg(H(x)) ≤ g + 1 and deg(F (x)) ≤
2g + 2. Furthermore, the Hurwitz genus formula shows that if y2 + H(x)y = F (x) is
non-singular and with degrees reduced as in Lemma 10.1.6 and Lemma 10.1.8 then the
genus is max{deg(H(x))− 1, ⌈deg(F (x))/2− 1⌉}. (Theorem 8.7.3, as it is stated, cannot
be applied for hyperelliptic curves in characteristic 2, but a more general version of the
Hurwitz genus formula proves the above statement about the genus.) Hence, writing
d = g + 1, the conditions of Lemma 10.1.6 and Lemma 10.1.8 together with

deg(H(x)) = d or 2d− 1 ≤ deg(F (x)) ≤ 2d (10.5)

are equivalent to the curve y2 +H(x)y = F (x) having genus g.
It is not necessary for us to prove the Riemann-Roch theorem or the Hurwitz genus

formula. Our discussion of Cantor reduction (see Lemma 10.3.20 and Lemma 10.4.6)
will directly prove a special case of the Riemann-Roch theorem for hyperelliptic curves,
namely that every divisor class contains a representative corresponding to an effective
divisor of degree at most g = d− 1.

The reader should interpret the phrase “hyperelliptic curve of genus g” as meaning
the conditions of Lemma 10.1.6 and Lemma 10.1.8 together with equation (10.5) on the
degrees of H(x) and F (x) hold.

10.2 Isomorphisms, Automorphisms and Twists

We consider maps between hyperelliptic curves in this section. We are generally interested
in isomorphisms over k rather than just k.

In the elliptic curve case (see Section 9.3) there was no loss of generality by assuming
that isomorphisms fix infinity (since any isomorphism can be composed with a translation
map). Since the points on a hyperelliptic curve do not, in general, form a group, one can
no longer make this assumption. Nevertheless, many researchers have restricted attention
to the special case of maps between curves that map points at infinity (with respect to an
affine model of the domain curve) to points at infinity on the image curve. Theorem 10.2.1
classifies this special case.

In this chapter, and in the literature as a whole, isomorphisms are usually not assumed
to fix infinity. For example, the isomorphism ρP defined earlier in Exercise 10.1.19 does
not fix infinity. Isomorphisms that map points at infinity to points at infinity map ramified
models to ramified models and unramified models to unramified models.

Theorem 10.2.1. Let C1 : y21 +H1(x1)y1 = F1(x1) and C2 : y22 +H2(x2)y2 = F2(x2) be
hyperelliptic curves over k of genus g. Then every isomorphism φ : C1 → C2 over k that
maps points at infinity of C1 to points at infinity of C2 is of the form

φ(x1, y1) = (ux1 + r, wy1 + t(x1))

where u,w, r ∈ k and t ∈ k[x1]. If C1 and C2 have ramified models then deg(t) ≤ g. If
C1 and C2 have split or inert models then deg(t) ≤ g + 1 and the leading coefficient of

210 CHAPTER 10. HYPERELLIPTIC CURVES

t(x1) is not equal to the leading coefficient of −wG+(x1) or −wG−(x1) (where G+ and
G− are as in Exercise 10.1.28).

Proof: (Sketch) The proof is essentially the same as the proof of Proposition 3.1(b) of
Silverman [564]; one can also find the ramified case in Proposition 1.2 of Lockhart [392].
One notes that the valuations at infinity of x1 and x2 have to agree, and similarly for y1
and y2. It follows that x2 lies in same Riemann-Roch spaces as x1 and similarly for y2
and y1. The result follows (the final conditions are simply that the valuations at infinity
of y1 and y2 must agree, so we are prohibited from setting y2 = w(y1 + t(x)) such that it
lowers the valuation of y2). �

We now introduce quadratic twists in the special case of finite fields. As mentioned
in Example 9.5.2, when working in characteristic zero there are infinitely many quadratic
twists.

Definition 10.2.2. Let C : y2 = F (x) be a hyperelliptic curve over a finite field k where
char(k) 6= 2. Let u ∈ k∗ be a non-square (i.e., there is no v ∈ k∗ such that u = v2) and
define C(u) : y2 = uF (x).

Let C : y2+H(x)y = F (x) be a hyperelliptic curve over a finite field k where char(k) =
2. Let u ∈ k be such that Trk/F2

(u) = 1. Define C(u) : y2 +H(x)y = F (x) + uH(x)2.

In both cases the k-isomorphism class of the curve C(u) is called the non-trivial
quadratic twist of C.

Exercise 10.2.3. Show that the quadratic twist is well-defined when k is a finite field.
In other words, show that in the case char(k) 6= 2 if u and u′ are two different non-squares
in k∗ then the corresponding curves C(u) and C(u′) as in Definition 10.2.2 are isomorphic
over k. Similarly, when chark = 2 and for two different choices of trace one elements
u, u′ ∈ k, show that the corresponding curves C(u) and C(u′) are isomorphic over k.

Exercise 10.2.4. Let C be a hyperelliptic curve over a finite field k and let C(u) be a
non-trivial quadratic twist. Show that #C(Fq) + #C(u)(Fq) = 2(q + 1).

Exercise 10.2.5. Let C : y2 = F (x) be a hyperelliptic curve of genus g over k (where
char(k) 6= 2). Show that C is isomorphic over k to a curve of the form

Y 2 = X(X − 1)(X − a1)(X − a2) · · · (X − a2g−1)

for some a1, a2, . . . , a2g−1 ∈ k.

Exercise 10.2.5 indicates that one generally needs 2g−1 values to specify a hyperelliptic
curve of genus g (in fancy terminology: the moduli space of genus g hyperelliptic curves
has dimension 2g−1). It is natural to seek an analogue of the j-invariant for hyperelliptic
curves (i.e., some parameters j1, . . . , j2g−1 associated with each curve C such that C1 is
isomorphic over k to C2 if and only if the corresponding values j1, . . . , j2g−1 are equal).
Such values have been given by Igusa in the case of genus 2 curves and Shioda [550] for
genus 3 curves. It is beyond the scope of this book to present and explain them. We refer
to Igusa [304] and Section 5.1.6 of [16] for details of the Igusa invariants.

A natural problem (analogous to Exercise 9.3.7 for the case of elliptic curves) is to write
down a genus 2 curve corresponding to a given triple of values for the Igusa invariants.
Mestre [420] has given an algorithm to do this for curves over finite fields1 (for details
also see Section 7 of Weng [628]).

We now consider automorphisms. Define Aut(C) to be the set of all isomorphisms
φ : C → C over k. As usual, Aut(C) is a group under composition.

1It can also be applied over infinite fields.

10.2. ISOMORPHISMS, AUTOMORPHISMS AND TWISTS 211

Lemma 10.2.6. Let C be a hyperelliptic curve over k. The hyperelliptic involution
commutes with every element of Aut(C). Furthermore, let φ : C → P1 be the canonical
morphism φ(x, y) = x. For every automorphism ψ : C → C there is a linear fractional
transformation γ : P1 → P1 (i.e., γ(x) = (ax + b)/(cx + d) for some a, b, c, d ∈ k such
that ad− bc 6= 0) such that the following diagram commutes

C C

P1 P1

✲ψ

❄
φ

❄
φ

✲γ

Proof: The result follows from Theorem III.7.3 of Farkas and Kra [200] (which uses the
notion of Weierstrass points) and Corollaries 2 and 3 on page 102 of [200]. �

Exercise 10.2.7. Prove Lemma 10.2.6 in the special case of automorphisms that map
points at infinity to points at infinity. Show that, in this case, γ has no denominator.

Example 10.2.8. Let p > 2 be a prime and C : y2 = xp − x over Fp. For a ∈ F∗
p, b ∈ Fp

one has isomorphisms

φa(x, y) = (ax,±√ay) and ψb,±(x, y) = (x+ b,±y)

from C to itself (in both cases they fix the point at infinity). Hence, the subgroup of
Aut(C) consisting of maps that fix infinity is a group of at least 2p(p− 1) elements.

There is also the birational map ρ(x, y) = (−1/x, y/x(p+1)/2) that corresponds to an
isomorphism ρ : C → C on the projective curve. This morphism does not fix infinity.
Since all the compositions ψb′,± ◦ρ◦ψb,±◦φa are distinct one has 2p2(p−1) isomorphisms
of this form. Hence, Aut(C) has size at least 2p(p− 1) + 2p2(p− 1) = 2p(p+ 1)(p− 1).

Exercise 10.2.9. Let p > 2 be a prime and C : y2 = xp − x+ 1 over Fp. Show that the
subgroup of Aut(C) consisting of automorphisms that fix infinity has order 2p.

Exercise 10.2.10. Let p > 2 be a prime and C : y2 = xn + 1 over Fp with n 6= p
(when n = p the equation is singular). Show that the subgroup of Aut(C) consisting of
automorphisms that fix infinity has order 2n.

We now give the important Hurwitz-Roquette theorem, which bounds the size of the
automorphism group.

Theorem 10.2.11. (Hurwitz-Roquette) Let C be a curve of genus g over a field k such
that char(k) > g + 1 and such that C is not isomorphic to the curve of Example 10.2.8.
Then #Aut(C) ≤ 84(g − 1).

Proof: The case char(k) = 0 is Exercise IV.2.5 of Hartshorne [278] and the general case
is due to Roquette [501]. �

Stichtenoth [587] has given the bound #Aut(C) ≤ 16g4, which applies even when
char(k) ≤ g + 1 for all curves C except the Hermitian curve yq + y = xq+1.

We refer to Chapter 2 of Gaudry’s thesis [243] for a classification of Aut(C) when the
genus is two. There are many challenges to determining/classifying Aut(C) for hyperel-
liptic curves; we do not attempt a complete analysis of the literature.

Exercise 10.2.12. Let p ≡ 1 (mod 8) and let C : y2 = x5 + Ax over Fp. Write ζ8 ∈ Fp
for a primitive 8-th root of unity. Show that ζ8 ∈ Fp4 . Show that ψ(x, y) = (ζ28x, ζ8y) is
an automorphism of C. Show that ψ4 = ι.

212 CHAPTER 10. HYPERELLIPTIC CURVES

10.3 Effective Affine Divisors on Hyperelliptic Curves

This section is about how to represent effective divisors on affine hyperelliptic curves,
and algorithms to compute with them. A convenient way to represent divisors is using
Mumford representation, and this is only possible if the divisor is semi-reduced.

Definition 10.3.1. Let C be a hyperelliptic curve over k and denote by C∩A2 the affine
curve. An effective affine divisor on C is

D =
∑

P∈(C∩A2)(k)

nP (P)

where nP ≥ 0 (and, as always, nP 6= 0 for only finitely many P). A divisor on C is
semi-reduced if it is an effective affine divisor and for all P ∈ (C ∩ A2)(k) we have

1. If P = ι(P) then nP ∈ {0, 1}.

2. If P 6= ι(P) then nP > 0 implies nι(P) = 0.

We slightly adjust the notion of equivalence for divisors on C ∩ A2.

Definition 10.3.2. Let C be a hyperelliptic curve over a field k and let f ∈ k(C). We
define

div(f) ∩ A2 =
∑

P∈(C∩A2)(k)

vP (f)(P).

Two divisors D,D′ on C ∩A2 are equivalent, written D ≡ D′, if there is some function
f ∈ k(C) such that D = D′ + div(f) ∩ A2.

Lemma 10.3.3. Let C be a hyperelliptic curve. Every divisor on C ∩A2 is equivalent to
a semi-reduced divisor.

Proof: Let D =
∑

P∈C∩A2 nP (P). By Exercise 10.1.24 the function x − xP has divisor

(P) + (ι(P)) on C ∩ A2. If nP < 0 for some P ∈ (C ∩ A2)(k) then, by adding an
appropriate multiple of div(x − xP), one can arrange that nP = 0 (this will increase
nι(P)). Similarly, if nP > 0 and nι(P) > 0 (or if P = ι(P) and nP ≥ 2) then subtracting a
multiple of div(x− xP) lowers the values of nP and nι(P). Repeating this process yields
a semi-reduced divisor. �

Example 10.3.4. Let P1 = (x1, y1) and P2 = (x2, y2) be points on a hyperelliptic curve
C such that x1 6= x2. Let D = −(P1) + 2(P2) + (ι(P2)). Then D is not semi-reduced.
One has

D + div(x− x1) = D + (P1) + (ι(P1)) = (ι(P1)) + 2(P2) + (ι(P2)),

which is still not semi-reduced. Subtracting div(x− x2) from the above gives

D + div((x − x1)/(x− x2)) = (ι(P1)) + (P2),

which is semi-reduced.

10.3. EFFECTIVE AFFINE DIVISORS ON HYPERELLIPTIC CURVES 213

10.3.1 Mumford Representation of Semi-Reduced Divisors

Mumford [445] introduced2 a representation for semi-reduced divisors. The condition
that the divisor is semi-reduced is crucial: if points P = (xP , yP) and (xP , y

′
P) with

yP 6= y′P both appear in the support of the divisor then no polynomial v(x) can satisfy
both v(xP) = yP and v(xP) = y′P .

Lemma 10.3.5. Let D =
∑l

i=1 ei(xi, yi) be a non-zero semi-reduced divisor on a hyper-
elliptic curve C : y2 +H(x)y = F (x) (hence D is affine and effective). Define

u(x) =

l∏

i=1

(x− xi)ei ∈ k[x].

Then there is a unique polynomial v(x) ∈ k[x] such that deg(v(x)) < deg(u(x)), v(xi) = yi
for all 1 ≤ i ≤ l, and

v(x)2 +H(x)v(x) − F (x) ≡ 0 (mod u(x)). (10.6)

In particular, v(x) = 0 if and only if u(x) | F (x).

Proof: Since D is semi-reduced there is no conflict in satisfying the condition v(xi) = yi.
If all ei = 1 then the result is trivial. For each i such that ei > 1 write v(x) = yi + (x −
xi)W (x) for some polynomial W (x). We compute v(x) (mod (x − xi)ei) so it satisfies
v(x)2 + H(x)v(x) − F (x) ≡ 0 (mod (x − xi)ei) by Hensel lifting (see Section 2.13) as
follows: If v(x)2 +H(x)v(x)−F (x) = (x− xi)jGj(x) then set v†(x) = v(x) +w(x− xi)j
where w is an indeterminate and note that

v†(x)2 +H(x)v†(x) − F (x) ≡ (x− xi)j(Gj(x) + 2v(x)w +H(x)w) (mod (x− xi)j+1).

It suffices to find w such that this is zero, in other words, solveGj(xi)+w(2yi+H(xi)) = 0.
Since D is semi-reduced, we know 2yi +H(xi) 6= 0 (since P = ι(P) implies nP = 1). The
result follows by the Chinese remainder theorem. �

Definition 10.3.6. LetD be a non-zero semi-reduced divisor. The polynomials (u(x), v(x))
of Lemma 10.3.5 are the Mumford representation of D. If D = 0 then take u(x) = 1
and v(x) = 0. A pair of polynomials u(x), v(x) ∈ k[x] is called a Mumford represen-
tation if u(x) is monic, deg(v(x)) < deg(u(x)) and if equation (10.6) holds.

We have shown that every semi-reduced divisor D has a Mumford representation and
that the polynomials satisfying the conditions in Definition 10.3.6 are unique. We now
show that one can easily recover an affine divisor D from the pair (u(x), v(x)): write

u(x) =
∏l
i=1(x− xi)ei and let D =

∑l
i=1 ei(xi, v(xi)).

Exercise 10.3.7. Show that the processes of associating a Mumford representation to a
divisor and associating a divisor to a Mumford representation are inverse to each other.
More precisely, let D be a semi-reduced divisor on a hyperelliptic curve. Show that if one
represents D in Mumford representation and then obtains a corresponding divisor D′ as
explained above, then D′ = D.

2Mumford remarks on page 3-17 of [445] that a special case of these polynomials arises in the work
of Jacobi. However, Jacobi only gives a representation for semi-reduced divisors with g points in their
support, rather than arbitrary semi-reduced divisors.

214 CHAPTER 10. HYPERELLIPTIC CURVES

Exercise 10.3.8. Let u(x), v(x) ∈ k[x] be such that equation (10.6) holds. Let D be the
corresponding semi-reduced divisor. Show that

D =
∑

P∈(C∩A2)(k)

min{vP (u(x)), vP (y − v(x))}(P).

This is called the greatest common divisor of div(u(x)) and div(y − v(x)) and is
denoted div(u(x), y − v(x)).

Exercise 10.3.9. Let (u1(x), v1(x)) and (u2(x), v2(x)) be the Mumford representations of
two semi-reduced divisorsD1 and D2. Show that if gcd(u1(x), u2(x)) = 1 then Supp(D1)∩
Supp(D2) = ∅.

Lemma 10.3.10. Let C be a hyperelliptic curve over k and let D be a semi-reduced
divisor on C with Mumford representation (u(x), v(x)). Let σ ∈ Gal(k/k).

1. σ(D) is semi-reduced.

2. The Mumford representation of σ(D) is (σ(u(x)), σ(v(x))).

3. D is defined over k if and only if u(x), v(x) ∈ k[x].

Exercise 10.3.11. Prove Lemma 10.3.10.

Exercise 10.3.8 shows that the Mumford representation of a semi-reduced divisor D is
natural from the point of view of principal divisors. This explains why condition (10.6)
is the natural definition for the Mumford representation. There are two other ways to
understand condition (10.6). First, the divisor D corresponds to an ideal in the ideal
class group of the affine coordinate ring k[x, y] and condition (10.6) shows this ideal
is equal to the k[x, y]-ideal (u(x), y − v(x)). Second, from a purely algorithmic point
of view, condition (10.6) is needed to make the Cantor reduction algorithm work (see
Section 10.3.3).

A divisor class contains infinitely many divisors whose affine part is semi-reduced.
Later we will define a reduced divisor to be one whose degree is sufficiently small. One
can then consider whether there is a unique such representative of the divisor class. This
issue will be considered in Lemma 10.3.24 below.

Exercise 10.3.12 is relevant for the index calculus algorithms on hyperelliptic curves
and it is convenient to place it here.

Exercise 10.3.12. A semi-reduced divisor D defined over k with Mumford representation
(u(x), v(x)) is said to be a prime divisor if the polynomial u(x) is irreducible over k.
Show that if D is not a prime divisor, then D can be efficiently expressed as a sum
of prime divisors by factoring u(x). More precisely, show that if u(x) =

∏
ui(x)ci is

the complete factorization of u(x) over k, then D =
∑
cidiv(ui(x), y − vi(x)) where

vi(x) = v(x) mod ui(x).

10.3.2 Addition and Semi-Reduction of Divisors in Mumford Rep-
resentation

We now present Cantor’s algorithm [118]3 for addition of semi-reduced divisors on a
hyperelliptic curve C. As above, we take a purely geometric point of view. An alternative,

3The generalisation of Cantor’s algorithm to all hyperelliptic curves was given by Koblitz [346].

10.3. EFFECTIVE AFFINE DIVISORS ON HYPERELLIPTIC CURVES 215

and perhaps more natural, interpretation of Cantor’s algorithm is multiplication of ideals
in k[x, y] ⊂ k(C).

Given two semi-reduced divisorsD1 andD2 with Mumford representation (u1(x), v1(x))
and (u2(x), v2(x)) we want to compute the Mumford representation (u3(x), v3(x)) of the
sum D1 + D2. Note that we are not yet considering reduction of divisors in the divisor
class group. There are two issues that make addition not completely trivial. First, if P is
in the support of D1 and ι(P) is in the support of D2 then we remove a suitable multiple
of (P) + (ι(P)) from D1 +D2. Second, we must ensure that the Mumford representation
takes multiplicities into account (i.e., so that equation (10.6) holds for (u3(x), v3(x))).

Example 10.3.13. Let P = (xP , yP) on y2 + H(x)y = F (x) be such that P 6= ι(P).
Let D1 = D2 = (P) so that u1(x) = u2(x) = (x − xP) and v1(x) = v2(x) = yP . Then
D1 +D2 = 2(P). The Mumford representation for this divisor has u3(x) = (x−xP)2 and
v(x) = yP + w(x − xP) for some w ∈ k. To satisfy equation (10.6) one finds that

y2P + 2yPw(x − xP) +H(x)yP + wH(x)(x − xP)− F (x) ≡ 0 (mod (x− xP)2).

Writing F (x) ≡ F (xP)+F ′(xP)(x−xP) (mod (x−xP)2) andH(x) ≡ H(xP)+H ′(xP)(x−
xP) (mod (x− xP)2) gives

w =
F ′(xP)− yPH ′(xP)

2yP +H(xP)
,

which is defined since P 6= ι(P).
To help motivate the formula for v3(x) in Theorem 10.3.14 we now make some obser-

vations. First, note that the equation

1 = s1(x)(x − xP) + s3(x)(2yP +H(x))

has the solution

s3(x) =
1

2yP +H(xP)
and s1(x) = −s3(x)(H ′(xP) + (x− xP)G(x))

where G(x) = (H(x) − H(xP) − H ′(xP)(x − xP))/(x − xP)2. In other words, we have
H(x) = H(xP) + (x− xP)H ′(xP) + (x − xP)2G(x). Furthermore, note that

v(x) ≡ s1(x)(x − xP)yP + s3(x)(y2P + F (x)) (mod (x − xP)2).

The core of Cantor’s addition and semi-reduction algorithm is to decide which func-
tions (x−xP) are needed (and to which powers) to obtain a semi-reduced divisor equivalent
to D1 +D2. The crucial observation is that if P is in the support of D1 and ι(P) is in
the support of D2 then (x−xP) | u1(x), (x−xP) | u2(x) and v1(xP) = −v2(xP)−H(xP)
and so (x−xP) | (v1(x)+v2(x)+H(x)). The exact formulae are given in Theorem 10.3.14.
The process is called Cantor’s addition algorithm or Cantor’s composition algo-
rithm.

Theorem 10.3.14. Let (u1(x), v1(x)) and (u2(x), v2(x)) be Mumford representations of
two semi-reduced divisors D1 and D2. Let s(x) = gcd(u1(x), u2(x), v1(x) + v2(x) +H(x))
and let s1(x), s2(x), s3(x) ∈ k[x] be such that

s(x) = s1(x)u1(x) + s2(x)u2(x) + s3(x)(v1(x) + v2(x) +H(x)).

Define u3(x) = u1(x)u2(x)/s(x)2 and

v3(x) = (s1(x)u1(x)v2(x) + s2(x)u2(x)v1(x) + s3(x)(v1(x)v2(x) + F (x)))/s(x). (10.7)

Then u3(x), v3(x) ∈ k[x] and the Mumford representation of the semi-reduced divisor D
equivalent to D1 +D2 is (u3(x), v3(x)).

216 CHAPTER 10. HYPERELLIPTIC CURVES

Proof: Let D = D1 + D2 − div(s(x)) ∩ A2 so that D is equivalent to D1 + D2. By the
“crucial observation” above, s(x) has a root xP for some point P = (xP , yP) on the curve
if and only if P and ι(P) lie in the supports of D1 and D2. Taking multiplicities into
account, it follows that D is semi-reduced.

It is immediate that s(x)2 | u1(x)u2(x) and so u3(x) ∈ k[x]. It is also immediate that
u3(x) is the correct first component of the Mumford representation of D.

To show v3(x) ∈ k[x] rewrite v3(x) as

v3 =
v2(s− s2u2 − s3(v1 + v2 +H)) + s2u2v1 + s3(v1v2 + F)

s
(10.8)

= v2 + s2(v1 − v2)(u2/s) + s3(F − v2H − v22)/s. (10.9)

Since s(x) | u2(x) and u2(x) | (F − v2H − v22) the result follows.

We now need the equation

(v1 + v2 +H)(v3 − y) ≡ (y − v1)(y − v2) (mod u3). (10.10)

This is proved by inserting the definition of v3 from equation (10.7) to get

(v1 + v2 +H)(v3 − y) ≡ −(v1 + v2 +H)y + (s1u1(v
2
2 +Hv2 − F) + s2u2(v21 +Hv1 − F)

+(v1v2 + F)(s1u1 + s2u2 + s3(v1 + v2 +H))/s (mod u3(x)).

Then using (y − v1)(y − v2) = F − (v1 + v2 + H)y + v1v2 and ui | (v2i + Hvi − F) for
i = 1, 2 proves equation (10.10).

Finally, it remains to prove that equation (10.6) holds. We do this by showing that

vP (v(x)2 +H(x)v(x) − F (x)) ≥ vP (u(x))

for all P = (xP , yP) ∈ Supp(D). Suppose first that P 6= ι(P) and that (x − xP)e‖u3(x).
Then it is sufficient to show that vP (y − v3(x)) ≥ e. This will follow from equa-
tion (10.10). First note that vP (y−v3) = vP ((v1+v2+H)(v3−y)) and that this is at least
min{vP (u3), vP ((y−v1)(y−v2))}. Then vP (y−v1)+vP (y−v2) ≥ vP (u1(x))+vP (u2(x)) ≥
e.

Now for the case P = ι(P) ∈ Supp(D). Recall that such points only occur in semi-
reduced divisors with multiplicity 1. Since u3(x) is of minimal degree we know (x −
xP)‖u3(x). It suffices to show that v3(xP) = yP , but this follows from equation (10.9).
Without loss of generality, P ∈ Supp(D2) and P 6∈ Supp(D1) (if P ∈ Supp(Di) for both
i = 1, 2 then P 6∈ Supp(D)) so (x − xP) ∤ s(x), v2(xP) = yP and (u2/s)(xP) = 0. Hence
v3(xP) = v2(xP) + 0 = yP . �

Exercise 10.3.15. Let C : y2+(x2+2x+10)y = x5+x+1 over F11. LetD1 = (0, 4)+(6, 4)
and D2 = (0, 4)+(1, 1). Determine the Mumford representation of D1, D2, 2D1, D1 +D2.

We remark that, in practical implementation, one almost always has gcd(u1(x), u2(x)) =
1 and so s(x) = 1 and the addition algorithm can be simplified. Indeed, it is possible to
give explicit formulae for the general cases in the addition algorithm for curves of small
genus, we refer to Sections 14.4, 14.5 and 14.6 of [16].

Exercise 10.3.16. Show that the Cantor addition algorithm for semi-reduced divisors
of degree ≤ m has complexity O(m2M(log(q)) bit operations.

10.3. EFFECTIVE AFFINE DIVISORS ON HYPERELLIPTIC CURVES 217

10.3.3 Reduction of Divisors in Mumford Representation

Suppose we have an affine effective divisor D with Mumford representation (u(x), v(x)).
We wish to obtain an equivalent divisor (affine and effective) whose Mumford represen-
tation has deg(u(x)) of low degree. We will show in Theorem 10.3.21 and Lemma 10.4.6
that one can ensure deg(u(x)) ≤ g, where g is the genus; we will call such divisors reduced.
The idea is to consider

u†(x) = monic
(
(v(x)2 +H(x)v(x) − F (x))/u(x)

)
, v†(x) = −v(x)−H(x) (mod u†(x))

(10.11)
where monic

(
u0 + u1x+ · · ·+ ukx

k
)

for uk 6= 0 is defined to be (u0/uk) + (u1/uk)x +
· · · + xk. Obtaining (u†(x), v†(x)) from (u(x), v(x)) is a Cantor reduction step. This
operation appears in the classical reduction theory of binary quadratic forms.

Lemma 10.3.17. Let D be an affine effective divisor on a hyperelliptic curve C with
Mumford representation (u(x), v(x)). Define (u†(x), v†(x)) as in equation (10.11). Then
(u†(x), v†(x)) is the Mumford representation of a semi-reduced divisor D† and D† ≡ D
on C ∩ A2.

Proof: One checks that (u†(x), v†(x)) satisfies condition (10.6) and so there is an asso-
ciated semi-reduced divisor D†.

Write D = (P1) + · · · + (Pn) (where the same point can appear more than once).
Then div(y − v(x)) ∩ A2 = (P1) + · · · + (Pn) + (Pn+1) + · · · + (Pn+m) for some points
Pn+1, . . . , Pn+m (not necessarily distinct from the earlier n points, or from each other)
and div(v(x)2 + H(x)v(x) − F (x)) ∩ A2 = div((y − v(x))(−y − H(x) − v(x))) ∩ A2 =
(P1) + (ι(P1)) + · · · + (Pn+m) + (ι(Pn+m)). Now, div(u†(x)) = (Pn+1) + (ι(Pn+1)) +
· · · + (Pn+m) + (ι(Pn+m)). It follows that D† = (ι(Pn+1)) + · · · + (ι(Pn+m)) and that
D = D† + div(y − v(x)) ∩ A2 − div(u†(x)) ∩ A2. �

Example 10.3.18. Consider

C : y2 = F (x) = x5 + 2x4 − 8x3 + 10x2 + 40x+ 1

over Q. Let P1 = (−4, 1), P2 = (−2, 5), P3 = (0, 1) and D = (P1) + (P2) + (P3). The
Mumford representation of D is (u(x), v(x)) = (x(x + 2)(x + 4),−x2 − 4x+ 1), which is
easily checked by noting that v(xPi) = yPi for 1 ≤ i ≤ 3.

To reduce D one sets u†(x) = monic
(
(v(x)2 − F (x))/u(x)

)
= monic(−x2 + 5x− 6) =

(x− 3)(x− 2) and v†(x) = −v(x) (mod u†(x)) = 9x− 7.
One can check that div(y − v(x)) = (P1) + (P2) + (P3) + (P4) + (P5) where P4 =

(2,−11) and P5 = (3,−20), that div(u†(x)) = (P4) + (ι(P4)) + (P5) + (ι(P5)) and that
D ≡ div(u†(x), y − v†(x)) ∩ A2 = (ι(P4)) + (ι(P5)). See Figure 10.1 for an illustration.

Exercise 10.3.19. Show that the straight lines l(x, y) and v(x) in the elliptic curve
addition law (Definition 7.9.1) correspond to the polynomials y− v(x) and u†(x) (beware
of the double meaning of v(x) here) in a Cantor reduction step.

Lemma 10.3.20. Let C : y2 + H(x)y = F (x) and let (u(x), v(x)) be the Mumford
representation of a semi-reduced divisor D. Write dH = deg(H(x)), dF = deg(F (x)), du =
deg(u(x)) and dv = deg(v(x)). Let d = max{dH , ⌈dF /2⌉}. Let (u†(x), v†(x)) be the
polynomials arising from a Cantor reduction step.

1. If dv ≥ d then deg(u†(x)) ≤ du − 2.

2. If dF ≤ 2d−1 and du ≥ d > dv then deg(u†(x)) ≤ d−1 (this holds even if dH = d).

218 CHAPTER 10. HYPERELLIPTIC CURVES

Figure 10.1: Cantor reduction on a hyperelliptic curve.

P1

P2

P3

P4

P5

ι(P4)

ι(P5)

3. If dF = 2d and du > d > dv then deg(u†(x)) ≤ d− 1.

Proof: Note that du > dv. If dv ≥ d then

deg(v(x)2+H(x)v(x)−F (x)) ≤ max{2dv, dH+dv, dF } ≤ max{2(du−1), d+(du−1), 2d}.

Hence, deg(u†(x)) = deg(v2 +Hv − F)− du ≤ max{du − 2, d− 1, 2d− du} = du − 2.
If dF ≤ 2d − 1 and du ≥ d > dv then, by a similar argument, deg(u†(x)) ≤ 2d −

1 − du ≤ d − 1. Finally, if dF = 2d and du > d > dv then deg(v2 + Hv + F) = 2d and
deg(u†) = 2d− du < d. �

Theorem 10.3.21. Suppose C : y2 + H(x)y = F (x) is a hyperelliptic curve of genus g
with deg(F (x)) ≤ 2g+ 1. Then every semi-reduced divisor is equivalent to a semi-reduced
divisor of degree at most g.

Proof: Perform Cantor reduction steps repeatedly. By Lemma 10.3.20 the desired con-
dition will eventually hold. �

Theorem 10.3.21 is an “explicit Riemann-Roch theorem” for hyperelliptic curves with
a single point at infinity (also for hyperelliptic curves y2 + H(x)y = F (x) with two
points at infinity but deg(F (x)) ≤ 2g + 1) as it shows that every divisor class contains
a representative as an affine effective divisor of degree at most g. The general result is
completed in Lemma 10.4.6 below.

Definition 10.3.22. Let C : y2 +H(x)y = F (x) be a hyperelliptic curve of genus g. A
semi-reduced divisor on C is reduced if its degree is at most g.

Exercise 10.3.23. Let C : y2 + H(x)y = F (x) be a hyperelliptic curve with d =
max{deg(H), ⌈deg(F)/2⌉}. Let (u(x), v(x)) be the Mumford representation of a divi-
sor with deg(v(x)) < deg(u(x)) < d. Show that if deg(F (x)) ≥ 2d− 1 and one performs
a Cantor reduction step on (u(x), v(x)) then the resulting polynomials (u†(x), v†(x)) are
such that deg(u†(x)) ≥ d.

When deg(F) = 2d then Lemma 10.3.20 is not sufficient to prove an analogue of
Theorem 10.3.21. However, one can at least reduce to a divisor of degree d = g + 1. It

10.4. ADDITION IN THE DIVISOR CLASS GROUP 219

is notable that performing a Cantor reduction step on a divisor of degree d in this case
usually yields another divisor of degree d. This phenomena will be discussed in detail in
Section 10.4.2.

We now consider the uniqueness of the reduced divisor of Theorem 10.3.21. Lemma 10.3.24
below shows that non-uniqueness can only arise with split or inert models. It follows that
there is a unique reduced divisor in every divisor class for hyperelliptic curves with ram-
ified model. For hyperelliptic curves with split or inert model there is not necessarily a
unique reduced divisor.

Lemma 10.3.24. Let y2 +H(x)y = F (x) be a hyperelliptic curve over k of genus g. Let
dH = deg(H(x)) and dF = deg(F (x)). Let D1 and D2 be semi-reduced divisors of degree
at most g. Assume that D1 6= D2 but D1 ≡ D2. Then dF = 2g + 2 or dH = g + 1.

Proof: First note that dH ≤ g + 1 and dF ≤ 2g + 2. Let D′
3 = D1 + ι∗(D2) so that

D′
3 ≡ D1 − D2 ≡ 0 as an affine divisor. Let D3 be the semi-reduced divisor equivalent

to D′
3 (i.e., by removing all occurences (P) + (ι(P))). Note that the degree of D3 is at

most 2g and that D3 6= 0. Since D3 ≡ 0 and D3 is an effective affine divisor we have
D3 = div(G(x, y)) on C ∩ A2 for some non-zero polynomial G(x, y). Without loss of
generality G(x, y) = a(x) − b(x)y. Furthermore, b(x) 6= 0 (since div(a(x)) is not semi-
reduced for any non-constant polynomial a(x)).

Exercise 10.1.26 shows that the degree of div(a(x) − b(x)y) on C ∩ A2 is the degree
of a(x)2 + H(x)a(x)b(x) − F (x)b(x)2. We need this degree to be at most 2g. This is
easily achieved if dF ≤ 2g (in which case dH = g + 1 for the curve to have genus g).
However, if 2g + 1 ≤ dF ≤ 2g + 2 then we need either deg(a(x)2) = deg(F (x)b(x)2) or
deg(H(x)a(x)b(x)) = deg(F (x)b(x)2). The former case is only possible if dF is even (i.e.,
dF = 2g + 2). If dF = 2g + 1 and dH ≤ g then the latter case implies deg(a(x)) ≥
g + 1 + deg(b(x)) and so deg(a(x)2) > deg(F (x)b(x)2) and deg(G(x, y)) > 2g. �

For hyperelliptic curves of fixed (small) genus it is possible to give explicit formulae
for the general cases of the composition and reduction algorithms. For genus 2 curves
this was done by Harley [277] (the basic idea is to formally solve for u†(x) such that
u†(x)u(x) = monic(v(x)2 + H(x)v(x) − F (x)) as in equation (10.11)). For extensive
discussion and details (and also for non-affine coordinate systems for efficient hyperelliptic
arithmetic) we refer to Sections 14.4, 14.5 and 14.6 of [16].

10.4 Addition in the Divisor Class Group

We now show how Cantor’s addition and reduction algorithms for divisors on the affine
curve can be used to perform arithmetic in the divisor class group of the projective
curve. A first remark is that Lemma 10.3.3 implies that every degree zero divisor class
on a hyperelliptic curve has a representative of the form D + n+(∞+) + n−(∞−) where
D is a semi-reduced (hence, affine and effective) divisor and n+, n− ∈ Z (necessarily,
deg(D) + n+ + n− = 0).

10.4.1 Addition of Divisor Classes on Ramified Models

On a hyperelliptic curve with ramified model there is only a single point at infinity. We
will show in this section that, for such curves, one can compute in the divisor class group
using only affine divisors.

We use the Cantor algorithms for addition, semi-reduction, and reduction. In general,
if one has a semi-reduced divisor D then, by case 1 of Lemma 10.3.20, a reduction step
reduces the degree of D by 2. Hence, at most deg(D)/2 reduction steps are possible.

220 CHAPTER 10. HYPERELLIPTIC CURVES

Theorem 10.4.1. Let C be a hyperelliptic curve with ramified model. Then every degree
0 divisor class on C has a unique representative of the form D− n(∞) where D is semi-
reduced and where 0 ≤ n ≤ g.

Proof: Theorem 10.3.21 showed that every affine divisor is equivalent to a semi-reduced
divisor D such that 0 ≤ deg(D) ≤ g. This corresponds to the degree zero divisor D−n(∞)
where n = deg(D). Uniqueness was proved in Lemma 10.3.24. �

A degree zero divisor of the form D−n(∞) where D is a semi-reduced divisor of degree
n and 0 ≤ n ≤ g is called reduced. We represent D using Mumford representation as
(u(x), v(x)) and we know that the polynomials u(x) and v(x) are unique. The divisor
class is defined over k if and only if the corresponding polynomials u(x), v(x) ∈ k[x].
Addition of divisors is performed using Cantor’s composition and reduction algorithms
as above.

Exercise 10.4.2. Let C : y2 + H(x)y = F (x) be a ramified model of a hyperelliptic
curve over Fq. Show that the inverse (also called the negative) of a divisor class on C
represented as (u(x), v(x)) is (u(x),−v(x) − (H(x) (mod u(x)))).

Exercise 10.4.3. Let C be a hyperelliptic curve over k of genus g with ramified model.
Let D1 and D2 be reduced divisors on C. Show that one can compute a reduced divisor
representing D1 + D2 in O(g3) operations in k. Show that one can compute [n]D1 in
O(log(n)g3) operations in k (here [n]D1 means the n-fold addition D1 +D1 + · · ·+D1).

When the genus is 2 (i.e., d = 3) and one adds two reduced divisors (i.e., effective
divisors of degree ≤ 2) then the sum is an effective divisor of degree at most 4 and so only
one reduction operation is needed to compute the reduced divisor. Similarly, for curves
of any genus, at most one reduction operation is needed to compute a reduced divisor
equivalent to D + (P) where D is a reduced divisor (such ideas were used by Katagi,
Akishita, Kitamura and Takagi [333, 332] to speed up cryptosystems using hyperelliptic
curves).

For larger genus there are several variants of the divisor reduction algorithm. In Sec-
tion 4 of [118], Cantor gives a method that uses higher degree polynomials than y− v(x)
and requires fewer reduction steps. In Section VII.2.1 of [65], Gaudry presents a reduc-
tion algorithm, essentially due to Lagrange, that is useful when g ≥ 3. The NUCOMP
algorithm (originally proposed by Shanks in the number field setting) is another useful
alternative. We refer to Jacobson and van der Poorten [323] and Section VII.2.2 of [65]
for details. It seems that NUCOMP should be used once the genus of the curve exceeds
10 (and possibly even for g ≥ 7).

Exercise 10.4.4. Let C be a hyperelliptic curve of genus 2 over a field k with a ramified
model. Show that every k-rational divisor class has a unique representative of one of the
following four forms:

1. (P)− (∞) where P ∈ C(k), including P =∞. Here u(x) = (x− xP) or u(x) = 1.

2. 2(P) − 2(∞) where P ∈ C(k) excluding points P such that P = ι(P). Here
u(x) = (x− xP)2.

3. (P) + (Q) − 2(∞) where P,Q ∈ C(k) are such that P,Q 6= ∞, P 6= Q, P 6= ι(Q).
Here u(x) = (x− xP)(x − xQ).

4. (P)+(σ(P))−2(∞) where P ∈ C(K)−C(k) for any quadratic field extension K/k,
Gal(K/k) = 〈σ〉 and σ(P) 6∈ {P, ι(P)}. Here u(x) is an irreducible quadratic in
k[x].

10.4. ADDITION IN THE DIVISOR CLASS GROUP 221

Exercise 10.4.5 can come in handy when computing pairings on hyperelliptic curves.

Exercise 10.4.5. Let D1 = div(u1(x), y−v1(x))∩A2 and D2 = div(u2(x), y−v2(x))∩A2

be semi-reduced divisors on a hyperelliptic curve with ramified model over k. Write
d1 = deg(u1(x)) and d2 = deg(u2(x)). Let D3 = div(u3(x), y − v3(x)) ∩ A2 be a semi-
reduced divisor of degree d3 such that D3 − d3(∞) ≡ D1 − d1(∞) + D2 − d2(∞). Show
that if d2 = d3 then D1 − d1(∞) ≡ D3 −D2.

10.4.2 Addition of Divisor Classes on Split Models

This section is rather detailed and can safely be ignored by most readers. It presents
results of Paulus and Rück [479] and Galbraith, Harrison and Mireles [219].

Let C be a hyperelliptic curve of genus g over k with a split model. We have al-
ready observed that every degree zero divisor class has a representative of the form
D + n+(∞+) + n−(∞−) where D is semi-reduced and n+, n− ∈ Z. Lemma 10.3.20
has shown that we may assume 0 ≤ deg(D) ≤ g + 1. One could consider the divisor to
be reduced if this is the case, but this would not be optimal.

The Riemann-Roch theorem implies we should be able to take deg(D) ≤ g but Cantor
reduction becomes “stuck” if the input divisor has degree g+1. The following simple trick
allows us to reduce to semi-reduced divisors of degree g (and this essentially completes the
proof of the “Riemann-Roch theorem” for these curves). Recall the polynomial G+(x) of
degree d = g + 1 from Exercise 10.1.28.

Lemma 10.4.6. Let y2 + H(x)y = F (x) be a hyperelliptic curve of genus g over k with
split model. Let u(x), v(x) be a Mumford representation such that deg(u(x)) = g + 1.
Define

v‡(x) = G+(x) + (v(x) −G+(x) (mod u(x))) ∈ k[x],

where we mean that v(x)−G+(x) is reduced to a polynomial of degree at most deg(u(x))−
1 = g. Define

u†(x) = monic

(
v‡(x)2 +H(x)v‡(x)− F (x)

u(x)

)
and v†(x) = −v‡(x)−H(x) (mod u†(x)).

(10.12)
Then deg(u†(x)) ≤ g and

div(u(x), y−v(x))∩A2 = div(u†(x), y−v†(x))∩A2−div(u†(x))∩A2 +div(y−v‡(x))∩A2 .
(10.13)

Proof: Note that v‡(x) ≡ v(x) (mod u(x)) and so v‡(x)2 + H(x)v‡(x) − F (x) ≡
0 (mod u(x)), hence u†(x) is a polynomial. The crucial observation is that deg(v‡(x)) =
deg(G+(x)) = d = g + 1 and so the leading coefficient of v‡(x) agrees with that of
G+(x). Hence deg(v‡(x)2 + H(x)v‡(x) − F (x)) ≤ 2d − 1 = 2g + 1 and so deg(u†(x)) ≤
2d − 1 − d = d − 1 = g as claimed. To show equation (10.13) it is sufficient to write

u(x)u†(x) =
∏l
i=1(x− xi)ei and to note that

div(y − v‡(x)) ∩ A2 =

l∑

i=1

ei(xi, v
‡(yi))

= div(u(x), y − v(x)) ∩ A2 + div(u†(x), y +H(x) + v†(x)) ∩A2

and that div(u†(x)) = div(u†(x), y − v†(x)) + div(u†(x), y + v†(x) +H(x)). �

222 CHAPTER 10. HYPERELLIPTIC CURVES

Example 10.4.7. Let C : y2 = F (x) = x6 + 6 = (x − 1)(x + 1)(x − 2)(x + 2)(x −
3)(x + 3) over F7. Then G+(x) = x3. Consider the divisor D = (1, 0) + (−1, 0) +
(2, 0) with Mumford representation (u(x), v(x)) = ((x − 1)(x+ 1)(x− 2), 0). Performing
standard Cantor reduction gives u†(x) = F (x)/u(x) = (x + 2)(x − 3)(x + 3), which
corresponds to the trivial divisor equivalence D ≡ (−2, 0) + (3, 0) + (−3, 0). Instead,
we take v‡ = G+(x) + (−G+(x) (mod u(x))) = x3 + (−x3 + u(x)) = u(x). Then
u†(x) = monic

(
(v‡(x)2 − F (x))/u(x)

)
= x2 + 5x + 2 and v†(x) = 3x + 5. The divisor

div(u†(x), y − v†(x)) ∩A2 is a sum (P) + (σ(P)) where P ∈ C(F72)−C(F7) and σ is the
non-trivial element of Gal(F72/F7).

The operation (u(x), v(x)) 7→ (u†(x), v†(x)) of equation (10.12) is called composi-
tion and reduction at infinity; the motivation for this is given in equation (10.18)
below. Some authors call it a baby step. This operation can be performed even when
deg(u(x)) < d, and we analyse it in the general case in Lemma 10.4.14.

Exercise 10.4.8. Let the notation be as in Lemma 10.4.6. Let du = deg(u(x)) so that
v‡(x) agrees with G+(x) for the leading d− du + 1 coefficients and so m = deg(v‡(x)2 +
H(x)v‡(x)− F (x)) ≤ d+ du − 1. Let du† = deg(u†(x)) so that m = du + du† . Show that
v∞−(y − v‡(x)) = −d, div(y − v‡(x)) =

div(u(x), y−v(x))∩A2 +div(u†(x), y+H(x)+v†(x))∩A2− (du+du†−d)(∞+)−d(∞−),
(10.14)

and v∞+(y − v‡(x)) = −(du + du† − d).

We now discuss how to represent divisor classes. An obvious choice is to represent
classes as D − d(∞+) where D is an affine effective divisor of degree d (see Paulus and
Rück [479] for a full discussion of this case). A more natural representation, as pointed
out by Galbraith, Harrison and Mireles [219], is to use balanced representations at infinity.
In other words, when g is even, to represent divisor classes as D − (g/2)((∞+) + (∞−))
where D is an effective divisor of degree g.

Definition 10.4.9. Let C be a hyperelliptic curve of genus g over k in split model. If g

is even then define D∞ = g
2 ((∞+) + (∞−)). If g is odd then define D∞ = (g+1)

2 (∞+) +
(g−1)

2 (∞−).
Let u(x), v(x) ∈ k[x] be the Mumford representation of a semi-reduced divisor D =

div(u(x), y−v(x))∩A2 and n ∈ Z. Then div(u(x), v(x), n) denotes the degree zero divisor

D + n(∞+) + (g − deg(u(x)) − n)(∞−)−D∞.

If 0 ≤ deg(u(x)) ≤ g and 0 ≤ n ≤ g − deg(u(x)) then such a divisor is called reduced.

Uniqueness of this representation is shown in Theorem 10.4.19. When g is odd then
one could also represent divisor classes using D∞ = (g + 1)/2((∞+) + (∞−)). This is
applicable in the inert case too. A problem is that this would lead to polynomials of higher
degree than necessary in the Mumford representation, and divisor class representatives
would no longer necessarily be unique.

It is important to realise that u(x) and v(x) are only used to specify the affine divisor.
The values of v∞+(y − v(x)) and v∞−(y − v(x)) have no direct influence over the degree
zero divisor under consideration. Note also that we allow n ∈ Z in Definition 10.4.9 in
general, but reduced divisors must have n ∈ Z≥0.

For hyperelliptic curves with split model then∞+,∞− ∈ k and so a divisor (u(x), v(x), n)
is defined over k if and only if u(x), v(x) ∈ k[x]. Note that when the genus is even then

10.4. ADDITION IN THE DIVISOR CLASS GROUP 223

D∞ is k-rational even when the model is inert, though in this case a divisor (u(x), v(x), n)
with n 6= 0 is not defined over k if u(x), v(x) ∈ k[x].

We may now consider Cantor’s addition algorithm in this setting.

Lemma 10.4.10. Let C be a hyperelliptic curve over k of genus g with split model. Let
div(u1(x), v1(x), n1) and div(u2(x), v2(x), n2) be degree zero divisors as above. Write Di =
div(ui(x), y− vi(x))∩A2 for i = 1, 2 and let D3 = div(u3(x), y− v3(x))∩A2 be the semi-
reduced divisor equivalent to D1 +D2, and s(x) such that D1 +D2 = D3 + div(s(x))∩A2.
Let m = g/2 when g is even and m = (g + 1)/2 otherwise. Then

div(u1, v1, n1) + div(u2, v2, n2) ≡ div(u3, v3, n1 + n2 + deg(s)−m). (10.15)

Proof: We will show that

div(u1, v1, n1) + div(u2, v2, n2) = div(u3, v3, n1 + n2 + deg(s)−m) + div(s(x)).

The left-hand side is

D1+D2 +(n1+n2−m)(∞+)+(3m−deg(u1)−deg(u2)−n1−n2)(∞−) − D∞. (10.16)

Replacing D1 + D2 by D3 + div(s(x)) ∩ A2 has no effect on the coefficients of ∞+ or
∞−, but since we actually need div(s(x)) on the whole of C we have D1 + D2 = D3 +
div(s(x)) + deg(s(x))((∞+) + (∞−)). Writing div(u3, v3, n3) = div(u3, y − v3) ∩ A2 +
n3(∞+) + (g− deg(u3)−n3)(∞−)−D∞ gives n3 = n1 +n2 + deg(s(x))−m as required.

Note that deg(u3) + deg(s) = deg(u1) + deg(u2) so the coefficient of ∞− in equa-
tion (10.16) is also correct (as it must be). �

We now discuss reduction of divisors on a hyperelliptic curve with a split model. We
first consider the basic Cantor reduction step. There are two relevant cases for split models
(namely the first and third cases in Lemma 10.3.20) that we handle as Lemma 10.4.11
and Exercise 10.4.12.

Lemma 10.4.11. Let C : y2 + H(x)y = F (x) where deg(F (x)) = 2d = 2g + 2 be a
hyperelliptic curve over k of genus g with split model. Let div(u(x), v(x), n) be a degree
zero divisor as in Definition 10.4.9. Let (u†(x), v†(x)) be the polynomials arising from a
Cantor reduction step (i.e., u†(x) and v†(x) are given by equation (10.11)). If deg(v(x)) ≥
d = g+ 1 then set n† = n+ deg(v(x))− deg(u†(x)) = n+ (deg(u(x))− deg(u†(x)))/2 and
if deg(v(x)) < g + 1 < deg(u(x)) then set n† = n+ g + 1− deg(u†(x)). Then

div(u, v, n) = div(u†, v†, n†) + div(y − v(x)) − div(u†(x)) (10.17)

and div(u, v, n) ≡ div(u†, v†, n†).

Proof: If deg(v(x)) ≥ d then deg(u(x)) + deg(u†(x)) = 2 deg(v(x)) and v∞+(y− v(x)) =
v∞−(y − v(x)) = − deg(v(x)). For equation (10.17) to be satisfied we require

n = n† + v∞+(y − v(x)) − v∞+(u†(x))

and the formula for n† follows (the coefficients of∞− must also be correct, as the divisors
all have degree 0).

In the second case of reduction we have deg(v(x)) < d < deg(u(x)) and hence
deg(u(x)) + deg(u†(x)) = 2d and v∞+(y− v(x)) = v∞−(y− v(x)) = −d. The formula for
n† follows as in the first case. �

224 CHAPTER 10. HYPERELLIPTIC CURVES

Exercise 10.4.12. Let C : y2 + H(x)y = F (x) where deg(F (x)) < 2d = 2g + 2 be a
hyperelliptic curve over k of genus g with split model. Let div(u(x), v(x), n) be a degree
zero divisor as in Definition 10.4.9 such that d ≤ deg(u(x)). Let (u†(x), v†(x)) be the
polynomials arising from a Cantor reduction step. Show that div(u, v, n) ≡ div(u†, v†, n†)
where, if deg(v(x)) < d then n† = n + g + 1 − deg(u†(x)) and if deg(v(x)) ≥ d then
n† = n+ deg(v(x)) − deg(u†(x)).

Example 10.4.13. Let C : y2 = x6 + 3 over F7. Let D1 = div((x − 1)(x − 2), 2, 0) =
(1, 2) + (2, 2) − D∞ and D2 = div((x − 3)(x − 4), 2, 0) = (3, 2) + (4, 2) − D∞. Cantor
addition gives D1 + D2 = D3 = div((x − 1)(x − 2)(x − 3)(x − 4), 2,−1), which is not
a reduced divisor. Applying Cantor reduction to D3 results in u†(x) = (x − 5)(x − 6)
and v†(x) = −2 and n† = n3 + (g + 1) − deg(u†(x)) = −1 + 3 − 2 = 0. Hence, we have
D3 ≡ div((x− 5)(x− 6),−2, 0), which is a reduced divisor.

We now explain the behaviour of a composition at infinity and reduction step.

Lemma 10.4.14. Let C : y2 + H(x)y = F (x) where deg(F (x)) = 2d = 2g + 2 be a hy-
perelliptic curve over k of genus g with split model. Let div(u(x), v(x), n) be a degree zero
divisor as in Definition 10.4.9 such that 1 ≤ deg(u(x)) ≤ g+1. Let v‡(x), u†(x) and v†(x)
be as in Lemma 10.4.6. Let n† = n+ deg(u(x))− (g + 1) and D† = div(u†(x), v†(x), n†).
Then

D = D† + div(y − v‡(x)) − div(u†(x)).

If one uses G−(x) in Lemma 10.4.6 then n† = n+ g + 1− deg(u†(x)).

It follows that if deg(u(x)) = g + 1 then div(u, y − v) ∩ A2 ≡ div(u†, y − v†) ∩ A2

and there is no adjustment at infinity (the point of the operation in this case is to lower
the degree from deg(u(x)) = g + 1 to deg(u†(x)) ≤ g). But if, for example, deg(u(x)) =
deg(u†(x)) = g then we have

div(u, y − v) ∩A2 −D∞ ≡ div(u†, y − v†) ∩ A2 + (∞+)− (∞−)−D∞ (10.18)

and so the operation corresponds to addition of D with the degree zero divisor (∞−) −
(∞+). This justifies the name “composition at infinity”. To add (∞+)−(∞−) one should
use G−(x) instead of G+(x) in Lemma 10.4.6.

Exercise 10.4.15. Prove Lemma 10.4.14.

We can finally put everything together and obtain the main result about reduced
divisors on hyperelliptic curves with split model.

Theorem 10.4.16. Let C be a hyperelliptic curve over k of genus g with split model.
Then every divisor class contains a reduced divisor as in Definition 10.4.9.

Proof: We have shown the existence of a divisor in the divisor class with semi-reduced
affine part, and hence of the form (u(x), v(x), n) with n ∈ Z. Cantor reduction and
composition and reduction at infinity show that we can assume deg(u(x)) ≤ g. Finally,
to show that one may assume 0 ≤ n ≤ g−deg(u(x)) note that Lemma 10.4.14 maps n to
n† = n+ (g+ 1)−deg(u(x)). Hence, if n > g−deg(u(x)) then n > n† ≥ 0 and continuing
the process gives a reduced divisor. On the other hand, if n < 0 then using G−(x) instead
one has n† = n+ g + 1− deg(u†(x)) ≤ g − deg(u†(x)). �

Exercise 10.4.17. Let C : y2+H(x)y = F (x) be a hyperelliptic curve of genus g over Fq
in split model. If g is even, show that the inverse of div(u(x), v(x), n) is div(u(x),−v(x)−
(H(x) (mod u(x))), g − deg(u(x))− n). If g is odd then show that computing the inverse
of a divisor may require performing composition and reduction at infinity.

10.4. ADDITION IN THE DIVISOR CLASS GROUP 225

Example 10.4.18. Let C : y2 = x6 + x+ 1 over F37. Then d = 3 and G+(x) = x3. Let
D = (1, 22)+(2, 17)+(∞+)−(∞−)−D∞, which is represented as div(u(x), v(x), 1) where
u(x) = (x−1)(x−2) = x2+34x+2 and v(x) = 32x+27. This divisor is not reduced. Then
v‡(x) = x3 + 25x+ 33 and deg(v‡(x)2 −F (x)) = 4. Indeed, v‡(x)2 −F (x) = 13u(x)u†(x)
where u†(x) = x2 + 28x+ 2. It follows that v†(x) = 7x+ 22 and that

div(u(x), v(x), 1) ≡ div(u†(x), v†(x), 0),

which is reduced.

Explicit formulae for all these operations for genus 2 curves of the form y2 = x6 +
F4x

4 +F3x
3 +F2x

2 +F1x+F0 have been given by Erickson, Jacobson, Shang, Shen and
Stein [199].

Uniqueness of the Representation

We have shown that every divisor class for hyperelliptic curves with a split model contains
a reduced divisor. We now discuss the uniqueness of this reduced divisor, following Paulus
and Rück [479].

Theorem 10.4.19. Let C be a hyperelliptic curve over k of genus g with split model.
Then every divisor class has a unique representative of the form

D + n(∞+) + (g − deg(D)− n)(∞−)−D∞

where D is a semi-reduced divisor (hence, affine and effective) and 0 ≤ n ≤ g − deg(D).

Proof: Existence has already been proved using the reduction algorithms above, so it
suffices to prove uniqueness. Hence, suppose

D1+n1(∞+)+(g−deg(D1)−n1)(∞−)−D∞ ≡ D2+n2(∞+)+(g−deg(D2)−n2)(∞−)−D∞

with all terms satisfying the conditions of the theorem. Then, taking the difference and
adding div(u2(x)) = D2 + ι(D2) − deg(D2)((∞+) + (∞−)), there is a function f(x, y)
such that

div(f(x, y)) = D1 + ι(D2)− (n2 + deg(D2)− n1)(∞+)− (n1 + deg(D1)− n2)(∞−).

Since f(x, y) has poles only at infinity it follows that f(x, y) = a(x) + yb(x) where
a(x), b(x) ∈ k[x]. Now, 0 ≤ ni ≤ ni + deg(Di) ≤ g and so −g ≤ v∞+(f(x, y)) =
−(n2 + deg(D2) − n1) ≤ g and −g ≤ v∞−(f(x, y)) = −(n1 + deg(D1) − n2) ≤ g. But
v∞+(y) = v∞−(y) = −(g + 1) and so b(x) = 0 and f(x, y) = a(x). But div(a(x)) =
D+ι(D)−deg(a(x))((∞+)+(∞−)) and so D1 = D2, n1+deg(D1)−n2 = n2+deg(D2)−n1

and n1 = n2. �

Exercise 10.4.20. Let C be a hyperelliptic curve over k of genus g = d − 1 with split
model. Show that (∞+)− (∞−) is not a principal divisor and that this divisor is repre-
sented as (1, 0, ⌈g/2⌉+ 1).

If k = Fq is a finite field then (∞+)− (∞−) has finite order. We write R ∈ N for the
order of (∞+) − (∞−) and call it the regulator. Since R((∞+) − (∞−)) is a principal
divisor there is some function f(x, y) ∈ k(C) such that div(f) = R((∞+) − (∞−)). It
follows that f(x, y) ∈ k[x, y] (otherwise it would have some affine pole) and is a unit in
the ring k[x, y]. The polynomial f(x, y) is called the fundamental unit of the ring k[x, y]
(this is analogous to the fundamental unit of a real quadratic number field).

226 CHAPTER 10. HYPERELLIPTIC CURVES

Exercise 10.4.21. Show that R ≥ g + 1.

Exercise 10.4.22. Let C be a hyperelliptic curve over k of genus g with split model and
let P ∈ C(k) be such that P 6= ι(P). Show that the order of the divisor (P) − (ι(P)) is
always at least g + 1.

10.5 Jacobians, Abelian Varieties and Isogenies

As mentioned in Section 7.8, we can consider Pic0k(C) as an algebraic group, by consid-
ering the Jacobian variety JC of the curve. The fact that the divisor class group is
an algebraic group is not immediate from our description of the group operation as an
algorithm (rather than a formula).

Indeed, JC is an Abelian variety (namely, a projective algebraic group). The dimension
of the variety JC is equal to the genus of C. Unfortunately, we do not have space to
introduce the theory of Abelian varieties and Jacobians in this book. We remark that
the Mumford representation directly gives an affine part of the Jacobian variety of a
hyperelliptic curve (see Propositions 1.2 and 1.3 of Mumford [445] for the details).

An explicit description of the Jacobian variety of a curve of genus 2 has been given by
Flynn; we refer to Chapter 2 of Cassels and Flynn [123] for details, references and further
discussion.

There are several important concepts in the theory of Abelian varieties that are not
able to be expressed in terms of divisor class groups.4 Hence, our treatment of hyper-
elliptic curves will not be as extensive as the case of elliptic curves. In particular, we
do not give a rigorous discussion of isogenies (i.e., morphisms of varieties that are group
homomorphisms with finite kernel) for Abelian varieties of dimension g > 1. However,
we do mention one important result. The Poincaré reducibility theorem (see Theorem 1
of Section 19 (page 173) of Mumford [444]) states that if A is an Abelian variety over k
and B is an Abelian subvariety of A (i.e., B is a subset of A that is an Abelian variety
over k), then there is an Abelian subvariety B′ ⊆ A over k such that B ∩B′ is finite and
B + B′ = A. It follows that A is isogenous over k to B × B′. If an Abelian variety A
over k has no Abelian subvarieties over k then we call it simple. An Abelian variety is
absolutely simple if is has no Abelian subvarieties over k.

Despite not discussing isogenies in full generality, it is possible to discuss isogenies
that arise from maps between curves purely in terms of divisor class groups. We now give
some examples, but first introduce a natural notation.

Definition 10.5.1. Let C be a curve over a field k and let n ∈ N. For D ∈ Pic0k(C)
define

[n]D = D + · · ·+D (n times).

Indeed, we usually assume that [n]D is a reduced divisor representing the divisor class
nD. Define

Pic0k(C)[n] = {D ∈ Pic0k(C) : [n]D = 0}.

Recall from Corollary 8.3.10 that if φ : C1 → C2 is a non-constant rational map (and
hence a non-constant morphism) over k between two curves then there are correspond-
ing group homomorphisms φ∗ : Pic0k(C2) → Pic0k(C1) and φ∗ : Pic0k(C1) → Pic0k(C2).
Furthermore, by part 5 of Theorem 8.3.8 we have φ∗φ∗(D) = [deg(φ)]D on Pic0k(C2).

4There are two reasons for this: first the divisor class group is merely an abstract group and so does
not have the geometric structure necessary for some of these concepts; second, not every Abelian variety
is a Jacobian variety.

10.5. JACOBIANS, ABELIAN VARIETIES AND ISOGENIES 227

In the special case of a non-constant rational map φ : C → E over k where E is an
elliptic curve we can compose with the Abel-Jacobi map E → Pic0k(E) of Theorem 7.9.8
given by P 7→ (P)−(OE) to obtain group homomorphisms that we call φ∗ : E → Pic0k(C)
and φ∗ : Pic0k(C)→ E.

Exercise 10.5.2. Let φ : C → E be a non-constant rational map over k where E is
an elliptic curve over k. Let φ∗ : E → Pic0k(C) and φ∗ : Pic0k(C) → E be the group
homomorphisms as above. Show that φ∗ is surjective as a map from Pic0

k
(C) to E(k) and

that the kernel of φ∗ is contained in E[deg(φ)].

If C is a curve of genus 2 and there are two non-constant rational maps φi : C → Ei
over k for elliptic curves E1, E2 then one naturally has a group homomorphism φ1,∗×φ2,∗ :
Pic0

k
(C)→ E1(k)×E2(k). If ker(φ1,∗)∩ ker(φ2,∗) is finite then it follows from the theory

of Abelian varieties that the Jacobian variety JC is isogenous to the product E1 × E2 of
the elliptic curves and one says that JC is a split Jacobian.

Example 10.5.3. Let C : y2 = x6 + 2x2 + 1 be a genus 2 curve over F11. Consider the
rational maps

φ1 : C → E1 : Y 2 = X3 + 2X + 1

given by φ1(x, y) = (x2, y) and

φ2 : C → E2 : Y 2 = X3 + 2X2 + 1

given by φ2(x, y) = (1/x2, y/x3). The two elliptic curvesE1 and E2 are neither isomorphic
or isogenous. One has #E1(F11) = 16, #E2(F11) = 14 and #Pic0F11

(C) = 14 · 16.
It can be shown (this is not trivial) that ker(φ1,∗) ∩ ker(φ2,∗) is finite. Further, since

deg(φ1) = deg(φ2) = 2 it can be shown that the kernel of φ1,∗ × φ2,∗ is contained in
Pic0

k
(C)[2].

The Jacobian of a curve satisfies the following universal property. Let φ : C → A
be a morphism, where A is an Abelian variety. Let P0 ∈ C(k) be such that φ(P0) = 0
and consider the Abel-Jacobi map ψ : C → JC (corresponding to P 7→ (P) − (P0)).
Then there is a homomorphism of Abelian varieties φ′ : JC → A such that φ = φ′ ◦ ψ.
Exercise 10.5.4 gives a special case of this universal property.

Exercise 10.5.4. Let C : y2 = x6 + a2x
4 + a4x

2 + a6 over k, where char(k) 6= 2, and let
φ(x, y) = (x2, y) be non-constant rational map φ : C → E over k where E is an elliptic
curve. Let P0 ∈ C(k) be such that φ(P0) = OE . Show that the composition

C(k)→ Pic0
k
(C)→ E(k),

where the first map is the Abel-Jacobi map P 7→ (P)− (P0) and the second map is φ∗, is
just the original map φ.

Exercise 10.5.5. Let a3, a5 ∈ k, where char(k) 6= 2. This exercise gives maps over k
from the genus 2 curve C : y2 = x5 + a3x

3 + a5x to elliptic curves.
Choose α, β ∈ k such that a5 = α2β2 and a3 = −(α2 + β2). In other words,

x4 + a3x
2 + a5 = (x2 − α2)(x2 − β2) = (x− α)(x + α)(x − β)(x+ β).

Set s =
√
αβ, A = (1 + (α + β)/(2s))/2 and B = (1 − (α + β)/(2s))/2. Show that

A(x+ s)2 +B(x− s)2 = x2 + (α+ β)x+ s2, B(x+ s)2 +A(x− s)2 = x2 − (α+ β)x+ s2

and (x+ s)2 − (x− s)2 = 4sx. Hence, show that

x(x4 + a3x
2 + a5) =

((x+ s)2 − (x− s)2)

4s
(A(x+ s)2 +B(x− s)2)(B(x+ s)2 +A(x− s)2).

228 CHAPTER 10. HYPERELLIPTIC CURVES

Now, set Y = y/(x− s)3 and X = ((x + s)/(x− s))2. Show that

Y 2 = (X − 1)/(4s)(AX +B)(BX +A) =
AB

4s
(X − 1)(X2 + (B/A+A/B)X + 1).

Calling the above curve E1, the rational map φ1(x, y) = (X,Y) maps C to E1. Similarly,
taking Y = y/(x + s)3 and X = ((x − s)/(x + s))2 gives an elliptic curve E2 : Y 2 =
−(X − 1)/(4s)(BX + A)(AX + B) and a rational map φ2 : C → E2. Note that E2 is a
quadratic twist of E1.

There is a vast literature on split Jacobians and we are unable to give a full survey.
We refer to Sections 4, 5 and 6 of Kuhn [356] or Chapter 14 of Cassels and Flynn [123]
for further examples.

10.6 Elements of Order n

We now bound the size of the set of elements of order dividing n in the divisor class group
of a curve. As with many other results in this chapter, the best approach is via the theory
of Abelian varieties. We state Theorem 10.6.1 for general curves, but without proof. The
result is immediate for Abelian varieties over C, as they are isomorphic to Cg/L where
L is a rank 2g lattice. The elements of order n in Cg/L are given by the n2g points in
1
nL/L.

Theorem 10.6.1. Let C be a curve of genus g over k and let n ∈ N. If char(k) = 0 or
gcd(n, char(k)) = 1 then #Pic0

k
(C)[n] = n2g. If char(k) = p > 0 then #Pic0

k
(C)[p] = pe

where 0 ≤ e ≤ g.
Proof: See Theorem 4 of Section 7 of Mumford [444]. �

We now present a special case of Theorem 10.6.1 (at least, giving a lower bound),
namely elements of order 2 in the divisor class group of a hyperelliptic curve with a
ramified model.

Lemma 10.6.2. Let k be a field such that char(k) 6= 2. Let F (x) ∈ k[x] be a monic
polynomial of degree 2g + 1 and let C : y2 = F (x). Let d be the number of roots of F (x)
over k. Let Bk = {(x1, 0), . . . , (xd, 0)} where x1, . . . , xd ∈ k are the roots of F (x) in k.

If d 6= 2g + 1 then Bk generates a subgroup of Pic0k(C) of exponent 2 and order 2d. If
d = 2g + 1 then Bk generates a subgroup of Pic0k(C) of exponent 2 and order 22g.

Exercise 10.6.3. Prove Lemma 10.6.2 via the following method.

1. First, consider Bk = {P1, . . . , P2g+1} and for any subset T ⊂ {1, . . . , 2g + 1} define

DT =
∑

j∈T
(Pj)−#T (∞).

Show that DT has order 2 in Pic0
k
(C).

2. For T ⊂ {1, . . . , 2g + 1} we define the complement T ′ = {1, . . . , 2g + 1} − T (so
that T ∩ T ′ = ∅ and T ∪ T ′ = {1, . . . , 2g + 1}). Show that DT1 + DT2 ≡ DT3

where T3 = T1 ∪T2− (T1∩T2). Show (using Lemma 10.3.24 and other results) that
DT1 ≡ DT2 if and only if T1 = T2 or T1 = T ′

2.

3. Hence, deduce that the subgroup generated by Bk consists only of divisor classes
represented by reduced divisors with support in Bk. Complete the proof by counting
such divisor classes (note that if d < 2g + 1 then T ⊂ Bk implies T ′ 6⊂ Bk).

10.7. HYPERELLIPTIC CURVES OVER FINITE FIELDS 229

Lemma 10.6.2 describes 22g divisor classes over k of order dividing 2. Since The-
orem 10.6.1 states that there are exactly 22g such divisor classes over k it follows that
every 2-torsion divisor class has a representative of this form. A corollary is that any func-
tion f ∈ k(C) with divisor div(f) = 2(P1) + 2(P2) − 4(∞) is equal to c(x − x1)(x − x2)
for some c, x1, x2 ∈ k.

A determination of the 2-torsion in Jacobians of hyperelliptic curves over finite fields
is given by Cornelissen; see [147] and its erratum.

Division Ideals

In some applications (particularly when generalising Schoof’s algorithm for point count-
ing) it is desired to determine the elements of a given order in the divisor class group.
It is therefore necessary to have an analogue of the elliptic curve division polynomials.
Early attempts on this problem, in the context of point counting algorithms, appear in
the work of Pila and Kampkötter.

We sketch some results of Cantor [119]. Let C : y2 = F (x) over k be such that F (x)
is monic of degree 2g + 1 and char(k) 6= 2 (though Section 9 of [119] does discuss how to
proceed when char(k) = 2). Cantor defines polynomials ψn for n ≥ g + 1 such that for
P = (xP , yP) ∈ C(k) we have ψn(xP , yP) = 0 if and only if n((xP , yP)− (∞)) lies in the
set Θ of all divisor classes with a Mumford representative of the form div(u(x), y− v(x))
having deg(u(x)) ≤ g − 1. While points P ∈ C(k) such that [n]((P) − (∞)) is principal
will be roots of these polynomials, we stress that these polynomials do have other roots
as well. Also, since most divisor classes do not have representatives of the form (P)− (∞)
for a point P on the curve when g > 1, in general there are divisor classes of order n that
are not of this form. Equation (8.1) of [119] gives explicit recurrence formulae for ψn in
the case when g = 2. Section 10 of [119] gives the first few values of ψn(x, y) for the genus
2 curve y2 = x5 + 1.

Let C be a genus 2 curve. Note that if D = (x1, y1) + (x2, y2) − 2(∞) has order n
then either [n]((xi, yi) − (∞)) ≡ 0 or [n]((x1, y1) − (∞)) ≡ −[n]((x2, y2) − (∞)). Hence
one can find general divisors of order n using formulae for computing [n]((x, y) − (∞))
and equating polynomials. In other words, to determine divisors of order n it is sufficient
to obtain rational functions that give the Mumford representation of [n]((x, y)− (∞)).

Let n ∈ N and let C be a genus 2 curve over k in ramified model. There are
polynomials dn,0(x), dn,1(x), dn,2(x), en,0(x), en,1(x), en,2(x) ∈ k[x] of degrees respectively
2n2 − 3, 2n2 − 2, 2n2 − 1, 3n2 − 2, 3n2 − 3, 3n2 − 2 such that, for a “generic point”
P = (xP , yP) ∈ C(k), the Mumford representation of [n]((xP , yP)− (∞)) is

(
x2 +

dn,1(xP)

dn,0(xP)
x+

dn,2(xP)

dn,0(xP)
, yP

(
e1,n(xP)

e0,n(xP)
x+

e2,n(xP)

e0,n(xP)

))
.

Indeed, this can be checked directly for any curve C and any prime n by computing
Cantor’s algorithm in a computer algebra package. These formulae are not necessarily
valid for all points P ∈ C(k) (such as those for which n((xP , yP)− (∞)) ≡ 0). For details
we refer to Gaudry’s theses (Section 4.4 of [241] and Section 7.2 of [243]). Information
about the use of these, and other, ideals in point counting algorithms is given in Section
3 of Gaudry and Schost [248].

10.7 Hyperelliptic Curves Over Finite Fields

There are a finite number of points on a curve C of genus g over a finite field Fq. There
are also finitely many possible values for the Mumford representation of a reduced divisor

230 CHAPTER 10. HYPERELLIPTIC CURVES

on a hyperelliptic curve over a finite field. Hence, the divisor class group Pic0Fq (C) of a
curve over a finite field is a finite group. Since the affine part of a reduced divisor is a sum
of at most g points (possibly defined over a field extension of degree bounded by g) it is
not surprising that there is a connection between {#C(Fqi) : 1 ≤ i ≤ g} and #Pic0Fq (C).

Indeed, there is also a connection between {#Pic0Fqi (C) : 1 ≤ i ≤ g} and #C(Fq). The

aim of this section is to describe these connections. We also give some important bounds
on these numbers (analogous to the Hasse bound for elliptic curves). Most results are
presented for general curves (i.e., not only hyperelliptic curves).

One of the most important results in the theory of curves over finite fields is the
following theorem of Hasse and Weil. The condition that the roots of L(t) have absolute
value

√
q can be interpreted as an analogue of the Riemann hypothesis. This result gives

precise bounds on the number of points on curves and divisor class groups over finite
fields.

Theorem 10.7.1. (Hasse-Weil) Let C be a curve of genus g over Fq. There exists a
polynomial L(t) ∈ Z[t] of degree 2g with the following properties.

1. L(1) = #Pic0Fq(C).

2. One can write L(t) =
∏2g
i=1(1 − αit) with αi ∈ C such that αg+i = αi (this is

complex conjugation) and |αi| = √q for 1 ≤ i ≤ g.

3. L(t) = qgt2gL(1/(qt)) and so

L(t) = 1 + a1t+ · · ·+ ag−1t
g−1 + agt

g + qag−1t
g+1 + · · ·+ qg−1a1t

2g−1 + qgt2g.

4. For n ∈ N define Ln(t) =
∏2g
i=1(1− αni t). Then #Pic0Fqn (C) = Ln(1).

Proof: The polynomial L(t) is the numerator of the zeta function of C. For details see
Section V.1 of Stichtenoth [589], especially Theorem V.1.15. The proof that |αi| =

√
q

for all 1 ≤ i ≤ 2g is Theorem V.2.1 of Stichtenoth [589].
A proof of some parts of this result in a special case is given in Exercise 10.7.14. �

Exercise 10.7.2. Show that part 3 of Theorem 10.7.1 follows immediately from part 2.

Definition 10.7.3. The polynomial L(t) of Theorem 10.7.1 is called the L-polynomial
of the curve C over Fq.

Theorem 10.7.4. (Schmidt) Let C be a curve of genus g over Fq. There there exists a
divisor D on C of degree 1 that is defined over Fq.

We stress that this result does not prove that C has a point defined over Fq (though
when q is large compared with the genus existence of a point in C(Fq) will follow by the
Weil bounds). The result implies that even a curve with no points defined over Fq does
have a divisor of degree 1 (hence, not an effective divisor) that is defined over Fq.
Proof: See Corollary V.1.11 of Stichtenoth [589]. �

We now describe the precise connection between the roots αi of the polynomial L(t)
(corresponding to Pic0Fq (C)) and #C(Fqn) for n ∈ N.

Theorem 10.7.5. Let C be a curve of genus g over Fq and let αi ∈ C for 1 ≤ i ≤ 2g be
as in Theorem 10.7.1. Let n ∈ N. Then

#C(Fqn) = qn + 1−
2g∑

i=1

αni . (10.19)

10.7. HYPERELLIPTIC CURVES OVER FINITE FIELDS 231

Proof: See Corollary V.1.16 of Stichtenoth [589]. �

Equation (10.19) can be read in two ways. On the one hand it shows that given L(t)
one can determine #C(Fqn). On the other hand, it shows that if one knows #C(Fqn) for
1 ≤ n ≤ g then one has g non-linear equations in the g variables α1, . . . , αg (there are
only g variables since αi+g = q/αi for 1 ≤ i ≤ g). The following result shows that one
can therefore deduce the coefficients a1, . . . , ag giving the polynomial L(t).

Lemma 10.7.6. (Newton’s identities) Let α1, . . . , α2g ∈ C and define tn =
∑2g

i=1 α
n
i . Let

a1, . . . , a2g be such that
∏2g
i=1(x−αi) = x2g + a1x

2g−1 + · · ·+ a2g. Then, for 1 ≤ n ≤ 2g,

nan = −tn −
n−1∑

i=1

an−iti.

In particular, a1 = −t1 and a2 = (t21 − t2)/2.

Exercise 10.7.7.⋆ Prove Lemma 10.7.6.

Exercise 10.7.8. Suppose C is a genus 3 curve over F7 such that #C(F7) = 8,#C(F72) =
92,#C(F73) = 344. Determine L(t) and hence #Pic0F7

(C). (One can take y2 = x7 +x+ 1
for C.)

Exercise 10.7.9. (Weil bounds) Let C be a curve of genus g over Fq. Use Theo-
rem 10.7.1 and Theorem 10.7.5 to show that

|#C(Fqn)− (qn + 1)| ≤ 2g
√
qn

and

(
√
qn − 1)2g ≤ #Pic0Fqn (C) ≤ (

√
qn + 1)2g.

More precise bounds on #C(Fq) are known; we refer to Section V.3 of Stichtenoth [589]
for discussion and references.

We now sketch the relationship between the above results and the q-power Frobenius
map π : C → C given by π(x, y) = (xq, yq). This is best discussed in terms of Abelian
varieties and so is strictly beyond the scope of the present book; however Exercise 10.7.11
shows how to consider the Frobenius map in Pic0

Fq
(C). We refer to Section 21 of Mum-

ford [444], especially the subsection entitled “Application II: The Riemann Hypothesis”.
Briefly, the Frobenius map on C induces a morphism π : JC → JC where JC is the Jaco-
bian variety of C (note that JC is defined over Fq). Note that π is not an isomorphism.
This morphism is a group homomorphism with ker(π) = {0} and so is an isogeny. More
generally, if A is an Abelian variety over Fq then there is a q-power Frobenius morphism
π : A → A. Just as in the case of elliptic curves one has A(Fqn) = ker(πn − 1) and
so #A(Fqn) = ker(πn − 1) = deg(πn − 1) (note that π is inseparable and πn − 1 is a
separable morphism). By considering the action of π on the Tate module (the Tate mod-
ule of an Abelian variety is defined in the analogous way to elliptic curves, see Section
19 of [444]) it can be shown that π satisfies a characteristic equation given by a monic
polynomial PA(T) ∈ Z[T] of degree 2g. It follows that deg(π − 1) = PA(1). Writing

PA(T) =
∏2g
i=1(T −αi) over C it can be shown that #A(Fqn) =

∏2g
i=1(1−αni). It follows

that the roots αi are the same values as those used earlier, and that P (T) = T 2gL(1/T).

Definition 10.7.10. Let C be a curve over Fq. The characteristic polynomial of
Frobenius is the polynomial P (T) = T 2gL(1/T).

232 CHAPTER 10. HYPERELLIPTIC CURVES

The Frobenius map π : C → C also induces the map π∗ : Pic0
Fq

(C) → Pic0
Fq

(C), and

we abuse notation by calling it π as well. If D is any divisor representing a divisor class in
Pic0

Fq
(C) then P (π)D ≡ 0. In other words, if P (T) = T 2g + a1T

2g−1 + · · ·+ a1q
g−1T + qg

then
π2g(D) + [a1]π2g−1(D) + · · ·+ [a1q

g−1]π(D) + [qg]D ≡ 0 (10.20)

where the notation [n]D is from Definition 10.5.1.

Exercise 10.7.11. Let C be a curve over Fq and D a reduced divisor on C over Fq with
Mumford representation (u(x), v(x)). Let π be the q-power Frobenius map on C. For

a polynomial u(x) =
∑d

i=0 uix
i define u(q)(x) =

∑d
i=0 u

q
ix
i. Show that the Mumford

representation of π∗(D) is (u(q)(x), v(q)(x)).

Example 10.7.12. (Koblitz [346]) Let a ∈ {0, 1} and consider the genus 2 curve Ca :
y2 + xy = x5 + ax2 + 1 over F2. One can verify that #C0(F2) = 4, #C1(F2) = 2
and #C0(F22) = #C1(F22) = 4. Hence the characteristic polynomial of Frobenius is
P (T) = T 4 + (−1)aT 3 + 2(−1)aT + 4. One can determine #Pic0F2n

(Ca) for any n ∈ N.

If n is composite and m | n one has #Pic0F2m
(Ca) | #Pic0F2n

(Ca). For cryptographic

applications one would like #Pic0F2n
(Ca)/#Pic0F2

(Ca) to be prime, so restrict attention to
primes values for n. For example, taking n = 113 and a = 1 gives group order 2 · r where
r = 539 · · ·381 is a 225-bit prime.

If D ∈ Pic0F2n
(C1) then π4(D) − π3(D) − [2]π(D) + [4]D ≡ 0 where π is the map

induced on Pic0F2n
(C1) from the 2-power Frobenius map π(x, y) = (x2, y2) on C.

A major result, whose proof is beyond the scope of this book, is Tate’s isogeny theorem.

Theorem 10.7.13. (Tate) Let A and B be Abelian varieties over a field Fq. Then A
is Fq-isogenous to B if and only if PA(T) = PB(T). Similarly, A is Fq-isogenous to an
Abelian subvariety of B if and only if PA(T) | PB(T).

Proof: See [601]. �

Exercise 10.7.14 gives a direct proof of Theorems 10.7.1 and 10.7.5 for genus 2 curves
with ramified model.

Exercise 10.7.14.⋆ Let q be an odd prime power. Let F (x) ∈ Fq[x] be square-free
and of degree 5. Then C : y2 = F (x) is a hyperelliptic curve over Fq of genus 2 with a
ramified model. For n = 1, 2 let Nn = #C(Fqn) and define tn = qn + 1 − Nn so that
Nn = qn + 1 − tn. Define a1 = −t1 and a2 = (t21 − t2)/2. Show, using direct calculation
and Exercise 10.4.4, that Pic0Fq (C) has order q2 + a1(q + 1) + a2 + 1.

An important tool in the study of elliptic curves over finite fields is the Waterhouse
theorem (Theorem 9.10.12). There is an analogous result for Abelian varieties due to
Honda and Tate but it is beyond the scope of this book to present this theory (we refer
to [602] for details). However, we do give one application.

Theorem 10.7.15. (Dipippo and Howe [182]) Let q ≥ 4 be a prime power and n ∈ Z>1.
Let B = (

√
q − 2)/(2(

√
q − 1)) and C = (⌊B√q⌋ + 1/2)/

√
q. If N ∈ N is such that

|N − (qn + 1)| ≤ Cqn−1/2 then there exists an Abelian variety A over Fq of dimension n
such that #A(Fq) = N .

10.8 Endomorphisms

Let A1, A2 be Abelian varieties over k. One defines Homk(A1, A2) to be the set of all
morphisms of varieties from A1 to A2 over k that are group homomorphisms (see Section

10.9. SUPERSINGULAR CURVES 233

19 of [444]). We define Hom(A1, A2) to be Homk(A1, A2). The endomorphism ring
of an Abelian variety A over k is defined to be Endk(A) = Homk(A,A). We write
End(A) = Homk(A,A).

It is beyond the scope of this book to give a complete treatment of the endomorphism
ring. However, we make a few general remarks. First, note that Homk(A1, A2) is a
Z-module. Second, recall that for elliptic curves every non-zero homomorphism is an
isogeny (i.e., has finite kernel). This is no longer true for Abelian varieties (for example,
let E be an elliptic curve and consider the homomorphism φ : E × E → E × E given
by φ(P,Q) = (P,OE)). However, if A is a simple Abelian variety then End(A) ⊗Z Q
is a division algebra and so every non-zero endomorphism is an isogeny in this case.
Furthermore, if an Abelian variety A is isogenous to

∏
iA

ni
i with Ai simple (and Ai not

isogenous to Aj for i 6= j) then End(A)⊗ZQ ∼=
∏
iMni(End(Ai)⊗ZQ) where Mn(R) is the

ring of n× n matrices over the ring R (see Corollary 2 of Section 19 of Mumford [444]).

10.9 Supersingular Curves

Recall from Theorem 10.6.1 that if C is a curve of genus g over a field k of characteristic
p then #Pic0

k
(C)[p] ≤ pg.

Definition 10.9.1. Let k be a field such that char(k) = p > 0 and let C be a curve of
genus g over k. The p-rank of C is the integer 0 ≤ r ≤ g such that #Pic0

k
(C)[p] = pr.

An Abelian variety of dimension g over Fq is defined to be supersingular if it is
isogenous over Fq to Eg where E is a supersingular elliptic curve over Fq. A curve C over
Fq is supersingular if JC is a supersingular Abelian variety. It follows that the p-rank of
a supersingular Abelian variety over Fpn is zero. The converse is not true (i.e., p-rank zero
does not imply supersingular) when the dimension is 3 or more; see Example 10.9.8). If
the p-rank of a dimension g Abelian variety A over Fpn is g then A is said to be ordinary.

Lemma 10.9.2. Suppose A is a supersingular Abelian variety over Fq and write PA(T)
for the characteristic polynomial of Frobenius on A. The roots α of PA(T) are such that
α/
√
q is a root of unity.

Proof: Since the isogeny to Eg is defined over some finite extension Fqn it follows from
part 4 of Theorem 9.11.2 that αn/

√
qn is a root of unity. Hence, α/

√
q is a root of unity.

�

The converse of Lemma 10.9.2 follows from the Tate isogeny theorem.

Example 10.9.3. Let C : y2 + y = x5 over F2. One can check that #C(F2) = 3 and
#C(F22) = 5 and so the characteristic polynomial of the 2-power Frobenius is P (T) =
T 4 + 4 = (T 2 + 2T + 2)(T 2 − 2T + 2). It follows from Theorem 10.7.13 (Tate’s isogeny
theorem) that JC is isogenous to E1 × E2 where E1 and E2 are supersingular curves
over F2. The characteristic polynomial of the 22-power Frobenius can be shown to be
T 4 + 8T 2 + 16 = (T 2 + 4)2 and it follows that JC is isogenous over F22 to the square of a
supersingular elliptic curve. Hence C is a supersingular curve.

Note that the endomorphism ring of JC is non-commutative, since the map φ(x, y) =
(ζ5x, y), where ζ5 ∈ F24 is a root of z4 + z3 + z2 + z + 1 = 0, does not commute with the
2-power Frobenius map.

Exercise 10.9.4.⋆ Show that if C is a supersingular curve over Fq of genus 2 then
#Pic0Fq (C) | (qk − 1) for some 1 ≤ k ≤ 12.

234 CHAPTER 10. HYPERELLIPTIC CURVES

The following result shows that computing the p-rank and determining supersingular-
ity are easy when P (T) is known.

Theorem 10.9.5. Let A be an Abelian variety of dimension g over Fpn with characteristic
polynomial of Frobenius P (T) = T 2g + a1T

2g−1 + · · ·+ agT
g + · · ·+ png.

1. The p-rank of A is the smallest integer 0 ≤ r ≤ g such that p | ai for all 1 ≤ i ≤ g−r.
(In other words, the p-rank is zero if p | ai for all 1 ≤ i ≤ g and the p-rank is g if
p ∤ a1.)

2. A is supersingular if and only if

p⌈in/2⌉ | ai for all 1 ≤ i ≤ g.

Proof: Part 1 is Satz 1 of Stichtenoth [588]. Part 2 is Proposition 1 of Stichtenoth and
Xing [590]. �

We refer to Yui [639] for a survey of the Cartier-Manin matrix and related criteria for
the p-rank.

Exercise 10.9.6. Let A be an Abelian variety of dimension 2 over Fp that has p-rank
zero. Show that A is supersingular.

In fact, the result of Exercise 10.9.6 holds when Fp is replaced by any finite field; see
page 9 of Li and Oort [386].

Exercise 10.9.7. Let C : y2 + y = F (x) over F2n where deg(F (x)) = 5 be a genus 2
hyperelliptic curve. Show that C has 2-rank zero (and hence is supersingular).

Example 10.9.8 shows that, once the genus is at least 3, p-rank zero does not imply
supersingularity.

Example 10.9.8. Define C : y2 + y = x7 over F2. Then P (T) = T 6 − 2T 3 + 23 and so
by Theorem 10.9.5 the 2-rank of C is zero but C is not supersingular.

Example 10.9.9. (Hasse/Hasse-Davenport/Duursma [185]) Let p > 2 be prime and
C : y2 = xp − x + 1 over Fp. One can verify that C is non-singular and the genus of C
is (p− 1)/2. It is shown in [185] that, over Fp2 , L(T) = Φp((

−1
p)pT) where Φp(T) is the

p-th cyclotomic polynomial. It follows that the roots of P (T) are roots of unity and so C
is supersingular.

Part III

Exponentiation, Factoring and
Discrete Logarithms

235

Chapter 11

Basic Algorithms for Algebraic
Groups

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

In Section 4.1 a number of basic computational tasks for an algebraic group G were
listed. Some of these topics have been discussed already, especially providing efficient
group operations and compact representations for group elements. But some other topics
(such as efficient exponentiation, generating random elements in G and hashing from or
into G) require further attention. The goal of this chapter is to briefly give some details
about these tasks for the algebraic groups of most interest in the book.

The main goal of the chapter is to discuss exponentiation and multi-exponentiation.
These operations are crucial for efficient discrete logarithm cryptography and there are a
number of techniques available for specific groups that give performance improvements.

It is beyond the scope of this book to present a recipe for the best possible expo-
nentiation algorithm in a specific application. Instead, our focus is on explaining the
mathematical ideas that are used. For an “implementors guide” in the case of elliptic
curves we refer to Bernstein and Lange [53].

Let G be a group (written in multiplicative notation). Given g ∈ G and a ∈ N we
wish to compute ga. We assume in this chapter that a is a randomly chosen integer of
size approximately the same as the order of g, and so a varies between executions of the
exponentiation algorithm. If g does not change between executions of the algorithm then
we call it a fixed base and otherwise it is a variable base.

As mentioned in Section 2.8, there is a significant difference between the cases where
g is fixed (and one is computing ga repeatedly for different values of a) and the case
where both g and a vary. Section 2.8 already briefly mentioned addition chains and
sliding window methods. The literature on addition chains is enormous and we do not
delve further into this topic. Window methods date back to Brauer in 1939 and sliding
windows to Thurber; we refer to Bernstein’s excellent survey [45] for historical details.
Other references for fast exponentiation are Chapters 9 and 15 of [16], Chapter 3 of [274]

237

238 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

and Sections 14.6 and 14.7 of [418].

11.1 Efficient Exponentiation Using Signed Exponents

In certain algebraic groups, computing the inverse of a group element is much more effi-
cient than a general group operation. For example, Exercise 6.3.1 and Lemma 6.3.12 show
that inversion in Gq,2 and T2(Fq) is easy. Similarly, inversion in elliptic and hyperelliptic
curve groups is easy (see Section 9.1 and Exercises 10.4.2 and 10.4.17). Hence, one can
exploit inversion when computing exponentiation and it is desirable to consider signed
expansions for exponents.

Signed expansions and addition-subtraction chains have a long history.1 Morain and
Olivos [438] realised that, since inversion is easy for elliptic curve groups, signed expan-
sions are natural in this context.

11.1.1 Non-Adjacent Form

We now discuss the non-adjacent form (NAF) of an integer a. This is the best signed
expansion in the sense that it has the minimal number of non-zero coefficients and can be
computed efficiently. The non-adjacent form was discussed by Reitwiesner [499] (where it
is called “property M”). Reitwiesner proved that the NAF is unique, has minimal weight
among binary expansions with coefficients in {−1, 0, 1}, and he gave an algorithm to
compute the NAF of an integer. These results have been re-discovered and simplified
numerous times (we refer to Section IV.2.4 of [64] and Section 5 of [544] for references).

Definition 11.1.1. Let a ∈ N. A representation a =
∑l

i=0 ai2
i is a non-adjacent form

or NAF if ai ∈ {−1, 0, 1} for all 0 ≤ i ≤ l and aiai+1 = 0 for all 0 ≤ i < l. If al 6= 0 then
the length of the NAF is l+ 1.

One can transform an integer a into NAF representation using Algorithm 6. This is
a “right-to-left” algorithm in the sense that it processes the least significant bits first.
We define the operator a (mods 2m) to be reduction of a modulo 2m to the range
{−m + 1, . . . ,−1, 0, 1, . . . ,m}. In particular, if a is odd then a (mods 4) ∈ {−1, 1}. An
alternative right-to-left algorithm is given in the proof of Theorem 11.1.12.

Exercise 11.1.2. Prove that Algorithm 6 outputs a NAF.

Example 11.1.3. We compute the NAF representation of a = 91. Since 91 ≡ 3 (mod 4)
the first digit is −1, which we denote as 1. Note that 22‖92 so the next digit is 0. Now,
92/4 = 23 ≡ 3 (mod 4) and the next digit is 1. Since 23‖24 the next 2 digits are 0.
Continuing one finds the expansion to be 10100101.

Lemma 11.1.4 shows that a simple way to compute a NAF of an integer a is to compute
the binary representation of 3a, subtract the binary representation of a (writing the result
in signed binary expansion, in other words, performing the subtraction without carries),
and discard the least significant bit. We write this as ((3a)− a)/2.

Lemma 11.1.4. Let a ∈ N. Then the signed binary expansion ((3a) − (a))/2 is in
non-adjacent form.

1Reitwiesner’s long paper [499] suggests signed expansions as a way to achieve faster arithmetic (e.g.,
multiplication and division) but does not discuss exponentiation. Brickell, in 1982, seems to have been
the first to suggest using negative powers of g to speed up the computation of ga; this was in the context
of computing me (mod N) in RSA and required the precomputation of m−1 (mod N).

11.1. EFFICIENT EXPONENTIATION USING SIGNED EXPONENTS 239

Algorithm 6 Convert an integer to non-adjacent form

Input: a ∈ N
Output: (al . . . a0)
1: i = 0
2: while a 6= 0 do
3: if a even then
4: ai = 0
5: else
6: ai = a (mods 4)
7: end if
8: a = (a− ai)/2
9: i = i+ 1

10: end while
11: return al . . . a0

Proof: Write a in binary as (al . . . a0)2 and write 3a in binary as (bl+2 . . . b0)2. Set
a−1 = al+1 = al+2 = 0 and c−1 = 0. Then bi = ai + ai−1 + ci−1 − 2ci where ci =
⌊(ai + ai−1 + ci−1)/2⌋ ∈ {0, 1} is the carry from the i-th addition.

Now consider the signed expansion si = bi − ai ∈ {−1, 0, 1}. In other words, si =
ai−1+ci−1−2ci. Clearly b0 = a0 and so s0 = 0. We show that sisi+1 = 0 for 1 ≤ i ≤ l+1.
Suppose i is such that si 6= 0. Since ai−1 + ci−1 ∈ {0, 1, 2} and ai−1 + ci−1 ≡ si (mod 2)
it follows that ai−1 + ci−1 = 1. This then implies that ci = ⌊(1 + ai)/2⌋ = ai. Hence,
ci+1 = ai and si+1 = ai + ci − 2ci+1 = 0. �

Example 11.1.5. Taking a = 91 again, we have 3 ·91 = 273 = (100010001)2. Computing
(3a)− a is

100010001 − 1011011 = 101001010.

Exercise 11.1.6. Compute NAFs for a = 100, 201, 302 and 403.

We now state and prove some properties of NAFs.

Exercise 11.1.7. Show that if al . . . a0 is a NAF of a then (−al) . . . (−a0) is a NAF of
−a.

Lemma 11.1.8. The NAF representation of a ∈ Z is unique.

Proof: Without loss of generality we may assume a > 1. Note that a = 1 has a unique
representation as a NAF, so assume a > 1. Let a ∈ N be the smallest positive integer
such that a has two (or more) distinct representations as a NAF, call them

∑l
i=0 ai2

i and∑l′

i=0 a
′
i2
i. If a is even then a0 = a′0 = 0 and so we have two distinct NAF representations

of a/2, which contradicts the minimality of a. If a is odd then a ≡ ±1 (mod 4) and
so a0 = a′0 and a1 = a′1 = 0. Hence, we obtain two distinct NAF representations of
(a− a0)/4 < a, which again contradicts the minimality of a. �

Exercise 11.1.9.⋆ Let a ∈ N. Show that a has a length l+ 1 NAF representation if and
only if 2l − dl ≤ a ≤ 2l + dl where

dl =

{
(2l − 2)/3 if l is odd
(2l − 1)/3 if l is even.

Also show that if a > 0 then al = 1 and prove that the length of a NAF is at most one
more than the length of the binary expansion of a.

240 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

Definition 11.1.10. Let D ⊂ Z be such that 0 ∈ D. The weight of a representation
a =

∑l
i=0 ai2

i where ai ∈ D is the number of values 0 ≤ i ≤ l such that ai 6= 0. The
weight of a is denoted weight(a). The density of the representation is weight(a)/(l+ 1).

Exercise 11.1.11. Show that if a ∈ N is uniformly chosen in 2l ≤ a < 2l+1 and rep-
resented using the standard binary expansion then the expected value of the weight is
(l + 1)/2 and therefore the expected value of the density is 1/2.

Theorem 11.1.12. The NAF of an integer a ∈ N has minimal weight among all signed
expansions a =

∑l
i=0 ai2

i where ai ∈ {−1, 0, 1}.
Proof: Let a =

∑l
i=0 ai2

i where ai ∈ {−1, 0, 1} be any signed expansion of a. Perform
the following string re-writing process from right to left (i.e., starting with a0). If ai = 0
or ai+1 = 0 then do nothing. Otherwise (i.e., ai 6= 0 and ai+1 6= 0) there exists an integer
k ≥ 1 such that the sequence ai+kai+k−1 . . . aiai−1 is of the form

01 . . . 10, 11 . . . 10, 11 . . . 10, 01 . . . 10.

In each case replace the pattern with the following

10 . . .010, 0 . . . 010, 0 . . . 010, 10 . . . 010.

In each case, the resulting substring has weight less than or equal to the weight of the
previous substring and is in non-adjacent form (at least up to ai+k−1ai+k = 0). Continu-
ing the process therefore yields a NAF expansion of a of weight less than or equal to the
weight of the original signed expansion. �

Example 11.1.13. We re-compute the NAF representation of a = 91, using the method
in the proof of Theorem 11.1.12. First note that the binary expansion of 91 is 1011011.
One replaces the initial 011 by 101 to get 1011101 One then replaces 0111 by 1001.
Continuing one determines the NAF of 91 to be 10100101.

We have established that the NAF of an integer a is unique, has minimal weight, and
has length at most one bit more than the binary expansion of a. Finally, we sketch a
probabilistic argument that shows that the density of a NAF is expected to be 1/3.

Lemma 11.1.14. Let l ∈ N. Define dl to be the expected value of the density of the NAF
representation of uniformly chosen integers 2l+1/3 < a < 2l+2/3. Then dl tends to 1/3
as l goes to infinity.

Proof: (Sketch) Write a =
∑l

i=0 ai2
l for the NAF representation of a ∈ N. Note that

Algorithm 6 has the property that, if ai 6= 0, then ai+1 = 0 but the value of ai+2 is
independent of the previous operations of the algorithm. Hence, if the bits of a are
considered to be chosen uniformly at random then the probability that ai+2 6= 0 is 1/2.
Similarly, the probability that ai+2 = 0 but ai+3 6= 0 is 1/4, and so on. Hence, the
expected number of zeroes after the non-zero ai is (at least approximately, since the
expansion is not infinite)

E = 1 · 12 + 2 · 14 + 3 · 18 + · · · =
∞∑

i=1

i
2i .

Now,

E = 2E − E =

∞∑

i=1

i
2i−1 −

∞∑

i=1

i
2i = 1 +

∞∑

j=1

1
2j = 2.

Hence, on average, there are two zeros between adjacent non-zero coefficients and the
density tends to 1/3. �

11.1. EFFICIENT EXPONENTIATION USING SIGNED EXPONENTS 241

Exercise 11.1.15. Prove that the number of distinct NAFs of length k is (2k+2 −
(−1)k)/3.

Exercise 11.1.16.⋆ Write down an algorithm to list all NAFs of length k.

For some applications it is desired to compute a low-density signed expansion from
left to right; Joye and Yen [321] give an algorithm to do this.

11.1.2 Width-w Non-Adjacent Form

Definition 11.1.17. Let w ∈ N≥2 and m = 2w−1 − 1. Define D = {0} ∪ {a ∈ Z : a

odd, |a| ≤ m} = {0,±1,±3, . . . ,±(2w−1 − 1)}. A representation
∑l

i=0 ai2
i is a width-w

non-adjacent form (also written w-NAF or NAFw) if ai ∈ D and if ai 6= 0 implies
ai+1 = · · · = ai+w−1 = 0. When writing such expansions we write n for the digit −n. If
al 6= 0 then the length of the w-NAF is l + 1.

This notion was first proposed in Miyaji, Ono and Cohen [430] and rediscovered in
Section IV.2.5 of Blake, Seroussi and Smart [64] and Section 3.2 of Solinas [576] (the
latter paper gives us the terminology).

Example 11.1.18. The NAF of an integer a ∈ N is a width-2 NAF.

All the results and proofs given above regarding NAFs generalise immediately to the
case of w-NAFs.

Exercise 11.1.19. Change line 7 of Algorithm 6 to read ai = a (mods 2w). Show that
this algorithm computes a w-NAF of the integer a.

Example 11.1.20. We compute the 3-NAF of 151. Since 151 ≡ 7 (mods 8) we have
a0 = −1. One then finds a1 = a2 = 0. Now (151 + 1)/8 = 19 ≡ 3 (mods 8) so a3 = 3.
Finally a4 = a5 = a6 = 0 and a7 = 1. The 3-NAF of 151 is therefore 10003001, having
weight 3. In comparison, the NAF of 151 is 10101001, which has weight 4.

Exercise 11.1.21. Prove that the w-NAF is unique.

Exercise 11.1.22. Write pseudocode for an efficient left-to-right exponentiation algo-
rithm using the w-NAF representation of the exponent a. Show that the precomputation
requires one squaring and 2w−2 − 1 multiplications.

Exercise 11.1.23. Prove that the length of a w-NAF of an integer a ∈ N is at most one
more than the bit-length of a.

Exercise 11.1.24. Modify the proof of Lemma 11.1.14 to show that the expected density
of the width-w NAF of a randomly chosen l-bit integer tends to 1/(w + 1) as l goes to
infinity.

The length of a w-NAF expansion of a can be less than log2(a), since the most sig-
nificant coefficient can be as big as 2w−1− 1. Intuitively, one might expect the length on
average to be approximately log2(a)− (w− 1)/2. Further discussion of this issue together
with a precise analysis of the density of w-NAFs is given by Cohen [137].

It is shown in Theorem 2.3 of Avanzi [17] and Theorem 3.3 of Muir and Stinson [442]
that the w-NAF has minimal weight among all signed expansions with that digit set.
Analogues of the w-NAF that can be computed from left-to-right have been studied in a
number of papers, starting in Section 3 of [17] and [441].

242 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

11.1.3 Further Methods

There are two other ways to exploit these ideas, namely fractional window NAFs (pro-
posed by Möller [432, 433]) and (fractional) sliding windows over NAFs.2 The sliding
window algorithms are natural analogues of the ones mention in Example 2.8.5 and Ex-
ercise 2.8.6.

The point of these methods is to allow fine-tuning of the precomputation cost so that
one can minimise the expected overall computation for exponents of a given bit-length.
The basic idea is to precompute fewer group elements than the standard version of the
width-w exponentiation algorithm and then to find an expansion of the exponent a of low
weight that has coefficients only corresponding to the precomputed powers of g.

Example 11.1.25. Let w = 4. The standard sliding window exponentiation algorithm
would require precomputing g3, g5, g7, g9, g11, g13 and g15. Using w-NAFs requires pre-
computing g3, g5 and g7 (as well as g−1, g−3, g−5 and g−7, which is assumed to be easy).
One could also consider a fractional w-NAF method whereby only g3 and g5 are computed.

Consider the exponent a = 311. This has the 4-NAF expansion

100030007

of weight 3. So one can compute g311 (ignoring the precomputation) using 8 squarings
and 2 multiplications. This expansion cannot be used with the fractional 4-NAF, since
we have not precomputed g7. Instead, one finds the expansion

5001001,

which is not a 4-NAF (since each non-zero coefficient is not followed by 3 zero coefficients).
However, it still has weight 3 and one computes g311 with 6 squarings and 2 multiplications
(as well as faster precomputation).

Exercise 11.1.26. Compute a 4-NAF and a fractional 4-NAF as in Example 11.1.25
(i.e., again using only coefficients {0,±1,±3}) for a = 887.

An important issue for these methods is to determine the expected density of the
resulting expansions. In Section 5.1 of Möller [432] the formula

1

w + (1 +m)/2w−1

(where the computed powers of g are g±1, g±3, . . . , g±m and w = ⌊log2(m)⌋ + 1) for the
density of a fractional window NAF is derived. This formula is verified using Markov
chain methods in Theorem 1 of Schmidt-Samoa, Semay and Takagi [520]. Section 2.1
of [433] proves minimality of the weight among all expansions with that digit set.

All the above algorithms compute the signed expansion in a right-to-left manner. For
some applications it may be desirable to compute expansions from left-to-right. There
are a number of papers on this issue.

11.2 Multi-exponentiation

An n-dimensional multi-exponentiation (also called simultaneous multiple expo-
nentiation) is the problem of computing a product ga11 · · · gann . The question of how

2Sliding windows over NAFs were considered in Section IV.2.3 of [64]. Fractional sliding windows over
NAFs seem to have been first used in [224].

11.2. MULTI-EXPONENTIATION 243

efficiently this can be done was asked by Richard Bellman as problem 5125 of volume 70,
number 6 of the American Mathematical Monthly in 1963. A solution was given by E.
G. Straus3 in [594]; the idea was re-discovered by Shamir and is often attributed to him.
We only give a brief discussion of this topic and refer to Section 9.1.5 of [16] and Section
3.3.3 of [274] for further details.

Algorithm 7 computes an n-dimensional multi-exponentiation. We write ai,j for the
j-th bit of ai (where, as usual in this book, the least significant bit is ai,0); if j > log2(ai)
then ai,j = 0. The main idea is to use a single accumulating variable (in this case called
h) and to perform only one squaring. If a value gi does not change between executions
of the algorithm then we call it a fixed base and otherwise it is a variable base (the
precomputation can be improved when some of the gi are fixed). We assume that the
integers ai all vary.

Algorithm 7 Basic Multi-exponentiation

Input: g1, . . . , gn ∈ G, a1, . . . , an ∈ N
Output:

∏n
i=1 g

ai
i

1: Precompute all ub1,...,bn =
∏n
i=1 g

bi
i for bi ∈ {0, 1}

2: Set l = max1≤i≤n{⌊log2(ai)⌋}
3: h = ua1,l,...,an,l
4: j = l − 1
5: while j ≥ 0 do
6: h = h2

7: h = hua1,j ,...,an,j
8: j = j − 1
9: end while

10: return h

Example 11.2.1. One can compute g71g
5
2 by setting h = u1,1 = g1g2, then computing

h = h2 = g21g
2
2 , h = hu1,0 = g31g

2
2 , h = h2 = g61g

4
2 , h = hu1,1 = g71g

5
2 .

Exercise 11.2.2. Show that one can perform the precomputation in Algorithm 7 in
2n− n− 1 multiplications. Show that the main loop of Algorithm 7 performs l squarings
and l multiplications.

Exercise 11.2.3. (Yen, Laih, and Lenstra [638]) Show that by performing further pre-
computation one can obtain a sliding window multi-exponentiation algorithm that still
requires l squarings in the main loop, but fewer multiplications. Determine the precom-
putation cost.

An alternative approach4 to multi-exponentiation is called interleaving. The basic
idea is to replace line 7 in Algorithm 7 by

for i = 1 to n do h = hg
ai,j
i end for

and to omit the precomputation. This version is usually less efficient than Algorithm 7
unless n is rather large. However the benefit of interleaving comes when using sliding
windows: since the precomputation cost and storage requirements for the method in
Exercise 11.2.3 are so high, it is often much more practical to use a sliding window
version in the setting of interleaving. We refer to [431] and Section 3.3.3 of [274] for
further discussion of this method.

3Straus had the remarkable ability to solve crossword puzzles in English (his third language) using
only the horizontal clues; see his commemorative issue of the Pacific Journal of Mathematics.

4Independently discovered by Möller [431] and Gallant, Lambert and Vanstone [233].

244 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

Exercise 11.2.4. Write pseudocode for multi-exponentiation using interleaving and slid-
ing windows.

Exercise 11.2.5. Write pseusocode for multi-exponentiation using interleaving and slid-
ing windows over NAF expansions.

Another approach, when signed expansions are being used, is to find a representation
for the exponents a1, . . . , an so that the j-th component of the representations of all ai is
simultaneously zero relatively often. Such a method was developed by Solinas [577] and
is called a joint sparse form. We refer to Section 9.1.5 of [16] and Section 3.3.3 of [274].

Multi-exponentiation for Algebraic Group Quotients

In algebraic group quotients, multiplication is not well-defined and so extra information
is needed to be able to compute

∏n
i=1 g

ai
i . A large survey of exponentiation algorithms

and multi-exponentiation algorithms for algebraic group quotients is give in Chapter 3 of
Stam’s thesis [579]. In particular, he gives the Montgomery Euclidean ladder in Section
3.3 (also see Section 4.3 of [578]). Due to lack of space we do not discuss this topic further.

11.3 Efficient Exponentiation in Specific Algebraic Groups

We now discuss some exponentiation methods that exploit specific features of algebraic
groups.

11.3.1 Alternative Basic Operations

So far, all exponentiation algorithms have been based on squaring (and hence have used
representations of integers to the base 2). We now briefly mention some alternatives
to squaring as the basic operation. First we discuss halving and tripling. Frobenius
expansions will be discussed in Section 11.3.2.

When one has several possible basic operations then one can consider multi-base
representations of integers for exponentiation. These ideas were first proposed by Dim-
itrov, Jullien and Miller [181] but we do not consider them further in this book.

Point Halving on Elliptic Curves

This idea, independently discovered by Knudsen [342] and Schroeppel, applies to sub-
groups of odd order in ordinary elliptic curves over finite fields of characteristic two. The
formulae for point halving were given in Exercise 9.1.4: Given P = (xP , yP) ∈ E(F2n) one
finds Q = (xQ, yQ) ∈ E(F2n) such that [2]Q = P by solving λ2Q+λQ = xP +a2. For either

solution let xQ =
√
xP (λQ + 1) + yP =

√
xP (λP + λQ + xP + 1) and yQ = xQ(λQ+xQ).

One must ensure that the resulting point Q has odd order. When 2‖#E(Fqn) this is easy
as, by Exercise 9.1.4, it is sufficient to check that TrF2n/F2

(xQ) = TrF2n/F2
(a2). In practice

it is more convenient to check whether TrF2n/F2
(x2Q) = TrF2n/F2

(a2).

Exercise 11.3.1. Write down the point halving algorithm.

Knudsen suggests representing points using the pair (xP , λP) instead of (xP , yP). In
any case, this can be done internally in the exponentiation algorithm. When F2n is
represented using a normal basis over F2 then halving can be more efficient than doubling
on such an elliptic curve. One can therefore use expansions of integers to the “base 2−1”
for efficient exponentiation. We refer to Section 13.3.5 of [16] and [342] for the details.

11.3. EFFICIENT EXPONENTIATION IN SPECIFIC ALGEBRAIC GROUPS 245

Tripling

Doche, Icart and Kohel [183] suggested to speed up the computation of [m]P on E for

small m by splitting it as φ̂ ◦ φ where φ : E → E′ is an isogeny of degree m. We refer to
Exercise 9.6.30 for an example of this in the case m = 3, and to [183] for the details in
general.

11.3.2 Frobenius Expansions

Koblitz (in Section 5 of [344]) presented a very efficient doubling formula for E : y2+y = x3

over F2 (see Exercise 9.1.3). Defining π(x, y) = (x2, y2) one can write this as [2]P =
−π2(P) for all P ∈ E(F2m) for any integer m. We assume throughout this section that
finite fields Fpm are represented using a normal basis so that raising to the power p is very
fast. Menezes and Vanstone [416] and Koblitz [346, 347] explored further how to speed
up arithmetic on curves over small fields. However, the curves used in [344, 416, 346] are
supersingular and so are less commonly used for cryptography.

The Frobenius map can be used to speed up elliptic curve exponentiation on more
general curves. For cryptographic applications we assume that E is an elliptic curve over
Fq such that #E(Fqm) has a large prime divisor r for some m > 1.5 Let π be the q-power
Frobenius map on E. The trick is to replace an integer a with a sequence a0, . . . , al of
“small” integers such that

[a]P =

l∑

i=0

[ai]π
i(P)

for the point P ∈ E(Fqm) of interest.

Definition 11.3.2. Let E be an elliptic curve over Fq and let π be the q-power Frobenius
map. Let S ⊂ Z be a finite set such that 0 ∈ S (the set S is usually obvious from the
context). A Frobenius expansion with digit set S is an endomorphism of the form

l∑

i=0

[ai]π
i

where ai ∈ S and al 6= 0. The length of a Frobenius expansion is l + 1. The weight of
a Frobenius expansion is the number of non-zero ai.

Many papers write τ for the Frobenius map and speak of τ -adic expansions, but we
will call them π-adic expansions in this book.

Example 11.3.3. Let E : y2 + xy = x3 + ax2 + 1 over F2 where a ∈ {0, 1}. Consider
the group E(F2m) and write π(x, y) = (x2, y2). From Exercise 9.10.11 we know that π2 +
(−1)aπ+2 = 0. Hence, one can replace the computation [2]P by −π(π(P))− (−1)aπ(P).
At first sight, there is no improvement here (we have replaced a doubling with an elliptic
curve addition). However, the idea is to represent an integer by a polynomial in π. For
example, one can verify that

−T 5 + T 3 + 1 ≡ 9 (mod T 2 + T + 2)

and so one can compute [9]P (normally taking 3 doublings and an addition) as −π5(P) +
π3(P) + P using only two elliptic curve additions.

5Note that, for any fixed elliptic curve E over Fq and any fixed c ∈ R>0, it is not known if there are
infinitely many m ∈ N such that #E(Fqm) has a prime factor r such that r > cqm. However, in practice
one finds a sufficient quantity of suitable examples.

246 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

This idea can be extended to any algebraic group G (in particular, an elliptic curve,
the divisor class group of a hyperelliptic curve, or an algebraic torus) that is defined over
a field Fq but for which one works in the group G(Fqm).

Exercise 11.3.4. Give an algorithm to compute [a]P when a =
∑l

i=0 aiπ
i(P) is a Frobe-

nius expansion. What is the cost of the algorithm?

Definition 11.3.5. Let S ⊆ Z such that 0 ∈ S and if a ∈ S then −a ∈ S. Let
a =

∑l
i=0 aiπ

i be a Frobenius expansion with ai ∈ S. Then a is in non-adjacent form
if aiai+1 = 0 for all 0 ≤ i < l. Such an expansion is also called a π-NAF.

An important task is to convert an integer n into a Frobenius expansion in non-
adjacent form. In fact, to get short expansions we will need to convert a general element
n0 + n1π to a π-NAF, so we study the more general problem. The crucial result is the
following.

Lemma 11.3.6. Let π satisfy π2 − tπ + q = 0. An element n0 + n1π in Z[π] is divisible
by π if and only if q | n0. In this case

(n0 + n1π)/π = (n1 + tn0/q) + π(−n0/q). (11.1)

Similarly, it is divisible by π2 if and only if q | n0 and qn1 ≡ −tn0 (mod q2).

Proof: Note that π2 = tπ − q. Since

π(m0 +m1π) = −qm1 + π(m0 + tm1)

it follows that n0 + n1π = π(m0 +m1π) if and only if

n0 = −qm1, and n1 = m0 + tm1.

Writing m1 = −n0/q and m0 = n1 − tm1 yields equation (11.1).
Repeating the argument, one can divide the element in equation (11.1) by π if and

only if q | (n1 + tn0/q). The result follows. �

The idea of the algorithm for computing a π-NAF, given n0 +n1π, is to add a suitable
integer so that the result is divisible by π2, divide by π2, then repeat. This approach is
only really practical when q = 2, so we restrict to this case.

Lemma 11.3.7. Let π2 − tπ + 2 = 0 where t = ±1. Then n0 + n1π is either divisible by
π or else there is some ǫ = ±1 such that

(n0 + ǫ) + n1π ≡ 0 (mod π2).

Indeed, ǫ = (n0 + 2n1 (mod 4))− 2, if one defines n0 + 2n1 (mod 4) ∈ {1, 3}.

Proof: If π ∤ (n0 + n1π) then n0 is odd and so n0 ± 1 is even. One can choose the sign
such that 2n1 ≡ −(n0 ± 1) (mod 4) in which case the result follows. �

The right-to-left algorithm6 to generate a π-NAF is then immediate (see Algorithm 8;
this algorithm computes u = −ǫ in the notation of Lemma 11.3.7). To show that the
algorithm terminates we introduce the norm map: for any a, b ∈ R define N(a + bπ) =
(a+bπ)(a+bπ̄) = a2+tab+qb2 where π, π̄ ∈ C are the roots of the polynomial x2−tx+q =
0. This map agrees with the norm map with respect to the quadratic field extension
Q(π)/Q and so is multiplicative. Note also that N(a+ bπ) ≥ 0 and equals zero only when

6Solinas states that this algorithm was joint work with R. Reiter.

11.3. EFFICIENT EXPONENTIATION IN SPECIFIC ALGEBRAIC GROUPS 247

a = b = 0. Meier and Staffelbach [415] note that, if n0 + n1π is divisible by π, then
N((n0 + n1π)/π) = 1

2N(n0 + n1π). This suggests that the length of the π-NAF will grow
like log2(N(n0 + n1π)). The case N((n0 ± 1 + n1π)/π) needs more care. Lemma 3 of
Meier and Staffelbach [415] states that if N(n0 +n1π) < 2n then there is a corresponding
Frobenius expansion7 of length at most n. Theorem 2 of Solinas gives a formula for the
norm in terms of the length k = l+1 of the corresponding π-NAF, from which he deduces
(equation (53) of [576])

log2(N(n0 + n1π))− 0.55 < k < log2(N(n0 + n1π)) + 3.52

when k ≥ 30.

Algorithm 8 Convert n0 + n1π to non-adjacent form

Input: n0, n1 ∈ Z
Output: a0, . . . , al ∈ {−1, 0, 1}
1: while n0 6= 0 and n1 6= 0 do
2: if n0 odd then
3: u = 2− (n0 + 2n1 (mod 4))
4: n0 = n0 − u
5: else
6: u = 0
7: end if
8: Output u
9: (n0, n1) = (n1 + tn0/2,−n0/2)

10: end while

Example 11.3.8. Suppose π2 + π + 2 = 0. To convert −1 + π to a π-NAF one writes
n0 = −1 and n1 = 1. Let u = 2 − (n0 + 2n1 (mod 4)) = 2 − (1) = 1. Output 1 and set
n0 = n0− 1 to get −2 +π. Dividing by π yields 2 +π. One can divide by π again (output
0 first) to get −π, output 0 and divide by π again to get −1. The π-NAF is therefore
1− π3.

To see this directly using the equation π2 + π + 2 = 0 write

−1 + π + (π2 + π + 2)(1− π) = 1− π3.

Exercise 11.3.9. Verify that Algorithm 8 does output a π-NAF.

Exercise 11.3.10. Let π2 − π + 2 = 0. Use Algorithm 8 to convert 107 + 126π into
non-adjacent form.

Exercise 11.3.11. Show, using the same methods as Lemma 11.1.14, that the average
density of a π-NAF tends to 1/3 when q = 2.

Reducing the Length of Frobenius Expansions

As we have seen, N(n + 0π) = n2, while the norm only decreases by a factor of roughly
2 each time we divide by π. Hence, the Frobenius expansions output by Algorithm 8
on input n have length roughly 2 log2(n). Since the density is 1/3 it follows that the
weight of the Frobenius expansions is roughly 2

3 log2(n). Exponentiation using Frobenius
expansions is therefore faster than using the square-and-multiply algorithm, even with

7Meier and Staffelbach do not consider Frobenius expansions in non-adjacent form.

248 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

sliding windows (since the latter method always needs log2(n) doublings and also some
additions).

However, it is a pity that the expansions are so long. It is natural to seek shorter
expansions that still have the same density. The crucial observation, due to Meier and
Staffelbach, is that Algorithm 8 outputs a Frobenius expansion

∑
i[ai]π

i that acts the
same as [n] on all points in E(Fq) whereas, for a given application, one only needs a
Frobenius expansion that acts the same as [n] on the specific subgroup 〈P 〉 of prime order
r.

Definition 11.3.12. Let E be an elliptic curve over Fp, P ∈ E(Fpm), and let π be the
p-power Frobenius map on E. We say that two Frobenius expansions a(π), b(π) ∈ Z[π]
are equivalent with respect to P if

a(π)(P) = b(π)(P).

Exercise 11.3.13. Let the notation be as in Definition 11.3.12. Show that if a(π) ≡
b(π) (mod πm − 1) then a(π) and b(π) are equivalent with respect to P .

Show that if Q ∈ 〈P 〉 and a(π) and b(π) are equivalent with respect to P then a(π)
and b(π) are equivalent with respect to Q.

A simple idea is to replace all powers πi by πi (mod m). This will reduce the length
of a Frobenius expansion but it does not significantly change the weight (and hence, the
cost of exponentiation does not change).

The goal is therefore to find an element n0 + n1π of “small” norm that is equivalent
to [n] with respect to P . Then one applies Algorithm 8 to the pair (n0, n1), not to (n, 0).
There are two simple ways to find an element of small norm, both of which apply the
Babai rounding method (see Section 18.2) in a suitable lattice. They differ in how one
expresses the fact that (n0 + n1π)P = [n]P for the point P of interest.

• Division with remainder in Z[π].

This method was proposed by Meier and Staffelbach [415] and is also used by Solinas
(Section 5.1 of [576]). Since (πm − 1)(P) = OE when P ∈ E(Fqm) one wants to
determine the remainder of dividing n by (πm − 1). The method is to consider
the element γ = n/(πm − 1) ∈ R[π]/(π2 − tπ + q) and find a close vector to it
(using Babai rounding) in the lattice Z[π]. In other words, write γ = γ0 + γ1π
with γ0, γ1 ∈ R and round them to the nearest integers g0, g1 (in the special case of
π2± π+ 2 = 0 there is an exact description of a fundamental domain for the lattice
that can be used to “correct” the Babai rounding method if it does not reach the
closest lattice element). Lemma 3 of [415] and Proposition 57 of [576] state that
N(γ − (g0 + g1π)) ≤ 4/7. One can then define

n0 + n1π = n− (g0 + g1π)(πm − 1) (mod π2 − tπ + q).

• The Gallant-Lambert-Vanstone method [233].

This method appears in a different context (see Section 11.3.3), but it is also suitable
for the present application. We assume that P ∈ E(Fqm) has prime order r where
r‖#E(Fqm). Since π(P) ∈ E(Fqm) has order r it follows that π(P) = [λ]P for some
λ ∈ Z/rZ. The problem is therefore to find small integers n0 and n1 such that

n0 + n1λ ≡ n (mod r).

11.3. EFFICIENT EXPONENTIATION IN SPECIFIC ALGEBRAIC GROUPS 249

One defines the GLV lattice

L = {(x0, x1) ∈ Z2 : x0 + x1λ ≡ 0 (mod r)}.

A basis for L is given in Exercise 11.3.22. The idea is to find a lattice vector
(n′

0, n
′
1) ∈ L close to (n, 0). Then |n′

1| is “small” and |n − n′
0| is “small”. Define

n0 = n− n′
0 and n1 = −n′

1 so that

n0 + n1λ ≡ n (mod r)

as required.

We can compute a reduced basis for the lattice and then use Babai rounding to solve
the closest vector problem (CVP). Note that the reduced basis can be precomputed.
Since the dimension is two, one can use the Lagrange-Gauss lattice reduction algo-
rithm (see Section 17.1). Alternatively, one can use Euclid’s algorithm to compute
(n0, n1) directly (as discussed in Section 17.1.1, Euclid’s algorithm is closely related
to the Lagrange-Gauss algorithm).

Example 11.3.14. The elliptic curve E : y2 + xy = x3 + x2 + 1 over F219 has 2r points
where r = 262543 is prime. Let π(x, y) = (x2, y2). Then π2 − π+ 2 = 0. Let n = 123456.
We want to write n as n0 + n1π on the subgroup of E(F219) of order r.

For the “division with remainder in Z[π]” method we first use Lucas sequences (as in
Exercise 9.10.10) to determine that

π19 − 1 = −(171 + 457π)

(one can think of this as equality of complex numbers where π is a root of x2 − x + 2,
or as congruence of polynomials modulo π2 − π + 2). It is convenient to change the sign
(the method works in both cases). The norm of 171 + 457π is #E(F219) = 2r = 525086.
and so

n

−π19 + 1
=
n(171 + 457π̄)

525086
≈ 147.653− 107.448π.

(since π̄ = 1− π). Rounding gives 148− 107π and

n− (148− 107π)(171 + 457π) ≡ 350− 440π (mod π2 − π + 2).

This is a short representative for n, but its norm is larger than 8r/7, which is not optimal.
Section 5.1 of Solinas [576] shows how to choose a related element of smaller norm. In
this case the correct choice of rounding is 147− 107π giving

n− (147− 107π)(171 + 457π) ≡ 521 + 17π (mod π2 − π + 2),

which has norm less than 8r/7.
Now for the Gallant-Lambert-Vanstone method. We compute gcd(x19−1, x2−x+2) =

(x− λ) in Fr[x], where λ = 84450. The lattice with (row) basis

(
r 0
−λ 1

)

has LLL (or Lagrange-Gauss) reduced basis

B =

(
171 457
457 −314

)
.

250 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

Writing b1, b2 for the rows of the reduced matrix one finds (n, 0) ≈ 147.65b1 + 214.90b2.
One computes

(n, 0)− (148, 215)B = (−107,−126) .

One can verify that −107 − 126λ ≡ n (mod r). (Exercise 11.3.16 shows how to get
this element using remainders in Z[π].) The corresponding Frobenius expansion can be
obtained from the solution to Exercise 11.3.10.

Exercise 11.3.15. Prove that both the above methods yield an element n0 +n1π ∈ Z[π]
that is equivalent to n.

Exercise 11.3.16. Show that if P ∈ E(Fqm) but P 6∈ E(Fq) then instead of computing
the remainder in Z[π] modulo the polynomial (πm − 1) one can use (πm − 1)/(π − 1).
Repeat Example 11.3.14 using this polynomial.

In practice it is unnecessary to determine the minimal solution (n0, n1) as long as n0

and n1 have bit-length roughly 1
2 log2(r) (where the point P has order r). We also stress

that computing the q-power Frobenius map π is assumed to be very fast, so the main
task is to minimise the weight of the representation, not its length.

Remark 11.3.17. In cryptographic protocols one is often computing [a]P , where a is a
randomly chosen integer modulo r. Rather than choosing a random integer a and then
converting to a Frobenius expansion, one could choose a random Frobenius expansion of
given weight and length (this trick appears in Section 6 of [347] where it is attributed to
H. W. Lenstra Jr.).

We have analysed π-NAFs in the case q = 2. Müller [443] gives an algorithm to
compute Frobenius expansions for elliptic curves over F2e with e > 1 (but still small).
The coefficients of the expansion lie in {−2e−1, . . . , 2e−1}. Smart [571] gives an algorithm
for odd q, with a similar coefficient set; see Exercise 11.3.18. Lange [368] generalises to
hyperelliptic curves. In all cases, the output is not necessarily in non-adjacent form; to
obtain a π-NAF in these cases seems to require much larger digit sets. In any case, the
asymptotic density of π-NAFs with large digit set is not significantly smaller than 1/2
and this can easily be bettered using window methods (see Exercise 11.3.19).

Exercise 11.3.18. Let q > 2. Show that Algorithm 8 can be generalised (not to compute
a π-NAF, but just a π-adic expansion) by taking digit set {−⌊q/2⌋, . . . ,−1, 0, 1, . . . , ⌊q/2⌋}
(or this set with −⌊q/2⌋ removed when q > 2 is even).

Exercise 11.3.19. Let E be an elliptic curve over a field Fq, let π be the q-power
Frobenius map, and let P ∈ E(Fqm). Let S = {−(q − 1)/2, . . . ,−1, 0, 1 . . . , (q − 1)/2} if
q is odd and S = {−(q − 2)/2, . . . ,−1, 0, 1, . . . , q/2} if q is even.

Suppose one has a Frobenius expansion

a(π) =

l∑

j=0

[aj]π
j

with aj ∈ S. Let w ∈ N. Give a sliding window method to compute [a(π)]P using
windows of length w. Give an upper bound on the cost of this algorithm (including
pre-computation) ignoring the cost of evaluating π.

Exercise 11.3.20. (Brumley and Järvinen [112]) Let E be an elliptic curve over Fq, π
be the q-power Frobenius, and P ∈ E(Fqm) have prime order r where r‖#E(Fqm). Given
a Frobenius expansion a(π) =

∑
i[ai]π

i show how to efficiently compute a ∈ Z such that
a(π)(P) = [a]P .

11.3. EFFICIENT EXPONENTIATION IN SPECIFIC ALGEBRAIC GROUPS 251

Dimitrov, Järvinen, Jacobson, Chan and Huang [180] use Frobenius expansions on
Koblitz curves to obtain a method for computing [k]P which is provably sub-linear (i.e.,
using o(log(k)) field operations). For a complete presentation of Frobenius expansions,
and further references, we refer to Section 15.1 of [16]. For multi-exponentiation using
Frobenius expansions there is also a π-adic joint sparse form; see Section 15.1.1.e of [16]
for details.

11.3.3 GLV Method

This method is due to Gallant, Lambert and Vanstone [233] for elliptic curves and Stam
and Lenstra (see Section 4.4 of [580]) for tori.8 The idea is to use an “efficiently com-
putable” (see below for a clarification of this term) group homomorphism ψ and replace
the computation ga in a group of order r by the multi-exponentiation ga0ψ(g)a1 for
suitable integers a0 and a1 such that |a0|, |a1| ≈

√
r. Typical choices for ψ are an auto-

morphism of an elliptic curve or the Frobenius map on an elliptic curve or torus over an
extension field.

More precisely, let g ∈ G(Fq) be an element of prime order r in an algebraic group and
let ψ be a group homomorphism such that ψ(g) ∈ 〈g〉 (this is automatic if ψ : G(Fq) →
G(Fq) and r‖#G(Fq)). Then ψ(g) = gλ for some λ ∈ Z/rZ. The meaning of “efficiently
computable” is essentially that computing ψ(g) is much faster than computing gλ using
exponentiation algorithms. Hence, we require that λ and r−λ are not small; in particular,
the map ψ(P) = −P on an elliptic curve is not interesting for this application.

Example 11.3.21. Consider T2(Fp2), with elements represented as in Definition 6.3.7 so

that u ∈ Fp2 corresponds to g = (u+θ)/(u+θ) ∈ Fp4 . It follows by Lemma 6.3.12 that A−
up (where θ2+Aθ+B = 0) corresponds to gp = (up+θ)/(up+θ) =

(
(up + θ)(up + θ)

)−1
.

Since computing up for u ∈ Fp2 is easy, the map ψ(u) = A − up is a useful efficiently
computable group homomorphism with respect to the torus group operation.

One can also perform exponentiation in Gq2,2 ⊆ F∗
p4 using Frobenius. Given an

exponent a such that 1 ≤ a < p2 one lets a0 and a1 be the coefficients in the base-p
representation of a and computes ga as ga0 (gp)

a1 . Note that gp is efficient to compute as
it is a linear map on the 4-dimensional vector space Fp4 over Fp.

Other examples include the automorphism ζ3 on y2 = x3 + B in Example 9.4.2 and
the automorphisms in Exercises 9.4.5 and 10.2.12. Computing the eigenvalue λ for ψ is
usually easy in practice: for elliptic curves λ is a root of the characteristic polynomial of
ψ modulo r.

In some applications (for example, T2(Fp3) or some automorphisms on genus 2 curves
such as the one in Exercise 10.2.12) one can replace ga by ga0ψ(g)a1 · · ·ψl−1(g)al−1 for
some l > 2. We call this the l-dimensional GLV method. We stress that l cannot be
chosen arbitrarily; in Example 11.3.21 the map ψ2 is the identity map and so is not
useful.

In the previous section we sketched, for elliptic curves, the GLV method to represent
an integer as a short Frobenius expansion with relatively small coefficients. One can do
the same for any endomorphism ψ as long as ψ(P) = [λ]P (or ψ(g) = gλ in multiplicative
notation). The GLV lattice is

L = {(x0, . . . , xl) ∈ Zl+1 : x0 + x1λ+ · · ·+ xlλ
l ≡ 0 (mod r)}.

8A patent on the method was filed by Gallant, Lambert and Vanstone in 1999.

252 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

A basis for L is given in Exercise 11.3.22. As explained earlier, to convert an integer a
into GLV representation one finds a lattice vector (a′0, a

′
1, . . . , a

′
l) ∈ L close to (a, 0, . . . , 0)

(using Babai rounding) then sets a0 = a− a′0 and ai = −a′i for 1 ≤ i ≤ l.
Exercise 11.3.22. Show that

r 0 0 · · · 0
−λ 1 0 · · · 0
−λ2 0 1 · · · 0

...
...

−λl 0 0 · · · 1

is a basis for the GLV lattice L.

Exercise 11.3.23. Show how to compute the coefficients a0, . . . , al for the GLV method
using Babai rounding.

Exercise 11.3.24 gives a construction of homomorphisms for the GLV method that
apply to a large class of curves. We refer to Galbraith, Lin and Scott [224] for implemen-
tation results that show the benefit of using this construction.

Exercise 11.3.24. (Iijima, Matsuo, Chao and Tsujii [305]) Let p > 3 be a prime and let
E : y2 = x3 + a4x + a6 be an ordinary elliptic curve over Fp with p+ 1 − t points (note
that t 6= 0). Let u ∈ F∗

p2 be a non-square and define E′ : Y 2 = X3 + u2a4X + u3a6 over

Fp2 . Show that E′ is the quadratic twist of E(Fp2) and that #E′(Fp2) = (p − 1)2 + t2.

Let φ : E → E′ be the isomorphism φ(x, y) = (ux, u3/2y) defined over Fp4 .
Let π(x, y) = (xp, yp) and define

ψ = φ ◦ π ◦ φ−1.

Show that ψ : E′ → E′ is an endomorphism of E′ that is defined over Fp2 . Show that
ψ2 = [−1].

Let r | #E′(Fp2) be a prime such that r > 2p and r2 ∤ #E′(Fp2). Let P ∈ E′(Fp2)
have order r. Show that ψ2(P)− [t]ψ(P) + [p]P = OE′ . Hence deduce that ψ(P) = [λ]P
where λ = t−1(p − 1) (mod r). Note that it is possible for #E′(Fp2) to be prime, since
E′ is not defined over Fp.

As in Remark 11.3.17, for some applications one might be able to choose a random
GLV expansion directly, rather than choosing a random integer and converting it to GLV
representation.

There is a large literature on the GLV method, including several different algorithms
to compute the integers a0, . . . , al. As noted earlier, reducing the bit-length of the ai by
one or two bits makes very little effect on the overall running time. Instead, the weight
of the entries a0, . . . , al is more critical. We refer to Sections 15.2.1 and 15.2.2 of [16]
for further details and examples of the GLV method. Section 15.2.3 of [16] discusses
combining the GLV method with Frobenius expansions.

11.4 Sampling from Algebraic Groups

A natural problem, given an algebraic group G over a finite field Fq, is to generate a
“random” element of G. By “random” we usually mean uniformly at random from G(Fq)
although sometimes it may be appropriate to weaken this condition. The first problem
is to generate a random integer in [0, p− 1] or [1, p− 1]. Examples 11.4.1 and 11.4.2 give
two simple approaches. Chapter 7 of Sidorenko [562] is a convenient survey.

11.4. SAMPLING FROM ALGEBRAIC GROUPS 253

Example 11.4.1. One way to generate a random integer in [0, p − 1] is to generate
random binary strings x of length k (where 2k−1 < p ≤ 2k) and only output those
satisfying 0 ≤ x ≤ p− 1.

Example 11.4.2. Another method is to generate a binary string that is longer than p
and then return this value reduced modulo p. We refer to Section 7.4 of Shoup [556] for
a detailed analysis of this method (briefly, if 2k−1 < p ≤ 2k and one generates a k+ l bit
string then the statistical difference of the output from uniform is 1/2l). Section 7.5 of
[556] discusses how to generate a random k-bit prime and Section 7.7 of [556] discusses
how to generate a random integer of known factorisation.

Exercise 11.4.3. Show that the expected number of trials of the algorithm in Exam-
ple 11.4.1 is less than 2.

Exercise 11.4.4. Give an algorithm to generate an element of F∗
pn uniformly at random,

assuming that generating random integers modulo p is easy.

Appendix B.2.4 of Katz and Lindell [334] gives a thorough discussion of sampling
randomly in (Z/NZ)∗ and F∗

p.
Algorithm 5 shows how to compute a generator for F∗

p, when the factorisation of p− 1
is known. Generalising this algorithm to F∗

pn , when the factorisation of pn − 1 is known,
is straightforward. In practice one often works in a subgroup G ⊆ F∗

q of prime order r.
To sample uniformly from G one can generate a uniform element in F∗

q and then raise to
the power (q − 1)/r. This exponentiation can be accelerated using any of the techniques
discussed earlier in this chapter.

Exercise 11.4.5. Let q be a prime power such that the factorisation of q − 1 is known.
Give an algorithm to determine the order of an element g ∈ F∗

q .

Exercise 11.4.6. Let q be a prime power. Let G be a subgroup of F∗
q such that the

factorisation of the order of G is known. Give an algorithm to compute a generator of G.

An alternative approach to the sampling problem for a finite Abelian group G is given
in Exercise 11.4.7 (these ideas will also be used in Exercise 15.5.2). However, this method
is often not secure for applications in discrete logarithm cryptography. The reason is
that one usually wants to sample group elements at random such that no information
about their discrete logarithm is known, whereas the construction in Exercise 11.4.7
(especially when used to define a hash function) may give an attacker a way to break the
cryptosystem.

Exercise 11.4.7. Let G be a finite Abelian group. Let g1, . . . , gk be fixed elements
that generate G. Let m1, . . . ,mk be the orders of g1, . . . , gk respectively. Then one can
generate an element of G at random by choosing integers a1, . . . , ak uniformly at random
such that 0 ≤ ai < mi for 1 ≤ i ≤ k and computing

k∏

i=1

gaii . (11.2)

Show that this process does sample from G with uniform distribution.

11.4.1 Sampling from Tori

We now mention further techniques to speed up sampling from subgroups of F∗
q .

254 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

Example 11.4.8. Lemma 6.3.4 shows that T2(Fq) and G2,q ⊆ F∗
q2 are in one-to-one

corrrespondence with the set

{1} ∪ {(a+ θ)/(a+ θ) : a ∈ Fq}.

Hence, one can sample from T2(Fq) or G2,q as follows: Choose uniformly 0 ≤ a ≤ p and,
if a = p, output 1, otherwise output (a+ θ)/(a+ θ).

Generating elements of T6(Fq) or G6,q uniformly at random is less simple, since the
compression map does not map to the whole of A2(Fq). Indeed, the group G6,q has
q2− q+1 < q2 elements. Example 6.4.4 showed, in the case q ≡ 2, 5 (mod 9), how to map

A = {(a, b) ∈ A2(Fq) : a2 − ab+ b2 6= 1} (11.3)

to a subset of T6(Fq).

Exercise 11.4.9. Let q ≡ 2, 5 (mod 9). Give an algorithm to generate points in the set
A of equation (11.3) uniformly at random. Hence, show how to efficiently choose random
elements of a large subset of T6(Fq) or G6,q uniformly at random.

11.4.2 Sampling from Elliptic Curves

Let E : y2 = x3 + a4x + a6 be an elliptic curve over Fq where q is not a power of 2. To
generate points in E(Fq) one can proceed as follows: choose a random x ∈ Fq; test whether
x3 +a4x+a6 is a square in Fq; if not then repeat, otherwise take square roots to get y and
output (uniformly) one of ±y. It is not surprising that an algorithm to generate random
points is randomised, but something that did not arise previously is that this algorithm
uses a randomised subroutine (i.e., to compute square roots efficiently) and may need to
be repeated several times before it succeeds (i.e., it is a Las Vegas algorithm). Hence,
only an expected run time for the algorithm can be determined.

A more serious problem is that the output is not uniform. For example, OE is never
output, and points (x, 0) occur with probability twice the probability of (x, y) with y 6= 0.
A solution for all elliptic curves (and also hyperelliptic curves with imaginary model) is
given in Algorithm 9. For a detailed analysis and generalisation of this algorithm see von
zur Gathen, Shparlinski and Sinclair [240].

Exercise 11.4.10. Determine expected number of iterations of Algorithm 9 in the case
of elliptic curves and hence the expected running time.

Deterministic Sampling of Elliptic Curve Points

The above methods are randomised, not just due to the randomness that naturally arises
when sampling, but also because of the use of randomised algorithms for solving quadratic
equations, and because not every x in the field is an x-cordinate of an elliptic curve point.
It is of interest to minimise the reliance on randomness, especially when using the above
ideas to construct a hash function (otherwise, there may be timing attacks). We first give
an easy example.

Exercise 11.4.11. (Boneh and Franklin [80]) Let p ≡ 2 (mod 3) be prime. Consider the
supersingular elliptic curve E : y2 = x3 +a6 over Fp. One can sample points uniformly in
E(Fp)− {OE} by uniformly choosing y ∈ Fp and setting x = (y2 − a6)1/3 (mod p). The
cube root is computed efficiently by exponentiation to the power (2p−1)/3 ≡ 3−1 (mod p−
1).

11.4. SAMPLING FROM ALGEBRAIC GROUPS 255

Algorithm 9 Near-uniform sampling of points on curves

Input: H(x), F (x) ∈ Fq[x] such that C : y2 +H(x)y = F (x) has one Fq point at infinity
Output: P ∈ C(Fq)
1: Choose uniformly 0 ≤ x0 ≤ q
2: if x0 = q then
3: S = { point at infinity }
4: else
5: Compute S = {(x0, y0) : y0 ∈ Fq and y20 +H(x0)y0 − F (x0) = 0}
6: end if
7: if #S = 0 then
8: goto line 1
9: end if

10: if #S = 1 then
11: Choose uniformly b ∈ {0, 1}
12: if b = 0 then
13: Let P ∈ S
14: else
15: goto line 1
16: end if
17: end if
18: if #S = 2 then
19: Let P be chosen randomly from S
20: end if
21: return P

The first general results on deterministic methods to find points on curves over finite
fields k are due to Schinzel and Ska lba [514]. Given a6 ∈ k (the case char(k) = 2 is not
interesting since the curve is singular, and the case char(k) = 3 is easy since taking cube
roots is easy, so assume char(k) 6= 2, 3) they give a formula, in terms of a6, for four values
y1, . . . , y4 such that the equation x3 + a6 = y2i has a solution x ∈ k for some 1 ≤ i ≤ 4.
This method therefore produces at most 12 points on any given curve.

Ska lba [569] gave results for general curves y2 = F (x) where F (x) = x3 + a4x + a6.
This method can give more than a fixed number of points for any given curve. More
precisely, Ska lba gives explicit rational functions Xi(t) ∈ Q(t) for 1 ≤ i ≤ 3 such that
there is a rational function U(t) ∈ Q(t) such that

F (X1(t2))F (X2(t2))F (X3(t2)) = U(t)2.

In other words, Ska lba gives a rational map from A1 to the variety F (x1)F (x2)F (x3) = u2.
Evaluating at t ∈ Fp, where p > 3 is prime, it follows that at least one of the F (Xi(t

2))
is a square in F∗

p. One can therefore find a point on E by taking square roots. Note
that efficient algorithms for computing square roots modulo p are randomised in general.
Ska lba suggests avoiding this problem by assuming that the required quadratic non-
residue has been precomputed (as in Exercise 2.9.6).

Shallue and van de Woestijne [545] improve upon Ska lba’s algorithm in several ways.
First, and most significantly, they show that a deterministic sampling algorithm does not
require a quadratic non-residue modulo p. They achieve this by cleverly using all three
values F (X1(t2)), F (X2(t2)) and F (X3(t2)). In addition, they give a simpler rational
map (see Exercise 11.4.12) from A1 to the variety F (x1)F (x2)F (x3) = u2, and handle
the characteristic 2 and 3 cases.

256 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

Exercise 11.4.12. (Shallue and van de Woestijne [545]) Let F (x) = x3 + Ax + B and
H(u, v) = u2 + uv + v2 + A(u + v) + B. Let V : F (x1)F (x2)F (x3) = u2 and let S :
y2H(u, v) = −F (u). Show that the map ψ(u, v, y) → (v,−A − u − v, u + y2, F (u +
y2)H(u, v)/y) is a rational map from S to V . Let p > 3 be prime. Fix u ∈ Fp such that
F (u) 6= 0 and 3u2 + 2Au+ 4B −A2 6= 0. Show that the surface S for this fixed value of
u is

[y(v + u/2 +A/2)]2 + [3u2/4 +Au/2 +B −A2/4]y2 = −F (u).

Hence, show there is a rational map from A1 to S and hence a rational map from A1 to
V .

It is worth noting that there can be no rational map φ : P1 → C when C is a curve
of genus at least 1. This follows from the Hurwitz genus formula: if the map has degree
d then we have −2 = 2g(P1) − 2 = d(2g(C) − 2) + R ≥ 0 where R is a positive integer
counting the ramification, which is a contradiction. The above maps do not contradict
this fact. They are not rational maps from P1 (or A1) to an elliptic curve; there is always
one part of the function (such as computing a square-root or cube-root) that is not a
rational map.

Icart [303] has given a simpler map for elliptic curves y2 = x3 +Ax+B over Fq when
q ≡ 2 (mod 3). Let u ∈ Fq. Define

v = (3A− u4)/(6u) , x =
(
v2 −B − u6/27

)1/3
+ u2/3 and y = ux+ v (11.4)

where the cube root is computed by exponentiating to the power (2q−1)/3 ≡ 3−1 (mod (q−
1)).

Exercise 11.4.13. Verify that the point (x, y) of equation (11.4) is a point on E : y2 =
x3+Ax+B over Fq. Show that, given a point (x, y) on an elliptic curve E over Fq as above,
one can efficiently compute u ∈ Fq, if it exists, such that the process of equation (11.4)
gives the point (x, y).

For elliptic or hyperelliptic curves of the form y2 = F (x) where F (x) = xn +Ax +B
or F (x) = xn + Ax2 + B, Ulas [612] gives a rational map from A1 to the variety
F (x1)F (x2)F (x3) = u2. Hence, it is possible to deterministically find points on hy-
perelliptic curves of this form.

Exercise 11.4.14. (Ulas) Let F (x) = x3 +Ax+B and define

X1(t, u) = u, X2(t, u) = −B/A(t6F (u)3 − 1)/(t6F (u)3 − t2F (u)),
X3(t, u) = t2F (u)X2(t, u), U(t, u) = t3F (u)2F (X2(t, u)).

Show that U(t, u)2 = F (X1(t, u))F (X2(t, u))F (X3(t, u)).
[Hint: Use a computer algebra package.]

Note that, for curves of genus 2 or more, a related computational problem is to de-
terministically find rational degree 0 divisor classes. A simple solution is to generate two
points P,Q ∈ C(Fq) using the above methods and let D = (P)−(Q). More care is needed
to ensure that the divisor classes are distributed uniformly. We finish with an exercise
that shows that a natural method to generate rational divisor classes is not useful for this
application.

Exercise 11.4.15. Let y2 = F (x) be a hyperelliptic curve of genus g ≥ 2 over Fp with
p > 2 in imaginary model. Denote by P0 the point at infinity. Let x ∈ Fp and suppose

one has computed y =
√
F (x0) ∈ Fp2 . Let P = (x, y). Show that if y 6∈ Fp then

D = (P) + (σ(P))− 2(P0) is principal, where σ is the non-trivial element of Gal(Fp2/Fp).

11.5. DETERMINING ELLIPTIC CURVE GROUP STRUCTURE 257

In most cryptographic applications we are interested in sampling from subgroups of
E(Fq) of prime order r. As mentioned earlier, the simplest way to transform elements
sampled randomly in E(Fq) into random elements of the subgroup is to exponentiate to
the power #E(Fq)/r (assuming that r‖#E(Fq)).

11.4.3 Hashing to Algebraic Groups

Recall that sampling from algebraic groups is the task of selecting group elements uni-
formly at random. On the other hand, a hash function H : {0, 1}l → G(Fq) is a deter-
ministic algorithm that takes an input m ∈ {0, 1}l and outputs a group element. It is
required that the output distribution of H , corresponding to the uniform distribution of
the message space, is close to uniform in the group G(Fq). The basic idea is to use m as
the randomness required by the sampling algorithm.

Recall that a hash function is also usually required to satisfy some security require-
ments, such as collision-resistance. This is usually achieved by first applying a collision-
resistant hash function H ′ : {0, 1}l → {0, 1}l and setting m′ = H ′(m). In this section we
are only concerned with the problem of using m′ as input to a sampling algorithm.

The first case to consider is hashing to F∗
p. If p > 2l + 1 then we are in trouble, since

one cannot get uniform coverage of a set of size p − 1 using fewer than p − 1 elements.
This shows that we always need l > log2(#G(Fq)) (though, in some applications, it might
be possible to still have a useful cryptographic system even when the image of the hash
function is a subset of the group).

Example 11.4.16. Suppose 2l > p and m ∈ {0, 1}l. The method of Example 11.4.2
gives output close to uniform (at least, if l − log2(p) is reasonably large).

Exercise 11.4.17. Let q = pn < 2l. Give a hash function H : {0, 1}l → Fq.

It is relatively straightforward to turn the algorithms of Example 11.4.8 and Exer-
cise 11.4.9 into hash functions. In the elliptic curve case there is a growing literature on
transforming a sampling algorithm into a hash function. We do not give the details.

11.4.4 Hashing from Algebraic Groups

In some applications it is also necessary to have a hash function H : G(Fq) → {0, 1}l
where G is an algebraic group. Motivation for this problem is given in the discussion
of key derivation functions in Section 20.2.3. A framework for problems of this type is
randomness extraction. It is beyond the scope of this book to give a presentation of
this topic, but some related results are given in Sections 21.7 and 21.6.

11.5 Determining Group Structure and Computing Gen-

erators for Elliptic Curves

Since F∗
q is cyclic, it follows that all subgroups of finite fields and tori are cyclic. How-

ever, elliptic curves and divisor class groups of hyperelliptic curves can be non-cyclic.
Determining the group structure and a set of generators for an algebraic group G(Fq)
can be necessary for some applications. It is important to remark that solutions to these
problems are not expected to exist if the order N = #G(Fq) is not known, or if the
factorisation of N is not known.

Let E be an elliptic curve over Fq and let N = #E(Fq). If N has no square factors
then E(Fq) is isomorphic as a group to Z/NZ. If r2‖N then there could be a point of

258 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

order r2 or two “independent” points of order r (i.e., E(Fq) has a non-cyclic subgroup of
order r2 but exponent r).

The Weil pairing (see Section 26.2) can be used to determine the group structure of
an elliptic curve. Let r be a prime and P,Q ∈ E(Fq) of order r. The key fact is that the
Weil pairing is alternating and so er(P, P) = 1. It follows from the non-degeneracy of the
pairing that er(P,Q) = 1 if and only if Q ∈ 〈P 〉. The Weil pairing also shows that one
can only have two independent points when r divides (q − 1).

Given the factorisation of gcd(q− 1,#E(Fq)), the group structure can be determined
using a randomised algorithm due to Miller [427, 429]. We present this algorithm in
Figure 10. Note that the algorithm of Theorem 2.15.10 is used in lines 7 and 10. The
expected running time is polynomial, but we refer to Miller [429] for the details.

Algorithm 10 Miller’s algorithm for group structure

Input: E/Fq, N0, N1 ∈ N and the factorisation of N0, where #E(Fq) = N0N1,
gcd(N1, q − 1) = 1 and all primes dividing N0 divide q − 1

Output: Integers m and n such that E(Fq) ∼= (Z/mZ) × (Z/nZ) as a group

1: Write N0 =
∏k
i=1 l

ei
i where l1, . . . , lk are distinct primes

2: For all 1 ≤ i ≤ k such that ei = 1 set N0 = N0/li, N1 = N1li
3: m = 1, n = 1
4: while mn 6= N0 do
5: Choose random points P ′, Q′ ∈ E(Fq)
6: P = [N1]P ′, Q = [N1]Q′

7: Find the exact orders m′ and n′ of P and Q
8: n = lcm(m′, n′)
9: α = en(P,Q)

10: Let m be the exact order of α in µn = {z ∈ F∗
q : zn = 1}

11: end while
12: return m and nN1

Exercise 11.5.1. Show that Algorithm 10 is correct.

Exercise 11.5.2. Modify Algorithm 10 so that it outputs generators for E(Fq).

Exercise 11.5.3. This exercise will determine the expected number of iterations of Al-
gorithm 10. Let N0 =

∏k
i=1 l

ei
i with ei > 1 for all 1 ≤ i ≤ k where l1, . . . , lk are distinct

primes.
Let (l, e) = (li, ei) for some 1 ≤ i ≤ k. Write E(Fq)[le] for the subgroup of E(Fq)

consisting of elements of order dividing le. This group may or may not be cyclic. Show
that the probability that a pair of randomly chosen group elements generate E(Fq)[le] is
at least (

1− 1
l

) (
1− 1

l2

)
.

Now, show that the probability of success overall in one iteration is at least

ϕ(N0)

N0

∏

l|N0

(
1− 1

l2

)

where ϕ(n) is the Euler phi function. Finally, apply Theorem A.3.1 and the fact that
ζ(2) = π2/6 (this is the Riemann zeta function) to show that the algorithm requires
O(log(log(q))) iterations.

Kohel and Shparlinski [352] give a deterministic algorithm to compute the group struc-
ture and to find generators for E(Fq). Their algorithm requires O(q1/2+ǫ) bit operations.

11.6. TESTING SUBGROUP MEMBERSHIP 259

11.6 Testing Subgroup Membership

In many cryptographic protocols it is necessary to verify that the elements received really
do correspond to group elements with the right properties. There are a variety of attacks
that can be performed otherwise, some of which are briefly mentioned in Section 20.4.2.

The first issue is whether a binary string corresponds to an element of the “parent
group” G(Fq). This is usually easy to check when G(Fq) = F∗

q . In the case of elliptic
curves one must parse the bitstring as a point (x, y) and determine that (x, y) does satisfy
the curve equation.

The more difficult problem is testing whether a group element g lies in the desired
subgroup. For example, if r‖#G(Fq) and we are given a group element g, to ensure that
g lies in the unique subgroup of order r one can compute gr and check if this is the
identity. Efficient exponentiation algorithms can be used, but the computational cost is
still significant. In some situations one can more efficiently test subgroup membership.
One notable case is when #G(Fq) is prime, this is one reason why elliptic curves of prime
order are so convenient for cryptography.

Example 11.6.1. Let p = 2r + 1 be a safe prime or Sophie-Germain prime (i.e.,
r and p are primes). Then an element g ∈ F∗

p lies in the subgroup of order r if and
only if (gp) = 1. Note that one can compute (gp) = 1 in O(log(p)2) bit operations,

whereas computing gr in this case requires O(log(p)M(log(p))) bit operations. However,
in practice computing the Legendre symbol may not be significantly faster than computing
gr. Also, there are other performance problems from using very large subgroups of F ∗

p

(for example, signature size).

Exercise 11.6.2. (King [339]) Let E be an elliptic curve over Fq such that #E(Fq) = 2mr
where m is small and r is prime. Show how to use point halving (see Exercise 9.1.4) to
efficiently determine whether a point P ∈ E(Fq) has order dividing r.

An alternative way to prevent attacks due to elements of incorrect group order is
to “force” all group elements to lie in the required subgroup by exponentiating to a
cofactor (such as #G(Fq)/r). When the cofactor is small this can be a more efficient
way to deal with the problem than testing subgroup membership, though one must ensure
the cryptographic system can function correctly in this setting.

With algebraic group quotients represented using traces (i.e., LUC and XTR) one
represents a finite field element using a trace. This value corresponds to a valid element
of the extension field only if certain conditions hold. In the case of LUC we represent
g ∈ G2,p, where p is prime, by the trace V = Tr(g). A value V corresponds to an element
of G2,q if and only if the quadratic polynomial (x−g)(x−gp) = x2−V x+1 is irreducible

(in other words, if (V
2−4
p) = −1). Similarly, in XTR one needs to check whether the

polynomial x3− tx2 + tpx−1 is irreducible; Lenstra and Verheul [376] have given efficient
algorithms to do this. Section 4 of [376] also discusses subgroup attacks in the context of
XTR and countermeasures in this context.

11.7 Elliptic Curve Point Compression

When elements of an algebraic group are transmitted one often wants to minimise the
number of bits sent. Indeed, one of the main motivations for torus/trace cryptography
is compression of elements. With elliptic curves it is obvious that, given a point (x, y),
one only needs to send x together with a single bit to specify the choice of y. To obtain
the point the receiver then has to solve a quadratic equation over the finite field. An

260 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

alternative, suitable only for some applications, is to work in the algebraic group quotient
corresponding to elliptic curve arithmetic using x-coordinates only. We briefly mention
further tricks in the elliptic curve setting.

Example 11.7.1. (Seroussi [540]) Let E : y2+xy = x3+a2x
2+a6 be an ordinary elliptic

curve over F2n , so that #E(F2n) is even. Let P ∈ E(F2n) be a point of odd order, so
that P = [2]Q for some point Q ∈ E(F2n).

Recall from Exercise 9.1.4 that P = (xP , yP) ∈ E(F2n) is of the form P = [2]Q for
some Q ∈ E(F2n) if and only if TrF2n/F2

(xP) = TrF2n/F2
(a2). Hence, the trace of xP is

public knowledge.
Suppose F2n is represented using a normal basis, so that TrF2n/F2

(xP) is congruent
modulo 2 to the Hamming weight of the representation of xP . Then one can compress
(xP , yP) by discarding yP , removing the least significant bit of the representation of xP
and adding a bit to determine the choice of yP . Hence, one needs n bits to send (xP , yP).

Exercise 11.7.2.⋆ (King [339]) Let the notation be as in Example 11.7.1 and suppose
further that Tr(a2) = 0, where Tr denotes TrF2n/F2

. Let (xP , yP) ∈ E(F2n) be a point of
odd order. Show that Tr(a6/x

2
P) = 0 and so Tr(

√
a6/xP) = 0. Show that (0,

√
a6) has

order 2 and that this point can be halved (in other words, there is a point R ∈ E(F2n)
such that (0,

√
a6) = [2]R). Show that (xP , yP)+(0,

√
a6) = (

√
a6/xP , (yP

√
a6+a6)/x

2
P +√

a6(1 + 1/xP)) and hence deduce that this point can also be halved.
Hence, show that one can send (xP , yP) ∈ E(F2n) using only n − 1 bits by sending

xP with one bit omitted when Tr(yP /xP) = 0 or
√
a6/xP with one bit omitted when

Tr(yP /xP) = 1.

Exercise 11.7.3.⋆ (Galbraith and Eagle) Let E be an elliptic curve over F2 and let
P = (xP , yP) ∈ E(F2n). Explain how one might compress P to roughly n− log2(n) bits
on average.

We refer to Section 14.2 of [16] for the details of divisor compression for hyperelliptic
curves.

Chapter 12

Primality Testing and Integer
Factorisation using Algebraic
Groups

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

There are numerous books about primality testing and integer factorisation, of which
the most notable is Crandall and Pomerance [162]. There is no need to reproduce all the
details of these topics. Hence, the purpose of this chapter is simply to sketch a few basic
ideas that will be used later. In particular, we describe methods for primality testing and
integer factorisation that exploit the structure of algebraic groups.

Definition 12.0.1. A primality test is a randomised algorithm that, on input N ∈ N,
outputs a single bit b such that if N is prime then b = 1. A composite integer that passes
a primality test is called a pseudoprime. An algorithm splits N ∈ N if it outputs a
pair (a, b) of integers such that 1 < a, b < N and N = ab.

12.1 Primality Testing

The simplest primality test is trial division (namely, testing whether N is divisible by
any integer up to

√
N). This algorithm is not useful for factoring numbers chosen for

cryptography, but the first step of most general purpose factoring algorithms is to run trial
division to remove all ‘small’ prime factors of N before trying more elaborate methods.
Hence, for the remainder of this section we may assume that N is odd (and usually that
it is not divisible by any primes less than, say, 106).

261

262 CHAPTER 12. PRIMALITY AND FACTORING USING ALGEBRAIC GROUPS

12.1.1 Fermat Test

Let N ∈ N. If N is prime then the algebraic group Gm(Z/NZ) = (Z/NZ)∗ over the ring
Z/NZ has N − 1 elements. In other words, if a is an integer such that gcd(a,N) = 1 and

aN−1 6≡ 1 (mod N)

then N is not prime. Such a number a is called a compositeness witness for N . The
hope is that if N is not prime then the order of the group Gm(Z/NZ) is not a divisor of
N − 1 and so a compositeness witness exists. Hence, the Fermat test is to choose random
1 < a < N and compute aN−1 (mod N).

As is well-known, there are composite numbers N that are pseudoprimes for the
Fermat test.

Definition 12.1.1. An integer N ∈ N is a Carmichael number if N is composite and

aN−1 ≡ 1 (mod N)

for all a ∈ N such that gcd(a,N) = 1.

If N =
∏l
i=1 p

ei
i is composite then Gm(Z/NZ) ∼=

∏l
i=1Gm(Z/peii Z) and has order

ϕ(N) and exponent λ(N) = lcm{pei−1
i (pi − 1) : 1 ≤ i ≤ l}.

Exercise 12.1.2. Show that all Carmichael numbers are odd. Show thatN is a Carmichael
number if and only if λ(N) | (N − 1). Show that a composite number N ∈ N is a

Carmichael number if and only if N =
∏l
i=1 pi is a product of distinct primes such that

(pi − 1) | (N − 1) for i = 1, . . . , l.

Exercise 12.1.3. Show that 561 = 3 · 11 · 17 is a Carmichael number.

It was shown by Alford, Granville and Pomerance [10] in 1992 that there are infinitely
many Carmichael numbers.

It is natural to replace Gm(Z/NZ) with any algebraic group or algebraic group quo-
tient, such as the torus T2, the algebraic group quotient corresponding to Lucas sequences
(this gives rise to the p+ 1 test) or an elliptic curve of predictable group order.

Exercise 12.1.4. Design a primality test based on the algebraic group T2(Z/NZ), which
has order N + 1 if N is prime. Also show to use Lucas sequences to test N for primality
using the algebraic group quotient.

Exercise 12.1.5. Design a primality test for integers N ≡ 3 (mod 4) based on the
algebraic group E(Z/NZ) where E is a suitably chosen supersingular elliptic curve.

Exercise 12.1.6. Design a primality test for integers N ≡ 1 (mod 4) based on the
algebraic group E(Z/NZ) where E is a suitably chosen elliptic curve.

12.1.2 The Miller-Rabin Test

This primality test is also called the Selfridge-Miller-Rabin test or the strong prime test. It
is a refinement of the Fermat test, and works very well in practice. Rather than changing
the algebraic group, the idea is to make better use of the available information. It is based
on the following trivial lemma, which is false if p is replaced by a composite number N
(except for N = pa where p is odd).

Lemma 12.1.7. Let p be prime. If x2 ≡ 1 (mod p) then x ≡ ±1 (mod p).

12.2. GENERATING RANDOM PRIMES 263

For the Miller-Rabin test write N−1 = 2bm where m is odd and consider the sequence
a0 = am (mod N), a1 = a20 = a2m (mod N), . . . , ab = a2b−1 = aN−1 (mod N) where
gcd(a,N) = 1. IfN is prime then this sequence must have the form (∗, ∗, . . . , ∗,−1, 1, . . . , 1)
or (−1, 1, . . . , 1) or (1, . . . , 1) (where ∗ denotes numbers whose values are not relevant).
Any deviation from this form means that the number N is composite.

An integer N is called a base-a probable prime if the Miller-Rabin sequence has
the good form and is called a base-a pseudoprime if it is a base-a probable prime that
is actually composite.

Exercise 12.1.8. Let N = 561. Note that gcd(2, N) = 1 and 2N−1 ≡ 1 (mod N). Show
that the Miller-Rabin method with a = 2 demonstrates that N is composite. Show that
this failure allows one to immediately split N .

Theorem 12.1.9. Let n > 9 be an odd composite integer. Then N is a base-a pseudo-
prime for at most ϕ(N)/4 bases between 1 and N .

Proof: See Theorem 3.5.4 of [162] or Theorem 10.6 of Shoup [556]. �

Hence, if a number N passes several Miller-Rabin tests for several randomly chosen
bases a then one can believe that with high probability N is prime (Section 5.4.2 of
Stinson [592] gives a careful analysis of the probability of success of a closely related
algorithm using Bayes’ theorem). Such an integer is called a probable prime. In
practice one chooses O(log(N)) random bases a and runs the Miller-Rabin test for each.
The total complexity is therefore O(log(N)4) bit operations (which can be improved to
O(log(N)2M(log(N))), where M(m) is the cost of multiplying two m-bit integers).

12.1.3 Primality Proving

Agrawal, Kayal and Saxena [6] (AKS) discovered a deterministic algorithm that runs in
polynomial-time and determines whether or not N is prime. We refer to Section 4.5 of
[162] for details. The original AKS test has been improved significantly. A variant due to
Bernstein requires O(log(N)4+o(1)) bit operations using fast arithmetic (see Section 4.5.4
of [162]).

There is also a large literature on primality proving using Gauss and Jacobi sums, and
using elliptic curves. We refer to Sections 4.4 and 7.6 of [162].

In practice the Miller-Rabin test is still widely used for cryptographic applications.

12.2 Generating Random Primes

Definition 12.2.1. Let X ∈ N, then π(X) is defined to be the number of primes 1 <
p < X .

The famous prime number theorem states that π(X) is asymptotically equal to
X/ log(X) (as always log denotes the natural logarithm). In other words, primes are
rather common among the integers. If one choose a random integer 1 < p < X then the
probability that p is prime is therefore about 1/ log(X) (equivalently, about log(X) trials
are required to find a prime between 1 and X). In practice, this probability increases
significantly if one choose p to be odd and not divisible by 3.

Theorem 12.2.2. Random (probable) prime numbers of a given size X can be generated
using the Miller-Rabin algorithm in expected O(log(X)5) bit operations (or O(log(X)3M(log(X)))
using fast arithmetic).

264 CHAPTER 12. PRIMALITY AND FACTORING USING ALGEBRAIC GROUPS

Exercise 12.2.3. For certain cryptosystems based on the discrete logarithm problem it
is required to produce a k1-bit prime p such that p− 1 has a k2-bit prime factor q. Give
a method that takes integers k1, k2 such that k2 < k1 and outputs p and q such that p is
a k1-bit prime, q is a k2-bit prime and q | (p− 1).

Exercise 12.2.4. For certain cryptosystems based on the discrete logarithm problem
(see Chapter 6) it is required to produce a k1-bit prime p such that Φk(p) has a k2-bit
prime factor q (where Φk(x) is the k-th cyclotomic polynomial). Give a method that
takes integers k, k1, k2 such that k2 < ϕ(k)k1 and outputs p and q such that p is a k1-bit
prime, q is a k2-bit prime and q | Φk(p).

Exercise 12.2.5. A strong prime is defined to be a prime p such that q = (p − 1)/2
is prime, (p+ 1)/2 is prime and (q − 1)/2 is prime (it is conjectured that infinitely many
such primes exist). Some RSA systems require the RSA moduli to be a product of strong
primes. Give an algorithm to generate strong primes.

12.2.1 Primality Certificates

For cryptographic applications it may be required to provide a primality certificate.
This is a mathematical proof that can be checked in polynomial-time and that establishes
the primality of a number n. Pratt [490] showed that there exists a short primality cer-
tificate for every prime. Primality certificates are not so important since the discovery of
the AKS test, but primes together with certificates can be generated (and the certificates
verified) more quickly than using the AKS test, so this subject could still be of interest.
We refer to Section 4.1.3 of Crandall and Pomerance [162] and Maurer [403] for further
details.

One basic tool for primality certificates is Lucas’ converse of Fermat’s little theorem.

Theorem 12.2.6. (Lucas) Let N ∈ N. If there is an integer a such that gcd(a,N) = 1,
aN−1 ≡ 1 (mod N) and a(N−1)/l 6≡ 1 (mod N) for all primes l | (N − 1) then N is prime.

Exercise 12.2.7. Prove Theorem 12.2.6.

In practice one can weaken the hypothesis of Theorem 12.2.6.

Theorem 12.2.8. (Pocklington) Suppose N − 1 = FR where the complete factorisation
of F is known. Suppose there is an integer a such that aN−1 ≡ 1 (mod N) and

a(N−1)/q 6≡ 1 (mod N)

for every prime q | F . Then every prime factor of N is congruent to 1 modulo F . Hence,
if F ≥

√
N then N is prime.

Exercise 12.2.9. Prove Theorem 12.2.8.

Exercise 12.2.10. A Sophie-Germain prime (in cryptography the name safe prime
is commonly used) is a prime p such that (p − 1)/2 is also prime. It is conjectured that
there are infinitely many Sophie-Germain primes. Give a method to generate a k-bit
Sophie-Germain prime together with a certificate of primality, such that the output is
close to uniform over the set of all k-bit Sophie-Germain primes.

12.3. THE P − 1 FACTORING METHOD 265

12.3 The p− 1 Factoring Method

First we recall the notion of a smooth integer. These are discussed in more detail in
Section 15.1.

Definition 12.3.1. Let N =
∏r
i=1 p

ei
i ∈ N (where we assume the pi are distinct primes

and ei ≥ 1) and let B ∈ N. Then N is B-smooth if all pi ≤ B and N is B-power
smooth (or strongly B-smooth) if all peii ≤ B.

Example 12.3.2. 528 = 24 · 3 · 11 is 14-smooth but is not 14-power smooth.

The p − 1 method was published by Pollard [485].1 The idea is to suppose that N
has prime factors p and q where p − 1 is B-power smooth but q − 1 is not B-power
smooth. Then if 1 < a < N is randomly chosen we have aB! ≡ 1 (mod p) and, with high
probability, aB! 6≡ 1 (mod q). Hence gcd(aB! − 1, N) splits N . Algorithm 11 gives the
Pollard p− 1 algorithm.

Example 12.3.3. Let N = 124639 and let B = 8. Choose a = 2. One can check that

gcd(aB! (mod N)− 1, N) = 113

from which one deduces that N = 113 · 1103.
This example worked because the prime p = 113 satisfies p − 1 = 24 · 7 | 8! and so

28! ≡ 1 (mod p) while the other prime satisfies q − 1 = 2 · 19 · 29, which is not 8-smooth.

Of course, the “factor” returned from the gcd may be 1 or N . If the factor is not 1 or
N then we have split N as N = ab. We now test each factor for primality and attempt
to split any composite factors further.

Algorithm 11 Pollard p− 1 algorithm

Input: N ∈ N
Output: Factor of N
1: Choose a suitable value for B
2: Choose a random 1 < a < N
3: b = a
4: for i = 2 to B do
5: b = bi (mod N)
6: end for
7: return gcd(b − 1, N)

Exercise 12.3.4. Factor N = 10028219737 using the p− 1 method.

Lemma 12.3.5. The complexity of Algorithm 11 is O(B log(B)M(log(N))) bit opera-
tions.

Proof: The main loop is repeated B times and contains an exponentiation modulo N to
a power i < B. The cost of the exponentiation is O(log(B)M(log(N))) bit operations. �

The algorithm is therefore exponential in B and so is only practical if B is relatively
small. If B = O(log(N)i) then the algorithm is polynomial-time. Unfortunately, the
algorithm only splits numbers of a special form (namely those for which there is a factor
p such that p− 1 is very smooth).

1According to [634] the first stage of the method was also known to D. N. and D. H. Lehmer, though
they never published it.

266 CHAPTER 12. PRIMALITY AND FACTORING USING ALGEBRAIC GROUPS

Exercise 12.3.6. Show that searching only over prime power values for i in Algorithm 11
lowers the complexity to O(BM(log(N))) bit operations.

It is usual to have a second stage or continuation to the Pollard p − 1 method.
Suppose that Algorithm 11 terminates with gcd(b − 1, N) = 1. If there is a prime p | N
such that p− 1 = SQ where S is B-smooth and Q is prime then the order of b modulo p
is Q. One will therefore expect to split N by computing gcd(bQ (mod N) − 1, N). The
second stage is to find Q if it is not too big. One therefore chooses a bound B′ > B and
wants to compute gcd(bQ (mod N)− 1, N) for all primes B < Q ≤ B′.

We give two methods to do this: the standard continuation (Exercise 12.3.7) has the
same complexity as the first stage of the p−1 method, but the constants are much better;
the FFT continuation (Exercise 12.3.8) has better complexity and shows that if sufficient
storage is available then one can take B′ to be considerably bigger than B. Further
improvements are given in Sections 4.1 and 4.2 of Montgomery [436].

Exercise 12.3.7. (Standard continuation) Show that one can compute gcd(bQ (mod N)−
1, N) for all primes B < Q ≤ B′ in O((B′ −B)M(log(N))) bit operations.

Exercise 12.3.8. (Pollard’s FFT continuation) Let w = ⌈
√
B′ −B⌉. We will exploit

the fact that Q = B + vw − u for some 0 ≤ u < w and some 1 ≤ v ≤ w (this is very

similar to the baby-step-giant-step algorithm; see Section 13.3). Let P (x) =
∏w−1
i=0 (x −

bi) (mod N), computed as in Section 2.16. Now compute gcd(P (gB+vw) (mod N), N) for
v = 1, 2, . . . , w. For the correct value v we have

P (gB+vw) =
∏

i

(gB+vw − gi) = (gB+vw − gu)
∏

i6=u
(gB+vw − gi)

= gu(gB+vw−u − 1)
∏

i6=u
(gB+vw − gi).

Since gB+vw−u = gQ ≡ 1 (mod p) then gcd(P (gB+vw) (mod N), N) is divisible by p.
Show that the time complexity of this continutation is O(M(w) log(w)M(log(N)), which
asymptotically is O(

√
B′ log(B′)2 log(log(B′))M(log(N))), bit operations. Show that the

storage required is O(w log(w)) = O(
√
B′ log(B′)) bits.

Exercise 12.3.9. The p+ 1 factoring method uses the same idea as the p − 1 method,
but in the algebraic group T2 or the algebraic group quotient corresponding to Lucas
sequences. Write down the details of the p+ 1 factoring method using Lucas sequences.

12.4 Elliptic Curve Method

Let N be an integer to be factored and let p | N be prime. One can view Pollard’s p− 1
method as using an auxiliary group (namely, Gm(Fp)) that may have smooth order. The
idea is then to obtain an element modulo N (namely, aB!) that is congruent modulo p
(but not modulo some other prime q | N) to the identity element of the auxiliary group.

Lenstra’s idea was to replace the group Gm in the Pollard p−1 method with the group
of points on an elliptic curve. The motivation was that even if p− 1 is not smooth, it is
reasonable to expect that there is an elliptic curve E over Fp such that #E(Fp) is rather
smooth. Furthermore, since there are lots of different elliptic curves over the field Fp we
have a chance to split N by trying the method with lots of different elliptic curves. We
refer to Section 9.14 for some remarks on elliptic curves modulo N .

If E is a “randomly chosen” elliptic curve modulo N with a point P on E modulo
N then one hopes that the point Q = [B!]P is congruent modulo p (but not modulo

12.5. POLLARD-STRASSEN METHOD 267

some other prime q) to the identity element. One constructs E and P together, for
example choosing 1 < xP , yP , a4 < N and setting a6 = y2P − x3P − a4xP (mod N). If one
computes Q = (x : y : z) using inversion-free arithmetic and projective coordinates (as
in Exercise 9.1.5) then Q ≡ OE (mod p) is equivalent to p | z. Here we are performing
elliptic curve arithmetic over the ring Z/NZ (see Section 9.14).

The resulting algorithm is known as the elliptic curve method or ECM and it
is very widely used, both as a general-purpose factoring algorithm in computer algebra
packages, and as a subroutine of the number field sieve. An important consequence of
Lenstra’s suggestion of replacing the group F∗

p by E(Fp) is that it motivated Miller and
Koblitz to suggest using E(Fp) instead of F∗

p for public key cryptography.
Algorithm 12 gives a sketch of one round of the ECM algorithm. If the algorithm fails

then one should repeat it, possibly increasing the size of B. Note that it can be more
efficient to compute [B!]P as a single exponentiation rather than a loop as in line 5 of
Algorithm 12; see [49].

Algorithm 12 Elliptic curve factoring algorithm

Input: N ∈ N
Output: Factor of N
1: Choose a suitable value for B
2: Choose random elements 0 ≤ x, y, a4 < N
3: Set a6 = y2 − x3 − a4x (mod N)
4: Set P = (x : y : 1)
5: for i = 2 to B do
6: Compute P = [i]P
7: end for
8: return gcd(N, z) where P = (x : y : z)

Exercise 12.4.1. Show that the complexity of Algorithm 12 is O(B log(B)M(log(N)))
bit operations.

Exercise 12.4.2. Show that the complexity of Algorithm 12 can be lowered toO(BM(log(N)))
bit operations using the method of Exercise 12.3.6.

Many of the techniques used to improve the Pollard p−1 method (such as the standard
continuation, though not Pollard’s FFT continuation) also apply directly to the elliptic
curve method. We refer to Section 7.4 of [162] for details. One can also employ all
known techniques to speed up elliptic curve arithmetic. Indeed, the Montgomery model
for elliptic curves (Section 9.12.1) was discovered in the context of ECM rather than ECC.

In practice, we repeat the algorithm a number of times for random choices of B, x, y
and a4. The difficult problems are to determine a good choice for B and to analyse the
probability of success. We discuss these issues in Section 15.3 where we state Lenstra’s
conjecture that the elliptic curve method factors integers in subexponential time.

12.5 Pollard-Strassen Method

Pollard [485] and, independently, Strassen gave a deterministic algorithm to factor an
integer N in Õ(N1/4) bit operations. It is based on the idea2 of Section 2.16, namely that

2Despite the title of this chapter, the Pollard-Strassen algorithm does not use algebraic groups, or any
group-theoretic property of the integers modulo N .

268 CHAPTER 12. PRIMALITY AND FACTORING USING ALGEBRAIC GROUPS

one can evaluate a polynomial of degree n in (Z/NZ)[x] at n values in O(M(n) log(n))
operations in Z/NZ. A different factoring algorithm with this complexity is given in
Exercise 19.4.7.

The trick to let B = ⌈N1/4⌉, F (x) = x(x − 1) · · · (x − B + 1) (which has degree
B) and to compute F (jB) (mod N) for 1 ≤ j ≤ B. Computing these values requires
O(M(B) log(B)M(log(N))) = O(N1/4 log(N)3 log(log(N))2 log(log(log(N)))) bit opera-
tions. Once this list of values has been computed one computes gcd(N,F (jB) (mod N))
until one finds a value that is not 1. This will happen, for some j, since the smallest
prime factor of N is of the form jB − i for some 1 ≤ j ≤ B and some 0 ≤ i < B. Note
that M = gcd(N,F (jB) (mod N)) may not be prime, but one can find the prime factors
of it in Õ(N1/4) bit operations by computing gcd(M, jB − i) for that value of j and all
0 ≤ i < B. Indeed, one can find all prime factors of N that are less than N1/2 (and
hence factor N completely) using this method. The overall complexity is Õ(N1/4) bit
operations.

Exercise 12.5.1.⋆ Show that one can determine all primes p such that p2 | N in Õ(N1/6)
bit operations.

Chapter 13

Basic Discrete Logarithm
Algorithms

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

This chapter is about algorithms to solve the discrete logarithm problem (DLP) and
some variants of it. We focus mainly on deterministic methods that work in any group;
later chapters will present the Pollard rho and kangaroo methods, and index calculus
algorithms. In this chapter we also present the concept of generic algorithms and prove
lower bounds on the running time of a generic algorithm for the DLP. The starting point
is the following definition (already given as Definition 2.1.1).

Definition 13.0.1. Let G be a group written in multiplicative notation. The discrete
logarithm problem (DLP) is: Given g, h ∈ G to find a, if it exists, such that h = ga.
We sometimes denote a by logg(h).

As discussed after Definition 2.1.1, we intentionally do not specify a distribution on g
or h or a above, although it is common to assume that g is sampled uniformly at random
in G and a is sampled uniformly from {1, . . . ,#G}.

Typically G will be an algebraic group over a finite field Fq and the order of g will be
known. If one is considering cryptography in an algebraic group quotient then we assume
that the DLP has been lifted to the covering group G. A solution to the DLP exists if and
only if h ∈ 〈g〉 (i.e., h lies in the subgroup generated by g). We have discussed methods
to test this in Section 11.6.

Exercise 13.0.2. Consider the discrete logarithm problem in the group of integers mod-
ulo p under addition. Show that the discrete logarithm problem in this case can be
solved in polynomial-time.

Exercise 13.0.2 shows there are groups for which the DLP is easy. The focus in this
book is on algebraic groups for which the DLP seems to be hard.

269

270 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

Exercise 13.0.3. Let N be composite. Define the discrete logarithm problem DLP-
MOD-N in the multiplicative group of integers modulo N . Show that FACTOR ≤R
DLP-MOD-N.

Exercise 13.0.3 gives some evidence that cryptosystems based on the DLP should be
at least as secure as cryptosystems based on factoring.

13.1 Exhaustive Search

The simplest algorithm for the DLP is to sequentially compute ga for 0 ≤ a < r and
test equality of each value with h. This requires at most r − 2 group operations and r
comparisons.

Exercise 13.1.1. Write pseudocode for the exhaustive search algorithm for the DLP and
verify the claims about the worst-case number of group operations and comparisons.

If the cost of testing equality of group elements is O(1) group operations then the
worst-case running time of the algorithm is O(r) group operations. It is natural to
assume that testing equality is always O(1) group operations, and this will always be true
for the algebraic groups considered in this book. However, as Exercise 13.1.2 shows, such
an assumption is not entirely trivial.

Exercise 13.1.2. Suppose projective coordinates are used for elliptic curves E(Fq) to
speed up the group operations in the exhaustive search algorithm. Show that testing
equality between a point in projective coordinates and a point in affine or projective
coordinates requires at least one multiplication in Fq (and so this cost is not linear).
Show that, nevertheless, the cost of testing equality is less than the cost of a group
operation.

For the rest of this chapter we assume that groups are represented in a compact way
and that operations involving the representation of the group (e.g., testing equality) all
cost less than the cost of one group operation. This assumption is satisfied for all the
algebraic groups studied in this book.

13.2 The Pohlig-Hellman Method

Let g have order N and let h = ga, so that h lies in the cyclic group generated by g.
Suppose N =

∏n
i=1 l

ei
i . The idea of the Pohlig-Hellman1 method [482] is to compute a

modulo the prime powers leii and then recover the solution using the Chinese remainder
theorem. The main ingredient is the following group homomorphism, which reduces the
discrete logarithm problem to subgroups of prime power order.

Lemma 13.2.1. Suppose g has order N and le | N . The function

Φle(g) = gN/l
e

is a group homomorphism from 〈g〉 to the unique cyclic subgroup of 〈g〉 of order le. Hence,
if h = ga then

Φle(h) = Φle(g)a (mod le).

1The paper [482] is authored by Pohlig and Hellman and so the method is usually referred to by this
name, although R. Silver, R. Schroeppel, H. Block, and V. Nechaev also discovered it.

13.2. THE POHLIG-HELLMAN METHOD 271

Exercise 13.2.2. Prove Lemma 13.2.1.

Using Φle one can reduce the DLP to subgroups of prime power order. To reduce the
problem to subgroups of prime order we do the following: Suppose g0 has order le and
h0 = ga0 then we can write a = a0 + a1l + · · ·ae−1l

e−1 where 0 ≤ ai < l. Let g1 = gl
e−1

0 .
Raising to the power le−1 gives

hl
e−1

0 = ga01

from which one can find a0 by trying all possibilities (or using baby-step-giant-step or
other methods).

To compute a1 we define h1 = h0g
−a0
0 so that

h1 = g
a1l+a2l

2+···ae−1l
e−1

0 .

Then a1 is obtained by solving

hl
e−2

1 = ga11

To obtain the next value we set h2 = h1g
−la1
0 and repeat. Continuing gives the full

solution modulo le. Once a is known modulo leii for all leii ‖N one computes a using the
Chinese remainder theorem. The full algorithm (in a slightly more efficient variant) is
given in Algorithm 13.

Algorithm 13 Pohlig-Hellman algorithm

Input: g, h = ga, {(li, ei) : 1 ≤ i ≤ n} such that order of g is N =
∏n
i=1 l

ei
i

Output: a
1: Compute {gN/lfii , hN/lfii : 1 ≤ i ≤ n, 1 ≤ fi ≤ ei}
2: for i = 1 to n do
3: ai = 0
4: for j = 1 to ei do ⊲ Reducing DLP of order leii to cyclic groups

5: Let g0 = gN/l
j
i and h0 = hN/l

j
i ⊲ These were already computed in line 1

6: Compute u = g−ai0 and h0 = h0u
7: if h0 6= 1 then
8: Let g0 = gN/li , b = 1, T = g0 ⊲ Already computed in line 1
9: while h0 6= T do ⊲ Exhaustive search

10: b = b+ 1, T = Tg0
11: end while
12: ai = ai + blj−1

i

13: end if
14: end for
15: end for
16: Use Chinese remainder theorem to compute a ≡ ai (mod leii) for 1 ≤ i ≤ n
17: return a

Example 13.2.3. Let p = 19, g = 2 and h = 5. The aim is to find an integer a such
that h ≡ ga (mod p). Note that p − 1 = 2 · 32. We first find a modulo 2. We have
(p− 1)/2 = 9 so define g0 = g9 ≡ −1 (mod 19) and h0 = h9 ≡ 1 (mod 19). It follows that
a ≡ 0 (mod 2).

Now we find a modulo 9. Since (p− 1)/9 = 2 we first compute g0 = g2 ≡ 4 (mod 19)
and h0 ≡ h2 ≡ 6 (mod 19). To get information modulo 3 we compute (this is a slight
change of notation from Algorithm 13)

g1 = g30 ≡ 7 (mod 19) and h30 ≡ 7 (mod 19).

272 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

It follows that a ≡ 1 (mod 3). To get information modulo 9 we remove the modulo 3 part
by setting h1 = h0/g0 = 6/4 ≡ 11 (mod 19). We now solve h1 ≡ ga11 (mod 19), which has
the solution a1 ≡ 2 (mod 3). It follows that a ≡ 1 + 3 · 2 ≡ 7 (mod 9).

Finally, by the Chinese remainder theorem we obtain a ≡ 16 (mod 18).

Exercise 13.2.4. Let p = 31, g = 3 and h = 22. Solve the discrete logarithm problem
of h to the base g using the Pohlig-Hellman method.

We recall that an integer is B-smooth if all its prime factors are at most B.

Theorem 13.2.5. Let g ∈ G have order N . Let B ∈ N be such that N is B-smooth Then
Algorithm 13 solves the DLP in G using O(log(N)2 +B log(N)) group operations.2

Proof: One can factor N using trial division in O(BM(log(N))) bit operations, where
M(n) is the cost of multiplying n-bit integers. We assume that M(log(N)) is O(1) group
operations (this is true for all the algebraic groups of interest in this book). Hence, we
may assume that the factorisation of N is known.

Computing all Φleii
(g) and Φleii

(h) can be done naively inO(log(N)2) group operations,

but we prefer to do it in O(log(N) log log(N)) group operations using the method of
Section 2.15.1.

Lines 5 to 13 run
∑n

i=1 ei = O(log(N)) times and, since each li ≥ 2, we have
∑n
i=1 ei ≤

log2(N). The computation of u in line 6 requires O(ei log(li)) group operations. Together
this gives a bound of O(log(N)2) group operations to the running time. (Note that when
N = 2e then the cost of these lines is e2 log(2) = O(log(N)2) group operations.)

Solving each DLP in a cyclic group of order li using naive methods requires O(li)
group operations (this can be improved using the baby-step-giant-step method). There
are ≤ log2(N) such computations to perform, giving O(log(N)B) group operations.

The final step is to use the Chinese remainder theorem to compute a, requiring
O(log(N)M(log(N))) bit operations, which is again assumed to cost at most O(log(N))
group operations. �

Due to this method, small primes give no added security in discrete logarithm systems.
Hence one generally uses elements of prime order r for cryptography.

Exercise 13.2.6. Recall the Tonelli-Shanks algorithm for computing square roots modulo
p from Section 2.9. A key step of the algorithm is to find a solution j to the equation
b = y2j (mod p) where y has order 2e. Write down the Pohlig-Hellman method to solve
this problem. Show that the complexity is O(log(p)2M(log(p))) bit operations.

Exercise 13.2.7. Let B ∈ N>3. Let N =
∏n
i=1 xi where 2 ≤ xi ≤ B. Prove that∑n

i=1 xi ≤ B log(N)/ log(B).
Hence, show that the Pohlig-Hellman method performs O(log(N)2+B log(N)/ log(B))

group operations.

Remark 13.2.8. As we will see, replacing exhaustive search by the baby-step-giant-step
algorithm improves the complexity to O(log(N)2 +

√
B log(N)/ log(B)) group operations

(at the cost of more storage).
Algorithm 13 can be improved, when there is a prime power le dividing N with e large,

by structuring it differently. Section 11.2.3 of Shoup [556] gives a method to compute
the DLP in a group of order le in O(e

√
l+ e log(e) log(l)) group operations (this is using

baby-step-giant-step rather than exhaustive search). Algorithm 1 and Corollary 1 of
Sutherland [598] give an algorithm that requires

O(e
√
l + e log(l) log(e)/ log(log(e))) (13.1)

2By this we mean that the constant implicit in the O(·) is independent of B and N .

13.3. BABY-STEP-GIANT-STEP (BSGS) METHOD 273

group operations. Sutherland also considers non-cyclic groups.
If N is B-smooth then summing the improved complexity statements over the prime

powers dividing N gives

O(log(N)
√
B/ log(B) + log(N) log(log(N))) (13.2)

group operations for the DLP (it is not possible to have a denominator of log(log(log(N)))
since not all the primes dividing N necessarily appear with high multiplicity).

13.3 Baby-Step-Giant-Step (BSGS) Method

This algorithm, usually credited to Shanks3, exploits an idea called the time/memory
tradeoff. Suppose g has prime order r and that h = ga for some 0 ≤ a < r. Let
m = ⌈√r⌉. Then there are integers a0, a1 such that a = a0 +ma1 and 0 ≤ a0, a1 < m. It
follows that

ga0 = h(g−m)a1

and this observation leads to Algorithm 14. The algorithm requires storing a large list of
values and it is important, in the second stage of the algorithm, to be able to efficiently
determine whether or not an element lies in the list. There are a number of standard
solutions to this problem including using binary trees, hash tables, or sorting the list after
line 7 of the algorithm (see, for example, parts II and III of [146] or Section 6.3 of [317]).

Algorithm 14 Baby-step-giant-step (BSGS) algorithm

Input: g, h ∈ G of order r
Output: a such that h = ga, or ⊥
1: m = ⌈√r⌉
2: Initialise an easily searched structure (such as a binary tree or a hash table) L
3: x = 1
4: for i = 0 to m do ⊲ Compute baby steps
5: store (x, i) in L, easily searchable on the first coordinate
6: x = xg
7: end for
8: u = g−m

9: y = h, j = 0
10: while (y, ⋆) 6∈ L do ⊲ Compute giant steps
11: y = yu, j = j + 1
12: end while
13: if ∃(x, i) ∈ L such that x = y then
14: return i+mj
15: else
16: return ⊥
17: end if

Note that the BSGS algorithm is deterministic. The algorithm also solves the decision
problem (is h ∈ 〈g〉?) though, as discussed in Section 11.6, there are usually faster
solutions to the decision problem.

Theorem 13.3.1. Let G be a group of order r. Suppose that elements of G are represented
using O(log(r)) bits and that the group operations can be performed in O(log(r)2) bit

3Nechaev [452] states it was known to Gel’fond in 1962.

274 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

operations. The BSGS algorithm for the DLP in G has running time O(
√
r log(r)2) bit

operations. The algorithm requires O(
√
r log(r)) bits of storage.

Proof: The algorithm computes
√
r group operations for the baby steps. The cost of

inserting each group element into the easily searched structure isO(log(r)2) bit operations,
since comparisons require O(log(r)) bit operations (this is where the assumption on the
size of element representations appears). The structure requires O(

√
r log(r)) bits of

storage.
The computation of u = g−m in line 8 requires O(log(r)) group operations.
The algorithm needs one group operation to compute each giant step. Searching the

structure takes O(log(r)2) bit operations. In the worst case one has to compute m giant
steps. The total running time is therefore O(

√
r log(r)2) bit operations. �

The storage requirement of the BSGS algorithm quickly becomes prohibitive. For ex-
ample, one can work with primes r such that

√
r is more than the number of fundamental

particles in the universe!

Remark 13.3.2. When solving the DLP it is natural to implement the group operations
as efficiently as possible. For example, when using elliptic curves it would be tempting
to use a projective representation for group elements (see Exercise 13.1.2). However this
is not suitable for the BSGS method (or the rho and kangaroo methods) as one cannot
efficiently detect a match y ∈ L when there is a non-unique representation for the group
element y.

Exercise 13.3.3. On average, the baby-step-giant-step algorithm finds a match after half
the giant steps have been performed. The average-case running time of the algorithm as
presented is therefore approximately 1.5

√
r group operations. Show how to obtain an

algorithm that requires, in the average case, approximately
√

2r group operations and√
r/2 group elements of storage.

Exercise 13.3.4. (Pollard [488]) A variant of the baby-step-giant-step algorithm is to
compute the baby steps and giant steps in parallel, storing the points together in a single
structure. Show that if x and y are chosen uniformly in the interval [0, r] ∩ Z then
the expected value of max{x, y} is approximately 2

3r. Hence, show that the average-
case running time of this variant of the baby-step-giant-step algorithm is 4

3

√
r group

operations.

Chateauneuf, Ling and Stinson [129] have studied a combinatorial abstraction that
would lead to an optimal baby-step-giant-step algorithm. However their model minimises
the total number of exponentiations in the group, rather than the total number of group
operations, and so is not faster in practice than the methods in this section.

Exercise 13.3.5. Design a variant of the BSGS method that requires O(r/M) group
operations if the available storage is only for M <

√
r group elements.

Exercise 13.3.6. (DLP in an interval) Suppose one is given g of order r in a group G
and integers 0 ≤ b, w < r. The DLP in an interval of length w is: Given h ∈ 〈g〉 such
that h = ga for some b ≤ a < b + w, to find a. Give a baby-step-giant-step algorithm to
find a in average-case

√
2w group operations and

√
w/2 group elements of storage.

Exercise 13.3.7. Suppose one considers the DLP in a group G where computing the
inverse g−1 is much faster than multiplication in the group. Show how to solve the DLP
in an interval of length w using a baby-step-giant-step algorithm in approximately

√
w

group operations in the average case.

13.4. LOWER BOUNDS ON THE DLP 275

Exercise 13.3.8. Suppose one is given g, h ∈ G and w, b,m ∈ N such that h = ga for
some integer a satisfying 0 ≤ a < w and a ≡ b (mod m). Show how to reduce this
problem to the problem of solving a DLP in an interval of length ⌈w/m⌉.
Exercise 13.3.9. Let g ∈ G have order N = mr where r is prime and m is log(N)-
smooth. Suppose h = gx and w are given such that 0 ≤ x < w. Show how one
can compute x by combining the Pohlig-Hellman method and the BSGS algorithm in
O(log(N)2 +

√
w/m) group operations.

Exercise 13.3.10. Suppose one is given g, h ∈ G and b1, b2, w ∈ Z (w > 0) such that
b1 + w < b2 and h = ga for some integer a satisfying either b1 ≤ a < b1 + w or b2 ≤ a <
b2 + w. Give an efficient BSGS algorithm for this problem.

Exercise 13.3.11. Let g ∈ G where the order of g and G are not known. Suppose one
is given integers b, w such that the order of g lies in the interval [b, b + w). Explain how
to use the BSGS method to compute the order of g.

Exercise 13.3.12.⋆ Suppose one is given an element g of order r and h1, . . . , hn ∈ 〈g〉.
Show that one can solve the DLP of all n elements hi to the base g in approximately
2
√
nr group operations (optimised for the worst case) or approximately

√
2nr (optimised

for the average case).

Exercise 13.3.13.⋆ Suppose one is given g ∈ G of order r, an integer w, and an instance
generator for the discrete logarithm problem that outputs h = ga ∈ G such that 0 ≤ a < w
according to some known distribution on {0, 1, . . . , w−1}. Assume that the distribution is
symmetric with mean value w/2. Determine the optimal baby-step-giant-step algorithm
to solve such a problem.

Exercise 13.3.14.⋆ Suppose one is given g, h ∈ G and n ∈ N such that h = ga

where a has a representation as a non-adjacent form NAF (see Section 11.1.1) of length
n < log2(r). Give an efficient BSGS algorithm to find a. What is the running time?

13.4 Lower Bound on Complexity of Generic Algo-

rithms for the DLP

This section presents a lower bound for the complexity of the discrete logarithm problem
in groups of prime order for algorithms that do not exploit the representation of the
group; such algorithms are called generic algorithms. The main challenge is to formally
model such algorithms. Babai and Szemerédi [19] defined a black box group to be a
group with elements represented (not necessarily uniquely) as binary strings and where
multiplication, inversion and testing whether an element is the identity are all performed
using oracles. Nechaev [452] used a different model (for which equality testing does not
require an oracle query) and obtained Ω(

√
r) time and space complexity.

Nechaev’s paper concerns deterministic algorithms, and so his result does not cover
the Pollard algorithms. Shoup [553] gave yet another model for generic algorithms (his
model allows randomised algorithms) and proved Ω(

√
r) time complexity for the DLP

and some related problems. This lower bound is often called the birthday bound on
the DLP.

Shoup’s formulation has proven to be very popular with other authors and so we
present it in detail. We also describe the model of generic algorithms by Maurer [404].
Further results in this area, and extensions of the generic algorithm model (such as work-
ing with groups of composite order, working with groups endowed with pairings, providing

276 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

access to decision oracles etc), have been given by Maurer and Wolf [407], Maurer [404],
Boneh and Boyen [76, 77], Boyen [95], Rupp, Leander, Bangerter, Dent and Sadeghi [507].

13.4.1 Shoup’s Model for Generic Algorithms

Fix a constant t ∈ R>0. When G is the group of points on an elliptic curve of prime order
(and log means log2 as usual) one can take t = 2.

Definition 13.4.1. An encoding of a group G of order r is an injective function σ :
G→ {0, 1}⌈t log(r)⌉.

A generic algorithm for a computational problem in a group G of order r is a
probabilistic algorithm that takes as input r and (σ(g1), . . . , σ(gk)) such that g1, . . . , gk ∈
G and returns a sequence (a1, . . . , al, σ(h1), . . . , σ(hm)) for some a1, . . . , al ∈ Z/rZ and
h1, . . . , hm ∈ G (depending on the computational problem in question). The generic
algorithm is given access to a perfect oracle O such that O(σ(g1), σ(g2)) returns σ(g1g

−1
2).

Note that one can obtain the encoding σ(1) of the identity element by O(σ(g1), σ(g1)).
One can then compute the encoding of g−1 from the encoding of g as O(σ(1), σ(g)).
Defining O′(σ(g1), σ(g2)) = O(σ(g1), O(σ(1), σ(g2))) gives an oracle for multiplication in
G.

Example 13.4.2. A generic algorithm for the DLP in 〈g〉 where g has order r takes
input (r, σ(g), σ(h)) and outputs a such that h = ga. A generic algorithm for CDH (see
Definition 20.2.1) takes input (σ(g), σ(ga), σ(gb)) and outputs σ(gab).

In Definition 13.4.1 we insisted that a generic algorithm take as input the order of
the group, but this is not essential. Indeed, it is necessary to relax this condition if one
wants to consider generic algorithms for, say, (Z/NZ)∗ when N is an integer of unknown
factorisation. To do this one considers an encoding function to {0, 1}l and it follows that
the order r of the group is at most 2l. If the order is not given then one can consider
a generic algorithm whose goal is to compute the order of a group. Theorem 2.3 and
Corollary 2.4 of Sutherland [596] prove an Ω(r1/3) lower bound on the complexity of
a generic algorithm to compute the order r of a group, given a bound M such that√
M < r < M .

13.4.2 Maurer’s Model for Generic Algorithms

Maurer’s formulation of generic algorithms [404] does not use any external representa-
tion of group elements (in particular, there are no randomly chosen encodings). Maurer
considers a black box containing registers, specified by indices i ∈ N, that store group
elements. The model considers a set of operations and a set of relations. An oracle query
O(op, i1, . . . , it+1) causes register it+1 to be assigned the value of the t-ary operation op
on the values in registers i1, . . . , it. Similarly, an oracle query O(R, i1, . . . , it) returns the
value of the t-ary relation R on the values in registers i1, . . . , it.

A generic algorithm in Maurer’s model is an algorithm that takes as input the order
of the group (as with Shoup’s model, the order of the group can be omitted), makes oracle
queries, and outputs the value of some function of the registers (for example, the value
of one of the registers; Maurer calls such an algorithm an “extraction algorithm”).

Example 13.4.3. To define a generic algorithm for the DLP in Maurer’s model one
imagines a black box that contains in the first register the value 1 (corresponding to g)
and in the second register the value a (corresponding to h = ga). Note that the black
box contains is viewed as containing the additive group Z/rZ. The algorithm has access

13.4. LOWER BOUNDS ON THE DLP 277

to an oracle O(+, i, j, k) that assigns register k the sum of the elements in registers i and
j, an oracle O(−, i, j) that assigns register j the inverse of the element in register i, and
an oracle O(=, i, j) that returns ‘true’ if and only if registers i and j contain the same
group element. The goal of the generic algorithm for the DLP is to output the value of
the second register.

To implement the baby-step-giant-step algorithm or Pollard rho algorithm in Maurer’s
model it is necessary to allow a further oracle that computes a well-ordering relation on
the group elements.

We remark that the Shoup and Maurer models have been used to prove the security
of cryptographic protocols against adversaries that behave like generic algorithms. Jager
and Schwenk [308] have shown that both models are equivalent for this purpose.

13.4.3 The Lower Bound

We present the main result of this section using Shoup’s model. A similar result can be
obtained using Maurer’s model (except that it is necessary to either ignore the cost of
equality queries or else allow a total order relation on the registers).

We start with a result attributed by Shoup to Schwarz. In this section we only use
the result when k = 1, but the more general case is used later in the book.

Lemma 13.4.4. Let F (x1, . . . , xk) ∈ Fr[x1, . . . , xk] be a non-zero polynomial of total
degree d. Then for P = (P1, . . . , Pk) chosen uniformly at random in Fkr the probability
that F (P1, . . . , Pk) = 0 is at most d/r.

Proof: If k = 1 then the result is standard. We prove the result by induction on k. Write

F (x1, . . . , xk) = Fe(x1, . . . , xk−1)xek + Fe−1(x1, . . . , xk−1)xe−1
k + · · ·+ F0(x1, . . . , xk−1)

where Fi(x1, . . . , xk−1) ∈ Fr[x1, . . . , xk−1] has total degree ≤ d − i for 0 ≤ i ≤ e and
e ≤ d. If P = (P1, . . . , Pk−1) ∈ Fk−1

r is such that all Fi(P) = 0 then all r choices for
Pk lead to a solution. The probability of this happening is at most (d− e)/r (this is the
probability that Fe(P) = 0). On the other hand, if some Fi(P) 6= 0 then there are at
most e choices for Pk that give a root of the polynomial. The total probability is therefore
≤ (d− e)/r + e/r = d/r. �

Theorem 13.4.5. Let G be a cyclic group of prime order r. Let A be a generic algorithm
for the DLP in G that makes at most m oracle queries. Then the probability, over uni-
formly chosen a ∈ Z/rZ and uniformly chosen encoding function σ : G → {0, 1}⌈t log(r)⌉,
that A(σ(g), σ(ga)) = a is O(m2/r).

Proof: Instead of choosing a random encoding function in advance, the method of proof
is to create the encodings “on the fly”. The algorithm to produce the encodings is called
the simulator. We also do not choose the instance of the DLP until the end of the game.
The simulation will be perfect unless a certain bad event happens, and we will analyse
the probability of this event.

Let S = {0, 1}⌈t log(r)⌉. The simulator begins by uniformly choosing two distinct σ1, σ2
in S and running A(σ1, σ2). Algorithm A assumes that σ1 = σ(g) and σ2 = σ(h) for some
g, h ∈ G and some encoding function σ, but it is not necessary for the simulator to fix
values for g and h.

It is necessary to ensure that the encodings are consistent with the group operations.
This cannot be done perfectly without choosing g and h, but the following idea takes
care of “trivial” consistency. The simulator maintains a list of pairs (σi, Fi) where σi ∈ S

278 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

and Fi ∈ Fr[x]. The initial values are (σ1, 1) and (σ2, x). Whenever A makes an oracle
query on (σi, σj) the simulator computes F = Fi − Fj . If F appears as Fk in the list of
pairs then the simulator replies with σk and does not change the list. Otherwise, a σ ∈ S
distinct from the previously used values is chosen uniformly at random, (σ, F) is added
to the simulator’s list, and σ is returned to A.

After making at most m oracle queries A outputs b ∈ Z/rZ. The simulator now
chooses a uniformly at random in Z/rZ. Algorithm A wins if b = a.

Let the simulator’s list contain precisely k polynomials {F1(x), . . . , Fk(x)} for some
k ≤ m + 2. Let E be the event that Fi(a) = Fj(a) for some pair 1 ≤ i < j ≤ k. The
probability that A wins is

Pr(A wins |E) Pr(E) + Pr(A wins |¬E) Pr(¬E). (13.3)

For each pair 1 ≤ i < j ≤ k the probability that (Fi−Fj)(a) = 0 is 1/r by Lemma 13.4.4.
Hence, the probability of event E is at most k(k− 1)/2r = O(m2/r). On the other hand,
if event E does not occur then all A ‘knows’ about a is that it lies in the set X of possible
values for a for which Fi(a) 6= Fj(a) for all 1 ≤ i < j ≤ k. Let N = #X ≈ r−m2/2 Then
Pr(¬E) = N/r and Pr(A wins |¬E) = 1/N .

Putting it all together, the probability that A wins is O(m2/r). �

Exercise 13.4.6. Prove Theorem 13.4.5 using Maurer’s model for generic algorithms.
[Hint: The basic method of proof is exactly the same. The difference is in formulation
and analysis of the success probability.]

Corollary 13.4.7. Let A be a generic algorithm for the DLP. If A succeeds with noticeable
probability 1/ log(r)c for some c > 0 then A must make Ω(

√
r/ log(r)c) oracle queries.

13.5 Generalised Discrete Logarithm Problems

A number of generalisations of the discrete logarithm problem have been proposed over
the years. The motivation for such problems varies: sometimes the aim is to enable new
cryptographic functionalities; other times the aim is to generate hard instances of the
DLP more quickly than previous methods.

Definition 13.5.1. LetG be a finitely generated Abelian group. The multidimensional
discrete logarithm problem or representation problem4 is: given g1, g2, . . . , gl, h ∈
G and S1,S2, . . . ,Sl ⊆ Z to find aj ∈ Sj for 1 ≤ j ≤ l, if they exist, such that

h = ga11 ga22 · · · gall .
The product discrete logarithm problem5 is: given g, h ∈ G and S1,S2, . . . ,Sl ⊆

Z to find aj ∈ Sj for 1 ≤ j ≤ l, if they exist, such that

h = ga1a2···al .

Remark 13.5.2. A natural variant of the product DLP is to compute only the product
a1a2 · · · al rather than the l-tuple (a1, . . . , al). This is just the DLP with respect to a
specific instance generator (see the discussion in Section 2.1.2). Precisely, consider an
instance generator that, on input a security parameter κ, outputs a group element g of
prime order r and then chooses aj ∈ Sj for 1 ≤ j ≤ l and computes h = ga1a2···al . The
stated variant of the product DLP is the DLP with respect to this instance generator.

4This computational problem seems to be first explicitly stated in the work of Brands [97] from 1993,
in the case Si = Z.

5The idea of using product exponents for improved efficiency appears in Knuth [343] where it is called
the “factor method”.

13.6. LOW HAMMING WEIGHT DLP 279

Note that the representation problem can be defined whether or not G = 〈g1, . . . , gl〉
is cyclic. The solution to Exercise 13.5.4 applies in all cases. However, there may be
other ways to tackle the non-cyclic case (e.g., exploiting efficiently computable group
homomorphisms, see [231] for example), so the main interest is the case when G is cyclic
of prime order r.

Example 13.5.3. The representation problem can arise when using the GLV method
(see Section 11.3.3) with intentionally small coefficients. In this case, g2 = ψ(g1), 〈g1, g2〉
is a cyclic group of order r, and h = ga11 ga22 where 0 ≤ a1, a2 < w ≤ √r).

The number of possible choices for h in both the representation problem and product
DLP is at most

∏l
j=1 #Sj (it could be smaller if the same h can arise from many different

combinations of (a1, . . . , al)). If l is even and #Sj = #S1 for all j then there is an easy

time/memory tradeoff algorithm requiring O(#Sl/21) group operations.

Exercise 13.5.4. Write down an efficient BSGS algorithm to solve the representation
problem. What is the running time and storage requirement?

Exercise 13.5.5. Give an efficient BSGS algorithm to solve the product DLP. What is
the running time and storage requirement?

It is natural to ask whether one can do better than the naive baby-step-giant-step
algorithms for these problems, at least for certain values of l. The following result shows
that the answer in general turns out to be “no”.

Lemma 13.5.6. Assume l is even and #Sj = #S1 for all 2 ≤ j ≤ l. A generic
algorithm for the representation problem with noticeable success probability 1/ log(#S1)c

needs Ω(#Sl/21 / log(#S1)c/2) group operations.

Proof: Suppose A is a generic algorithm for the representation problem. Let G be a
group of order r and let g, h ∈ G. Set m = ⌈r1/l⌉, Sj = {a ∈ Z : 0 ≤ a < m} and

let gj = gm
j

for 0 ≤ j ≤ l − 1. If h = ga for some a ∈ Z then the base m-expansion
a0 + a1m+ · · ·+ al−1m

l−1 is such that

h = ga =
l−1∏

j=0

g
aj
j .

Hence, if A solves the representation problem then we have solved the DLP using a
generic algorithm. Since we have shown that a generic algorithm for the DLP with
success probability 1/ log(#S1)c needs Ω(

√
r/ log(#S1)c) group operations, the result is

proved. �

13.6 Low Hamming Weight DLP

Recall that the Hamming weight of an integer is the number of ones in its binary
expansion.

Definition 13.6.1. Let G be a group and let g ∈ G have prime order r. The low
Hamming weight DLP is: Given h ∈ 〈g〉 and integers n,w to find a integer a (if
it exists) whose binary expansion has length ≤ n and Hamming weight ≤ w such that
h = ga.

280 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

This definition makes sense even for n > log2(r). For example, squaring is faster than
multiplication in most representations of algebraic groups, so it could be more efficient to
compute ga by taking longer strings with fewer ones in their binary expansion.

Coppersmith developed a time/memory tradeoff algorithm to solve this problem. A
thorough treatment of these ideas was given by Stinson in [591]. Without loss of generality
we assume that n and w are even (just add one to them if not).

The idea of the algorithm is to reduce solving h = ga where a has length n and
Hamming weight w to solving hg−a2 = ga1 where a1 and a2 have Hamming weight w/2.
One does this by choosing a set B ⊂ I = {0, 1, . . . , n−1} of size n/2. The set B is the set
of possible bit positions for the bits of a1 and (I −B) is the possible bit positions for the
bits of a2. The detailed algorithm is given in Algorithm 15. Note that one can compactly
represent subsets Y ⊆ I as n-bit strings.

Algorithm 15 Coppersmith’s baby-step-giant-step algorithm for the low Hamming
weight DLP

Input: g, h ∈ G of order r, n and w
Output: a of bit-length n and Hamming weight w such that h = ga, or ⊥
1: Choose B ⊂ {0, . . . , n− 1} such that #B = n/2
2: Initialise an easily searched structure (such as a binary tree, a heap, or a hash table)

L
3: for Y ⊆ B : #Y = w/2 do
4: Compute b =

∑
j∈Y 2j and x = gb

5: store (x, Y) in L ordered according to first coordinate
6: end for
7: for Y ⊆ (I −B) : #Y = w/2 do
8: Compute b =

∑
j∈Y 2j and y = hg−b

9: if y = x for some (x, Y1) ∈ L then
10: a =

∑
j∈Y ∪Y1

2j

11: return a
12: end if
13: end for
14: return ⊥

Exercise 13.6.2. Write down an algorithm, to enumerate all Y ⊂ B such that #Y =
w/2, which requires O(

(n/2
w/2

)
n) bit operations.

Lemma 13.6.3. The running time of Algorithm 15 is O(
(n/2
w/2

)
) group operations and the

algorithm requires O(
(n/2
w/2

)
) group elements of storage.

Exercise 13.6.4. Prove Lemma 13.6.3.

Algorithm 15 is not guaranteed to succeed, since the set B might not exactly corre-
spond to a splitting of the bit positions of the integer a into two sets of Hamming weight
≤ w/2. We now give a collection of subsets of I that is guaranteed to contain a suitable
B.

Definition 13.6.5. Fix even integers n and w. Let I = {0, . . . , n − 1}. A splitting
system is a set B of subsets of I of size n/2 such that for every Y ⊂ I such that #Y = w
there is a set B ∈ B such that #(B ∩ Y) = w/2.

Lemma 13.6.6. For any even integers n and w there exists a splitting system B of size
n/2.

13.7. LOW HAMMING WEIGHT PRODUCT EXPONENTS 281

Proof: For 0 ≤ i ≤ n− 1 define

Bi = {i+ j (mod n) : 0 ≤ j ≤ n/2− 1}

and let B = {Bi : 0 ≤ i ≤ n/2− 1}.
To show B is a splitting system, fix any Y ⊂ I of size w. Define ν(i) = #(Y ∩

Bi) − #(Y ∩ (I − Bi)) ∈ Z for 0 ≤ i ≤ n/2 − 1. One can check that ν(i) is even, that
ν(n/2) = −ν(0) and that ν(i + 1)− ν(i) ∈ {−2, 0, 2}. Hence, either ν(0) = 0, or else the
values ν(i) change sign at least once as i goes from 0 to n/2. It follows that there exists
some 0 ≤ i ≤ n/2 such that ν(i) = 0, in which case #(Y ∩Bi) = w/2. �

One can run Algorithm 15 for all n/2 sets B in the splitting system B of Lemma 13.6.6.

This gives a deterministic algorithm with running time O(n
(n/2
w/2

)
) group operations.

Stinson proposes different splitting systems giving a deterministic algorithm requiring
O(w3/2

(n/2
w/2

)
) group operations. A more efficient randomised algorithm (originally pro-

posed by Coppersmith) is to randomly choose sets B from the
(
n
n/2

)
possible subsets of

{0, . . . , n− 1} of size n/2. Theorem 13.6.9 determines the expected running time in this
case.

Lemma 13.6.7. Fix a set Y ⊂ {0, . . . , n− 1} such that #Y = w. The probability that a
randomly chosen B ⊆ {0, . . . , n− 1} having #B = n/2 satisfies #(Y ∩B) = w/2 is

pY,B =

(
w

w/2

)(
(n− w)

(n− w)/2

)
/

(
n

n/2

)
.

Exercise 13.6.8. Prove Lemma 13.6.7.

Theorem 13.6.9. The expected running time for the low Hamming weight DLP when
running Algorithm 15 on randomly chosen sets B is O(

√
w
(n/2
w/2

)
) exponentiations. The

storage is O(
(n/2
w/2

)
) group elements.

Proof: We expect to repeat the algorithm 1/pY,B times. One can show, using the fact

2k/
√

2k ≤
(
k
k/2

)
≤ 2k

√
2/πk, that 1/pY,B ≤ c

√
w for some constant (see Stinson [591]).

The result follows. �

Exercise 13.6.10. As with all baby-step-giant-step methods, the bottleneck for this
method is the storage requirement. Show how to modify the algorithm for the case where
only M group elements of storage are available.

Exercise 13.6.11. Adapt Coppersmith’s algorithm to the DLP for low weight signed
expansions (for example, NAFs, see Section 11.1.1).

All the algorithms in this section have large storage requirements. An approach due
to van Oorschot and Wiener for solving such problems using less storage is presented in
Section 14.8.1.

13.7 Low Hamming Weight Product Exponents

Let G be an algebraic group (or algebraic group quotient) over Fp (p small) and let
g ∈ G(Fpn) with n > 1. Let πp be the p-power Frobenius on G, acting on G as g 7→ gp.
Hoffstein and Silverman [290] proposed computing random powers of g efficiently by
taking products of low Hamming weight Frobenius expansions.

282 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

In particular, for Koblitz elliptic curves (i.e., p = 2) they suggested using three sets
and taking Sj for 1 ≤ j ≤ 3 to be the set of Frobenius expansions of length n and weight
7. The baby-step-giant-step algorithm in Section 13.5 applies to this problem, but the
running time is not necessarily optimal since #S1#S2 6= #S3. Kim and Cheon [338]
generalised the results of Section 13.6 to allow a more balanced time/memory tradeoff.
This gives a small improvement to the running time.

Cheon and Kim [134] give a further improvement to the attack, which is similar to
the use of equivalence classes in Pollard rho (see Section 14.4). They noted that the sets
Sj in the Hoffstein-Silverman proposal have the property that for every a ∈ Sj there is

some a′ ∈ Sj such that ga
′

= πp(g
a). In other words, πp permutes Sj and each element

a ∈ Sj lies in an orbit of size n under this permutation. Cheon and Kim define a unique
representative of each orbit of πp in Sj and show how to speed up the BSGS algorithm
in this case by a factor of n.

Exercise 13.7.1.⋆ Give the details of the Cheon-Kim algorithm. How many group
operations does the algorithm perform when n = 163 and three sets with w = 7 are used?

13.8 Wagner’s Generalised Birthday Algorithm

This section presents an algorithm due to Wagner [625] (though a special case was discov-
ered earlier by Camion and Patarin), which has a similar form to the baby-step-giant-step
algorithm. This algorithm is not useful for solving the DLP in groups of relevance to
public key cryptography, but it is an example of how a non-generic algorithm can beat
the birthday bound. Further examples of non-generic algorithms that beat the birthday
bound are given in Chapter 15. For reasons of space we do not present all the details.

Definition 13.8.1. Suppose one is given large sets Lj of n-bit strings, for 1 ≤ j ≤ l.
The l-sum problem is to find xj ∈ Lj for 1 ≤ j ≤ l such that

x1 ⊕ x2 ⊕ · · · ⊕ xl = 0, (13.4)

where 0 denotes the n-bit all zero string.

The l-sum problem is easy if 0 ∈ Li for all 0 ≤ i ≤ l. Another relatively easy case is if l
is even and L2i−1∩L2i 6= ∅ for all 1 ≤ i ≤ l/2. Hence, the l-sum problem is of most interest
when the sets Li are chosen independently and at random. By the coupon collector
theorem (Example A.14.3) one expects a solution to exist when #L1 · · ·#Ll > 2n log(n)
if the Lj are sufficiently random.

Exercise 13.8.2. Give a baby-step-giant-step algorithm to solve this problem when l = 2.

Exercise 13.8.3. Give an example of sets L1, L2 of n-bit strings such that #L1,#L2 >
2⌈n/2⌉ but there is no solution to the 2-sum problem.

We now sketch the method in the case l = 4. Let m = ⌈n/3⌉. It will be necessary
to assume that #Lj#Lj+1 ≥ 22m (e.g., #Lj ≥ 2m) for each j = 1, 3, so this method is
not expected to work if #Lj ≈ 2n/4 for all 1 ≤ j ≤ 4. Define LSBm(x) = the m-least
significant bits of the bit-string x.

The first step is to form the sets

Lj,j+1 = {(xj , xj+1) ∈ Lj × Lj+1 : LSBm(xj ⊕ xj+1) = 0}

for j = 1, 3. These sets can be formed efficiently. For example, to build L1,2: sort the
list L1 (at least, sort with respect to the m least significant bits of each string), then for

13.8. WAGNER’S GENERALISED BIRTHDAY ALGORITHM 283

each x2 ∈ L2 test whether there exists x1 ∈ L2 such that LSBm(x1) = LSBm(x2). If the
sets Li are sufficiently random then it is reasonable to suppose that the size of Lj,j+1 is
#Lj#Lj+1/2

m ≥ 2m. To each pair (xj , xj+1) ∈ Lj,j+1 we can associate the (n−m)-bit
string obtained by removing the m least significant bits of xj ⊕ xj+1.

The second step is to find (x1, x2) ∈ L1,2 and (x3, x4) ∈ L3,4 such that x1 ⊕ x2 ⊕
x3 ⊕ x4 = 0. This is done by sorting the (n −m)-bit truncated x1 ⊕ x2 corresponding
to (x1, x2) ∈ L1,2 and then, for each (x3, x4) ∈ L3,4 testing whether the (n − m)-bit
truncated x3 ⊕ x4 is in the list. Since #L1,2,#L3,4 ≥ 2m and n −m ≈ 2m then, if the
sets Lj,j+1 are sufficiently random, there is a good chance that a solution will exist.

The above arguments lead to the following heuristic result.

Heuristic 13.8.4. Let n ∈ N and m = ⌈n/3⌉. Suppose the sets Li ⊂ {0, 1}n for 1 ≤ i ≤ 4
are randomly chosen and that #Lj#Lj+1 ≥ 22m for j = 1, 3. Then Wagner’s algorithm
should find a solution (x1, . . . , x4) to equation (13.4) in the case l = 4. The running time
is Õ(2m) = Õ(2n/3) bit operations and the algorithm requires Õ(2m) = Õ(2n/3) bits of
storage.

The algorithm has “cube root” complexity, which beats the usual square-root com-
plexity bound for such problems. The reason is that we are working in the group (Fn2 ,+)
and the algorithm is not a generic algorithm: it exploits the fact that the group operation
and group representation satisfy the property LSBm(x) = LSBm(y)⇔ LSBm(x⊕ y) = 0.

The algorithm is not expected to succeed in the case when #Lj ≈ 2n/4 since it is
finding a solution to equation (13.4) of a very special form (namely, that LSBm(x1⊕x2) =
LSBm(x3 ⊕ x4) = 0).

Exercise 13.8.5. Generalise this algorithm to the case l = 2k. Show that the algorithm
is heuristically expected to require time and space Õ(l2n/(1+k)). What is the minimum
size for the Lj (assuming they are all of equal size)?

Exercise 13.8.6. Wagner’s algorithm is deterministic, but it is not guaranteed to succeed
on a given input. How can one “randomise” Wagner’s algorithm so that any instance (with
large enough lists) can be solved efficiently with high probability?

The 4-sum problem can be put into a more general framework: Let S,S ′ and S ′′ be
sets such that #S ′ = N , fix an element 0 ∈ S ′′, let f1, f2 : S×S → S ′ and f : S ′×S ′ → S ′′
be functions. Let L1, L2, L3, L4 ⊂ S be randomly chosen subsets of size #Li ≈ N1/3 and
suppose one wants to find xj ∈ Lj for 1 ≤ j ≤ 4 such that

f(f1(x1, x2), f2(x3, x4)) = 0.

Wagner’s algorithm can be applied to solve this problem if there is a distinguished set
D ⊂ S ′ such that the following five conditions hold:

1. #D ≈ N2/3.

2. Pr(f(y1, y2) = 0 : y1, y2 ← D) ≈ N−2/3.

3. Pr(f1(x1, x2) ∈ D : x1 ← L1, x2 ← L2) ≈ Pr(f2(x3, x4) ∈ D : x3 ← L3, x4 ← L4) ≈
N−1/3.

4. For j = 1, 2 one can determine, in Õ(N1/3) bit operations, lists

LJ,J+1 = {(xJ , xJ+1) ∈ LJ × LJ+1 : fj(xJ , xJ+1) ∈ D}

where J = 2j − 1.

284 CHAPTER 13. BASIC DISCRETE LOGARITHM ALGORITHMS

5. Given L1,2 and L3,4 as above one can determine, in Õ(N1/3) bit operations,

{((x1, x2), (x3, x4)) ∈ L1,2 × L3,4 : f(f1(x1, x2), f2(x3, x4)) = 0}.

Exercise 13.8.7. Show that the original Wagner algorithm for S = S ′ = S ′′ = {0, 1}n
fits this formulation. What is the set D?

Exercise 13.8.8. Describe Wagner’s algorithm in the more general formulation.

Exercise 13.8.9. Let S = S ′ = S ′′ be the additive group (Z/NZ,+) of integers modulo
N . Let L1, L2, L3, L4 ⊂ Z/NZ be such that #Li ≈ N1/3. Let f1(x1, x2) = f2(x1, x2) =
f(x1, x2) = x1 + x2 (mod N). Let D = {y ∈ Z : −N2/3/2 ≤ y ≤ N2/3/2}. Show that the
above 5 properties hold in this setting. Can you think of any better method to solve the
problem in this setting?

Exercise 13.8.10. Let S ⊆ Z and S ′ = S ′′ = Fp. Let (g1, g2, g3, g4, h) be an instance of
the representation problem in F∗

p. Consider the functions

f1(x1, x2) = gx1
1 gx2

2 (mod p), f2(x3, x4) = hg−x3
3 g−x4

4 (mod p)

and f(y1, y2) = y1− y2 (mod p). Finding a solution to f(f1(x1, x2), f2(x3, x4)) = 0 solves
the representation problem.

Let m = log2(p)/3 and define LSBm(y) for y ∈ Fp by representing y as an integer
in the range 0 ≤ y < p and outputting the m least significant bits. Let D = {y ∈ F∗

p :
LSBm(y) = 0}. Explain that the property 4 of the above list does not seem to hold for
this example.

Chapter 14

Factoring and Discrete
Logarithms using
Pseudorandom Walks

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

This chapter is devoted to the rho and kangaroo methods for factoring and discrete
logarithms (which were invented by Pollard) and some related algorithms. These meth-
ods use pseudorandom walks and require low storage (typically a polynomial amount of
storage, rather than exponential as in the time/memory tradeoff). Although the rho fac-
toring algorithm was developed earlier than the algorithms for discrete logarithms, the
latter are much more important in practice.1 Hence we focus mainly on the algorithms
for the discrete logarithm problem.

As in the previous chapter, we assume G is an algebraic group over a finite field Fq
written in multiplicative notation. To solve the DLP in an algebraic group quotient using
the methods in this chapter one would first lift the DLP to the covering group (though
see Section 14.4 for a method to speed up the computation of the DLP in an algebraic
group by essentially working in a quotient).

14.1 Birthday Paradox

The algorithms in this chapter rely on results in probability theory. The first tool we need
is the so-called “birthday paradox”. This name comes from the following application,

1Pollard’s paper [487] contains the remark “We are not aware of any particular need for such index
calculations” (i.e., computing discrete logarithms) even though [487] cites the paper of Diffie and Hellman.
Pollard worked on the topic before hearing of the cryptographic applications. Hence Pollard’s work is
an excellent example of research pursued for its intrinsic interest, rather than motivated by practical
applications.

285

286 CHAPTER 14. PSEUDORANDOM WALKS

which surprises most people: among a set of 23 or more randomly chosen people, the
probability that two of them share a birthday is greater than 0.5 (see Example 14.1.4).

Theorem 14.1.1. Let S be a set of N elements. If elements are sampled uniformly at
random from S then the expected number of samples to be taken before some element is
sampled twice is less than

√
πN/2 + 2 ≈ 1.253

√
N .

The element that is sampled twice is variously known as a repeat, match or collision.
For the rest of the chapter, we will ignore the +2 and say that the expected number of
samples is

√
πN/2.

Proof: Let X be the random variable giving the number of elements selected from S
(uniformly at random) before some element is selected twice. After l distinct elements
have been selected then the probability that the next element selected is also distinct
from the previous ones is (1 − l/N). Hence the probability Pr(X > l) is given by

pN,l = 1(1− 1/N)(1− 2/N) · · · (1− (l − 1)/N).

Note that pN,l = 0 when l ≥ N . We now use the standard fact that 1 − x ≤ e−x for
x ≥ 0. Hence,

pN,l ≤ 1 e−1/Ne−2/N · · · e−(l−1)/N = e−
∑l−1
j=0 j/N

= e−
1
2 (l−1)l/N

≤ e−(l−1)2/2N .

By definition, the expected value of X is

∞∑

l=1

lPr(X = l) =

∞∑

l=1

l(Pr(X > l − 1)− Pr(X > l))

=

∞∑

l=0

(l + 1− l) Pr(X > l)

=

∞∑

l=0

Pr(X > l)

≤ 1 +

∞∑

l=1

e−(l−1)2/2N .

We estimate this sum using the integral

1 +

∫ ∞

0

e−x
2/2Ndx.

Since e−x
2/2N is monotonically decreasing and takes values in [0, 1] the difference between

the value of the sum and the value of the integral is at most 1. Making the change of
variable u = x/

√
2N gives

√
2N

∫ ∞

0

e−u
2

du.

A standard result in analysis (see Section 11.7 of [340] or Section 4.4 of [636]) is that this
integral is

√
π/2. Hence, the expected value for X is ≤

√
πN/2 + 2. �

The proof only gives an upper bound on the probability of a collision after l trials.
A lower bound of e−l

2/2N−l3/6N2

for N ≥ 1000 and 0 ≤ l ≤ 2N log(N) is given in

14.2. THE POLLARD RHO METHOD 287

Wiener [631]; it is also shown that the expected value of the number of trials is >
√
πN/2−

0.4. A more precise analysis of the birthday paradox is given in Example II.10 of Flajolet
and Sedgewick [205] and Exercise 3.1.12 of Knuth [343]. The expected number of samples
is
√
πN/2 + 2/3 +O(1/

√
N).

We remind the reader of the meaning of expected value. Suppose the experiment of
sampling elements of a set S of size N until a collision is found is repeated t times and
each time we count the number l of elements sampled. Then the average of l over all
trials tends to

√
πN/2 as t goes to infinity.

Exercise 14.1.2. Show that the number of elements that need to be selected from S to
get a collision with probability 1/2 is

√
2 log(2)N ≈ 1.177

√
N .

Exercise 14.1.3. One may be interested in the number of samples required when one
is particularly unlucky. Determine the number of trials so that with probability 0.99 one
has a collision. Repeat the exercise for probability 0.999.

The name “birthday paradox” arises from the following application of the result.

Example 14.1.4. In a room containing 23 or more randomly chosen people, the prob-
ability is greater than 0.5 that two people have the same birthday. This follows from√

2 log(2)365 ≈ 22.49. Note also that
√
π365/2 = 23.944

Finally, we mention that the expected number of samples from a set of size N until
k > 1 collisions are found is approximately

√
2kN . A detailed proof of this fact is given

by Kuhn and Struik as Theorem 1 of [355].

14.2 The Pollard Rho Method

Let g be a group element of prime order r and let G = 〈g〉. The discrete logarithm
problem (DLP) is: Given h ∈ G to find a, if it exists, such that h = ga. In this section
we assume (as is usually the case in applications) that one has already determined that
h ∈ 〈g〉.

The starting point of the rho algorithm is the observation that if one can find ai, bi, aj , bj ∈
Z/rZ such that

gaihbi = gajhbj (14.1)

and bi 6≡ bj (mod r) then one can solve the DLP as

h = g(ai−aj)(bj−bi)
−1 (mod r).

The basic idea is to generate pseudorandom sequences xi = gaihbi of elements in
G by iterating a suitable function f : G → G. In other words, one chooses a starting
value x1 and defines the sequence by xi+1 = f(xi). A sequence x1, x2, . . . is called a
deterministic pseudorandom walk. Since G is finite there is eventually a collision
xi = xj for some 1 ≤ i < j as in equation (14.1). This is presented as a collision between
two elements in the same walk, but it could also be a collision between two elements in
different walks. If the elements in the walks look like uniformly and independently chosen
elements of G then, by the birthday paradox (Theorem 14.1.1), the expected value of j
is
√
πr/2.

It is important that the function f be designed so that one can efficiently compute
ai, bi ∈ Z/rZ such that xi = gaihbi . The next step xi+1 depends only on the current
step xi and not on (ai, bi). The algorithms all exploit the fact that when a collision

288 CHAPTER 14. PSEUDORANDOM WALKS

xi = xj occurs then xi+t = xj+t for all t ∈ N. Pollard’s original proposal used a cycle-
finding method due to Floyd to find a self-collision in the sequence; we present this in
Section 14.2.2. A better approach is to use distinguished points to find collisions; we
present this in Section 14.2.4.

14.2.1 The Pseudorandom Walk

A true random walk in a finite set S chooses elements uniformly at random at each stage.
In contrast we are concerned with walks whose next step is determined by the current
position. Such a walk is given by a function f : S → S. Hence, a truly random walk on a
finite set means a uniformly chosen function from the set of all functions from S to itself.

Pollard simulates a random function from G to itself as follows. The first step is
to decompose G into nS disjoint subsets (usually of roughly equal size) so that G =
S0 ∪S1 ∪ · · · ∪SnS−1. Traditional textbook presentations use nS = 3 but, as explained in
Section 14.2.5, it is better to take larger values for nS ; typical values in practice are 32,
256 or 2048.

The sets Si are defined using a selection function S : G → {0, . . . , nS − 1} by Si =
{g ∈ G : S(g) = i}. For example, in any computer implementation of G one represents
an element g ∈ G as a unique2 binary string b(g) and interpreting b(g) as an integer one
could define S(g) = b(g) (mod nS) (taking nS to be a power of 2 makes this computation
especially easy). To obtain different choices for S one could apply an F2-linear map L to
the sequence of bits b(g), so that S(g) = L(b(g)) (mod nS). These simple methods can
be a poor choice in practice, as they are not “sufficiently random”. Some other ways to
determine the partition are suggested in Section 2.3 of Teske [605] and Bai and Brent [24].
The strongest choice is to apply a hash function or randomness extractor to b(g), though
this may lead to an undesirable computational overhead.

Definition 14.2.1. The rho walks are defined as follows. Precompute gj = gujhvj for
0 ≤ j ≤ nS − 1 where 0 ≤ uj, vj < r are chosen uniformly at random. Set x1 = g. The
original rho walk is

xi+1 = f(xi) =

{
x2i if S(xi) = 0
xigj if S(xi) = j, j ∈ {1, . . . , nS − 1} (14.2)

The additive rho walk is
xi+1 = f(xi) = xigS(xi). (14.3)

An important feature of the walks is that each step requires only one group operation.
Once the selection function S and the values uj and vj are chosen, the walk is de-

terministic. Even though these values may be chosen uniformly at random, the function
f itself is not a random function as it has a compact description. Hence, the rho walks
can only be described as pseudorandom. To analyse the algorithm we will consider the
expectation of the running time over different choices for the pseudorandom walk. Many
authors consider the expectation of the running time over all problem instances and ran-
dom choices of the pseudorandom walk; they therefore write “expected running time” for
what we are calling “average-case expected running time”.

It is necessary to keep track of the decomposition

xi = gaihbi .

2One often uses projective coordinates to speed up elliptic curve arithmetic, so it is natural to use
projective coordinates when implementing these algorithms. But to define the pseudorandom walk one
needs a unique representation for points, so projective coordinates are not appropriate. See Remark 13.3.2.

14.2. THE POLLARD RHO METHOD 289

The values ai, bi ∈ Z/rZ are obtained by setting a1 = 1, b1 = 0 and updating (for the
original rho walk)

ai+1 =

{
2ai (mod r) if S(xi) = 0
ai + uS(xi) (mod r) if S(xi) > 0

and bi+1 =

{
2bi (mod r) if S(xi) = 0
bi + vS(xi) (mod r) if S(xi) > 0.

(14.4)
Putting everything together, we write

(xi+1, ai+1, bi+1) = walk(xi, ai, bi)

for the random walk function. But it is important to remember that xi+1 only depends
on xi and not on (xi, ai, bi).

Exercise 14.2.2. Give the analogue of equation (14.4) for the additive walk.

14.2.2 Pollard Rho Using Floyd Cycle Finding

We present the original version of Pollard rho. A single sequence x1, x2, . . . of group
elements is computed. Eventually there is a collision xi = xj with 0 ≤ i < j. One pictures
the walk as having a tail (which is the part x1, . . . , xi of the walk that is not cyclic)
followed by the cycle or head (which is the part xi+1, . . . , xj). Drawn appropriately this
resembles the shape of the greek letter ρ. The tail and cycle (or head) of such a random
walk have expected length

√
πN/8 (see Flajolet and Odlyzko [204] for proofs of these,

and many other, facts).
The goal is to find integers i and j such that xi = xj . It might seem that the only

approach is to store all the xi and, for each new value xj , to check if it appears in the list.
This approach would use more memory and time than the baby-step-giant-step algorithm.
If one were using a truly random walk then one would have to use this approach. The
whole point of using a deterministic walk which eventually becomes cyclic is to enable
better methods to find a collision.

Let lt be the length of the tail of the “rho” and lh be the length of the cycle of the
“rho”. In other words the first collision is

xlt+lh = xlt . (14.5)

Floyd’s cycle finding algorithm3 is to compare xi and x2i. Lemma 14.2.3 shows that
this will find a collision in at most lt + lh steps. The crucial advantage of comparing x2i
and xi is that it only requires storing two group elements. The rho algorithm with Floyd
cycle finding is given in Algorithm 16.

Lemma 14.2.3. Let the notation be as above. Then x2i = xi if and only if lh | i and
i ≥ lt. Further, there is some lt ≤ i < lt + lh such that x2i = xi.

Proof: If xi = xj then we must have lh | (i− j). Hence the first statement of the Lemma
is clear. The second statement follows since there is some multiple of lh between lt and
lt + lh. �

Exercise 14.2.4. Let p = 347, r = 173, g = 3, h = 11 ∈ F∗
p. Let nS = 3. Determine lt

and lh for the values (u1, v1) = (1, 1), (u2, v2) = (13, 17). What is the smallest of i for
which x2i = xi?

Exercise 14.2.5. Repeat Exercise 14.2.4 for g = 11, h = 3 (u1, v1) = (4, 7) and (u2, v2) =
(23, 5).

3Apparently this algorithm first appears in print in Knuth [343], but is credited there to Floyd.

290 CHAPTER 14. PSEUDORANDOM WALKS

Algorithm 16 The rho algorithm

Input: g, h ∈ G
Output: a such that h = ga, or ⊥
1: Choose randomly the function walk as explained above
2: x1 = g, a1 = 1, b1 = 0
3: (x2, a2, b2) = walk(x1, a1, b1)
4: while (x1 6= x2) do
5: (x1, a1, b1) = walk(x1, a1, b1)
6: (x2, a2, b2) = walk(walk(x2, a2, b2))
7: end while
8: if b1 ≡ b2 (mod r) then
9: return ⊥

10: else
11: return (a2 − a1)(b1 − b2)−1 (mod r)
12: end if

The smallest index i such that x2i = xi is called the epact. The expected value of
the epact is conjectured to be approximately 0.823

√
πr/2; see Heuristic 14.2.9.

Example 14.2.6. Let p = 809 and consider g = 89 which has prime order 101 in F∗
p.

Let h = 799 which lies in the subgroup generated by g.
Let nS = 4. To define S(g) write g in the range 1 ≤ g < 809, represent this

integer in its usual binary expansion and then reduce modulo 4. Choose (u1, v1) =
(37, 34), (u2, v2) = (71, 69), (u3, v3) = (76, 18) so that g1 = 343, g2 = 676, g3 = 627. One
computes the table of values (xi, ai, bi) as follows:

i xi ai bi S(xi)
1 89 1 0 1
2 594 38 34 2
3 280 8 2 0
4 736 16 4 0
5 475 32 8 3
6 113 7 26 1
7 736 44 60 0

It follows that lt = 4 and lh = 3 and so the first collision detected by Floyd’s method
is x6 = x12. We leave as an exercise to verify that the discrete logarithm in this case is
50.

Exercise 14.2.7. Let p = 569 and let g = 262 and h = 5 which can be checked to have
order 71 modulo p. Use the rho algorithm to compute the discrete logarithm of h to the
base g modulo p.

Exercise 14.2.8. One can simplify Definition 14.2.1 and equation (14.4) by replacing gj
by either guj or hvj (independently for each j). Show that this saves one modular addition
in each iteration of the algorithm. Explain why this optimisation should not affect the
success of the algorithm, as long as the walk uses all values for S(xi) with roughly equal
probability.

Algorithm 16 always terminates, but there are several things that can go wrong:

• The value (b1 − b2) may not be invertible modulo r.

14.2. THE POLLARD RHO METHOD 291

Hence, we can only expect to prove that the algorithm succeeds with a certain
probability (extremely close to 1).

• The cycle may be very long (as big as r) in which case the algorithm is slower than
brute force search.

Hence, we can only expect to prove an expected running time for the algorithm. We
recall that the expected running time in this case is the average, over all choices for
the function walk, of the worst-case running time of the algorithm over all problem
instances.

Note that the algorithm always halts, but it may fail to output a solution to the DLP.
Hence, this is a Monte Carlo algorithm.

It is an open problem to give a rigorous running time analysis for the rho algorithm.
Instead it is traditional to make the heuristic assumption that the pseudorandom walk
defined above behaves sufficiently close to a random walk. The rest of this section is
devoted to showing that the heuristic running time of the rho algorithm with Floyd cycle
finding is (3.093 + o(1))

√
r group operations (asymptotic as r→∞).

Before stating a precise heuristic we determine an approximation to the expected value
of the epact in the case of a truly random walk.4

Heuristic 14.2.9. Let xi be a sequence of elements of a group G of order r obtained as
above by iterating a random function f : G → G. Then the expected value of the epact
(i.e., the smallest positive integer i such that x2i = xi) is approximately (ζ(2)/2)

√
πr/2 ≈

0.823
√
πr/2, where ζ(2) = π2/6 is the value of the Riemann zeta function at 2.

Argument: Fix a specific sequence xi and let l be the length of the rho, so that xl+1

lies in {x1, x2, . . . , xl}. Since xl+1 can be any one of the xi, the cycle length lh can be
any value 1 ≤ lh ≤ l and each possibility happens with probability 1/l.

The epact is the smallest multiple of lh which is bigger than lt = l − lh. Hence, if
l/2 ≤ lh ≤ l then the epact is lh, if l/3 ≤ lh < l/2 then the epact is 2lh. In general, if
l/(k+ 1) ≤ lh < l/k then the epact is klh. The largest possible value of the epact is l− 1,
which occurs when lh = 1.

The expected value of the epact when the rho has length l is therefore

El =

∞∑

k=1

l∑

lh=1

klhPl(k, lh)

where Pl(k, lh) is the probability that klh is the epact. By the above discussion, P (k, lh) =
1/l if l/(k + 1) ≤ lh < l/k or (k, lh) = (1, l) and zero otherwise. Hence

El = 1
l

l−1∑

k=1

k
∑

l/(k+1)≤lh<l/k
or (k,lh)=(1,l)

lh

Approximating the inner sum as 1
2

(
(l/k)2 − (l/(k + 1))2

)
gives

El ≈ l
2

∞∑

k=1

k
(

1
k2 − 1

(k+1)2

)
.

4I thank John Pollard for showing me this argument.

292 CHAPTER 14. PSEUDORANDOM WALKS

Now, k(1/k2 − 1/(k + 1)2) = 1/k − 1/(k + 1) + 1/(k + 1)2 and

∞∑

k=1

(1/k − 1/(k + 1)) = 1 and

∞∑

k=1

1/(k + 1)2 = ζ(2)− 1.

Hence El ≈ l/2(1 + ζ(2)− 1). It is well-known that ζ(2) ≈ 1.645. Finally, write Pr(e) for
the probability the epact is e, Pr(l) for the probability the rho length is l, and Pr(e | l)
for the conditional probability that the epact is e given that the rho has length l. The
expectation of e is then

E(e) =

∞∑

e=1

ePr(e) =

∞∑

e=1

e

∞∑

l=1

Pr(e | l) Pr(l)

=
∞∑

l=1

Pr(l)

(∞∑

e=1

ePr(e | l)
)

=

∞∑

l=1

Pr(l)El ≈ (ζ(2)/2)E(l)

which completes the argument. �

We can now give a heuristic analysis of the running time of the algorithm. We make
the following assumption, which we believe is reasonable when r is sufficiently large,
nS > log(r) and when the function walk is chosen at random (from the set of all walk
functions specified in Section 14.2.1).

Heuristic 14.2.10.

1. The expected value of the epact is (0.823 + o(1))
√
πr/2.

2. The value
∑lt+lh−1

i=lt
vS(xi) (mod r) is uniformly distributed in Z/rZ.

Theorem. Let the notation be as above and assume Heuristic 14.2.10. Then the rho
algorithm with Floyd cycle finding has expected running time of (3.093 + o(1))

√
r group

operations. The probability the algorithm fails is negligible.

Proof: The number of iterations of the main loop in Algorithm 16 is the epact. By
Heuristic 14.2.10 the expected value of the epact is (0.823 + o(1))

√
πr/2.

Algorithm 16 performs three calls to the function walk in each iteration. Each call to
walk results in one group operation and two additions modulo r (we ignore these additions
as they cost significantly less than a group operation). Hence the expected number of
group operations is 3(0.823 + o(1))

√
πr/2 ≈ (3.093 + o(1))

√
r as claimed.

The algorithm fails only if b2i ≡ bi (mod r). We have galthblt = galt+lhhblt+lh from
which it follows that alt+lh = alt + u, blt+lh = blt + v where guhv = 1. Precisely,

v ≡ blt+lh − blt ≡
∑lt+lh−1

i=lt
vS(xi) (mod r).

Write i = lt + i′ for some 0 ≤ i′ < lh and bi = blt +w. Assume lh ≥ 2 (the probability
that lh = 1 is negligible). Then 2i = lt+xlh+ i′ for some integer 1 ≤ x < (lt+2lh)/lh < r
and so b2i = blt + xv + w. It follows that b2i ≡ bi (mod r) if and only if r | v.

According to Heuristic 14.2.10 the value v is uniformly distributed in Z/rZ and so the
probability it is zero is 1/r, which is a negligible quantity in the input size of the problem.
�

14.2. THE POLLARD RHO METHOD 293

14.2.3 Other Cycle Finding Methods

Floyd cycle finding is not a very efficient way to find cycles. Though any cycle finding
method requires computing at least lt + lh group operations, Floyd’s method needs on
average 2.47(lt + lh) group operations (2.47 is three times the expected value of the
epact). Also, the “slower” sequence xi is visiting group elements which have already
been computed during the walk of the “faster” sequence x2i. Brent [98] has given an
improved cycle finding method5 that still only requires storage for two group elements
but which requires fewer group operations. Montgomery has given an improvement to
Brent’s method in [436].

One can do even better by using more storage, as was shown by Sedgewick, Szymanski
and Yao [535], Schnorr and Lenstra [527] (also see Teske [603]) and Nivasch [467]. The rho
algorithm using Nivasch cycle finding has the optimal expected running time of

√
πr/2 ≈

1.253
√
r group operations and is expected to require polynomial storage.

Finally, a very efficient way to find cycles is to use distinguished points. More impor-
tantly, distinguished points allow us to think about the rho method in a different way
and this leads to a version of the algorithm that can be parallelised. We discuss this in
the next section. Hence, in practice one always uses distinguished points.

14.2.4 Distinguished Points and Pollard Rho

The idea of using distinguished points in search problems apparently goes back to Rivest.
The first application of this idea to computing discrete logarithms is by van Oorschot and
Wiener [473].

Definition 14.2.11. An element g ∈ G is a distinguished point if its binary rep-
resentation b(g) satisfies some easily checked property. Denote by D ⊂ G the set of
distinguished points. The probability #D/#G that a uniformly chosen group element is
a distinguished point is denoted θ.

A typical example is the following.

Example 14.2.12. Let E be an elliptic curve over Fp. A point P ∈ E(Fp) that is not
the point at infinity is represented by an x-coordinate 0 ≤ xP < p and a y-coordinate
0 ≤ yP < p. Let H be a hash function, whose output is interpreted as being in Z≥0.

Fix an integer nD. Define D to be the points P ∈ E(Fp) such that the nD least
significant bits of H(xP) are zero. Note that OE 6∈ D. In other words

D = {P = (xP , yP) ∈ E(Fp) : H(xP) ≡ 0 (mod 2nD) where 0 ≤ xP < p}.

Then θ ≈ 1/2nD .

The rho algorithm with distinguished points is as follows. First, choose integers 0 ≤
a1, b1 < r uniformly and independently at random, compute the group element x1 =
ga1hb1 and run the usual deterministic pseudorandom walk until a distinguished point
xn = ganhbn is found. Store (xn, an, bn) in some easily searched data structure (searchable
on xn). Then choose a fresh randomly chosen group element x1 = ga1hb1 and repeat.
Eventually two walks will visit the same group element, in which case their paths will
continue to the same distinguished point. Once a distinguished group element is found
twice then the DLP can be solved with high probability.

Exercise 14.2.13. Write down pseudocode for this algorithm.

5This was originally developed to speed up the Pollard rho factoring algorithm.

294 CHAPTER 14. PSEUDORANDOM WALKS

We stress the most significant difference between this method and the method of the
previous section: the previous method had one long walk with a tail and a cycle, whereas
the new method has many short walks. Note that this algorithm does not require self-
collisions in the walk and so there is no ρ shape anymore; the word “rho” in the name of
the algorithm is therefore a historical artifact, not an intuition about how the algorithm
works.

Note that, since the group is finite, collisions must eventually occur, and so the algo-
rithm halts. But the algorithm may fail to solve the DLP (with low probability). Hence,
this is a Monte Carlo algorithm.

In the analysis we assume that we are sampling group elements (we sometimes call
them “points”) uniformly and independently at random. It is important to determine the
expected number of steps before landing on a distinguished point.

Lemma 14.2.14. Let θ be the probability that a randomly chosen group element is a
distinguished point. Then

1. The probability that one chooses α/θ group elements, none of which are distin-
guished, is approximately e−α when 1/θ is large.

2. The expected number of group elements to choose before getting a distinguished point
is 1/θ.

3. If one has already chosen i group elements, none of which are distinguished, then the
expected number of group elements to further choose before getting a distinguished
point is 1/θ.

Proof: The probability that i chosen group elements are not distinguished is (1− θ)i. So
the probability of choosing α/θ points, none of which are distinguished, is

(1− θ)α/θ ≤
(
e−θ
)α/θ

= e−α.

The second statement is the standard formula for the expected value of a geometric
random variable, see Example A.14.1.

For the final statement6, suppose one has already sampled i points without finding a
distinguished point. Since the trials are independent, the probability of choosing a further
j points which are not distinguished remains (1−θ)j. Hence the expected number of extra
points to be chosen is still 1/θ. �

We now make the following assumption. We believe this is reasonable when r is
sufficiently large, nS > log(r), distinguished points are sufficiently common and specified
using a good hash function (and hence, D is well distributed), θ > log(r)/

√
r and when

the function walk is chosen at random.

Heuristic 14.2.15.

1. Walks reach a distinguished point in significantly fewer than
√
r steps (in other

words, there are no cycles in the walks and walks are not excessively longer than
1/θ).7

2. The expected number of group elements sampled before a collision is
√
πr/2.

6This is the “apparent paradox” mentioned in footnote 7 of [473].
7More realistically, one could assume that only a negligibly small proportion of the walks fall into a

cycle before hitting a distinguished point.

14.2. THE POLLARD RHO METHOD 295

Theorem 14.2.16. Let the notation be as above and assume Heuristic 14.2.15. Then the
rho algorithm with distinguished points has expected running time of (

√
π/2 + o(1))

√
r ≈

(1.253 + o(1))
√
r group operations. The probability the algorithm fails is negligible.

Proof: Heuristic 14.2.15 states there are no cycles or “wasted” walks (in the sense that
their steps do not contribute to potential collisions). Hence, before the first collision,
after N steps of the algorithm we have visited N group elements. By Heuristic 14.2.15,
the expected number of group elements to be sampled before the first collision is

√
πr/2.

The collision is not detected until walks hit a distinguished point, which adds a further
2/θ to the number of steps. Hence, the total number of steps (calls to the function walk)
in the algorithm is

√
πr/2 + 2/θ. Since 2/θ < 2

√
r/ log(r) = o(1)

√
r, the result follows.

Let x = gaihbi = gajhbj be the collision. Since the starting values ga0hb0 are chosen
uniformly and independently at random, the values bi and bj are uniformly and indepen-
dently random. It follows that bi ≡ bj (mod r) with probability 1/r, which is a negligible
quantity in the input size of the problem. �

Exercise 14.2.17. Show that if θ = log(r)/
√
r then the expected storage of the rho

algorithm, assuming it takes O(
√
r) steps, is O(log(r)) group elements (which is typically

O(log(r)2) bits).

Exercise 14.2.18. The algorithm requires storing a triple (xn, an, bn) for each distin-
guished point. Give some strategies to reduce the number of bits that need to be stored.

Exercise 14.2.19. Let G = 〈g1, g2〉 be a group of order r2 and exponent r. Design a
rho algorithm that, on input h ∈ G outputs (a1, a2) such that h = ga11 ga22 . Determine the
complexity of this algorithm.

Exercise 14.2.20. Show that the Pollard rho algorithm with distinguished points has
better average-case running time than the baby-step-giant-step algorithm (see Exer-
cises 13.3.3 and 13.3.4).

Exercise 14.2.21. Explain why taking D = G (i.e., all group elements distinguished)
leads to an algorithm that is much slower than the baby-step-giant-step algorithm.

Suppose one is given g, h1, . . . , hL (where 1 < L < r1/4) and is asked to find all ai for
1 ≤ i ≤ L such that hi = gai . Kuhn and Struik [355] propose and analyse a method to
solve all L instances of the DLP, using Pollard rho with distinguished points, in roughly√

2rL group operations. A crucial trick, attributed to Silverman and Stapleton, is that
once the i-th DLP is known one can re-write all distinguished points gahbi in the form

ga
′

. As noted by Hitchcock, Montague, Carter and Dawson [287] one must be careful to
choose a random walk function that does not depend on the elements hi (however, the
random starting points do depend on the hi).

Exercise 14.2.22. Write down pseudocode for the Kuhn-Struik algorithm for solving L
instances of the DLP, and explain why the algorithm works.

Section 14.2.5 explains why the rho algorithm with distinguished points can be easily
parallelised. That section also discusses a number of practical issues relating to the use
of distinguished points.

Cheon, Hong and Kim [133] sped up Pollard rho in F∗
p by using a “look ahead”

strategy; essentially they determine in which partition the next value of the walk lies,
without performing a full group operation. A similar idea for elliptic curves has been
used by Bos, Kaihara and Kleinjung [89].

296 CHAPTER 14. PSEUDORANDOM WALKS

14.2.5 Towards a Rigorous Analysis of Pollard Rho

Theorem 14.2.16 is not satisfying since Heuristic 14.2.15 is essentially equivalent to the
statement “the rho algorithm has expected running time (1 + o(1))

√
πr/2 group opera-

tions”. The reason for stating the heuristic is to clarify exactly what properties of the
pseudorandom walk are required. The reason for believing Heuristic 14.2.15 is that exper-
iments with the rho algorithm (see Section 14.4.3) confirm the estimate for the running
time.

Since the algorithm is fundamental to an understanding of elliptic curve cryptography
(and torus/trace methods) it is natural to demand a complete and rigorous treatment
of it. Such an analysis is not yet known, but in this section we mention some partial
results on the problem. The methods used to obtain the results are beyond the scope of
this book, so we do not give full details. Note that all existing results are in an idealised
model where the selection function S is a random function.

We stress that, in practice, the algorithm behaves as the heuristics predict. Further-
more, from a cryptographic point of view, it is sufficient for the task of determining key
sizes to have a lower bound on the running time of the algorithm. Hence, in practice, the
absence of proved running time is not necessarily a serious issue.

The main results for the original rho walk (with nS = 3) are due to Horwitz and
Venkatesan [294], Miller and Venkatesan [426], and Kim, Montenegro, Peres and Tetali [337,
336]. The basic idea is to define the rho graph, which is a directed graph with vertex
set 〈g〉 and an edge from x1 to x2 if x2 is the next step of the walk when at x1. Fix an
integer n. Define the distribution Dn on 〈g〉 obtained by choosing uniformly at random
x1 ∈ 〈g〉, running the walk for n steps, and recording the final point in the walk. The
crucial property to study is the mixing time which, informally, is the smallest integer
n such that Dn is “sufficiently close” to the uniform distribution. For these results, the
squaring operation in the original walk is crucial. We state the main result of Miller and
Venkatesan [426] below.

Theorem 14.2.23. (Theorem 1.1 of [426]) Fix ǫ > 0. Then the rho algorithm using the
original rho walk with nS = 3 finds a collision in Oǫ(

√
r log(r)3) group operations with

probability at least 1− ǫ, where the probability is taken over all partitions of 〈g〉 into three
sets S1, S2 and S3. The notation Oǫ means that the implicit constant in the O depends
on ǫ.

Kim, Montenegro, Peres and Tetali improved this result in [336] to the desired Oǫ(
√
r)

group operations. Note that all these works leave the implied constant in the O unspeci-
fied.

Note that the idealised model of S being a random function is not implementable
with constant (or even polynomial) storage. Hence, these results cannot be applied to the
algorithm presented above, since our selection functions S are very far from uniformly
chosen over all possible partitions of the set 〈g〉. The number of possible partitions of 〈g〉
into three subsets of equal size is (for convenience suppose that 3 | r)

(
r

r/3

)(
2r/3

r/3

)

which, using
(
a
b

)
≥ (a/b)b, is at least 6r/3. On the other hand, a selection function

parameterised by a “key” of c log2(r) bits (e.g., a selection function obtained from a
keyed hash function) only leads to rc different partitions.

Sattler and Schnorr [513] and Teske [604] have considered the additive rho walk. One
key feature of their work is to discuss the effect of the number of partitions nS. Sattler

14.3. DISTRIBUTED POLLARD RHO 297

and Schnorr show (subject to a conjecture) that if nS ≥ 8 then the expected running
time for the rho algorithm is c

√
πr/2 group operations for an explicit constant c. Teske

shows, using results of Hildebrand, that the additive walk should approximate the uniform
distribution after fewer than

√
r steps once nS ≥ 6. She recommends using the additive

walk with nS ≥ 20 and, when this is done, conjectures that the expected cycle length is
≤ 1.3

√
r (compared with the theoretical ≈ 1.2533

√
r).

Further motivation for using large nS is given by Brent and Pollard [99], Arney and
Bender [13] and Blackburn and Murphy [59]. They present heuristic arguments that the
expected cycle length when using nS partitions is

√
cnSπr/2 where cnS = nS/(nS − 1).

This heuristic is supported by the experimental results of Teske [604]. Let G = 〈g〉. Their
analysis considers the directed graph formed from iterating the function walk : G → G
(i.e., the graph with vertex set G and an edge from g to walk(g)). Then, for a randomly
chosen graph of this type, nS/(nS − 1) is the variance of the in-degree for this graph,
which is the same as the expected value of n(x) = #{y ∈ G : y 6= x, walk(y) = walk(x)}.

Finally, when using equivalence classes (see Section 14.4) there are further advantages
in taking nS to be large.

14.3 Distributed Pollard Rho

In this section we explain how the Pollard rho algorithm can be parallelised. Rather than
a parallel computing model we consider a distributed computing model. In this model
there is a server and NP ≥ 1 clients (we also refer to the clients as processors). There
is no shared storage or direct communication between the clients. Instead, the server can
send messages to clients and each client can send messages to the server. In general we
prefer to minimise the amount of communication between server and clients.8

To solve an instance of the discrete logarithm problem the server will activate a number
of clients, providing each with its own individual initial data. The clients will run the rho
pseudorandom walk and occasionally send data back to the server. Eventually the server
will have collected enough information to solve the problem, in which case it sends all
clients a termination instruction. The rho algorithm with distinguished points can very
naturally be used in this setting.

The best one can expect for any distributed computation is a linear speedup compared
with the serial case (since if the overall total work in the distributed case was less than
the serial case then this would lead to a faster algorithm in the serial case). In other
words, with NP clients we hope to achieve a running time proportional to

√
r/NP .

14.3.1 The Algorithm and its Heuristic Analysis

All processors perform the same pseudorandom walk (xi+1, ai+1, bi+1) = walk(xi, ai, bi)
as in Section 14.2.1, but each processor starts from a different random starting point.
Whenever a processor hits a distinguished point then it sends the triple (xi, ai, bi) to the
server and re-starts its walk at a new random point (x0, a0, b0). If one processor ever visits
a point visited by another processor then the walks from that point agree and both walks
end at the same distinguished point. When the server receives two triples (x, a, b) and
(x, a′, b′) for the same group element x but with b 6≡ b′ (mod r) then it has gahb = ga

′

hb
′

and can solve the DLP as in the serial (i.e., non-parallel) case. The server therefore
computes the discrete logarithm problem and sends a terminate signal to all processors.

8There are numerous examples of such distributed computation over the internet. Two notable ex-
amples are the Great Internet Mersenne Primes Search (GIMPS) and the Search for Extraterrestrial
Intelligence (SETI). One observes that the former search has been more successful than the latter.

298 CHAPTER 14. PSEUDORANDOM WALKS

Pseudocode for both server and clients are given by Algorithms 17 and 18. By design, if
the algorithm halts then the answer is correct.

Algorithm 17 The distributed rho algorithm: Server side

Input: g, h ∈ G
Output: c such that h = gc

1: Randomly choose a walk function walk(x, a, b)
2: Initialise an easily searched structure L (sorted list, binary tree etc) to be empty
3: Start all processors with the function walk
4: while DLP not solved do
5: Receive triples (x, a, b) from clients and insert into L
6: if first coordinate of new triple (x, a, b) matches existing triple (x, a′, b′) then
7: if b′ 6≡ b (mod r) then
8: Send terminate signal to all clients
9: return (a− a′)(b′ − b)−1 (mod r)

10: end if
11: end if
12: end while

Algorithm 18 The distributed rho algorithm: Client side

Input: g, h ∈ G, function walk
1: while terminate signal not received do
2: Choose uniformly at random 0 ≤ a, b < r
3: Set x = gahb

4: while x 6∈ D do
5: (x, a, b) = walk(x, a, b)
6: end while
7: Send (x, a, b) to server
8: end while

We now analyse the performance of this algorithm. To get a clean result we assume
that no client ever crashes, that communications between server and client are perfectly
reliable, that all clients have the same computational efficiency and are running continu-
ously (in other words, each processor computes the same number of group operations in
any given time period).

It is appropriate to ignore the computation performed by the server and instead to
focus on the number of group operations performed by each client running Algorithm 18.
Each execution of the function walk(x, a, b) involves a single group operation. We must
also count the number of group operations performed in line 3 of Algorithm 18; though
this term is negligible if walks are long on average (i.e., if D is a sufficiently small subset
of G).

It is an open problem to give a rigorous analysis of the distributed rho method. Hence,
we make the following heuristic assumption. We believe this assumption is reasonable
when r is sufficiently large, nS is sufficiently large, log(r)/

√
r < θ, the set D of dis-

tinguished points is determined by a good hash function, the number NP of clients is
sufficiently small (e.g., NP < θ

√
πr/2/ log(r), see Exercise 14.3.3), the function walk is

chosen at random.

Heuristic 14.3.1.

14.3. DISTRIBUTED POLLARD RHO 299

1. The expected number of group elements to be sampled before the same element is
sampled twice is

√
πr/2.

2. Walks reach a distinguished point in significantly fewer than
√
r/NP steps (in other

words, there are no cycles in the walks and walks are not excessively long). More
realistically, one could assume that only a negligible proportion of the walks fall
into a cycle before hitting a distinguished point.

Theorem 14.3.2. Let the notation be as above, in particular, let NP be the (fixed, in-
dependent of r) number of clients. Let θ the probability that a group element is a dis-
tinguished point and suppose log(r)/

√
r < θ. Assume Heuristic 14.3.1 and the above

assumptions about the the reliability and equal power of the processors hold. Then the ex-
pected number of group operations performed by each client of the distributed rho method
is (1 + 2 log(r)θ)

√
πr/2/NP + 1/θ group operations. This is (

√
π/2/NP + o(1))

√
r group

operations when θ < 1/ log(r)2. The storage requirement on the server is θ
√
πr/2 + NP

points.

Proof: Heuristic 14.3.1 states that we expect to sample
√
πr/2 group elements in total

before a collision arises. Since this work is distributed over NP clients of equal speed
it follows that each client is expected to call the function walk about

√
πr/2/NP times.

The total number of group operations is therefore
√
πr/2/NP plus 2 log(r)θ

√
πr/2/NP

for the work of line 3 of Algorithm 18. The server will not detect the collision until the
second client hits a distinguished point, which is expected to take 1/θ further steps by
the heuristic (part 3 of Lemma 14.2.14). Hence each client needs to run an expected√
πr/2/NP + 1/θ steps of the walk.

Of course, a collision gahb = ga
′

hb
′

can be useless in the sense that b′ ≡ b (mod r).
A collision implies a′ + cb′ ≡ a + cb (mod r) where h = gc; there are r such pairs
(a′, b′) for each pair (a, b). Since each walk starts with uniformly random values (a0, b0)
it follows that the values (a, b) are uniformly distributed over the r possibilities. Hence
the probability of a collision being useless is 1/r and the expected number of collisions
required is 1.

Each processor runs for
√
πr/2/NP + 1/θ steps and therefore is expected to send

θ
√
πr/2/NP + 1 distinguished points in its lifetime. The total number of points to store

is therefore θ
√
πr/2 +NP . �

Exercise 14.2.17 shows that the complexity in the case NP = 1 can be taken to be
(1 + o(1))

√
πr/2 group operations with polynomial storage.

Exercise 14.3.3. When distributing the algorithm it is important to ensure that, with
very high probability, each processor finds at least one distinguished point in less than its
total expected running time. Show that this will be the case if 1/θ ≤

√
πr/2/ (NP log(r)).

Schulte-Geers [533] analyses the choice of θ and shows that Heuristics 14.2.15 and 14.3.1
are not valid asymptotically if θ = o(1/

√
r) as r →∞ (for example, walks in this situation

are more likely to fall into a cycle than to hit a distinguished point). In any case, since
each processor only travels a distance of

√
πr/2/NP it follows we should take θ > NP /

√
r.

In practice one tends to determine the available storage first (say, c group elements where
c > 109) and to set θ = c/

√
πr/2 so that the total number of distinguished points vis-

ited is expected to be c. The results of [533] validate this approach. In particular, it
is extremely unlikely that there is a self-collision (and hence a cycle) before hitting a
distinguished point.

300 CHAPTER 14. PSEUDORANDOM WALKS

14.4 Speeding up the Rho Algorithm using Equiva-

lence Classes

Gallant, Lambert and Vanstone [232] and Wiener and Zuccherato [632] showed that one
can speed up the rho method in certain cases by defining the pseudorandom walk not on
the group 〈g〉 but on a set of equivalence classes. This is essentially the same thing as
working in an algebraic group quotient instead of the algebraic group.

Suppose there is an equivalence relation on 〈g〉. Denote by x the equivalence class
of x ∈ 〈g〉. Let NC be the size of a generic equivalence class. We require the following
properties:

1. One can define a unique representative x̂ of each equivalence class x.

2. Given (xi, ai, bi) such that xi = gaihbi then one can efficiently compute (x̂i, âi, b̂i)

such that x̂i = gâihb̂i .

We give some examples in Section 14.4.1 below.

One can implement the rho algorithm on equivalence classes by defining a pseudoran-
dom walk function walk(xi, ai, bi) as in Definition 14.2.1. More precisely, set x1 = g, a1 =
1, b1 = 0 and define the sequence xi by (this is the “original walk”)

xi+1 = f(xi) =

{
x̂2i if S(x̂i) = 0
x̂igj if S(x̂i) = j, j ∈ {1, . . . , nS − 1} (14.6)

where the selection function S and the values gj = gujhvj are as in Definition 14.2.1.
When using distinguished points one defines an equivalence class to be distinguished if
the unique equivalence class representative has the distinguished property.

There is a very serious problem with cycles that we do not discuss yet; See Sec-
tion 14.4.2 for the details.

Exercise 14.4.1. Write down the formulae for updating the values ai and bi in the
function walk.

Exercise 14.4.2. Write pseudocode for the distributed rho method on equivalence classes.

Theorem 14.4.3. Let G be a group and g ∈ G of order r. Suppose there is an equivalence
relation on 〈g〉 as above. Let NC be the generic size of an equivalence class. Let C1 be
the number of bit operations to perform a group operation in 〈g〉 and C2 the number of
bit operations to compute a unique equivalence class representative x̂i (and to compute

âi, b̂i).

Consider the rho algorithm as above (ignoring the possibility of useless cycles, see
Section 14.4.2 below). Under a heuristic assumption for equivalence classes analogous to
Heuristic 14.2.15 the expected time to solve the discrete logarithm problem is

(√
π

2NC
+ o(1)

)√
r (C1 + C2)

bit operations. As usual, this becomes (
√
π/2NC + o(1))

√
r/NP (C1 + C2) bit operations

per client when using NP processors of equal computational power.

Exercise 14.4.4. Prove this theorem.

14.4. USING EQUIVALENCE CLASSES 301

Theorem 14.4.3 assumes a perfect random walk. For walks defined on nS partitions of
the set of equivalence classes it is shown in Appendix B of [25] (also see Section 2.2 of [91])
that one predicts a slightly improved constant than the usual factor cnS = nS/(nS − 1)
mentioned at the end of Section 14.2.5.

We mention a potential “paradox” with this idea. In general, computing a unique
equivalence class representative involves listing all elements of the equivalence class, and
hence needs Õ(NC) bit operations. Hence, naively, the running time is Õ(

√
NCπr/2)

bit operations, which is worse than doing the rho algorithm without equivalence classes.
However, in practice one only uses this method when C2 < C1, in which case the speedup
can be significant.

14.4.1 Examples of Equivalence Classes

We now give some examples of useful equivalence relations on some algebraic groups.

Example 14.4.5. For a group G with efficiently computable inverse (e.g., elliptic curves
E(Fq) or algebraic tori Tn with n > 1 (e.g., see Section 6.3)) one can define the equivalence
relation x ≡ x−1. We have NC = 2 (though note that some elements, namely the
identity and elements of order 2, are equal to their inverse so these classes have size 1).
If xi = gaihbi then clearly x−1 = g−aih−bi . One defines a unique representative x̂ for
the equivalence class by, for example, imposing a lexicographical ordering on the binary
representation of the elements in the class.

We can generalise this example as follows.

Example 14.4.6. Let G be an algebraic group over Fq with an automorphism group
Aut(G) of size NC (see examples in Sections 9.4 and 11.3.3). Suppose that for g ∈ G
of order r one has ψ(g) ∈ 〈g〉 for each ψ ∈ Aut(G). Furthermore, assume that for each
ψ ∈ Aut(G) one can efficiently compute the eigenvalue λψ ∈ Z such that ψ(g) = gλψ .
Then for x ∈ G one can define x = {ψ(x) : ψ ∈ Aut(G)}.

Again, one defines x̂ by listing the elements of x as bitstrings and choosing the first
one under lexicographical ordering.

Another important class of examples comes from orbits under the Frobenius map.

Example 14.4.7. Let G be an algebraic group defined over Fq but with group considered
over Fqd (for examples see Sections 11.3.2 and 11.3.3). Let πq be the q-power Frobenius
map on G(Fqd). Let g ∈ G(Fqd) and suppose that πq(g) = gλ ∈ 〈g〉 for some known
λ ∈ Z.

Define the equivalence relation on G(Fqd) so that the equivalence class of x ∈ G(Fqd)
is the set x = {πiq(x) : 0 ≤ i < d}. We assume that, for elements x of interest, x ⊆ 〈g〉.
Then NC = d, though there can be elements defined over proper subfields for which the
equivalence class is smaller.

If one uses a normal basis for Fqd over Fq then one can efficiently compute the elements
πiq(x) and select a unique representative of each equivalence class using a lexicographical
ordering of binary strings.

Example 14.4.8. For some groups (e.g., Koblitz elliptic curves E/F2 considered as a
group over F2m ; see Exercise 9.10.11) we can combine both equivalence classes above. Let
m be prime, #E(F2m) = hr for some small cofactor h, and P ∈ E(F2m) of order r. Then
π2(P) ∈ 〈P 〉 and we define the equivalence class P = {±πi2(P) : 0 ≤ i < m} of size 2m.
Since m is odd, this class can be considered as the orbit of P under the map −π2. The
distributed rho algorithm on equivalence classes for such curves is expected to require
approximately

√
π2m/(4m) group operations.

302 CHAPTER 14. PSEUDORANDOM WALKS

14.4.2 Dealing with Cycles

One problem that can arise is walks that fall into a cycle before they reach a distinguished
point. We call these useless cycles.

Exercise 14.4.9. Suppose the equivalence relation is such that x ≡ x−1. Fix xi = x̂i
and let xi+1 = x̂ig. Suppose x̂i+1 = x−1

i+1 and that S(x̂i+1) = S(x̂i). Show that xi+2 ≡ xi
and so there is a cycle of order 2. Suppose the equivalence classes generically have size
NC . Show, under the assumptions that the function S is perfectly random and that x̂ is
a randomly chosen element of the equivalence class, that the probability that a randomly
chosen xi leads to a cycle of order 2 is 1/(NCnS).

A theoretical discussion of cycles was given in [232] and by Duursma, Gaudry and
Morain [186]. An obvious way to reduce the probability of cycles is to take nS to be
very large compared with the average length 1/θ of walks. However, as argued by Bos,
Kleinjung and Lenstra [91], large values for nS can lead to slower algorithms (for example,
due to the fact that the precomputed steps do not all fit in cache memory). Hence, as
Exercise 14.4.9 shows, useless cycles will be regularly encountered in the algorithm. There
are several possible ways to deal with this issue. One approach is to use a “look-ahead”
technique to avoid falling in 2-cycles. Another approach is to detect small cycles (e.g.,
by storing a fixed number of previous values of the walk or, at regular intervals, using
a cycle-finding algorithm for a small number of steps) and to design a well-defined exit
strategy for short cycles; Gallant, Lambert and Vanstone call this collapsing the cycle;
see Section 6 of [232]. To collapse a cycle one must be able to determine a well-defined
element in it; from there one can take a step (different to the steps used in the cycle from
that point) or use squaring to exit the cycle. All these methods require small amounts
of extra computation and storage, though Bernstein, Lange and Schwabe [56] argue that
the additional overhead can be made negligible. We refer to [56, 91] for further discussion
of these issues.

Gallant, Lambert and Vanstone [232] presented a different walk that does not, in
general, lead to short cycles. Let G be an algebraic group with an efficiently computable
endomorphism ψ of order m (i.e., ψm = ψ ◦ · · · ◦ ψ is the identity map). Let g ∈ G of
order r be such that ψ(g) = gλ so that ψ(x) = xλ for all x ∈ 〈g〉. Define the equivalence
classes x = {ψj(x) : 0 ≤ j < m}. We define a pseudorandom sequence xi = gaihbi by
using x̂ to select an endomorphism (1 + ψj) and then acting on xi with this map. More
precisely, j is some function of x̂ (e.g., the function S in Section 14.2.1) and

xi+1 = (1 + ψj)xi = xiψ
j(xi) = x1+λ

j

i

(the above equation looks more plausible when the group operation is written additively:
xi+1 = xi + ψj(xi) = (1 + λj)xi). One can check that the map is well-defined on
equivalence classes and that xi+1 = gai+1hbi+1 where ai+1 = (1 + λj)ai (mod r) and
bi+1 = (1 + λj)bi (mod r).

We stress that this approach still requires finding a unique representative of each
equivalence class in order to define the steps of the walk in a well-defined way. Hence, one
can still use distinguished points by defining a class to be distinguished if its representative
is distinguished. One suggestion, originally due to Harley, is to use the Hamming weight
of the x-coordinate to derive the selection function.

One drawback of the Gallant, Lambert, Vanstone idea is that there is less flexibility
in the design of the pseudorandom walk.

Exercise 14.4.10. Generalise the Gallant-Lambert-Vanstone walk to use (c + ψj) for
any c ∈ Z. Why do we prefer to only use c = 1?

14.5. THE KANGAROO METHOD 303

Exercise 14.4.11. Show that taking nS = log(r) means the total overhead from handling
cycles is o(

√
r), while the additional storage (group elements for the random walks) is

O(log(r)) group elements.

Exercise 14.4.11 together with Exercise 14.2.17 shows that (as long as computing
equivalence class representatives is fast) one can solve the discrete logarithm problem
using equivalence classes of generic size NC in (1 + o(1))

√
πr/(2NC) group operations

and O(log(r)) group elements storage.

14.4.3 Practical Experience with the Distributed Rho Algorithm

Real computations are not as simple as the idealised analysis above: one doesn’t know
in advance how many clients will volunteer for the computation; not all clients have the
same performance or reliability; clients may decide to withdraw from the computation at
any time; the communications between client and server may be unreliable etc. Hence, in
practice one needs to choose the distinguished points to be sufficiently common that even
the weakest client in the computation can hit a distinguished point within a reasonable
time (perhaps after just one or two days). This may mean that the stronger clients are
finding many distinguished points every hour.

The largest discrete logarithm problems solved using the distributed rho method are
mainly the Certicom challenge elliptic curve discrete logarithm problems. The current
records are for the groups E(Fp) where p ≈ 2108 + 2107 (by a team coordinated by Chris
Monico in 2002) and where p = (2128 − 3)/76439 ≈ 2111 + 2110 (by Bos, Kaihara and
Montgomery in 2009) and for E(F2109) (again by Monico’s team in 2004). None of these
computations used the equivalence class {P,−P}.

We briefly summarise the parameters used for these large computations. For the 2002
result the curve E(Fp) has prime order so r ≈ 2108 + 2107. The number of processors
was over 10,000 and they used θ = 2−29. The number of distinguished points found
was 68228567 which is roughly 1.32 times the expected number θ

√
πr/2 of points to be

collected. Hence, this computation was unlucky in that it ran about 1.3 times longer than
the expected time. The computation ran for about 18 months.

The 2004 result is for a curve over F2109 with group order 2r where r ≈ 2108. The
computation used roughly 2000 processors, θ = 2−30 and the number of distinguished
points found was 16531676. This is about 0.79 times the expected number θ

√
π2108/2.

This computation took about 17 months.
The computation by Bos, Kaihara and Montgomery [90] was innovative in that the

work was done using a cluster of 200 computer game consoles. The random walk used
nS = 16 and θ = 1/224. The total number of group operations performed was 8.5× 1016

(which is 1.02 times the expected value) and 5× 109 distinguished points were stored.

Exercise 14.4.12. Verify that the parameters above satisfy the requirements that θ is
much larger than 1/

√
r and NP is much smaller than θ

√
r.

There is a close fit between the actual running time for these examples and the the-
oretical estimates. This is evidence that the heuristic analysis of the running time is not
too far from the performance in practice.

14.5 The Kangaroo Method

This algorithm is designed for the case where the discrete logarithm is known to lie in a
short interval. Suppose g ∈ G has order r and that h = ga where a lies in a short interval

304 CHAPTER 14. PSEUDORANDOM WALKS

b ≤ a < b + w of width w. We assume that the values of b and w are known. Of course,
one can solve this problem using the rho algorithm, but if w is much smaller than the
order of g then this will not necessarily be optimal.

The kangaroo method was originally proposed by Pollard [487]. Van Oorschot and
Wiener [473] greatly improved it by using distinguished points. We present the improved
version in this section.

For simplicity, compute h′ = hg−b. Then h′ ≡ gx (mod p) where 0 ≤ x < w. Hence,
there is no loss of generality by assuming that b = 0. Thus, from now on our problem is:
Given g, h, w to find a such that h = ga and 0 ≤ a < w.

As with the rho method, the kangaroo method relies on a deterministic pseudorandom
walk. The steps in the walk are pictured as the “jumps” of the kangaroo, and the group
elements visited are the kangaroo’s “footprints”. The idea, as explained by Pollard, is
to “catch a wild kangaroo using a tame kangaroo”. The “tame kangaroo” is a sequence
xi = gai where ai is known. The “wild kangaroo” is a sequence yj = hgbj where bj is
known. Eventually, a footprint of the tame kangaroo will be the same as a footprint of
the wild kangaroo (this is called the “collision”). After this point, the tame and wild
footprints are the same.9 The tame kangaroo lays “traps” at regular intervals (i.e., at
distinguished points) and, eventually, the wild kangaroo falls in one of the traps.10 More
precisely, at the first distinguished point after the collision, one finds ai and bj such that
gai = hgbj and the DLP is solved as h = gai−bj .

There are two main differences between the kangaroo method and the rho algorithm.

• Jumps are “small”. This is natural since we want to stay within (or at least, not
too far outside) the interval.

• When a kangaroo lands on a distinguished point one continues the pseudorandom
walk (rather than restarting the walk at a new randomly chosen position).

14.5.1 The Pseudorandom Walk

The pseudorandom walk for the kangaroo method has some significant differences to
the rho walk: steps in the walk correspond to known small increments in the exponent
(in other words, kangaroos make small jumps of known distance in the exponent). We
therefore do not include the squaring operation xi+1 = x2i (as the jumps would be too
big) or multiplication by h (we would not know the length of the jump in the exponent).
We now describe the walk precisely.

• As in Section 14.2.1 we use a function S : G→ {0, . . . , nS − 1} which partitions G
into sets Si = {g ∈ G : S(g) = i} of roughly similar size.

• For 0 ≤ j < nS choose exponents 1 ≤ uj ≤
√
w Define m = (

∑nS−1
j=0 uj)/nS to be

the mean step size. As explained below we will take m ≈ √w/2.

Pollard [487, 488] suggested taking uj = 2j as this minimises the chance that two
different short sequences of jumps add to the same value. This seems to give good
results in practice. An alternative is to choose most of the values ui to be random
and the last few to ensure that m is very close to c1

√
w.

9A collision between two different walks can be drawn in the shape of the letter λ. Hence Pollard
also suggested this be called the “lambda method”. However, other algorithms (such as the distributed
rho method) have collisions between different walks, so this naming is ambiguous. The name “kangaroo
method” emphasises the fact that the jumps are small. Hence, as encouraged by Pollard, we do not use
the name “lambda method” in this book.

10Actually, the wild kangaroo can be in front of the tame kangaroo, in which case it is better to think
of each kangaroo trying to catch the other.

14.5. THE KANGAROO METHOD 305

Figure 14.1: Kangaroo walk. Tame kangaroo walk pictured above the axis and wild
kangaroo walk pictured below. The dot indicates the first collision.

• The pseudorandom walk is a sequence x0, x1, . . . of elements of G defined by an
initial value x0 (to be specified later) and the formula

xi+1 = xigS(xi).

The algorithm is not based on the birthday paradox, but instead on the following
observations. Footprints are spaced, on average, distance m apart, so along a region
traversed by a kangaroo there is, on average, one footprint in any interval of length m.
Now, if a second kangaroo jumps along the same region and if the jumps of the second
kangaroo are independent of the jumps from the first kangaroo, then the probability of
a collision is roughly 1/m. Hence, one expects a collision between the two walks after
about m steps.

14.5.2 The Kangaroo Algorithm

We need to specify where to start the tame and wild kangaroos, and what the mean
step size should be. The wild kangaroo starts at y0 = h = ga with 0 ≤ a < w. To
minimise the distance between the tame and wild kangaroos at the start of the algorithm,
we start the tame kangaroo at x0 = g⌊w/2⌋, which is the middle of the interval. We take
alternate jumps and store the values (xi, ai) and (yi, bi) as above (i.e., so that xi = gai

and yi = hgbi). Whenever xi (respectively, yi) is distinguished we store (xi, ai) (resp.,
(yi, bi)) in an easily searched structure. The storage can be reduced by using the ideas of
Exercise 14.2.18.

When the same distinguished point is visited twice then we have two entries (x, a)
and (x, b) in the structure and so either hga = gb or ga = hgb. The ambiguity is resolved
by seeing which of a− b and b− a lies in the interval (or just testing if h = ga−b or not).

As we will explain in Section 14.5.3, the optimal choice for the mean step size is
m =

√
w/2.

Exercise 14.5.1. Write this algorithm in pseudocode.

We visualise the algorithm not in the group G but on a line representing exponents.
The tame kangaroo starts at ⌊w/2⌋. The wild kangaroo starts somewhere in the interval
[0, w). Kangaroo jumps are small steps to the right. See Figure 14.1 for the picture.

Example 14.5.2. Let g = 3 ∈ F∗
263 which has prime order 131. Let h = 181 ∈ 〈g〉 and

suppose we are told that h = ga with 0 ≤ a < w = 53. The kangaroo method can be
used in this case.

306 CHAPTER 14. PSEUDORANDOM WALKS

Since
√
w/2 ≈ 3.64 it is appropriate to take nS = 4 and choose steps {1, 2, 4, 8}.

The mean step size is 3.75. The function S(x) is x (mod 4) (where elements of F∗
263 are

represented by integers in the set {1, . . . , 262}).
The tame kangaroo starts at (x1, a1) = (g26, 26) = (26, 26). The sequence of points

visited in the walk is listed below. A point is distinguished if its representation as an
integer is divisible by 3; the distinguished points are written in bold face in the table.

i 0 1 2 3 4
xi 26 2 162 235 129
ai 26 30 34 38 46

S(xi) 2 2 2 3 1
yi 181 51 75 2 162
bi 0 2 10 18 22

S(yi) 1 3 3 2 2

The collision is detected when the distinguished point 162 is visited twice. The solution
to the discrete logarithm problem is therefore 34− 22 = 12.

Exercise 14.5.3. Using the same parameters as Example 14.5.2, solve the DLP for
h = 78.

14.5.3 Heuristic Analysis of the Kangaroo Method

The analysis of the algorithm does not rely on the birthday paradox; instead, the mean
step size is the crucial quantity. We sketch the basic probabilistic argument now. A more
precise analysis is given in Section 14.5.6. The following heuristic assumption seems to be
reasonable when w is sufficiently large, nS > log(w), distinguished points are sufficiently
common and specified using a good hash function (and hence are well distributed), θ >
log(w)/

√
w and when the function walk is chosen at random.

Heuristic 14.5.4.

1. Walks reach a distinguished point in significantly fewer than
√
w steps (in other

words, there are no cycles in the walks and walks are not excessively longer than
1/θ).

2. The footprints of a kangaroo are uniformly distributed in the region over which it
has walked with, on average, one footprint in each interval of length m.

3. The footsteps of tame and wild kangaroos are independent of one another before
the time when the walks collide.

Theorem 14.5.5. Let the notation be as above and assume Heuristic 14.5.4. Then the
kangaroo algorithm with distinguished points has average case expected running time of
(2 + o(1))

√
w group operations. The probability the algorithm fails is negligible.

Proof: We don’t know whether the discrete logarithm of h is greater or less than w/2.
So, rather than speaking of “tame” and “wild” kangaroos we will speak of the “front” and
“rear” kangaroos. Since one kangaroo starts in the middle of the interval, the distance
between the starting point of the rear kangaroo and the starting point of the front kan-
garoo is between 0 and w/2 and is, on average, w/4. Hence, on average, w/(4m) jumps
are required for the rear kangaro to pass the starting point of the front kangaroo.

After this point, the rear kangaroo is travelling over a region that has already been
jumped over by the front kangaroo. By our heuristic assumption, the footprints of the

14.5. THE KANGAROO METHOD 307

tame kangaroo are uniformly distributed over the region with, on average, one footprint
in each interval of length m. Also, the footprints of the wild kangaroo are independent,
and with one footprint in each interval of length m. The probability, at each step, that
the wild kangaroo does not land on any of the footprints of the tame kangaroo is therefore
heuristically 1 − 1/m. By exactly the same arguments as Lemma 14.2.14 it follows that
the expected number of jumps until a collision is m.

Note that there is a miniscule possibility that the walks never meet (this does not
require working in an infinite group, it can even happen in a finite group if the “orbits”
of the tame and wild walks are disjoint subsets of the group). If this happens then the
algorithm never halts. Since the walk function is chosen at random, the probability of
this eventuality is negligible. On the other hand, if the algorithm halts then its result is
correct. Hence, this is a Las Vegas algorithm.

The overall number of jumps made by the rear kangaroo until the first collision is
therefore, on average, w/(4m)+m. One can easily check that this is minimised by taking
m =

√
w/2. The kangaroo is also expected to perform a further 1/θ steps to the next

distinguished point. Since there are two kangaroos the expected total number of group
operations performed is 2

√
w + 2/θ = (2 + o(1))

√
w. �

This result is proved by Montenegro and Tetali [434] under the assumption that S is
a random function and that the distinguished points are well-distributed. Pollard [488]
shows it is valid when the o(1) is replaced by ǫ for some 0 ≤ ǫ < 0.06.

Note that the expected distance, on average, travelled by a kangaroo is w/4+m2 = w/2
steps. Hence, since the order of the group is greater than w, we do not expect any self-
collisions in the kangaroo walk.

We stress that, as with the rho method, the probability of success is considered over
the random choice of pseudorandom walk, not over the space of problem instances. Ex-
ercise 14.5.6 considers a different way to optimise the expected running time.

Exercise 14.5.6. Show that, with the above choice of m, the expected number of group
operations performed for the worst-case of problem instances is (3 + o(1))

√
w. Determine

the optimal choice of m to minimise the expected worst-case running time. What is the
expected worst-case complexity?

Exercise 14.5.7. A card trick known as Kruskal’s principle is as follows. Shuffle a
deck of 52 playing cards and deal face up in a row. Define the following walk along the
row of cards: If the number of the current card is i then step forward i cards (if the card
is a King, Queen or Jack then step 5 cards). The magicican runs this walk (in their mind)
from the first card and puts a coin on the last card visited by the walk. The magician
invites their audience to choose a number j between 1 and 10, then runs the walk from the
j-th card. The magician wins if the walk also lands on the card with the coin. Determine
the probability of success of this trick.

Exercise 14.5.8. Show how to use the kangaroo method to solve Exercises 13.3.8, 13.3.10
and 13.3.11 of Chapter 13.

Pollard’s original proposal did not use distinguished points and the algorithm only
had a fixed probability of success. In contrast, the method we have described keeps on
running until it succeeds (indeed, if the DLP is insoluble then the algorithm would never
terminate). Van Oorschot and Wiener (see page 12 of [473]) have shown that repeating
Pollard’s original method until it succeeds leads to a method with expected running time
of approximately 3.28

√
w group operations.

Exercise 14.5.9. Suppose one is given g ∈ G of order r, an integer w, and an instance
generator for the discrete logarithm problem that outputs h = ga ∈ G such that 0 ≤ a < w

308 CHAPTER 14. PSEUDORANDOM WALKS

according to some known distribution on {0, 1, . . . , w − 1}. Assume that the distribution
is symmetric with mean value w/2. How should one modify the kangaroo method to take
account of this extra information? What is the running time?

14.5.4 Comparison with the Rho Algorithm

We now consider whether one should use the rho or kangaroo algorithm when solving a
general discrete logarithm problem (i.e., where the width w of the interval is equal to, or
close to, r). If w = r then the rho method requires roughly 1.25

√
r group operations while

the kangaroo method requires roughly 2
√
r group operations. The heuristic assumptions

underlying both methods are similar, and in practice they work as well as the theory
predicts. Hence, it is clear that the rho method is preferable, unless w is much smaller
than r.

Exercise 14.5.10. Determine the interval size below which it is preferable to use the
kangaroo algorithm over the rho algorithm.

14.5.5 Using Inversion

Galbraith, Ruprai and Pollard [226] showed that one can improve the kangaroo method
by exploiting inversion in the group.11 Suppose one is given g, h, w and told that h = ga

with 0 ≤ a < w. We also require that the order r of g is odd (this will always be the case,
due to the Pohlig-Hellman algorithm). Suppose, for simplicity, that w is even. Replacing
h by hg−w/2 we have h = ga with −w/2 ≤ a < w/2. One can perform a version of
the kangaroo method with three kangaroos: One tame kangaroo starting from gu for an
appropriate value of u and two wild kangaroos starting from h and h−1 respectively.

The algorithm uses the usual kangaroo walk (with mean step size to be determined
later) to generate three sequences (xi, ai), (yi, bi), (zi, ci) such that xi = gai , yi = hgbi

and zi = h−1gci. The crucial observation is that a collision between any two sequences
leads to a solution to the DLP. For example, if xi = yj then h = gai−bj and if yi = zj then

hgbi = h−1gcj and so, since g has odd order r, h = g(cj−bi)2
−1 (mod r). The algorithm uses

distinguished points to detect a collison. We call this the three-kangaroo algorithm.

Exercise 14.5.11. Write down pseudocode for the three-kangaroo algorithm using dis-
tinguished points.

We now give a brief heuristic analysis of the three-kangaroo algorithm. Without loss
of generality we assume 0 ≤ a ≤ w/2 (taking negative a simply swaps h and h−1, so does
not affect the running time). The distance between the starting points of the tame and
wild kangaroos is 2a. The distance between the starting points of the tame and right-most
wild kangaroo is |a−u|. The extreme cases (in the sense that the closest pair of kangaroos
are as far apart as possible) are when 2a = u−a or when a = w/2. Making all these cases
equal leads to the equation 2a = u − a = w/2 − u. Calling this distance l it follows that
w/2 = 5l/2 and u = 3w/10. The average distance between the closest pair of kangaroos is
then w/10 and the closest pair of kangaroos can be thought of as performing the standard
kangaroo method in an interval of length 2w/5. Following the analysis of the standard
kangaroo method it is natural to take the mean step size to be m = 1

2

√
2w/5 =

√
w/10 ≈

0.316
√
w. The average-case expected number of group operations (only considering the

closest pair of kangaroos) would be 3
22
√

2w/5 ≈ 1.897
√
w. A more careful analysis takes

into account the possibility of collisions between any pair of kangaroos. We refer to [226]

11This research actually grew out of writing this chapter. Sometimes it pays to work slowly.

14.5. THE KANGAROO METHOD 309

for the details and merely remark that the correct mean step size is m ≈ 0.375
√
w and

the average-case expected number of group operations is approximately 1.818
√
w.

Exercise 14.5.12. The distance between −a and a is even, so a natural trick is to use
jumps of even length. Since we don’t know whether a is even or odd, if this is done
we don’t know whether to start the tame kangaroo at gu or gu+1. However, one can
consider a variant of the algorithm with two wild kangaroos (one starting from h and one
from h−1) and two tame kangaroos (one starting from gu and one from gu+1) and with
jumps of even length. This is called the four-kangaroo algorithm. Explain why the
correct choice for the mean step size is m = 0.375

√
2w and why the heuristic average-case

expected number of group operations is approximately 1.714
√
w = 2

√
2

3 1.818
√
w.

Galbraith, Pollard and Ruprai [226] have combined the idea of Exercise 14.5.12 and
the Gaudry-Schost algorithm (see Section 14.7) to obtain an algorithm for the discrete
logarithm problem in an interval of length w that performs (1.660 + o(1))

√
w group

operations.

14.5.6 Towards a Rigorous Analysis of the Kangaroo Method

Montenegro and Tetali [434] have analysed the kangaroo method using jumps which are
powers of 2, under the assumption that the selection function S is random and that
the distinguished points are well-distributed. They prove that the average-case expected
number of group operations is (2 + o(1))

√
w group operations. It is beyond the scope of

this book to present their methods.
We now present Pollard’s analysis of the kangaroo method from his paper [488], though

these results have been superseded by [434]. We restrict to the case where the selection
function S maps G to {0, 1, . . . , nS−1} and the kangaroo jumps are taken to be 2S(x) (i.e.,
the set of jumps is {1, 2, 4, . . . , 2nS−1} and the mean of the jumps is m = (2nS − 1)/nS).
We assume nS > 2. Pollard argues in [488] that if one only uses two jumps {1, 2n} (for
some n) then the best one can hope for is an algorithm with running time O(w2/3) group
operations.

Pollard also makes the usual assumption that S is a truly random function.
As always we visualise the kangaroos in terms of their exponents, and so we study

a pseudorandom walk on Z. The tame kangaroo starts at w. The wild kangaroo starts
somewhere in [0, w). We begin the analysis when the wild kangaroo first lands at a point
≥ w. Let w+ i be the first wild kangaroo footprint ≥ w. Define q(i) to be the probability
(over all possible starting positions for the wild kangaroo) that this first footstep is at w+i.
Clearly q(i) = 0 when i ≥ 2nS−1. The wild kangaroo footprints are chosen uniformly at
random with mean m, hence q(0) = 1/m. For i > 0 then only jumps of length > i could
be useful, so the probability is

q(i) = #{0 ≤ j < nS : 2j > i}/mnS.
To summarise q(1) = (nS − 1)/mnS, q(2) = (nS − 2)/mnS and for i > 2, q(i) = (nS −
1− ⌊log2(i)⌋)/mnS.

We now want to analyse how many further steps the wild kangaroo makes before
landing on a footprint of the tame kangaroo. We abstract the problem to the following:
Suppose the front kangaroo is at i and the rear kangaroo is at 0 and run the pseudorandom
walk. Define F (i) to be the expected number of steps made by the front kangaroo to the
collision and B(i) the expected number of steps made by the rear kangaroo to the collision.

We can extend the functions to F and B to i = 0 by taking a truly random and
independent step from {1, 2, 4, . . . , 2nS−1} (i.e., not using the deterministic pseudorandom
walk function).

310 CHAPTER 14. PSEUDORANDOM WALKS

We can now obtain formulae relating the functions F (i) and B(i). Consider one jump
by the rear kangaroo. Suppose the jump has distance s where s < i. Then the rear
kangaroo remains the rear kangaroo, but the front kangaroo is now only i − s ahead. If
F (i − s) = n1 and B(i − s) = n2 then we have F (i) = n1 and B(i) = 1 + n2. On the
other hand, suppose the jump has distance s ≥ i. Then the front and rear kangaroo
swap roles and the front kangaroo is now s− i ahead. We have B(i) = 1 + F (s− i) and
F (i) = B(s− i). Since the steps are chosen uniformly with probability 1/nS we get

F (i) = 1
nS

nS−1∑

j=0,2j<i

F (i − 2j) +

nS−1∑

j=0,2j≥i
B(2j − i)

and

B(i) = 1 + 1
nS

nS−1∑

j=0,2j<i

B(i− 2j) +

nS−1∑

j=0,2j≥i
F (2j − i)

Pollard then considers the expected value of the number of steps of the wild kangaroo to
a collision, namely

2(nS−1)−1∑

i=1

q(i)F (i)

which we write as mC(nS) for some C(nS) ∈ R. In [488] one finds numerical data for
C(nS) which suggest that it is between 1 and 1.06 when nS ≥ 12. Pollard also conjectures
that limnS→∞ C(nS) = 1.

Given an interval of size w one chooses nS such that the mean m = (2nS − 1)/nS is
as close as possible to

√
w/2. One runs the tame Kangaroo, starting at w, for mC(nS)

steps and sets the trap. The wild kangaroo is expected to need w/2m steps to pass the
start of the tame kangaroo followed by mC(nS) steps to fall into the trap. Hence, the
expected number of group operations for the kangaroo algorithm (for a random function
S) is

w/2m+ 2mC(nS).

Taking m =
√
w/2 gives expected running time

(1 + C(nS))
√
w

group operations.
In practice one would slightly adjust the jumps {1, 2, 4, . . . , 2nS−1} (while hoping that

this does not significantly change the value of C(nS)) to arrange that m =
√
w/C(nS)/2.

14.6 Distributed Kangaroo Algorithm

Let NP be the number of processors or clients. A naive way to parallelise the the kangaroo
algorithm is to divide the interval [0, w) into NP sub-intervals of size w/NP and then run
the kangaroo algorithm in parallel on each sub-interval. This gives an algorithm with
running time O(

√
w/NP) group operations per client, which is not a linear speedup.

Since we are using distinguished points one should be able to do better. But the
kangaroo method is not as straightforward to parallelise as the rho method (a good
exercise is to stop reading now and think about it for a few minutes). The solution is
to use a herd of NP /2 tame kangaroos and a herd of NP /2 wild kangaroos. These are
super-kangaroos in the sense that they take much bigger jumps (roughly NP /2 times

14.6. DISTRIBUTED KANGAROO ALGORITHM 311

Figure 14.2: Distributed kangaroo walk (van Oorschot and Wiener version). The herd
of tame kangaroos is pictured above the axis and the herd of wild kangaroos is pictured
below. The dot marks the collision.

longer) than in the serial case. The goal is to have a collision between one of the wild
kangaroos and one of the tame kangaroos. We imagine that both herds are setting traps,
each trying to catch a kangaroo from the other herd (regrettably, they may sometimes
catch one of their own kind).

When a kangaroo lands on a distinguished point one continues the pseudorandom walk
(rather than restarting the walk at a new randomly chosen position). In other words, the
herds march ever onwards with an occasional individual hitting a distinguished point and
sending information back to the server. See Figure 14.2 for a picture of the herds in
action.

There are two versions of the distributed algorithm, one by van Oorschot and Wiener [473]
and another by Pollard [488]. The difference is how they handle the possibility of col-
lisions between kangaroos of the same herd. The former has a mechanism to deal with
this, which we will explain later. The latter paper elegantly ensures that there will not
be collisions between individuals of the same herd.

14.6.1 Van Oorschot and Wiener Version

We first present the algorithm of van Oorschot and Wiener. The herd of tame kangaroos
starts around the midpoint of the interval [0, w), and the kangaroos are spaced a (small)
distance s apart (as always, we describe kangaroos by their exponent). Similarly, the wild
kangaroos start near a = logg(h), again spaced a distance s apart. As we will explain
later, the mean step size of the jumps should be m ≈ NP

√
w/4.

Here walk(xi, ai) is the function which returns xi+1 = xigS(xi) and ai+1 = ai +uS(xi).
Each client has a variable type which takes the value ‘tame’ or ‘wild’.

If there is a collision between two kangaroos of the same herd then it will eventually be
detected when the second one lands on the same distinguished point as the first. In [473]
it is suggested that in this case the server should instruct the second kangaroo to take a
jump of random length so that it no longer follows the path of the front kangaroo. Note
that Teske [606] has shown that the expected number of collisions within the same herd
is 2, so this issue can probably be ignored in practice.

We now give a very brief heuristic analysis of the running time. The following as-
sumption seems to be reasonable when w is sufficiently large, nS is sufficiently large,
log(w)/

√
w < θ, the set D of distinguished points is determined by a good hash func-

tion, the number NP of clients is sufficiently small (e.g., NP < θ
√
πr/2/ log(r), see

Exercise 14.3.3), the spacing s is independent of the steps in the random walk and is
sufficiently large, the function walk is chosen at random.

312 CHAPTER 14. PSEUDORANDOM WALKS

Algorithm 19 The distributed kangaroo algorithm (van Oorschot and Wiener version):
Server side
Input: g, h ∈ G, interval length w, number of clients NP
Output: a such that h = ga

1: Choose nS , a random function S : G → {0, . . . , nS − 1}, m = NP
√
w/4, jumps

{u0, . . . , unS−1} with mean m, spacing s
2: for i = 1 to NP /2 do ⊲ Start NP /2 tame kangaroo clients
3: Set ai = ⌊w/2⌋+ is
4: Initiate client on (gai , ai, ‘tame’) with function walk

5: end for
6: for j = 1 to NP /2 do ⊲ Start NP /2 wild kangaroo clients
7: Set aj = js
8: Initiate client on (hgaj , aj, ‘wild’) with function walk

9: end for
10: Initialise an easily sorted structure L (sorted list, binary tree etc) to be empty
11: while DLP not solved do
12: Receive triples (xi, ai, typei) from clients and insert into L
13: if first coordinate of new triple (x, a2, type2) matches existing triple (x, a1, type1)

then
14: if type2 = type1 then
15: Send message to the sender of (x, a2, type2) to take a random jump
16: else
17: Send terminate signal to all clients
18: if type1 =‘tame’ then
19: return (a1 − a2) (mod r)
20: else
21: return (a2 − a1) (mod r)
22: end if
23: end if
24: end if
25: end while

Algorithm 20 The distributed kangaroo algorithm (van Oorschot and Wiener version):
Client side
Input: (x1, a1, type) ∈ G× Z/rZ, function walk
1: while terminate signal not received do
2: (x1, a1) = walk(x1, a1)
3: if x1 ∈ D then
4: Send (x1, a1, type) to server
5: if Receive jump instruction then
6: Choose random 1 < u < 2m (where m is the mean step size)
7: Set a1 = a1 + u, x1 = x1g

u

8: end if
9: end if

10: end while

14.6. DISTRIBUTED KANGAROO ALGORITHM 313

Heuristic 14.6.1.

1. Walks reach a distinguished point in significantly fewer than
√
w steps (in other

words, there are no cycles in the walks and walks are not excessively longer than
1/θ).

2. When two kangaroos with mean step size m walk over the same interval, the ex-
pected number of group elements sampled before a collision is m.

3. Walks of kangaroos in the same herd are independent.12

Theorem 14.6.2. Let NP be the number of clients (fixed, independent of w). Assume
Heuristic 14.6.1 and that all clients are reliable and have the same computing power. The
average-case expected number of group operations performed by the distributed kangaroo
method for each client is (2 + o(1))

√
w/NP .

Proof: Since we don’t know where the wild kangaroo is, we speak of the front herd and
the rear herd. The distance (in the exponent) between the front herd and the rear herd
is, on average, w/4. So it takes w/(4m) steps for the rear herd to reach the starting point
of the front herd.

We now consider the footsteps of the rear herd in the region already visited by the front
herd of kangaroos. Assuming the NP /2 kangaroos of the front herd are independent, the
region already covered by these kangaroos is expected to have NP /2 footprints in each
interval of length m. Hence, under our heuristic assumptions, the probability that a
random footprint of one of the rear kangaroos lands on a footprint of one of the front
kangaroos is NP /(2m). Since there are NP /2 rear kangaroos, all mutually independent,
the probability of one of the rear kangaroos landing on a tame footprint is N2

P /(4m). By
the heuristic assumption, the expected number of footprints to be made before a collision
occurs is 4m/N2

P .
Finally, the collision will not be detected until a distinguished point is visited. Hence,

one expects a further 1/θ steps to be made.
The expected number of group operations made by each client in the average case is

therefore w/(4m) + 4m/N2
P + 1/θ. Ignoring the 1/θ term, this expression is minimised

by taking m = NP
√
w/4. The result follows. �

The remarks made in Section 14.3.1 about parallelisation (for example, Exercise 14.3.3)
apply equally for the distributed kangaroo algorithm.

Exercise 14.6.3. The above analysis is optimised for the average-case running time.
Determine the mean step size to optimise the worst-case expected running time. Show
that the heuristic optimal running time is (3 + o(1))

√
w/NP group operations.

Exercise 14.6.4. Give distributed versions of the three-kangaroo and four-kangaroo
algorithms of Section 14.5.5.

14.6.2 Pollard Version

Pollard’s version reduces the computation to essentially a collection of serial versions, but
in a clever way so that a linear speed-up is still obtained. One merit of this approach is

12This assumption is very strong, and indeed is false in general (since there is a chance that walks
collide). The assumption is used for only two purposes. First, to “amplify” the second assumption in the
heuristic from any pair of kangaroos to the level of herds. Second, to allow us to ignore collisions between
kangaroos in the same herd (Teske, in Section 7 of [606], has argued that such collisions are rare). One
could replace the assumption of independence by these two consequences.

314 CHAPTER 14. PSEUDORANDOM WALKS

that the analysis of the serial kangaroo algorithm can be applied; we no longer need the
strong heuristic assumption that kangaroos in the same herd are mutually independent.

Let NP be the number of processors and suppose we can write NP = U + V where
gcd(U, V) = 1 and U, V ≈ NP /2. The number of tame kangaroos is U and the number of
wild kangaroos is V . The (super) kangaroos perform the usual pseudorandom walk with
steps {UV u0, . . . , UV un−1} having mean m ≈ NP

√
w/4 (this is UV times the mean step

size for solving the DLP in an interval of length w/UV ≈ 4w/N2
P). As usual we choose

either uj ≈ 2j or else random values between 0 and 2m/UV .
The U tame kangaroos start at

g⌊w/2⌋+iV

for 0 ≤ i < U . The V wild kangaroos start at hgjU for 0 ≤ j < V . Each kangaroo then
uses the pseudorandom walk to generate a sequence of values (xn, an) where xn = gan or
xn = hgan . Whenever a distinguished point is hit the kangaroo sends data to the server
and continues the same walk.

Lemma 14.6.5. Suppose the walks do not cover the whole group, i.e., 0 ≤ an < r. Then
there is no collision between two tame kangaroos or two wild kangaroos. There is a unique
pair of tame and wild kangaroos who can collide.

Proof: Each element of the sequence generated by the ith tame kangaroo is of the form

g⌊w/2⌋+iV+lUV

for some l ∈ Z. To have a collision between two different tame kangaroos one would need

⌊w/2⌋+ i1V + l1UV = ⌊w/2⌋+ i2V + l2UV

and reducing modulo U implies i1 ≡ i2 (mod U) which is a contradiction. To summarise,
the values an for the tame kangaroos all lie in disjoint equivalence classes modulo U . A
similar argument shows that wild kangaroos do not collide.

Finally, if h = ga then i = (⌊w/2⌋−a)V −1 (mod U) and j = (a−⌊w/2⌋)U−1 (mod V)
are the unique pair of indices such that the ith tame kangaroo and the jth wild kangaroo
can collide. �

The analysis of the algorithm therefore reduces to the serial case, since we have one
tame kangaroo and one wild kangaroo who can collide. This makes the heuristic analysis
simple and immediate.

Theorem 14.6.6. Let the notation be as above. Assume Heuristic 14.5.4 and that all
clients are reliable and have the same computational power. Then the average-case ex-
pected running time for each client is (1 + o(1))

√
w/UV = (2 + o(1))

√
w/NP group

operations.

Proof: The action is now constrained to an equivalence class modulo UV , so the clients
behave like the serial kangaroo method in an interval of size w/UV (see Exercise 14.5.8
for reducing a DLP in a congruence class to a DLP in a smaller interval). The mean step
size is therefore m ≈ UV

√
w/UV /2 ≈ NP

√
w/4. Applying Theorem 14.5.5 gives the

result. �

14.6.3 Comparison of the Two Versions

Both versions of the distributed kangaroo method have the same heuristic running time
of (2 + o(1))

√
w/NP group operations.13 So which is to be preferred in practice? The

13Though the analysis by van Oorschot and Wiener needs the stronger assumption that the kangaroos
in the same herd are mutually independent.

14.7. THE GAUDRY-SCHOST ALGORITHM 315

answer depends on the context of the computation. For genuine parallel computation in
a closed system (e.g., using special-purpose hardware) then either could be used.

In distributed environments then both methods have drawbacks. For example, the
van Oorschot-Wiener method needs a communication from server to client in response
to uploads of distinguished point information (the “take a random jump” instruction);
though Teske [606] has remarked that this can probably be ignored.

More significantly, both methods require knowing the number NP of processors at
the start of the computation, since this value is used to specify the mean step size. This
causes problems if a large number of new clients join the computation after it has begun.

With the van Oorschot and Wiener method, if further clients want to join the com-
putation after it has begun, then they can be easily added (half the new clients tame and
half wild) by starting them at further shifts from the original starting points of the herds.
With Pollard’s method it is less clear how to add new clients. Even worse, since only one
pair of “lucky” clients has the potential to solve the problem, if either of them crashes or
withdraws from the computation then the problem will not be solved. As mentioned in
Section 14.4.3 these are serious issues which do arise in practice.

On the other hand, these issues can be resolved by over-estimating NP and by issuing
clients with fresh problem instances once they have produced sufficiently many distin-
guished points from their current instance. Note that this also requires communication
from server to client.

14.7 The Gaudry-Schost Algorithm

Gaudry and Schost [249] give a different approach to solving discrete logarithm problems
using pseudorandom walks. As we see in Exercise 14.7.6, this method is slower than the
rho method when applied to the whole group. However, the approach leads to low-storage
algorithms for the multi-dimensional discrete logarithm problems (see Definition 13.5.1);
and the discrete logarithm problem in an interval using equivalence classes. This is
interesting since, for both problems, it is not known how to adapt the rho or kangaroo
methods to give a low-memory algorithm with the desired running time.

The basic idea of the Gaudry-Schost algorithm is as follows. One has pseudorandom
walks in two (or more) subsets of the group such that a collision between walks of different
types leads to a solution to the discrete logarithm problem. The sets are smaller than the
whole group, but they must overlap (otherwise, there is no chance of a collision). Typi-
cally, one of the sets is called a “tame set” and the other a “wild set”. The pseudorandom
walks are deterministic, so that when two walks collide they continue along the same path
until they hit a distinguished point and stop. Data from distinguished points is held in
an easily searched database held by the server. After reaching a distinguished point, the
walks re-start at a freshly chosen point.

14.7.1 Two-Dimensional Discrete Logarithm Problem

Suppose we are given g1, g2, h ∈ G and N ∈ N (where we assume N is even) and asked to
find integers 0 ≤ a1, a2 < N such that h = ga11 ga22 . Note that the size of the solution space
is N2, so we seek a low-storage algorithm with number of group operations proportional
to N . The basic Gaudry-Schost algorithm for this problem is as follows.

Define the tame set

T = {(x, y) ∈ Z2 : 0 ≤ x, y < N}

316 CHAPTER 14. PSEUDORANDOM WALKS

and the wild set

W = (a1 −N/2, a2 −N/2) + T = {(a1 −N/2 + x, a2 −N/2 + y) ∈ Z2 : 0 ≤ x, y < N}.

In other words, T and W are N ×N boxes centered on (N/2− 1, N/2− 1) and (a1, a2)
respectively. It follows that #W = #T = N2 and if (a1, a2) = (N/2 − 1, N/2− 1) then
T = W , otherwise T ∩W is a proper non-empty subset of T .

Define a pseudorandom walk as follows: First choose nS > log(N) random pairs
of integers −M < mi, ni < M where M is an integer to be chosen later (typically,
M ≈ N/(1000 log(N))) and precompute elements of the form wi = gmi1 gni2 for 0 ≤ i < nS .
Then choose a selection function S : G → {0, 1, . . . , nS − 1}. The walk is given by the
function

walk(g, x, y) = (gwS(g), x+mS(g), y + nS(g)).

Tame walks are started at (gx1 g
y
2 , x, y) for random elements (x, y) ∈ T and wild walks are

started at (hg
x−N/2+1
1 g

y−N/2+1
2 , x−N/2+1, y−N/2+1) for random elements (x, y) ∈ T .

Walks proceed by iterating the function walk until a distinguished element of G is visited;
at which time the data (g, x, y), together with the type of walk, is stored in a central
database. When a distinguished point is visited, the walk is re-started at a uniformly
chosen group element (this is like the rho method, but different from the behaviour of
kangaroos). Once two walks of different types visit the same distinguished group element
we have a collision of the form

gx1g
y
2 = hgx

′

1 g
y′

2

and the two-dimensional DLP is solved.

Exercise 14.7.1. Write pseudocode, for both the client and server, for the distributed
Gaudry-Schost algorithm.

Exercise 14.7.2. Explain why the algorithm can be modified to omit storing the the
type of walk in the database. Show that the methods of Exercise 14.2.18 to reduce storage
can also be used in the Gaudry-Schost algorithm.

Exercise 14.7.3. What modifications are required to solve the problem h = ga11 ga22 such
that 0 ≤ a1 < N1 and 0 ≤ a2 < N2 for 0 < N1 < N2?

An important practical consideration is that walks will sometimes go outside the tame
or wild regions. One might think that this issue can be solved by simply taking the values
x and y into account and altering the walk when close to the boundary, but then the
crucial property of the walk function (that once two walks collide, they follow the same
path) would be lost. By taking distinguished points to be quite common (i.e., increasing
the storage) and making M relatively small one can minimise the impact of this problem.
Hence, we ignore it in our analysis.

We now briefly explain the heuristic complexity of the algorithm. The key observation
is that a collision can only occur in the region where the two sets overlap. Let A = T ∩W .
If one samples uniformly at random in A, alternately writing elements down on a “tame”
and “wild” list, the expected number of samples until the two lists have an element in
common is

√
π#A+O(1) (see, for example, Selivanov [536] or [223]).

The following heuristic assumption seems to be reasonable when N is sufficiently
large, nS > log(N), distinguished points are sufficiently common and specified using a
good hash function (and hence are well-distributed), θ > log(N)/N , walks are sufficiently
“local” that they do not go outside T (respectively, W) but also not too local, and when
the function walk is chosen at random.

14.7. THE GAUDRY-SCHOST ALGORITHM 317

Heuristic 14.7.4.

1. Walks reach a distinguished point in significantly fewer than N steps (in other
words, there are no cycles in the walks and walks are not excessively longer than
1/θ).

2. Walks are uniformly distributed in T (respectively, W).

Theorem 14.7.5. Let the notation be as above, and assume Heuristic 14.7.4. Then
the average-case expected number of group operations performed by the Gaudry-Schost
algorithm is (

√
π(2(2 −

√
2))2 + o(1))N ≈ (2.43 + o(1))N .

Proof: We first compute #(T ∩W). When (a1, a2) = (N/2, N/2) then W = T and so
#(T ∩W) = N2. In all other cases the intersection is less. The extreme case is when
(a1, a2) = (0, 0) (similar cases are (a1, a2) = (N − 1, N − 1) etc). Then W = {(x, y) ∈
Z2 : −N/2 ≤ x, y < N/2} and #(T ∩W) = N2/4. By symmetry it suffices to consider
the case 0 ≤ a1, a2 < N/2 in which case we have #(T ∩W) ≈ (N/2 +a1)(N/2 +a2) (here
we are approximating the number of integer points in a set by its area).

Let A = T ∩W . To sample
√
π#A elements in A it is necessary to sample #T/#A

elements in T and W . Hence, the number of group elements to be selected overall is

#T

#A

(√
π#A+O(1)

)
= (#T + o(1))

√
π(#A)−1/2.

The average-case number of group operations is

(N2 + o(1))
√
π
(

2
N

)2 ∫ N/2

0

∫ N/2

0

(N − x)−1/2(N − y)−1/2dxdy.

Note that ∫ N/2

0

(N − x)−1/2dx =
√
N(2−

√
2).

The average-case expected number of group operations is therefore

(√
π(2(2−

√
2))2 + o(1)

)
N

as stated. �

The Gaudry-Schost algorithm has a number of parameters that can be adjusted (such
as the type of walks, the sizes of the tame and wild regions etc). This gives it a lot of
flexibility and makes it suitable for a wide range of variants of the DLP. Indeed, Galbraith
and Ruprai [227] have improved the running time to (2.36 + o(1))N group operations by
using smaller tame and wild sets (also, the wild set is a different shape). One drawback
is that it is hard to fine-tune all these parameters to get an implementation that achieves
the theoretically optimal running time.

Exercise 14.7.6. Determine the complexity of the Gaudry-Schost algorithm for the
standard DLP in G, when one takes T = W = G.

Exercise 14.7.7. Generalise the Gaudry-Schost algorithm to the n-dimensional DLP
(see Definition 13.5.1). What is the heuristic average-case expected number of group
operations?

318 CHAPTER 14. PSEUDORANDOM WALKS

14.7.2 Discrete Logarithm Problem in an Interval using Equiva-
lence Classes

Galbraith and Ruprai [228] used the Gaudry-Schost algorithm to solve the DLP in an
interval of length N < r faster than is possible using the kangaroo method when the
group has an efficiently computable inverse (e.g., elliptic curves or tori). First, shift the
discrete logarithm problem so that it is of the form h = ga with −N/2 < a ≤ N/2. Define
the equivalence relation u ≡ u−1 for u ∈ G as in Section 14.4 and determine a rule that
leads to a unique representative of each equivalence class. Design a pseudorandom walk
on the set of equivalence classes. The tame set is the set of equivalence classes coming
from elements of the form gx with −N/2 < x ≤ N/2. Note that the tame set has 1 +N/2
elements and every equivalence class {gx, g−x} arises in two ways, except the singleton
class {1} and the class {−N/2, N/2}.

A natural choice for the wild set is the set of equivalence classes coming from elements
of the form hgx with −N/2 < x ≤ N/2. Note that the size of the wild set now depends
on the discrete logarithm problem: if h = g0 = 1 then the wild set has 1 +N/2 elements
while if h = gN/2 then the wild set has N elements. Even more confusingly, sampling
from the wild set by uniformly choosing x does not, in general, lead to uniform sampling
from the wild set. This is because the equivalence class {hgx, (hgx)−1} can arise in either
one or two ways, depending on h. To analyse the algorithm it is necessary to use a non-
uniform version of the birthday paradox (see, for example, Galbraith and Holmes [223]).
The main result of [228] is an algorithm that solves the DLP in heuristic average-case
expected (1.36 + o(1))

√
N group operations.

14.8 Parallel Collision Search in Other Contexts

Van Oorschot and Wiener [473] propose a general method, motivated by Pollard’s rho
algorithm, for finding collisions of functions using distinguished points and parallelisation.
They give applications to cryptanalysis of hash functions and block ciphers that are
beyond the scope of this book. But they also give applications of their method for
algebraic meet-in-the-middle attacks, so we briefly give the details here.

First we sketch the parallel collision search method. Let f : S → S be a function
mapping some set S of size N to itself. Define a set D of distinguished points in S.
Each client chooses a random starting point x1 ∈ S, iterates xn+1 = f(xn) until it hits
a distinguished point, and sends (x1, xn, n) to the server. The client then restarts with a
new random starting point. Eventually the server gets two triples (x1, x, n) and (x′1, x, n

′)
for the same distinguished point. As long as we don’t have a “Robin Hood”14 (i.e., one
walk is a subsequence of another) the server can use the values (x1, n) and (x′1, n

′) to
efficiently find a collision f(x) = f(y) with x 6= y. The expected running time for each
client is

√
πN/2/NP + 1/θ, using the notation of this chapter. The storage requirement

depends on the choice of θ.
We now consider the application to meet-in-the-middle attacks. A general meet-in-

the-middle attack has two sets S1 and S2 and functions fi : Si → R for i = 1, 2. The
goal is to find a1 ∈ S1 and a2 ∈ S2 such that f1(a1) = f2(a2). The standard solution
(as in baby-step-giant-step) is to compute and store all (f1(a1), a1) in an easily searched
structure and then test for each a2 ∈ S2 whether f2(a2) is in the structure. The running
time is #S1 + #S2 function evaluations and the storage is proportional to #S1.

14Robin Hood is a character of English folklore who is expert in archery. His prowess allows him to
shoot a second arrow on exactly the same trajectory as the first, so that the second arrow splits the first.
Chinese readers may substitute the name Houyi.

14.9. POLLARD RHO FACTORING METHOD 319

The idea of [473] is to phrase this as a collision search problem for a single function
f . For simplicity we assume that #S1 = #S2 = N . We write I = {0, 1, . . . , N − 1}
and assume one can construct bijective functions σi : I → Si for i = 1, 2. One defines a
surjective map

ρ : R → I × {1, 2}
and a set S = I × {1, 2}. Finally, define f : S → S as f(x, i) = ρ(fi(σi(x))). Clearly,
the desired collision f1(a1) = f2(a2) can arise from f(σ−1

1 (a1), 1) = f(σ−1
2 (a2), 2), but

collisions can also arise in other ways (for example, due to collisions in ρ). Indeed, since
#S = 2N one expects there to be roughly 2N pairs (a1, a2) ∈ S2 such that a1 6= a2
but f(a1) = f(a2). In many applications there is only one collision (van Oorschot and
Wiener call it the “golden collision”) that actually leads to a solution of the problem. It
is therefore necessary to analyse the algorithm carefully to determine the expected time
until the problem is solved.

Let NP be the number of clients and let NM be the total number of group elements
that can be stored on the server. Van Oorschot and Wiener give a heuristic argument
that the algorithm finds a useful collision after 2.5

√
(2N)3/NM/NP group operations per

client. This is taking θ = 2.25
√
NM/2N for the probability of a distinguished point. We

refer to [473] for the details.

14.8.1 The Low Hamming Weight DLP

Recall the low Hamming weight DLP: Given g, h, n, w find x of bit-length n and Hamming
weight w such that h = gx. The number of values for x is M =

(
n
w

)
and there is a naive

low storage algorithm running in time Õ(M). We stress that the symbol w here means
the Hamming weight; rather than its meaning earlier in this chapter.

Section 13.6 gave baby-step-giant-step algorithms for the low Hamming weight DLP
that perform O(

√
w
(n/2
w/2

)
) group operations. Hence these methods require time and space

roughly proportional to
√
wM .

To solve the low Hamming weight DLP using parallel collision search one sets R = 〈g〉
and S1,S2 to be sets of integers of binary length n/2 and Hamming weight roughly w/2.

Define the functions f1(a) = ga and f2(a) = hg−2n/2a so that a collision f1(a1) = f2(a2)
solves the problem. Note that there is a unique choice of (a1, a2) such that f1(a1) = f2(a2)
but when one uses the construction of van Oorschot and Wiener to get a single function f
then there will be many useless collisions in f . We have N = #S1 = #S2 ≈

(n/2
w/2

)
≈
√
M

and so get an algorithm whose number of group operations is proportional to N3/2 = M3/4

yet requires low storage. This is a significant improvement over the naive low-storage
method, but still slower than baby-step-giant-step.

Exercise 14.8.1. Write this algorithm in pseudocode and give a more careful analysis
of the running time.

It remains an open problem to give a low memory algorithm for the low Hamming
weight DLP with complexity proportional to

√
wM as with the BSGS methods.

14.9 Pollard Rho Factoring Method

This algorithm was proposed in [486] and was the first algorithm invented by Pollard that
exploited pseudorandom walks. As more powerful factoring algorithms exist, we keep the
presentation brief. For further details see Section 5.6.2 of Stinson [592] or Section 5.2.1
of Crandall and Pomerance [162].

320 CHAPTER 14. PSEUDORANDOM WALKS

Let N be a composite integer to be factored and let p | N be a prime (usually p is
the smallest prime divisor of N). We try to find a relation that holds modulo p but not
modulo other primes dividing N .

The basic idea of the rho factoring algorithm is to consider the pseudorandom walk
x1 = 2 and

xi+1 = f(xi) (mod N)

where the usual choice for f(x) is x2 + 1 (or f(x) = x2 + a for some small integer a).
Consider the values xi (mod p) where p | N . The sequence xi (mod p) is a pseudorandom
sequence of residues modulo p, and so after about

√
πp/2 steps we expect there to be

indicies i and j such that xi ≡ xj (mod p). We call this a collision. If xi 6≡ xj (mod N)
then we can split N as gcd(xi − xj , N).

Example 14.9.1. Let p = 11. Then the rho iteration modulo p is

2, 5, 4, 6, 4, 6, 4, . . .

Let p = 19. Then the sequence is

2, 5, 7, 12, 12, 12, . . .

As with the discrete logarithm algorithms, the walk is deterministic in the sense that
a collision leads to a cycle. Let lt be the length of the tail and lh be the length of the
cycle. Then the first collision is

xlt+lh ≡ xlt (mod p).

We can use Floyd’s cycle finding algorithm to detect the collision. The details are given
in Algorithm 21. Note that it is not efficient to compute the gcd in line 5 of the algorithm
for each iteration; Pollard [486] gave a solution to reduce the number of gcd computations
and Brent [98] gave another.

Algorithm 21 The rho algorithm for factoring

Input: N
Output: A factor of N
1: x1 = 2, x2 = f(x1) (mod N)
2: repeat
3: x1 = f(x1) (mod N)
4: x2 = f(f(x2)) (mod N)
5: d = gcd(x2 − x1, N)
6: until 1 < d < N
7: return d

We now briefly discuss the complexity of the algorithm. Note that the “algorithm”
may not terminate, for example if the length of the cycle and tail are the same for all
p | N then the gcd will always be either 1 or N . In practice one would stop the algorithm
after a certain number of steps and repeat with a different choice of x1 and/or f(x). Even
if it terminates, the length of the cycle of the rho may be very large. Hence, the usual
approach is to make the heuristic assumption that the rho pseudorandom walk behaves
like a random walk. To have meaningful heuristics one should analyse the algorithm when
the function f(x) is randomly chosen from a large set of possible functions.

Note that the rho method is more general than the p − 1 method (see Section 12.3),
since a random p | N is not very likely to be

√
p-smooth.

14.10. POLLARD KANGAROO FACTORING 321

Theorem 14.9.2. Let N be composite, not a prime power and not “too smooth”. Assume
that the Pollard rho walk modulo p behaves like a pseudorandom walk for all p | N . Then
the rho algorithm factors N in O(N1/4 log(N)2) bit operations.

Proof: (Sketch) Let p be a prime dividing N such that p ≤
√
N . Define the values lt

and lh corresponding to the sequence xi (mod p). If the walk behaves sufficiently like a
random walk then, by the birthday paradox, we will have lh, lt ≈

√
πp/8. Similarly, for

some other prime q | N one expects that the walk modulo q has different values lh and
lt. Hence, after O(

√
p) iterations of the loop one expects to split N . �

Bach [21] has given a rigorous analysis of the rho factoring algorithm. He proves
that if 0 ≤ x, y < N are chosen randomly and the iteration is x1 = x, xi+1 = x2i + y,
then the probability of finding the smallest prime factor p of N after k steps is at least
k(k − 1)/2p+O(p−3/2) as p goes to infinity, where the constant in the O depends on k.
Bach’s method cannot be used to analyse the rho algorithm for discrete logarithms.

Example 14.9.3. Let N = 144493. The values (xi, x2i) for i = 1, 2, . . . , 7 are

(2, 5), (5, 677), (26, 9120), (677, 81496), (24851, 144003), (9120, 117992), (90926, 94594)

and one can check that gcd(x14 − x7, N) = 131.
The reason for this can be seen by considering the values xi modulo p = 131. The

sequence of values starts

2, 5, 26, 22, 92, 81, 12, 14, 66, 34, 109, 92

and we see that x12 = x5 = 92. The tail has length lt = 5 and the head has length lh = 7.
Clearly, x14 ≡ x7 (mod p).

Exercise 14.9.4. Factor the number 576229 using the rho algorithm.

Exercise 14.9.5. The rho algorithm usually uses the function f(x) = x2 + 1. Why do
you think this function is used? Why are the functions f(x) = x2 and f(x) = x2 − 2 less
suitable?

Exercise 14.9.6. Show that if N is known to have a prime factor p ≡ 1 (mod m) for
m > 2 then it is preferable to use the polynomial f(x) = xm + 1.

Exercise 14.9.7. Floyd’s and Brent’s cycle finding methods are both useful for the
rho factoring algorithm. Explain why one cannot use the other cycle finding meth-
ods listed in Section 14.2.2 (Sedgewick-Szymanski-Yao, Schnorr-Lenstra, Nivasch, dis-
tinguished points) for the rho factoring method.

14.10 Pollard Kangaroo Factoring

One can also use the kangaroo method to obtain a factoring algorithm. This is a much
more direct application of the discrete logarithm algorithm we have already presented.
Let N = pq be a product of two n-bit primes. Then

√
N < p+ q < 3

√
N . Let g ∈ Z∗

N be
chosen at random. Since gϕ(N)/2 ≡ 1 (mod N) we have

g(N+1)/2 ≡ gx (mod N)

for x = (p+ q)/2. In other words, we have a discrete logarithm problem in Z∗
N an interval

of width
√
N . Using the standard kangaroo algorithm in the group Z∗

N one expects to
find x (and hence split N) in time Õ(N1/4).

322 CHAPTER 14. PSEUDORANDOM WALKS

Exercise 14.10.1. The above analysis was for integers N which are a product of two
primes of very similar size. Let N now be a general composite integer and let p | N be
the smallest prime dividing N . Then p <

√
N . Choose g ∈ Z∗

N and let h = gN (mod N).
Then h ≡ gx (mod p) for some 1 ≤ x < p. It is natural to try to use the kangaroo method
to find x in time O(

√
p log(N)2). If x were found then gN−x ≡ 1 (mod p) and so one can

split N as gcd(gN−x − 1 (mod N), N). However, it seems to be impossible to construct
an algorithm based on this idea. Explain why.

Chapter 15

Factoring and Discrete
Logarithms in Subexponential
Time

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

One of the most powerful tools in mathematics is linear algebra, and much of mathe-
matics is devoted to solving problems by reducing them to it. It is therefore natural to try
to solve the integer factorisation and discrete logarithm problems (DLP) in this way. This
chapter briefly describes a class of algorithms that exploit a notion called “smoothness”,
to reduce factoring or DLP to linear algebra. We present such algorithms for integer
factorisation, the DLP in the multiplicative group of a finite field, and the DLP in the
divisor class group of a curve.

It is beyond the scope of this book to give all the details of these algorithms. In-
stead, the aim is to sketch the basic ideas. We mainly present algorithms with nice
theoretical properties (though often still requiring heuristic assumptions) rather than the
algorithms with the best practical performance. We refer to Crandall and Pomerance
[162], Shoup [556] and Joux [317] for further reading.

The chapter is arranged as follows. First we present results on smooth integers, and
then sketch Dixon’s random squares factoring algorithm. Section 15.2.3 then summarises
the important features of all algorithms of this type. We then briefly describe a number
of algorithms for the discrete logarithm problem in various groups.

15.1 Smooth Integers

Recall from Definition 12.3.1 that an integer is B-smooth if all its prime divisors are at
most B. We briefly recall some results on smooth integers; see Granville [267] for a survey
of this subject and for further references.

323

324 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

Definition 15.1.1. Let X,Y ∈ N be such that 2 ≤ Y < X . Define

Ψ(X,Y) = #{n ∈ N : 1 ≤ n ≤ X, n is Y -smooth}.

It is important for this chapter to have good bounds on Ψ(X,Y). Let u = log(X)/ log(Y)
(as usual log denotes the natural logarithm), so that u > 1, Y = X1/u and X = Y u.
There is a function ρ : R>0 → R>0 called the Dickman-de Bruijn function (for the
exact definition of this function see Section 1.4.5 of [162]) such that, for fixed u > 1,
Ψ(X,X1/u) ∼ Xρ(u), where f(X) ∼ g(X) means limX→∞ f(X)/g(X) = 1. A crude es-
timate for ρ(u), as u→∞ is ρ(u) ≈ 1/uu. For further details and references see Section
1.4.5 of [162].

The following result of Canfield, Erdös and Pomerance [117] is the main tool in this
subject. This is a consequence of Theorem 3.1 (and the corollary on page 15) of [117].

Theorem 15.1.2. Let N ∈ N. Let ǫ, u ∈ R be such that ǫ > 0 and 3 ≤ u ≤ (1 −
ǫ) log(N)/ log(log(N)). Then there is a constant cǫ (that does not depend on u) such that

Ψ(N,N1/u) = N exp(−u(log(u) + log(log(u))− 1 + (log(log(u))− 1)/ log(u) + E(N, u)))
(15.1)

where |E(N, u)| ≤ cǫ(log(log(u))/ log(u))2.

Corollary 15.1.3. Let the notation be as in Theorem 15.1.2. Then Ψ(N,N1/u) =
Nu−u+o(u) = Nu−u(1+o(1)) uniformly as u → ∞ and u ≤ (1 − ǫ) log(N)/ log(log(N))
(and hence also N →∞).

Exercise 15.1.4. Prove Corollary 15.1.3.
[Hint: Show that the expression inside the exp in equation (15.1) is of the form−u log(u)+
o(u) log(u).]

We will use the following notation throughout the book.

Definition 15.1.5. Let 0 ≤ a ≤ 1 and c ∈ R>0. The subexponential function for the
parameters a and c is

LN(a, c) = exp(c log(N)a log(log(N))1−a).

Note that taking a = 0 gives LN(0, c) = log(N)c (polynomial) while taking a = 1 gives
LN (1, c) = N c (exponential). Hence LN (a, c) interpolates exponential and polynomial
growth. A complexity O(LN (a, c)) with 0 < a < 1 is called subexponential.

Lemma 15.1.6. Let 0 < a < 1 and 0 < c.

1. LN(a, c)m = LN (a,mc) for m ∈ R>0.

2. Let 0 < a1, a2 < 1 and 0 < c1, c2. Then, where the term o(1) is as N →∞,

LN (a1, c1) · LN (a2, c2) =

LN(a1, c1 + o(1)) if a1 > a2,
LN(a1, c1 + c2) if a1 = a2,
LN(a2, c2 + o(1)) if a2 > a1.

3.

LN (a1, c1) + LN (a2, c2) =

O(LN (a1, c1)) if a1 > a2,
O(LN (a1,max{c1, c2}+ o(1))) if a1 = a2,
O(LN (a2, c2)) if a2 > a1.

15.2. FACTORING USING RANDOM SQUARES 325

4. Let 0 < b < 1 and 0 < d. If M = LN (a, c) then LM (b, d) = LN(ab, dcba1−b + o(1))
as N →∞.

5. log(N)m = O(LN (a, c)) for any m ∈ N.

6. LN(a, c) log(N)m = O(LN (a, c+ o(1))) as N →∞ for any m ∈ N. Hence, one can
always replace Õ(LN (a, c)) by O(LN (a, c+ o(1))).

7. log(N)m ≤ LN (a, o(1)) as N →∞ for any m ∈ N.

8. If F (N) = O(LN (a, c)) then F (N) = LN (a, c+ o(1)) as N →∞.

9. LN(1/2, c) = N c
√

log(log(N))/ log(N).

Exercise 15.1.7. Prove Lemma 15.1.6.

Corollary 15.1.8. Let c > 0. As N →∞, the probability that a randomly chosen integer
1 ≤ x ≤ N is LN (1/2, c)-smooth is LN(1/2,−1/(2c) + o(1)).

Exercise 15.1.9. Prove Corollary 15.1.8 (using Corollary 15.1.3).

Exercise 15.1.10. Let 0 < b < a < 1. Let 1 ≤ x ≤ LN(a, c) be a randomly chosen
integer. Show that the probability that x is LN(b, d)-smooth is LN(a−b,−c(a−b)/d+o(1))
as N →∞.

15.2 Factoring using Random Squares

The goal of this section is to present a simple version of Dixon’s random squares factoring
algorithm. This algorithm is easy to describe and analyse, and already displays many of
the important features of the algorithms in this chapter. Note that the algorithm is not
used in practice. We give a complexity analysis and sketch how subexponential running
times naturally arise. Further details about this algorithm can be found in Section 16.3
of Shoup [556] and Section 19.5 of von zur Gathen and Gerhard [238].

Let N ∈ N be an integer to be factored. We assume in this section that N is odd,
composite and not a perfect power. As in Chapter 12 we focus on splitting N into a
product of two smaller numbers (neither of which is necessarily prime). The key idea is
that if one can find congruent squares

x2 ≡ y2 (mod N)

such that x 6≡ ±y (mod N) then one can split N by computing gcd(x− y,N).

Exercise 15.2.1. Let N be an odd composite integer and m be the number of distinct
primes dividing N . Show that the equation x2 ≡ 1 (mod N) has 2m solutions modulo N .

A general way to find congruent squares is the following.1 Select a factor base
B = {p1, . . . , ps} consisting of the primes ≤ B for some B ∈ N. Choose uniformly at
random an integer 1 ≤ x < N , compute a = x2 (mod N) reduced to the range 1 ≤ a < N
and try to factor a as a product in B (e.g., using trial division).2 If a is B-smooth then
this succeeds, in which case we have a relation

x2 ≡
s∏

i=1

peii (mod N). (15.2)

1This idea goes back to Kraitchik in the 1920s; see [489] for some history.
2To obtain non-trivial relations one should restrict to integers in the range

√
N < x < N −

√
N . But

it turns out to be simpler to analyse the algorithm for the case 1 ≤ x < N . Note that the probability
that a randomly chosen integer 1 ≤ x < N satisfies 1 ≤ x <

√
N is negligible.

326 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

The values x for which a relation is found are stored as x1, x2, . . . , xt. The corresponding
exponent vectors ej = (ej,1, . . . , ej,s) for 1 ≤ j ≤ t are also stored. When enough relations
have been found we can use linear algebra modulo 2 to obtain congruent squares. More
precisely, compute λj ∈ {0, 1} such that not all λj = 0 and

t∑

j=1

λjej ≡ (0, 0, . . . , 0) (mod 2).

Equivalently, this is an integer linear combination

t∑

j=1

λjej = (2f1, . . . , 2fs) (15.3)

with not all the fi equal to zero. Let

X ≡
t∏

j=1

x
λj
j (mod N) , Y ≡

s∏

i=1

pfii (mod N). (15.4)

One then has X2 ≡ Y 2 (mod N) and one can hope to split N by computing gcd(X−Y,N)
(note that this gcd could be 1 or N , in which case the algorithm has failed). We present
the above method as Algorithm 22.

Algorithm 22 Random squares factoring algorithm

Input: N ∈ N
Output: Factor of N
1: Select a suitable B ∈ N and construct the factor base B = {p1, . . . , ps} consisting of

all primes ≤ B
2: repeat
3: Choose an integer 1 ≤ x < N uniformly at random and compute a = x2 (mod N)

reduced to the range 1 ≤ a < N
4: Try to factor a as a product in B (e.g., using trial division)
5: if a is B-smooth then
6: store the value x and the exponent row vector e = (e1, . . . , es) as in equa-

tion (15.2) in a matrix
7: end if
8: until there are s+ 1 rows in the matrix
9: Perform linear algebra over F2 to find a non-trivial linear dependence among the

vectors ej modulo 2
10: Define X and Y as in equation (15.4)
11: return gcd(X − Y,N)

We emphasise that the random squares algorithm has two distinct stages. The first
stage is to generate enough relations. The second stage is to perform linear algebra.
The first stage can easily be distributed or parallelised, while the second stage is hard to
parallelise.

Example 15.2.2. Let N = 19 · 29 = 551 and let B = {2, 3, 5}. One finds the following
congruences (in general 4 relations would be required, but we are lucky in this case)

342 ≡ 2 · 33 (mod N)

522 ≡ 22 · 53 (mod N)

552 ≡ 2 · 33 · 5 (mod N).

15.2. FACTORING USING RANDOM SQUARES 327

These relations are stored as the matrix

1 3 0
2 0 3
1 3 1

 .

The sum of the three rows is the vector

(4, 6, 4) .

Let
X = 264 ≡ 34 · 52 · 55 (mod 551) and Y = 496 ≡ 22 · 33 · 52 (mod 551).

It follows that
X2 ≡ Y 2 (mod N)

and gcd(X − Y,N) = 29 splits N .

Exercise 15.2.3. Factor N = 3869 using the above method and factor base {2, 3, 5, 7}.

15.2.1 Complexity of the Random Squares Algorithm

There are a number of issues to deal with when analysing this algorithm. The main
problem is to decide how many primes to include in the factor base. The prime number
theorem implies that s = #B ≈ B/ log(B). If we make B larger then the chances of
finding a B-smooth number increase, but on the other hand, we need more relations and
the linear algebra takes longer. We will determine an optimal value for B later. First we
must write down an estimate for the running time of the algorithm, as a function of s.
Already this leads to various issues:

• What is the probability that a random value x2 (mod N) factors over the factor
base B?

• How many relations do we require until we can be sure there is a non-trivial vector
e?

• What are the chances that computing gcd(X − Y,N) splits N?

We deal with the latter two points first. It is immediate that s+1 relations are sufficient
for line 9 of Algorithm 22 to succeed. The question is whether 1 < gcd(X − Y,N) < N
for the corresponding integers X and Y . There are several ways the algorithm can fail to
split N . For example, it is possible that a relation in equation (15.2) is such that all ei

are even and x ≡ ±∏i p
ei/2
i (mod N). One way that such relations could arise is from

1 ≤ x <
√
N or N −

√
N < x < N ; this situation occurs with negligible probability.

If
√
N < x < N −

√
N and a = Y 2 is a square in N then 1 ≤ Y <

√
N and so

x 6≡ ±Y (mod N) and the relation is useful. The following result shows that all these
(and other) bad cases occur with probability at most 1/2.

Lemma 15.2.4. The probability to split N using X and Y is at least 1
2 .

Proof: Let X and Y be the integers computed in line 10 of Algorithm 22. We treat Y
as fixed, and consider the probability distribution for X . By Exercise 15.2.1, the number
of solutions Z to Z2 ≡ Y 2 (mod N) is 2m where m ≥ 2 is the number of distinct primes
dividing N . The two solutions Z = ±Y are useless but the other 2m− 2 solutions will all
split N .

Since the values for x are chosen uniformly at random it follows that X is a randomly
chosen solution to the equation X2 ≡ Y 2 (mod N). It follows that the probability to split
N is (2m − 2)/2m ≥ 1/2. �

328 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

Exercise 15.2.5. Show that if one takes s+ l relations where l ≥ 2 then the probability
of splitting N is at least 1− 1/2l.

We now consider the probability of smoothness. We first assume the probability that
x2 (mod N) is smooth is the same as the probability that a random integer modulo N is
smooth.3

Lemma 15.2.6. Let the notation be as above. Let TB be the expected number of trials
until a randomly chosen integer modulo N is B-smooth. Assuming that squares modulo N
are as likely to be smooth as random integers of the same size, Algorithm 22 has expected
running time at most

c1#B2TBM(log(N)) + c2(#B)3

bit operations for some constants c1, c2 (where M(n) is the cost of multiplying two n-bit
integers).

Proof: Suppose we compute the factorisation of x2 (mod N) over B by trial division.
This requires O(#BM(log(N))) bit operations for each value of x. We need (#B + 1)
relations to have a soluble linear algebra problem. As said above, the expected number
of trials of x to get a B-smooth value of x2 (mod N) is TB. Hence the cost of finding the
relations is O((#B + 1)TB(#B)M(log(N))), which gives the first term.

The linear algebra problem can be solved using Gaussian elimination (we are ignoring
that the matrix is sparse) over F2, which takes O((#B)3) bit operations. This gives the
second term. �

It remains to choose B as a function of N to minimise the running time. By the dis-
cussion in Section 15.1, it is natural to approximate TB by uu where u = log(N)/ log(B).
We now explain how subexponential functions naturally arise in such algorithms. Since
increasing B makes the linear algebra slower, but makes relations more likely (i.e., lowers
TB), a natural approach to selecting B is to try to equate both terms of the running time
in Lemma 15.2.6. This leads to uu = #B. Putting u = log(N)/ log(B), #B = B/ log(B),
taking logs, and ignoring log(log(B)) terms, gives

log(N) log(log(N))/ log(B) ≈ log(B).

This implies log(B)2 ≈ log(N) log(log(N)) and so B ≈ LN(1/2, 1). The overall complex-
ity for this choice of B would be LN(1/2, 3 + o(1)) bit operations.

A more careful argument is to set B = LN (1/2, c) and use Corollary 15.1.3. It fol-
lows that TB = LN(1/2, 1/(2c) + o(1)) as N → ∞. Putting this into the equation of
Lemma 15.2.6 gives complexity LN(1/2, 2c+ 1/(2c) + o(1)) +LN (1/2, 3c) bit operations.
The function x+ 1/x is minimised at x = 1, hence we should take c = 1/2.

Theorem 15.2.7. Let the notation be as above. Under the same assumptions as Lemma 15.2.6
then Algorithm 22 has complexity

LN (1/2, 2 + o(1))

bit operations as N →∞.

3Section 16.3 of Shoup [556] gives a modification of the random squares algorithm for which one can
avoid this assumption. The trick is to note that at least one of the cosets of (Z/NZ)∗/((Z/NZ)∗)2 has
at least as great a proportion of smooth numbers as random integers up to N (Shoup credits Rackoff
for this trick). The idea is to work in one of these cosets by choosing at random some 1 < δ < N and
considering relations coming from smooth values of δx2 (mod N).

15.2. FACTORING USING RANDOM SQUARES 329

Proof: Put B = LN(1/2, 1/2) into Lemma 15.2.6. �

We remark that, unlike the Pollard rho or Pollard p − 1 methods, this factoring
algorithm has essentially no dependence on the factors of N . In other words, its running
time is essentially the same for all integers of a given size. This makes it particularly
suitable for factoring N = pq where p and q are primes of the same size.

15.2.2 The Quadratic Sieve

To improve the result of the previous section it is necessary to reduce the cost of the
linear algebra and to reduce the cost of decomposing smooth elements as products of
primes. We sketch the quadratic sieve algorithm of Pomerance. We do not have space
to present all the details of this algorithm (interested readers should see Section 6.1 of
[162] or Section 16.4.2 of [556]).

A crucial idea, which seems to have first appeared in the work of Schroeppel4, is
sieving. The point is to consider a range of values of x and simultaneously determine
the decompositions of x2 (mod N) over the factor base. It is possible to do this so that
the cost of each individual decomposition is only O(log(B)) bit operations.

Another crucial observation is that the relation matrix is sparse, in other words, rows
of the matrix have rather few non-zero entries. In such a case, the cost of linear algebra can
be reduced from O((#B)3) bit operations to O((#B)2+o(1)) bit operations (as #B → ∞).
The best methods are due to Lanczos or Wiedemann; see Section 6.1.3 of Crandall and
Pomerance [162] or Section 3.4 of Joux [317] for references and discussion.

A further trick is to choose x = ⌊
√
N⌋ + i where i = 0, 1,−1, 2,−2, The idea is

that if x =
√
N + ǫ then either x2 − N or N − x2 is a positive integer of size 2

√
N |ǫ|.

Since these integers are much smaller than N they have a much better chance of being
smooth than the integers x2 (mod N) in the random squares algorithm. To allow for the
case of ǫ < 0 we need to add −1 to our factor base and use the fact that a factorisation
N − x2 =

∏s
i=1 p

ei
i corresponds to a relation x2 ≡ (−1)

∏s
i=1 p

ei
i (mod N).

Since we are now only considering values x of the form
√
N + ǫ where |ǫ| is small it is

necessary to assume the probability that x2 −N or N − x2 (as appropriate) is B-smooth
is that same as the probability that a randomly chosen integer of that size is B-smooth.
This is a rather strong assumption (though it is supported by numerical evidence) and so
the running time estimates of the quadratic sieve are only heuristic.

The heuristic complexity of the quadratic sieve is determined in Exercise 15.2.8. Note
that, since we will need to test LN(1/2, 1 + o(1)) values (here o(1) is as N → ∞) for
smoothness, we have |ǫ| = LN(1/2, 1 + o(1)). It follows that the integers being tested for
smoothness have size

√
NLN(1/2, 1 + o(1)) = N1/2+o(1).

Exercise 15.2.8.⋆ Let TB be the expected number of trials until an integer of size
2
√
NLN(1/2, 1) is B-smooth. Show that the running time of the quadratic sieve is at

most
c1#BTB log(B)M(log(N)) + c2#B2+o(1)

bit operations for some constants c1, c2 as N →∞.
Let B = LN (1/2, 1/2). Show that the natural heuristic assumption (based on Corol-

lary 15.1.8) is that TB = LN(1/2, 1/2 + o(1)). Hence, show that the heuristic complexity
of the quadratic sieve is LN(1/2, 1 + o(1)) bit operations as N →∞.

Example 15.2.9. Let N = 2041 so that ⌊
√
N⌋ = 45.

Let B = {−1, 2, 3, 5}. Taking x = 43, 44, 45, 46 one finds the following factorisations
of x2 −N :

4See [371, 489] for some remarks on the history of integer factoring algorithms.

330 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

x x2 (mod N) e
43 −26 · 3 (1, 6, 1, 0)
44 Not 5-smooth
45 −24 (1, 4, 0, 0)
46 3 · 52 (0, 0, 1, 2)

Taking e = e1 + e2 + e3 = (2, 10, 2, 2) gives all coefficients even. Putting everything
together, we set X = 43 · 45 · 46 ≡ 1247 (mod N) and Y = −1 · 25 · 3 · 5 ≡ 1561 (mod N).
One can check that X2 ≡ Y 2 (mod N) and that gcd(X − Y,N) = 157.

Exercise 15.2.10. Show that in the quadratic sieve one can also use values x = ⌊
√
kN⌋+i

where k ∈ N is very small and i = 0, 1,−1, 2,−2,

Exercise 15.2.11. Show that using sieving and fast linear algebra, but not restricting to
values ±x2 (mod N) of size N1/2+o(1) gives an algorithm with heuristic expected running
time of LN(1/2,

√
2 + o(1)) bit operations as N →∞.

Exercise 15.2.12. A subexponential algorithm is asymptotically much faster than a
Õ(N1/4) algorithm. Verify that if N = 21024 then N1/4 = 2256 while LN(1/2, 2) ≈ 2197

and LN(1/2, 1) ≈ 298.5.

The best proven asymptotic complexity for factoring integers N is LN (1/2, 1 + o(1))
bit operations. This result is due to Pomerance and Lenstra [381].

15.2.3 Summary

We briefly highlight the key ideas in the algorithms of this section. The crucial concept
of smooth elements of the group (Z/NZ)∗ arises from considering an integer modulo N
as an element of Z. The three essential properties of smooth numbers that were used in
the algorithm are:

1. One can efficiently decompose an element of the group as a product of smooth
elements, or determine that the element is not smooth.

2. The probability that a random element is smooth is sufficiently high.

3. There is a way to apply linear algebra to the relations obtained from smooth ele-
ments to solve the computational problem.

We will see analogues of these properties in the algorithms below.
There are other general techniques that can be applied in most algorithms of this

type. For example, the linear algebra problems are usually sparse and so the matrices
and algorithms should be customised for this. Another general concept is “large prime
variation” which, in a nutshell, is to also store “nearly smooth” relations (i.e., elements
that are the product of a smooth element with one or two prime elements that are not
too large) and perform some elimination of these “large primes” before doing the main
linear algebra stage (this is similar to, but more efficient than, taking a larger factor base).
Finally we remark that the first stage of these algorithms (i.e., collecting relations) can
always be distributed or parallelised.

15.3 Elliptic Curve Method Revisited

We assume throughout this section that N ∈ N is an integer to be factored and that N
is odd, composite, and not a perfect power. We denote by p the smallest prime factor of
N .

15.3. ELLIPTIC CURVE METHOD REVISITED 331

The elliptic curve method (ECM) works well in practice but, as with the Pollard
p − 1 method, its complexity depends on the size of the smallest prime dividing N .
It is not a polynomial-time algorithm because, for any constant c > 0 and over all N
and p | N , a randomly chosen elliptic curve over Fp is not likely to have O(log(N)c)-
smooth order. As we have seen, the theorem of Canfield, Erdös and Pomerance [117] says
it is more reasonable to hope that integers have a subexponential probability of being
subexponentially smooth. Hence, one might hope that the elliptic curve method has
subexponential complexity. Indeed, Lenstra [377] makes the following conjecture (which
is essentially that the Canfield-Erdös-Pomerance result holds in small intervals).

Conjecture 15.3.1. (Lenstra [377], page 670) The probability that an integer, cho-
sen uniformly at random in the range (X −

√
X,X +

√
X), is LX(1/2, c)-smooth is

LX(1/2,−1/(2c) + o(1)) as X tends to infinity.5

One can phrase Conjecture 15.3.1 as saying that, if ps is the probability that a random
integer between 1 and X is Y -smooth, then Ψ(X + 2

√
X,Y)−Ψ(X,Y) ≈ 2

√
Xps. More

generally, one would like to know that, for sufficiently large6 X,Y and Z,

Ψ(X + Z, Y)−Ψ(X,Y) ∼ ZΨ(X,Y)/X (15.5)

or, in other words, that integers in a short interval at X are about as likely to be Y -smooth
as integers in a large interval at X .

We now briefly summarise some results in this area; see Granville [267] for details and
references. Harman (improved by Lenstra, Pila and Pomerance [380]) showed, for any
fixed β > 1/2 and X ≥ Y ≥ exp(log(X)2/3+o(1)), where the o(1) is as X →∞, that

Ψ(X +Xβ, Y)−Ψ(X,Y) > 0.

Obtaining results for the required value β = 1/2 seems to be hard and the experts refer
to the “

√
X barrier” for smooth integers in short intervals. It is known that this barrier

can be broken most of the time: Hildebrand and Tenenbaum showed that, for any ǫ > 0,
equation (15.5) holds when X ≥ Y ≥ exp(log(X)5/6+ǫ) and Y exp(log(X)1/6) ≤ Z ≤ X
for all but at most M/ exp(log(M)1/6−ǫ) integers 1 ≤ X ≤ M . As a special case, this
result shows that, for almost all primes p, the interval [p−√p, p+

√
p] contains a Y -smooth

integer where Y = exp(log(X)5/6+ǫ) (i.e., subexponential smoothness).
Using Conjecture 15.3.1 one obtains the following complexity for the elliptic curve

method (we stress that the complexity is in terms of the smallest prime factor p of N ,
rather than N itself).

Theorem 15.3.2. (Conjecture 2.10 of [377]) Assume Conjecture 15.3.1. One can find
the smallest factor p of an integer N in Lp(1/2,

√
2 + o(1))M(log(N)) bit operations as

p→∞.

Proof: Guess the size of p and choose B = Lp(1/2, 1/
√

2) (since the size of p is not known
one actually runs the algorithm repeatedly for slowly increasing values of B). Then each
run of Algorithm 12 requires O(B log(B)M(log(N))) = Lp(1/2, 1/

√
2 + o(1))M(log(N))

bit operations. By Conjecture 15.3.1 one needs to repeat the process Lp(1/2, 1/
√

2+o(1))
times. The result follows. �

5Lenstra considers the sub-interval (X−
√
X,X+

√
X) of the Hasse interval [X+1−2

√
X,X+1+2

√
X]

because the distribution of isomorphism classes of randomly chosen elliptic curves is relatively close to
uniform when restricted to those whose group order lies in this sub-interval. In contrast, elliptic curves
whose group orders are near the edge of the Hasse interval arise with lower probability.

6The notation ∼ means taking a limit as X → ∞, so it is necessary that Y and Z grow in a controlled
way as X does.

332 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

Exercise 15.3.3. Let N = pq where p is prime and p <
√
N < 2p. Show that

Lp(1/2,
√

2 + o(1)) = LN (1/2, 1 + o(1)). Hence, in the worst case, the complexity of
ECM is the same as the complexity of the quadratic sieve.

For further details on the elliptic curve method we refer to Section 7.4 of [162]. We
remark that Lenstra, Pila and Pomerance [380] have considered a variant of the elliptic
curve method using divisor class groups of hyperelliptic curves of genus 2. The Hasse-Weil
interval for such curves contains an interval of the form (X,X +X3/4) and Theorem 1.3
of [380] proves that such intervals contain LX(2/3, c1)-smooth integers (for some constant
c1) with probability 1/LX(1/3, 1). It follows that there is a rigorous factoring algorithm
with complexity Lp(2/3, c) bit operations for some constant c2. This algorithm is not
used in practice, as the elliptic curve method works fine already.

Exercise 15.3.4. Suppose a sequence of values 1 < x < N are chosen uniformly at
random. Show that one can find such a value that is LN(2/3, c)-smooth, together with
its factorisation, in expected LN(1/3, c′ + o(1)) bit operations for some constant c′.

Remark 15.3.5. It is tempting to conjecture that the Hasse interval contains a polynomially-
smooth integer (indeed, this has been done by Maurer and Wolf [407]; see equation (21.9)).
This is not relevant for the elliptic curve factoring method, since such integers would
be very rare. Suppose the probability that an integer of size X is Y -smooth is ex-
actly 1/uu, where u = log(X)/ log(Y) (by Theorem 15.1.2, this is reasonable as long as
Y 1−ǫ ≥ log(X)). It is natural to suppose that the interval [X − 2

√
X,X + 2

√
X] is likely

to contain a Y -smooth integer if 4
√
X > uu. Let Y = log(X)c. Taking logs of both sides

of the inequality gives the condition

log(4) + 1
2 log(X) >

log(X)

c log(log(X))
(log(log(X))− log(c log(log(X)))).

It is therefore natural to conclude that when c ≥ 2 there is a good chance that the Hasse
interval of an elliptic curve over Fp contains a log(p)c-smooth integer. Proving such a
claim seems to be far beyond the reach of current techniques.

15.4 The Number Field Sieve

The most important integer factorisation algorithm for large integers is the number field
sieve (NFS). A special case of this method was invented by Pollard.7 The algorithm
requires algebraic number theory and a complete discussion of it is beyond the scope of
this book. Instead, we just sketch some of the basic ideas. For full details we refer to
Lenstra and Lenstra [372], Section 6.2 of Crandall and Pomerance [162], Section 10.5 of
Cohen [136] or Stevenhagen [584].

As we have seen from the quadratic sieve, reducing the size of the values being tested
for smoothness yields a better algorithm. Indeed, in the quadratic sieve the numbers were
reduced from sizeO(N) toO(N1/2+o(1)) and, as shown by Exercise 15.2.11, this trick alone
lowers the complexity from O(LN (1/2,

√
2 + o(1))) to O(LN (1/2, 1 + o(1))). To break

the “O(LN (1/2, c)) barrier” one must make the numbers being tested for smoothness
dramatically smaller. A key observation is that if the numbers are of size O(LN (2/3, c′))
then they are O(LN (1/3, c′′)) smooth, for some constants c′ and c′′, with probability
approximately 1/uu = 1/LN(1/3, c′/(3c′′) + o(1)). Hence, one can expect an algorithm

7The goal of Pollard’s method was to factor integers of the form n3 + k where k is small. The the
algorithm in the case of numbers of a special form is known as the special number field sieve.

15.4. THE NUMBER FIELD SIEVE 333

with running time O(LN (1/3, c+o(1))) bit operations, for some constant c, by considering
smaller values for smoothness.

It seems to be impossible to directly choose values x such that x2 (mod N) is of size
LN (2/3, c+ o(1)) for some constant c. Hence, the number field sieve relies on two factor
bases B1 and B2. Using smooth elements over B1 (respectively, B2) and linear algebra one
finds an integer square u2 and an algebraic integer square v2. The construction allows us
to associate an integer w modulo N to v such that u2 ≡ w2 (mod N) and hence one can
try to split N .

We briefly outline the ideas behind the algorithm. First, choose a monic irreducible
polynomial P (x) ∈ Z[x] of degree d (where d grows like ⌊(3 log(N)/ log(log(N)))1/3⌋)
with a root m = ⌊N1/d⌋ modulo N (i.e., P (m) ≡ 0 (mod N)). Factor base B1 is primes
up to B = LN (1/3, c) and factor base B2 is small prime ideals in the ring Z[θ] in the
number field K = Q(θ) = Q[x]/(P (x)) (i.e., θ is a generic root of P (x)). The algorithm
exploits, in the final step, the ring homomorphism φ : Z[x]/(P (x)) → Z/NZ given by
φ(θ) = m (mod N). Suppose the ideal (a − bθ) is a product of prime ideals in B2 (one
factors the ideal (a− bθ) by factoring its norm in Z), say

(a− bθ) =

r∏

i=1

℘eii .

Suppose also that a− bm is a smooth integer in B1, say

a− bm =
s∏

j=1

p
fj
j .

If these equations hold then we call (a − bθ) and a − bm smooth and store a, b and the
sequences of ei and fj . We do not call this a “relation” as there is no direct relationship
between the prime ideals ℘i and the primes pj . Indeed, the ℘j are typically non-principal
ideals and do not necessarily contain an element of small norm. Hence, the two products
are modelled as being “independent”.

It is important to estimate the probability that both the ideal (a− bθ) and the integer
a−bm are smooth. One shows that taking integers |a|, |b| ≤ LN(1/3, c′+o(1)) for a suitable
constant c′ gives (a−bθ) of norm LN(2/3, c′′+o(1)) and a−bm of size LN (2/3, c′′′+o(1))
for certain constants c′′ and c′′′. To obtain a fast algorithm one uses sieving to determine
within a range of values for a and b the pairs (a, b) such that both a − bm and (a − bθ)
factor over the appropriate factor base.

Performing linear algebra on both sides gives a set S of pairs (a, b) such that (ignoring
issues with units and non-principal ideals)

∏

(a,b)∈S
(a− bm) = u2

∏

(a,b)∈S
(a− bθ) = v2

for some u ∈ Z and v ∈ Z[θ]. Finally we can “link” the two factor bases: Applying the
ring homomorphism φ : Z[θ]→ Z gives u2 ≡ φ(v)2 (mod N) and hence we have a chance
to split N . A non-trivial task is computing the actual numbers u and φ(v) modulo N so
that one can compute gcd(u− φ(v), N).

Since one is only considering integers a−bm in a certain range (and ideals in a certain
range) for smoothness one relies on heuristic assumptions about the smoothness prob-
ability. The conjectural complexity of the number field sieve is O(LN (1/3, c + o(1)))

334 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

bit operations as N → ∞ where c = (64/9)1/3 ≈ 1.923. Note, comparing with Exer-
cise 15.2.12, that if N ≈ 21024 then LN (1/3, 1.923) ≈ 287.

15.5 Index Calculus in Finite Fields

We now explain how similar ideas to the above have been used to find subexponential
algorithms for the discrete logarithm problem in finite fields. The original idea is due
to Kraitchik [354]. While all subexponential algorithms for the DLP share certain basic
concepts, the specific details vary quite widely (in particular, precisely what “linear alge-
bra” is required). We present in this section an algorithm that is very convenient when
working in subgroups of prime order r in F∗

q as it relies only on linear algebra over the
field Fr.

Let g ∈ F∗
q have prime order r and let h ∈ 〈g〉. The starting point is the observation

that if one can find integers 0 < Z1, Z2 < r such that

gZ1hZ2 = 1 (15.6)

in F∗
q then logg(h) = −Z1Z

−1
2 (mod r). The idea will be to find such a relation using

a factor base and linear algebra. Such algorithms go under the general name of index
calculus algorithms; the reason for this is that index is another word for discrete loga-
rithm, and the construction of a solution to equation (15.6) is done by calculations using
indices.

15.5.1 Rigorous Subexponential Discrete Logarithms Modulo p

We now sketch a subexponential algorithm for the discrete logarithm problem in F∗
p. It

is closely related to the random squares algorithm of Section 15.2. Let g ∈ F∗
p have order

r (we will assume r is prime, but the general case is not significantly different) and let
h ∈ F∗

p be such that h ∈ 〈g〉. We will also assume, for simplicity, that r2 ∤ (p − 1) (we
show in Exercise 15.5.8 that this condition can be avoided).

The natural idea is to choose the factor base B to be the primes in Z up to B. We let
s = #B. One can take random powers gz (mod p) and try to factor over B. One issue
is that the values gz only lie in a subgroup of F∗

p and so a strong smoothness heuristic
would be required. To get a rigorous algorithm (under the assumption that r2 ∤ (p− 1))
write G′ for the subgroup of F∗

p of order (p − 1)/r, choose a random δ ∈ G′ at each
iteration and try to factor gzδ (mod p); this is now a uniformly distributed element of F∗

p

and so Corollary 15.1.8 can be applied. We remark that the primes pi themselves do not
necessarily lie in the subgroup 〈g〉.
Exercise 15.5.1. Let r | (p − 1) be a prime such that r2 ∤ (p − 1). Let g ∈ F∗

p have
order dividing r and denote by G′ ⊆ F∗

p the subgroup of order (p − 1)/r. Show that
〈g〉 ∩G′ = {1}.
Exercise 15.5.2. Give two ways to sample randomly from G′. When would each be
used?
[Hint: see Section 11.4.]

The algorithm proceeds by choosing random values 1 ≤ z < r and random δ ∈ G′ and
testing gzδ (mod p) for smoothness. The i-th relation is

gziδi ≡
s∏

j=1

p
ei,j
j (mod p). (15.7)

15.5. INDEX CALCULUS IN FINITE FIELDS 335

The values zi are stored in a vector and the values ei = (ei,1, . . . , ei,s) are stored as a row
in a matrix. We need s relations of this form. We also need at least one relation involving
h (alternatively, we could have used a power of h in every relation in equation (15.7))
so try random values zs+1 and δs+1 ∈ G′ until gzs+1hδs+1 (mod p) is B-smooth. One
performs linear algebra modulo r to find integers 0 ≤ λ1, . . . , λs+1 < r such that

s+1∑

i=1

λiei = (rf1, . . . , rfs) ≡ (0, . . . , 0) (mod r)

where f1, . . . , fs ∈ Z≥0. In matrix notation, writing A = (ei,j), this is (λ1, . . . , λs+1)A ≡
(0, . . . , 0) (mod r). In other words, the linear algebra problem is finding a non-trivial

element in the kernel of the matrix A modulo r. Let Z1 =
∑s+1

i=1 λizi (mod r) and
Z2 = λs+1. Then

gZ1hZ2

(∏

i

δλii

)
≡
(∏

i

pfii

)r
(mod p). (15.8)

Since gZ1hZ2 ∈ 〈g〉 and the other terms are all in G′ it follows from Exercise 15.5.1 that
gZ1hZ2 ≡ 1 (mod r) as required. We stress that it is not necessary to compute

∏
i δ
λi
i or

the right hand side of equation (15.8).
The algorithm succeeds as long as λs+1 6≡ 0 (mod r) (and if λs+1 = 0 then there is

a linear dependence from the earlier relations, which can be removed by deleting one or
more rows of the relation matrix).

Exercise 15.5.3. Show that if one replaces equation (15.7) by gz1,ihz2,iδi for random
z1,i, z2,i and δi then one obtains an algorithm that succeeds with probability 1− 1/r.

Example 15.5.4. Let p = 223. Then g = 15 has prime order r = 37. Suppose h = 68
is the instance of the DLP we want to solve. Let B = {2, 3, 5, 7}. Choose the element
g1 = 184 of order (p− 1)/r = 6. One can check that we have the following relations.

z i Factorization of gzgi1 (mod p)
1 1 22 · 3 · 7
33 0 23 · 7
8 1 32 · 5
7 0 23 · 3 · 5

One also finds the relation hg7g21 = 23 · 32.
We represent the relations as the vector and matrix

z =

1
33
8
7
7

,

2 1 0 1
3 0 0 1
0 2 1 0
3 1 1 0
3 2 0 0

.

Now perform linear algebra modulo 37. One finds the non-trivial kernel vector v =
(1, 36, 20, 17, 8). Computing Z1 = v · z = 7 (mod 37) and Z2 = 8 we find gZ1hZ2 ≡
1 (mod 223) and so the solution is −Z1Z

−1
2 ≡ 13 (mod 37).

Exercise 15.5.5. Write the above algorithm in pseudocode (using trial division to de-
termine the smooth relations).

336 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

Exercise 15.5.6. Let the notation be as above. Let TB be the expected number of trials
of random integers modulo p until one is B-smooth. Show that the expected running
time of this algorithm (using naive trial division for the relations and using the Lanczos
or Wiedemann methods for the linear algebra) is

O((#B)2TBM(log(p)) + (#B)2+o(1)M(log(r)))

bit operations as p→∞

Exercise 15.5.7. Show that taking B = Lp(1/2, 1/2) is the optimal value to minimise
the complexity of the above algorithm, giving a complexity of O(Lp(1/2, 2 + o(1))) bit
operations for the discrete logarithm problem in F∗

p as p → ∞. (Note that, unlike many
of the results in this chapter, this result does not rely on any heuristics.)

We remark that, in practice, rather than computing a full exponentiation gz one might
use a pseudorandom walk as done in Pollard rho. For further implementation tricks see
Sections 5.1 to 5.5 of Odlyzko [469].

If g does not have prime order (e.g., suppose g is a generator of F∗
p and has order p−1)

then there are several options: One can apply Pohlig-Hellman and reduce to subgroups
of prime order and apply index calculus in each subgroup (or at least the ones of large
order). Alternatively, one can apply the algorithm as above and perform the linear algebra
modulo the order of g. There will usually be difficulties with non-invertible elements in
the linear algebra, and there are several solutions, such as computing the Hermite normal
form of the relation matrix or using the Chinese remainder theorem, we refer to Section
5.5.2 of Cohen [136] and Section 15.2.1 of Joux [317] for details.

Exercise 15.5.8. Give an algorithm similar to the above that works when r2 | (p− 1).

Exercise 15.5.9. This exercise is about solving many different discrete logarithm in-
stances hi = gai (mod p), for 1 ≤ i ≤ n, to the same base g. Once sufficiently many
relations are found, determine the cost of solving each individual instance of the DLP.
Hence show that one can solve any constant number of instances of the DLP to a given
base g ∈ F∗

p in O(Lp(1/2, 2 + o(1))) bit operations as p→∞.

15.5.2 Heuristic Algorithms for Discrete Logarithms Modulo p

To get a faster algorithm it is necessary to improve the time to find smooth relations.
It is natural to seek methods to sieve rather than factoring each value by trial division,
but it is not known how to do this for relations of the form in equation (15.7). It would
also be natural to find an analogue to Pomerance’s method of considering residues of size
about the square-root of random; Exercise 15.5.10 gives an approach to this, but it does
not lower the complexity.

Exercise 15.5.10. (Blake, Fuji-Hara, Mullin and Vanstone [61]) Once one has computed
w = gzδ (mod p) one can apply the Euclidean algorithm to find integers w1, w2 such that
w1w ≡ w2 (mod p) and w1, w2 ≈ √p. Since w1 and w2 are smaller one would hope
that they are much more likely to both be smooth (however, note that both must be
smooth). We now make the heuristic assumption that the probability each wi is B-
smooth is independent and the same as the probability that any integer of size

√
p is

B-smooth. Show that the heuristic running time of the algorithm has uu replaced by
(u/2)u (where u = log(p)/ log(B)) and so the asymptotic running time remains the same.

15.5. INDEX CALCULUS IN FINITE FIELDS 337

Coppersmith, Odlyzko and Schroeppel [145] proposed an algorithm for the DLP in F∗
p

that uses sieving. Their idea is to let H = ⌈√p⌉ and define the factor base to be

B = {q : q prime, q < Lp(1/2, 1/2)} ∪ {H + c : 1 ≤ c ≤ Lp(1/2, 1/2 + ǫ)}.
Since H2 (mod p) is of size ≈ p1/2 it follows that if (H + c1), (H + c2) ∈ B then (H +
c1)(H+c2) (mod p) is of size p1/2+o(1). One can therefore generate relations in B. Further,
it is shown in Section 4 of [145] how to sieve over the choices for c1 and c2. A heuristic
analysis of the algorithm gives complexity Lp(1/2, 1 + o(1)) bit operations.

The number field sieve (NFS) is an algorithm for the DLP in F∗
p with heuristic

complexity O(Lp(1/3, c + o(1))) bit operations. It is closely related to the number field
sieve for factoring and requires algebraic number theory. As with the factoring algorithm,
there are two factor bases. Introducing the DLP instance requires an extra algorithm (we
will see an example of this in Section 15.5.4). We do not have space to give the details
and instead refer to Schirokauer, Weber and Denny [519] or Schirokauer [515, 517] for
details.

15.5.3 Discrete Logarithms in Small Characteristic

We now consider the discrete logarithm problem in F∗
q where q = pn, p is relatively small

(the case of most interest is p = 2) and n is large. We represent such a field with a
polynomial basis as Fp[x]/(F (x)) for some irreducible polynomial F (x) of degree n. The
natural notion of smoothness of an element g(x) ∈ Fp[x]/(F (x)) is that it is a product of
polynomials of small degree. Since factoring polynomials over finite fields is polynomial-
time we expect to more easily get good algorithms in this case. The first work on this
topic was due to Hellman and Reyneri but we follow Odlyzko’s large paper [469]. First
we quote some results on smooth polynomials.

Definition 15.5.11. Let p be prime and n, b ∈ N. Let I(n) be the number of monic
irreducible polynomials in Fp[x] of degree n. A polynomial g(x) ∈ Fp[x] is called b-
smooth if all its irreducible factors have degree ≤ b. Let N(n, b) be the number of
b-smooth polynomials of degree exactly equal to n. Let p(n, b) be the probability that a
uniformly chosen polynomial of degree at most n is b-smooth.

Theorem 15.5.12. Let p be prime and n, b ∈ N.

1. I(n) = 1
n

∑
d|n µ(d)pn/d = 1

np
n +O(pn/2/n) where µ(d) is the Möbius function.8

2. If n1/100 ≤ b ≤ n99/100 then N(n, b) = pn(b/n)(1+o(1))n/b as n tends to infinity.

3. If n1/100 ≤ b ≤ n99/100 then p(n, b) is at least u−u(1+o(1)) where u = n/b and n
tends to infinity.

4. If n1/100 ≤ b ≤ n99/100 then the expected number of trials before a randomly chosen
element of Fp[x] of degree n is b-smooth is uu(1+o(1)) as u→∞.

Proof: Statement 1 follows from an elementary counting argument (see, for example,
Theorem 3.25 of Lidl and Niederreiter [388]).

Statement 2 in the case p = 2 is Corollary A.2 of Odlyzko [469]. The general result
was proved by Soundararajan (see Theorems 2.1 and 2.2 of Lovorn Bender and Pomer-
ance [397]). Also see Section 9.15 of [388].

Statement 3 follows immediately from statement 2 and the fact there are pn monic
polynomials of degree at most n (when considering smoothness it is sufficient to study
monic polynomials). Statement 4 follows immediately from statement 3. �

8This is the “prime number theorem for polynomials”, I(n) ≈ pn/ logp(p
n).

338 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

The algorithm then follows exactly the ideas of the previous section. Suppose g has
prime order r | (pn − 1) and h ∈ 〈g〉. The factor base is

B = {P (x) ∈ Fp[x] : P (x) is monic, irreducible and deg(P (x)) ≤ b}

for some integer b to be determined later. Note that #B = I(1) + I(2) + · · · + I(b) ≈
pb+1/(b(p− 1)) (see Exercise 15.5.14). We compute random powers of g multiplied by a
suitable δ ∈ G′ (where, if r2 ∤ (pn − 1), G′ ⊆ F∗

pn is the subgroup of order (pn − 1)/r;
when r2 | (pn − 1) then use the method of Exercise 15.5.8), reduce to polynomials in
Fp[x] of degree at most n, and try to factor them into products of polynomials from B.
By Exercise 2.12.11 the cost of factoring the b-smooth part of a polynomial of degree n
is O(bn log(n) log(p)M(log(p))) = O(log(pn)3) bit operations (in any case, polynomial-
time). As previously, we are generating polynomials of degree n uniformly at random
and so, by Theorem 15.5.12, the expected number of trials to get a relation is uu(1+o(1))

where u = n/b as u → ∞. We need to obtain #B relations in general. Then we obtain
a single relation of the form hgaδ =

∏
P∈B P

eP , perform linear algebra, and hence solve
the DLP.

Exercise 15.5.13. Write the above algorithm in pseudocode.

Exercise 15.5.14. Show that
∑b

i=1 I(b) ≤ 1
bp
b(1 + 2/(p− 1)) + O(bpb/2). Show that a

very rough approximation is pb+1/(b(p− 1)).

Exercise 15.5.15. Let the notation be as above. Show that the complexity of this
algorithm is at most

c1#Buu(1+o(1)) log(q)3 + c2(#B)2+o(1)M(log(r))

bit operations (for some constants c1 and c2) as n→∞ in q = pn.

For the complexity analysis it is natural to arrange that #B ≈ Lpn(1/2, c) for a
suitable constant c. Recall that #B ≈ pb/b. To have pb/b = Lpn(1/2, c) then, taking logs,

b log(p)− log(b) = c
√
n log(p)(log(n) + log(log(p))).

It follows that b ≈ c
√
n log(n)/ log(p).

Exercise 15.5.16. Show that one can compute discrete logarithms in F∗
pn in expected

O(Lpn(1/2,
√

2 + o(1))) bit operations for fixed p and as n → ∞. (Note that this result
does not rely on any heuristic assumptions.)

Exercise 15.5.17. Adapt the trick of exercise 15.5.10 to this algorithm. Explain that
the complexity of the algorithm remains the same, but is now heuristic.

Lovorn Bender and Pomerance [397] give rigorous complexity Lpn(1/2,
√

2 + o(1)) bit
operations as pn →∞ and p ≤ no(n) (i.e., p is not fixed).

15.5.4 Coppersmith’s Algorithm for the DLP in F∗
2n

This algorithm (inspired by the “systematic equations” of Blake, Fuji-Hara, Mullin and
Vanstone [61]) was the first algorithm in computational number theory to have heuristic
subexponential complexity of the form Lq(1/3, c+ o(1)).

The method uses a polynomial basis for F2n of the form F2[x]/(F (x)) for F (x) =
xn +F1(x) where F1(x) has very small degree. For example, F2127 = F2[x]/(x127 +x+ 1).

15.5. INDEX CALCULUS IN FINITE FIELDS 339

The “systematic equations” of Blake et al are relations among elements of the factor
base that come almost for free. For example, in F2127 , if A(x) ∈ F2[x] is an irreducible
polynomial in the factor base then A(x)128 = A(x128) ≡ A(x2 + x) (mod F (x)) and
A(x2 + x) is either irreducible or is a product P (x)P (x+ 1) of irreducible polynomials of
the same degree (Exercise 15.5.18). Hence, for many polynomials A(x) in the factor base
one gets a non-trivial relation.

Exercise 15.5.18. Let A(x) ∈ F2[x] be an irreducible polynomial. Show that A(x2 + x)
is either irreducible or a product of two polynomials of the same degree.

Coppersmith [140] extended the idea as follows: Let b ∈ N be such that b = cn1/3 log(n)2/3

for a suitable constant c (later we take c = (2/(3 log(2)))2/3), let k ∈ N be such that
2k ≈

√
n/b ≈ 1√

c
(n/ log(n))1/3, and let l = ⌈n/2k⌉ ≈

√
nb ≈ √cn2/3 log(n)1/3. Let

B = {A(x) ∈ F2[x] : deg(A(x)) ≤ b, A(x) irreducible}. Note that #B ≈ 2b/b by Ex-
ercise 15.5.14. Suppose A(x), B(x) ∈ F2[x] are such that deg(A(x)) = dA ≈ b and
deg(B(x)) = dB ≈ b and define C(x) = A(x)xl + B(x). In practice one restricts to pairs
(A(x), B(x)) such that gcd(A(x), B(x)) = 1. The crucial observation is that

C(x)2
k

= A(x2
k

) · (x2k)l +B(x2
k

) ≡ A(x2
k

)x2
kl−nF1(x) +B(x2

k

) (mod F (x)). (15.9)

Write D(x) for the right hand side of equation (15.9). We have deg(C(x)) ≤ max{dA +
l, dB} ≈ l ≈ n2/3 log(n)1/3 and deg(D(x)) ≤ max{2kdA+(2kl−n)+deg(F1(x)), 2kdB} ≈
2kb ≈ n2/3 log(n)1/3.

Example 15.5.19. (Thomé [608]) Let n = 607 and F1(x) = x9 + x7 + x6 + x3 + x + 1.
Let b = 23, dA = 21, dB = 28, 2k = 4, l = 152. The degrees of C(x) and D(x) are 173
and 112 respectively.

We have two polynomials C(x), D(x) of degree ≈ n2/3 that we wish to be b-smooth
where b ≈ n1/3 log(n)2/3. We will sketch the complexity later under the heuristic as-
sumption that, from the point of view of smoothness, these polynomials are independent.
We will also assume that the resulting relations are essentially random (and so with
high probability there is a non-trivial linear dependence once #B+ 1 relations have been
collected).

Having generated enough relations among elements of the factor base, it is necessary
to find some relations involving the elements g and h of the DLP instance. This is not
trivial. All DLP algorithms having complexity Lq(1/3, c+ o(1)) feature a process called
special q-descent that achieves this. The first step is to express g (respectively, h) as a
product

∏
iGi(x) of polynomials of degree at most b1 = n2/3 log(n)1/3; this can be done

by multiplying g (resp. h) by random combinations of elements of B and factoring (one
can also apply the Blake et al trick as in Exercise 15.5.10). We now have a list of around
2n1/3 < n polynomials Gi(x) of degree ≈ n2/3 that need to be “smoothed” further.
Section VII of [140] gives a method to do this: essentially one performs the same sieving
as earlier except that A(x) and B(x) are chosen so that Gi(x) | C(x) = A(x)xl + B(x)
(not necessarily with the same value of l or the same degrees for A(x) and B(x)). Defining

D(x) = C(x)2
k

(mod F (x)) (not necessarily the same value of k as before) one hopes that
C(x)/G(x) and D(x) are b-smooth. After sufficiently many trials one has a relation that
expresses Gi(x) in terms of elements of B. Repeating for the polynomially many values
Gi(x) one eventually has the values g and h expressed in terms of elements of B. One can
then do linear algebra modulo the order of g to find integers Z1, Z2 such that gZ1hZ2 = 1
and the DLP is solved.

340 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

Example 15.5.20. We give an example of Coppersmith’s method for F215 = F2[x]/(F (x))
where F (x) = x15 + x+ 1. We consider the subgroup of F∗

215 of order r = 151 (note that
(215−1)/r = 7 ·31 = 217). Let g = x11 +x7 +x5 +x2 +1 and h = x14 +x11 +x10 +x9 +1
be the DLP instance.

First note that n1/3 ≈ 2.5 and n2/3 ≈ 6.1. We choose b = 3 and so B = {x, x+ 1, x2 +
x+ 1, x3 + x+ 1, x3 + x2 + 1}. We hope to be testing polynomials of degree around 6 to
8 for smoothness.

First, we find some “systematic equations”. We obviously have the relation x15 = x+1.
We also have (x+ 1)16 = x2 + x+ 1 and (x3 + x+ 1)16 = (x3 + x+ 1)(x3 + x2 + 1).

Now, we do Coppersmith’s method. We must choose 2k ≈
√
n/b =

√
5 ≈ 2.2 so

take 2k = 2. Let l = ⌈n/2k⌉ = 8, choose A(x) and B(x) of degree at most 2, set
C(x) = A(x)x8 + B(x) and D(x) = C(x)2 (mod F (x)), and test C(x) and D(x) for
smoothness over B. We find the following pairs (A(x), B(x)) such that both C(x) and
D(x) factor over B.

A(x) B(x) C(x) D(x)
1 1 (x+ 1)8 x2 + x+ 1
1 x x(x+ 1)(x3 + x+ 1)(x3 + x2 + 1) x
1 x2 x2(x + 1)2(x2 + x+ 1)2 x(x3 + x+ 1)

The first relation in the table is a restatement of (x+ 1)16 = x2 + x+ 1. All together,
we have the relation matrix

15 −1 0 0 0
0 16 −1 0 0
0 0 0 15 −1
1 2 0 2 2
3 4 4 −1 0

. (15.10)

To solve the DLP one can now try to express g and h over the factor base. One has

g22 = x(x + 1)(x2 + x+ 1)2(x3 + x2 + 1).

For h we find
hg30 = x6(x+ 1)4G(x)

whereG(x) = x4+x+1 is a “large prime”. To “smooth”G(x) we chooseA(x) = 1, B(x) =
A(x)x8 (mod G(x)) = x2 + 1, C(x) = A(x)x8 + B(x) and D(x) = C(x)2 (mod F (x)).
One finds C(x) = G(x)2 and D(x) = (x + 1)(x3 + x2 + 1). In other words, G(x)4 =
(x+ 1)(x3 + x2 + 1).

There are now two ways to proceed. Following the algorithm description above we add
to the matrix the two rows (1, 1, 2, 0, 1) and 4(6, 4, 0, 0, 0)+(0, 1, 0, 0, 0, 1) = (24, 17, 0, 0, 1)
corresponding to g22 and h4g120. Finding a non-trivial kernel vector modulo 151, such as
(1, 114, 0, 132, 113, 133, 56) gives the relation

1 = (g22)133(h4g120)56 = g133h73

from which we deduce h = g23.
An alternative approach to the linear algebra is to diagonalise the system in equa-

tion (15.10) using linear algebra over Z (or at least modulo 215 − 1) to get x + 1 =
x15, x2 + x+ 1 = x240, x3 + x+ 1 = x1023 and x3 + x2 + 1 = x15345. One then gets

g22 = x(x+ 1)(x2 + x+ 1)2(x3 + x2 + 1) = x1+15+2·240+15345 = x15841

15.5. INDEX CALCULUS IN FINITE FIELDS 341

and so

g = x15841·22
−1 (mod (215−1)) = x26040 = (x217)120.

Similarly, G(x)4 = (x+1)(x3 +x2+1) = x15+15345 = x15360 and so G(x) = x3840. Finally,

h = g−30x6(x+ 1)4G(x) = x−30·26040+6+4·15+3840 = x9114 = (x217)42

and so h = g42·120
−1 (mod 151) = g23.

Conjecture 15.5.21. Coppersmith’s algorithm solves the DLP in F∗
q where q = 2n in

Lq(1/3, (32/9)1/3 + o(1)) bit operations as n→∞.

Note that, to compare with Exercise 15.2.12, if q = 21024 then Lq(1/3, (32/9)1/3) ≈
267.

This conjecture would hold if the probability that the polynomials C(x) and D(x) are
smooth was the same as for independently random polynomials of the same degree. We
now give a justification for the constant. Let b = cn1/3 log(n)2/3. Note that 2k ≈

√
n/b ≈

(n/ log(n))1/3/
√
c and l ≈

√
nb. We need around 2b/b relations, and note that log(2b/b) ≈

b log(2) = c log(2)n1/3 log(n)2/3. We have deg(C(x)) ≈ dA + l and deg(D(x)) ≈ 2kdA.
The number of trials until C(x) is b-smooth is uu where u = (dA + l)/b ≈ h/b ≈

√
n/b =

1√
c
(n/ log(n))1/3. Hence, log(uu) = u log(u) ≈ 1

3
√
c
n1/3 log(n)2/3. Similarly, the number

of trials until D(x) is b-smooth is approximately uu where u = (2kdA)/b ≈ 2k ≈
√
n/b

and the same argument applies. Since both events must occur the expected number of
trials to get a relation is exp(2

3
√
c
(n log(n)2)1/3). Hence, total expected time to generate

enough relations is

exp
(

(c log(2) + 2
3
√
c
)n1/3 log(n)2/3

)
.

This is optimised when c3/2 log(2) = 2/3, which leads to the stated complexity for the
first stage of the algorithm. (In practice one chooses c so that there are enough smooth
pairs (C(x), D(x)) to generate the required number of relations.) The linear algebra is
O((2b/b)2+o(1)M(log(r))) bit operations, which is the same complexity, and the final stage
of solving the DLP has lower complexity (it is roughly the same as the cost of finding
polynomially many smooth relations, rather than finding 2b/b of them). For more details
about the complexity of Coppersmith’s method we refer to Section 2.4 of Thomé [608].

Since one can detect smoothness of polynomials in polynomial-time it is not necessary,
from a complexity theory point of view, to sieve. However, in practice sieving can be
worthwhile and a method to do this was given by Gordon and McCurley [263].

Coppersmith’s idea is a special case of a more general approach to index calculus
algorithms known as the function field sieve. Note that Coppersmith’s algorithm only
has one factor base, whereas the function field sieve works using two factor bases.

15.5.5 The Joux-Lercier Algorithm

The function field sieve of Adleman is a general algorithm for discrete logarithms in Fpn
where p is relatively small compared with n. Joux and Lercier gave a much simpler and
better algorithm. We will sketch this algorithm, but refer to Joux and Lercier [318] and
Section 15.2 of [317] for full details. We also refer to [517] for a survey of the function
field sieve.

Let p be prime and n ∈ N. Let d = ⌈√n⌉. Suppose one has monic polynomials
F1(t), F2(t) ∈ Fp[t] such that deg(F1(t)) = deg(F2(t)) = d and F2(F1(t)) − t has an irre-
ducible factor F (t) of degree n. We represent Fpn with the polynomial basis Fp[t]/(F (t)).

342 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

Given a prime p and an integer n one can find such polynomials F1(t) and F2(t) in very
little time (e.g., by choosing polynomials of the right degree uniformly at random and
testing the condition using polynomial factorisation).

Exercise 15.5.22. Let n = 15. Find polynomials F1(t), F2(t) ∈ F2[t] of degree 4 such
that F2(F1(t))− t has an irreducible factor of degree 15.

Now consider the polynomial ring A = Fp[x, y] and two ring homomorphisms ψ1 :
A → A1 = Fp[x] by ψ1(y) = F1(x) and ψ2 : A → A2 = Fp[y] by ψ2(x) = F2(y). Define
φ1 : A1 → Fpn by φ1(x) = t (mod F (t)) and φ2 : A2 → Fpn by φ2(y) = F1(t) (mod F (t)).

Exercise 15.5.23. Let the notation be as above and G(x, y) ∈ Fp[x, y]. Show that
φ1(ψ1(G(x, y))) = φ2(ψ2(G(x, y))) in Fpn .

Let B1 ⊆ A1 = Fp[x] and B2 ⊆ Fp[y] be the sets of linear polynomials. The idea
of the algorithm is simply to consider polynomials in Fp[x, y] of the form G(x, y) =

xy+ ax+ by+ c. If ψ1(G(x, y)) = (x+ b)F1(x) + (ax+ c) factors over B1 as
∏d+1
i=1 (x−ui)

and if ψ2(G(x, y)) = (y+ a)F2(y) + (by+ c) factors over B2 as
∏d+1
j=1(y− vj) then we have

a relation. The point is that such a relation corresponds to

d+1∏

i=1

(t− ui) =

d+1∏

j=1

(F1(t)− vj)

in Fpn .

One also needs to introduce the DLP instance by using a special q-descent: given
an irreducible polynomial q(x) one constructs polynomials a(x), b(x) such that q(x) |
(a(x)F1(x) + b(x)) and one hopes that (a(x)F1(x) + b(x))/q(x) has small factors and that
a(F2(y))y+ b(F2(y)) has small factors, and hence iterate the process. When enough rela-
tions are collected (including at least one “systematic equation” to remove the parasitic
solution explained on page 442 of Joux/indexAJoux, A. [317]) one can perform linear al-
gebra to solve the DLP. The heuristic complexity of this algorithm is shown in [318] and
Section 15.2.1.2 of [317] to be between Lpn(1/3, 31/3+o(1)) and Lpn(1/3, (32/9)1/3+o(1))
for p ≤ Lpn(1/3, (4/9)1/3 + o(1)).

15.5.6 Number Field Sieve for the DLP

Concepts from the number field sieve for factoring have been applied in the setting of
the DLP. Again, one uses two factor bases, corresponding to ideals in the ring of integers
of some number field (one of the number fields may be Q). As with Coppersmith’s
method, once sufficiently many relations have been found among elements of the factor
bases, special q-descent is needed to solve a general instance of the DLP. We refer to
Schirokauer [517] for details of the NFS algorithm for the DLP, and also for the heuristic
arguments that one can solve the DLP in F∗

p in Lp(1/3, (64/9)1/3 + o(1)) bit operations.
When p has a special form (e.g., p = 2n±1) then the special number field sieve (SNFS)
can be used to solve the DLP in (heuristic) Lp(1/3, (32/9)1/3 + o(1)) bit operations, see
[518].

We should also mention the special function field sieve (SFFS) for solving the
DLP in F∗

pn , which has heuristic complexity Lpn(1/3, (32/9)1/3 + o(1)) bit operations as

pn →∞ as long as p ≤ no(
√
n), see Schirokauer [516, 517].

15.6. DISCRETE LOGARITHMS ON HYPERELLIPTIC CURVES 343

15.5.7 Discrete Logarithms for all Finite Fields

We have sketched algorithms for the DLP in F∗
p when p is large or F∗

pn when p is relatively
small. We have not considered cases F∗

q where q = pn with p large and n > 1. The basic
concepts can be extended to cover all cases, but ensuring that subexponential complexity
is achieved for all combinations of p and n is non-trivial. Adleman and Demarrais [2]
were the first to give a heuristic subexponential algorithm for all finite fields. They
split the problem space into p > n and p ≤ n; in the latter case they have complexity
Lq(1/2, 3 + o(1)) bit operations as q → ∞ and in the former case heuristic complexity
Lq(1/2, c+ o(1)) for a non-explicit constant c.

Heuristic algorithms with complexity Lq(1/3, c+ o(1)) for all finite fields are given by
Joux and Lercier [318] and Joux, Lercier, Smart and Vercauteren [319].

15.6 Discrete Logarithms on Hyperelliptic Curves

Some index calculus algorithms for the discrete logarithm problem in finite fields generalise
naturally to solving the DLP in the divisor class group of a curve. Indeed, some of these
algorithms also apply to the ideal class group of a number field, but we do not explore that
situation in this book. An excellent survey of discrete logarithm algorithms for divisor
class groups is Chapter VII of [65].

We consider hyperelliptic curves C : y2 + H(x)y = F (x) over Fq of genus g, so
deg(H(x)) ≤ g + 1 and deg(F (x)) ≤ 2g + 2. Recall that elements of the divisor class
group have a Mumford representation (u(x), y−v(x)) (for curves with a split model there
is also an integer 0 ≤ n ≤ g − deg(u(x)) to take into account the behaviour at infinity).
Let D1 and D2 be reduced divisors representing divisor classes of order r (where r is a
prime such that r2 ∤ #Pic0Fq (C)). The goal is to compute a ∈ Z/rZ such that D2 ≡ [a]D1.

Recall from Exercise 10.3.12 that a reduced divisor with Mumford representation
(u(x), v(x)) is said to be a prime divisor if the polynomial u(x) is irreducible over Fq.
The degree of the effective affine divisor is deg(u(x)). Any effective affine divisor D can
be written as a sum of prime effective affine divisors by factoring the u(x) polynomial of
its Mumford representation. Hence, it is natural to define D to be b-smooth if it is a sum
of prime effective divisors of degree at most b. This suggests selecting the factor base B
to consist of all prime effective affine divisors of degree at most b for some smoothness
bound 1 ≤ b ≤ g.

We assume that B generates the group Pic0Fq (C); this is immediate when the group
has prime order and B contains a non-trivial element. Voloch [624] has proved that degree
1 primes generate Pic0Fq (C) whenever q > (8g(C)− 2)2, where g(C) is the genus of C.

One can obtain an algorithm for the DLP of a familiar form, by generating reduced
divisors and testing whether they are smooth. One issue is that our smoothness results for
polynomials apply when polynomials are sampled uniformly from the set of all polynomials
of degree n in Fq[x], whereas we now need to apply the results to the set of polynomials
u(x) ∈ Fq[x] of degree g that arise in Mumford’s representation. This issue is handled
using Theorem 15.6.1.

There are two rather different ways to generate reduced divisors, both of which are
useful for the algorithm.

1. One can take random group elements of the form [n]D1 or [n1]D1 + [n2]D2 and
compute the Mumford representation of the corresponding reduced effective affine
divisor. This is the same approach as used in Section 15.5.1 and, in the context of
ideal/divisor class groups, is sometimes called the Hafner-McCurley algorithm.

344 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

If the divisor is B-smooth then we obtain a relation between elements of B and D1

and D2.

2. One can consider the effective affine divisor of the function a(x) + yb(x) for random
polynomials a(x), b(x). This idea is due to Adleman, DeMarrais and Huang [4].
Since a principal divisor is equivalent to zero in the ideal class group, if the divisor
is B-smooth then we get a relation in B.

To introduce the instance of the DLP into the system it is necessary to have some relations
involving D1 and D2. This can either be done using the first method, or by choosing
a(x) and b(x) so that points in the support of either D1 or D2 lie in the support of
div(a(x)+yb(x)) (we have seen this kind of idea already, e.g., in Coppersmith’s algorithm).

It is convenient to add to B all points at infinity and all points P ∈ C(Fq) such
that P = ι(P) (equivalently all Fq-rational prime divisors with this property). Since the
latter divisors all have order 2 one automatically obtains relations that can be used to
eliminate them during the linear algebra stage of the algorithm. Hence, we say that a
reduced divisor D = div(u(x), y − v(x)) in Mumford representation is b-smooth if u(x)
is b-smooth after any factors corresponding to points of order 2 have been removed.

Let C be a hyperelliptic curve over Fq of genus g and 1 ≤ b < g. Prime effective
affine divisors on C of degree b correspond to irreducible polynomials u(x) of degree
b (and for roughly half of all such polynomials u(x) there are two solutions v(x) to
v(x)2 + v(x)H(x) − F (x) ≡ 0 (mod u(x))). Hence, it is natural to expect that there

are approximately qb/b such divisors. It follows that #B should be around
∑b
i=1 q

i/i ≈
1
bp
b(1 + 2/(p− 1)) by the same argument as Exercise 15.5.14.
For the analysis, one needs to estimate the probability that a randomly chosen reduced

divisor is smooth.

Theorem 15.6.1. (Theorem 6 of Enge and Stein [198]) Let C be a hyperelliptic curve of
genus g over Fq. Let c > 1 and let b = ⌈logq(Lqg (1/2, c))⌉. Then the number of b-smooth
reduced divisors of degree g is at least

qg

Lqg (1/2, 1/(2c) + o(1))

for fixed q and g →∞.

Note that the smoothness bound in the above result is the ceiling of a real number.
Hence one cannot deduce subexponential running time unless the genus is sufficiently
large compared with the field size.

15.6.1 Index Calculus on Hyperelliptic Curves

Suppose that r | N = #Pic0Fq (C) and r2 ∤ N . Suppose D1, D2 are two divisor classes
on C over Fq of order r represented by reduced divisors D1 and D2. The algorithm
of Section 15.5.1 immediately applies to solve the DLP: choose the factor base as above;
generate random reduced divisors by computing [n1]D1+[n2]D2+δ (where δ is uniformly
chosen9 from the subgroup G′ ⊆ Pic0Fq (C) of order N/r); store the resulting smooth
relations; perform linear algebra modulo r to find integers a, b such that [a]D1+[b]D2 ≡ 0
(extra care is needed when there are two points at infinity to be sure the relation is
correct).

9We assume that generators for this group are known so that it is easy to sample uniformly from this
group.

15.6. DISCRETE LOGARITHMS ON HYPERELLIPTIC CURVES 345

Exercise 15.6.2. Show that the expected running time of this algorithm is (rigorously!)
Lqg (1/2,

√
2 + o(1)) bit operations as g →∞.

We refer to Section VII.5 of [65] for practical details of the algorithm. Note that the
performance can be improved using the sieving method of Flassenberg and Paulus [206].

15.6.2 The Algorithm of Adleman, De Marrais and Huang

This algorithm, from [4], uses the same factor base as the method of the previous section.
The main difference is to generate relations by decomposing principal divisors A(x) +
yB(x). An advantage of this approach is that group operations are not required.

By Exercise 10.1.26 it is easy to compute vP (A(x) + yB(x)) by computing the norm
A(x)2 − H(x)A(x)B(x) − F (x)B(x)2 and factoring it as a polynomial. If deg(A(x)) =
dA < g and deg(B(x)) = dB < g then the norm has degree at most max{2dA, (g + 1) +
dA + dB , 2g + 2 + 2dB}, which is much larger in general than the degree g polynomial in
a reduced Mumford representation, but still O(g) in practice.

We need to make the heuristic assumption that the probability the norm is b-smooth is
the same as the probability that a random polynomial of the same degree is b-smooth. We
therefore assume the expected number of trials to get an Lqg (1/2, c)-smooth polynomial
is Lqg (1/2, 1/(2c) + o(1)) as g tends to infinity.

We also need some relations involving D1 and D2. Adleman et al do this by first
decomposing D1 and D2 as a sum of prime divisors. Then they “smooth” each prime
divisor div(u(x), y − v(x)) by choosing polynomials B(x),W (x) ∈ Fq[x], setting A′(x) =
B(x)(v(x) + H(x)) (mod u(x)) and then A(x) = A′(x) + u(x)W (x). One computes
N(x) = (A(x)2 − H(x)A(x)B(x) − F (x)B(x)2). By construction, u(x) | N(x) and one
continues randomly choosing A and W until N(x)/u(x) is b-smooth.

The details of the algorithm are then the same as the algorithm in Section 15.5.1: one
uses linear algebra modulo r to get a relation [a]D1 + [b]D2 ≡ 0 (again, care is needed
when there are two points at infinity). We leave the details as an exercise.

Exercise 15.6.3. Write pseudocode for the Adleman, DeMarrais, Huang algorithm.

The heuristic complexity of the algorithm is of the same form as the earlier algorithm
(the cost of smoothing the divisors D1 and D2 is heuristically the same as finding less than
2g relations so is negligible. One obtains heuristic asymptotic complexity of Lqg (1/2,

√
2+

o(1)) bit operations as g tends to infinity. This is much better than the complexity claimed
in [4] since that paper also gives an algorithm to compute the group structure (and so
the linear algebra requires computing the Hermite normal form).

These ideas will be used again in Section 15.9.1.

15.6.3 Gaudry’s Algorithm

Gaudry [242] considered the algorithm of Section 15.6.1 for fixed genus, rather than
asympotically as g → ∞. In particular he chose the smoothness bound b = 1 (so the
factor base B only consists of degree one prime divisors, i.e., points). Good surveys of
Gaudry’s algorithm are given in Chapter VII of [65] and Section 21.2 of [16].

Exercise 15.6.4. Let C be a hyperelliptic curve of genus g over a finite field Fq. Show
that the number of prime divisors on C of degree 1 is #C(Fq) = q(1 + o(1)) for fixed g
as q → ∞. Hence, show that the probability that a randomly chosen reduced divisor is
1-smooth is 1

g! (1 + o(1)) as q →∞.

346 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

Exercise 15.6.5. Following Exercise 15.6.4, it is natural to conjecture that one needs to
choose O(g!q(1 + o(1))) divisors (again, this is for fixed g as q → ∞, in which case it is
more common to write it as O(q(1 + o(1)))) to find enough relations to have a non-trivial
linear dependence in B. Under this assumption, show that the heuristic expected running
time of Gaudry’s algorithm is at most

c1g
2g!q(1 + o(1))M(log(q)) + c2g

3q2M(log(q))) = O(q2M(log(q))(1 + o(1))) (15.11)

bit operations (for some constants c1 and c2) for fixed g as q →∞.

The first term in equation (15.11) is the running time for relation generation. If g is
fixed then asymptotically this is dominated by the second term, which is the running time
for the linear algebra stage. If g is fixed, then the running time is Õ(q2) bit operations.
Hence Gaudry’s algorithm is asymptotically faster than Pollard’s rho method for hyper-
elliptic curves of a fixed genus g ≥ 5. However, the hidden constant in the expression
Õ(q2) depends very badly on g. In practice, Gaudry’s method seems to be superior to
rho for small g (e.g., g = 5, 6, 7).

Harley and Thériault (see [607]) suggested reducing the factor base size in Gaudry’s
algorithm in order to balance the running times of the relation generation and linear alge-
bra stages. Thériault [607] also proposed a “large prime” variant of Gaudry’s algorithm.
Gaudry, Thériault, Thomé and Diem [250] proposed a “double large prime” variant of
Gaudry’s algorithm that is based on the double large prime strategy that was successful
in accelerating integer factorization algorithms. The factor base B is now chosen to be a
subset of the degree one divisors and degree one divisors that are not in B are called large
primes. A divisor is defined to be smooth if it can be written as a sum of prime divisors
and at most two large primes. Relations are collected as before, and then combined to
eliminate the large primes (we refer to Section 21.3 of [16] for further discussion of large
primes and graph methods for eliminating them). It is shown in [250] that, for fixed g,

the expected running time of the algorithm is Õ(q2−
2
g) bit operations. This is faster than

Pollard rho for g ≥ 3 when q is sufficiently large. Gaudry’s approach was generalised to
all curves of fixed genus by Diem [176].

15.7 Weil Descent

As we have seen, there are subexponential algorithms for the DLP in the divisor class
group of a hyperelliptic curve of high genus. A natural approach to solve the DLP on
elliptic curves is therefore to transform the problem into a DLP on a high genus curve.
However, the naive way to do this embeds a small problem into a big one, and does not
help to solve the DLP. Frey [212] proposed10 to use Weil restriction of scalars to transform
the DLP on an elliptic curve E(Fqn) for n > 1 to the DLP on a curve of genus g ≥ n over
Fq. Frey called this idea Weil descent.

Geometrically the principle is to identify the Weil restriction of an open affine subset
of E(Fqn) (see Section 5.7) with an open affine subset of an Abelian variety A over Fq of
dimension n. One can then try to find a curve C on A, so that there is a map from the
Jacobian of C to A. Following Gaudry, Hess and Smart [246] it is more convenient to
express the situation in terms of function fields and divisor class groups. We only sketch

10The standard reference is a lecture given by Frey at the ECC 1998 conference. His talk was mostly
about a different (constructive) application of Weil restriction of scalars. However, he did mention the
possibility of using this idea for an attack. Galbraith and Smart developed the details further in [229]
and many works followed.

15.8. ELLIPTIC CURVES OVER EXTENSION FIELDS 347

the details since an excellent survey is provided by Hess in Chapter VIII of [65] and many
important details are explained by Diem in [172].

Let E be an elliptic curve over K = Fqn and let k = Fq. The function field of E is
K(E). The idea (called in this setting a covering attack) is to find a curve C over K
such that K(C) is a finite extension of K(E) (so that there is a map C → E of finite
degree) and such that there is an automorphism σ of degree n on K(C) extending the
q-power Frobenius so that the fixed field of K(C) under 〈σ〉 is k(C0) for some curve C0.
The composition of the conorm map from E(K) to Pic0C(K) and the norm map from
Pic0C(K) to Pic0C0(k) transfers the DLP from E(K) to Pic0C0(k). Hence, as long as the
composition of these maps is not trivial, then one has reduced the DLP from E(K) to
the divisor class group of a curve C0 over k. One can then solve the DLP using an index
calculus algorithm, which is feasible if the genus of C0 is not too large.

A variant of the Weil descent concept that avoids function fields and divisor class
groups is to perform index calculus directly on Abelian varieties. This variant is the
subject of the following section.

15.8 Discrete Logarithms on Elliptic Curves over Ex-

tension Fields

We now discuss some related algorithms, which can be applied to elliptic curves over
extension fields. We start by recalling Semaev’s idea of summation polynomials.

15.8.1 Semaev’s Summation Polynomials

Suppose that E is an elliptic curve defined over a prime field Fp, and that elements of Fp
are represented as integers in the interval [0, p−1]. Semaev [539] considered a factor base

B = {(x, y) ∈ E(Fp) : 0 ≤ x ≤ p1/n}

for some fixed integer n ≥ 2. Note that #B ≈ p1/n.
Semaev hoped to perform an index calculus algorithm similar to the one in Sec-

tion 15.5.1. For random points R = [a]P + [b]Q the task is to write R as a sum of points
in B. To accomplish this, Semaev introduced the notion of a summation polynomial.

Definition 15.8.1. Let E : y2 = x3 + a4x + a6 be an elliptic curve defined over Fq,
where the characteristic of Fq is neither 2 nor 3 (this condition can be avoided). The
summation polynomials Summn ∈ Fq[x1, x2, . . . , xn] for n ≥ 2 are defined as follows:

• Summ2(x1, x2) = x1 − x2.

• Summ3(x1, x2, x3) = (x1 − x2)2x23 − 2((x1 + x2)(x1x2 + a4) + 2a6)x3 + ((x1x2 −
a4)2 − 4a6(x1 + x2)).

• Summn(x1, x2, . . . , xn) = Rx(Summn−1(x1, . . . , xn−2, x), Summ3(xn−1, xn, x)) for
n ≥ 4 where Rx(F,G) is the resultant of the polynomials F and G with respect to
the variable x.

For many more details see Section 3 of [177]. The following result is from [539].

Theorem 15.8.2. Summation polynomials have the following properties:

• (x1, . . . , xn) ∈ F
n

q is a root of Summn if and only if there exists (y1, . . . , yn) ∈ F
n

q

such that Pi = (xi, yi) ∈ E(Fq) and
∑n

i=1 Pi =∞.

348 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

• Summn is symmetric.

• The degree of Summn in xi is 2n−2.

Exercise 15.8.3. Prove Theorem 15.8.2.

One way to decompose R = (xR, yR) in B is to find solutions (x1, . . . , xn) ∈ Zn to

Summn+1(x1, x2, . . . , xn, xR) ≡ 0 (mod p), such that 0 ≤ xi ≤ p1/n. (15.12)

If such a solution exists and can be found then one finds the corresponding y-coordinates
±yi. Suppose that each yi ∈ Fp. Then each Pi = (xi, yi) is in B and by Theorem 15.8.2
there exist si ∈ {−1, 1} such that s1P1 + · · ·+ snPn = R. The sign bits si can be found
by exhaustive search, thereby yielding a relation. Since #{P1 +P2 + · · ·+Pn : Pi ∈ B} ≈
(p1/n)n/n! = p/n! the expected number of points R that have to be selected before a
relation is obtained is about n!.

Unfortunately, no efficient algorithm is known for solving the polynomial equation (15.12)
even for n = 5 (in which case the equation has degree 16 in each of its 5 variables). Cop-
persmith’s method (see Section 19.2) seems not to be useful for this task.

In reference to the remarks of Section 15.2.3 we see that all requirements for an index
calculus algorithm are met, except that it is not efficient to decompose a smooth element
over the factor base.

15.8.2 Gaudry’s Variant of Semaev’s Method

Gaudry [245] realised that it might be possible to take roots of summation polynomials
if one was working with elliptic curves over extension fields. Gaudry’s algorithm may
be viewed as doing Weil descent without divisor class groups. Indeed, the paper [245]
presents a general approach to index calculus on Abelian varieties and so the results apply
in greater generality than just Weil descent of elliptic curves.

Suppose that E is an elliptic curve defined over a finite field Fqn with n > 1.
Gaudry [245] defines a factor base

B = {(x, y) ∈ E(Fqn) : x ∈ Fq}

so that #B ≈ q. Gaudry considers this as the set of Fq-rational points on the algebraic
set F formed by intersecting the Weil restriction of scalars of E with respect to Fqn/Fq
by n− 1 hyperplanes V (xi) for 2 ≤ i ≤ n, where x = x1θ1 + · · ·+ xnθn (with θ1 = 1) as
in Lemma 5.7.1. If the algebraic set F is irreducible then it is a 1-dimensional variety F .

In the relation generation stage, one attempts to decompose a randomly selected point
R ∈ E(Fqn) as a sum of points in B. Gaudry observed that this can be accomplished by
finding solutions

(x1, x2, . . . , xn) ∈ Fnq such that Summn+1(x1, x2, . . . , xn, xR) = 0. (15.13)

Note that Summn+1(x1, . . . , xn, xR) ∈ Fqn [x1, . . . , xn] since E is defined over Fqn and
xR ∈ Fqn . The conditions xj ∈ Fq in equation (15.13) can be expressed algebraically as
follows. Select a basis {θ1, . . . , θn} for Fqn over Fq and write

Summn+1(x1, . . . , xn, xR) =

n∑

i=1

Gi(x1, . . . , xn)θi (15.14)

where Gi(x1, . . . , xn) ∈ Fq[x1, . . . , xn]. Note that the degree of Gi in xj is at most 2n−1.
The polynomials Gi of equation (15.14) define an algebraic set in X ⊆ An and we are

15.8. ELLIPTIC CURVES OVER EXTENSION FIELDS 349

interested in the points in X(Fq) (if there are any). Since Fq is finite there are only finitely
many Fq-rational solutions (x1, . . . , xn) to the system.

Gaudry assumes that X is generically a zero-dimensional algebraic set (Gaudry justi-
fies this assumption by noting that if F is a variety then the variety Fn is n-dimensional,
and so the map from Fn to the Weil restriction of E, given by adding together n points
in F , is a morphism between varieties of the same dimension, and so generically has
finite degree). The Fq-rational solutions can therefore be found by finding a Gröbner
basis for the ideal generated by the Gi and then taking roots in Fq of a sequence of uni-
variate polynomials each of which has degree at most 2n(n−1). This is predicted to take
O(2cn(n−1)M(log(q))) bit operations for some constant c. Alternatively one could add
some field equations xqj − xj to the ideal, to ensure it is zero-dimensional, but this could
have an adverse effect on the complexity. Gaudry makes a further heuristic assumption,
namely that the smoothness probability behaves as expected when using the large prime
variant.

The size of the set {P1 + P2 + · · · + Pn : Pi ∈ B} is approximately qn/n! and so the
expected number of points R that have to be selected before a relation is obtained is about
n!. One needs approximately #B ≈ q relations to be able to find a non-trivial element in
the kernel of the relation matrix and hence integers a and b such that [a]D1 + [b]D2 ≡ 0.
It follows that the heuristic expected running time of Gaudry’s algorithm is

Õ(2cn(n−1)n!qM(log(q)) + q2+o(1)) (15.15)

bit operations as q →∞. This is exponential in terms of n and log(q). However, for fixed
n, the running time can be expressed as Õ(q2) bit operations.

Gaudry’s focus was on n fixed and relatively small. For any fixed n ≥ 5, Gaudry’s
heuristic algorithm for solving the ECDLP over Fqn is asymptotically faster than Pollard’s
rho method. The double large prime variant (mentioned in Section 15.6.3) can also be

used in this setting. The complexity therefore becomes (heuristic) Õ(q2−
2
n) bit operations.

Hence Gaudry’s algorithm is asymptotically faster than Pollard rho even for n = 3 and
n = 4, namely Õ(q4/3) rather than Õ(q3/2) for n = 3 and Õ(q3/2) rather than Õ(q2) for
n = 4.

15.8.3 Diem’s Algorithm for the ECDLP

Gaudry’s focus was on the DLP in E(Fqn) when n is fixed. This yields an exponential-
time algorithm. Diem [173, 177] considered the case where n is allowed to grow, and
obtained a subexponential-time algorithm.

The crux of Diem’s method is remarkably simple: he assumes n ≈
√

log(q) and obtains
an algorithm for the DLP in E(Fqn) with complexity O(qc) for some constant c (note that

even some exponential-time computations in n are polynomial in q as en
2 ≈ q). Now, qc =

exp(c log(q)) and log(qn) = n log(q) ≈ log(q)3/2 so qc ≈ exp(c log(qn)2/3) < Lqn(2/3, c).

Diem’s algorithm is very similar to Gaudry’s. In Gaudry’s algorithm, the factor base
consists of points whose x-coordinates lie in Fq. Diem defines a function ϕ = α ◦ x,
where α is an automorphism over Fqn of P1 that satisfies a certain condition, and defines
the factor base to be B = {P ∈ E(Fqn) : ϕ(P) ∈ P1(Fq)}. The process of generating
relations proceeds in the standard way. Some important contributions of [177] are to
prove that the algebraic set defined by the summation polynomials has a good chance of
having dimension zero, and that when this is the case the points can be found by taking
resultants of multihomogeneous polynomials in time polynomial in en

2

log(q) (which is
exponential in n but polynomial in q).

350 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

The main result of [177] is the following. We stress that this result does not rely on
any heuristics.

Theorem 15.8.4. (Diem) Let a, b ∈ R be such that 0 < a < b. There is an algorithm
such that, if q is a prime power and n ∈ N is such that

a
√

log(q) ≤ n ≤ b
√

log(q)

and E is any elliptic curve over Fqn , then the algorithm solves the DLP in E(Fqn) in an

expected eO(log(qn)2/3) bit operations.

15.9 Further Results

To end the chapter we briefly mention some methods for non-hyperelliptic curves. It
is beyond the scope of the book to present these algorithms in detail. We then briefly
summarise the argument that there is no subexponential algorithm for the DLP on elliptic
curves in general.

15.9.1 Diem’s Algorithm for Plane Curves of Low Degree

Diem [175] used the Adleman-DeMarrais-Huang idea of generating relations using prin-
cipal divisors a(x) − yb(x) for the DLP on plane curves F (x, y) = 0 of low degree (the
degree of such a curve is the total degree of F (x, y) as a polynomial). Such curves are
essentially the opposite case to hyperelliptic curves (which have rather high degree in x
relative to their genus). The trick is simply to note that if F (x, y) has relatively low de-
gree compared to its genus then so does b(x)dF (x, a(x)) and so the divisor of the function
a(x) − yb(x) has relatively low weight. The main result is an algorithm with heuristic
complexity Õ(q2−2/(d−2)) bit operations for a curve of degree d over Fq.

In the case of non-singular plane quartics (genus 3 curves C over Fq) Diem takes the
factor base to be a large set of points B ⊆ C(Fq). He generates relations by choosing two
distinct points P1, P2 ∈ B and intersecting the line y = bx + c between them with the
curve C. There are two other points of intersection, corresponding to the roots of the
quadratic polynomial F (x, bx + c)/((x − xP1)(x − xP2)) and so with probability roughly
1/2 we expect to get a relation in the divisor class group among points in C(Fq). Diem

shows that the algorithm has complexity Õ(q) bit operations.
Due to lack of space, and since our focus in this book is hyperelliptic curves (though, it

is important to note that Smith [573] has given a reduction of the DLP from hyperelliptic
curves of genus 3 to plane quartics) we do not present any further details. Interested
readers should see [175, 178].

15.9.2 The Algorithm of Enge-Gaudry-Thomé and Diem

The algorithms for the DLP in the divisor class group of a hyperelliptic curve in Sec-
tions 15.6.1 and 15.6.2 had complexity Lqg (1/2,

√
2 + o(1)) bit operations as q → ∞. A

natural problem is to find algorithms with complexity Lqg (1/3, c+ o(1)), and this is still
open in general. However, an algorithm is known for curves of the form yn + F (x, y) = 0
where degy(F (x, y)) ≤ n − 1 and degx(F (x, y)) = d for n ≈ g1/3 and d ≈ g2/3. We
do not have space to give the details, so simply quote the results and refer to Enge and
Gaudry [196], Enge, Gaudry and Thomé [197] and Diem [174]. An algorithm to compute
the group structure of Pic0C(Fq) is given with heuristic complexity of Lqg (1/3, c+ o(1))

15.9. FURTHER RESULTS 351

bit operations for some constant c. For the discrete logarithm problem the algorithm has
heuristic complexity Lqg (1/3, c′ + o(1)) bit operations where c′ is a constant.

Unlike the LN (1/3, c + o(1)) algorithms for factoring or DLP in finite fields, the al-
gorithm does not use two different factor bases. Instead, the algorithm is basically the
same idea as Sections 15.6.2 and 15.9.1 with a complexity analysis tailored for curves of
a certain form.

15.9.3 Index Calculus for General Elliptic Curves

In this section we briefly discuss why there does not seem to be a subexponential algorithm
for the DLP on general elliptic curves.

An approach to an index calculus algorithm for elliptic curves was already discussed by
Miller [428] in the paper that first proposed elliptic curves for cryptography. In particular

he considered “lifting” an elliptic curve E over Fp to an elliptic curve Ẽ over Q (i.e., so

that reducing the coefficients of Ẽ modulo p yields E). The factor base B was defined to

be the points of small height (see Section VIII.6 of [564] for details of heights) in Ẽ(Q).
The theory of descent (see Chapter VIII of Silverman [564]) essentially gives an algorithm
to decompose a point as a sum of points of small height (when this is possible). The idea

would therefore be to take random points [a]P + [b]Q ∈ E(Fp), lift them to Ẽ(Q) and
then decompose them over the factor base. There are several obstructions to this method.
First, lifting a random point from E(Fp) to Ẽ(Q) seems to be hard in general. Indeed,

Miller argued (see also [566]) that there are very few points of small height in Ẽ(Q) and
so (since we are considering random points [a]P + [b]Q from the exponentially large set

E(Fp)) it would be necessary to lift to exponentially large points in Ẽ(Q). Second, the
lifting itself seems to be a non-trivial computational task (essentially, solving a non-linear
Diophantine equation over Z).

Silverman proposed the Xedni calculus attack11, which was designed to solve the lift-
ing problem. This algorithm was analysed in [322], where it is shown that the probability
of finding useful relations is too low.

By now, many people have tried and failed to discover an index calculus algorithm for
the DLP on general elliptic curves. However, this does not prove that no such algorithm
exists, or that a different paradigm could not lead to faster attacks on the elliptic curve
DLP.

11“Xedni” is “Index” spelled backwards.

352 CHAPTER 15. SUBEXPONENTIAL ALGORITHMS

Part IV

Lattices

353

Chapter 16

Lattices

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

The word “lattice” has two different meanings in mathematics. One meaning is related
to the theory of partial orderings on sets (for example, the lattice of subsets of a set).
The other meaning, which is the one relevant to us, is discrete subgroups of Rn.

There are several reasons for presenting lattices in this book. First, there are hard
computational problems on lattices that have been used as a building block for pub-
lic key cryptosystems (e.g., the Goldreich-Goldwasser-Halevi (GGH) cryptosystem, the
NTRU cryptosystem, the Ajtai-Dwork cryptosystem, and the LWE cryptosystem); how-
ever, we do not present these applications in this book. Second, lattices are used as a
fundamental tool for cryptanalysis of public key cryptosystems (e.g., lattice attacks on
knapsack cryptosystems, Coppersmith’s method for finding small solutions to polynomial
equations, attacks on signatures, and attacks on variants of RSA). Third, there are ap-
plications of lattices to efficient implementation of discrete logarithm systems (such as
the GLV method; see Section 11.3.3). Finally, lattices are used as a theoretical tool for
security analysis of cryptosystems, for example the bit security of Diffie-Hellman key ex-
change using the hidden number problem (see Section 21.7) and the security proofs for
RSA-OAEP.

Some good references for lattices, applications of lattices and/or lattice reduction al-
gorithms are: Cassels [122], Siegel [563], Cohen [136], von zur Gathen and Gerhard [238],
Grötschel, Lovász and Schrijver [269], Nguyen and Stern [462, 463], Micciancio and Gold-
wasser [422], Hoffstein, Pipher and Silverman [289], Lenstra’s chapter in [113], Micciancio
and Regev’s chapter in [50] and the proceedings of the conference LLL+25.

355

356 CHAPTER 16. LATTICES

Notation used in this part

Z, Q, R Integers, rational, real numbers
b, v, w Row vectors (usually in Rm)
0 Zero vector in Rm

ei i-th unit vector in Rm

In n× n identity matrix
〈x, x〉 Inner product
‖x‖ Euclidean length (ℓ2 norm)
‖ · ‖a ℓa-norm for a ∈ N
span{v1, . . . , vn} Span of a set of vectors over R
rank(A) Rank of a matrix A
⌊x⌉ Closest integer to x, ⌊1/2⌉ = 1
B Basis matrix for a lattice
L Lattice
b∗i Gram-Schmidt vector arising from ordered basis {b1, . . . , bn}
µi,j Gram-Schmidt coefficient 〈bi, b∗j 〉/〈b∗j , b∗j 〉
Bi ‖b∗i ‖2
λi Successive minima of a lattice
det(L) Determinant of a lattice
γn Hermite’s constant
X Bound on the size of the entries in the basis matrix L
B(i) i×m matrix formed by the first i rows of B
di Determinant of matrix of 〈bj , bk〉 for 1 ≤ j, k ≤ i
D Product of di
P1/2(B) Fundamental domain (parallelepiped) for lattice basis B
F (x), F (x, y) Polynomial with “small” root
G(x), G(x, y) Polynomial with “small” root in common with F (x) (resp., F (x, y))
X,Y Bounds on size of root in Coppersmith’s method
bF Coefficient vector of polynomial F
R(F,G), Rx(F (x), G(x)) Resultant of polynomials
W Bound in Coppersmith’s method
P,R Constants in noisy Chinese remaindering
amp(x) The amplitude gcd(P, x −R) in noisy Chinese remaindering
B,B′ Basis matrices for GGH encryption
In n× n identity matrix
U Invertible matrix disguising the private key in GGH
m Message in McEliece or GGH
e Error vector in McEliece or GGH
c Ciphertext in McEliece or GGH
σ Entry in error vector in GGH
M Size of coefficients in message in GGH
s GGH signature
a1, . . . , an Subset sum weights
b1, . . . , bn Superincreasing sequence
s =

∑n
i=1 xiai The sum in a subset sum instance, with xi ∈ {0, 1}

d Density of a subset sum instance
π Permutation of {1, . . . , n} used in the Merkle-Hellman cryptosystem
σ Vector in Nguyen attack
M Modulus in Merkle-Hellman knapsack
W Multiplier in Merkle-Hellman knapsack
U W−1 (mod M) in Merkle-Hellman
t Number of iterations in iterated Merkle-Hellman knapsack

16.1. BASIC NOTIONS ON LATTICES 357

16.1 Basic Notions on Lattices

A lattice is a subset of the vector space Rm. We write all vectors as rows; be warned that
many books and papers write lattice vectors as columns. We denote by ‖v‖ the Euclidean
norm of a vector v ∈ Rm; though some statements also hold for other norms.

Definition 16.1.1. Let {b1, . . . , bn} be a linearly independent set of (row) vectors in Rm

(m ≥ n). The lattice generated by {b1, . . . , bn} is the set

L =

{
n∑

i=1

libi : li ∈ Z

}

of integer linear combinations of the bi. The vectors b1, . . . , bn are called a lattice basis.
The lattice rank is n and the lattice dimension is m. If n = m then L is said to be a
full rank lattice.

Let L ⊂ Rm be a lattice. A sublattice is a subset L′ ⊂ L that is a lattice.

A basis matrix B of a lattice L is an n×m matrix formed by taking the rows to be
basis vectors bi. Thus Bi,j is the j-th entry of the row bi and

L = {xB : x ∈ Zn}.

By assumption the rows of a basis matrix are always linearly independent.

Example 16.1.2. The lattice in R2 generated by {(1, 0), (0, 1)} is L = Z2. The corre-
sponding basis matrix is B = (1 0

0 1). Any 2 × 2 integer matrix B of determinant ±1 is
also a basis matrix for L.

We will mainly assume that the basis vectors bi for a lattice have integer entries. In
cryptographic applications this is usually the case. We interchangeably use the words
points and vectors for elements of lattices. The vectors in a lattice form an Abelian
group under addition. When n ≥ 2 there are infinitely many choices for the basis of a
lattice.

An alternative approach to lattices is to define L = Zn and to have a general length
function q(v). One finds this approach in books on quadratic forms or optimisation
problems, e.g., Cassels [121] and Schrijver [531]. In particular, Section 6.2 of [531] presents
the LLL algorithm in the context of reducing the lattice L = Zn with respect to a length
function corresponding to a positive-definite rational matrix.

We now give an equivalent definition of lattice, which is suitable for some applications.
A subset L ⊆ Rm is called discrete if, for any real number r > 0, the set {v ∈ L : ‖v‖ ≤ r}
is finite. It is clear that a lattice is a subgroup of Rm that is discrete. The following result
shows the converse.

Lemma 16.1.3. Every discrete subgroup of Rm is a lattice.

Proof: (Sketch) Let {v1, . . . , vn} be a linearly independent subset of L of maximal size.
The result is proved by induction. The case n = 1 is easy (since L is discrete there is
an element of minimal non-zero length). When n > 1 consider V = span{v1, . . . , vn−1}
and set L′ = L∩ V . By induction, L′ is a lattice and so has a basis b1, . . . , bn−1. The set

L ∩ {∑n−1
i=1 xibi + xnvn : 0 ≤ xi < 1 for 1 ≤ i ≤ n − 1 and 0 < xn ≤ 1} is finite and so

has an element with smallest xn, call it bn. It can be shown that {b1, . . . , bn} is a basis
for L. For full details see Theorem 6.1 of [586]. �

358 CHAPTER 16. LATTICES

Exercise 16.1.4. Given an m×n integer matrix A show that ker(A) = {x ∈ Zm : xA =
0} is a lattice. Show that the rank of the lattice is m− rank(A). Given an m× n integer
matrix A and an integer M show that {x ∈ Zm : xA ≡ 0 (mod M)} is a lattice of rank
m.

In the case m > n it is sometimes convenient to project the lattice L into Rn using
the following construction. The motivation is that a linear map that preserves lengths
preserves volumes. Note that if the initial basis for L consists of vectors in Zn then the
resulting basis does not necessarily have this property.

Lemma 16.1.5. Let B be an n × m basis matrix for a lattice L where m > n. Then
there is a linear map P : Rm → Rn such that P (L) is a rank n lattice and ‖P (v)‖ = ‖v‖
for all v ∈ L. Furthermore, 〈bi, bj〉 = 〈P (bi), P (bj)〉 for all 1 ≤ i < j ≤ n.

If the linear map is represented by an m × n matrix P so that P (v) = vP then a
basis matrix for the image of L under the projection P is the n× n matrix BP , which is
invertible.

Proof: Given the n×m basis matrix B with rows bi, define V = span{b1, . . . , bn} ⊂ Rm,
which has dimension n by assumption. Choose (perhaps by running the Gram-Schmidt
algorithm) a basis v1, . . . , vn for V that is orthonormal with respect to the inner product
in Rm. Define the linear map P : V → Rn by P (vi) = ei and P (V ⊥) = {0}. For
v =

∑n
i=1 xivi ∈ V we have ‖v‖ =

√
〈v, v〉 =

√∑n
i=1 x

2
i = ‖vP‖. Since the vectors bi

form a basis for V , the vectors P (bi) = biP are linearly independent. Hence, BP is an
invertible matrix and P (L) is a lattice of rank n. �

We can now prove the following fundamental result.

Lemma 16.1.6. Two n×m matrices B and B′ generate the same lattice L if and only
if B and B′ are related by a unimodular matrix, i.e., B′ = UB where U is an n × n
matrix with integer entries and determinant ±1.

Proof: (⇒) Every row of B′ is an integer linear combination

b′i =
n∑

j=1

ui,jbj

of the rows in B. This can be represented as B′ = UB for an n× n integer matrix U .
Similarly, B = U ′B′ = U ′UB. Now applying the projection P of Lemma 16.1.5 we

have BP = U ′UBP and, since BP is invertible, U ′U = In (the identity matrix). Since
U and U ′ have integer entries it follows that det(U), det(U ′) ∈ Z. From det(U) det(U ′) =
det(In) = 1 it follows that det(U) = ±1.

(⇐) Since U is a permutation of Zn we have {xB′ : x ∈ Zn} = {xB : x ∈ Zn}. �

The Hermite normal form is defined in Section A.11. The following result is a direct
consequence of Lemma 16.1.6 and the remarks in Section A.11.

Lemma 16.1.7. If B is the basis matrix of a lattice L then the Hermite normal form of
B is also a basis matrix for L.

The determinant of a lattice L is the volume of the fundamental parallelepiped of
any basis B for L. When the lattice has full rank then using Definition A.10.7 and
Lemma A.10.8 we have det(L) = | det(B)|. For the case n < m our definition uses
Lemma 16.1.5.

Definition 16.1.8. Let the notation be as above. The determinant (or volume) of a
lattice L with basis matrixB is | det(BP)|, where P is a matrix representing the projection
of Lemma 16.1.5.

16.1. BASIC NOTIONS ON LATTICES 359

Lemma 16.1.9. The determinant of a lattice is independent of the choice of basis matrix
B and the choice of projection P .

Proof: Let P and P ′ be two projection matrices corresponding to orthogonal bases
{v1, . . . , vn} and {v′1, . . . , v′n} for V = span{b1, . . . , bn}. Then, by Lemma A.10.3, P ′ =
PW for some orthogonal matrix W (hence det(W) = ±1). It follows that | det(BP)| does
not depend on the choice of P .

Let B and B′ be two basis matrices for a lattice L. Then B′ = UB where U is an n×n
matrix such that det(U) = ±1. Then det(L) = | det(BP)| = | det(UBP)| = | det(B′P)|.
�

We have seen that there are many different choices of basis for a given lattice L. A
fundamental problem is to compute a “nice” lattice basis for L; specifically one where the
vectors are relatively short and close to orthogonal. The following exercise shows that
these properties are intertwined.

Exercise 16.1.10. Let L be a rank 2 lattice in R2 and let {b1, b2} be a basis for L.

1. Show that
det(L) = ‖b1‖‖b2‖| sin(θ)| (16.1)

where θ is the angle between b1 and b2.

2. Hence deduce that the product ‖b1‖‖b2‖ is minimised over all choices {b1, b2} of
basis for L when the angle θ is closest to ±π/2.

Definition 16.1.11. Let L be a lattice in Rm of rank n with basis matrix B. The Gram
matrix of B is BBT . This is an n× n matrix whose (i, j)th entry is 〈bi, bj〉.
Lemma 16.1.12. Let L be a lattice in Rm of rank n with basis matrix B. Then det(L) =√

det(BBT).

Proof: Consider first the case where m = n. Then det(L)2 = det(B) det(BT) =
det(BBT) = det((〈bi, bj〉)i,j). Hence, when m > n and B′ = BP , det(L) = | det(B′)| =√

det(B′(B′)T). Now, the (i, j)th entry of B′(B′)T = (BP)(BP)T is 〈biP, bjP 〉, which is

equal to the (i, j)th entry of BBT by Lemma 16.1.5. The result follows. �

Note that an integer lattice of non-full rank may not have integer determinant.

Exercise 16.1.13. Find an example of a lattice of rank 1 in Z2 whose determinant is
not an integer.

Lemma 16.1.14. Let b1, . . . , bn be an ordered basis for a lattice L in Rm and let b∗1, . . . , b
∗
n

be the Gram-Schmidt orthogonalisation. Then det(L) =
∏n
i=1 ‖b∗i ‖.

Proof: The case m = n is already proved in Lemma A.10.8. For the general case let
vi = b∗i /‖b∗i ‖ be the orthonormal basis required for the construction of the projection P .
Then P (b∗i) = ‖b∗i ‖ei. Write B and B∗ for the n×m matrices formed by the rows bi and
b∗i respectively. It follows that B∗P is an n × n diagonal matrix with diagonal entries
‖b∗i ‖. Finally, by the Gram-Schmidt construction, B∗ = UB for some n × n matrix U
such that det(U) = 1. Combining these facts gives1

det(L) = | det(BP)| = | det(UBP)| = | det(B∗P)| =
n∏

i=1

‖b∗i ‖.

�

1The formula BP = U−1(B∗P) is the QR decomposition of BP .

360 CHAPTER 16. LATTICES

Exercise 16.1.15. Let {b1, . . . , bn} be an ordered lattice basis in Rm and let {b∗1, . . . , b∗n}
be the Gram-Schmidt orthogonalisation. Show that ‖bi‖ ≥ ‖b∗i ‖ and hence det(L) ≤∏n
i=1 ‖bi‖.

Definition 16.1.16. Let {b1, . . . , bn} be a basis for a lattice L in Rm. The orthogonality
defect of the basis is (

n∏

i=1

‖bi‖
)
/ det(L).

Exercise 16.1.17. Show that the orthogonality defect of {b1, . . . , bn} is 1 if and only if
the basis is orthogonal.

Definition 16.1.18. Let L ⊂ Rm be a lattice of rank n. The successive minima of L
are λ1, . . . , λn ∈ R such that, for 1 ≤ i ≤ n, λi is minimal such that there exist i linearly
independent vectors v1, . . . , vi ∈ L with ‖vj‖ ≤ λi for 1 ≤ j ≤ i.

It follows that 0 < λ1 ≤ λ2 · · · ≤ λn. In general there is not a basis consisting
of vectors whose lengths are equal to the successive minima, as the following example
shows.

Example 16.1.19. Let L ⊂ Zn be the set

L = {(x1, . . . , xn) : x1 ≡ x2 ≡ · · · ≡ xn (mod 2)}.

It is easy to check that this is a lattice. The vectors 2ei ∈ L for 1 ≤ i ≤ n are linearly
independent and have length 2. Every other vector x ∈ L with even entries has length
≥ 2. Every vector x ∈ L with odd entries has all xi 6= 0 and so ‖x‖ ≥ √n.

If n = 2 the successive minima are λ1 = λ2 =
√

2 and if n = 3 the successive minima
are λ1 = λ2 = λ3 =

√
3. When n ≥ 4 then λ1 = λ2 = · · · = λn = 2. For n ≤ 4 one can

construct a basis for the lattice with vectors of lengths equal to the successive minima.
When n > 4 there is no basis for L consisting of vectors of length 2, since a basis must
contain at least one vector having odd entries.

Exercise 16.1.20. For n = 2, 3, 4 in Example 16.1.19 write down a basis for the lattice
consisting of vectors of lengths equal to the successive minima.

Exercise 16.1.21. For n > 4 in Example 16.1.19 show there is a basis for the lattice
such that ‖bi‖ = λi for 1 ≤ i < n and ‖bn‖ =

√
n.

Definition 16.1.22. Let L ⊆ Rm be a lattice and write V ⊆ Rm for the R-vector space
spanned by the vectors in L. The dual lattice of L is L∗ = {y ∈ V : 〈x, y〉 ∈ Z for all x ∈
L}.

Exercise 16.1.23. Show that the dual lattice is a lattice. Let B be a basis matrix of a
full rank lattice L. Show that (BT)−1 is a basis matrix for the dual lattice. Hence, show
that the determinant of the dual lattice is det(L)−1.

16.2 The Hermite and Minkowski Bounds

We state the following results without rigorously defining the term “volume” and without
giving proofs (see Section 1.3 of Micciancio and Goldwasser [422], Chapter 1 of Siegel [563],
Chapter 6 of Hoffstein, Pipher and Silverman [289] or Chapter 12 of Cassels [121] for
details).

16.2. THE HERMITE AND MINKOWSKI BOUNDS 361

Theorem 16.2.1. (Blichfeldt) Let L be a lattice in Rm with basis {b1, . . . , bn} and S
any measurable set such that S ⊂ span{bi : 1 ≤ i ≤ n}. If the volume of S exceeds det(L)
then there exist two distinct points v1, v2 ∈ S such that (v1 − v2) ∈ L.

Proof: See Theorem 1.3 of [422] or Section III.2.1 of [121]. �

Theorem 16.2.2. (Minkowski convex body theorem) Let L be a lattice in Rm with basis
{b1, . . . , bn} and let S be any convex set such that S ⊂ span{bi : 1 ≤ i ≤ n}, 0 ∈ S and if
v ∈ S then −v ∈ S. If the volume of S is > 2n det(L) then there exists a non-zero lattice
point v ∈ S ∩ L.

Proof: See Section III.2.2 of Cassels [121], Theorem 6.28 of Hoffstein, Pipher and Silver-
man [289], Theorem 1.4 of Micciancio and Goldwasser [422], or Theorem 6.1 of Stewart
and Tall [586]. �

The convex body theorem is used to prove Theorem 16.2.3. The intuition behind this
result is that if the shortest non-zero vector in a lattice is large then the volume of the
lattice cannot be small.

Theorem 16.2.3. Let n ∈ N. There is a constant 0 < γn ≤ n such that, for any lattice
L of rank n in Rn having first minimum λ1 (for the Euclidean norm),

λ21 < γn det(L)2/n.

Proof: See Theorem 1.5 of [422], Theorem 6.25 of [289], or Theorem 12.2.1 of [121]. �

Exercise 16.2.4. Show that the convex body theorem is tight. In other words find a
lattice L in Rn for some n and a symmetric convex subset S ⊆ Rn such that the volume
of S is 2n det(L) and yet S ∩ L = {0}.

Exercise 16.2.5. Show that, with respect to the ℓ∞ norm, λ1 ≤ det(L)1/n. Show that,
with respect to the ℓ1 norm, λ1 ≤ (n! det(L))1/n ≈ n det(L)1/n/e.

Exercise 16.2.6.⋆ Let a, b ∈ N. Show that there is a solution r, s, t ∈ Z to r = as+ bt
such that s2 + r2 ≤

√
2b.

Definition 16.2.7. Let n ∈ N. The smallest real number γn such that

λ21 ≤ γn det(L)2/n

for all lattices L of rank n is called the Hermite constant.

Exercise 16.2.8. This exercise is to show that γ2 = 2/
√

3.

1. Let {b1, b2} be a Lagrange-Gauss reduced basis (see Definition 17.1.1 of the next
Section) for a dimension 2 lattice in R2. Define the quadratic form N(x, y) =
‖xb1 +yb2‖2. Show that, without loss of generality, N(x, y) = ax2 +2bxy+cy2 with
a, b, c ≥ 0 and a ≤ c.

2. Using N(1,−1) ≥ N(0, 1) (which follows from the property of being Lagrange-Gauss
reduced), show that 2b ≤ a. Hence show that 3ac ≤ 4(ac− b2)

3. Show that det(L)2 = |b2 − ac|. Hence deduce that Hermite’s constant satisfies
γ2 ≤ 2/

√
3.

362 CHAPTER 16. LATTICES

4. Show that the lattice L ⊂ R2 with basis {(1, 0), (−1/2,
√

3/2)} satisfies λ21 =
(2/
√

3) det(L).

(Optional) Show that L is equal to the ring of algebraic integers of Q(
√
−3). Show

that centering balls of radius 1/2 at each point of L gives the most dense lattice
packing of balls in R2.

Section 6.5.2 of Nguyen [456] lists the first 8 values of γn, gives the bound n
2πe +o(1) ≤

γn ≤ n
πe(1 + o(1)) and gives further references.

Theorem 16.2.9. (Minkowski) Let L be a lattice of rank n in Rn with successive minima
λ1, . . . , λn for the Euclidean norm. Then

(
n∏

i=1

λi

)1/n

<
√
n det(L)1/n.

Proof: See Theorem 12.2.2 of [121]. (The term
√
n can be replaced by

√
γn.) �

The Gaussian heuristic states that the shortest non-zero vector in a “random”
lattice L of dimension n in Rn is expected to have length approximately

√
n

2πe
det(L)1/n.

We refer to Section 6.5.3 of [456] and Section 6.5.3 of [289] for discussion and references.

16.3 Computational Problems in Lattices

There are several natural computational problems relating to lattices. We start by list-
ing some problems that can be efficiently solved using linear algebra (in particular, the
Hermite normal form).

1. lattice membership: Given an n×m basis matrix B for a lattice L ⊆ Zm and a
vector v ∈ Zm determine whether v ∈ L.

2. lattice basis: Given a set of vectors b1, . . . , bn in Zm (possibly linearly dependent)
find a basis for the lattice generated by them.

3. kernel lattice: Given an m × n integer matrix A compute a basis for the lattice
ker(A) = {x ∈ Zm : xA = 0}.

4. kernel lattice modulo M : Given an m × n integer matrix A and an integer M
compute a basis for the lattice {x ∈ Zm : xA ≡ 0 (mod M)}.

Exercise 16.3.1.⋆ Describe explicit algorithms for the above problems and determine
their complexity.

Now we list some computational problems that seem to be hard in general.

Definition 16.3.2. Let L be a lattice in Zm.

1. The shortest vector problem (SVP) is the computational problem: given a
basis matrix B for L, compute a non-zero vector v ∈ L such that ‖v‖ is minimal
(i.e., ‖v‖ = λ1).

16.3. COMPUTATIONAL PROBLEMS IN LATTICES 363

2. The closest vector problem (CVP) is the computational problem: given a basis
matrix B for L and a vector w ∈ Qm (one can work with high-precision approxima-
tions in Rm, but this is essentially still working in Qm), compute v ∈ L such that
‖w − v‖ is minimal.

3. The decision closest vector problem (DCVP) is: given a basis matrix B for a
lattice L, a vector w ∈ Qm and a real number r > 0, decide whether or not there is
a vector v ∈ L such that ‖w − v‖ ≤ r.

4. The decision shortest vector problem is: given a basis matrix B for a lattice
L and a real number r > 0 to decide whether or not there is a non-zero v ∈ L such
that ‖v‖ ≤ r.

5. Fix γ > 1. The approximate SVP problem is: given a basis matrix B for L,
compute a non-zero vector v ∈ L such that ‖v‖ ≤ γλ1.

6. Fix γ > 1. The approximate CVP problem is: given a basis matrix B for L and
a vector w ∈ Qm, compute v ∈ L such that ‖w − v‖ ≤ γ‖w − xB‖ for all x ∈ Zn.

7. Fix 0 < α < 1. The bounded distance decoding problem (BDD) is: given
a basis matrix B for a lattice L and a vector w ∈ Qm such that there is a lattice
point v ∈ L with ‖w − v‖ ≤ αλ1(L), to compute v. In other words, this is a CVP
instance that is especially close to a lattice point.

In general, these computational problems are known to be hard2 when the rank is
sufficiently large. It is known that CVP is NP-hard (this is shown by relating CVP with
subset-sum; for details see Chapter 3 of [422]). Also, SVP is NP-hard under randomised
reductions and non-uniform reductions (see Chapter 4 of [422] for explanation of these
terms and proofs). Nguyen [456] gives a summary of the complexity results and current
best running times of algorithms for these problems.

On the other hand, if a lattice is sufficiently nice then these problems may be easy.

Example 16.3.3. Let L ⊂ R2 be the lattice with basis matrix

B =

(
1001 0

0 2008

)
.

Then every lattice vector is of the form (1001a, 2008b) where a, b ∈ Z. Hence the shortest
non-zero vectors are clearly (1001, 0) and (−1001, 0). Similarly, the closest vector to
w = (5432, 6000) is clearly (5005, 6024).

Why is this example so easy? The reason is that the basis vectors are orthogonal.
Even in large dimensions, the SVP and CVP problems are easy if one has an orthogonal
basis for a lattice. When given a basis that is not orthogonal it is less obvious whether
there exists a non-trivial linear combination of the basis vectors that gives a vector strictly
shorter than the shortest basis vector. A basis for a lattice that is “as close to orthogonal
as it can be” is therefore convenient for solving some computational problems.

2We do not give details of complexity theory in this book; in particular we do not define the term
“NP-hard”.

364 CHAPTER 16. LATTICES

Chapter 17

Lattice Basis Reduction

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

The goal of lattice basis reduction is to transform a given lattice basis into a “nice”
lattice basis consisting of vectors that are short and close to orthogonal. To achieve
this one needs both a suitable mathematical definition of “nice basis” and an efficient
algorithm to compute a basis satisfying this definition.

Reduction of lattice bases of rank 2 in R2 was given by Lagrange1 and Gauss. The
algorithm is closely related to Euclid’s algorithm and we briefly present it in Section 17.1.
The main goal of this section is to present the lattice basis reduction algorithm of
Lenstra, Lenstra and Lovász, known as the LLL or L3 algorithm.2 This is a very im-
portant algorithm for practical applications. Some basic references for the LLL algorithm
are Section 14.3 of Smart [572], Section 2.6 of Cohen [136] and Chapter 17 of Trappe
and Washington [609]. More detailed treatments are given in von zur Gathen and Ger-
hard [238], Grötschel, Lovász and Schrijver [269], Section 1.2 of Lovász [395], and Nguyen
and Vallée [464]. I also highly recommend the original paper [373].

The LLL algorithm generalises the Lagrange-Gauss algorithm and exploits the Gram-
Schmidt orthogonalisation. Note that the Gram-Schmidt process is not useful, in general,
for lattices since the coefficients µi,j do not usually lie in Z and so the resulting vectors are
not usually elements of the lattice. The LLL algorithm uses the Gram-Schmidt vectors to
determine the quality of the lattice basis, but ensures that the linear combinations used
to update the lattice vectors are all over Z.

17.1 Lattice Basis Reduction in Two Dimensions

Let b1, b2 ∈ R2 be linear independent vectors and denote by L the lattice for which they
are a basis. The goal is to output a basis for the lattice such that the lengths of the basis

1The algorithm was first written down by Lagrange and later by Gauss, but is usually called the
“Gauss algorithm”. We refer to [455] or Chapter 2 of [464] for the original references.

2Chapter 1 of [464] gives an excellent survey of the historical development of the algorithm.

365

366 CHAPTER 17. LATTICE BASIS REDUCTION

vectors are as short as possible (in this case, successive minima). Lagrange and Gauss
gave the following criteria for a basis to be reduced and then developed Algorithm 23 to
compute such a basis.

Definition 17.1.1. An ordered basis b1, b2 for R2 is Lagrange-Gauss reduced if ‖b1‖ ≤
‖b2‖ ≤ ‖b2 + qb1‖ for all q ∈ Z.

The following theorem shows that the vectors in a Lagrange-Gauss reduced basis are
as short as possible. This result holds for any norm, though the algorithm presented
below is only for the Euclidean norm.

Theorem 17.1.2. Let λ1, λ2 be the successive minima of L. If L has an ordered basis
{b1, b2} that is Lagrange-Gauss reduced then ‖bi‖ = λi for i = 1, 2.

Proof: By definition we have

‖b2 + qb1‖ ≥ ‖b2‖ ≥ ‖b1‖

for all q ∈ Z.
Let v = l1b1 + l2b2 be any non-zero point in L. If l2 = 0 then ‖v‖ ≥ ‖b1‖. If l2 6= 0

then write l1 = ql2 + r with q, r ∈ Z such that 0 ≤ r < |l2|. Then v = rb1 + l2(b2 + qb1)
and, by the triangle inequality

‖v‖ ≥ |l2| ‖b2 + qb1‖ − r‖b1‖
= (|l2| − r)‖b2 + qb1‖+ r(‖b2 + qb1‖ − ‖b1‖)
≥ ‖b2 + qb1‖ ≥ ‖b2‖ ≥ ‖b1‖.

This completes the proof. �

Definition 17.1.3. Let b1, . . . , bn be a list of vectors in Rn. We write3 Bi = ‖bi‖2 =
〈bi, bi〉.

A crucial ingredient for the Lagrange-Gauss algorithm is that

‖b2 − µb1‖2 = B2 − 2µ〈b1, b2〉+ µ2B1 (17.1)

is minimised at µ = 〈b1, b2〉/B1 (to see this, note that the graph as a function of µ is a
parabola and that the minimum can be found by differentiating with respect to µ). Since
we are working in a lattice we therefore replace b2 by b2 − ⌊µ⌉b1 where ⌊µ⌉ is the nearest
integer to µ. Hence lines 3 and 9 of Algorithm 23 reduce the size of b2 as much as possible
using b1. In the one-dimensional case the formula b2 − ⌊µ⌉b1 is the familiar operation
ri+1 = ri−1 − ⌊ri−1/ri⌉ri from Euclid’s algorithm.

Lemma 17.1.4. An ordered basis {b1, b2} is Lagrange-Gauss reduced if and only if

‖b1‖ ≤ ‖b2‖ ≤ ‖b2 ± b1‖.

Proof: The forward implication is trivial. For the converse, suppose ‖b2‖ ≤ ‖b2 ± b1‖.
We use the fact that the graph of F (µ) = ‖b2 + µb1‖2 is a parabola. It follows that the
miniumum of F (µ) is taken for −1 < µ < 1. Hence ‖b2‖ ≤ ‖b2 + qb1‖ for q ∈ Z such that
|q| > 1. �

Algorithm 23 gives the Lagrange-Gauss algorithm for lattices in Z2. Note that the
computation of µ is as an exact value in Q. All other arithmetic is exact integer arithmetic.

3The reader is warned that the notation Bi will have a different meaning when we are discussing the
LLL algorithm.

17.1. LATTICE BASIS REDUCTION IN TWO DIMENSIONS 367

Algorithm 23 Lagrange-Gauss lattice basis reduction

Input: Basis b1, b2 ∈ Z2 for a lattice L
Output: Basis (b1, b2) for L such that ‖bi‖ = λi
1: B1 = ‖b1‖2
2: µ = 〈b1, b2〉/B1

3: b2 = b2 − ⌊µ⌉b1
4: B2 = ‖b2‖2
5: while B2 < B1 do
6: Swap b1 and b2
7: B1 = B2

8: µ = 〈b1, b2〉/B1

9: b2 = b2 − ⌊µ⌉b1
10: B2 = ‖b2‖2
11: end while
12: return (b1, b2)

Lemma 17.1.5. Algorithm 23 terminates and outputs a Lagrange-Gauss reduced basis
for the lattice L.

Exercise 17.1.6. Prove Lemma 17.1.5.

Example 17.1.7. We run the Lagrange-Gauss algorithm on b1 = (1, 5) and b2 = (6, 21).
In the first step, µ = 111/26 ≈ 4.27 and so we update b2 = b2 − 4b1 = (2, 1). We then
swap b1 and b2 so that the values in the loop are now b1 = (2, 1) and b2 = (1, 5). This
time, µ = 7/5 = 1.4 and so we set b2 = b2−b1 = (−1, 4). Since ‖b2‖ > ‖b1‖ the algorithm
halts and outputs {(2, 1), (−1, 4)}.

Exercise 17.1.8. Run the Lagrange-Gauss reduction algorithm on the basis {(3, 8), (5, 14)}.

Lemma 17.1.9. Let b1, b2 be the initial vectors in an iteration of the Lagrange-Gauss
algorithm and suppose b′1 = b2 −mb1 and b′2 = b1 are the vectors that will be considered
in the next step of the algorithm. Then ‖b′1‖2 < ‖b1‖2/3, except perhaps for the last two
iterations.

Proof: Note that m = ⌊µ⌉ = ⌊〈b1, b2〉/〈b1, b1〉⌉ = 〈b1, b2〉/〈b1, b1〉 + ǫ where |ǫ| ≤ 1/2.
Hence,

〈b1, b′1〉 = 〈b1, b2 − (〈b1, b2〉/〈b1, b1〉+ ǫ) b1〉 = −ǫ〈b1, b1〉 = −ǫ‖b1‖2.

We show that ‖b′1‖2 < ‖b1‖2/3 unless we are in the last two iterations of the algorithm.
To do this, suppose that ‖b′1‖2 ≥ ‖b1‖2/3. Then

|〈b′1, b′2〉| = |〈b′1, b1〉| = |ǫ|‖b1‖2 ≤ 1
2‖b1‖2 ≤ 3

2‖b
′
1‖2.

It follows that, in the next iteration of the algorithm, we will be taking m = ⌊µ⌉ ∈
{−1, 0, 1} and so the next iteration would, at most, replace b′1 with b′2±b′1 = b1±(b2−mb1).
But, if this were smaller than b′1 then we would have already computed b′1 differently in
the current iteration. Hence, the next step is the final iteration. �

Theorem 17.1.10. Let X ∈ Z≥2 and let b1, b2 be vectors in Z2 such that ‖bi‖2 ≤ X.
Then the Lagrange-Gauss algorithm performs O(log(X)3) bit operations.

368 CHAPTER 17. LATTICE BASIS REDUCTION

Proof: Lemma 17.1.9 shows that there are O(log(X)) iterations in the Lagrange-Gauss
algorithm. Since the squared Euclidean lengths of all vectors in the algorithm are bounded
by X , it follows that entries of vectors are integers bounded by

√
X . Similarly, the

numerator and denominator of µ ∈ Q require O(log(X)) bits. The result follows. �

A much more precise analysis of the Lagrange-Gauss reduction algorithm is given by
Vallée [614]. Indeed, the algorithm has complexity O(log(X)2) bit operations; see Nguyen
and Stehlé [455].

The above discussion is for the Euclidean norm, but the Lagrange-Gauss reduction
algorithm can be performed for any norm (the only change is how one computes µ). We
refer to Kaib and Schnorr [326] for analysis and details.

Finally, we remark that there is a natural analogue of Definition 17.1.1 for any di-
mension. Hence, it is natural to try to generalise the Lagrange-Gauss algorithm to higher
dimensions. Generalisations to dimension three have been given by Vallée [613] and Se-
maev [538]. There are a number of problems when generalising to higher dimensions.
For example, choosing the right linear combination to size reduce bn using b1, . . . , bn−1

is solving the CVP in a sublattice (which is a hard problem). Furthermore, there is no
guarantee that the resulting basis actually has good properties in high dimension. We
refer to Nguyen and Stehlé [461] for a full discussion of these issues and an algorithm that
works in dimensions 3 and 4.

17.1.1 Connection Between Lagrange-Gauss Reduction and Eu-
clid’s Algorithm

The Lagrange-Gauss algorithm is closely related to Euclid’s algorithm. We briefly discuss
some similarities and differences. Recall that if a, b ∈ Z then Euclid’s algorithm (using
signed remainders) produces a sequence of integers ri, si, ti such that

asi + bti = ri

where |riti| < |a| and |risi| < |b|. The precise formulae are ri+1 = ri−1 − qri and
si+1 = si−1−qsi where q = ⌊ri−1/ri⌉. The sequence |ri| is strictly decreasing. The initial
values are r−1 = a, r0 = b, s−1 = 1, s0 = 0, t−1 = 0, t0 = 1. In other words the lattice
with basis matrix

B =

(
0 b
1 a

)
=

(
s0 r0
s−1 r−1

)

contains the vectors

(si, ri) = (ti, si)B.

These vectors are typically shorter than the original vectors of the lattice.
We claim that if si is sufficiently small compared with ri then one step of the Lagrange-

Gauss algorithm on B corresponds to one step of Euclid’s algorithm (with negative re-
mainders).

To see this, let b1 = (si, ri) and consider the Lagrange-Gauss algorithm with b2 =
(si−1, ri−1). First compute the value

µ =
〈b1, b2〉
〈b1, b1〉

=
sisi−1 + riri−1

s2i + r2i
.

If si is sufficiently small relative to ri (e.g., in the first step, when s0 = 0) then

⌊µ⌉ = ⌊riri−1/r
2
i ⌉ = ⌊ri−1/ri⌉ = q.

17.2. LLL-REDUCED LATTICE BASES 369

Hence the operation v = b2 − ⌊µ⌉b1 is v = (si−1 − qsi, ri−1 − qri), which agrees with
Euclid’s algorithm. Finally, the Lagrange-Gauss algorithm compares the lengths of the
vectors v and b1 to see if they should be swapped. When si+1 is small compared with ri+1

then ‖v‖ is smaller than ‖b1‖. Hence the vectors are swapped and the matrix becomes

(
si−1 − qsi ri−1 − qri

si ri

)
.

just as in Euclid’s algorithm.
The algorithms start to deviate once si become large (this can already happen on the

second iteration, as the below example shows). Further, Euclid’s algorithm runs until
ri = 0 (in which case si ≈ b) whereas Lagrange-Gauss reduction stops when ri ≈ si.
Example 17.1.11. Let a = 19 and b = 8. The sequence of remainders in the signed
Euclidean algorithm is 3,−1 while the Lagrange-Gauss lattice basis reduction algorithm
computes remainders 3, 2.

Example 17.1.12. Consider a = 8239876 and b = 1020301, which have gcd equal to
one. Let

B =

(
0 b
1 a

)
.

Running the Lagrange-Gauss algorithm on this matrix gives
(

540 379
619 −1455

)
.

One can verify that
379 = 540a+ t4b where t4 = −4361

and
−1455 = 619a+ t5b where t5 = −4999.

17.2 LLL-Reduced Lattice Bases

This section presents the crucial definition from [373] and some of its consequences. The
main result is Theorem 17.2.12, which shows that an LLL-reduced lattice basis does have
good properties.

Recall first that if b1, . . . , bn is a set of vectors in Rm then one can define the Gram-
Schmidt orthogonalisation b∗1, . . . , b

∗
n as in Section A.10.2. We use the notation µi,j =

〈bi, b∗j 〉/〈b∗j , b∗j 〉 throughout.
As we have noted in Example 16.3.3, computational problems in lattices can be easy

if one has a basis that is orthogonal, or “sufficiently close to orthogonal”. A simple but
important observation is that one can determine when a basis is close to orthogonal by
considering the lengths of the Gram-Schmidt vectors. More precisely, a lattice basis is
“close to orthogonal” if the lengths of the Gram-Schmidt vectors do not decrease too
rapidly.

Example 17.2.1. Two bases for Z2 are {(1, 0), (0, 1)} and {(23, 24), (24, 25)}. In the
first case, the Gram-Schmidt vectors both have length 1. In the second case the Gram-
Schmidt vectors are b∗1 = (23, 24) and b∗2 = (24/1105,−23/1105), which have lengths√

1105 ≈ 33.24 and 1/
√

1105 ≈ 0.03 respectively. The fact that the lengths of the
Gram-Schmidt vectors dramatically decrease reveals that the original basis is not of good
quality.

370 CHAPTER 17. LATTICE BASIS REDUCTION

We now list some easy properties of the Gram-Schmidt orthogonalisation.

Lemma 17.2.2. Let {b1, . . . , bn} be linearly independent in Rm and let {b∗1, . . . , b∗n} be
the Gram-Schmidt orthogonalisation.

1. ‖b∗i ‖ ≤ ‖bi‖ for 1 ≤ i ≤ n.

2. 〈bi, b∗i 〉 = 〈b∗i , b∗i 〉 for 1 ≤ i ≤ n.

3. Let j, k ∈ N be such that 1 < k ≤ n and 1 ≤ j < k. Denote the closest integer to
µk,j by ⌊µk,j⌉. If b′k = bk − ⌊µk,j⌉bj and µ′

k,j = 〈b′k, b∗j 〉/〈b∗j , b∗j 〉 then |µ′
k,j | ≤ 1/2.

Exercise 17.2.3. Prove Lemma 17.2.2.

Definition 17.2.4. Let {b1, . . . , bn} be an ordered basis for a lattice. Denote by {b∗1, . . . , b∗n}
the Gram-Schmidt orthogonalisation and write Bi = ‖b∗i ‖2 = 〈b∗i , b∗i 〉. Let

µi,j = 〈bi, b∗j 〉/〈b∗j , b∗j 〉

for 1 ≤ j < i ≤ n be the coefficients from the Gram-Schmidt process. Fix 1/4 < δ < 1.
The (ordered) basis is LLL reduced (with factor δ) if the following conditions hold:

• (Size reduced) |µi,j | ≤ 1/2 for 1 ≤ j < i ≤ n.

• (Lovász condition)
Bi ≥

(
δ − µ2

i,i−1

)
Bi−1

for 2 ≤ i ≤ n.

It is traditional to choose δ = 3/4 in the Lovász condition.

Exercise 17.2.5. Which of the following basis matrices represents an LLL reduced basis
(with δ = 3/4)?

(
1 0
0 2

)
,

(
0 4
1 0

)
,

(
1 −2
3 1

)
,

(
5 0
0 4

)
,

(
10 0
0 9

)
.

Exercise 17.2.6. Prove that an equivalent formulation (more in the flavour of the
Lagrange-Gauss method) of the Lovász condition is

Bi + µ2
i,i−1Bi−1 = ‖b∗i + µi,i−1b

∗
i−1‖2 ≥ δBi−1.

Exercise 17.2.7. Find an ordered basis {b1, b2} in R2 that is LLL-reduced, but has the
property that ‖b2‖ < ‖b1‖ and that the ordered basis {b2, b1} is not LLL-reduced.

For the moment we do not concern ourselves with the question of whether an LLL
reduced basis can exist for every lattice L. In Section 17.4 we will present the LLL
algorithm, which constructs such a basis for any lattice (hence giving a constructive
existence proof for an LLL reduced basis).

The following properties of an LLL reduced basis hold.

Lemma 17.2.8. Let {b1, . . . , bn} be an LLL reduced basis with δ = 3/4 for a lattice
L ⊂ Rm. Let the notation be as above. In particular, ‖b‖ is the Euclidean norm.

1. Bj ≤ 2i−jBi for 1 ≤ j ≤ i ≤ n.

2. Bi ≤ ‖bi‖2 ≤ (12 + 2i−2)Bi for 1 ≤ i ≤ n.

17.2. LLL-REDUCED LATTICE BASES 371

3. ‖bj‖ ≤ 2(i−1)/2‖b∗i ‖ for 1 ≤ j ≤ i ≤ n.
Proof:

1. The Lovász condition implies Bi ≥ (34 − 1
4)Bi−1 = 1

2Bi−1 and the result follows by
induction.

2. From bi = b∗i +
∑i−1

j=1 µi,jb
∗
j we have

‖bi‖2 = 〈bi, bi〉

=

〈
b∗i +

i−1∑

j=1

µi,jb
∗
j , b

∗
i +

i−1∑

j=1

µi,jb
∗
j

〉

= Bi +

i−1∑

j=1

µ2
i,jBj ,

which is clearly ≥ Bi. By part 1 this is at most Bi(1+ 1
4

∑i−1
j=1 2i−j) = Bi(1+ 1

4 (2i−
2)) = Bi(

1
2 + 2i−2).

3. Since j ≥ 1 we have 1
2 + 2j−2 ≤ 2j−1. Part 2 can therefore be written as ‖bj‖2 ≤

2j−1Bj . By part 1, Bj ≤ 2i−jBi and so ‖bj‖2 ≤ 2j−12i−jBi = 2i−1Bi. Taking
square roots gives the result.

�

We now give the same result for a slightly different value of δ.

Lemma 17.2.9. Let {b1, . . . , bn} be an LLL reduced basis with δ = 1/4 + 1/
√

2 ≈ 0.957
for a lattice L ⊂ Rm. Let the notation be as above. In particular, ‖b‖ is the Euclidean
norm.

1. Bj ≤ 2(i−j)/2Bi for 1 ≤ j ≤ i ≤ n.
2. Bi ≤ ‖bi‖2 ≤ (16 + 2(i−1)/2)Bi for 1 ≤ i ≤ n.

3. ‖bj‖ ≤ 2i/4‖b∗i ‖ for 1 ≤ j ≤ i ≤ n.
Exercise 17.2.10.⋆ Prove Lemma 17.2.9.

Lemma 17.2.11. Let {b1, . . . , bn} be an ordered basis for a lattice L ⊂ Rm and let
{b∗1, . . . , b∗n} be the Gram-Schmidt orthogonalisation. Let λ1 be the length of the shortest
non-zero vector in the lattice. Then

λ1 ≥ min
1≤i≤n

‖b∗i ‖.

Furthermore, let w1, . . . , wi ∈ L be linearly independent lattice vectors such that
max{‖w1‖, . . . , ‖wi‖} = λi, as in the definition of successive minima. Write wj =∑n

k=1 zj,kbk. For 1 ≤ j ≤ i denote by k(j) the largest value for k such that 1 ≤ k ≤ n
and zj,k 6= 0. Then ‖wj‖ ≥ ‖b∗k(j)‖.
Proof: Let x = (x1, . . . , xn) ∈ Zn be arbitrary such that x 6= 0. Let i be the largest
index such that xi 6= 0. We will show that ‖xB‖ ≥ ‖b∗i ‖, from which the result follows.

We have xB =
∑i

j=1 xjbj . Since b∗i is orthogonal to the span of {b1, . . . , bi−1} we have

〈xB, b∗i 〉 = xi〈b∗i , b∗i 〉 = xi‖b∗i ‖2. Since xi ∈ Z and xi 6= 0 it follows that |〈xB, b∗i 〉| ≥ ‖b∗i ‖2.
By part 4 of Lemma A.10.3 it follows that

‖xB‖ ≥ ‖b∗i ‖,

372 CHAPTER 17. LATTICE BASIS REDUCTION

which completes the proof. �

Theorem 17.2.12 shows that an LLL reduced lattice basis has good properties. In
particular, the first vector of an LLL-reduced lattice basis has length at most 2(n−1)/2

times the length of a shortest non-zero vector.

Theorem 17.2.12. Let {b1, . . . , bn} be an LLL reduced basis with δ = 3/4 for a lattice
L ⊂ Rm. Let the notation be as above. In particular, ‖b‖ is the Euclidean norm.

1. ‖b1‖ ≤ 2(n−1)/2λ1.

2. ‖bj‖ ≤ 2(n−1)/2λi for 1 ≤ j ≤ i ≤ n. (This may look strange, but it tends to be used
for fixed i and varying j, rather than the other way around.)

3. 2(1−i)/2λi ≤ ‖bi‖ ≤ 2(n−1)/2λi.

4. det(L) ≤∏n
i=1 ‖bi‖ ≤ 2n(n−1)/4 det(L).

5. ‖b1‖ ≤ 2(n−1)/4 det(L)1/n.

Proof:

1. From part 1 of Lemma 17.2.8 we have ‖b∗i ‖ ≥ 2(i−1)/2‖b∗1‖. Hence, part 1 implies

λ1 ≥ min
1≤i≤n

‖b∗i ‖

≥ min
1≤i≤n

2(1−i)/2‖b∗1‖

= 2(1−n)/2‖b∗1‖.

The result follows since b∗1 = b1.

2. Letw1, . . . , wi ∈ L be linearly independent lattice vectors such that max{‖w1‖, . . . , ‖wi‖} =
λi. Let k(j) be defined as in Lemma 17.2.11 so that ‖wj‖ ≥ ‖b∗k(j)‖.
Renumber the vectors wj so that k(1) ≤ k(2) ≤ · · · ≤ k(i). We claim that j ≤ k(j).
If not then w1, . . . , wj would belong to the span of {b1, . . . , bj−1} and would be
linearly dependent.

Finally,
‖bj‖ ≤ 2(k(j)−1)/2‖b∗k(j)‖ ≤ 2(n−1)/2‖wj‖ ≤ 2(n−1)/2λi,

which proves the result.

3. The upper bound on ‖bi‖ is given by part 2.

Since {b1, . . . , bi} are linearly independent we have λi ≤ max1≤j≤i ‖bj‖ and by part

3 of Lemma 17.2.8 each ‖bj‖ ≤ 2(i−1)/2‖b∗i ‖. Using ‖b∗i ‖ ≤ ‖bi‖ we obtain the lower
bound on ‖bi‖.

4. By Lemma 16.1.14 we have det(L) =
∏n
i=1 ‖b∗i ‖. The result follows from ‖b∗i ‖ ≤

‖bi‖ ≤ 2(i−1)/2‖b∗i ‖.

5. By part 3 of Lemma 17.2.8 we have ‖b1‖ ≤ 2(i−1)/2‖b∗i ‖ and so

‖b1‖n ≤
n∏

i=1

2(i−1)/2‖b∗i ‖ = 2n(n−1)/4 det(L).

�

17.3. THE GRAM-SCHMIDT ALGORITHM 373

Exercise 17.2.13. Show that taking δ → 1 in the LLL algorithm would give ‖b1‖ ≤
(43)(n−1)/2λ1(L) and ‖b1‖ ≤ (43)(n−1)/4 det(L)1/n.

Corollary 17.2.14. If ‖b1‖ ≤ ‖b∗i ‖ for all 1 ≤ i ≤ n then b1 is a correct solution to SVP.

Exercise 17.2.15. Prove Corollary 17.2.14.

Exercise 17.2.16. Suppose L is a lattice in Zm and let {b1, . . . , bn} be an LLL-reduced
basis. Rename these vectors as v1, . . . , vn such that 1 ≤ ‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vn‖. Show
that one does not necessarily have ‖v1‖ = ‖b1‖. Show that, for 1 ≤ i ≤ n,

‖vi‖ ≤
(

2n(n−1)/4 det(L)
)1/(n+1−i)

.

As a final remark, the results in this section have only given upper bounds on the
sizes of ‖bi‖ in an LLL-reduced lattice basis. In many practical instances, one finds that
LLL-reduced lattice vectors are much shorter than these bounds might suggest.

17.3 The Gram-Schmidt Algorithm

The LLL algorithm requires computing a Gram-Schmidt basis. For the complexity anal-
ysis of the LLL algorithm it is necessary to give a more careful description and analysis
of the Gram-Schmidt algorithm than was done in Section A.10.2. We present pseudocode
in Algorithm 24 (the “downto” in line 4 is not necessary, but we write it that way for
future reference in the LLL algorithm).

Algorithm 24 Gram-Schmidt algorithm

Input: {b1, . . . , bn} in Rm

Output: {b∗1, . . . , b∗n} in Rm

1: b∗1 = b1
2: for i = 2 to n do
3: v = bi
4: for j := i− 1 downto 1 do
5: µi,j = 〈bi, b∗j 〉/〈b∗j , b∗j 〉
6: v = v − µi,jb∗j
7: end for
8: b∗i = v
9: end for

10: return {b∗1, . . . , b∗n}

When working in R the standard way to implement this algorithm is using floating-
point arithmetic. However, problems can arise (especially if the b∗i decrease quickly in
size). Such issues are beyond the scope of this book; we refer to Higham [285] for details.

If the input vectors lie in Zm then one can perform Algorithm 24 using exact arithmetic
over Q. However, the integers can become very large (this is called coefficient explo-
sion). We now analyse the size of the integers and prove the complexity of the exact
version of the Gram-Schmidt algorithm. These results are used later when determining
the complexity of LLL using exact arithmetic.

Definition 17.3.1. Let b1, . . . , bn be an ordered set of vectors in Zm. Define Bi = ‖b∗i ‖2
(as before). For 1 ≤ i ≤ n − 1 define the i × m matrix B(i) whose rows are b1, . . . , bi.
Define d0 = 1 and, for 1 ≤ i ≤ n,

di = det(B(i)B
T
(i)) = det(〈bj , bk〉1≤j,k≤i) ∈ Z,

374 CHAPTER 17. LATTICE BASIS REDUCTION

which is the square of the volume of the sublattice generated by B(i).

Lemma 17.3.2. Let the notation be as above.

1. di =
∏i
j=1 Bj for 1 ≤ i ≤ n.

2. Bi = di/di−1 for 1 ≤ i ≤ n.
3. di−1b

∗
i ∈ L ⊆ Zn for 1 ≤ i ≤ n, where L is the lattice spanned by {b1, . . . , bn}.

4. djµi,j ∈ Z for 1 ≤ j < i ≤ n.
Proof:

1. Write L(i) for the lattice spanned by the first i vectors (i.e., L is given by the matrix

B(i)). Then di = det(L(i))
2 =

∏i
j=1 ‖b∗j‖2 =

∏i
j=1 Bj by Lemma 16.1.14.

2. This property follows immediately from the previous one.

3. Write b∗i = bi −
∑i−1

j=1 ai,jbj for some ai,j ∈ R. Note that the sum is over vectors bj
not b∗j , so the ai,j are not the same as the µi,j . Since 〈bl, b∗i 〉 = 0 for 1 ≤ l < i we
have

〈bl, bi〉 =

i−1∑

j=1

ai,j〈bl, bj〉,

which corresponds to the matrix product

(〈bi, b1〉, . . . , 〈bi, bi−1〉) = (ai,1, . . . , ai,i−1)B(i−1)B
T
(i−1).

Inverting B(i−1)B
T
(i−1) to solve for the ai,j gives di−1ai,j ∈ Z. It follows that

di−1b
∗
i ∈ L ⊂ Zn as required.

4. By the previous results we have djµi,j = dj−1Bj〈bi, b∗j 〉/Bj = 〈bi, dj−1b
∗
j 〉 ∈ Z.

�

Exercise 17.3.3. Consider the vector v = bi −
∑i−1

k=j µi,kb
∗
k in line 6 of Algorithm 24

during iteration j. Show that

‖v‖2 = ‖bi‖2 −
i−1∑

k=j

µ2
i,k‖b∗k‖2.

Deduce that ‖v‖ ≤ ‖bi‖ and that di−1v ∈ Zm throughout the loop in line 4 of the
algorithm.

Theorem 17.3.4. Let b1, . . . , bn be vectors in Zm. Let X ∈ Z≥2 be such that ‖bi‖2 ≤
X for 1 ≤ i ≤ n. Then the Gram-Schmidt algorithm performs O(n4m log(X)2) bit
operations. The output size is O(n2m log(X)).

Proof: One runs Algorithm 24 using exact Q arithmetic for the vectors b∗i . Lemma 17.3.2

shows that the denominators in b∗i are all factors of di−1, which has size
∏i−1
j=1Bj ≤∏i−1

j=1 ‖bj‖2 ≤ X i−1. Also, ‖b∗i ‖ ≤ ‖bi‖ ≤ X , so the numerators are bounded by X i. The

size of each vector b∗i and, by Exercise 17.3.3, the intermediate steps v in the computa-
tion are therefore O(mi log(X)) bits, which gives the output size of the algorithm. The
computation 〈bi, b∗j 〉 requires O(mn log(X)2) bit operations and the computation 〈b∗j , b∗j 〉
requires O(mn2 log(X)2) bit operations. As there are O(n2) vector operations to perform,
one gets the stated running time. �

17.4. THE LLL ALGORITHM 375

Corollary 17.3.5. Let the notation be as in Theorem 17.3.4 and let L be the lattice
in Zm with basis {b1, . . . , bn}. Then one can compute det(L)2 in O(n4m log(X)2) bit
operations.4

Proof: Lemma 16.1.14 implies det(L)2 =
∏n
i=1 ‖b∗i ‖2. One computes b∗i using exact

(naive) arithmetic over Q in O(n4m log(X)2) bit operations. One computes each ‖b∗i ‖2 ∈
Q in O(mn2 log(X)2) bit operations. Since ‖b∗i ‖2 ≤ X and di−1‖b∗i ‖2 ∈ Z it follows that
‖b∗i ‖2 is a ratio of integers bounded by Xn. One computes the product of the ‖b∗i ‖2
in O(n3 log(X)2) bit operations (since the integers in the product are bounded by Xn2

).
Finally, one can reduce the fraction using Euclid’s algorithm and division inO(n4 log(X)2)
bit operations. �

17.4 The LLL Algorithm

The Lenstra-Lenstra-Lovász (LLL) algorithm is an iterative algorithm that transforms
a given lattice basis into an LLL-reduced one. Since the definition of LLL-reduced uses
Gram-Schmidt vectors, the algorithm performs the Gram-Schmidt method as a subrou-
tine. The first condition of Definition 17.2.4 is easily met by taking suitable integer linear
combinations. If the second condition is not met then bi is not significantly longer than
bi−1. In this case we swap bi and bi−1 and backtrack. The swapping of vectors is fa-
miliar from the Lagrange-Gauss 2-dimensional lattice basis reduction algorithm and also
Euclid’s algorithm. We give the precise details in Algorithm 25.

Algorithm 25 LLL algorithm with Euclidean norm (typically, choose δ = 3/4)

Input: b1, . . . , bn ∈ Zm.
Output: LLL reduced basis b1, . . . , bn
1: Compute the Gram-Schmidt basis b∗1, . . . , b

∗
n and coefficients µi,j for 1 ≤ j < i ≤ n

2: Compute Bi = 〈b∗i , b∗i 〉 = ‖b∗i ‖2 for 1 ≤ i ≤ n
3: k = 2
4: while k ≤ n do
5: for j = (k − 1) downto 1 do ⊲ Perform size reduction
6: Let qj = ⌊µk,j⌉ and set bk = bk − qjbj
7: Update the values µk,j for 1 ≤ j < k
8: end for
9: if Bk ≥ (δ − µ2

k,k−1)Bk−1 then ⊲ Check Lovász condition
10: k = k + 1
11: else
12: Swap bk with bk−1

13: Update the values b∗k, b∗k−1, Bk, Bk−1, µk−1,j and µk,j for 1 ≤ j < k, and
µi,k, µi,k−1 for k < i ≤ n

14: k = max{2, k − 1}
15: end if
16: end while

Lemma 17.4.1. Throughout the LLL algorithm the values b∗i and Bi for 1 ≤ i ≤ n and
µi,j for 1 ≤ j < i ≤ n are all correct Gram-Schmidt values.

4Since det(L)2 ∈ Z while det(L) may not be rational if n < m, we prefer to work with det(L)2.

376 CHAPTER 17. LATTICE BASIS REDUCTION

Exercise 17.4.2. Prove Lemma 17.4.1. In other words, show that line 6 of the LLL
algorithm does not change b∗i or Bi for 1 ≤ i ≤ n. Similarly, line 12 of the algorithm does
not change any values except those mentioned in line 13.

It is illuminating to compare the LLL algorithm with the Lagrange-Gauss reduction
algorithm. The basic concept of size reduction followed by a swap is the same, however
there are two crucial differences.

1. The size reduction operation in the Lagrange-Gauss algorithm gives the minimal
value for ‖b2 + qb1‖ over q ∈ Z. In LLL the coefficient µk,j is chosen to depend on
bk and b∗j so it does not necessarily minimise ‖bk‖. Indeed ‖bk‖ can grow during
the algorithm. Of course, in the two-dimensional case of LLL then µ2,1 is the same
as the value used in the Lagrange-Gauss algorithm and so the size reduction step is
the same.

2. The size check in LLL (the Lovász condition) is on the lengths of the Gram-Schmidt
vectors, unlike the size check in the Lagrange-Gauss algorithm, which is on the
length of the basis vectors themselves.

These features of LLL may seem counterintuitive, but they are essential to the proof that
the algorithm runs in polynomial-time.

Lemma 17.4.3. If bk and bk−1 are swapped then the Gram-Schmidt vectors b∗i for 1 ≤
i ≤ n are changed as follows

1. For 1 ≤ i < k − 1 and k < i < n then b∗i is unchanged.

2. The new value for b∗k−1 is b∗k + µk,k−1b
∗
k−1 and the new value for Bk−1 is B′

k =
Bk + µ2

k,k−1Bk−1.

3. The new value for b∗k is (Bk/B
′
k−1)b∗k−1 − (µk,k−1Bk−1/B

′
k−1)b∗k and the new value

for Bk is Bk−1Bk/B
′
k−1.

Proof: Denote by b′i the new basis (i.e., b′k−1 = bk and b′k = bk−1), b′i
∗

and µ′
i,j the new

Gram-Schmidt values and B′
i the squares of the lengths of the b′i

∗
. Clearly b′i

∗
= b∗i for

1 ≤ i < k − 1 and µ′
i,j = µi,j for 1 ≤ j < i < k − 1. Now

b′ ∗k−1 = b′k−1 −
k−2∑

j=1

µ′
k−1,jb

′
j
∗

= bk −
k−2∑

j=1

µk,jb
∗
j

= b∗k + µk,k−1b
∗
k−1.

Hence, B′
k−1 = Bk + µ2

k,k−1Bk−1.

17.4. THE LLL ALGORITHM 377

Similarly,

b′k
∗

= b′k −
k−1∑

j=1

µ′
k,jb

′
j
∗

= bk−1 −
k−2∑

j=1

µk−1,jb
∗
j −

(
〈bk−1, b

′ ∗
k−1〉/B′

k−1

)
b′ ∗k−1

= b∗k−1 −
(
〈bk−1, b

∗
k + µk,k−1b

∗
k−1〉/B′

k−1

)
(b∗k + µk,k−1b

∗
k−1)

= b∗k−1 −
(
µk,k−1Bk−1/B

′
k−1

)
(b∗k + µk,k−1b

∗
k−1)

=
(
1− µ2

k,k−1Bk−1/B
′
k−1

)
b∗k−1 −

(
µk,k−1Bk−1/B

′
k−1

)
b∗k.

The result for b′k
∗

follows since 1− µ2
k,k−1Bk−1/B

′
k−1 = Bk/B

′
k−1. Finally,

B′
k = (B2

k〈b∗k−1, b
∗
k−1〉/B′

k−1
2

+ µ2
k,k−1B

2
k−1〈b∗k, b∗k〉/B′

k−1
2

= Bk−1Bk/B
′
k−1.

�

Exercise 17.4.4. Give explicit formulae for updating the other Gram-Schmidt values in
lines 7 and 13 of Algorithm 25.

Exercise 17.4.5. Show that it is not necessary to store or update the values b∗i for
1 ≤ i ≤ n in the LLL algorithm once the values Bi have been computed.

Exercise 17.4.6. Show that the condition in line 9 of Algorithm 25 can be checked
immediately after µk,k−1 has been computed. Hence, show that the cases 1 ≤ j < k − 1
in the loop in lines 5 to 8 of Algorithm 25 can be postponed to line 10.

Lemma 17.4.7. If the LLL algorithm terminates then the output basis is LLL reduced.

Exercise 17.4.8. Prove Lemma 17.4.7. Indeed, the fact that the Lovász conditions are
satisfied is immediate. Prove the bounds on the µi,j using the three following steps. Let
1 ≤ j < k and let b′k = bk − ⌊µk,j⌉bj .

1. Prove that 〈bj , b∗j 〉 = 〈b∗j , b∗j〉 and 〈bj , b∗i 〉 = 0 if j < i.

2. Hence, writing µ′
k,j = 〈b′k, b∗j〉/〈b∗j , b∗j 〉, prove that |µ′

k,j | ≤ 1/2 for 1 ≤ j < k.

3. For j < i < k denote µ′
k,i = 〈b′k, b∗i 〉/〈b∗i , b∗i 〉. Prove that µ′

k,i = µk,i.

In the next section we show that the LLL algorithm does terminate. Before then we
give an example and some further discussion.

Example 17.4.9. Let L be the lattice with basis matrix

B =

1 0 0
4 2 15
0 0 3

 .

We will perform the LLL algorithm to reduce this lattice basis.
We start with k = 2 and compute µ2,1 = 4/1 = 4. So q1 = 4 and we define

b2 = b2 − 4b1 = (4, 2, 15)− (4, 0, 0) = (0, 2, 15).

We now want to check the second LLL condition. To do this we need b∗2. We compute
µ2,1 = 0 and hence b∗2 = b2. Then B1 = 1 and B2 = 〈b∗2, b∗2〉 = 229. Clearly, B2 >

378 CHAPTER 17. LATTICE BASIS REDUCTION

(3/4− µ2
2,1)B1 and so we set k = 3. Now consider b3. We compute µ3,2 = 45/229 ≈ 0.19

and, since q2 = 0 there is no reduction to be performed on b3. We compute µ3,1 = 0, so
again no size reduction is required. We now compute

b∗3 = b3 − 45
229b

∗
2 = (0,−90/229, 12/229).

We have B2 = 229 and B3 = 〈b∗3, b∗3〉 = 8244/52441 ≈ 0.157. From this one can check
that B3 < (3/4− µ2

3,2)B2 ≈ 166.1. Hence we swap b2 and b3 and set k = 2.
At this point we have the vectors

b1 = (1, 0, 0) and b2 = (0, 0, 3)

and b∗1 = b1, b∗2 = b2. First check that µ2,1 = 0 and so no size reduction on b2 is required.
Second, B1 = 1 and B2 = 9 and one checks that B2 > (3/4− µ2

2,1)B1 = 0.75. Hence we
set k = 3. Now

b3 = (0, 2, 15)

and we compute µ3,2 = 45/9 = 5. Hence we reduce

b3 = b3 − 5b2 = (0, 2, 0).

Now compute µ3,1 = 0, so no reduction is required.
One computes µ3,2 = 0, b∗3 = b3 and B3 = 4. Hence, B3 < (3/4 − µ2

3,2)B2 =
27/4 = 6.75 and so we should swap b2 and b3 and set k = 2. One can check that the
k = 2 phase runs without making any changes. We have B1 = 1 and B2 = 4. Consider
now k = 3 again. We have µ3,2 = µ3,1 = 0 and so b3 remains unchanged. Finally,
B3 = 9 > (3/4−µ2

3,2)B2 = 3 and so we set k = 4 and halt. The output is (1, 0, 0), (0, 2, 0)
and (0, 0, 3).

Exercise 17.4.10. Perform the LLL algorithm by hand on the basis

{(−1, 5, 0), (2, 5, 0), (8, 6, 16)} .

Exercise 17.4.11. Perform the LLL algorithm by hand on the basis

{(0, 3, 4), (−1, 3, 3), (5, 4,−7)} .

Remark 17.4.12. Part 1 of Theorem 17.2.12 shows we have ‖b1‖ ≤ 2(n−1)/2λ1. In other
words, the LLL algorithm solves SVP up to an exponential factor but is not guaranteed
to output a shortest vector in the lattice. Hence, LLL does not officially solve SVP.

In practice, at least for relatively small dimensions, the vector b1 output by the LLL
algorithm is often much closer to the shortest vector than this bound would suggest, and
in many cases will be a shortest vector in the lattice. In Example 17.4.9, the theoretical
bound gives ‖b1‖ ≤ 2, so (0, 2, 0) would have been a possible value for b1 (but it wasn’t).

17.5 Complexity of LLL

We now show that the LLL algorithm terminates and runs in polynomial-time for lat-
tices in Zm. The original paper of Lenstra, Lenstra and Lovász [373] proves polynomial
termination for any lattice in Rm but only gives a precise complexity for lattices in Zm.

Theorem 17.5.1. Let L be a lattice in Zm with basis b1, . . . , bn and let X ∈ Z≥2 be such
that ‖bi‖2 ≤ X for 1 ≤ i ≤ n. Let 1/4 < δ < 1. Then the LLL algorithm with factor δ
terminates and performs O(n2 log(X)) iterations.

17.5. COMPLEXITY OF LLL 379

Proof: We need to bound the number of “backtracks” in Algorithm 25. This number
is at most n plus the number of swaps. So it suffices to bound the number of swaps by
O(n2 log(X)).

For 1 ≤ i ≤ n − 1 define the i × m matrix B(i) formed by the first i basis vectors
for the lattice. Define di = det(B(i)B

T
(i)) ∈ Z, which is the square of the volume of the

sublattice generated by the rows of B(i). Hence

di =

i∏

j=1

Bj =

i∏

j=1

‖b∗i ‖2 ≤
i∏

j=1

‖bi‖2 ≤ X i.

Define

D =

n−1∏

i=1

di =

n−1∏

i=1

Bn−ii .

It follows that D ≤ X(n−1)n/2.

Two vectors bk and bk−1 are swapped when Bk < (δ−µ2
k,k−1)Bk−1. By Lemma 17.4.3,

the new values for Bk−1 and Bk are B′
k−1 = Bk + µ2

k,k−1Bk−1 and B′
k = Bk−1Bk/B

′
k−1.

Let d′i be the new values for the di. We have d′i = di when 1 ≤ i < k − 1. By the Lovász
condition B′

k−1 ≤ δBk−1. Hence, d′k−1 ≤ δdk−1. Finally, since B′
k−1B

′
k = Bk−1Bk we

have d′i = di for k ≤ i ≤ n. Hence, swapping bk and bk−1 always strictly reduces D.
On the other hand, we always have5 di ∈ Z and so D ≥ 1. It follows that the number

of swaps in the LLL algorithm is at most6 logδ(X
(n−1)n/2) = O(n2 log(X)). Hence the

algorithm requires O(n2 log(X)) iterations of the main loop. �

Algorithm 25 and Theorem 17.5.1 provide a proof that an LLL-reduced basis exists
for every lattice.

Exercise 17.5.2. Let n ∈ N. Show that Hermite’s constant (see Definition 16.2.7)
satisfies γn ≤ 2(n−1)/2 (this bound can be improved to (4/3)(n−1)/2; see [373]).

It is clear that if L ⊂ Zm then LLL can be implemented using exact Q arithmetic, and
hence exact integer arithmetic. But we need to show that the size of the integers does
not explode. The analysis given already for the Gram-Schmidt algorithm (for example,
Lemma 17.3.2) provides most of the tools we need.

Theorem 17.5.3. Let L be a lattice in Zm with basis b1, . . . , bn and let X ∈ Z≥2 be such
that ‖bi‖2 ≤ X for 1 ≤ i ≤ n. Then the LLL algorithm requires arithmetic operations on
integers of size O(n log(X)).

Proof: (Sketch) The bounds on the sizes of the b∗i follow the same methods as used in
the proof of Theorem 17.3.4. Since ‖b∗i ‖ is never increased during the algorithm (indeed,
the vectors are specifically permuted to reduce the ‖b∗i ‖) we have ‖b∗i ‖ ≤ X1/2 at the end
of each iteration. Since di−1b

∗
i ∈ Zn and |di−1| ≤ X i−1 it follows that the entries of b∗i

can be written as n∗
i,j/di−1 where |n∗

i,j | ≤ X i.

Let us now consider the values ‖bi‖2 at the end of each iteration. These values all
start bounded by X . As the algorithm proceeds the values are either not yet changed
(and hence still bounded by X) or have been modified so that the Gram-Schmidt basis
is size reduced (and possibly swapped to an earlier position in the list of vectors). After

5To apply this argument it is necessary to use the square of the determinant. An integer lattice that
does not have full rank does not necessarily have integer determinant.

6Recall that 1/4 < δ < 1 is considered as a fixed constant.

380 CHAPTER 17. LATTICE BASIS REDUCTION

each size reduction step (and before swapping) we have

bi = b∗i +

i−1∑

j=1

µi,jb
∗
j

with −1/2 ≤ µi,j ≤ 1/2 and so

‖bi‖2 = ‖b∗i ‖2 +
i−1∑

j=1

µ2
i,j‖b∗j‖2 ≤ nX. (17.2)

Hence, we have ‖bi‖ ≤
√
nX at the end of each iteration and so the entries of bi are all

integers bounded by
√
nX.

The remaining detail is to bound the sizes of the µi,j and the sizes of intermediate
values in line 6 of Algorithm 25. We refer to the proof of Proposition 1.26 of [373] for the
bounds |µi,j | ≤ 2n−i(nXn−1)1/2 and for further details. �

Corollary 17.5.4. Let L be a lattice in Zm with basis b1, . . . , bn and let X ∈ Z≥2 be such
that ‖bi‖2 ≤ X for 1 ≤ i ≤ n. Then the LLL algorithm requires O(n3m log(X)) arithmetic
operations on integers of size O(n log(X)). Using naive arithmetic gives running time
O(n5m log(X)3) bit operations.

Proof: Theorem 17.5.1 implies that the algorithm requires O(n2 log(X)) iterations of
the main loop. Within each iteration there are n operations on vectors of length m.
Hence O(n3m log(X)) arithmetic operations. Theorem 17.5.3 implies that all arithmetic
operations are on integers of size O(n log(X)). �

Remark 17.5.5. 1. Since the input size is O(nm log(X)) and n ≤ m the running
time is cubic in the input size.

2. Note that the bounds on the sizes of integers involved in the LLL algorithm are
O(n log(X)) bits for the values µi,j and entries of b∗i while only O(log(n) + log(X))
bits are needed for the entries in the vectors bi. This is not just an artifact of the
proof, but is a genuine phenomenon; it can already be seen in Example 17.4.9 where
the bi all have very small integer coordinates and yet µ2,1 = 45/229.

This leads to the idea of representing the µi,j and b∗i using approximate (floating-
point) arithmetic and keeping exact integer arithmetic only for the bi. Variants of
LLL using floating-point arithmetic for the Gram-Schmidt vectors are much faster
than the basic LLL algorithm presented in this chapter. Indeed, the basic algorithm
is almost never used in practice.

A problem with using floating-point approximations is that comparisons now be-
come inexact, and this leads to problems with both termination and correctness of
the output. Implementing and analysing floating-point LLL algorithms is beyond
the scope of this book. We refer to Stehlé [582] and Schnorr [525] for surveys of this
topic.

3. One can show (e.g., using equation (17.2)) that the complexity statement holds also
for X = max{‖b∗i ‖ : 1 ≤ i ≤ n}, which could be smaller than max{‖bi‖ : 1 ≤ i ≤ n}.

4. Sometimes one is interested in reducing lattice bases that are in Qm and not Zm.
Suppose all rational numbers in the basis B have numerator and denominator
bounded by X . One can obtain an integer matrix by multiplying B by an inte-
ger that clears all denominators, but the resulting integers could be as big as Xmn.

17.6. VARIANTS OF THE LLL ALGORITHM 381

This gives a worst-case complexity of O(n8m4 log(X)3) bit operations for lattice
basis reduction.

Some applications such as simultaneous Diophantine approximation (see Section 19.5)
and the hidden number problem (see Section 21.7.1) have at most m non-integer
entries, giving a complexity of O(n5m4 log(X)3) bit operations.

17.6 Variants of the LLL Algorithm

There are many refinements of the LLL algorithm that are beyond the scope of the brief
summary in this book. We list some of these now.

• As mentioned earlier, it is necessary to use floating-point arithmetic to obtain a fast
version of the LLL algorithm. A variant of floating-point LLL whose running time
grows quadratically in log(X) (rather than cubicly, as usual) is the L2 algorithm of
Nguyen and Stehlé [454] (also see Stehlé [582]).

• Schnorr-Euchner “deep insertions”. The idea is that, rather than just swapping bk
and bk−1 in the LLL algorithm, one can move bk much earlier in the list of vectors
if Bk is sufficiently small. With standard LLL we have shown that swapping bk and
bk−1 changes Bk to Bk + µ2

k,k−1Bk−1. A similar argument shows that inserting bk
between bi−1 and bi for some 1 < i < k changes Bk to

B = Bk +

k−1∑

j=1

µ2
k,jBj

Hence, one can let i be the smallest index such that B < 3
4Bi and insert bk between

bi−1 and bi (i.e., reorder the vectors bi, . . . , bk as bk, bi, . . . , bk−1). We refer to Schnorr
and Euchner [526] and Section 2.6.2 of Cohen [136] for more details.

• Our presentation of the LLL algorithm was for the Euclidean norm. The algorithm
has been extended to work with any norm by Lovász and Scarf [396] (also see Kaib
and Ritter [325]).

In practice, if one wants results for a norm other than the Euclidean norm, one
usually performs ordinary LLL reduction with respect to the Euclidean norm and
then uses the standard relations between norms (Lemma A.10.2) to determine the
quality of the resulting vectors.

• Another important approach to lattice basis reduction is the block Korkine-Zolotarev
algorithm due to Schnorr [521]. We mention this further in Section 18.5.

382 CHAPTER 17. LATTICE BASIS REDUCTION

Chapter 18

Algorithms for the Closest and
Shortest Vector Problems

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

This chapter presents several algorithms to find lattice vectors close to a given vector.
First we consider two methods due to Babai that, although not guaranteed to solve the
closest vector problem, are useful in several situations in the book. Then we present an
exponential-time algorithm to enumerate all vectors close to a given point. This algorithm
can be used to solve the closest and shortest vector problems. We then briefly mention a
lattice basis reduction algorithm that is guaranteed to yield better approximate solutions
to the shortest vector problem.

The closest vector problem (CVP) was defined in Section 16.3. First, we remark that
the shortest distance from a given vector w ∈ Rn to a lattice vector v ∈ L can be quite
large compared with the lengths of short vectors in the lattice.

Example 18.0.1. Consider the lattice in R2 with basis (1, 0) and (0, 1000). Then w =
(0, 500) has distance 500 from the closest lattice point, despite the fact that the first
successive minimum is 1.

Exercise 18.0.2. Let L = Zn and w = (1/2, . . . , 1/2). Show that ‖w − v‖ ≥ √n/2 for
all v ∈ L. Hence, show that if n > 4 then ‖w − v‖ > λn for all v ∈ L.

18.1 Babai’s Nearest Plane Method

Let L be a full rank lattice given by an (ordered) basis {b1, . . . , bn} and let {b∗1, . . . , b∗n} be
the corresponding Gram-Schmidt basis. Let w ∈ Rn. Babai [18] presented a method to
inductively find a lattice vector close to w. The vector v ∈ L output by Babai’s method
is not guaranteed to be such that ‖w − v‖ is minimal. Theorem 18.1.6 shows that if the
lattice basis is LLL-reduced then ‖w − v‖ is within an exponential factor of the minimal
value.

383

384 CHAPTER 18. CLOSE AND SHORT VECTORS

U

bnb∗n

b

b

y

b w

U + y

U + bn

b
w′

b
w′′

Figure 18.1: Illustration of the Babai nearest plane method. The x-axis represents the
subspace U (which has dimension n− 1) and the y-axis is perpendicular to U .

We now describe the method. Define U = span{b1, . . . , bn−1} and let L′ = L ∩ U
be the sublattice spanned by {b1, . . . , bn−1}. The idea of the nearest plane method is to
find a vector y ∈ L such that the distance from w to the plane U + y is minimal. One
then sets w′ to be the orthogonal projection of w onto the plane U + y (in other words,

w′ ∈ U + y and w − w′ ∈ U⊥). Let w′′ = w′ − y ∈ U . Note that if w 6∈ L then w′′ 6∈ L.
One inductively solves the (lower dimensional) closest vector problem of w′′ in L′ to get
y′ ∈ L′. The solution to the original instance of the CVP is v = y + y′.

We now explain how to algebraically find y and w′.

Lemma 18.1.1. Let

w =

n∑

j=1

ljb
∗
j (18.1)

with lj ∈ R. Define y = ⌊ln⌉bn ∈ L (where ⌊ln⌉ denotes rounding to the nearest integer)

and w′ =
∑n−1
j=1 ljb

∗
j + ⌊ln⌉b∗n. Then y is such that the distance between w and U + y is

minimal, and w′ is the orthogonal projection of w onto U + y.

Proof: We use the fact that U = span{b∗1, . . . , b∗n−1}. The distance from w to U + y is

inf
u∈U
‖w − (u+ y)‖.

Let w be as in equation (18.1) and let y =
∑n

j=1 l
′
jbj be any element of L for l′j ∈ Z. One

can write y =
∑n−1

j=1 l
′′
j b

∗
j + l′nb

∗
n for some l′′j ∈ R, 1 ≤ j ≤ n− 1.

Lemma A.10.5 shows that, for fixed w and y, ‖w − (u + y)‖2 is minimised by u =∑n−1
j=1 (lj − l′′j)b∗j ∈ U . Indeed,

‖w − (u+ y)‖2 = (ln − l′n)2‖b∗n‖2.

18.1. BABAI’S NEAREST PLANE METHOD 385

It follows that one must take l′n = ⌊ln⌉, and so the choice of y in the statement of the
Lemma is correct (note that one can add any element of L′ to y and it is still a valid
choice).

The vector w′ satisfies

w′ − y =

n−1∑

j=1

ljb
∗
j + ⌊ln⌉(b∗n − bn) ∈ U,

which shows that w′ ∈ U + y. Also,

w − w′ =

n∑

j=1

ljb
∗
j −

n−1∑

j=1

ljb
∗
j − ⌊ln⌉b∗n = (ln − ⌊ln⌉)b∗n, (18.2)

which is orthogonal to U . Hence, w′ is the orthogonal projection of w onto U + y. �

Exercise 18.1.2. Let the notation be as above and write bn = b∗n +
∑n−1
i=1 µn,ib

∗
i . Show

that

w′′ =

n−1∑

i=1

(li − ⌊ln⌉µn,i)b∗i .

Exercise 18.1.3. Let {b1, . . . , bn} be an ordered basis for a lattice L. Let w ∈ Rn and
suppose that there is an element v ∈ L such that ‖v − w‖ < 1

2‖b
∗
i ‖ for all 1 ≤ i ≤ n.

Prove that the nearest plane algorithm outputs v.

The following Lemma is needed to prove the main result, namely Theorem 18.1.6.

Lemma 18.1.4. Let {b1, . . . , bn} be LLL reduced (with respect to the Euclidean norm,
and with factor δ = 3/4). If v is the output of Babai’s nearest plane algorithm on input
w then

‖w − v‖2 ≤ 2n−1
4 ‖b

∗
n‖2.

Proof: We prove the result by induction. Certainly if n = 1 then ‖w − v‖2 ≤ 1
4‖b

∗
1‖2 as

required.
Now suppose n ≥ 2. Recall that the output of the method is v = y + y′ where y ∈ L

minimises the distance from w to U + y, w′ is the orthogonal projection of w onto U + y,
and y′ is the output of the algorithm on w′′ = w′ − y in L′. By the inductive hypothesis

we know that ‖w′′ − y′‖2 ≤ 1
4 (2n−1 − 1)‖b∗n−1‖2. Hence

‖w − (y + y′)‖2 = ‖w − w′ + w′ − (y + y′)‖2

= ‖w − w′‖2 + ‖w′′ − y′‖2

≤ 1
4‖b

∗
n‖2 + 2n−1−1

4 ‖b∗n−1‖2

using equation (18.2).
Finally, part 1 of Lemma 17.2.8 implies that this is

≤
(

1
4 + 2 2n−1−1

4

)
‖b∗n‖2

from which the result follows. �

Exercise 18.1.5. Prove that if v is the output of the nearest plane algorithm on input
w then

‖v − w‖2 ≤ 1
4

n∑

i=1

‖b∗i ‖2.

386 CHAPTER 18. CLOSE AND SHORT VECTORS

Theorem 18.1.6. If the basis {b1, . . . , bn} is LLL-reduced (with respect to the Euclidean
norm and with factor δ = 3/4) then the output of the Babai nearest plane algorithm on
w ∈ Rn is a vector v such that ‖v − w‖ < 2n/2‖u− w‖ for all u ∈ L.

Proof: We prove the result by induction. For n = 1, v is a correct solution to the closest
vector problem and so the result holds.

Let n ≥ 2 and let u ∈ L be a closest vector to w. Let y be the vector chosen in the
first step of the Babai method. We consider two cases.

1. Case u ∈ U +y. Then ‖u−w‖2 = ‖u−w′‖2 +‖w′−w‖2 so u is also a closest vector
to w′. Hence u − y is a closest vector to w′′ = w′ − y ∈ U . Let y′ be the output of
the Babai nearest plane algorithm on w′′. By the inductive hypothesis,

‖y′ − w′′‖ < 2(n−1)/2‖u− y − w′′‖.

Substituting w′ − y for w′′ gives

‖y + y′ − w′‖ < 2(n−1)/2‖u− w′‖.

Now

‖v − w‖2 = ‖y + y′ − w′‖2 + ‖w′ − w‖2 < 2n−1‖u− w′‖2 + ‖w′ − w‖2.

Using ‖u− w′‖, ‖w′ − w‖ ≤ ‖u− w‖ and 2n−1 + 1 ≤ 2n gives the result.

2. Case u 6∈ U + y. Since the distance from w to U + y is ≤ 1
2‖b

∗
n‖, we have ‖w− u‖ ≥

1
2‖b

∗
n‖. By Lemma 18.1.4 we find

1
2‖b

∗
n‖ ≥ 1

2

√
4

2n − 1
‖w − v‖.

Hence, ‖w − v‖ < 2n/2‖w − u‖.

This completes the proof. �

One can obtain a better result by using the result of Lemma 17.2.9.

Theorem 18.1.7. If the basis {b1, . . . , bn} is LLL-reduced with respect to the Euclidean
norm and with factor δ = 1/4+1/

√
2 then the output of the Babai nearest plane algorithm

on w ∈ Rn is a vector v such that

‖v − w‖ < 2n/4√√
2− 1

‖u− w‖ < (1.6)2n/4‖u− w‖

for all u ∈ L.

Exercise 18.1.8. Prove Theorem 18.1.7.
[Hint: First prove that the analogue of Lemma 18.1.4 in this case is ‖w − v‖2 ≤ (2n/2 −
1)/(4(

√
2 − 1))‖b∗n‖2. Then follow the proof of Theorem 18.1.6 using the fact that(

2(n−1)/4/
√√

2− 1
)2

+ 1 ≤
(
2n/4/

√√
2− 1

)2
.]

Algorithm 26 is the Babai nearest plane algorithm. We use the notation y
n

= y,
wn = w, wn−1 = w′′ etc. Note that Babai’s algorithm can be performed using exact
arithmetic over Q or using floating point arithmetic.

18.1. BABAI’S NEAREST PLANE METHOD 387

Algorithm 26 Babai nearest plane algorithm

Input: {b1, . . . , bn}, w
Output: v

Compute Gram-Schmidt basis b∗1, . . . , b
∗
n

Set wn = w
for i = n downto 1 do

Compute li = 〈wi, b∗i 〉/〈b∗i , b∗i 〉
Set y

i
= ⌊li⌉bi

Set wi−1 = wi − (li − ⌊li⌉)b∗i − ⌊li⌉bi
end for
return v = y

1
+ · · ·+ y

n

Exercise 18.1.9. Let {b1, . . . , bn} be a basis for a lattice in Zn. Let X ∈ R>0 be such
that ‖bi‖ ≤ X for 1 ≤ i ≤ n. Show that the complexity of the Babai nearest plane
algorithm (not counting LLL) when using exact arithmetic over Q is O(n5 log(X)2) bit
operations.

Exercise 18.1.10. If {b1, . . . , bn} is an ordered LLL-reduced basis then b1 is likely to be
shorter than bn. It would therefore be more natural to start with b1 and define U to be
the orthogonal complement of b1. Why is this not possible?

Example 18.1.11. Consider the LLL-reduced basis

B =

1 2 3
3 0 −3
3 −7 3

and the vector w = (10, 6, 5) ∈ R3. We perform the nearest plane method to find a lattice
vector close to w.

First compute the Gram-Schmidt basis b∗1 = (1, 2, 3), b∗2 = (24/7, 6/7,−12/7) and
b∗3 = (10/3,−20/3, 10/3). Write

w = 37
14b

∗
1 + 2b∗2 + 3

20b
∗
3.

Since ⌊3/20⌉ = 0 we have y
3

= 0 and w′′ = w′ = 37
14b

∗
1 + 2b∗2 = (19/2, 7, 9/2). The process

is continued inductively, so write w = w′′. Then one takes y
2

= 2b2 = (6, 0,−6) and

w′′ = w − y
2

= (7/2, 7, 21/2) = 7
2b

∗
1. Since ⌊7/2⌉ = 3 we return the solution

3b1 + 2b2 = (9, 6, 3).

Exercise 18.1.12. Show that the vector v output by the Babai nearest plane method
lies in the parallelepiped

w +

n∑

j=1

ljb
∗
j : lj ∈ R, |lj| ≤ 1

2

centered on w. Show that this parallelepiped has volume equal to the volume of the
lattice. Hence show that if w does not lie in the lattice then there is exactly one lattice
point in this parallelepiped.

Show that if there exists a vector v ∈ L such that ‖v − w‖ ≤ 1
2 min{‖b∗i ‖ : 1 ≤ i ≤ n}

then the Babai nearest plane algorithm on input w outputs v.

388 CHAPTER 18. CLOSE AND SHORT VECTORS

Some improvements to the Babai nearest plane algorithm are listed in Section 3.4 of
[256] (where they are credited to Coppersmith). Similar methods (but using a randomised
choice of plane) were used by Klein [341] to solve the CVP when the target vector is
particularly close to a lattice point. Another variant of the nearest plane algorithm is
given by Lindner and Peikert [390]. The nearest plane algorithm is known by the name
“VBLAST” in the communications community (see [440]).

18.2 Babai’s Rounding Technique

An alternative to the nearest plane method is the rounding technique. This is simpler to
compute in practice, since it does not require the computation of a Gram-Schmidt basis,
but harder to analyse in theory. This method is also not guaranteed to solve CVP. Let
b1, . . . , bn be a basis for a full rank lattice in Rn. Given a target w ∈ Rn we can write

w =
n∑

i=1

libi

with li ∈ R. One computes the coefficients li by solving the system of linear equations
(since the lattice is full rank we can also compute the vector (l1, . . . , ln) as wB−1). The
rounding technique is simply to set

v =

n∑

i=1

⌊li⌉bi

where ⌊l⌉ means take the closest integer to the real number l. This procedure can be
performed using any basis for the lattice. Babai has proved that ‖v − w‖ is within an
exponential factor of the minimal value if the basis is LLL-reduced. The method trivially
generalises to non-full-rank lattices as long as w lies in the R-span of the basis.

Theorem 18.2.1. Let b1, . . . , bn be an LLL-reduced basis (with respect to the Euclidean
norm and with factor δ = 3/4) for a lattice L ⊆ Rn. Then the output v of the Babai
rounding method on input w ∈ Rn satisfies

‖w − v‖ ≤ (1 + 2n(9/2)n/2)‖w − u‖

for all u ∈ L.

Proof: See Babai [18]. �

Babai rounding gives a lattice point v such that w− v =
∑n
i=1mibi where |mi| ≤ 1/2.

In other words, v lies in the parallelepiped, centered at w, defined by the basis vectors.
Since the volume of the parallelepiped is equal to the volume of the lattice, if w is not in
the lattice then there is exactly one lattice point in the parallelepiped. The geometry of
the parallelepiped determines whether or not an optimal solution to the CVP is found.
Hence, though the rounding method can be used with any basis for a lattice, the result
depends on the quality of the basis.

Example 18.2.2. Let b1 = (3, 2) and b2 = (2, 1) generate the lattice Z2. Let w =
(−0.4, 0.4) so that the solution to CVP is (0, 0). One can verify that (−0.4, 0.4) =
1.2b1 − 2b2 and so Babai rounding yields b1 − 2b2 = (−1, 0). Figure 18.2 shows the
parallelepiped centered at w corresponding to the basis. One can see that (−1, 0) is the
only lattice point within that parallelepiped.

18.2. BABAI’S ROUNDING TECHNIQUE 389

b

b

b

b

b

b

b

b

b

b

b

b

bbbb b

b

b

b

b
w

Figure 18.2: Parallelepiped centered at (−0.4, 0.4) corresponding to lattice basis (3, 2)
and (2, 1).

Exercise 18.2.3. Consider the vector w = (−0.4, 0.4) as in Example 18.2.2 again. Using
the basis {(1, 0), (0, 1)} for Z2 use the Babai rounding method to find the closest lattice
vector in Z2 to w. Draw the parallelepiped centered on w in this case.

We stress that the rounding method is not the same as the nearest plane method. The
next example shows that the two methods can give different results.

Example 18.2.4. Consider the CVP instance in Example 18.1.11. We have

w = 141
40 b1 + 241

120b2 + 3
20b3.

Hence one sets
v = 4b1 + 2b2 = (10, 8, 6) 6= (9, 6, 3).

Note that this is a different solution to the one found in Example 18.1.11, though both
solutions satisfy ‖w − v‖ =

√
5.

Exercise 18.2.5. Prove that if b1, . . . , bn are orthogonal basis vectors for a lattice L then
the Babai rounding technique produces a correct solution to the CVP with respect to the
Euclidean norm. Show also that the Babai rounding technique gives the same result as
the Babai nearest plane method in this case.

Exercise 18.2.6. Show that the nearest plane and rounding methods produce a linear
combination of the lattice basis where the vector bn has the same coefficient.

Exercise 18.2.7. Consider the lattice with basis

7 0 1
1 17 1
−3 0 10

and let
w = (100, 205, 305).

Find a lattice vector v close to w using the rounding technique. What is ‖v − w‖?

The Babai rounding algorithm is known by the name “zero forcing” in the communi-
cations community (see [440]).

390 CHAPTER 18. CLOSE AND SHORT VECTORS

18.3 The Embedding Technique

Another way to solve CVP is the embedding technique, due to Kannan (see page 437
onwards of [330]). Let B be a basis matrix for a lattice L and suppose w ∈ Rn (in practice
we assume w ∈ Qn). A solution to the CVP corresponds to integers l1, . . . , ln such that

w ≈
n∑

i=1

libi.

The crucial observation is that e = w −∑n
i=1 libi is such that ‖e‖ is small.

The idea of the embedding technique is to define a lattice L′ that contains the short
vector e. Let M ∈ R>0 (for example M = 1). The lattice L′ is defined by the vectors
(which are a basis for Rn+1)

(b1, 0), · · · , (bn, 0), (w,M). (18.3)

One sees that taking the linear combination of rows with coefficients (−l1, . . . ,−ln, 1)
gives the vector

(e,M).

Hence, we might be able to find e by solving the SVP problem in the lattice L′. One can
then solve the CVP by subtracting e from w.

Example 18.3.1. Consider the basis matrix

B =

35 72 −100
−10 0 −25
−20 −279 678

for a lattice in R3. We solve the CVP instance with w = (100, 100, 100).
Apply the LLL algorithm to the basis matrix (taking M = 1)

35 72 −100 0
−10 0 −25 0
−20 −279 678 0
100 100 100 1

for the lattice L′. This gives the basis matrix

0 1 0 1
5 0 1 0
0 5 1 −4
5 5 −21 −4

 .

The first row is (0, 1, 0, 1), so we know that (0, 1, 0) is the difference between w and a
lattice point v. One verifies that v = (100, 100, 100)− (0, 1, 0) = (100, 99, 100) is a lattice
point.

The success of the embedding technique depends on the size of e compared with the
lengths of short vectors in the original lattice L. As we have seen in Exercise 18.0.2, e
can be larger than λn, in which case the embedding technique is not likely to be a good
way to solve the closest vector problem.

18.4. ENUMERATING ALL SHORT VECTORS 391

Lemma 18.3.2. Let {b1, . . . , bn} be a basis for a lattice L ⊆ Zn and denote by λ1 the
shortest Euclidean length of a non-zero element of L. Let w ∈ Rn and let v ∈ L be a
closest lattice point to w. Define e = w − v. Suppose that ‖e‖ < λ1/2 and let M = ‖e‖.
Then (e,M) is a shortest non-zero vector in the lattice L′ of the embedding technique.

Proof: All vectors in the lattice L′ are of the form

ln+1(e,M) +

n∑

i=1

li(bi, 0)

for some l1, . . . , ln+1 ∈ Z. Every non-zero vector with ln+1 = 0 is of length at least λ1.
Since

‖(e,M)‖2 = ‖e‖2 +M2 = 2M2 < 2λ21/4

the vector (e,±M) has length at most λ1/
√

2. Since v is a closest vector to w it follows
that ‖e‖ ≤ ‖e+ x‖ for all x ∈ L and so every other vector (u,M) ∈ L′ has length at least
as large. Finally, suppose |ln+1| ≥ 2. Then

‖(u, ln+1M)‖2 ≥ ‖(0, ln+1M)‖2 ≥ (2M)2

and so ‖(u, ln+1M)‖ ≥ 2‖(e,M)‖. �

Lemma 18.3.2 shows that the CVP can be reduced to SVP as long as the target vector
is very close to a lattice vector, and assuming one has a good guess M for the distance.
However, when using algorithms such as LLL that solve the approximate SVP it is not
possible, in general, to make rigorous statements about the success of the embedding tech-
nique. As mentioned earlier, the LLL algorithm often works better than the theoretical
analysis predicts. Hence the embedding technique can potentially be useful even when w
is not so close to a lattice point. For further discussion see Lemma 6.15 of Kannan [330].

Exercise 18.3.3. Let {b1, . . . , bn} be a basis for a lattice in Rn and let w ∈ Rn. Let
M = max1≤i≤n ‖bi‖. Show that the output (e,M) of the embedding technique (using
LLL) on the basis of equation (18.3) is the same as the output of the Babai nearest plane
algorithm when run on the LLL-reduced basis.

Exercise 18.3.4. Solve the following CVP instance using the embedding technique and
a computer algebra package.

B =

−265 287 56
−460 448 72
−50 49 8

 , w = (100, 80, 100).

18.4 Enumerating all Short Vectors

We present a method to enumerate all short vectors in a lattice, given any basis. We will
show later that the performance of this enumeration algorithm depends on the quality of
the lattice basis. Throughout this section, ‖v‖ denotes the Euclidean norm.

The first enumeration method was given by Pohst in 1981. Further variants were given
by Finke and Pohst, Kannan [329, 330], Helfrich [281] and Schnorr and Euchner [526].
These methods are all deterministic and are guaranteed to output a non-zero vector
of minimum length. The time complexity is exponential in the lattice dimension, but
the storage requirements are polynomial. This approach is known by the name “sphere
decoding” in the communications community (see [440]).

392 CHAPTER 18. CLOSE AND SHORT VECTORS

Exercise 18.4.1. Let {b1, . . . , bn} be an (ordered) basis in Rm for a lattice and let
{b∗1, . . . , b∗n} be the Gram-Schmidt orthogonalisation. Let v ∈ Rm. Show that the projec-
tion of v onto b∗i is

〈v, b∗i 〉
‖b∗i ‖2

b∗i .

Show that if v =
∑n

j=1 xjbj then this projection is

xi +

n∑

j=i+1

xjµj,i

 b∗i .

Lemma 18.4.2. Let {b1, . . . , bn} be an (ordered) basis for a lattice and let {b∗1, . . . , b∗n}
be the Gram-Schmidt orthogonalisation. Fix A ∈ R>0 and write Bi = ‖b∗i ‖2. Let v =∑n

i=1 xibi be such that ‖v‖2 ≤ A. For 1 ≤ i ≤ n define

zi = xi +

n∑

j=i+1

µj,ixj .

Then for 1 ≤ i < n
n∑

i=1

z2iBi ≤ A.

Proof: Exercise 18.4.1 gives a formula zib
∗
i for the projection of v onto each b∗i . Since

the vectors b∗i are orthogonal we have

‖v‖2 =

n∑

i=1

‖zib∗i ‖2 =

n∑

i=1

z2iBi.

The result follows. �

Theorem 18.4.3. Let the notation be as in Lemma 18.4.2. Then one has x2n ≤ A/‖b∗n‖2
and, for 1 ≤ i < n,

xi +

n∑

j=i+1

µj,ixj

2

Bi ≤ A−
n∑

j=i+1

z2jBj .

Proof: Note that zn = xn and Lemma 18.4.2 implies z2nBn ≤ A, which proves the first
statement. The second statement is also just a re-writing of Lemma 18.4.2. �

We now sketch the enumeration algorithm for finding all short lattice vectors v =∑n
i=1 xibi, which follows from the above results. First, without loss of generality we may

assume that xn ≥ 0. By Theorem 18.4.3 we know 0 ≤ xn ≤
√
A/Bn. For each candidate

xn one knows that
(xn−1 + µn,n−1xn)2Bn−1 ≤ A− x2nBn

and so
|xn−1 + µn,n−1xn| ≤

√
(A− x2nBn)/Bn−1.

To phrase this as a bound on xn−1 one uses the fact that for any a ∈ R, b ∈ R≥0,
the solutions x ∈ R to |x + a| ≤ b satisfy −(b + a) ≤ x ≤ b − a. Hence, writing
M1 =

√
(A− x2nBn) /Bn−1 one has

−(M1 + µn,n−1xn) ≤ xn−1 ≤M1 − µn,n−1xn.

18.4. ENUMERATING ALL SHORT VECTORS 393

Exercise 18.4.4. Generalise the above discussion to show that for 1 ≤ i < n one has

−(M1 +M2) ≤ xi ≤M1 −M2

where

M1 =

√√√√√

A−

n∑

j=i+1

x2jBj

 /Bi

and M2 =
∑n

j=i+1 µj,ixj .

Exercise 18.4.5. Write pseudocode for the algorithm to enumerate all short vectors of
a lattice.

The algorithm to find a non-zero vector of minimal length is then straightforward. Set
A to be ‖b1‖2, enumerate all vectors of length at most A and, for each vector, compute
the length. One is guaranteed to find a shortest vector in the lattice. Schnorr and
Euchner [526] organised the search in a manner to minimise the running time.

The running time of this algorithm depends on the quality of the basis in several ways.
First, it is evidently important to have a good bound A for the length of the shortest
vector. Taking A = ‖b1‖2 is only sensible if b1 is already rather short; alternatively one
may choose, say, A =

√
n

2πe det(L)1/n using the Gaussian heuristic (one can choose a
small bound for A and then, if the search fails, increase A accordingly). Second, one sees
that if b∗n is very short then the algorithm searches a huge range of values for xn, and
similarly if b∗n−1 is very short etc. Hence, the algorithm performs best if the values ‖b∗i ‖
descrease rather gently.

To solve SVP in practice using enumeration one first performs LLL and other pre-
computation to get a sufficiently nice basis. We refer to Kannan [329, 330], Schnorr
and Euchner [526] and Agrell et al [7] for details. The best complexity statement in the
literature is due to Hanrot and Stehlé.

Theorem 18.4.6. (Hanrot and Stehlé [275]) There exists a polynomial p(x, y) ∈ R[x, y]
such that, for any n-dimensional lattice L in Zm with basis consisting of vectors with
coefficients bounded by B, one can compute all the shortest non-zero vectors in L in at
most p(log(B),m)nn/2e+o(n) bit operations.

Exercise 18.4.7. Let L be a lattice in Zn that contains qZn for some integer q. Let M ∈
N be a fixed bound. Give an algorithm based on Wagner’s technique (see Section 13.8)
for finding vectors in L with all entries bounded by M . Determine the complexity of this
algorithm.

Due to lack of space we refer to the original papers for further details about enumera-
tion algorithms. Pujol and Stehlé [491] give an analysis of issues related to floating point
implementation.

In practice the most efficient enumeration methods for the SVP are heuristic “pruning”
methods. These methods are still exponential in the lattice dimension, and are not
guaranteed to output the shortest vector. The extreme pruning algorithm of Gama,
Nguyen and Regev [235] is currently the most practical method.

A quite different approach, leading to non-deterministic algorithms (in other words,
the output is a non-zero vector in the lattice that, with high probability, has minimal
length) is due to Ajtai, Kumar and Sivakumar (see [357] for a survey). The running time
and storage requirements of the algorithm are both exponential in the lattice dimension.
For some experimental results we refer to Nguyen and Vidick [465]. Micciancio and
Voulgaris [424] have given an improved algorithm, still requiring exponential time and
storage.

394 CHAPTER 18. CLOSE AND SHORT VECTORS

18.4.1 Enumeration of Closest Vectors

The above ideas can be adapted to list lattice points close to some w ∈ Rn. Let A ∈ R>0

and suppose we seek all v ∈ L such that ‖v−w‖2 ≤ A. Write v =
∑n

i=1 xibi =
∑n
i=1 zib

∗
i

as before and write

w =

n∑

i=1

yib
∗
i .

Then ‖v − w‖2 ≤ A is equivalent to

n∑

i=1

(zi − yi)2‖b∗i ‖2 ≤ A.

It follows that
yn −

√
A/Bn ≤ xn ≤ yn +

√
A/Bn

and so on.

Lemma 18.4.8. Let the notation be as above and define

Mi =

√√√√√

A−

n∑

j=i+1

(zj − yj)2Bj

 /Bi and Ni =

n∑

j=i+1

µj,ixj

for 1 ≤ i ≤ n. If v =
∑n

i=1 xibi satisfies ‖v − w‖2 ≤ A then, for 1 ≤ i ≤ n,

yi −Mi −Ni ≤ xi ≤ yi +Mi −Ni

Exercise 18.4.9. Prove Lemma 18.4.8.

The paper by Agrell, Eriksson, Vardy and Zeger [7] gives an excellent survey and
comparison of the various enumeration techniques. They conclude that the Schnorr-
Euchner variant is much more efficient than the Pohst or Kannan versions.

18.5 Korkine-Zolotarev Bases

We present a notion of reduced lattice basis that has better properties than an LLL-
reduced basis.

Definition 18.5.1. Let L be a lattice of rank n in Rm. An ordered basis {b1, . . . , bn} for
L is Korkine-Zolotarev reduced1 if

1. b1 is a non-zero vector of minimal length in L;

2. |µi,1| < 1/2 for 2 ≤ i ≤ n;

3. the basis {b2 − µ2,1b1, . . . , bn − µn,1b1} is Korkine-Zolotarev reduced (this is the
orthogonal projection of the basis of L onto the orthogonal complement of b1)

where b∗i is the Gram-Schmidt orthogonalisation and µi,j = 〈bi, b∗j 〉/〈b∗j , b∗j 〉.

One problem is that there is no known polynomial-time algorithm to compute a
Korkine-Zolotarev basis.

1Some authors also call it Hermite-Korkine-Zolotarev (HKV) reduced.

18.5. KORKINE-ZOLOTAREV BASES 395

Theorem 18.5.2. Let {b1, . . . , bn} be a Korkine-Zolotarev reduced basis of a lattice L.
Then

1. for 1 ≤ i ≤ n,
4

i+ 3
λ2i ≤ ‖bi‖2 ≤

i+ 3

4
λ2i ;

2.
n∏

i=1

‖bi‖2 ≤
(
γnn

n∏

i=1

i+ 3

4

)
det(L)2.

Proof: See Theorem 2.1 and 2.3 of Lagarias, Lenstra and Schnorr [361]. �

As we have seen, for lattices of relatively small dimension it is practical to enumerate
all short vectors. Hence one can compute a Korkine-Zolotarev basis for lattices of small
dimension. Schnorr has developed the block Korkine-Zolotarev lattice basis reduction
algorithm, which computes a Korkine-Zolotarev basis for small dimensional projections
of the original lattice and combines this with the LLL algorithm. The output basis can
be proved to be of a better quality than an LLL-reduced basis. This is the most powerful
algorithm for finding short vectors in lattices of large dimension. Due to lack of space we
are unable to present this algorithm; we refer to Schnorr [521] for details.

396 CHAPTER 18. CLOSE AND SHORT VECTORS

Chapter 19

Coppersmith’s Method and
Related Applications

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

An important application of lattice basis reduction is finding small solutions to poly-
nomial equations F (x) ≡ 0 (mod M) of degree d > 1. The main purpose of this chapter
is to present some results of Coppersmith [141] on this problem. We also discuss finding
small roots of bivariate integer polynomials and some other applications of these ideas.

In general, finding solutions to modular equations is easy if we know the factorisation
of the modulus, see Section 2.12. However, if the factorisation of the modulus M is not
known then finding solutions can be hard. For example, if we can find a solution to
x2 ≡ 1 (mod M) that is not x = ±1 then we can split M . Hence, we do not expect
efficient algorithms for finding all solutions to modular equations in general.

Suppose then that the polynomial equation has a “small” solution. It is not so clear
that finding the roots is necessarily a hard problem. The example x2 ≡ 1 (mod M) no
longer gives any intuition since the two non-trivial roots both have absolute value at least√
M . As we will explain in this chapter, if F (x) ≡ 0 (mod M) of degree d has a solution

x0 such that |x0| < M1/d−ǫ for small ǫ > 0 then it can be found in polynomial-time. This
result has a number of important consequences.

General references for the contents of this chapter are Coppersmith [141, 142], May [410,
411], Nguyen and Stern [463] and Nguyen [456].

397

398 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

19.1 Coppersmith’s Method for Modular Univariate

Polynomials

19.1.1 First Steps to Coppersmith’s Method

We sketch the basic idea of the method, which goes back to H̊astad. Let F (x) = xd +
ad−1x

d−1 + · · · + a1x + a0 be a monic polynomial of degree d with integer coefficients.
Suppose we know that there exist one or more integers x0 such that F (x0) ≡ 0 (mod M)
and that |x0| < M1/d. The problem is to find all such roots.

Since |xi0| < M for all 0 ≤ i ≤ d then, if the coefficients of F (x) are small enough, one
might have F (x0) = 0 over Z. The problem of finding integer roots of integer polynomials
is easy: we can find roots over R using numerical analysis (e.g., Newton’s method) and
then round the approximations of the roots to the nearest integer and check whether they
are solutions of F (x).

The problem is therefore to deal with polynomials F (x) having a small solution but
whose coefficients are not small. Coppersmith’s idea (in the formulation of Howgrave-
Graham [296]) is to build from F (x) a polynomial G(x) that still has the same solution
x0, but which has coefficients small enough that the above logic does apply.

Example 19.1.1. Let M = 17 · 19 = 323 and let

F (x) = x2 + 33x+ 215.

We want to find the small solution to F (x) ≡ 0 (mod M) (in this case, x0 = 3 is a
solution, but note that F (3) 6= 0 over Z).

We seek a related polynomial with small coefficients. For this example,

G(x) = 9F (x)−M(x+ 6) = 9x2 − 26x− 3

satisfies G(3) = 0. This root can be found using Newton’s method over R (or even the
quadratic formula).

We introduce some notation for the rest of this section. Let M,X ∈ N and let
F (x) =

∑d
i=0 aix

i ∈ Z[x]. Suppose x0 ∈ Z is a solution to F (x) ≡ 0 (mod M) such that
|x0| < X . We associate with the polynomial F (x) the row vector

bF = (a0, a1X, a2X
2, · · · , adXd). (19.1)

Vice versa, any such row vector corresponds to a polynomial. Throughout this section we
will interpret polynomials as row vectors, and row vectors as polynomials, in this way.

Theorem 19.1.2. (Howgrave-Graham [296]) Let F (x), X,M, bF be as above (i.e., there
is some x0 such that |x0| ≤ X and F (x0) ≡ 0 (mod M)). If ‖bF ‖ < M/

√
d+ 1 then

F (x0) = 0.

Proof: Recall the Cauchy-Schwarz inequality (
∑n

i=1 xiyi)
2 ≤ (

∑n
i=1 x

2
i)(
∑n

i=1 y
2
i) for

xi, yi ∈ R. Taking xi ≥ 0 and yi = 1 for 1 ≤ i ≤ n one has

n∑

i=1

xi ≤

√√√√n
n∑

i=1

x2i .

Now

|F (x0)| =
∣∣∣∣∣
d∑

i=0

aix
i
0

∣∣∣∣∣ ≤
d∑

i=0

|ai||x0|i ≤
d∑

i=0

|ai|X i ≤
√
d+ 1‖bF ‖ <

√
d+ 1M/

√
d+ 1 = M

19.1. MODULAR UNIVARIATE POLYNOMIALS 399

where the third inequality is Cauchy-Schwarz. so −M < F (x0) < M . But F (x0) ≡
0 (mod M) and so F (x0) = 0. �

Let F (x) =
∑d
i=0 aix

i be a monic polynomial. We assume that F (x) has at least one
solution x0 modulo M such that |x0| < X for some specified integer X . If F (x) is not
monic but gcd(ad,M) = 1 then one can multiply F (x) by a−1

d (mod M) to make it monic.
If gcd(ad,M) > 1 then one can split M and reduce the problem to two (typically easier)
problems. As explained above, to find x0 it will be sufficient to find a polynomial G(x)
with the same root x0 modulo M but with sufficiently small coefficients.

To do this, consider the d+1 polynomials Gi(x) = Mxi for 0 ≤ i < d and F (x). They
all have the solution x = x0 modulo M . Define the lattice L with basis corresponding to
these polynomials (by associating with a polynomial the row vector in equation (19.1)).
Therefore, the basis matrix for the lattice L is

B =

M 0 · · · 0 0
0 MX · · · 0 0
...

...
...

0 0 · · · MXd−1 0
a0 a1X · · · ad−1X

d−1 Xd

. (19.2)

Every element of this lattice is a row vector that can be interpreted as a polynomial F (x)
(via equation (19.1) such that F (x0) ≡ 0 (mod M).

Lemma 19.1.3. The dimension of the lattice L defined in equation (19.2) above is d+ 1
and the determinant is

det(L) = MdXd(d+1)/2.

Exercise 19.1.4. Prove Lemma 19.1.3.

One now runs the LLL algorithm on this (row) lattice basis. Let G(x) be the polyno-
mial corresponding to the first vector b1 of the LLL-reduced basis (since every row of B
has the form of equation (19.1) then so does b1).

Theorem 19.1.5. Let the notation be as above and let G(x) be the polynomial corre-
sponding to the first vector in the LLL-reduced basis for L. Set c1(d) = 2−1/2(d+ 1)−1/d.
If X < c1(d)M2/d(d+1) then any root x0 of F (x) modulo M such that |x0| ≤ X satisfies
G(x0) = 0 in Z.

Proof: Recall that b1 satisfies

‖b1‖ ≤ 2(n−1)/4 det(L)1/n = 2d/4Md/(d+1)Xd/2.

For b1 to satisfy the conditions of Howgrave-Graham’s theorem (i.e., ‖b1‖ < M/
√
d+ 1)

it is sufficient that
2d/4Md/(d+1)Xd/2 < M/

√
d+ 1.

This can be written as √
d+ 12d/4Xd/2 < M1/(d+1),

which is equivalent to the condition in the statement of the Theorem. �

In other words, if d = 2 then it is sufficient that X ≈M1/3 to find the small solution
using the above method. If d = 3 then it is sufficient that X ≈M1/6. This is the result of
H̊astad. Of course, LLL often works better than the worst-case bound, so small solutions
x0 may be found even when x0 does not satisfy the condition of the Theorem.

400 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Example 19.1.6. Let M = 10001 and consider the polynomial

F (x) = x3 + 10x2 + 5000x− 222.

One can check that F (x) is irreducible, and that F (x) has the small solution x0 = 4
modulo M . Note that |x0| < M1/6 so one expects to be able to find x0 using the above
method. Suppose X = 10 is the given bound on the size of x0. Consider the basis matrix

B =

M 0 0 0
0 MX 0 0
0 0 MX2 0
−222 5000X 10X2 X3

 .

Running LLL on this matrix gives a reduced basis, the first row of which is

(444, 10,−2000,−2000).

The polynomial corresponding to this vector is

G(x) = 444 + x− 20x2 − 2x3.

Running Newton’s root finding method on G(x) gives the solution x0 = 4.

19.1.2 The Full Coppersmith Method

The method in the previous section allows one to find small roots of modular polynomials,
but it can be improved further. Looking at the proof of Theorem 19.1.5 one sees that the
requirement for success is essentially MdXd(d+1)/2 = det(L) < Md+1 (more precisely, it
is 2d/4Md/(d+1)Xd/2 < M/

√
d+ 1). There are two strategies to extend the utility of the

method (i.e., to allow bigger values for X). The first is to increase the dimension n by
adding rows to L that contribute less thanM to the determinant. The second is to increase
the power of M on the right hand side. One can increase the dimension without increasing
the power of M by using the so-called “x-shift” polynomials xF (x), x2F (x), . . . , xkF (x);
Example 19.1.7 gives an example of this. One can increase the power of M on the
right hand side by using powers of F (x) (since if F (x0) ≡ 0 (mod M) then F (x0)k ≡
0 (mod Mk)).

Example 19.1.7. Consider the problem of Example 19.1.6. The lattice has dimension 4
and determinant M3X3. The condition for LLL to output a sufficiently small vector is

23/4
(
M3X6

)1/4 ≤ M√
4

which, taking M = 10001, leads to X ≈ 2.07. (Note that the method worked for a larger
value of x0; this is because the bound used on LLL only applies in the worst case.)

Consider instead the basis matrix that also includes rows corresponding to the poly-
nomials xF (x) and x2F (x)

B =

M 0 0 0 0 0
0 MX 0 0 0 0
0 0 MX2 0 0 0
−222 5000X 10X2 X3 0 0

0 −222X 5000X2 10X3 X4 0
0 0 −222X2 5000X3 10X4 X5

.

19.1. MODULAR UNIVARIATE POLYNOMIALS 401

The dimension is 6 and the determinant is M3X15. The condition for LLL to output a
sufficiently small vector is

25/4
(
M3X15

)1/6 ≤ M√
6
,

which leads to X ≈ 3.11. This indicates that some benefit can be obtained by using
x-shifts.

Exercise 19.1.8. Let G(x) be a polynomial of degree d. Show that taking d x-shifts
G(x), xG(x), . . . , xd−1G(x) gives a method that works for X ≈M1/(2d−1).

Exercise 19.1.8 shows that when d = 3 we have improved the result from X ≈ M1/6

to X ≈ M1/5. Coppersmith [141] exploits both x-shifts and powers of F (x). We now
present the method in full generality.

Theorem 19.1.9. (Coppersmith) Let 0 < ǫ < min{0.18, 1/d}. Let F (x) be a monic
polynomial of degree d with one or more small roots x0 modulo M such that |x0| <
1
2M

1/d−ǫ. Then x0 can be found in time bounded by a polynomial in d, 1/ǫ and log(M).

Proof: Let h > 1 be an integer that depends on d and ǫ and will be determined in
equation (19.3) below. Consider the lattice L corresponding (via the construction of the
previous section) to the polynomials Gi,j(x) = Mh−1−jF (x)jxi for 0 ≤ i < d, 0 ≤ j < h.
Note that Gi,j(x0) ≡ 0 (mod Mh−1). The dimension of L is dh. One can represent L by a
lower triangular basis matrix with diagonal entries Mh−1−jXjd+i. Hence the determinant
of L is

det(L) = M (h−1)hd/2X(dh−1)dh/2.

Running LLL on this basis outputs an LLL-reduced basis with first vector b1 satisfying

‖b1‖ < 2(dh−1)/4 det(L)1/dh = 2(dh−1)/4M (h−1)/2X(dh−1)/2.

This vector corresponds to a polynomial G(x) of degree dh − 1 such that G(x0) ≡
0 (mod Mh−1). If ‖b1‖ < Mh−1/

√
dh then Howgrave-Graham’s result applies and we

have G(x0) = 0 over Z.
Hence, it is sufficient that

√
dh2(dh−1)/4M (h−1)/2X(dh−1)/2 < Mh−1.

Rearranging gives √
dh2(dh−1)/4X(dh−1)/2 < M (h−1)/2,

which is equivalent to

c(d, h)X < M (h−1)/(dh−1)

where c(d, h) = (
√
dh2(dh−1)/4)2/(dh−1) =

√
2(dh)1/(dh−1).

Now
h− 1

dh− 1
=

1

d
− d− 1

d(dh− 1)
.

Equating (d− 1)/(d(dh− 1)) = ǫ gives

h = ((d− 1)/(dǫ) + 1)/d ≈ 1/(dǫ). (19.3)

Note that dh = 1 + (d − 1)/(dǫ) and so c(d, h) =
√

2(1 + (d − 1)/(dǫ))dǫ/(d−1), which
converges to

√
2 as ǫ → 0. Since X < 1

2M
1/d−ǫ we require 1

2 ≤ 1
c(d,h) . Writing x =

402 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

dǫ/(d− 1) this is equivalent to (1 + 1/x)x ≤
√

2, which holds for 0 ≤ x ≤ 0.18. Therefore,
assume ǫ ≤ (d− 1)/d.

Rounding h up to the next integer gives a lattice such that if

|x0| < 1
2M

1/d−ǫ

then the LLL algorithm and polynomial root finding leads to x0.
Since the dimension of the lattice is dh ≈ 1/ǫ and the coefficients of the polynomials

Gi,j are bounded by Mh it follows that the running time of LLL depends on d, 1/ǫ and
log(M). �

Exercise 19.1.10. Show that the precise complexity of Coppersmith’s method is O((1/ǫ)9 log(M)3)
bit operations (recall that 1/ǫ > d). Note that if one fixes d and ǫ and considers the prob-
lem as M tends to infinity then one has a polynomial-time algorithm in log(M).

We refer to Section 3 of [142] for some implementation tricks that improve the algo-
rithm. For example, one can add basis vectors to the lattice corresponding to polynomials
of the form Mh−1x(x− 1) · · · (x− i+ 1)/i!.

Example 19.1.11. Let p = 230 + 3, q = 232 + 15 and M = pq. Consider the polynomial

F (x) = a0 + a1x+ a2x
2 + a3x

3

= 1942528644709637042 + 1234567890123456789x+ 987654321987654321x2 + x3,

which has a root x0 modulo M such that |x0| ≤ 214. Set X = 214. Note that X ≈M1/4.4.
One can verify that the basic method in Section 19.1.1 does not find the small root.

Consider the basis matrix (this is of smaller dimension than the lattice in the proof
of Theorem 19.1.9 in the case d = 3 and h = 3)

M2 0 0 0 0 0 0
0 M2X 0 0 0 0 0
0 0 M2X2 0 0 0 0

Ma0 Ma1X Ma2X
2 MX3 0 0 0

0 Ma0X Ma1X
2 Ma2X

3 MX4 0 0
0 0 Ma0X

2 Ma1X
3 Ma2X

4 MX5 0
a20 2a0a1X (a21 + 2a0a2)X2 (2a0 + 2a1a2)X3 (a22 + 2a1)X4 2a2X

5 X6

.

The dimension is 7 and the determinant is M9X21. The first vector of the LLL reduced
basis is

(−369928294330603367352173305173409792, 1451057442025994832259962670402797568, . . .)

This corresponds to the polynomial

−369928294330603367352173305173409792 + 88565517701781911148679362207202x

−3439987357258441728608570659x2 + 446358057645551896819258x3

+4564259979987386926x4− 1728007960413053x5− 21177681998x6

which has x0 = 16384 = 214 as a real root.

Exercise 19.1.12. Let M = (220 + 7)(221 + 17) and F (x) = x3 + (225 − 2883584)x2 +
46976195x+ 227. Use Coppersmith’s algorithm to find an integer x0 such that |x0| < 29

and F (x0) ≡ 0 (mod M).

19.2. MULTIVARIATE MODULAR POLYNOMIAL EQUATIONS 403

Remark 19.1.13. It is natural to wonder whether one can find roots right up to the
limit X = M1/d. Indeed, the −ǫ term can be eliminated by performing an exhaustive
search over the top few bits of the root x0. An alternative way to proceed is to set
ǫ = 1/ log2(M), break the range |x0| < M1/d of size 2M1/d into M2ǫ = 4 intervals of size
2M1/d−2ǫ = M1/d−ǫ, and perform Coppersmith’s algorithm for each subproblem in turn.

Another question is whether one can go beyond the boundary X = M1/d. A first
observation is that for X > M1/d one does not necessarily expect a constant number of
solutions; see Exercise 19.1.14. Coppersmith [142] gives further arguments why M1/d is
the best one can hope for.

Exercise 19.1.14. Let M = p2 and consider F (x) = x2 + px. Show that if X = M1/2+ǫ

where 0 < ǫ < 1/2 then the number of solutions |x| < X to F (x) ≡ 0 (mod M) is 2M ǫ,

Exercise 19.1.15. Let N = pq be a product of two primes of similar size and let e ∈ N
be a small integer such that gcd(e, ϕ(N)) = 1. Let 1 < a, y < N be such that there is an
integer 0 ≤ x < N1/e satisfying (a + x)e ≡ y (mod N). Show that, given N, e, a, y one
can compute x in polynomial-time.

19.2 Multivariate Modular Polynomial Equations

Suppose one is given F (x, y) ∈ Z[x, y] and integers X , Y and M and is asked to find
one or more roots (x0, y0) to F (x, y) ≡ 0 (mod M) such that |x0| < X and |y0| <
Y . One can proceed using similar ideas to the above, hoping to find two polynomials
F1(x, y), F2(x, y) ∈ Z[x, y] such that F1(x0, y0) = F2(x0, y0) = 0 over Z, and such that
the resultant Rx(F1(x, y), F2(x, y)) 6= 0 (i.e., that F1(x, y) and F2(x, y) are algebraically
independent). This yields a heuristic method in general, since it is hard to guarantee
the independence of F1(x, y) and F2(x, y).

Theorem 19.2.1. Let F (x, y) ∈ Z[x, y] be a polynomial of total degree d (i.e., every
monomial xiyj satisfies i + j ≤ d). Let X,Y,M ∈ N be such that XY < M1/d−ǫ for
some 0 < ǫ < 1/d. Then one can compute (in time polynomial in log(M) and 1/ǫ > d)
polynomials F1(x, y), F2(x, y) ∈ Z[x, y] such that, for all (x0, y0) ∈ Z2 with |x0| < X,
|y0| < Y and F (x0, y0) ≡ 0 (mod M), one has F1(x0, y0) = F2(x0, y0) = 0 over Z.

Proof: We refer to Jutla [324] and Section 6.2 of Nguyen and Stern [463] for a sketch of
the details. �

19.3 Bivariate Integer Polynomials

We now consider F (x, y) ∈ Z[x, y] and seek a root (x0, y0) ∈ Z2 such that both |x0| and
|y0| are small. Coppersmith has proved the following important result.

Theorem 19.3.1. Let F (x, y) ∈ Z[x, y] and let d ∈ N be such that degx(F (x, y)), degy(F (x, y)) ≤
d. Write

F (x, y) =
∑

0≤i,j≤d
Fi,jx

iyj.

For X,Y ∈ N define
W = max

0≤i,j,≤d
|Fi,j |X iY j .

If XY < W 2/(3d) then there is an algorithm that takes as input F (x, y), X, Y , runs in
time (bit operations) bounded by a polynomial in log(W) and 2d, and outputs all pairs
(x0, y0) ∈ Z2 such that F (x0, y0) = 0, |x0| ≤ X and |y0| ≤ Y .

404 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

The condition in Theorem 19.3.1 is somewhat self-referential. If one starts with a
polynomial F (x, y) and bounds X and Y on the size of roots, then one can compute W
and determine whether or not the algorithm will succeed in solving the problem.
Proof: (Outline) There are two proofs of this theorem, both of which are rather techni-
cal. The original by Coppersmith can be found in [141]. We sketch a simpler proof by
Coron [150].

As usual we consider shifts of the polynomial F (x, y). Choose k ∈ N (sufficiently
large) and consider the k2 polynomials

sa,b(x, y) = xaybF (x, y) for 0 ≤ a, b < k

in the (d + k)2 monomials xiyj with 0 ≤ i, j < d + k. Coron chooses a certain set of k2

monomials (specifically of the form xi0+iyj0+j for 0 ≤ i, j < k and fixed 0 ≤ i0, j0 ≤ d)
and obtains a k2 × k2 matrix S with non-zero determinant M . (The most technical part
of [150] is proving that this can always be done and bounding the size of M .)

One can now consider the (d + k)2 polynomials Mxiyj for 0 ≤ i, j < d + k. Writing
each polynomial as a row vector of coefficients, we now have a k2 + (d + k)2 by (d+ k)2

matrix. One can order the rows such that the matrix is of the form

S ∗
MIk2 0

0 MIw

where w = (d+ k)2− k2, ∗ represents a k2×w matrix, and Iw denotes the w×w identity
matrix.

Now, since M = det(S) there exists an integer matrix S′ such that S′S = MIk2 .
Perform the row operations

Ik2 0 0
−S′ Ik2 0

0 0 Iw

S ∗
MIk2 0

0 MIw

 =

S ∗
0 T
0 MIw

for some k2 × w matrix T . Further row operations yield a matrix of the form

S ∗
0 T ′

0 0

for some w × w integer matrix T ′.
Coron considers a lattice L corresponding to T ′ (where the entries in a column corre-

sponding to monomial xiyj are multiplied by X iY j as in equation (19.2)) and computes
the determinant of this lattice. Lattice basis reduction yields a short vector that corre-
sponds to a polynomial G(x, y) with small coefficients such that every root of F (x, y) is
a root of G(x, y) modulo M . If (x0, y0) is a sufficiently small solution to F (x, y) then,
using an analogue of Theorem 19.1.2, one infers that G(x0, y0) = 0 over Z.

A crucial detail is that G(x, y) has no common factor with F (x, y). To show this sup-
pose G(x, y) = F (x, y)A(x, y) for some polynomial (we assume that F (x, y) is irreducible,
if not then apply the method to its factors in turn). ThenG(x, y) =

∑
0≤i,j<k Ai,jx

iyjF (x, y)
and so the vector of coefficients of G(x, y) is a linear combination of the coefficient vectors
of the k2 polynomials sa,b(x, y) for 0 ≤ a, b < k. But this vector is also a linear combi-
nation of the rows of the matrix (0 T ′) in the original lattice. Considering the first k2

columns (namely the columns of S), one has a linear dependence of the rows in S. Since
det(S) 6= 0 this is a contradiction.

19.3. BIVARIATE INTEGER POLYNOMIALS 405

It follows that the resultant Rx(F,G) is a non-zero polynomial, and so one can find
all solutions by finding the integer roots of Rx(F,G)(y) and then solving for x.

To determine the complexity it is necessary to compute the determinant of T ′ and to
bound M . Coron shows that the method works if XY < W 2/(3d)−1/k2−9d. To get the
stated running time for XY < W 2/(3d) Coron proposes setting k = ⌊log(W)⌋ and per-
forming exhaustive search on the O(d) highest-order bits of x0 (i.e., running the algorithm
a polynomial in 2d times). �

Example 19.3.2. Consider F (x, y) = axy + bx+ cy + d = 127xy − 1207x− 1461y + 21
with X = 30, Y = 20. Let M = 1274 (see below).

Consider the 13 × 9 matrix (this is taking k = 2 in the above proof and introducing
the powers X iY j from the start)

B =

aX2Y 2 bX2Y cXY 2 dXY 0 0 0 0 0
0 aX2Y 0 cXY bX2 0 dX 0 0
0 0 aXY 2 bXY 0 cY 2 0 dY 0
0 0 0 aXY 0 0 bX cY d

MX2Y 2 0 0 0 0 0 0 0 0
0 MX2Y 0 0 0 0 0 0 0
...

...
0 0 0 0 0 0 0 0 M

.

We take S to be the matrix

a b c d
0 a 0 c
0 0 a b
0 0 0 a

corresponding to the monomials xi0+iyj0+j for 0 ≤ i, j < 2 and fixed i0 = j0 = 1. Note
that M = det(S) = a4 = 1274.

Rather than diagonalising using the method of the proof of Theorem 19.3.1 we compute
the Hermite normal form of B. This gives the matrix

B′ =

aX2Y 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
aX2Y ∗ ∗ ∗ ∗ ∗ ∗ ∗

aXY 2 ∗ ∗ ∗ ∗ ∗ ∗
aXY ∗ ∗ ∗ ∗ ∗

16129X2 16129Y 2 100125X 1064641Y 202558777
2048383Y 2 ∗ ∗ ∗

2048383X ∗ ∗
260144641Y ∗

260144641

where blanks are zeroes and ∗ denotes an entry whose value we do not bother to write
down. Let L be the 5× 5 diagonal matrix formed of columns 5 to 9 of rows 5 to 9 of B′.
Performing LLL-reduction on L gives a matrix whose first row is

(−16129X2,−16129Y 2, 1048258X, 983742Y,−28446222)

406 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

corresponding to the polynomial

G(x, y) = −16129x2 − 16129y2 + 1048258x+ 983742y− 28446222.

Clearly G(x, y) is not a multiple of F (x, y), since it has no xy term. Computing resultants
and factoring gives the solutions (x, y) = (21, 21) and (23, 19).

Exercise 19.3.3. The polynomial

F (x, y) = 131xy − 1400x+ 20y − 1286

has an integer solution with |x| < 30 and |y| < 20. Use Coron’s method as in Exam-
ple 19.3.2 to find (x, y).

The results of this section can be improved by taking into account the specific shape
of the polynomial F (x, y). We refer to Blömer and May [72] for details.

Finally, we remark that results are also known for integer polynomials having three
or more variables, but these are heuristic in the sense that the method produces a list of
polynomials having small roots in common, but there is no guarantee that the polynomials
are algebraically independent.

19.4 Some Applications of Coppersmith’s method

19.4.1 Fixed Padding Schemes in RSA

As discussed in Chapter 1, it is necessary to use padding schemes for RSA encryption (for
example, to increase the length of short messages and to prevent algebraic relationships
between the messages and ciphertexts). One simple proposal for κ-bit RSA moduli is to
take a κ′ bit message and pad it by putting (κ − κ′ − 1) ones to the left hand side of
it. This brings a short message to full length. This padding scheme is sometimes called
fixed pattern padding; we discuss it further in Section 24.4.5.

Suppose short messages (for example, 128-bit AES keys K) are being encrypted using
this padding scheme with κ = 1024. Then

m = 21024 − 2128 +K.

Suppose also that the encryption exponent is e = 3. Then the ciphertext is

c = m3 (mod N).

If such a ciphertext is intercepted then the cryptanalyst only needs to find the value
for K. In this case we know that K is a solution to the polynomial

F (x) = (21024 − 2128 + x)3 − c ≡ 0 (mod N).

This is a polynomial of degree 3 with a root modulo N of size at most N128/1024 = N1/8.
So Coppersmith’s method finds the solution K in polynomial-time.

Example 19.4.1. Let N = 8873554201598479508804632335361 (which is a 103 bit in-
teger) and suppose Bob is sending 10-bit keys K to Alice using the padding scheme
m = 2100 − 210 +K.

19.4. SOME APPLICATIONS OF COPPERSMITH’S METHOD 407

Suppose we have intercepted the ciphertext c = 8090574557775662005354455491076
and wish to find K. Let X = 210. We write F (x) = (x+ 2100 − 210)3 − c = x3 + a2x

2 +
a1x+ a0 and define

B =

N 0 0 0
0 NX 0 0
0 0 NX2 0
a0 a1X a2X

2 X3

 .

Performing lattice reduction and taking the first row vector gives the polynomial with
factorisation

(x− 987)(−920735567540915376297 + 726745175435904508x+ 277605904865853x2).

One can verify that the message is K = 987.

19.4.2 Factoring N = pq with Partial Knowledge of p

Let N = pq and suppose we are given an approximation p̃ to p such that p = p̃ + x0
where |x0| < X . For example, suppose p is a 2κ-bit prime and p̃ is an integer that
has the same κ most significant bits as p (so that |p − p̃| < 2κ). Coppersmith used his
ideas to get an algorithm for finding p given N and p̃. Note that Coppersmith originally
used a bivariate polynomial method, but we present a simpler version following work of
Howgrave-Graham, Boneh, Durfee and others.

The polynomial F (x) = (x+ p̃) has a small solution modulo p. The problem is that we
don’t know p, but we do know a multiple of p (namely, N). The idea is to form a lattice
corresponding to polynomials that have a small root modulo p and to apply Coppersmith’s
method to find this root x0. Once we have x0 then we compute p as gcd(N,F (x0)).

Theorem 19.4.2. Let N = pq with p < q < 2p. Let 0 < ǫ < 1/4, and suppose p̃ ∈ N is
such that |p− p̃| ≤ 1

2
√
2
N1/4−ǫ. Then given N and p̃ one can factor N in time polynomial

in log(N) and 1/ǫ.

Proof: Write F (x) = (x+ p̃) and note that
√
N/2 ≤ p ≤

√
N . Let X = ⌊ 1

2
√
2
N1/4−ǫ⌋.

We describe the lattice to be used. Let h ≥ 4 be an integer to be determined later
and let k = 2h. Consider the k + 1 polynomials

Nh, Nh−1F (x), Nh−2F (x)2, . . . , NF (x)h−1, F (x)h, xF (x)h, . . . , xk−hF (x)h.

Note that if p = p̃+ x0 and if G(x) is one of these polynomials then G(x0) ≡ 0 (mod ph).
Consider the lattice corresponding to the above polynomials. More precisely, a basis

for the lattice is obtained by taking each polynomial G(x) above and writing the vector
of coefficients of the polynomial G(x) as in equation (19.1). The lattice has dimension
k + 1 and determinant Nh(h+1)/2Xk(k+1)/2.

Applying LLL gives a short vector and, to apply Howgrave-Graham’s result, we
need 2k/4 det(L)1/(k+1) < ph/

√
k + 1. Hence, since p > (N/2)1/2, it is sufficient that√

k + 1 2k/4Nh(h+1)/(2(k+1))Xk/2 < (N/2)h/2. Re-arranging gives

X < Nh/k−h(h+1)/(k(k+1))2−h/k2−1/2/(k + 1)1/k.

Since k ≥ 7 we have (k + 1)1/k = 2log2(k+1)/k ≤ 21/2 and so 1/(k + 1)1/k ≥ 1/
√

2.
Now, since k = 2h we find that the result holds if

X < N1/2(1−(h+1)/(2h+1)) 1
2
√
2
.

408 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Since 1/2(1−(h+1)/(2h+1)) = 1/4−1/(4(2h+1)) the result will follow if 1/(4(2h+1)) < ǫ.
Taking h ≥ max{4, 1/(4ǫ)} is sufficient. �

One can obtain a more general version of Theorem 19.4.2. If p = Nα and |x| ≤ Nβ

where 0 < α, β < 1 then, ignoring constants, the required condition in the proof is

h(h+ 1)

2
+
βk(k + 1)

2
< αh(k + 1).

Taking h =
√
βk and simplifying gives β < α2. The case we have shown is α = 1/2 and

β < 1/4. For details see Exercise 19.4.5 or Theorems 6 and 7 of May [410].

Example 19.4.3. Let N = 16803551, p̃ = 2830 and X = 10.
Let F (x) = (x + p̃) and consider the polynomials N,F (x), xF (x) = (x2 + p̃x) and

x2F (x), which all have the same small solution x0 modulo p.
We build the lattice corresponding to these polynomials (with the usual method of

converting a polynomial into a row vector). This lattice has basis matrix

N 0 0 0
p̃ X 0 0
0 p̃X X2 0
0 0 p̃X2 X3

 .

The first row of the output of the LLL algorithm on this matrix is (105,−1200, 800, 1000),
which corresponds to the polynomial

G(x) = x3 + 8x2 − 120x+ 105.

The polynomial has the root x = 7 over Z. We can check that p = p̃ + 7 = 2837 is a
factor of N .

Exercise 19.4.4. Let N = 22461580086470571723189523 and suppose you are given the
approximation p̃ = 2736273600000 to p, which is correct up to a factor 0 ≤ x < X =
50000. Find the prime factorisation of N using Coppersmith’s method.

Exercise 19.4.5. Let ǫ > 0. Let F (x) be a polynomial of degree d such that F (x0) ≡
0 (mod M) for some M | N , M = Nα and |x0| ≤ 1

2N
α2/d−ǫ. Generalise the proof of

Theorem 19.4.2 to show that given F (x) and N one can compute x0 in time polynomial
in log(N), d and 1/ǫ.

Exercise 19.4.6. Coppersmith showed that one can factor N in time polynomial in
log(N) given p̃ such that |p− p̃| < N1/4. Prove this result.

Exercise 19.4.7. Use Coppersmith’s method to give an integer factorisation algorithm
requiring Õ(N1/4) bit operations. (A factoring algorithm with this complexity was also
given in Section 12.5.)

Exercise 19.4.8. Show that the method of this section also works if given p̃ such that
|p̃− kp| < N1/4 for some integer k such that gcd(k,N) = 1.

Exercise 19.4.9. Coppersmith also showed that one can factor N in time polynomial in
log(N) given p̃ such that p ≡ p̃ (mod M) where M > N1/4. Prove this result.

Exercise 19.4.10. Let N = pq with p ≈ q. Show that if one knows half the high order
bits of p then one also knows approximately half the high order bits of q as well.

19.4. SOME APPLICATIONS OF COPPERSMITH’S METHOD 409

19.4.3 Factoring prq

As mentioned in Section 24.1.2, moduli of the form prq, where p and q are distinct primes
and r ∈ N, can be useful for some applications. When r is large then p is relatively small
compared with N and so a natural attack is to try to factor N using the elliptic curve
method.

Boneh, Durfee and Howgrave-Graham [79] considered using Coppersmith’s method to
factor integers of the form N = prq when r is large. They observed that if one knows r
and an approximation p̃ to p then there is a small root of the polynomial equation

F (x) = (p̃+ x)r ≡ 0 (mod pr)

and that pr is a large factor of N . One can therefore apply the technique of Section 19.4.2
The algorithm is to repeat the above for all p̃ in a suitably chosen set. An analysis

of the complexity of the method is given in [79]. It is shown that if r ≥ log(p) then the
algorithm runs in polynomial-time and that if r =

√
log2(p) then the algorithm is asymp-

totically faster than using the elliptic curve method. One specific example mentioned
in [79] is that if p, q ≈ 2512 and r = 23 then N = prq should be factored more quickly by
their method than with the elliptic curve method.

Exercise 19.4.11. Let N = prq where p ≈ q, and so p ≈ N1/(r+1). Show that one
can factor N in O(N1/(r+1)2+ǫ) bit operations. In particular, one can factor integers
N = p2q in roughly Õ(N1/9) bit operations and integers N = p3q in roughly Õ(N1/16)
bit operations.

When r is small it is believed that moduli of the form N = prq are still hard to factor.
For 3076 bit moduli, taking r = 3 and p, q ≈ 2768 should be such that the best known
attack requires at least 2128 bit operations.

Exercise 19.4.12. The integer 876701170324027 is of the form p3q where |p−5000| < 10.
Use the method of this section to factor N .

19.4.4 Chinese Remaindering with Errors

Boneh [75], building on work of Goldreich, Ron and Sudan [257], used ideas very similar
to Coppersmith’s method to give an algorithm for the following problem in certain cases.

Definition 19.4.13. Let X, p1, . . . , pn, r1, . . . , rn ∈ Z≥0 be such that p1 < p2 < · · · < pn
and 0 ≤ ri < pi for all 1 ≤ i ≤ n. Let 1 ≤ e ≤ n be an integer. The Chinese
remaindering with errors problem (or CRT list decoding problem) is to compute
an integer 0 ≤ x < X (if it exists) such that

x ≡ ri (mod pi)

for all but e of the indices 1 ≤ i ≤ n.

Note that it is not assumed that the integers pi are coprime, though in many applica-
tions they will be distinct primes or prime powers. Also note that there is not necessarily
a solution to the problem (for example, if X and/or e are too small).

Exercise 19.4.14. A naive approach to this problem is to run the Chinese remainder
algorithm for all subsets S ⊆ {p1, . . . , pn} such that #S = (n − e). Determine the
complexity of this algorithm. What is the input size of a Chinese remainder with errors
instance when 0 ≤ ri < pi? Show that this algorithm is not polynomial in the input size
if e > log(n).

410 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

The basic idea of Boneh’s method is to construct a polynomial F (x) ∈ Z[x] such that
all solutions x to the Chinese remaindering with errors problem instance are roots of F (x)
over Z. This is done as follows. Define P =

∏n
i=1 pi and let 0 ≤ R < P be the solution

to the Chinese remainder instance (i.e., R ≡ ri (mod pi) for all 1 ≤ i ≤ n). For an
integer x define the amplitude amp(x) = gcd(P, x − R) so that, if the pi are coprime
and S is the set of indices 1 ≤ i ≤ n such that x ≡ ri (mod pi), then amp(x) =

∏
i∈S pi.

Write F (x) = x − R. The problem is precisely to find an integer x such that |x| < X
and F (x) ≡ 0 (mod M) for some large integer M | P . This is the problem solved by
Coppersmith’s algorithm in the variant of Exercise 19.4.5. Note that pn1 ≤ P ≤ pnn and
so n log(p1) ≤ log(P) ≤ n log(pn).

Theorem 19.4.15. Let X, e, p1, . . . , pn, r1, . . . , rn be an instance of the Chinese remain-
der with errors problem, where p1 < p2 < · · · < pn. Let P = p1 · · · pn. There is an
algorithm to compute all x ∈ Z such that |x| < X and x ≡ ri (mod pi) for all but e values
1 ≤ i ≤ n as long as

e ≤ n− n log(pn)
log(p1)

√
log(X)/ log(P).

The algorithm is polynomial-time in the input size.

Proof: Boneh [75] gives a direct proof, but we follow Section 4.7 of May [411] and derive
the result using Exercise 19.4.5.

Let 0 ≤ x < X be an integer with M = amp(x) being divisible by at least n− e of the
values pi. We have n log(p1) ≤ log(P) ≤ n log(pn) and (n − e) log(p1) ≤ M ≤ n log(pn).

Write M = P β . Then Coppersmith’s algorithm finds x if X < P β
2

in polynomial-
time in n and log(pn) (note that Exercise 19.4.5 states the result for X < P β

2−ǫ but
we can remove the ǫ using the same ideas as Remark 19.1.13). Hence, it is sufficient
to give a bound on e so that log(X)/ log(P) < β2 (i.e., β >

√
log(X)/ log(P)). Now,

β = log(M)/ log(P) ≥ (n− e) log(p1)/(n log(pn)). Hence, it is sufficient that

(n− e) log(p1)
log(pn)

≥ n
√

log(X)/ log(P),

which is equivalent to the equation in the Theorem. �

For convenience we briefly recall how to perform the computation. One chooses ap-
propriate integers a, a′ ∈ N and considers the lattice corresponding to the polynomials

Gi(x) = P a−i(x −R)i for 0 ≤ i < a

Hi(x) = (x−R)axi for 0 ≤ i < a′

that, by assumption, have at least one common small root x0 modulo Ma. Using lattice
basis reduction one finds a polynomial F (x) that has small coefficients and that still has
the same root x0 modulo Ma. Applying Theorem 19.1.2 one finds that F (x0) = 0 over Z
if Ma is sufficiently large compared with x0.

Exercise 19.4.16. Suppose p1, . . . , pn are the first n primes. Show that the above
algorithm works when e ≈ n −

√
n log(X) log(n). Hence verify that Boneh’s algorithm

is polynomial-time in situations where the naive algorithm of Exercise 19.4.14 would be
superpolynomial-time.

Bleichenbacher and Nguyen [70] discuss a variant of the Chinese remaindering with
errors problem (namely, solving x ≡ ri (mod pi) for small x, where each ri lies in a set of
m possible values) and a related problem in polynomial interpolation. Section 5 of [70]
gives some algorithms for this “noisy CRT” problem.

19.4. SOME APPLICATIONS OF COPPERSMITH’S METHOD 411

Smooth Integers in Short Intervals

The above methods can be used to find smooth integers in intervals. Let I = [U, V] =
{x ∈ Z : U ≤ x ≤ V } and suppose we want to find a B-smooth integer x ∈ I if one exists
(i.e., all primes dividing x are at most B). We assume that V < 2U .

Exercise 19.4.17. Show that if V ≥ 2U then one can compute a power of 2 in [U, V].

A serious problem is that only rather weak results have been proven about smooth
integers in short intervals (see Section 4 of Granville [267], Sections 6.2 and 7.2 of Naccache
and Shparlinski [450] or Section 15.3). Hence, we cannot expect to be able to prove
anything rigorous in this section. On the other hand, it is natural to conjecture that, at
least most of the time, the probability that a randomly chosen integer in an short interval
[U, V] is B-smooth is roughly equal to the probability that a randomly chosen integer
of size V is B-smooth. Multiplying this probability by the length of the interval gives a
rough guide to whether it is reasonable to expect a solution (see Remark 15.3.5). Hence,
for the remainder of this section, we assume that such an integer x exists. We now sketch
how the previous results might be used to find x.

Let W = (U+V)/2 and X = (V −U)/2 so that I = [W−X,W+X]. We seek all x ∈ Z
such that |x| ≤ X and x ≡ −W (mod peii) for certain prime powers where pi ≤ B. Then
W + x is a potentially smooth integer in the desired interval (we know that W + x has a
large smooth factor, but this may not imply that all prime factors of W + x are small if
W is very large). One therefore chooses P =

∏l
i=1 p

ei
i where p1, . . . , pl are the primes up

to B and the ei are suitably chosen exponents (e.g. ei = ⌈log(W)/(log(B) log(pi))⌉). One
then applies Boneh’s algorithm. The output is an integer with a large common divisor
with P (indeed, this is a special case of the approximate GCD problem considered in
Section 19.6). Note that this yields rather “dense” numbers, in the sense that they are
divisible by most of the first l primes.

Example 19.4.18. Let P = 24 ·32 ·5·7·11·13·17·19 = 232792560. Let W = 100000007 =
108+7 and X = 1000000 = 106. We want to find an integer x between W −X and W +X
such that x is divisible by most of the prime powers dividing P .

Taking R = −W , a = 4 and a′ = 3 in the notation of Theorem 19.4.15 gives the
lattice given by the basis matrix

P 4 0 0 0 0 0 0
−RP 3 P 3X 0 0 0 0 0
R2P 2 −2RP 2X P 2X2 0 0 0 0
−R3P 3R2PX −3RPX2 PX3 0 0 0
R4 −4R3X 6R2X2 −4RX3 X4 0 0
0 R4X −4R3X2 6R2X3 −4RX4 X5 0
0 0 R4X2 −4R3X3 6R2X4 −4RX5 X6

.

The polynomial corresponding to the first row of the LLL-reduced basis is

F (x) = −74(x+ 231767)4

giving the solution x = −231767. Indeed

W − 231767 = 24 · 33 · 5 · 11 · 13 · 17 · 19.

Note that the algorithm does not output 108 = 28 · 58, since that number does not have
a very large gcd with P .

412 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Exercise 19.4.19. Repeat the above example for W = 150000001 = 1.5 · 108 + 1 and
W = 46558000.

If this process fails one can make adjustments to the value of P (for example, by
changing the exponents ei). Analysing the probability of success of this approach is an
open problem.

19.5 Simultaneous Diophantine Approximation

Let α ∈ R. It is well-known that the continued fraction algorithm produces a sequence
of rational numbers p/q such that |α− p/q| < 1/q2. This is the subject of Diophantine
approximation; see Section 1.1 of Lovász [395] for background and discussion. We now
define a natural and important generalisation of this problem.

Definition 19.5.1. Let α1, . . . , αn ∈ R and let ǫ > 0. Let Q ∈ N be such that Q ≥ ǫ−n.
The simultaneous Diophantine approximation problem is to find q, p1, . . . , pn ∈ Z
such that 0 < q ≤ Q and

|αi − pi/q| ≤ ǫ/q (19.4)

for all 1 ≤ i ≤ n.

A theorem of Dirichlet mentioned in Section 1.1 of [395] and Section 17.3 of [238]
shows that there is a solution satisfying the constraints in Definition 19.5.1.

Exercise 19.5.2. Let ǫ ≥ 1/2. Prove that integers p1, . . . , pn satisfying equation (19.4)
exist for any n and q.

A major application of lattice reduction is to give an algorithm to compute the integers
(q, p1, . . . , pn) in Definition 19.5.1. In practice the real numbers α1, . . . , αn are given to
some decimal precision (and so are rational numbers with coefficients of some size). The
size of an instance of the simultaneous Diophantine approximation is the sum of the bit
lengths of the numerator and denominator of the given approximations to the αi, together
with the bit length of the representation of ǫ and Q. Let X be a bound on the absolute
value of all numerators and denominators of the αi. The computational task is to find a
solution (q, p1, . . . , pn) in time that is polynomial in n, log(X), log(1/ǫ) and log(Q).

Theorem 19.5.3. Let α1, . . . , αn ∈ Q be given as rational numbers with numerator and
denominator bounded in absolute value by X. Let 0 < ǫ < 1. One can compute in
polynomial-time integers (q, p1, . . . , pn) such that 0 < q < 2n(n+1)/4ǫ−(n+1) and |αi −
pi/q| ≤ ǫ/q for all 1 ≤ i ≤ n.

Proof: Let Q = 2n(n+1)/4ǫ−n and consider the lattice L ⊆ Qn+1 with basis matrix

ǫ/Q α1 α2 · · · αn
0 −1 0 · · · 0
0 0 −1
...

...
. . .

...
0 0 · · · −1

. (19.5)

The dimension is n+1 and the determinant is ǫ/Q = 2−n(n+1)/4ǫn+1. Every vector in the
lattice is of the form (qǫ/Q, qα1 − p1, qα2 − p2, . . . , qαn − pn). The entries of the lattice
are ratios of integers with absolute value bounded by max{X, 2n(n+1)/4/ǫn+1}.

19.6. APPROXIMATE INTEGER GREATEST COMMON DIVISORS 413

Note that the lattice L does not have a basis with entries in Z, but rather in Q.
By Remark 17.5.5 the LLL algorithm applied to L runs in O(n6 max{n log(X), n2 +
n log(1/ǫ)}3) bit operations (which is polynomial in the input size) and outputs a non-
zero vector v = (qǫ/Q, qα1 − p1, . . . , qαn − pn) such that

‖v‖ ≤ 2n/4 det(L)1/(n+1) = 2n/42−n/4ǫ = ǫ < 1.

If q = 0 then v = (0,−p1, . . . ,−pn) with some pi 6= 0 and so ‖v‖ ≥ 1, and so q 6= 0.
Without loss of generality, q > 0. Since ‖v‖∞ ≤ ‖v‖ it follows that qǫ/Q ≤ ǫ < 1 and so
0 < q < Q/ǫ = 2n(n+1)/4ǫ−(n+1). Similarly, |qαi − pi| < ǫ for all 1 ≤ i ≤ n. �

Exercise 19.5.4. Let α1 = 1.555111, α2 = 0.771111 and α3 = 0.333333. Let ǫ = 0.01
and Q = 106. Use the method of this section to find a good simultaneous rational
approximation to these numbers.

See Section 17.3 of [238] for more details and references.

19.6 Approximate Integer Greatest Common Divisors

The basic problem is the following. Suppose positive integers a and b exist such that
d = gcd(a, b) is “large”. Suppose that one is not given a and b, but only approximations
ã, b̃ to them. The problem is to find d, a and b. One issue is that there can be surprisingly
many solutions to the problem (see Example 19.6.4), so it may not be feasible to compute
all solutions for certain parameters. On the other hand, in the case b̃ = b (i.e., one of the
values is known exactly, which often happens in practice) then there are relatively few
solutions.

Howgrave-Graham [297] has considered these problems and has given algorithms that
apply in various situations. We present one of the basic ideas. Let a = ã+x and b = b̃+y.
Suppose ã < b̃ and define qa = a/d and qb = b/d. Then, since qa/qb = a/b, we have

ã

b̃
− qa
qb

=
qay − qbx

b̃qb
. (19.6)

If the right hand side of equation (19.6) is small then performing Euclid’s algorithm on
ã/b̃ gives a sequence of possible values for qa/qb. For each such value one can compute

⌊b̃/qb⌉ = ⌊(dqb − y)/qb⌉ = d+ ⌊−y/qb⌉.

If |y| < 1
2qb then one has computed d exactly and can solve ã + x ≡ b̃ + y ≡ 0 (mod d).

Note that one must use the basic extended Euclidean algorithm, rather than the improved
method using negative remainders as in Algorithm 1.

Exercise 19.6.1. Show that if a < b < b̃, b2/3 < d < 2b2/3 and |x|, |y| < 1
4b

1/3 then the
above method finds d, a and b.

Exercise 19.6.2. Let the notation be as above. Suppose |x|, |y| < b̃β and d = b̃α.
Explain why it is natural to assume α > β. Show that the above method succeeds if
(ignoring constant factors) β < −1 + 2α and β < 1− α

Exercise 19.6.3. Re-formulate this method in terms of finding a short vector in a 2× 2
matrix. Derive the same conditions on α and β as in Exercise 19.6.2.

414 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Example 19.6.4. Let ã = 617283157 and b̃ = 630864082. The first few convergents
qa/qb to ã/b̃ are 1, 45/46, 91/93, 409/418, 500/511, 1409/1440 and 1909/1951. Computing
approximations to ã/qa and b̃/qb for these values (except the first) gives the following
table.

ã/qa 13717403.5 6783331.4 1509249.8 1234566.3 438100.2 323354.2

b̃/qb 13714436.6 6783484.8 1509244.2 1234567.7 438100.1 323354.2

Any values around these numbers can be used as a guess for d. For example, taking
d = 13717403 one finds ã− 22 ≡ b̃+ 136456 ≡ 0 (mod d), which is a not particularly good
solution.

The four values d1 = 1234566, d2 = 1234567, d3 = 438100 and d4 = 323354 lead
to the solutions ã − 157 ≡ b̃ − 856 ≡ 0 (mod d1), ã + 343 ≡ b̃ − 345 ≡ 0 (mod d2),
ã− 257 ≡ b̃− 82 ≡ 0 (mod d3) and ã− 371 ≡ b̃− 428 ≡ 0 (mod d4).

Howgrave-Graham gives a more general method for solving the problem that does not
require such a strict condition on the size of y. The result relies on heuristic assumptions
about Coppersmith’s method for bivariate integer polynomials. We state this result as
Conjecture 19.6.5.

Conjecture 19.6.5. (Algorithm 14 and Section 4 of [297]) Let 0 < α < 2/3 and β <
1−α/2−

√
1− α− α2/2. There is a polynomial-time algorithm that takes as input ã < b̃

and outputs all integers d > b̃α such that there exist integers x, y with |x|, |y| < b̃β and
d | (ã+ x) and d | (b̃ + y).

Exercise 19.6.6. Let ã, b̃, X, Y ∈ N be given with X < ã < b̃. Give a brute force
algorithm to output all d > Y such that there exist x, y ∈ Z with |x|, |y| ≤ X and
d = gcd(ã + x, b̃ + y). Show that the complexity of this algorithm is O(X2 log(b̃)2) bit
operations.

We now mention the case when b̃ = b (in other words, b is known exactly). The
natural approach is to consider the polynomial F (x) = ã+ x, which has a small solution
to the equation F (x) ≡ 0 (mod d) for some d | b. Howgrave-Graham applies the method
used in Section 19.4.2 to solve this problem.

Theorem 19.6.7. (Algorithm 12 and Section 3 of [297]) Let 0 < α < 1 and β < α2.
There is a polynomial-time algorithm that takes as input ã, b and outputs all integers
d > bα such that there exists an integer x with |x| < bβ and d | (ã+ x) and d | b.

19.7 Learning with Errors

The learning with errors problem was proposed by Regev. There is a large literature on
this problem; we refer to Micciancio and Regev [423] and Regev [496] for background and
references.

Definition 19.7.1. Let q ∈ N (typically prime), σ ∈ R>0, and n,m ∈ N with m > n.1

Let s ∈ (Z/qZ)n. The LWE distribution is the distribution on (Z/qZ)m×n × (Z/qZ)m

corresponding to choosing uniformly at random an m× n matrix A with entries in Z/qZ
and a length m vector

c ≡ As+ e (mod q)

1For theoretical applications one should not assume a fixed number m of rows for A. Instead, the
attacker is given an oracle that outputs pairs (a, c) where a is a row of A and c = a s+ e (mod q).

19.7. LEARNING WITH ERRORS 415

where the vector e has entries chosen independently from a discretised normal distribu-
tion2 on Z with mean 0 and standard deviation σ. The learning with errors problem
(LWE) is: Given (A, c) drawn from the LWE distribution, to compute the vector s. The
decision learning with errors problem (DLWE) is: Given A as above and a vector
c ∈ (Z/qZ)m, to determine whether (A, c) is drawn from the uniform distribution, or the
LWE distribution.

It is necessary to argue that LWE is well-defined since, for any choice s′, the value
c − As′ (mod q) is a possible choice for e. But, when m is sufficiently large, one value
for s is much more likely to have been used than any of the others. Hence, LWE is a
maximum likelihood problem. Similarly, DLWE is well-defined when m is sufficiently
large: if c is chosen uniformly at random and independent of A then there is not likely
to be a choice for s such that c − As (mod q) is significantly smaller than the other
values c−As′ (mod q). We do not make these arguments precise. It follows that m must
be significantly larger than n for these problems to be meaningful. It is also clear that
increasing m (but keeping n fixed) does not make the LWE problem harder.

We refer to [423] and [496] for surveys of cryptographic applications of LWE and
reductions, from computational problems in lattices that are believed to be hard, to LWE.
Note that the values m, q and σ in an LWE instance are usually determined by constraints
coming from the cryptographic application, while n is the main security parameter.

Example 19.7.2. Table 3 of Micciancio and Regev [423] suggests the parameters

(n,m, q, σ) = (233, 4536, 32749, 2.8).

Lindner and Peikert [390] suggest (using Figure 4 and the condition m ≥ 2n + ℓ with
ℓ = 128)

(n,m, q, σ) = (256, 640, 4093, 3.3).

Exercise 19.7.3. Show that if one can determine e then one can solve LWE efficiently.

Exercise 19.7.4.⋆ Show that, when q is prime, LWE ≤R DLWE. Show that DLWE ≤R
LWE.

We now briefly sketch two lattice attacks on LWE. These attacks can be avoided by
taking appropriate parameters. For other attacks on LWE see [496].

Example 19.7.5. (Lattice attack on DLWE using short vectors in kernel lattice modulo
q.) Suppose one can find a short vector w in the lattice

{w ∈ Zm : wA ≡ 0 (mod q)} .

Then w c = wAs + w e ≡ w e (mod q). If w is short enough then one might expect that
w e is a small integer. On the other hand, if c is independent of A then w c (mod q) is a
random integer modulo q. Hence, one might be able to distinguish the LWE distribution
from the uniform distribution using short enough vectors w.

Note that one is not obliged to use all the rows of A in this attack, and so one can
replace m by a much smaller value m′. For analysis of the best value for m′, and for
parameters that resist this attack, see Section 5.4.1 (especially equation (10)) of [423].

Example 19.7.6. (Reducing LWE to bounded distance decoding (BDD) or CVP.) We
now consider a natural approach to solving LWE using lattices. Since we always use row

2In other words, the probability that ei is equal to x ∈ Z is proportional to e−x2/(2σ2).

416 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

lattices, it is appropriate to take the transpose of LWE. Hence, suppose c, s and e are row
vectors (of lengths m, n and m respectively) such that c = sAT + e (mod q).

Consider the lattice

L =
{
v ∈ Zm : v ≡ uAT (mod q) for some u ∈ Zn

}
.

Then L has rank m and a basis matrix for it is computed by taking the (row) Hermite
normal form of the (n+m)×m matrix

(
AT

qIm

)

where Im is an m ×m identity matrix. One then tries to find an element v of L that is
close to c. Hopefully, v = c− e ≡ sAT (mod q). For usual LWE parameters we have that
there is a unique v ∈ L that is very close to c, and so the problem matches the bounded
distance decoding problem.

One can perform lattice basis reduction and apply the nearest plane algorithm. For
improved methods and experimental results see Lindner and Peikert [390]. As in Ex-
ample 19.7.5 one can work with a subset of m′ rows of A; see Section 5.1 of [390] for
details.

19.8 Further Applications of Lattice Reduction

There are a number of other applications of lattices in cryptography. We briefly list some
of them.

• The improvement by Boneh and Durfee of Wiener’s attack on small private exponent
RSA. This is briefly mentioned in Section 24.5.1.

• Solving the hidden number problem in finite fields and its applications to bit security
of Diffie-Hellman key exchange. See Section 21.7.1.

• The attack by Howgrave-Graham and Smart on digital signature schemes in finite
fields when there is partial information available about the random nonces. See
Section 22.3.

• The deterministic reduction by Coron and May from knowing ϕ(N) to factoring N .
This is briefly mentioned in Section 24.1.3.

Cryptosystems Based on
Lattices

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

We present some cryptosystems whose common feature is that they all rely on compu-
tational problems in lattices for their security. The subject of lattice based cryptography
is very active and there have recently been new ideas that revolutionised the field. It is
beyond the scope of this book to survey these recent developments.

19.9 The Goldreich-Goldwasser-Halevi Cryptosystem

and Variants

The Goldreich-Goldwasser-Halevi (GGH) cryptosystem relies on the difficulty of the clos-
est vector problem (CVP) in a lattice. The system is reminiscent of the McEliece cryp-
tosystem, which we briefly recall in the next paragraph. Encryption for both systems is
randomised.

In the McEliece cryptosystem one chooses an error correcting code (some references
for error correcting codes are van Lint [391] and Chapter 18 of [609]) over a finite field
Fq (typically F2) given by a k × n generator matrix G (where k < n) and publishes a
“disguised” version G′ = SGP where S and P are suitable invertible matrices (we refer
to Section 8.5 of Menezes, van Oorschot and Vanstone [418] for details). The public
key is G′ and the private key is (S,G, P). To encrypt a message m ∈ Fkq one computes
c = mG′ + e where e ∈ Fnq is a randomly chosen error vector of low Hamming weight;
note that this computation is over Fq. To decrypt one uses the decoding algorithm for
the error correcting code.

The basic GGH public key encryption scheme is similar; we give an informal sketch of
the idea now. One chooses a “nice” basis B for a full rank lattice L ⊂ Zn and publishes
a “disguised” basis B′ = UB for L where U is “random” unimodular matrix. A message
m ∈ Zn is encrypted as c = mB′ + e where e is a randomly chosen short error vector;
note that this computation is over Z. To decrypt one solves the closest vector problem,
using the nice basis B, to obtain the lattice point mB′ close to c; one can then obtain m.

417

418 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

While encryption is superficially the same for the McEliece and GGH cryptosystems,
there are significant differences between the security analysis of these schemes. An ad-
vantage of the lattice approach is that the error vector is required to have less structure:
it is only required to be short, compared with McEliece where the error vector must have
low Hamming weight. Both schemes have ciphertexts larger than the messages but an ad-
vantage of McEliece is that ciphertexts have a fixed size whereas for GGH the coefficients
are integers whose size can vary significantly.

Exercise 19.9.1. Show that any cryptosystem based on the McEliece or GGH idea does
not have indistinguishability security under passive attack.

Exercise 19.9.2. A variant of the McEliece or GGH proposal is to swap the roles of the
message and the randomness. In other words one encodes the message as a valid error
vector m, chooses a random e ∈ Fkq (respectively, e ∈ Zk) and computes c = eG′ + m
(resp., c = eB′ + m). Show that this variant also does not have indistinguishability
security under passive attacks.

Exercise 19.9.3. Show that any cryptosystem based on the McEliece or GGH idea (and
without any padding scheme) does not have one way encryption security under a CCA
attack.

Exercises 19.9.1 and 19.9.3 show that the ‘textbook’ (i.e., without a padding scheme)
McEliece and GGH cryptosystems should not be used in practice. Using techniques
similar to those presented later for Elgamal and RSA one can prevent such attacks as
long as the basic scheme is OWE-CPA secure (see Section 1.3.1 for the definition of this
security notion). Hence, for the rest of this chapter we focus purely on the textbook
versions and mainly consider security under passive attacks.

Exercise 19.9.4. Given a GGH public key B′ show that there is more than one private
basis matrix B that is suitable for decryption. Show that one can efficiently determine
whether a guess B for a GGH private basis matrix can correspond to a given public basis
B′.

To give a precise definition of the GGH cryptosystem it is necessary to give the fol-
lowing details:

1. What dimension n should be used?

2. How does one choose the “nice” lattice basis B and what properties should it have?

3. How does one choose the “random” unimodular matrix U?

4. What is the message space and how does one encode information into a vector m?

5. How does one choose the error vector e and in what space does it lie?

We briefly sketch the proposal of Goldreich, Goldwasser and Halevi; the reader should
refer to the original paper [256] for complete details. It is suggested to take n ≥ 200. Two
methods to generate the “nice” basis B are given: one is to choose a random matrix B
with entries in, say, {−4,−3,−2,−1, 0, 1, 2, 3, 4} (so that all vectors are relatively short);
another is to choose B = kIn + E where In is the n × n identity matrix, k > 1 is
a “medium sized” integer and E is a random matrix with small entries as in the first
case above. Two methods to generate U are also given; in both cases the issue is to
ensure that the coefficients of B′ = UB do not explode in size (we refer to Section 3.2
of [256] for details). The message space is the set of vectors of length n with entries in

19.9. GOLDREICH-GOLDWASSER-HALEVI CRYPTOSYSTEM 419

{−M,−(M − 1), . . . ,−1, 0, 1, . . . ,M − 1,M} for some M ∈ N ([256] actually suggests
M = n). Finally, the error vector is chosen to be a random vector of length n with entries
in {−σ, σ} for some σ ∈ N (typically, σ = 3).

As mentioned above, to encrypt a messagem one computes the ciphertext c = mB′+e.
To decrypt c one uses the Babai rounding technique with respect to the nice basis B for
the lattice. More precisely, multiply c by B−1 to obtain

cB−1 = (mB′ + e)B−1 = mUBB−1 + eB−1 = mU + eB−1 ∈ Qn.

The Babai rounding will remove the term eB−1 as long as it is small enough. One then
multiplies by U−1 to get the message m.

Exercise 19.9.5. Write down algorithms for KeyGen, Encrypt and Decrypt.

Example 19.9.6. Let L ⊂ R2 be the lattice with basis matrix

B =

(
17 0
0 19

)
.

Let

U =

(
2 3
3 5

)
giving B′ = UB =

(
34 57
51 95

)
.

Let the message be m = (2,−5) and take e = (1,−1) (this is GGH encryption with
σ = 1). Then

c = mB′ + e = (−186,−362).

To decrypt one computes

cB−1 ≈ (−10.94,−19.05)

(note that mU = (−11,−19) and eB−1 ≈ (0.06,−0.05)). We round the above to
(−11,−19) and recover the message as m = (−11,−19)U−1 = (2,−5).

Exercise 19.9.7. Show that GGH decryption gives the correct result as long as the
entries of eB−1 are real numbers of absolute value < 1/2. Let ρ be the maximum, in
the ℓ1-norm, of the columns of B−1. Show that if σ < 1/(2ρ) then decryption gives the
correct result.

Exercise 19.9.8. For the public key in Example 19.9.6 decrypt the ciphertext c =
(220, 400).

As mentioned, the ciphertext in GGH encryption is considerably larger than the mes-
sage. A precise analysis of this depends on the sizes of entries in B′ (which in turns
depends on the specific choices for B and U). We do not give any estimates for the
ciphertext expansion.

Micciancio [421] proposed a variant of the GGH cryptosystem. The first idea is,
instead of choosing the public basis to be B′ = UB for a random matrix U ∈ SL2(Z), one
can choose B′ to be the Hermite normal form (HNF) of B. There is no loss of security by
doing this, since anyone can compute the HNF of UB, and get the same result. The second
idea is to encode the message in the error vector rather than in the lattice point (this
is the same idea as discussed in Exercise 19.9.2) and to reduce it to the orthogonalized
parallelepiped (see Exercise 19.9.9). This results in significantly shorter ciphertexts than
the original GGH system and makes the encryption process deterministic. We refer to
[421] for further details.

420 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Exercise 19.9.9. Let b1, . . . , bn be an ordered basis for a lattice L and let b∗1, . . . , b
∗
n be

the corresponding Gram-Schmidt vectors. Define the orthogonalized parallelepiped

P =

{
n∑

i=1

xib
∗
i : 0 ≤ xi ≤ 1

}
.

Given v ∈ Rn show how to compute w ∈ P such that v − w ∈ L. This is called reducing
to the orthogonalized parallelepiped.

19.10 Cryptanalysis of GGH Encryption

We now discuss the one-way encryption (OWE) security of the GGH cryptosystem under
passive attacks. There are three natural ways to attack the GGH cryptosystem:

1. Try to obtain the private key B from the public key B′.

2. Try to obtain information about the message from the ciphertext, given that the
error vector is small.

3. Try to solve the CVP of c with respect to the lattice L defined by B′.

We also present a fourth attack, due to Nguyen, which exploits the particular format of
the error vectors in the GGH cryptosystem. Lattice basis reduction algorithms have a
role to play in the first and third of these attacks.

Computing a Private Key

For the first attack, we simply run a lattice basis reduction algorithm (such as LLL) on
the public basis matrix B′. If we are lucky then it will output a basis B′′ that is good
enough to allow the efficient solution of the required closest vector instances.

Example 19.10.1. Let

B =

7 0 0
0 23 0
0 0 99

and define B′ = UB where

U =

1 0 0
8 1 0
−11 5 1

 .

1 3 −10
0 1 −6
0 0 1

 .

Then B′ is the public basis matrix

B′ =

7 69 −990
56 575 −8514
−77 −644 8019

 .

Let m = (2,−1, 3) be a message and e = (−1, 1, 1) an error vector and define c =
mB′ + e = (−274,−2368, 30592). Running LLL on B′ does yield (up to sign) the matrix
B (and hence U = B′B−1). From this one can recover m.

To prevent such an attack it is necessary that the dimension of the lattice be sufficiently
large.

19.10. CRYPTANALYSIS OF GGH ENCRYPTION 421

Computing Information about the Message

For the second attack we exploit the fact that c = mB′ + e where e is a vector with small
entries. A naive attack is to try all values of the error vector e until c−e lies in the image
of ZnB′. A more subtle idea is to compute c(B′)−1 = m + e(B′)−1 and try to deduce
possible values for some entries of e(B′)−1. For example, if the j-th column of (B′)−1

has particularly small norm then one can deduce that the j-th entry of e(B′)−1 is always
small and hence get an accurate estimate for the j-th entry of m. We refer to Section 4.2
of [256] for further discussion. To defeat this attack one should not naively encode the
message as a vector m ∈ Zn. Instead, one should only use some low-order bits of some
entries of m to carry information, or use an appropriate randomised padding scheme.

Solving the CVP Directly

For the third attack one can consider any of the algorithms listed in Chapter 18 for solving
the CVP. For example, one can use the Babai nearest plane algorithm or the embedding
technique.

Example 19.10.2. We use the public key and ciphertext from Example 19.10.1 and
recover the message using the embedding technique. Construct

A =

7 69 −990 0
56 575 −8514 0
−77 −644 8019 0
−274 −2368 30592 1

 .

Running LLL on A yields the matrix

−1 1 1 1
5 2 2 2
−1 −15 8 8
−1 −2 51 −48

 .

As desired, the first row is (−1, 1, 1, 1) = (e, 1). From this one can compute the message
as m = (c− e)(B′)−1.

Exercise 19.10.3. For the public key from Example 19.10.1 use the embedding technique
to decrypt the ciphertexts c = (120, 1220,−18017) and c = (−83,−714, 9010).

To defeat such attacks it is necessary that the lattice dimension is sufficiently large
and that the solution to the CVP instance is not too special. In particular, the error
vector should not be too short compared with the vectors the lattice.

Nguyen’s Attack

Nguyen noted that the choice of the error vector in the original GGH cryptosystem made
it extremely vulnerable to attack. Write σ = (σ, σ, . . . , σ) ∈ Zn. The crucial observation
is that if c is a GGH ciphertext then c + σ ≡ mB′ (mod 2σ). If B′ is invertible modulo
2σ (or even modulo a factor of 2σ) then one can already extract significant information
about the message m. Furthermore, if one successfully computes m0 ≡ m (mod 2σ), then
one obtains the simpler closest vector instance

c−m0B
′

2σ
= m′B′ +

e

2σ

422 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

where m = m0 + 2σm′. Since e/(2σ) is a much shorter vector than e it is possible that
algorithms for the closest vector problem that were not successful on the original instance
can succeed on the new instance.

Example 19.10.4. Consider the lattice L and ciphertext c from Example 19.9.6. Since
σ = 1 we can add (1, 1) to c and solve

c+ (1, 1) = (−185,−361)≡ m0B
′ (mod 2)

(note that B′ is invertible over F2). One finds m0 = (0, 1) ≡ (2,−5) (mod 2) as expected.

Exercise 19.10.5. Perform Nguyen’s attack for the ciphertexts of Exercise 19.10.3.

The natural approach to resist Nguyen’s attack is to choose error vectors with a more
general range of entries (e.g., ej ∈ {−σ,−(σ− 1), . . . ,−1, 0, 1, . . . , σ} for 1 ≤ j ≤ n). It is
then necessary to re-evaluate all the other attacks and parameter choices.

Finally, we remark that none of the above techniques gives an attack with polynomial
asymptotic complexity as the dimension n grows. Hence, the GGH encryption scheme
and its variants are not broken. On the other hand, in practice one needs to use lattices
of rather large dimension and this limits the practicality of the GGH system.

19.11 GGH Signatures

Let B′ be a GGH public key corresponding to a lattice L in Zn. The natural signature
scheme is as follows: Given a message m hash it to a “random” element H(m) ∈ Zn.
Then, using the private key, compute a lattice vector s close to H(m). The signature on
message m is then s. To verify the signature one checks that s lies in the lattice (i.e.,
s(B′)−1 ∈ Zn) and that ‖s− H(m)‖ is smaller than some threshold that is specified as
part of the signature verification key.

We remark that signatures for lattice schemes are somewhat easier than for the
McEliece cryptosystem since CVP algorithms work for any point in Rn whereas decoding
algorithms may fail for words that are not within the minimum distance of a code-word
(however, see Courtois, Finiasz and Sendrier [451] for a study of McEliece signatures).

To analyse the security (namely, resistance to forgery) of such a signature scheme one
must consider all the attacks mentioned above on the encryption scheme. One therefore
is required to use lattices of large dimension n ≥ 200.

Furthermore, as usual with signatures, one must also consider the fact that an ad-
versary could obtain signatures on messages and that this might leak information about
the private key. For the GGH signature scheme one sees that s−H(m) is a short vector
in Rn. Indeed, if the CVP algorithm used by the signer is perfect for the basis B then
s−H(m) always lies in the parallelepiped

P1/2(B) = {xB : x = (x1, . . . , xn) ∈ Rn,−1/2 ≤ xi ≤ 1/2 for all 1 ≤ i ≤ n},

which is called a fundamental domain for the lattice (i.e., for every point x ∈ Rn

there is some y in the lattice such that x − y ∈ P1/2(B)). The fundamental domain of
a lattice is a simplex whose sides are determined by the basis vectors in B. Hence, it is
natural to wonder whether seeing a number of random entries in P1/2(B) allows one to
learn something about the vectors in B. Nguyen and Regev [457, 458] have explored this
idea and shown that such an approach can be used to cryptanalyse signatures. Adding
a “perturbation” to the signature seems to prevent the attack of Nguyen and Regev (see
Section 1.3 of [458]). Gentry, Peikert and Vaikuntanathan [253] give a method to sample

19.12. NTRU 423

from a lattice (when given a sufficiently good basis) such that the output is statistically
close to a Gaussian distribution. Hence, their paper gives3 a secure implementation of
the GGH signature concept.

19.12 NTRU

The NTRU4 cryptosystem was invented by Hoffstein, Pipher and Silverman. The original
proposal is phrased in terms of polynomial rings. We refer to Hoffstein, Pipher and
Silverman [288], Section 6.10 of [289] or Section 17.4 of [609] for a description of the
system in these terms.

The NTRU encryption scheme can also be described as a special case of Micciancio’s
variant of the GGH encryption scheme. The public key is a 2n× 2n matrix

B =

(
qIn 0
H In

)

in Hermite normal form, where In is the n× n identity matrix, q is an integer (typically
q = 28 or 210) and H is an n × n matrix with entries in {0, 1, . . . , q − 1}. The crucial
property of NTRU is that the matrix H is a circulant matrix, in other words, the rows
of H are just cyclic rotations of the first row of H . This means that to specify the NTRU
public key one only needs to specify q and the first row of H ; the public key requires
O(n log2(q)) bits.

The matrix H is constructed by the user in a special way so that they know a basis
for the lattice generated by B consisting of short vectors. Encryption proceeds as in the
Micciancio scheme. We refer to Section 5.2 of Micciancio and Regev [423] for further
details.

The details of the NTRU scheme have evolved over time. In particular, earlier pa-
rameter choices for NTRU had a noticeable probability of decryption failures, and this
property was used to develop active (i.e., not passive) attacks [298]. Hence, the currently
recommended parameters for NTRU have negligible probability of decryption failures.

The security of the NTRU cryptosystem relies on the difficulty of computing short
vectors in the NTRU lattice. One remark is that the NTRU lattice has a number of
special properties that can be used to improve the standard algorithms for finding short
vectors. In particular, if v is a short vector in the NTRU lattice then so are the n “cyclic
rotations” of v. As a sample of the literature on special properties of the NTRU lattice
we refer to May and Silverman [412], Gama, Howgrave-Graham and Nguyen [234] and
Gentry [251].

19.13 Knapsack Cryptosystems

Knapsack cryptosystems were proposed by Merkle and Hellman in 1978. As with NTRU,
the original description of knapsack cryptosystems made no reference to lattices. However
there is a general attack on knapsacks using lattices (indeed, this was the first application
of lattice basis reduction to public key cryptanalysis) and so it is natural to consider them
as a lattice-based cryptosystem. Though not used in practice, we briefly present knapsack
cryptosystems as they are an excellent source of exercises in cryptanalysis.

3This is only one of the many contributions of [253].
4The meaning of the acronym NTRU is not explained in the original paper. One interpretation is

that it stands for “Number Theorists are Us”. After various successful attacks were discovered on the
corresponding signature scheme some individuals in the cryptography community started to refer to it
as “Not True”.

424 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Definition 19.13.1. Let b1, . . . , bn be distinct positive (i.e., bi ≥ 1) integers (sometimes
called weights). The subset sum problem is, given an integer s obtained as a sum of
elements bi, to find xi ∈ {0, 1} for i = 1, . . . , n such that

s =

n∑

i=1

xibi.

The name knapsack is a mis-use of subset sum. It comes from the idea of finding
out what is in a knapsack (a type of bag) just from its weight. The subset sum problem
is NP-complete.

Exercise 19.13.2. A decisional variant of Definition 19.13.1 is, given {b1, . . . , bn} and
s ∈ N to decide whether or not there are xi ∈ {0, 1} such that s =

∑n
i=1 xibi. Prove that

these two computational problems are equivalent.

Exercise 19.13.3. Let notation be as in Definition 19.13.1 and let B =
∑n

i=1 bi. Give a
time-memory tradeoff algorithm to find the solution xi ∈ {0, 1}, or show none exists, in
O(n2n/2 log(B)2) bit operations and with O(n2n/2 log(B)) bits of storage.

The attack of Exercise 19.13.3 has been greatly improved by Shamir and Schroep-
pel (we do not have space for the details; see Section 8.1.2 of Joux [317]). A further
improvement has been given by Howgrave-Graham and Joux [300]. Wagner’s algorithm
(see Section 13.8) does not seem to be directly applicable to the subset sum problem,
though has been used to solve the modular subset sum problem (i.e., given {bi}, s and
m to find xi ∈ {0, 1} such that

∑n
i=1 xibi ≡ s (mod m)) by Wagner (also see the work of

Lyubashevsky and Shallue).

Exercise 19.13.4. Show that every subset sum instance can be reduced to an instance
where the weights satisfy gcd(b1, . . . , bn) = 1.

The motivating idea of a knapsack cryptosystem is that computing s =
∑n

i=1 xibi is a
one-way function. The remaining problem is to design subset sum instances that can be
efficiently solved using a private key. To do this one first considers easy instances of the
subset sum problem.

Definition 19.13.5. A sequence b1, . . . , bn in N is superincreasing if, for each 2 ≤ i ≤ n

bi >

i−1∑

j=1

bj.

There is an efficient greedy algorithm to solve the subset sum problem if the bi are a
superincreasing sequence: Just subtract the largest possible value from s and repeat.

Example 19.13.6. The sequence

1, 2, 4, 8, . . . , 2n−1

is a superincreasing sequence. Decomposing an integer s with respect to this sequence is
the same as writing it in binary.

Exercise 19.13.7. Consider the superincreasing sequence

1, 5, 7, 20, 35, 80, 170.

Decompose s = 112 with respect to this sequence.

19.13. KNAPSACK CRYPTOSYSTEMS 425

Exercise 19.13.8. Show that if b1, . . . , bn is a superincreasing sequence then bi ≥ 2i−1

and bi+j > 2j−1bi for 1 ≤ i ≤ n and 1 ≤ j.
The following definition gives a rough estimate for the “information rate” of a knapsack

cryptosystem (in other words, the ratio of the number of bits to represent the solution of
a subset sum instance versus the number of bits in sum itself). This quantity arises in
the cryptanalysis of knapsack cryptosystems.

Definition 19.13.9. The density of a sequence b1, . . . , bn is

d = n/ log2 max{bi}.

Exercise 19.13.10. What is the density of 1, 2, 4, 8, . . . , 2n−1?

Exercise 19.13.11. What is the density of 3, 7, 11, 27, 50, 107, 210, 430?

Exercise 19.13.12. Show that the density of a superincreasing sequence is at most
1 + 1/(n− 1).

19.13.1 Public Key Encryption Using Knapsacks

The idea of the Merkle-Hellman knapsack cryptosystem is to have a superincreasing se-
quence as the private key but to ‘disguise’ this for the public key. We briefly sketch the
algorithms for the “textbook” Merkle-Hellman knapsack cryptosystem (for more details
see Section 8.6 of [418]). The length n of the sequence is a security parameter.

• KeyGen(n): Generate a superincreasing sequence b1, . . . , bn in N. Choose a modulus
M >

∑n
i=1 bi and a random integer W coprime to M . Select a random permutation

π of the integers {1, . . . , n}. Define ai = Wbπ(i) (mod M). The public key is
a = (a1, . . . , an) and the private key is π,W,M, b = (b1, . . . , bn).

• The message space is Mn = {0, 1}n (i.e., binary strings of length n).

• To Encrypt a message m = (m1, . . . ,mn) where mi ∈ {0, 1} a user computes the
integer

c = m · a =

n∑

i=1

miai

and transmits this.

• To Decrypt, the user with the private key multiplies c by W−1 (mod M) to obtain
0 ≤ s < M . The user can solve the subset sum problem for s with respect to the
superincreasing sequence. (If there is no solution then the decryption algorithm out-
puts the invalid ciphertext symbol ⊥.) The message is then obtained by permuting
the sequence xi using π−1.

Exercise 19.13.13. Show that decryption does recover the message.

Example 19.13.14. Consider the superincreasing sequence from Exercise 19.13.7

1, 5, 7, 20, 35, 80, 170.

We disguise using modulus 503 and multiplier 430 (and taking π to be the identity per-
mutation for simplicity) to get the public key

430, 138, 495, 49, 463, 196, 165.

426 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Let the message be the binary sequence 1001100. The ciphertext is

c = 430 + 49 + 463 = 942.

To decrypt we compute 430−1c ≡ 56 (mod 503), which is then easily decomposed as
35 + 20 + 1 giving the message 1001100.

Exercise 19.13.15. Consider the Merkle-Hellman public and private key from Exam-
ple 19.13.14. Decrypt the ciphertext 829.

Exercise 19.13.16. What is the density of the public key in Example 19.13.14.

Exercise 19.13.17. Consider the Merkle-Hellman private key M = 201, W = 77 and
b = (2, 5, 11, 27, 46, 100). What is the public key? What is the encryption of 101011?

Exercise 19.13.18. Show that the “textbook” Merkle-Hellman knapsack does not have
IND-CPA security.

Exercise 19.13.19. Show that the “textbook” Merkle-Hellman knapsack does not have
OWE-CCA security.

Example 19.13.20. One can compute a single bit of information about the message
from the ciphertext in the the “textbook” Merkle-Hellman system. Suppose that not all
a1, . . . , an in the public key are even (if so, divide all ai and the challenge ciphertext c by
2 and try again). Then c ≡∑n

i=1 xiai (mod 2) and so one obtains

n∑

i=1,ai odd

xi (mod 2).

In general one prefers the cipertext to have a similar size to n. Exercise 19.13.21 shows
that it is impossible to have a ciphertext of exactly the same bit-length as the message
when using knapsacks.

Exercise 19.13.21. Show that a ciphertext in the “textbook” Merkle-Hellman scheme
is expected to require at least n+ log2(n)− 2 bits.

Exercise 19.13.22. It is sometimes stated in the literature that a Merkle-Hellman public
key must have density less than 1. Show that this is not the case.

To avoid attacks (to be described in the next section) it was proposed to iterate the
Merkle-Hellman procedure t times. In other words, first choose a superincreasing sequence
b1, . . . , bn, choose (M1,W1) such that M1 >

∑n
i=1 bn and compute a1,i = Wbi (mod M1)

for 1 ≤ i ≤ n. Then choose (M2,W2) such that M2 >
∑n

i=1 a1,i and compute a2,i =
Wa1,i (mod M2) for 1 ≤ i ≤ n and so on. The public key is at,1, . . . , at,n. One can
then apply a permutation to the public key if necessary. The original Merkle-Hellman
cryptosystem is the case t = 1, which is sometimes given the anachronistic name “single-
iterated Merkle-Hellman”.

Exercise 19.13.23. Give the decryption algorithm for the iterated Merkle-Hellman sys-
tem.

Exercise 19.13.24. Show that in iterated Merkle-Hellman one expects Mi+1 > (n/2)Mi

for 1 ≤ i < n. Hence, show that the ciphertext in an iterated Merkle-Hellman system is
at least t(log2(n)−1)+n+log2(n)−2 bits. Determine the expected density of the public
key.

19.13. KNAPSACK CRYPTOSYSTEMS 427

It follows that one cannot iterate the Merkle-Hellman construction too many times.
In the next section we will sometimes assume that b1b2 < M . Exercise 19.13.25 shows

that if this is not the case then ciphertexts are roughly double the length of the message,
and hence are less desirable for practical applications.

Exercise 19.13.25. Let b1, . . . , bn be a superincreasing sequence and suppose M >∑n
i=1 bi is such that b1b2 > M . Show that the average ciphertext size is at least 2n +

log2(n)− 6 bits.

19.13.2 Cryptanalysis of Knapsack Cryptosystems

We now give a number of attacks on the knapsack cryptosystem, some of which are
easy exercises. For a thorough discussion of the history of these attacks see Brickell and
Odlyzko [104] and Odlyzko [470].

We remark that there is not necessarily a unique private key for a given Merkle-
Hellman knapsack public key since {W−1ai (mod M) : 1 ≤ i ≤ n} might be a superin-
creasing sequence for more than one choice of (M,W).

Exercise 19.13.26. Show that, given a Merkle-Hellman knapsack public key (a1, . . . , an),
one can efficiently determine whether a guess for (M,W) provides a useful private key.

We now show that the scheme is insecure if the first elements of the superincreasing
sequence are known.

Example 19.13.27. Let a1, . . . , an be a Merkle-Hellman knapsack public key. Suppose
one knows the first two elements b1 and b2 of the superincreasing sequence. We show how
to recover the private key.

First, suppose no permutation is used. Then a1 ≡Wb1 (mod M) and a2 ≡Wb2 (mod M).
It follows that a1b2 ≡ a2b1 (mod M) and so M is a factor of (a1b2−a2b1). Since b1 and b2
are small, ai ≈ 2n (perhaps n = 256) and (a1b2−a2b1) is not expected to have any special
form, it is natural to assume that this factoring problem is fairly easy. Furthermore, since
max{ai : 1 ≤ i ≤ n} < M and we expect M < 2 max{ai : 1 ≤ i ≤ n} (i.e., not all
ai < M/2) there are few possible values for M .

For each possible value of M one can compute W = a1b
−1
1 (mod M) and then test

whether the values W−1ai (mod M) look like a superincreasing sequence.
To deal with the permutation just repeat the attack for all triples (ai, aj) with 1 ≤

i, j ≤ n distinct. If (i, j) does not correspond to the correct permutation of (1, 2) then
probably either (aib2−ajb1) does not have a factor of the right size, or the corresponding
W do not yield superincreasing sequences.

Exercise 19.13.28. Perform the attack of Example 19.13.27 for the Merkle-Hellman
public key

8391588, 471287, 8625204, 906027, 8328886

given that b1 = 44899 and b2 = 1048697 (with no permutation used).

In practice, due to Example 19.13.27, one would take b1 and b2 to have around 2κ/2

bits each for security parameter κ.
We now show why M must be kept secret.

Example 19.13.29. Suppose M is known to the attacker, who wants to compute W and
hence the superincreasing sequence b1, . . . , bn.

First, assume no permutation is used. Since

ai ≡ biW (mod M)

428 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

for 1 ≤ i ≤ n one has b2 ≡ b1(a2a
−1
1) (mod M). Let 0 ≤ c < M be such that c ≡

a2a
−1
1 (mod M). Then

b2 = b1c+ zM

where z < b1. Running the extended Euclidean algorithm on (c,M) computes all triples
(b1, z, b2) such that b1b2 < M in polynomial-time (following Exercise 19.13.25 we assume
that the desired solution satisfies this condition). For each candiate pair (b1, b2) one
checks whether a1b

−1
1 ≡ a2b

−1
2 (mod M) and, if so, calls this value W and tests whether

W−1bi (mod N) is “small” (at most M/2, and usually much smaller) for a few randomly
chosen indices i. One expects to easily find the right pair (b1, b2) and hence the correct
value for W .

When the permutation is used one repeats the above attack for all pairs (ai, aj) for
distinct 1 ≤ i, j ≤ n.

Exercise 19.13.30. Show that W must be kept secret.

Shamir’s Attack

We now present an attack using lattices to compute both M and W together (actually,
to compute M and U = W−1 (mod M) where 1 ≤ U < M). This approach originates
with Shamir [546] although we follow the presentation of Lagarias [360]. For clarity, we
first assume that no permutation is used. The starting point is to note that for 1 ≤ i ≤ n
there are integers ki such that

aiU − kiM = bi

and 0 ≤ ki < ai. Hence,

0 ≤ U

M
− ki
ai

=
bi
aiM

. (19.7)

Since the bi are superincreasing we have bi < M/2n−i and so 0 ≤ U/M − ki/ai <
1/(ai2

n−i). In particular, U/M − k1/a1 < 1/(a12n−1) is very small.

We now observe that to break the Merkle-Hellman knapsack it is sufficient to find
any pair (u,m) of positive integers such that uai (mod m) is a superincreasing sequence
(or at least is similar enough to such a sequence that one can solve the subset sum
problem). We show in the next paragraph that if k1/a1 is close enough to U/M then
taking (u,m) = (k1, a1) will suffice.

Subtracting the case i = 1 of equation (19.7) from the i-th gives

k1
a1
− ki
ai

=
bi
aiM

− b1
a1M

=
a1bi − aib1
a1aiM

and so, for 2 ≤ i ≤ n,

|aik1 − a1ki| = |a1bi − aib1|/M < 2Mbi/M = 2bi < M/2n−i−1. (19.8)

Taking m = a1 and u = k1 we have uai (mod m) being very close to a superincreasing
sequence (in the sense that the numbers grow in a very controlled way).

It remains to compute the integer k1 such that equation (19.8) holds, given only
the integers a1, . . . , an. Another way to write equation (19.8) is |ai/a1 − ki/k1| <
M/(a1k12n−i−1) and one sees that the problem is precisely simultaneous Diophantine
approximation as considered in Section 19.5. We apply the method of Section 19.5.

19.13. KNAPSACK CRYPTOSYSTEMS 429

Hence, consider the following basis matrix (where 0 < λ < 1 is a parameter analogous to
ǫ/Q in equation (19.5) and where 1 < l ≤ n)

λ a2 a3 · · · al
0 −a1 0 · · · 0
0 0 −a1
...

...
. . .

...
0 0 · · · −a1

. (19.9)

This lattice contains the vector (λk1, k1a2−k2a1, k1a3−k3a1, . . . , k1ad−kda1). Perfoming
lattice basis reduction one obtains a guess for k1. One now sets u = k1 and m = a1 and
computes uai (mod m) for 2 ≤ i ≤ n. Hopefully this is a superincreasing sequence (or, is
at least close enough to one to allow efficient decryption). One then computes uc (mod n)
where c is any challenge ciphertext, decrypts using the superincreasing sequence, and
therefore recovers the message. One might expect to have to take l = n, but the attack
actually works for rather small values of l (see below for more discussion).

Example 19.13.31. Consider the superincreasing sequence

b1 = 7, b2 = 20, b3 = 35, b4 = 71, b5 = 140, b6 = 307, b7 = 651, b8 = 1301.

Choose M = 2609 and W = 2525 (giving U = 528). The Merkle-Hellman public key is

(2021, 929, 2278, 1863, 1285, 302, 105, 294).

The encryption of 10101011 is 5983.
The sequence of values ki such that aiU − kiM = bi are

409, 188, 461, 377, 260, 61, 21, 59

and the values of aik1 − a1ki for i = 2, 3, 4 are 13, 21 and 50.
Take λ = 1/32 and l = 4 and consider the lattice basis as in equation (19.9). LLL

reduction gives

409/32 13 21 50
2021/32 0 0 0
−755/32 −108 −19 51

205/8 −137 556 −216

 .

One recovers k1 = 409 (and the first few values aik1 − a1ki). One can even get the result
using λ = 1/8 and l = 3. The LLL-reduced basis is

−409/8 −13 −21

63/8 −82 23
385/8 −52 −84

 .

To complete the cryptanalysis take u = k1 = 409 and m = a1 = 2021. The sequence
aiu (mod m) for 1 ≤ i ≤ 8 is (0, 13, 21, 50, 105, 237, 504, 1007), which is a superincreasing
sequence. One then computes 5983u ≡ 1637 (mod m), which decomposes with respect
to the superincreasing sequence as 1637 = 1007 + 504 + 105 + 21. The corresponding
message is x10101011 where x1 ∈ {0, 1}. Using the original public key one can determine
that x1 = 1 and confirm that the message does encrypt to the given ciphertext.

Exercise 19.13.32. Using the same public key as Example 19.13.31 decrypt the cipher-
text 5522 using the key (u,m) determined by the cryptanalysis.

430 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Exercise 19.13.33. Consider the Merkle-Hellman public key 1994, 1966, 1889, 822, 640,
1224, 1402, 1492 and ciphertext 6569. Deduce the message using Shamir’s attack.

A formal analysis of this method is given by Lagarias [360]. As with other attacks
on knapsack cryptosystems, the results are heuristic in the sense that they are proved by
considering a “random” knapsack instance. The first issue is the size of l. Shamir [546]
and Lagarias [360] both suggest that one can take l > 1/d+ 1, where d is the density of
the instance. In practice, l = 4 seems to be acceptable. This means the computation is
only for lattices of very small dimensions and is certainly polynomial-time. So far we have
ignored the permutation; in practice the attack is repeated for the n(n−1) · · · (n−(l−1))
choices of l values from (a1, . . . , an). Since l is constant this still gives a polynomial-time
attack. For these reasons the Merkle-Hellman knapsack cryptosystem is considered to be
totally broken.

The iterated Merkle-Hellman system is designed to avoid the above attacks, though
Lagarias [360] showed how to attack the double iterated knapsack (i.e., the case t = 2)
and discussed how to generalise the attack to larger t using exactly the same methods.
Brickell [103] also discusses a heuristic method to attack the general iterated Merkle-
Hellman system.

Direct Lattice Attack on Subset Sum

We now discuss a more direct way to use lattices to solve the subset sum problem and
hence break knapsack cryptosystems. This idea originates in the work of Lagarias and
Odlyzko [362]. These methods do not rely on any properties of the subset sum instance
and so can be applied to iterated Merkle-Hellman. However, they only work when the
density is sufficiently small.

Let (a1, . . . , an) be a sequence of weights and let s =
∑n

i=1 xiai be a subset sum
instance. Note that s′ =

∑n
i=1 ai − s is the subset sum instance of the complement

x̄1 · · · x̄n (where 0̄ = 1 and 1̄ = 0). Since one can repeat any attack on s and s′ in turn
we may always assume that at most half the entries of the solution are non-zero.

The basic method is to consider the lattice L with basis
(
In a
0 −s

)
(19.10)

where In is an n× n identity matrix and a is the list of weights represented as a column
vector. Then

v = (x1, x2, . . . , xn, 0)

is a vector in the lattice. Since ‖v‖ ≤ √n this vector is very short and so one could hope
to find it using lattice basis reduction.

Example 19.13.34. Consider the subset sum instance from Example 19.13.14. Reducing
the basis

1 0 0 0 0 0 0 430
0 1 0 0 0 0 0 138
0 0 1 0 0 0 0 495
0 0 0 1 0 0 0 49
0 0 0 0 1 0 0 463
0 0 0 0 0 1 0 196
0 0 0 0 0 0 1 165
0 0 0 0 0 0 0 −942

19.13. KNAPSACK CRYPTOSYSTEMS 431

using LLL gives

1 0 0 1 1 0 0 0
0 0 1 0 −1 −1 1 1
1 0 1 0 −2 0 0 −1
0 0 2 −1 0 0 0 −1
−1 1 2 1 0 1 0 1
0 −2 1 1 −1 1 0 1
−1 0 1 2 0 0 −1 −2
0 0 1 0 0 0 −3 0

.

One sees that the message (1, 0, 0, 1, 1, 0, 0, 0) appears as the first row (smallest vector) in
the lattice.

Exercise 19.13.35. Consider the knapsack public key

2381, 1094, 2188, 2442, 2280, 1129, 1803, 2259, 1665

and ciphertext 7598. Determine the message using the direct lattice method.

Lagarias and Odlyzko analysed the method for “random” subset sum instances of a
given size. They showed (Theorem 3.3 of [362], also see Section 2 of [154]) that for ran-
domly chosen weights ai of size 2βn with β > 1.54725 (i.e., random subset sum instances
of density at most 0.6463) then with overwhelming probability (as n tends to infinity) the
desired solution vector x is the shortest non-zero vector in the lattice. If one can solve
the shortest vector problem then one therefore can break the cryptosystem.

There are therefore two problems to overcome. First, the statement only holds for
randomly generated weights of a given size and so does not say anything concrete about
specific instances. Second, there is no known efficient algorithm to solve SVP exactly.
This latter point is a serious problem: as seen in Example 19.13.34 there are many
very small vectors in the lattice that do not have entries only in {0, 1} (these are often
called parasitic solutions to the subset sum instance). Hence, for large n, it is quite
possible that LLL outputs a short basis that does not include the desired solution vector.
Nevertheless, the LLL algorithm does work well in practice and can be used to solve
subset sum instances when the density is not too high.

Theorem 3.5 of Lagarias and Odlyzko [362] shows (for randomly chosen weights ai of

size 2(1/2+β)n
2

with β > 0) that with overwhelming probability (as n tends to infinity) the
desired solution vector x is computed using the LLL algorithm. This is done by showing
that the parasitic solutions all have significantly larger size. The problem with this result
is that it only applies when the density satisfies d ≤ (1/2 + β)−11/n, which is extremely
low.

Coster, Joux, LaMacchia, Odlyzko, Schnorr and Stern [154] improved the method by
replacing the last row of the lattice in equation (19.10) by (1/2, 1/2, . . . , 1/2, s). Under the
same simplifying assumptions as used by Lagarias and Odlyzko they showed the attack
could be applied for instances with density d < 0.9408. Again, although their method
officially requires an efficient algorithm for SVP, solving the approximate SVP using LLL
works well in practice as long as n is not too large. An alternative formulation of this
method is given in Section 3.2 of Nguyen and Stern [463].

The direct lattice attacks require lattices of dimension n so can be defeated by choos-
ing n sufficiently large. Hence, the high-density subset sum problem remains hard in
general. The problem with knapsack cryptosystems is that one needs to iterate the basic
Merkle-Hellman construction sufficiently many times to avoid the attacks presented ear-
lier. Iterating the Merkle-Hellman method lowers the lattice density and this can make

432 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

the system vulnerable to the direct lattice attack unless n is rather large. To conclude, it
seems that iterated knapsack cryptosystems are completely broken.

Part V

Cryptography Related to
Discrete Logarithms

433

Chapter 20

The Diffie-Hellman Problem
and Cryptographic
Applications

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

This chapter introduces some basic applications of the discrete logarithm problem in
cryptography, such as Diffie-Hellman key exchange and “textbook” Elgamal encryption.
A brief security analysis of these systems is given. This motivates the computational
and decisional Diffie-Hellman problems (CDH and DDH). A thorough discussion of these
computational problems will be given in Chapter 21.

20.1 The Discrete Logarithm Assumption

The discrete logarithm problem (DLP) was defined in Definition 13.0.1. Our main interest
is the DLP in an algebraic group or algebraic group quotient over a finite field Fq (for
example, elliptic curves, the multiplicative group of a finite fields, tori etc). We always
use multiplicative notation for groups in this chapter. As discussed in Section 13.2, in
practice we usually restrict to groups of prime order r.

Recall that the difficulty of the DLP is defined with respect to an instance generator
that runs on input a security parameter κ. An algorithm to solve the DLP with respect to
a given instance generator is only required to succeed with a noticeable probability. The
discrete logarithm assumption is that there exist instance generators that, on input
κ, output instances of the DLP such that no algorithm A running in polynomial-time in
κ can solve the DLP apart from with negligible (in κ) probability. The cryptosystems in
this chapter rely on the discrete logarithm assumption (and other assumptions).

435

436 CHAPTER 20. DIFFIE-HELLMAN CRYPTOGRAPHY

20.2 Key Exchange

20.2.1 Diffie-Hellman Key Exchange

The starting point of discrete logarithms (indeed, of public key cryptography) is the
seminal paper of Diffie and Hellman [179] from 1976 (more recently it became known that
this idea was also found by Williamson at GCHQ in 1974).

Suppose Alice and Bob want to agree on a random key K. Assume they both know
an algebraic group or algebraic group quotient G and some element g ∈ G of prime order
r (everyone in the world could use the same g). They perform the following protocol:

• Alice chooses a random integer 0 < a < r and sends c1 = ga to Bob.

• Bob chooses a random integer 0 < b < r and sends c2 = gb to Alice.

• On receiving c2 Alice computes K = ca2 .

• On receiving c1 Bob computes K = cb1.

Hence, both players share the key K = gab. One can derive (see Definition 20.2.10
below) a bitstring from the group element K for use as the key of a symmetric encryption
scheme. Hence, encryption of data or other functionalities can be implemented using
traditional symmetric cryptography. The key K is called the session key and the values
c1, c2 in the protocol are called messages or ephemeral keys.

We discuss the security of key exchange protocols (in particular, person-in-the-middle
attacks and authenticated key exchange) in Section 20.5. For the remainder of this section
we consider the simplest possible attacker. A passive attacker or eavesdropper (i.e.,
an attacker who learns g, c1 and c2, but does not actively interfere with the protocol)
cannot determine K unless they can solve the following computational problem.

Definition 20.2.1. The Computational Diffie-Hellman problem (CDH)1 is: given
the triple (g, ga, gb) of elements of G to compute gab.

An extensive discussion of the computational Diffie-Hellman problem will be given in
Chapter 21.

Exercise 20.2.2. What is the solution to the CDH instance (2, 4, 7) in the group F∗
11?

Suppose one is an eavesdropper on a Diffie-Hellman session and tries to guess the
session key K shared by Alice and Bob. The following computational problem is precisely
the problem of determining whether the guess for K is correct. This problem arises again
later in the chapter in the context of Elgamal encryption.

Definition 20.2.3. Let G be a group and g ∈ G. The Decisional Diffie-Hellman
problem (DDH) is, given a quadruple (g, ga, gb, gc) of elements in 〈g〉 to determine
whether or not gc = gab.

Saying that a computational problem such as DDH is hard is slightly less straightfor-
ward than with problems like DLP or CDH, since if (g, ga, gb, gc) are chosen uniformly at
random in G4 then the solution to the DDH problem is “no” with overwhelming proba-
bility. Clearly, an algorithm that says “no” all the time is not solving the DDH problem,

1This assumption comes in two flavours, depending on whether g is fixed or variable. We discuss this
issue in more detail later. But, as is the convention in this book, whenever we write “Given...compute...”
one should understand that all of the inputs are considered as variables.

20.2. KEY EXCHANGE 437

so our notion of success must capture this. The correct approach is to define a DDH
solver to be an algorithm that can distinguish two distributions on G4, namely the dis-
tribution of Diffie-Hellman tuples (i.e., the uniform distribution on tuples of the form
(g, ga, gb, gab) ∈ G4) and the uniform distribution on G4.

Definition 20.2.4. Let (Gn, rn) be a family of cyclic groups Gn of order rn, for n ∈ N.
A DDH algorithm for the family Gn is an algorithm A that takes as input a quadruple
in G4

n and outputs “yes” or “no”. The advantage of the DDH algorithm A is

Adv(A) =
∣∣Pr
(
A
(
g, ga, gb, gab

)
= “yes” : g ← Gn, a, b← Z/rZ

)

− Pr
(
A
(
g, ga, gb, gc

)
= “yes” : g ← Gn, a, b, c← Z/rZ

)∣∣ .

A DDH algorithm is called successful if the advantage is noticeable. The DDH assump-
tion for the family of groups is that all polynomial-time (i.e., running time O(log(rn)c)
for some constant c) DDH algorithms have negligible advantage.

Lemma 20.2.5. DDH ≤R CDH ≤R DLP.

Exercise 20.2.6. Prove Lemma 20.2.5.

Exercise 20.2.7. Definition 20.2.3 states that r is prime. Show that if (g, ga, gb, gc) is
a quadruple of elements such that the order of g is n for some integer n where n has
some small factors (e.g., factors l | n such that l ≤ log2(n)) then one can eliminate
some quadruples (g, ga, gb, gc) ∈ G4 that are not valid DDH tuples by reducing to DDH
instances in subgroups of prime order. Show that this is enough to obtain a successful
DDH algorithm according to Definition 20.2.4.

20.2.2 Burmester-Desmedt Key Exchange

In the case of n > 2 participants there is a generalisation of Diffie-Hellman key exchange
due to Burmester and Desmedt [114] that requires two rounds of broadcast. Let the
participants in the protocol be numbered as player 0 to player n− 1. In the first round,
player i (for 0 ≤ i < n) chooses a random 1 ≤ ai < r and sends ci = gai to the other
players (or, at least, to player i − 1 (mod n) and i + 1 (mod n)). In the second round
player i computes

ti =
(
ci+1 (mod n)c

−1
i−1 (mod n)

)ai

and sends it to all other players. Finally, player i computes

K = cnaii+1 (mod n)t
n−1
i+1 (mod n)t

n−2
i+2 (mod n) · · · ti+n−1 (mod n).

Lemma 20.2.8. Each participant in the Burmester-Desmedt protocol computes

K = ga0a1+a1a2+···an−2an−1+an−1a0 .

Exercise 20.2.9. Prove Lemma 20.2.8.

20.2.3 Key Derivation Functions

The result of Diffie-Hellman key exchange is a group element gab. Typically this should
be transformed into an l-bit string for use as a symmetric key (where l < log2(r)).

438 CHAPTER 20. DIFFIE-HELLMAN CRYPTOGRAPHY

Definition 20.2.10. Let G be an algebraic group (or algebraic group quotient) and let l
be an integer. A key derivation function is a function kdf : G→ {0, 1}l. The output
distribution of a key derivation function is the probability distribution on {0, 1}l induced
by kdf(g) over uniformly distributed g ∈ G. A key derivation function is preimage-
resistant if there is no polynomial-time algorithm known that, on input x ∈ {0, 1}l,
computes g ∈ G such that kdf(g) = x.

In general, a key derivation function should have output distribution statistically very
close to the uniform distribution on {0, 1}l. For many applications it is also necessary
that kdf be preimage-resistant.

A typical instantiation for kdf is to take a binary representation of K ∈ G, apply
a cryptographic hash function (see Chapter 3) to obtain a bit string, and concate-
nate/truncate as required. See the IEEE P1363 or ANSI X9.42 standards, Section 8
of Cramer and Shoup [161] or Section 6.1 of Raymond and Stiglic [495] for more details;
also see Section 3 of [46] for a specific key derivation function for elliptic curves.

20.3 Textbook Elgamal Encryption

In this section we present textbook Elgamal public key encryption.2 This is histor-
ically the first public key encryption scheme based on the discrete logarithm problem. As
we will see, the scheme has a number of security weaknesses and so is not recommended
for practical use. In Chapter 23 we will present secure methods for public key encryption
based on computational problems in cyclic groups.

We actually present two “textbook” versions of Elgamal. The first we call “classic
textbook Elgamal” as it is essentially the version that appears in [192]. It requires G to
be a group (i.e., we cannot use algebraic group quotients) and requires the message m

to be encoded as an element of G. Encoding messages as group elements is not difficult,
but it is un-natural and inconvenient. The second version, which we call “semi-textbook
Elgamal”, is more practical as it treats messages as bitstrings. As we will see, the security
properties of the two versions are slightly different.

For both schemes, κ denotes a security parameter (so that all attacks should require
at least 2κ bit operations). Figure 20.1 gives classic textbook Elgamal and Figure 20.2
gives semi-textbook Elgamal. We call the sender Bob and the recipient Alice. Messages in
the former scheme are group elements and in the latter are l-bit strings, where l depends
on the security parameter. Semi-textbook Elgamal also requires a cryptographic hash
function H : G→ {0, 1}l where G is the group.

Remarks

1. Both versions of textbook Elgamal encryption are best understood as a static
Diffie-Hellman key exchange followed by symmetric encryption. By this we
mean that the sender (Bob) is essentially doing a Diffie-Hellman key exchange with
the recipient (Alice): he sends gk and Alice’s component is her fixed (i.e., static)
public key ga. Hence the shared key is gak, which can then be used as a key
for any symmetric encryption scheme (this general approach is known as hybrid
encryption). The two variants of textbook Elgamal vary in the choice of symmetric
encryption scheme: the first uses the map m 7→ mgak from G to itself while the
second uses the map m 7→ m⊕H(gak) from {0, 1}l to itself.

2Some authors write “ElGamal” and others write “El Gamal”. Reference [192] uses “ElGamal”, but
we follow the format apparently used nowadays by Elgamal himself.

20.4. SECURITY OF TEXTBOOK ELGAMAL ENCRYPTION 439

KeyGen(κ): Run a parameter generation algorithm on security parameter κ that out-
puts an algebraic group G over a finite field Fq such that #G(Fq) has a prime divisor r
and all known algorithms for the discrete logarithm problem in a subgroup of G(Fq) of
order r require at least 2κ bit operations.

Compute g ∈ G of prime order r.
Choose a random integer 0 < a < r and set h = ga. The public key is (G, g, h) and the
private key is a.

The message space is Mκ = G.
The ciphertext space is Cκ = G×G.

Encrypt(m): (where m ∈ G).

• Obtain the public key h of the recipient, Alice.

• Choose a random 0 < k < r and set c1 = gk.

• Set c2 = mhk.

• Transmit the ciphertext (c1, c2).

Decrypt(c1, c2): Check that c1, c2 ∈ G. If so, compute and output

m = c2c
−a
1 .

Figure 20.1: Classic Textbook Elgamal Encryption.

2. Elgamal encryption requires two exponentiations in G and decryption requires one.
Hence encryption and decryption are polynomial-time and efficient.

3. Elgamal encryption is randomised, so encrypting the same message with the same
public key twice will yield two different ciphertexts in general.

4. Unlike RSA, all users in a system can share the same group G. So typically G and
g are fixed for all users, and only the value h = ga changes. Values that are shared
by all users are usually called system parameters.

20.4 Security of Textbook Elgamal Encryption

We now briefly review the security properties for the textbook Elgamal cryptosystem.
First, note that the encryption algorithm should use a good pseudorandom number gen-
erator to compute the values for k. A simple attack when this is not the case is given in
Exercise 20.4.1.

Exercise 20.4.1. Suppose the random values k used by a signer are generated using the
linear congruential generator ki+1 = Aki + B (mod r) for some 1 ≤ A,B < r. Suppose
an adversary knows A and B and sees two classic textbook Elgamal ciphertexts (c1, c2)
and (c′1, c

′
2), for the same public key, generated using consecutive outputs ki and ki+1 of

the generator. If both ciphertexts are encryptions of the same message then show how
the adversary can compute the message. If both ciphertexts are encryptions of different
messages then show how to decrypt both ciphertexts using one query to a decryption
oracle.

440 CHAPTER 20. DIFFIE-HELLMAN CRYPTOGRAPHY

KeyGen(κ): Generate an algebraic group or algebraic group quotient G as in Fig-
ure 20.1. Choose a random g ∈ G of prime order r.
Choose a message size l and a cryptographic hash function H : G→ {0, 1}l.
Choose a random integer 0 < a < r and set h = ga. The public key is (G,H, g, h) and
the private key is a.

The message space is Mκ = {0, 1}l.
The ciphertext space is Cκ = G× {0, 1}l.
Encrypt(m): (where m ∈ {0, 1}l).

• Obtain the public key of the recipient, Alice.

• Choose a random 0 < k < r and set c1 = gk.

• Set c2 = m⊕H(hk).

• Transmit the ciphertext (c1, c2).

Decrypt(c1, c2): Check that c1 ∈ G and c2 ∈ {0, 1}l. If so, compute and output

m = c2 ⊕H(ca1).

Figure 20.2: Semi-Textbook Elgamal Encryption.

20.4.1 OWE Against Passive Attacks

Theorem 20.4.2. The computational problem of breaking OWE security of classic text-
book Elgamal under passive attack is equivalent to CDH in 〈g〉.
Proof: We prove the result only for perfect oracles. To prove OWE-CPA ≤R CDH, let
A be a perfect oracle that solves CDH in the subgroup of order r in G. Call A(g, hA, c2)
to get u and set m = c2u

−1.
To prove CDH ≤R OWE-CPA let A be a perfect adversary that takes an Elgamal

public key (g, hA) and an Elgamal ciphertext (c1, c2) and returns the corresponding mes-
sage m. We will use this to solve CDH. Let the CDH instance be (g, g1, g2). Then choose
a random element c2 ∈ 〈g〉 and call A(g, g1, g2, c2) to get m. Return c2m

−1 as the solution
to the CDH instance. �

One can also consider a non-perfect adversary (for example, maybe an adversary
can only decrypt some proportion of the possible ciphertexts). It might be possible to
develop methods to “self-correct” the adversary using random self-reductions, but this is
considered to be the adversary’s job. Instead, it is traditional to simply give a formula
for the success probability of the algorithm that breaks the computational assumption in
terms of the success probability of the adversary. In the context of Theorem 20.4.2, if
the adversary can decrypt with noticeable probability ǫ then we obtain a CDH algorithm
that is correct with probability ǫ.

Exercise 20.4.3. Prove OWE-CPA ≤R CDH for semi-textbook Elgamal. Explain why
the proof CDH ≤R OWE-CPA cannot be applied in this case.

20.4.2 OWE Security Under CCA Attacks

We now show that both variants of textbook Elgamal do not have OWE security against
an adaptive (CCA) attacker (and hence not IND-CCA security either). Recall that such

20.4. SECURITY OF TEXTBOOK ELGAMAL ENCRYPTION 441

an attacker has access to a decryption oracle that will decrypt every ciphertext except
the challenge.

Lemma 20.4.4. Let (c1, c2) be a ciphertext for classic textbook Elgamal with respect to
the public key (G, g, h). Suppose A is a decryption oracle. Then under a CCA attack one
can compute the message corresponding to (c1, c2).

Proof: Assume that A is perfect. Call A on the ciphertext (c1, c2g) 6= (c1, c2) to obtain
a message m′. Then the message corresponding to the original ciphertext is m = m′g−1.

More generally if A succeeds only with noticeable probability ǫ then we have a CCA2
attack that succeeds with noticeable probability ǫ. �

Another version of this attack follows from Exercises 23.3.3 and 23.3.2.

Exercise 20.4.5. Show that semi-textbook Elgamal encryption does not have the OWE
security property under a CCA attack.

We have seen how a CCA attack can lead to an adversary learning the contents of
a message. Exercise 20.4.6 gives an example of a general class of attacks called small
subgroup attacks or invalid parameter attacks that can allow a CCA (even a CCA1)
adversary to obtain the private key of a user. Such attacks can be performed in many
scenarios. One example is when working in a prime order subgroup of F∗

p where p− 1 has
many small factors. Another example is when using elliptic curves E : y2 = x3 +a4x+a6;
since the addition formula does not feature the value a6 one can pass an honest user a
point of small order on some curve E′(Fp). A related example is when using x-coordinate
only arithmetic on elliptic curves one can choose an x-coordinate corresponding to a point
that lies on the quadratic twist. For further discussion is given in Section 4.3 of [274] and a
summary of the history of these results is given in Section 4.7 of [274]. We stress that such
attacks do not only arise in encryption, but also in authenticated key exchange protocols,
undeniable signatures, etc. The general way to avoid such attacks is for all parties to test
membership of group elements in every step of the protocol (see Section 11.6).

Exercise 20.4.6. Show how a CCA1 attacker on classic textbook Elgamal can compute
ua for a group element u of their choice where a is the private key of a user. Show that if
this attack can be repeated for sufficiently many elements u of coprime small orders then
the private key a can be computed.

20.4.3 Semantic Security Under Passive Attacks

A serious problem with the classic textbook Elgamal cryptosystem is that, even though
encryption is randomised, it does not necessarily provide semantic security under passive
attacks.

Example 20.4.7. Consider the case G = F∗
p, M = G. Let g ∈ G have prime order r.

Then the Legendre symbol of g is (gp) = 1. Hence, the Legendre symbol of the message
m satisfies

(mp) = (c2p)

and so can be computed in polynomial-time from the public key and the ciphertext.

To prevent the attack in Example 20.4.7 one can restrict the message space to elements
of F∗

p with Legendre symbol 1. However, this attack is just a special case of a more general
phenomenon. The Legendre symbol is a homomorphism F∗

p → G1 where G1 = {−1, 1} ⊂
F∗
p is the subgroup of order 2. The attack can be performed for any homomorphism onto

a subgroup of order coprime to r (this is a slightly different application of the ideas of
Section 13.2).

442 CHAPTER 20. DIFFIE-HELLMAN CRYPTOGRAPHY

Example 20.4.8. (Boneh, Joux and Nguyen [82]) Let p be a 3072-bit prime and let
r | (p − 1) be a 256-bit prime. Let g ∈ F∗

p have order r. Suppose, in violation of the
description of classic textbook Elgamal in Section 20.3, one chooses the message space to
be

M = {1, 2, . . . , 232 − 1}
interpreted as a subset of F∗

p. We identify M with {0, 1}32−{0}. Let (c1 = gk, c2 = mhk)
be a challenge ciphertext for classic textbook Elgamal encryption, where m ∈ M. Then

cr2 = mr.

One expects that, with overwhelming probability, the 232 values mr are distinct, and
hence one can obtain m with at most 232 exponentiations in F∗

p.

Exercise 20.4.9. (Boneh, Joux and Nguyen [82]) Let p and r | (p− 1) be prime and let
g ∈ F∗

p have order r. Suppose one uses classic textbook Elgamal with restricted message
space M = {0, 1}m − {0} as in Example 20.4.8 where #M = 2m − 1 < p/r. Extend
the attack of Example 20.4.8 using the baby-step-giant-step method, so that it requires
O(2m/2+ǫ) exponentiations in G to find m with noticeable probability, for ǫ > 0.

One way to avoid these attacks is to restrict the message space to 〈g〉. It is then
intuitively clear that IND security under passive attacks depends on the decisional Diffie-
Hellman problem.

Theorem 20.4.10. Classic textbook Elgamal with M = 〈g〉 has IND-CPA security if and
only if the DDH problem is hard.

Proof: (For perfect oracles.) First we show IND-CPA ≤R DDH: Let A be an oracle to
solve DDH. Let (c1, c2) be a ciphertext that is an encryption of either m0 or m1. Call
A(g, c1, hA, c2m

−1
0) and if the answer is ‘yes’ then the message is m0 and if the answer is

‘no’ then the message is m1.
For the converse (i.e., DDH ≤R IND-CPA of Elgamal): Let A be an oracle that

breaks indistinguishability of Elgamal. Then A takes as input a public key (g, h), a pair
of messages m0,m1 and a ciphertext (c1, c2) and outputs either 0 or 1. (We assume that A
outputs either 0 or 1 even if the ciphertext corresponds to neither message.) Given a DDH
instance (g, g1, g2, g3) we repeatedly do the following: choose two random messages m0

and m1 in 〈g〉, choose a random i ∈ {0, 1}, and call A on the input (g, g1,m0,m1, g2,mig3).
If A outputs i every time then we return ‘yes’ as the answer to the DDH. If A only outputs
the correct answer i about half of the time, then we return ‘no’. To be sure the decryption
oracle is not just being lucky one should repeat the experiment Ω(log(r)) times. �

If the hash function is sufficiently good then one does not have to make as strong an
assumption as DDH to show that semi-textbook Elgamal encryption has IND security.
Instead, the IND security intuitively only depends on CDH. Theorem 20.4.11 is a basic
example of a security proof in the random oracle model (see Section 3.7 for background
on this model). We give the proof as it illustrates one of the ways the random oracle
model is used in theoretical cryptography.

Theorem 20.4.11. In the random oracle model, semi-textbook Elgamal encryption has
IND-CPA security if CDH is hard.

Proof: (Sketch) Let A be an adversary for the IND-CPA game on semi-textbook Elgamal
encryption. Let g, ga, gb be a CDH instance. We will describe a simulator S that will
solve the CDH problem using A as a subroutine.

First S runs the adversary A with public key (g, ga).

20.5. SECURITY OF DIFFIE-HELLMAN KEY EXCHANGE 443

The simulator must handle the queries made by A to the random oracle. To do this it
stores a list of hash values, initially empty. Let gi be the input for the i−th hash query.
If gi = gj for some 1 ≤ j < i then we respond with the same value as used earlier. If not
then the simulator chooses uniformly at random an element Hi ∈ {0, 1}l, stores (gi, Hi)
in the list, and answers the query H(gi) with Hi. This is a perfect simulation of a random
oracle, at least until the challenge ciphertext is issued below.

At some time A outputs a pair of messages m0 and m1. The simulator sets c1 = gb,
chooses c2 uniformly at random in {0, 1}l and responds with the challenge ciphertext
(c1, c2). The adversary A may make further hash function queries (which are answered
using the algorithm above) and eventually A outputs b ∈ {0, 1} (of course A may crash,
or run for longer than its specified running time, in which case S treats this as the output
0).

The logic of the proof is as follows: If A never queries the random oracle H on gab

then A has no information on H(gab) and so cannot determine whether the answer should
be 0 or 1. Hence, for A to succeed then one of the queries on H must have been on gab.
Once this query is made then the simulator is seen to be fake as the adversary can check
that c2 is not equal to mb⊕H(gab) for b ∈ {0, 1}. However, the simulator is not concerned
with this issue since it knows that gab occurs somewhere in the list of hash queries.

The simulator therefore chooses a random index i and responds with gi as its solution
to the CDH instance. �

Exercise 20.4.12. Fill the gaps in the proof of Theorem 20.4.11 and determine the exact
probability of success in terms of the success of the adversary and the number of queries
to the random oracle.

The power of the random oracle model is clear: we have been able to “look inside”
the adversary’s computation.

Exercise 20.4.13. Prove the converse to Theorem 20.4.11.

Indeed, the same technique leads to a much stronger result.

Theorem 20.4.14. In the Random Oracle Model, semi-textbook Elgamal encryption has
OWE-CPA security if CDH is hard.

Exercise 20.4.15. Prove Theorem 20.4.14.

20.5 Security of Diffie-Hellman Key Exchange

A discussion of security models for key exchange is beyond the scope of this book. We
refer to Bellare and Rogway [39], Bellare, Pointcheval and Rogaway [37], Bellare, Canetti
and Krawczyk [32], Canetti and Krawczyk [116], Shoup [554], Boyd and Mathuria [94] and
Menezes, van Oorschot and Vanstone [418] for details. However, as a rough approximation
we can consider three types of adversary:

• Passive adversary (also called “benign” in [39]). This attacker obtains all messages
sent during executions of the key exchange protocol but does not modify or delete
any messages. This attacker is also called an eavesdropper.

• Weak3 active adversary. This attacker obtains all messages sent during executions
of the key exchange protocol and can modify or delete messages. This attacker can
also initiate protocol executions with any player.

3This use of the word “weak” is non-standard.

444 CHAPTER 20. DIFFIE-HELLMAN CRYPTOGRAPHY

• Active adversary. This is as above, but the attacker is allowed to corrupt any honest
player who has completed an execution of the protocol and thus obtain the agreed
key.

There are two possible goals of an adversary:

• To obtain the shared session key.

• To distinguish the session key from a random key. To make this notion more precise
consider a game between an adversary and a challenger. The challenger performs
one or more executions of the key exchange protocol and obtains a key K. The
challenger also chooses uniformly at random a key K ′ from the space of possible
session keys. The challenger gives the adversary either K or K ′ (with probability
1/2). The adversary has to decide whether the received key is K or not. This is
called real or random security.

The Diffie-Hellman key exchange protocol is vulnerable to a person-in-the-middle at-
tack. Unlike similar attacks on public key encryption, the attacker in this case does not
need to replace any users’ public keys.

Imagine that an adversary Eve can intercept all communication between Alice and
Bob. When Alice sends c1 = ga to Bob, Eve stores c1 and sends ge to Bob, for some
random integer e known to Eve. Similarly, when Bob sends c2 = gb to Alice, Eve stores
c2 and sends ge to Alice. Alice computes the key gae and Bob computes the key gbe. Eve
can compute both keys. If Alice later sends an encrypted message to Bob using the key
gae then Eve can decrypt it, read it, re-encrypt using the key gbe, and forward to Bob.
Hence Alice and Bob might never learn that their security has been compromised.

One way to overcome person-in-the-middle attacks is for Alice to send a digital sig-
nature on her value ga (and similarly for Bob). As long as Alice and Bob each hold
authentic copies of the other’s public keys then this attack fails. Note that this solution
does not prevent all attacks on the Diffie-Hellman key exchange protocol.

Another solution is given by authenticated key exchange protocols such as STS, KEA,
MTI, MQV, etc (see Chapter 11 of Stinson [592] and the references listed earlier).

We illustrate the basic idea behind most protocols of this type using the MTI/A0
protocol: Alice and Bob have public keys hA = ga and hB = gb. We assume that Alice
and Bob have authentic copies of each others public keys. They perform Diffie-Hellman
key exchange in the usual way (Alice sends gx and Bob sends gy). Then the value agreed
by both players is

gay+bx.

Exercise 20.5.1. Explain why the person-in-the-middle attack fails for this protocol
(assuming the public key authentication process is robust).

Exercise 20.5.2. Consider a key exchange protocol where Alice and Bob have public
keys hA = ga and hB = gb, where Alice sends gx and Bob sends gy and where the shared
key is gab+xy. Show that if corrupt queries are allowed then this key exchange protocol
does not provide authentication.

Exercise 20.5.3. Give a person-in-the-middle attack on the Burmester-Desmedt proto-
col.

20.6. EFFICIENCY OF DISCRETE LOGARITHM CRYPTOGRAPHY 445

20.6 Efficiency Considerations for Discrete Logarithm

Cryptography

All cryptographic protocols whose security is related to the DLP involve computations
of the form ga at some stage, and this is usually the most demanding computation in
terms of time and computing resources. To make the cryptosystem fast it is natural to
try to speed up exponentiation. One could try working in a smaller group, however it is
important to ensure that the security of the system is maintained. Indeed, many of the
main topics in this book (e.g., tori, elliptic curves and hyperelliptic curves) are attempts
to get the “most efficient” group for a given security level.

A number of methods to speed up exponentiation in certain groups have already been
presented. Section 11.1 discussed signed expansions, which are suitable for groups (such
as elliptic and hyperelliptic curves or tori) where inversion is very efficient. Section 11.3
presented Frobenius expansions and the GLV method, which are suitable for elliptic
curves. Those methods all assume that the exponent a takes any value.

One can also consider methods that do not correspond to values a chosen uniformly at
random. Such methods can be much faster than the general methods already mentioned,
but understanding the security implications can be more complicated. We do not have
space to describe any of these methods in detail, but we briefly mention some of them.

1. Choose a to have low Hamming weight. This is mentioned by Agnew, Mullin,
Onyszchuk and Vanstone [5] and Schnorr [523].

2. Choose a to be a random Frobenius expansion of low Hamming weight. This is
credited to H. W. Lenstra Jr. in Section 6 of Koblitz [347].

3. Choose a to be given by a random addition chain (or addition-subtraction chain).
This is proposed in Section 3.3 of Schroeppel, Orman, O’Malley and Spatscheck [532].

4. Choose a to be a product of integers of low Hamming weight. This was proposed
and analysed by Hoffstein and Silverman [290].

5. Choosing a to be a random element in GLV representation, possibly with smaller
than typical coefficients.

6. Generate random elements using large amounts of precomputation. A solution that
can be used in any group is given by Boyko, Peinado and Venkatesan [96]. The
method requires precomputing and storing random powers gj = gaj . One generates
a random pair (a, ga) by taking the product of a random subset of the gaj and setting
a =

∑
aj (mod r). This method is presented as the “simple solution” in [152].

A more sophisticated method for Koblitz curves is given by Coron, M’Räıhi and
Tymen [152]. They use repeated application of sparse Frobenius expansions on
elements of the precomputed table. They also give a security analysis.

446 CHAPTER 20. DIFFIE-HELLMAN CRYPTOGRAPHY

Chapter 21

The Diffie-Hellman Problem

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

This chapter gives a thorough discussion of the computational Diffie-Hellman problem
(CDH) and related computational problems. We give a number of reductions between
computational problems, most significantly reductions from DLP to CDH. We explain
self-correction of CDH oracles, study the static Diffie-Hellman problem, and study hard
bits of the DLP and CDH. We always use multiplicative notation for groups in this chapter
(except for in the Maurer reduction where some operations are specific to elliptic curves).

21.1 Variants of the Diffie-Hellman Problem

We present some computational problems related to CDH, and prove reductions among
them. The main result is to prove that CDH and Fixed-CDH are equivalent. Most of the
results in this section apply to both algebraic groups (AG) and algebraic group quotients
(AGQ) of prime order r (some exceptions are Lemma 21.1.9, Lemma 21.1.16 and, later,
Lemma 21.3.1). For the algebraic group quotients G considered in this book then one can
obtain all the results by lifting from the quotient to the covering group G′ and applying
the results there.

A subtle distinction is whether the base element g ∈ G is considered fixed or variable
in a CDH instance. To a cryptographer it is most natural to assume the generator is
fixed, since that corresponds to the usage of cryptosystems in the real world (the group
G and element g ∈ G are fixed for all users). Hence, an adversary against a cryptosystem
leads to an oracle for a fixed generator problem. To a computational number theorist it
is most natural to assume the generator is variable, since algorithms in computational
number theory usually apply to all problem instances. Hence both problems are studied
in the literature and when an author writes CDH it is sometimes not explicit which of
the variants is meant. Definition 20.2.1 was for the case when g varies. Definition 21.1.1
below is the case when g is fixed. This issue is discussed in Section 5 of Shoup [554] and
in Sadeghi and Steiner [508] (where it is called “granularity”).

447

448 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

Definition 21.1.1. Let G be an algebraic group (AG) or algebraic group quotient (AGQ)
and let g ∈ G. The Fixed-base computational Diffie-Hellman problem (Fixed-
CDH) with respect to g is: Given (ga, gb) to compute gab.

In this book the acronym CDH will always refer to the case where g is allowed to
vary. Hence, an algorithm for CDH will always take three inputs (formally we should
also include a description of the underlying group G, but we assume this is implicit in
the specification of g) while an algorithm for Fixed-CDH will always take two inputs.

It is trivial that Fixed-CDH ≤R CDH, but the reverse implication is less obvious; see
Corollary 21.1.18 below.

Analogously, given g ∈ G one can define Fixed-DLP (namely, given h to find a such
that h = ga) and Fixed-DDH (given (ga, gb, gc) determine whether gc = gab). Though
Fixed-DLP is equivalent to DLP (see Exercise 21.1.2) it is not expected that DDH is
equivalent to Fixed-DDH (see Section 5.3.4 of [554]).

Exercise 21.1.2. Prove that Fixed-DLP is equivalent to DLP.

Exercise 21.1.3. Let G be a cyclic group of prime order r. Let h1, h2, h3 ∈ G such
that hj 6= 1 for j = 1, 2, 3. Show there exists some g ∈ G such that (g, h1, h2, h3) is a
Diffie-Hellman tuple.

We now introduce some other variants of CDH. These are interesting in their own
right, but are also discussed as they play a role in the proof of equivalence between CDH
and Fixed-CDH.

Definition 21.1.4. Let G be a group or algebraic group quotient of prime order r. The
computational problem Inverse-DH is: given a pair g, ga ∈ G−{1} of elements of prime

order r in G to compute ga
−1 (mod r). (Clearly, we must exclude the case a = 0 from the

set of instances.)

Lemma 21.1.5. Inverse-DH ≤R CDH.

Proof: Suppose O is a perfect oracle for solving CDH. Let (g, g1 = ga) be the given
Inverse-DH instance. Then

g = ga
−1

1 .

Calling O(g1, g, g) = O(g1, g
a−1

1 , ga
−1

1) gives ga
−2

1 . Finally,

ga
−2

1 = (ga)a
−2

= ga
−1

as required. �

Definition 21.1.6. Let G be an AG or AGQ. The computational problem Square-DH
is: given (g, ga) where g ∈ G has prime order r to compute ga

2

.

Exercise 21.1.7. Show that Square-DH ≤R CDH.

Lemma 21.1.8. Square-DH ≤R Inverse-DH.

Proof: Let O be a perfect oracle that solves Inverse-DH and let (g, g1 = ga) be given. If
g1 = 1 then return 1. Otherwise, we have

O(g1, g) = O(g1, g
a−1

1) = ga1 = (ga)a = ga
2

.

�

Hence Square-DH ≤R Inverse-DH ≤R CDH. Finally we show CDH ≤R Square-DH
and so all these problems are equivalent.

21.1. VARIANTS OF THE DIFFIE-HELLMAN PROBLEM 449

Lemma 21.1.9. Let G be a group of odd order. Then CDH ≤R Square-DH.

Proof: Let (g, ga, gb) be a CDH instance. Let O be a perfect oracle for Square-DH. Call

O(g, ga) to get g1 = ga
2

, O(g, gb) to get g2 = gb
2

and O(g, gagb) to get g3 = ga
2+2ab+b2 .

Now compute

(g3/(g1g2))2
−1 (mod r),

which is gab as required. �

Exercise 21.1.10. Let G be a group of prime order r. Show that Inverse-DH and Square-
DH are random self-reducible. Hence give a self-corrector for Square-DH. Finally, show
that Lemma 21.1.9 holds for non-perfect oracles. (Note that it seems to be hard to give
a self-corrector for Inverse-DH directly, though one can do this via Lemma 21.1.8.)

Note that the proofs of Lemmas 21.1.5 and 21.1.8 require oracle queries where the
first group element in the input is not g. Hence, these proofs do not apply to variants of
these problems where g is fixed. We now define the analogous problems for fixed g and
give reductions between them.

Definition 21.1.11. Let g have prime order r and let G = 〈g〉. The computational

problem Fixed-Inverse-DH is: given ga 6= 1 to compute ga
−1 (mod r). Similarly, the

computational problem Fixed-Square-DH is: given ga to compute ga
2

.

Exercise 21.1.12. Show that Fixed-Inverse-DH and Fixed-Square-DH are random self-
reducible.

Lemma 21.1.13. Let g ∈ G. Let A be a perfect Fixed-CDH oracle. Let h = ga and let
n ∈ N. Then one can compute ga

n (mod r) using ≤ 2 log2(n) queries to A.

Proof: Assume A is a perfect Fixed-CDH oracle. Define hi = ga
i (mod r) so that h1 = h.

One has h2i = A(hi, hi) and hi+1 = A(hi, h). Hence one can compute hn by performing
the standard square-and-multiply algorithm for efficient exponentiation. �

Note that the number of oracle queries in Lemma 21.1.13 can be reduced by using
window methods or addition chains.

Exercise 21.1.14. Show that if the conjecture of Stolarsky (see Section 2.8) is true then
one can compute ga

n

in log2(n) + log2(log2(n)) Fixed-CDH oracle queries.

Lemma 21.1.15. Fixed-Inverse-DH ≤R Fixed-CDH.

Proof: Fix g ∈ G. Let O be a perfect Fixed-CDH oracle. Let ga be the given Fixed-
Inverse-DH instance. Our task is to compute ga

−1

. The trick is to note that a−1 =
ar−2 (mod r). Hence, one computes ga

r−2

using Lemma 21.1.13. The case of non-perfect
oracles requires some care, although at least one can check the result using O since one
should have O(ga, ga

−1

) = g. �

Lemma 21.1.16. Fixed-Square-DH ≤R Fixed-Inverse-DH.

Proof: Let h = ga be the input Fixed-Square-DH instance and let A be a perfect oracle
for the Fixed-Inverse-DH problem. Call A(gh) to get g(1+a)

−1

and call A(gh−1) to get

g(1−a)
−1

.
Multiplying these outputs gives

w = g(1+a)
−1

g(1−a)
−1

= g2(1−a
2)−1

.

Calling A(w2−1 (mod r)) gives g1−a
2

from which we compute ga
2

as required. �

We can now solve a non-fixed problem using an oracle for a fixed problem.

450 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

Lemma 21.1.17. Square-DH ≤R Fixed-CDH.

Proof: Let g ∈ G be fixed of prime order r and let A be a perfect Fixed-CDH oracle.
Let g1, g

b
1 be the input Square-DH problem. Write g1 = ga. We are required to compute

gb
2

1 = gab
2

.

CallA(gb1, g
b
1) to compute ga

2b2 . Use the perfect Fixed-CDH oracle as in Lemma 21.1.15

to compute ga
−1

. Then compute A(ga
2b2 , ga

−1

) to get gab
2

. �

Since CDH ≤R Square-DH we finally obtain the main result of this section.

Corollary 21.1.18. Fixed-CDH and CDH are equivalent.

Proof: We already showed Fixed-CDH ≤R CDH. Now, let A be a perfect Fixed-CDH
oracle. Lemma 21.1.17 together with Lemma 21.1.9 gives CDH ≤R Square-DH ≤R Fixed-
CDH as required.

Now suppose A only succeeds with noticeable probability ǫ > 1/ log(r)c for some fixed
c. The reductions CDH ≤R Square-DH ≤R Fixed-CDH require O(log(r)) oracle queries.
We perform self-correction (see Section 21.3) to obtain an oracle A for Fixed-CDH that
is correct with probability 1 − 1/(log(r)c

′

) for some constant c′; by Theorem 21.3.8 this
requires O(log(r)c log log(r)) oracle queries. �

Exercise 21.1.19. It was assumed throughout this section that G has prime order r.
Suppose instead that G has order r1r2 where r1 and r2 are distinct odd primes and that
g is a generator for G.

Prove that if one has a perfect CDH oracle O1 that applies in the subgroup of order
r1, and a perfect CDH oracle O2 that applies in the subgroup of order r2, then one can
solve CDH in G.

More generally in this context, which of the results in this section no longer necessarily
hold? Is Fixed-CDH in 〈g〉 equivalent to Fixed-CDH in 〈gr1〉?

We end with a variant of the DDH problem.

Exercise 21.1.20. Let g have prime order r and let {x1, . . . , xn} ⊂ Z/rZ. For a subset
A ⊂ {1, . . . , n} define

gA = g
∏
i∈A xi .

The group decision Diffie-Hellman problem (GDDH) is: Given g, gA for all proper
subsets A ({1, . . . , n}, and h, to distinguish h = gc (where c ∈ Z/rZ is chosen uniformly
at random) from gx1x2···xn . Show that GDDH ≡ DDH.

21.2 Lower Bound on the Complexity of CDH for Generic

Algorithms

We have seen (Theorem 13.4.5) that a generic algorithm requires Ω(
√
r) group operations

to solve the DLP in a group of order r. Shoup proved an analogue of this result for CDH.
As before, fix t ∈ R>0 and assume that all group elements are represented by bitstrings
of length at most t log(r).

Theorem 21.2.1. Let G be a cyclic group of prime order r. Let A be a generic al-
gorithm for CDH in G that makes at most m oracle queries. Then the probability that
A(σ(g), σ(ga), σ(gb)) = σ(gab) over a, b ∈ Z/rZ and an encoding function σ : G → S ⊆
{0, 1}⌈t log(r)⌉ chosen uniformly at random is O(m2/r).

21.3. RANDOM SELF-REDUCIBILITY AND SELF-CORRECTION OF CDH 451

Proof: The proof is almost identical to the proof of Theorem 13.4.5. Let S = {0, 1}⌈t log(r)⌉.
The simulator begins by uniformly choosing three distinct σ1, σ2, σ3 in S and running
A(σ1, σ2, σ3). The encoding function is then specifed at the two points σ1 = σ(g) and
σ2 = σ(h). From the point of view of A, g and h are independent distinct elements of G.

It is necessary to ensure that the encodings are consistent with the group operations.
This cannot be done perfectly without knowledge of a and b, but using polynomials as
previously ensures there are no “trivial” inconsistencies. The simulator maintains a list
of pairs (σi, Fi) where σi ∈ S and Fi ∈ Fr[x, y] (indeed, the Fi(x, y) will always be linear).
The initial values are (σ1, 1), (σ2, x) and (σ3, y). Whenever A makes an oracle query on
(σi, σj) the simulator computes F = Fi − Fj . If F appears as Fk in the list of pairs then
the simulator replies with σk and does not change the list. Otherwise, an element σ ∈ S,
distinct from the previously used values, is chosen uniformly at random, (σ, F) is added
to the simulator’s list, and σ is returned to A.

After making at most m oracle queries, A outputs σ4 ∈ Z/rZ. The simulator now
chooses a and b uniformly at random in Z/rZ. Algorithm A wins if σ4 = σ(gab). Note
that if σ4 is not σ1, σ2 or one of the strings output by the oracle then the probability of
success is at most 1/(2⌈t log(r)⌉ −m− 2). Hence we assume that σ4 is on the simulator’s
list.

Let the simulator’s list contain precisely k polynomials {F1(x, y), . . . , Fk(x, y)} for
some k ≤ m+ 3. Let E be the event that Fi(a, b) = Fj(a, b) for some pair 1 ≤ i < j ≤ k
or Fi(a, b) = ab. The probability that A wins is

Pr(A wins |E) Pr(E) + Pr(A wins |¬E) Pr(¬E). (21.1)

For each pair 1 ≤ i < j ≤ k the probability that (Fi−Fj)(a, b) = 0 is 1/r by Lemma 13.4.4.
Similarly, the probability that Fi(a, b)− ab = 0 is 2/r. Hence, the probability of event E
is at most k(k + 1)/2r+ 2k/r = O(m2/r). On the other hand, if event E does not occur
then all A “knows” about (a, b) is that it lies in the set

X = {(a, b) ∈ (Z/rZ)2 : Fi(a, b) 6= Fj(a, b) for all 1 ≤ i < j ≤ k and Fi(a, b) 6= ab for all 1 ≤ i ≤ k}.

Let N = #X ≈ r2 −m2/2 Then Pr(¬E) = N/r2 and Pr(A wins |¬E) = 1/N .
Hence, the probability that A wins is O(m2/r). �

21.3 Random Self-Reducibility and Self-Correction of

CDH

We defined random self-reducibility in Section 2.1.4. Lemma 2.1.19 showed that the
DLP in a group G of prime order r is random self-reducible. Lemma 2.1.20 showed how
to obtain an algorithm with arbitrarily high success probability for the DLP from an
algorithm with noticeable success probability.

Lemma 21.3.1. Let g have order r and let G = 〈g〉. Then CDH in G is random self-
reducible.

Proof: Let X = (G − {1})× G2 Let (g, h1, h2) = (g, ga, gb) ∈ X be the CDH instance.
Choose uniformly at random 1 ≤ u < r and 0 ≤ v, w < r and consider the triple
(gu, hu1g

uv, hu2g
uw) = (gu, (gu)a+v, (gu)b+w) ∈ X . Then every triple in X arises from

exactly one triple (u, v, w). Hence, the new triples are uniformly distributed in X . If
Z = (gu)(a+v)(b+w) is the solution to the new CDH instance then the solution to the
original CDH instance is

Zu
−1 (mod r)h−w1 h−v2 g−vw.

452 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

�

Exercise 21.3.2. Show that Fixed-CDH is random self-reducible in a group of prime
order r.

The following problem1 is another cousin of the computational Diffie-Hellman problem.
It arises in some cryptographic protocols.

Definition 21.3.3. Fix g of prime order r and h = ga for some 1 ≤ a < r. The static
Diffie-Hellman problem (Static-DH) is: Given h1 ∈ 〈g〉 to compute ha1 .

Exercise 21.3.4. Show that the static Diffie-Hellman problem is random self-reducible.

One can also consider the decision version of static Diffie-Hellman.

Definition 21.3.5. Fix g of prime order r and h = ga for some 1 ≤ a < r. The decision
static Diffie-Hellman problem (DStatic-DH) is: Given h1, h2 ∈ 〈g〉 to determine
whether h2 = ha1 .

We now show that DStatic-DH is random-self-reducible. This is a useful preliminary
to showing how to deal with DDH.

Lemma 21.3.6. Fix g of prime order r and h = ga for some 1 ≤ a < r. Then the
decision static Diffie-Hellman problem is random self-reducible.

Proof: Write G = 〈g〉. Choose 1 ≤ w < r and 0 ≤ x < r uniformly at random. Given
(h1, h2) compute (Z1, Z2) = (hw1 g

x, hw2 h
x). We must show that if (h1, h2) is (respectively,

is not) a valid Static-DH pair then (Z1, Z2) is uniformly distributed over the set of all
valid (resp. invalid) Static-DH pairs.

First we deal with the case of valid Static-DH pairs. It is easy to check that if h2 = ha1
then Z2 = Za1 . Furthermore, for any pair Z1, Z2 ∈ G such that Z2 = Za1 then one can
find exactly (r − 1) pairs (w, x) such that Z1 = hw1 g

x.
On the other hand, if h2 6= ha1 then write h1 = gb and h2 = gc with c 6≡ ab (mod r).

For any pair (Z1, Z2) = (gy, gz) ∈ G2 such that z 6≡ ay (mod r) we must show that
(Z1, Z2) can arise from precisely one choice (w, x) above. Indeed,

(
y
z

)
=

(
b 1
c a

)(
w
x

)

and, since the matrix has determinant ab − c 6≡ 0 (mod r) one can show that there is a
unique solution for (w, x) and that w 6≡ 0 (mod r). �

We now tackle the general case of decision Diffie-Hellman.

Lemma 21.3.7. Let g have prime order r and let G = 〈g〉. Then DDH in G is random
self-reducible.

Proof: Choose 1 ≤ u,w < r and 0 ≤ v, x < r uniformly at random. Given (g, h1, h2, h3) =
(g, ga, gb, gc) define the new tuple (gu, hu1g

uv, huw2 gux, huw3 hux1 hvw2 guvx). One can verify
that the new tuple is a valid Diffie-Hellman tuple if and only if the original input is a
valid Diffie-Hellman tuple (i.e., c = ab). If the original tuple is a valid Diffie-Hellman tuple
then the new tuple is uniformly distributed among all Diffie-Hellman tuples. Finally, we
show that if the original tuple is not a valid Diffie-Hellman tuple then the new tuple is
uniformly distributed among the set of all invalid Diffie-Hellman tuples. To see this think

1The Static-DH problem seems to have been first studied by Brown and Gallant [111].

21.3. RANDOM SELF-REDUCIBILITY AND SELF-CORRECTION OF CDH 453

of (h2, h3) as a DStatic-DH instance with respect to the pair (g, h1). Since (gu, hu1g
uv) is

chosen uniformly at random from (G−{1})×G we have a uniformly random DStatic-DH
instance with respect to a uniformly random static pair. The result then follows from
Lemma 21.3.6. �

It is easy to turn a DLP oracle that succeeds with noticeable probability ǫ into one that
succeeds with probability arbitrarily close to 1, since one can check whether a solution
to the DLP is correct. It is less easy to amplify the success probability for a non-perfect
CDH oracle.

A natural (but flawed) approach is just to run the CDH oracle on random self-reduced
instances of CDH until the same value appears twice. We now explain why this approach
will not work in general. Consider a Fixed-CDH oracle that, on input (ga, gb), returns
gab+ξ where ξ ∈ Z is uniformly chosen between −1/ log(r) and 1/ log(r). Calling the
oracle on instances arising from the random self-reduction of Exercise 21.3.2 one gets a
sequence of values gab+ξ. Eventually the correct value gab will occur twice, but it is quite
likely that some other value will occur twice before that time.

We present Shoup’s self-corrector for CDH or Fixed-CDH from [553].2 Also see Cash,
Kiltz and Shoup [120].

Theorem 21.3.8. Fix l ∈ N. Let g have prime order r. Let A be a CDH (resp.
Fixed-CDH) oracle with success probability at least ǫ > log(r)−l. Let (g, ga, gb) be a
CDH instance. Let 1 > ǫ′ > 1/r. Then one can obtain an oracle that solves the CDH
(resp. Fixed-CDH) with probability at least 1− ǫ′− log(2r)2/(rǫ2) and that makes at most
2⌈log(2/ǫ′)/ǫ⌉ queries to A (where log is the natural logarithm).

Proof: Define c = log(2/ǫ′) ∈ R so that e−c = ǫ′/2. First call the oracle n = ⌈c/ǫ⌉ times
on random-self-reduced instances (if the oracle is a CDH oracle then use Lemma 21.3.1 and
if the oracle is a Fixed-CDH oracle then use Exercise 21.3.2) of the input problem (g, ga, gb)
and store the resulting guesses Z1, . . . , Zn for gab in a list L1. Note that n = O(log(r)l+1).
The probability that L1 contains at least one copy of gab is ≥ 1− (1− ǫ)c/ǫ ≥ 1− e−c =
1− ǫ′/2.

Now choose uniformly at random integers 1 ≤ s1, s2 < r and define X2 = gs1/(ga)s2 .
One can show that X2 is uniformly distributed in G = 〈g〉 and is independent of X1 = ga.

Call the oracle another n times on random-self-reduced versions of the CDH instance
(g,X2, g

b) and store the results Z ′
1, . . . , Z

′
n in a list L2.

Hence, with probability ≥ (1− ǫ′/2)2 ≥ 1− ǫ′ there is some Zi ∈ L1 and some Z ′
j ∈ L2

such that Zi = gab and Z ′
j = gb(s1−as2). For each 1 ≤ i, j ≤ n test whether

Zs2i = (gb)s1/Z ′
j. (21.2)

If there is a unique solution (Zi, Z
′
j) then output Zi, otherwise output ⊥. Finding Zi can

be done efficiently by sorting L1 and then, for each Z ′
j ∈ L2, checking whether the value

of the right hand side of equation (21.2) lies in L1.
We now analyse the probability that the algorithm fails. The probability there is no

pair (Zi, Z
′
j) satisfying equation (21.2), or that there are such pairs but none of them have

Zi = gab, is at most ǫ′. Hence, we now assume that a good pair (Zi, Z
′
j) exists and we

want to bound the probability that there is a bad pair (i.e., a solution to equation (21.2)
for which Zi 6= gab). Write X1 = ga, X2 = ga

′

(where a′ = s1−as2) and Y = gb. Suppose
(Z,Z ′) is a pair such that

Zs2Z ′ = Y s1 . (21.3)

2Maurer and Wolf [405] were the first to give a self-corrector for CDH, but Shoup’s method is more
efficient.

454 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

We claim that Z = Y a and Z ′ = Y a
′

with probability at least 1 − 1/q. Note that if
equation (21.3) holds then

(Z/Y a)s1 = Y a
′

/Z ′. (21.4)

If precisely one of Z = Y a or Z ′ = Y a
′

holds then this equation does not hold. Hence,
Z 6= Y a and Z ′ 6= Y a

′

, in which case there is precisely one value for s1 for which
equation (21.4) holds. Considering all n2 pairs (Z,Z ′) ∈ L1 × L2 it follows there are at
most n2 values for s1, which would lead to an incorrect output for the self-corrector. Since
s1 is chosen uniformly at random the probability of an incorrect output is at most n2/r.
Since n ≤ log(2r)/ǫ one gets the result. Note that log(2r)2/(rǫ2) = O(log(r)2+2l/r). �

Exercise 21.3.9. Extend Lemma 21.1.13 to the case of a non-perfect Fixed-CDH oracle.
What is the number of oracle queries required?

21.4 The den Boer and Maurer Reductions

The goal of this section is to discuss reductions from DLP to CDH or Fixed-CDH in groups
of prime order r. Despite having proved that Fixed-CDH and CDH are equivalent, we
prefer to treat them separately in this section. The first such reduction (assuming a
perfect Fixed-CDH oracle) was given by den Boer [169] in 1988. Essentially den Boer’s
method involves solving a DLP in F∗

r , and so it requires r − 1 to be sufficiently smooth.
Hence there is no hope of this approach giving an equivalence between Fixed-CDH and
DLP for all groups of prime order.

The idea was generalised by Maurer [402] in 1994, by replacing the multiplicative
group F∗

r by an elliptic curve group E(Fr). Maurer and Wolf [405, 406, 408] extended
the result to non-perfect oracles. If #E(Fr) is sufficiently smooth then the reduction is
efficient. Unfortunately, there is no known algorithm to efficiently generate such smooth
elliptic curves. Hence Maurer’s result also does not prove equivalence between Fixed-CDH
and DLP for all groups. A subexponential-time reduction that conjecturally applies to
all groups was given by Boneh and Lipton [83]. An exponential-time reduction (but
still faster than known algorithms to solve DLP) that applies to all groups was given by
Muzereau, Smart and Vercauteren [448], and Bentahar [42, 43].

21.4.1 Implicit Representations

Definition 21.4.1. Let G be a group and let g ∈ G have prime order r. For a ∈ Z/rZ
we call h = ga an implicit representation of a.

In this section we call the usual representation of a ∈ Z/rZ the explicit represen-
tation of a.

Lemma 21.4.2. There is an efficient (i.e., computable in polynomial-time) mapping from
Z/rZ to the implicit representations of Z/rZ. One can test equality of elements in Z/rZ
given in implicit representation. If h1 is an implicit representation of a and h2 is an
implicit representation of b then h1h2 is an implicit representation of a+ b and h−1

1 is an
implicit representation of −a.

In other words, we can compute in the additive group Z/rZ using implicit represen-
tations.

Lemma 21.4.3. If h is an implicit representation of a and b ∈ Z/rZ is known explicitly,
then hb is an implicit representation of ab.

21.4. THE DEN BOER AND MAURER REDUCTIONS 455

Let O be a perfect Fixed-CDH oracle with respect to g. Suppose h1 is an implicit
representation of a and h2 is an implicit representation of b. Then h = O(h1, h2) is an
implicit representation of ab.

In other words, if one can solve Fixed-CDH then one can compute multiplication
modulo r using implicit representatives.

Exercise 21.4.4. Prove Lemmas 21.4.2 and 21.4.3.

Lemma 21.4.5. Let g have order r. Let h1 be an implicit representation of a such that
h1 6= 1 (in other words, a 6≡ 0 (mod r)).

1. Given a perfect CDH oracle one can compute an implicit representation for a−1 (mod r)
using one oracle query.

2. Given a perfect Fixed-CDH oracle with respect to g one can compute an implicit
representation for a−1 (mod r) using ≤ 2 log2(r) oracle queries.

Proof: Given a perfect CDH oracle A one calls A(ga, g, g) = ga
−1 (mod r). Given a perfect

Fixed-CDH oracle one computes ga
r−2 (mod r) as was done in Lemma 21.1.15. �

To summarise, since Z/rZ ∼= Fr, given a perfect CDH or Fixed-CDH oracle then
one can perform all field operations in Fr using implicit representations. Boneh and
Lipton [83] call the set of implicit representations for Z/rZ a black box field.

21.4.2 The den Boer Reduction

We now present the den Boer reduction [169], which applies when r−1 is smooth. The
crucial idea is that the Pohlig-Hellman and baby-step-giant-step methods only require the
ability to add, multiply and compare group elements. Hence, if a perfect CDH oracle is
given then these algorithms can be performed using implicit representations.

Theorem 21.4.6. Let g ∈ G have prime order r. Suppose l is the largest prime factor of
r − 1. Let A be a perfect oracle for the Fixed-CDH problem with respect to g. Then one
can solve the DLP in 〈g〉 using O(log(r) log(log(r))) oracle queries, O(log(r)(

√
l/ log(l) +

log(r)) multiplications in Fr and O(
√
l log(r)2/ log(l)) operations in G (where the constant

implicit in the O(·) does not depend on l).

Proof: Let the challenge DLP instance be g, h = ga. If h = 1 then return a = 0.
Hence, we now assume 1 ≤ a < r. We can compute a primitive root γ ∈ F∗

r in
O(log(r) log(log(r))) operations in Fr (see Section 2.15). The (unknown) logarithm of
h satisfies

a ≡ γu (mod r) (21.5)

for some integer u. To compute a it is sufficient to compute u.3 The idea is to solve the
DLP in equation (21.5) using the implicit representation of a. Since r − 1 is assumed to
be smooth then we can use the Pohlig-Hellman (PH) method, followed by the baby-step-
giant-step (BSGS) method in each subgroup. We briefly sketch the details.

Write r − 1 =
∏n
i=1 l

ei
i where the li are prime. The PH method involves projecting a

and γ into the subgroup of F∗
r of order leii . In other words, we must compute

hi = ga
(r−1)/l

ei
i

3It may seem crazy to try to work out u without knowing a, but it works!

456 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

for 1 ≤ i ≤ n. Using the Fixed-CDH oracle to perform computations in implicit represen-
tation, Algorithm 4 computes all the hi together in O(log(r) log log(r)) oracle queries.4 A

further O(log(r)) oracle queries are required to compute all ga
(r−1)/l

f
i where 0 ≤ f < ei.

Similarly one computes all xi = γ(r−1)/l
ei
i in O(log(r) log log(r)) multiplications in Fr.

We then have

hi = gx
u (mod l

ei
i

)

i .

Following Section 13.2 one reduces these problems to
∑n

i=1 ei instances of the DLP in
groups of prime order li. This requires O(log(r)2) group operations and field operations
overall (corresponding to the computations in line 6 of Algorithm 13).

For the baby-step-giant-step algorithm, suppose we wish to solve ga = gγ
u

(where, for
simplicity, we redefine a and γ so that they now have order l modulo r). Set m = ⌈

√
l⌉

and write u = u0 + mu1 where 0 ≤ u0, u1 < m. From

ga = gγ
u

= gγ
u0+mu1

= gγ
u0(γm)u1 (21.6)

one has

(ga)
(γ−m)u1

= gγ
u0
. (21.7)

We compute and store (in a sorted structure) the baby steps gγ
i

for i = 0, 1, 2, . . . ,m− 1

(this involves computing one exponentiation in G at each step, as gγ
i+1

= (gγ
i

)γ , which
is at most 2 log2(r) operations in G).

We then compute the giant steps (ga)γ
−mj

. This involves computing w0 = γ−m (mod r)
and then the sequence wj = γ−mj (mod r) as wj+1 = wiw0 (mod r); this requires
O(log(m) + m) multiplications in Fr. We also must compute (ga)wj , each of which re-
quires ≤ 2 log2(r) operations in G.

When we find a match then we have solved the DLP in the subgroup of order l. The
BSGS algorithm for each prime l requires O(

√
l log(r)) group operations and O(

√
l +

log(r)) operations in Fr. There are O(log(r)) primes l for which the BSGS must be run,
but a careful analysis of the cost (using the result of Exercise 13.2.7) gives an overall
running time of O(log(r)2

√
l/ log(l)) group operations and O(log(r)2 + log(r)

√
l/ log(l))

multiplications in Fr. Note that the CDH oracle is not required for the BSGS algorithm.

Once u is determined modulo all prime powers le | (r − 1) one uses the Chinese
remainder theorem to compute u ∈ Z/(r − 1)Z. Finally, one computes a = γu (mod r).
These final steps require O(log(r)) operations in Fr. �

Corollary 21.4.7. Let A(κ) be an algorithm that outputs triples (g, h, r) such that r is
a κ-bit prime, g has order r, r − 1 is O(log(r)2)-smooth, and h ∈ 〈g〉. Then DLP ≤R
Fixed-CDH for the problem instances output by A.

Proof: Suppose one has a perfect Fixed-CDH oracle. Putting l = O(log(r)2) into Theo-
rem 21.4.6 gives a reduction with O(log(r) log log(r)) oracle queries and O(log(r)3) group
and field operations. �

The same results trivially hold if one has a perfect CDH oracle.

Exercise 21.4.8.⋆ Determine the complexity in Theorem 21.4.6 if one has a Fixed-CDH
oracle that only succeeds with probability ǫ.

4Remark 2.15.9 does not lead to a better bound, since the value n (which is m in the notation of that
remark) is not necessarily large.

21.4. THE DEN BOER AND MAURER REDUCTIONS 457

Cherepnev [135] iterates the den Boer reduction to show that if one has an efficient
CDH algorithm for arbitrary groups then one can solve DLP in a given group in subex-
ponential time. This result is of a very different flavour to the other reductions in this
chapter (which all use an oracle for a group G to solve a computational problem in the
same group G) so we do not discuss it further.

21.4.3 The Maurer Reduction

The den Boer reduction can be seen as solving the DLP in the algebraic group Gm(Fr),
performing all computations using implicit representation. Maurer’s idea was to replace
Gm(Fr) by any algebraic group G(Fr), in particular the group of points on an elliptic
curve E(Fr). As with Lenstra’s elliptic curve factoring method, even when r − 1 is not
smooth then there might be an elliptic curve E such that E(Fr) is smooth.

When one uses a general algebraic group G there are two significant issues that did
not arise in the den Boer reduction.

• The computation of the group operation in G may require inversions. This is true
for elliptic curve arithmetic using affine coordinates.

• Given h = ga one must be able to compute an element P ∈ G(Fr), in implicit
representation, such that once P has been determined in explicit representation one
can compute a. For an elliptic curve E one could hope that P = (a, b) ∈ E(Fr) for
some b ∈ Fr.

Before giving the main result we address the second of these issues. In other words,
we show how to embed a DLP instance into an elliptic curve point.

Lemma 21.4.9. Let g have prime order r and let h = ga. Let E : y2 = x3+Ax+B be an
affine elliptic curve over Fr. Given a perfect Fixed-CDH oracle there is an algorithm that
outputs an implicit representation (gX , gY) of a point (X,Y) ∈ E(Fr) and some extra
data, and makes an expected O(log(r)) oracle queries and performs an expected O(log(r))
group operations in 〈g〉. Furthermore, given the explicit value of X and the extra data
one can compute a.

Proof: The idea is to choose uniformly at random 0 ≤ α < r and set X = a + α.
An implicit representation of X can be computed as h1 = hgα using O(log(r)) group
operations. If we store α then, given X , we can compute a. Hence, the extra data is α.

Given the implicit representation for X one determines an implicit representation for
β = X3+AX+B using two oracle queries. Given gβ one can compute (here (βr) ∈ {−1, 1}
is the Legendre symbol)

h2 = g(
β
r) = gβ

(r−1)/2

(21.8)

using O(log(r)) oracle queries. If h2 = g then β is a square and so X is an x-coordinate
of a point of E(Fr).

Since there are at least (r−2
√
r)/2 possible x-coordinates of points in E(Fr) it follows

that if one chooses X uniformly at random in Fr then the expected number of trials until
X is the x-coordinate of a point in E(Fr) is approximately two.

Once β is a square modulo r then one can compute an implicit representation for Y =√
β (mod r) using the Tonelli-Shanks algorithm with implicit representations. We use

the notation of Algorithm 3. The computation of the non-residue n is expected to require
O(log(r)) operations in Fr and can be done explicitly. The computation of the terms w and
b requires O(log(r)) oracle queries, some of which can be avoided by storing intermediate

458 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

values from the computation in equation (21.8). The computation of i using a Pohlig-

Hellman-style algorithm is done as follows. First compute the sequence b, b2, . . . , b2
e−1

using O(log(r)) oracle queries and the sequence y, y2, . . . , y2
e−1

using O(log(r)) group
operations. With a further O(log(r)) group operations one can determine the bits of i. �

Theorem 21.4.10. Let B ∈ N. Let g ∈ G have order r. Let E be an elliptic curve over
Fr such that E(Fr) is a cyclic group. Suppose that the order of E(Fr) is known and is
B-smooth. Given a perfect Fixed-CDH oracle with respect to g one can solve the DLP in
〈g〉 using an expected O(log(r)2 log(log(r))) oracle queries.5

Indeed, there are two variants of the reduction, one using exhaustive search and one
using the baby-step-giant-step algorithm. One can also consider the case of a perfect
CDH oracle. The following table gives the full expected complexities (where the constant
implicit in the O(·) is independent of B). We use the abbreviation l(x) = log(x), so that
l(l(r)) = log(log(r)).

Oracle Reduction Oracle queries Group operations Fr operations
Fixed-CDH PH only O(l(r)2l(l(r))) O(Bl(r)2/l(B)) O(Bl(r)2/l(B))

Fixed-CDH PH+BSGS O(
√
Bl(r)2/l(B) + l(r)2l(l(r))) O(

√
Bl(r)2/l(B)) O(

√
Bl(r)2/l(B))

CDH PH only O(l(r)l(l(r))) O(Bl(r)2/l(B)) O(Bl(r)2/l(B))

CDH PH+BSGS O(
√
Bl(r)/l(B) + l(r)l(l(r))) O(

√
Bl(r)2/l(B)) O(

√
Bl(r)2/l(B))

Proof: Let the discrete logarithm instance be (g, h = ga). WriteN = #E(Fr) =
∏k
i=1 l

ei
i .

We assume that affine coordinates are used for arithmetic in E(Fr). Let P be a generator
of E(Fr).

The reduction is conceptually the same as the den Boer reduction. One difference is
that elliptic curve arithmetic requires inversions (which are performed using the method
of Lemma 21.1.13 and Lemma 21.1.15), hence the number of Fixed-CDH oracle queries
must increase. A sketch of the reduction in the case of exhaustive search is given in
Algorithm 27.

The first step is to use Lemma 21.4.9 to associate with h the implicit representations
of a point Q ∈ E(Fr). This requires an expected O(log(r)) oracle queries and O(log(r))
group operations for all four variants. Then Q ∈ 〈P 〉 where P is the generator of the
cyclic group E(Fr).

The idea is again to use Pohlig-Hellman (PH) and baby-step-giant-step (BSGS) to
solve the discrete logarithm of Q with respect to P in E(Fr). If we can compute an
integer u such that Q = [u]P (with computations done in implicit representation) then
computing [u]P and using Lemma 21.4.9 gives the value a explicitly.

First we consider the PH algorithm. As with the den Boer reduction, one needs to
compute explicit representations (i.e., standard affine coordinates) for [N/leii]P and im-
plicit representations for [N/leii]Q. It is possible that [N/leii]Q = OE so this case must be
handled. As in Section 2.15.1, computing these points requires O(log(r) log log(r)) elliptic
curve operations. Hence, for the multiples of P we need O(log(r) log log(r)) operations in
Fr while for the multiples ofQ we need O(log(r)2 log log(r)) Fixed-CDH oracle queries and
O(log(r) log log(r)) group operations. (If a CDH oracle is available then this stage only
requires O(log(r) log log(r)) oracle queries, as an inversion in implicit representation can

be done with a single CDH oracle query.) Computing the points [N/lfi]P for 1 ≤ f < ei
and all i requires at most a further 2

∑k
i=1 ei log2(li) = 2 log2(N) = O(log(r)) group

operations. Similarly, computing the implicit representations of the remaining [N/lfi]Q
requires O(log(r)2) Fixed-CDH oracle queries and O(log(r)) group operations.

5This is improved to O(log(r) log log(r)) in Remark 21.4.11.

21.4. THE DEN BOER AND MAURER REDUCTIONS 459

The computation of uiP0 in line 8 of Algorithm 27 requires O(log(r)) operations in
Fr followed by O(1) operations in G and oracle queries.

The exhaustive search algorithm for the solution to the DLP in a subgroup of prime
order li is given in lines 9 to 16 of Algorithm 27. The point P0 in line 8 has already been
computed, and computing Q0 requries only one elliptic curve addition (i.e., O(log(r))
Fixed-CDH oracle queries). The while loop in line 12 runs for ≤ B iterations, each
iteration involves a constant number of field operations to compute T + P0 followed by
two exponentiations in the group to compute gxT and gyT (an obvious improvement is to
use gxT only). The complexity of lines 9 to 16 is therefore O(B log(r)) group operations,
and O(B) field operations.

If one uses BSGS the results are similar. Suppose Q and P are points of order l,
where P is known explicitly while we only have an implicit representation (gxQ , gyQ) for
Q. Let m = ⌈

√
l⌉ and P1 = [m]P so that Q = [u0]P + [u1]P1 for 0 ≤ u0, u1 < m.

One computes a list of baby steps [u0]P in implicit representation using O(
√
B) field

operations and O(
√
B log(r)) group operations as above. For the giant steps Q − [u1]P1

one is required to perform elliptic curve arithmetic with the implicit point Q and the
explicit point [u1]P1, which requires an inversion of an implicit element. Hence the giant
steps require O(

√
B) field operations, O(

√
B log(r)) group operations and O(

√
B log(r))

Fixed-CDH oracle queries.
Since

∑k
i=1 ei ≤ log2(N) the exhaustive search or BSGS subroutine is performed

O(log(r)) times. A more careful analysis using Exercise 13.2.7 means the complexity
is multiplied by log(r)/ log(B). The Chinese remainder theorem and later stages are
negligible. The result follows. �

Algorithm 27 Maurer reduction

Input: g, h = ga, E(Fr)
Output: a
1: Associate to h an implicit representation for a point Q = (X,Y) ∈ E(Fr) using

Lemma 21.4.9
2: Compute a point P ∈ E(Fr) that generates E(Fr). Let N = #E(Fr) =

∏k
i=1 l

ei
i

3: Compute explicit representations of {[N/lji]P : 1 ≤ i ≤ k, 1 ≤ j ≤ ei}
4: Compute implicit representations of {[N/lji]Q : 1 ≤ i ≤ k, 1 ≤ j ≤ ei}
5: for i = 1 to k do
6: ui = 0
7: for j = 1 to ei do ⊲ Reducing DLP of order leii to cyclic groups

8: Let P0 = [N/lji]P and Q0 = [N/lji]Q− uiP0

9: if Q0 6= OE then
10: Let (h0,x, h0,y) be the implicit representation of Q0

11: P0 = [N/li]P0, n = 1, T = P0 = (xT , yT)
12: while h0,x 6= gxT or h0,y 6= gyT do ⊲ Exhaustive search
13: n = n+ 1, T = T + P0

14: end while
15: ui = ui + nlj−1

16: end if
17: end for
18: end for
19: Use Chinese remainder theorem to compute u ≡ ui (mod leii) for 1 ≤ i ≤ k
20: Compute (X,Y) = [u]P and hence compute a
21: return a

460 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

Remark 21.4.11. We have seen that reductions involving a Fixed-CDH oracle are less
efficient (i.e., require more oracle queries) than reductions using a CDH oracle. A solution6

to this is to work with projective coordinates for elliptic curves. Line 12 of Algorithm 27
tests whether the point Q0 given in implicit representation is equal to the point (xT , yT)
given in affine representation. When Q0 = (x0 : y0 : z0) then the test h0,x = gxT in line
12 is replaced with the comparison

gx0 = (gz0)
xT .

Hence the number of oracle queries in the first line of the table in Theorem 21.4.10 can
be reduced to O(log(r) log log(r)). As mentioned in Remark 13.3.2, one cannot use the
BSGS algorithm with projective coordinates, as the non-uniqueness of the representation
means one can’t efficiently detect a match between two lists.

Exercise 21.4.12.⋆ Generalise the Maurer algorithm to the case where the group of
points on the elliptic curve is not necessarily cyclic. Determine the complexity if l1 is the
largest prime for which E(Fr)[l1] is not cyclic and l2 is the largest prime dividing #E(Fr)
for which E(Fr)[l2] is cyclic.

Exercise 21.4.13. If r+1 is smooth then one can use the algebraic group G2,r
∼= T2(Fr)

(see Section 6.3) instead of Gm(Fr) or E(Fr). There are two approaches: the first is to
use the usual representation {a+ bθ ∈ Fr2 : NFr2/Fr

(a+ bθ) = 1} for G2,r and the second

is to use the representation A1(Fr) for T2(Fr) − {1} corresponding to the map decomp2

from Definition 6.3.7. Determine the number of (perfect) oracle queries in the reductions
from Fixed-CDH to DLP for these two representations. Which is better? Repeat the
exercise when one has a CDH oracle.

Corollary 21.4.14. Let c ∈ R>1. Let (Gn, gn, rn) be a family of groups for n ∈ N
where gn ∈ Gn has order rn and rn is an n-bit prime. Suppose we are given auxiliary

elliptic curves (En, Nn) for the family, where En is an elliptic curve over Frn such that
#En(Frn) = Nn and Nn is O(log(rn)c)-smooth. Then the DLP in 〈gn〉 is equivalent to
the Fixed-CDH problem in 〈gn〉.

Exercise 21.4.15. Prove Corollary 21.4.14.

We now state the conjecture of Maurer and Wolf that all Hasse intervals contain
a polynomially smooth integer. Define ν(r) to be the minimum, over all integers n ∈
[r + 1− 2

√
r, r + 1 + 2

√
r], of the largest prime divisor of n. Conjecture 1 of [407] states

that

ν(r) = log(r)O(1). (21.9)

See Remark 15.3.5 for discussion of this. Muzereau, Smart and Vercauteren [448] note
that if r is a pseudo-Mersenne prime (as is often used in elliptic curve cryptography) then
the Hasse interval usually contains a power of 2. Similarly, as noted by Maurer and Wolf
in [405], one can first choose a random smooth integer n and then search for a prime r
close to n and work with a group G of order r.

Exercise 21.4.16.⋆ Show how to use the algorithm of Section 19.4.4 to construct a
smooth integer in the Hasse interval. Construct a 240-smooth integer (not equal to 2255)
close to p = 2255 − 19 using this method.

6This idea is briefly mentioned in Section 3 of [402], but was explored in detail by Bentahar [42].

21.4. THE DEN BOER AND MAURER REDUCTIONS 461

Remark 21.4.17. There are two possible interpretations of Corollary 21.4.14. The first
interpretation is: if there exists an efficient algorithm for CDH or Fixed-CDH in a group
G = 〈g〉 of prime order r and if there exists an auxiliary elliptic curve over Fr with
sufficiently smooth order then there exists an efficient algorithm to solve the DLP in
G. Maurer and Wolf [408] (also see Section 3.5 of [409]) claim this gives a non-uniform
reduction from DLP to CDH, however the validity of this claim depends on the DLP
instance generator.7

In other words, if one believes that there does not exist a non-uniform polynomial-time
algorithm for DLP in G (for certain instance generators) and if one believes the conjecture
that the Hasse interval around r contains a polynomially smooth integer, then one must
believe there is no polynomial-time algorithm for CDH or Fixed-CDH in G. Hence, one
can use the results to justify the assumption that CDH is hard. We stress that this is
purely a statement of existence of algorithms; it is independent of the issue of whether or
not it is feasible to write the algorithms down.

A second interpretation is that CDH might be easy and that this reduction yields
the best algorithm for solving the DLP. If this were the case (or if one wants a uniform
reduction) then, in order to solve a DLP instance, the issue of how to implement the DLP
algorithm becomes important. The problem is that there is no known polynomial-time
algorithm to construct auxiliary elliptic curves E(Fr) of smooth order. An algorithm to
construct smooth curves (based on the CM method) is given in Section 4 of [405] but it
has exponential complexity. Hence, if one can write down an efficient algorithm for CDH
then the above ideas alone do not allow one to write down an efficient algorithm for DLP.

Boneh and Lipton [83] handle the issue of auxiliary elliptic curves by giving a subexponential-
time reduction between Fixed-CDH and DLP. They make the natural assumption (es-
sentially Conjecture 15.3.1; as used to show that the elliptic curve factoring method is
subexponential-time) that, for sufficiently large primes, the probability that a randomly
chosen integer in the Hasse interval [r + 1 − 2

√
r, r + 1 + 2

√
r] is Lr(1/2, c)-smooth is

1/Lr(1/2, c
′) for some constants c, c′ > 0 (see Section 15.3 for further discussion of these

issues). By randomly choosing Lr(1/2, c
′) elliptic curves over Fr one therefore expects

to find one that has Lr(1/2, c)-smooth order. One can then perform Algorithm 27 to
solve an instance of the DLP in subexponential-time and using polynomially many oracle
queries. We refer to [83] for the details.

Maurer and Wolf extend the Boneh-Lipton idea to genus 2 curves and use results of
Lenstra, Pila and Pomerance (Theorem 1.3 of [380]) to obtain a reduction with proven
complexity Lr(2/3, c) for some constant c (see Section 3.6 of [409]). This is the only reduc-
tion from DLP to CDH that does not rely on any conjectures or heuristics. Unfortunately
it is currently impractical to construct suitable genus 2 curves in practice (despite being
theoretically polynomial-time).

Muzereau, Smart and Vercauteren [448] go even further than Boneh and Lipton. They
allow an exponential-time reduction, with the aim of minimising the number of CDH or
Fixed-CDH oracle queries. The motivation for this approach is to give tight reductions
between CDH and DLP (i.e., to give a lower bound on the running time for an algorithm

7An instance generator for the DLP (see Example 2.1.9) outputs a quadruple (G, r, g, h) where G is
a description of a group, g ∈ G has order r, h ∈ 〈g〉 and r is prime. The size of the instance depends
on the representation of G and g, but is at least 2 log2(r) bits since one must represent r and h. If one
considers the DLP with respect to an instance generator for which r is constant over all instances of a
given size n, then a single auxiliary curve is needed for all DLP instances of size n and so Corollary 21.4.14
gives a non-uniform reduction. On the other hand, if there are superpolynomially many r among the
outputs of size n of the instance generator (this would be conjecturally true for the instance generator of
Example 2.1.9) then the amount of auxiliary data is not polynomially bounded and hence the reduction
is not non-uniform.

462 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

for CDH in terms of conjectured lower bounds for the running time of an algorithm for
DLP). Their results were improved by Bentahar [42, 43]. It turns out to be desirable
to have an auxiliary elliptic curve such that #E(Fr) is a product of three coprime inte-
gers of roughly equal size r1/3. The reduction then requires O(log(r)) oracle queries but
O(r1/3 log(r)) field operations. Islam [306] has proved that such an elliptic curve exists
for each prime r. One can construct auxiliary curves by choosing random curves, count-
ing points and factoring; one expects only polynomially many trials, but the factoring
computation is subexponential. We refer to [448, 42, 43] for further details.

Exercise 21.4.18. Write down the algorithm for the Muzereau-Smart-Vercauteren re-
duction using projective coordinates. Prove that the algorithm has the claimed complex-
ity.

Exercise 21.4.19. Show how to generate in heuristic expected polynomial-time primes
r, p ≡ 2 (mod 3) such that r | (p+1), r+1 is κ-smooth, and 2κ−1 ≤ r < p ≤ 2κ+3. Hence,
by Exercise 9.10.4, taking E : y2 = x3 + 1 then E(Fp) is a group of order divisible by r
and E(Fr) has κ-smooth order and is a suitable auxiliary elliptic curve for the Maurer
reduction.

Finally, we remark that the den Boer and Maurer reductions cannot be applied to
relate CDH and DLP in groups of unknown order. For example, let N be composite and
g ∈ (Z/NZ)∗ of unknown order M . Given a perfect Fixed-CDH oracle with respect to
g one can still compute with the algebraic group Gm(Z/MZ) in implicit representation
(or projective equations for E(Z/MZ)), but if M is not known then the order of G =
Gm(Z/MZ) (respectively, G = E(Z/MZ)) is also not known and so one cannot perform
the Pohlig-Hellman algorithm in G. Later we will mention how a CDH oracle in (Z/NZ)∗

can be used to factor N (see Exercise 24.2.23) and hence avoid this problem in that group.

21.5 Algorithms for Static Diffie-Hellman

Brown and Gallant [111] studied the relationship between Static-DH and DLP. Their main
result is an algorithm to solve an instance of the DLP using a perfect Static-DH oracle.
Cheon [131] independently discovered this algorithm in a different context, showing that

a variant of the DLP (namely, the problem of computing a given g, ga and ga
d

; we call
this Cheon’s variant of the DLP) can be significantly easier than the DLP. We now
present the algorithm of Brown-Gallant and Cheon, and discuss some of its applications.

Theorem 21.5.1. Let g have prime order r and let d | (r − 1). Given h1 = ga and

hd = ga
d

then one can compute a in O((
√

(r − 1)/d +
√
d) log(r)) group operations,

O(
√

(r − 1)/d+
√
d) group elements of storage and O(

√
(r − 1)/d+

√
d) multiplications

in Fr.8

Proof: First, the case a ≡ 0 (mod r) is easy, so we assume a 6≡ 0 (mod r). The idea
is essentially the same as the den Boer reduction. Let γ be a primitive root modulo r.
Then a = γu (mod r) for some 0 ≤ u < r− 1 and it suffices to compute u. The den Boer
reduction works by projecting the unknown a into prime order subgroups of F∗

r using a
Diffie-Hellman oracle. In our setting, we already have an implicit representation of the
projection ad into the subgroup of F∗

r of order (r − 1)/d.

8As usual, we are being careless with the O(·)-notation. What we mean is that there is a constant c

independent of r, d, g and a such that the algorithm requires≤ c(
√

(r − 1)/d+
√
d) log(r) group operations.

21.5. ALGORITHMS FOR STATIC DIFFIE-HELLMAN 463

The first step is to solve hd = ga
d

= gγ
du

for some 0 ≤ u ≤ (r − 1)/d. Let m =
⌈
√

(r − 1)/d⌉ and write u = u0 + mu1 with 0 ≤ u0, u1 < m. This is exactly the setting
of equations (21.6) and (21.7) and hence one can compute (u0, u1) using a baby-step-
giant-step algorithm. This requires ≤ m multiplications in Fr and ≤ 2m exponentiations
in the group. Thus the total complexity is O(

√
(r − 1)/d log(r)) group operations and

O(
√

(r − 1)/d) field operations.
We now have ad = γdu and so a = γu+v(r−1)/d for some 0 ≤ v < d. It remains to

compute v. Let

h = hγ
−u

1 = gaγ
−u

= gγ
v(r−1)/d

.

Set m = ⌈
√
d⌉ and write v = v0 + mv1 where 0 ≤ v0, v1 < m. Using the same ideas as

above (since γ is known explicitly the powers are computed efficiently) one can compute
(v0, v1) using a baby-step-giant-step algorithm in O(

√
d log(r)) group operations. Finally,

we compute a = γu+v(r−1)/d (mod r). �

Kozaki, Kutsuma and Matsuo [353] show how to reduce the complexity in the above
result to O(

√
(r − 1)/d +

√
d) group operations by using precomputation to speed up

the exponentiations to constant time. Note that this trick requires exponential storage
and is not applicable when low-storage discrete logarithm algorithms are used (as in
Exercise 21.5.5).

The first observation is that if r − 1 has a suitable factorisation then Cheon’s variant
of the DLP can be much easier than the DLP.

Corollary 21.5.2. Let g have prime order r and suppose r − 1 has a factor d such that

d ≈ r1/2. Given h1 = ga and hd = ga
d

then one can compute a in O(r1/4 log(r)) group
operations.

Corollary 21.5.3. Let g have prime order r and suppose r − 1 =
∏n
i=1 di where the di

are coprime. Given h1 = ga and hdi = ga
di

for 1 ≤ i ≤ n then one can compute a in
O((
∑n

i=1

√
di) log(r)) group operations.

Exercise 21.5.4. Prove Corollaries 21.5.2 and 21.5.3.

As noted in [111] and [131] one can replace the baby-step-giant-step algorithms by
Pollard methods. Brown and Gallant9 suggest a variant of the Pollard rho method, but
with several non-standard features: one needs to find the precise location of the collision
(i.e., steps xi 6= xj in the walk such that xi+1 = xj+1) and there is only a (heuristic) 0.5
probability that a collision leads to a solution of the DLP. Cheon [131] suggests using the
Kangaroo method, which is a more natural choice for this application.

Exercise 21.5.5. Design a pseudorandom walk for the Pollard kangaroo method to solve
the DLP in implicit representation arising in the proof of Theorem 21.5.1.

Brown and Gallant use Theorem 21.5.1 to obtain the following result.

Theorem 21.5.6. Let g have prime order r and let d | (r − 1). Let h = ga and suppose
A is a perfect oracle for the static Diffie-Hellman problem with respect to (g, h) (i.e.,
A(h1) = ha1). Then one can compute a using d oracle queries, O((

√
(r − 1)/d+

√
d) log(r))

group operations and O((
√

(r − 1)/d+
√
d) log(r)) multiplications in Fr.

Proof: Write h1 = h = ga and compute the sequence hi+1 = O(hi) = ga
i

until ga
d

is
computed. Then apply Theorem 21.5.1. �

9See Appendix B.2 of the first version of [111]. This does not appear in the June 2005 version.

464 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

Note that the reduction uses a Static-DH oracle with respect to ga to compute a. The
reduction does not solve a general instance of the DLP using a specific Static-DH oracle,
hence it is not a reduction from DLP to Static-DH. Also recall that Exercise 20.4.6 showed
how one can potentially compute a efficiently given access to a Static-DH oracle (with
respect to a) that does not check that the inputs are group elements of the correct order.
Hence, the Brown-Gallant result is primarily interesting in the case where the Static-DH
oracle does perform these checks.

Corollary 21.5.7. Let g have prime order r and suppose r − 1 has a factor d such that
d ≈ r1/3. Given h = ga and a perfect Static-DH oracle with respect to (g, h) then one can
compute a in O(r1/3) oracle queries and O(r1/3 log(r)) group operations.

Exercise 21.5.8. Prove Corollary 21.5.7.

Brown and Gallant use Theorem 21.5.6 to give a lower bound on the difficulty of
Static-DH under the assumption that the DLP is hard.

Exercise 21.5.9. Let g have order r. Assume that the best algorithm to compute a,
given h = ga, requires

√
r group operations. Suppose that r−1 has a factor d = c1 log(r)2

for some constant c1. Prove that the best algorithm to solve Static-DH with respect to
(g, h) requires at least c2

√
r/ log(r)2 group operations for some constant c2.

All the above results are predicated on the existence of a suitable factor d of r− 1. Of
course, r − 1 may not have a factor of the correct size; for example if r − 1 = 2l where l
is prime then we have shown that given (g, ga, ga

2

) one can compute a in O(
√
r/2 log(r))

group operations, which is no better than general methods for the DLP. To increase the
applicability of these ideas, Cheon also gives a method for when there is a suitable factor
d of r+ 1. The method in this case is not as efficient as the r− 1 case, and requires more
auxiliary data.

Theorem 21.5.10. Let g have prime order r and let d | (r + 1). Given hi = ga
i

for
1 ≤ i ≤ 2d then one can compute a in O((

√
(r + 1)/d + d) log(r)) group operations,

O(
√

(r + 1)/d +
√
d) group elements storage and O((

√
(r + 1)/d +

√
d) log(r)) multipli-

cations in Fr.

Proof: As in Exercise 21.4.13 the idea is to work in the algebraic group G2,r, which
has order r + 1. Write Fr2 = Fr(θ) where θ2 = t ∈ Fr. By Lemma 6.3.10 each element
α ∈ G2,r − {1} ⊆ F∗

r2 is of the form α0 + α1θ where

α0 =
a2 − t
a2 + t

, α1 =
2a

a2 + t

for some a ∈ Fr. For each d ∈ N there exist polynomials fd,0(x), fd,1(x) ∈ Fr[x] of degree
2d such that, for α as above, one has

αd =
fd,0(a) + θfd,1(a)

(a2 + t)d
.

The idea is to encode the DLP instance ga into the element β ∈ G2,r as

β =
a2 − t
a2 + t

+ θ
2a

a2 + t
.

We do not know β, but we can compute (a2− t), (a2+ t) and 2a in implicit representation.

21.6. HARD BITS OF DISCRETE LOGARITHMS 465

Let γ be a generator for G2,r, known explicitly. Then β = γu for some 0 ≤ u < r+ 1.
It suffices to compute u.

The first step is to project into the subgroup of order (r+ 1)/d. We have βd = γdu for
some 0 ≤ u < (r+ 1)/d. Let m = ⌈

√
(r + 1)/d⌉ so that u = u0 +mu1 for 0 ≤ u0, u1 < m.

Write γi = γi,0+θγi,1. Then βdγ−u0 = γdu1 and so (fd,0(a)+θfd,1(a))(γ−u0,0+θγ−u0,1) =
(a2 + t)d(γdu1,0 + θγdu1,1). Hence

(
gfd,0(a)

)γ−u0,0 (
gfd,1(a)

)γ−u0,1
=
(
g(a

2+t)d
)γdu1,0

and similarly for the implicit representation of the coefficient of θ. It follows that one
can perform the baby-step-giant-step algorithm in this setting to compute (u0, u1) and

hence u (mod (r + 1)/d). Note that computing gfd,0(a), gfd,1(a) and g(a
2+t)d requires 6d

exponentiations. The stated complexity follows.
For the second stage, we have β = γu+v(r+1)/d where 0 ≤ v < d. Giving a baby-

step-giant-step algorithm here is straightforward and we leave the details as an exercise.
�

One derives the following result. Note that it is not usually practical to consider a
computational problem whose input is a O(r1/3)-tuple of group elements, hence this result
is mainly of theoretical interest.

Corollary 21.5.11. Let g have prime order r and suppose r+ 1 has a factor d such that
d ≈ r1/3. Given hi = ga

i

for 1 ≤ i ≤ 2d then one can compute a in O(r1/3 log(r)) group
operations.

Corollary 21.5.12. Let g have prime order r and suppose r+ 1 has a factor d such that
d ≈ r1/3. Given h = ga and a perfect Static-DH oracle with respect to (g, h) then one can
compute a in O(r1/3) oracle queries and O(r1/3 log(r)) group operations.

Exercise 21.5.13. Fill in the missing details in the proof of Theorem 21.5.10 and prove
Corollaries 21.5.11 and 21.5.12.

Satoh [511] extends Cheon’s algorithm to algebraic groups of order ϕn(r) (essentially,
to the groups Gn,r). He also improves Theorem 21.5.10 in the case of d | (r + 1) to only

require hi = ga
i

for 1 ≤ i ≤ d.
A natural problem is to generalise Theorem 21.5.10 to other algebraic groups, such as

elliptic curves. The obvious approach does not seem to work (see Remark 1 of [131]), so
it seems a new idea is needed to achieve this. Finally, Section 5.2 of [132] shows that, at
least asymptotically, most primes r are such that r − 1 or r + 1 has a useful divisor.

Both [111] and [131] remark that a decryption oracle for classic textbook Elgamal
leads to an Static-DH oracle: Given an Elgamal public key (g, ga) and any h1 ∈ 〈g〉 one
can ask for the decryption of the ciphertext (c1, c2) = (h1, 1) (one can also make this
less obvious using random self-reducibility of Elgamal ciphertexts) to get c2c

−a
1 = h−a1 .

From this one computes ha1 . By performing this repeatedly one can compute a sequence

hi = ga
i

as required. The papers [111, 131] contain further examples of cryptosystems
that provide Static-DH oracles, or computational assumptions that contain values of the
form hi = ga

i

.

21.6 Hard Bits of Discrete Logarithms

Saying that a computational problem is hard is the same as saying that it is hard to
write down a binary representation of the answer. Some bits of a representation of the

466 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

answer may be easy to compute (at least, up to a small probability of error) but if a
computational problem is hard then there must be at least one bit of any representation
of the answer that is hard to compute. In some cryptographic applications (such as key
derivation or designing secure pseudorandom generators) it is important to be able to
locate some of these “hard bits”. Hence, the main challenge is to prove that a specific bit
is hard. A potentially easier problem is to determine a small set of bits, at least one of
which is hard. A harder problem is to prove that some set of bits are all simultaneously
hard (for this concept see Definition 21.6.14).

The aim of this section is to give a rigorous definition for the concept of “hard bits”
and to give some easy examples (hard bits of the solution to the DLP). In Section 21.7 we
will consider related problems for the CDH problem. We first show that certain individual
bits of the DLP, for any group, are as hard to compute as the whole solution.

Definition 21.6.1. Let g ∈ G have prime order r. The computational problem DL-LSB
is: given (g, ga) where 0 ≤ a < r to compute the least significant bit of a.

Exercise 21.6.2. Show that DL-LSB ≤R DLP.

Theorem 21.6.3. Let G be a group of prime order r. Then DLP ≤R DL-LSB.

Proof: Let A be a perfect oracle that, on input (g, ga) outputs the least significant bit
of 0 ≤ a < r. In other words, if the binary expansion of a is

∑m
i=0 ai2

i then A outputs
a0. We will use A to compute a.

The first step is to call A(g, h) to get a0. Once this has been obtained we set h′ =
hg−a0 . Then h′ = g2a1+4a2+···. Let u = 2−1 = (r + 1)/2 (mod r) and define

h1 = (h′)u.

Then h1 = ga1+2a2+··· so calling A(g, h1) gives a1. For i = 2, 3, . . . compute hi =
(hi−1g

−ai−1)u and ai = A(g, hi), which computes the binary expansion of a. This re-
duction runs in polynomial-time and requires polynomially many calls to the oracle A.
�

Exercise 21.6.4. Give an alternative proof of Theorem 21.6.3 based on bounding the
unknown a in the range

(l − 1)r/2j ≤ a < lr/2j .

Initially one sets l = 1 and j = 0. At step j, if one has (l − 1)r/2j ≤ a < lr/2j and if
a is even then (l − 1)r/2j+1 ≤ a/2 < lr/2j+1 and if a is odd then (2j + l − 1)r/2j+1 ≤
(a+ r)/2 < (2j + l)r/2j+1. Show that when j = ⌈log2(r)⌉ one can compute 2−ja (mod r)
exactly and hence deduce a.

Exercise 21.6.5. Since one can correctly guess the least significant bit of the DLP with
probability 1/2, why does Theorem 21.6.3 not prove that DLP is easy?

One should also consider the case of a DL-LSB oracle that only works with some
noticeable probability ǫ. It is then necessary to randomise the calls to the oracle, but the
problem is to determine the LSB of a given the LSBs of some algebraically related values.
The trick is to guess some u = O(log(1/ǫ)) = O(log(log(r))) most significant bits of a
and set them to zero (i.e., replace h by h′ = ga

′

where the u most significant bits of a′

are zero). One can then call the oracle on h′gy for random 0 ≤ y ≤ r − r/2u and take a
majority vote to get the result. For details of the argument see Blum and Micali [73].

We conclude that computing the LSB of the DLP is as hard as computing the whole
DLP. Such bits are called hardcore bits since if DLP is hard then computing the LSB
of the DLP is hard.

21.6. HARD BITS OF DISCRETE LOGARITHMS 467

Definition 21.6.6. Let f : {0, 1}∗ → {0, 1}∗ be a function computable in polynomial-
time (i.e., there is some polynomial p(n) such that for x ∈ {0, 1}n one can compute f(x)
in at most p(n) bit operations). A function b : {0, 1}∗ → {0, 1} is a hardcore bit or
hardcore predicate for f if, for all probabilistic polynomial-time algorithms A, the
advantage

Advx∈{0,1}n
(
A(f(x)) = b(x)

)

is negligible as a function of n.

We now give some candidate hardcore predicates for the DLP. We also restate the
meaning of hardcore bit for functions defined on {0, 1, . . . , r − 1} rather than {0, 1}∗.
Definition 21.6.7. For all n ∈ N let (Gn, gn, rn) be such that Gn is a group and gn ∈ Gn
is an element of order rn where rn is an n-bit prime. We call this a family of groups.
For n ∈ N define the function fn : {0, 1, . . . , rn − 1} → Gn by fn(a) = gan. For n ∈ N
define i(n) ∈ {0, 1, . . . , n− 1}. The predicate bi(n) : {0, 1, . . . , rn − 1} → {0, 1} is defined
so that bi(n)(a) is bit i(n) of a, when a is represented as an n-bit string. Then bi(n) is a
hardcore predicate for the DLP (alternatively, bit i(n) is a hardcore bit for the
DLP) if, for all probabilistic polynomial-time algorithms A, the advantage

Adva∈{0,1,...,rn−1}
(
A(fn(a)) = bi(n)(a)

)

is negligible as a function of n.

The least significant bit (LSB) is the case i(n) = 0 in the above definition. If the DLP
is hard then Theorem 21.6.3 shows that the LSB is a hardcore bit.

Example 21.6.8. Fix m ∈ N. Let g have prime order r > 2m. Suppose A is a perfect
oracle such that, for x ∈ {0, 1, . . . , r − 1}, A(gx) is the predicate bm(x) (i.e., bit m of
x). One can use A to solve the DLP by guessing the m − 1 LSBs of x and then using
essentially the same argument as Theorem 21.6.3. Hence, if m is fixed and g varies in a
family of groups as in Example 21.6.7 then bm(x) is a hardcore predicate for the DLP. A
similar result holds if m is allowed to grow, but is bounded as m = O(log(log(r))).

We now give an example of a hardcore predicate that is not just a bit of the DLP.

Exercise 21.6.9. Let g have prime order r. Let f : {0, 1, . . . , r − 1} → G be f(x) = gx.
Define the predicate b : {0, 1, . . . , r − 1} → {0, 1} by b(x) = x1 ⊕ x0 where x0 and x1 are
the two least significant bits of x. Show that b is a hardcore predicate for f .

It is not true that any bit of the DLP is necessarily hardcore. For example, one can
consider the most significant bit of a, which is bn−1(x) in Definition 21.6.7.

Example 21.6.10. Let r = 2l + u be a prime where 0 < u < 2l−κ. Let 0 ≤ a < r
be chosen uniformly at random and interpreted as an (l + 1)-bit string. Then the most
significant bit of a is equal to 1 with probability u/r < u/2l < 1/2κ and is equal to 0 with
probability at least 1 − 1/2κ. Hence, when κ ≤ 1 then the most significant bit is not a
hardcore bit for the DLP. Note that the function ga is not used here; the result merely
follows from the distribution of integers modulo r.

Exercise 21.6.11. Let r = 2l+ 2l−1 +u where 0 < u < 2l/2. Let 0 ≤ a < r be uniformly
chosen and represented as an (l + 1)-bit string. Show that neither the most significant
bit (i.e., bit l) nor bit l − 1 of a are hardcore for the DLP.

The above examples show that for some primes the most significant bit is easy to
predict. For other primes the most significant bit can be hard.

468 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

Exercise 21.6.12. Suppose r = 2l − 1 is a Mersenne prime and let g have order r. Fix
0 ≤ i ≤ l. Show that if O(g, h) is a perfect oracle that returns the i-th bit of the DLP of
h with respect to g then one can compute the whole DLP.

To summarise, low order bits of the DLP are always as hard as the DLP, while high
order bits may or may not be hard. However, our examples of cases where the high
order bits are easy are due not to any weakness of the DLP, but rather to statistical
properties of residues modulo r. One way to deal with this issue is to define a bit as being
“hard” if it cannot be predicted better than the natural statistical bias (see, for example,
Definition 6.1 of H̊astad and Näslund [279]). However this approach is less satisfactory for
cryptographic applications if one wants to use the DLP as a source of unpredictable bits.
Hence, it is natural to introduce a more statistically balanced predicate to use in place of
high order bits. In practice, it is often more efficient to compute the least significant bit
than to evaluate this predicate.

Exercise 21.6.13. Let g have order r. Let f : {0, 1, . . . , r − 1} → G be f(x) = gx.
Define b(x) = 0 if 0 ≤ x < r/2 and b(x) = 1 if r/2 ≤ x < r. Show, using the method of
Exercise 21.6.4, that b(x) is a hardcore bit for f .

We do not cover all results on hard bits for the DLP. See Section 9 of H̊astad and
Näslund [279] for a general result and further references.

So far we only discussed showing that single bits of the DLP are hard. There are
several approaches to defining the notion of a set of k bits being simultaneously hard. One
definition states that the bits are hard if, for every non-constant function B : {0, 1}k →
{0, 1}, given an oracle that takes as input gx and computes B on the k bits of x in
question one can use the oracle to solve the DLP. Another definition, which seems to be
more useful in practice, is in terms of distinguishing the bits from random.

Definition 21.6.14. Let f : {0, 1}n → {0, 1}m be a one way function and let S ⊂
{1, . . . , n}. We say the bits labelled by S are simultaneously hard if there is no
polynomial-time algorithm that given f(x) can distinguish the sequence (xi : i ∈ S)
from a random #S-bit string.

Peralta [480] (using next-bit-predictability instead of hardcore predicates or Defi-
nition 21.6.14) proves that O(log(log(r))) least significant bits of the DLP are hard.
Schnorr [524] (using Definition 21.6.14) proves that essentially any O(log(log(r))) bits
of the DLP are simultaneously hard (using the “bits” of Exercise 21.6.13 for the most
significant bits).

Patel and Sundaram [478] showed, under a stronger assumption, that many more
bits are simultaneously hard. Let g be an element of prime order r, let l ∈ N and set
k = ⌈log2(r)⌉ − l. The ideas of Patel and Sundaram lead to the following result. If,
given gx, the k least significant bits of x are not simultaneously hard then there is an
efficient algorithm to solve the DLP in an interval of length 2l (see Exercise 13.3.6 for
the definition of this problem). Hence, under the assumption that the DLP in an interval
of length 2l is hard, then one can output many bits. Taking l = log(log(p))1+ǫ gives an
essentially optimal asymptotic bit security result for the DLP.

21.6.1 Hard Bits for DLP in Algebraic Group Quotients

One can consider hard bits for the DLP in algebraic group quotients. In other words, let
Oi be a perfect oracle that on input the equivalence class of an element [ga] outputs bit
i of a. The first problem is that there is more than one value a for each class [ga] and so
the bit is not necessarily well-defined.

21.7. BIT SECURITY OF DIFFIE-HELLMAN 469

Section 7 of Li, Näslund and Shparlinski [387] considers this problem for LUC. To
make the problem well-defined they consider an element g ∈ Fp2 of prime order r and an
oracle A such that A(t) = ai where ai is the i-th bit of a for the unique 0 ≤ a < r/2
such that t = TrFp2/Fp(ga). The idea of their method is, given t, to compute the two

roots h1 = ga and h2 = gr−a of X2 − tX + 1 in Fp2 then use previous methods (e.g.,
Theorem 21.6.3 or Exercise 21.6.4) on each of them to compute either a or r−a (whichever
is smaller).

Exercise 21.6.15. Work out the details of the Li, Näslund and Shparlinski result for the
case of the least significant bit of the DLP in LUC.

Exercise 21.6.16. Consider the algebraic group quotient corresponding to elliptic curve
arithmetic using x-coordinates only. Fix P ∈ E(Fq) of prime order r. Let A be an oracle
that on input u ∈ Fq outputs a0 where a0 is the 0-th bit of a such that 0 ≤ a < r/2 and
x([a]P) = u. Show that the method of Li, Näslund and Shparlinski can be applied to
show that this bit is a hard bit for the DLP.

Li, Näslund and Shparlinski remark that it seems to be hard to obtain a similar result
for XTR. Theorem 3 of Jiang, Xu and Wang [315] claims to be such a result, but it does
not seem to be proved their paper.

21.7 Bit Security of Diffie-Hellman

We now consider which bits of the CDH problem are hard. Since the solution to a CDH
instance is a group element it is natural to expect, in contrast with our discussion of the
DLP, that the hardcore bits and the proof techniques will depend on which group is being
studied.

We first consider the case g ∈ F∗
p where p is a large prime and g is a primitive root.

Our presentation follows Boneh and Venkatesan [85]. We assume every element x ∈ F∗
p

is represented as an element of the set {1, 2, . . . , p − 1} and we interpret x (mod p) as
returning a value in this set.

Definition 21.7.1. Let p be odd. Let x ∈ {1, 2, . . . , p− 1}. Define

MSB1(x) =

{
0 if 1 ≤ x < p/2
1 otherwise.

For k ∈ N let 0 ≤ t < 2k be the integer such that

tp/2k ≤ x < (t+ 1)p/2k

and define MSBk(x) = t.
An alternative definition, which is commonly used in the literature and sometimes used

in this book, is MSBk(x) = u ∈ Z such that |x−u| ≤ p/2k+1 (e.g., u = ⌊tp/2k+p/2k+1⌋).
For this definition it is unnecessary to assume k ∈ N and so one can allow k ∈ R>0.

Note that these are not bits of the binary representation of x. Instead, as in Exer-
cise 21.6.13, they correspond to membership of x in a certain partition of {1, 2, . . . , p−1}.

Ideally we would like to show that, say, MSB1 is a hardcore bit for CDH. This seems to
be out of reach for F∗

p. Instead, we will show that, for k ≈
√

log2(r), if one can compute

MSBk(gab (mod p)) then one can compute gab (mod p). A consequence of this result is
that there exists some predicate defined on MSBk(gab (mod p)) whose value is a hardcore
bit for CDH.

470 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

The central idea of most results on the bit security of CDH is the following. Let p be
an odd prime and let g ∈ F∗

p be a primitive root. Let h1 = ga, h2 = gb be a CDH instance
where b is coprime to p− 1. For k ∈ N let Ak be a perfect oracle such that

Ak(g, ga, gb) = MSBk(gab).

Choose a random element 1 ≤ x < p and set u = Ak(g, h1g
x, h2). One has

u = MSBk(g(a+x)b) = MSBk(gabt) where t = hx2 .

In other words, the oracle Ak gives the most significant bits of multiples of the unknown
gab by uniformly random elements t ∈ F∗

p. The problem of using this information to

compute gab is (a special case of) the hidden number problem.

21.7.1 The Hidden Number Problem

Definition 21.7.2. Let p be an odd prime and k ∈ R>1. Let α ∈ F∗
p and let t1, . . . , tn ∈

F∗
p be chosen uniformly at random. The hidden number problem (HNP) is, given

(ti, ui = MSBk(αti (mod p))) for 1 ≤ i ≤ n to compute α.

Throughout this section we will allow any k ∈ R>1 and define MSBk(x) to be any
integer u such that |x− u| < p/2k+1.

Before giving the main results we discuss two easy variants of Definition 21.7.2 where
the values ti can be chosen adaptively.

Lemma 21.7.3. Let p be an odd prime and 1 ≤ α < p. Suppose one has a perfect oracle
A1 such that A1(t) = MSB1(αt (mod p)). Then one can compute α using O(log(p)) oracle
queries.

Exercise 21.7.4. Prove Lemma 21.7.3.

Lemma 21.7.5. Let p be an odd prime and 1 ≤ α < p. Suppose one has a perfect oracle
A such that A(t) = LSB1(αt (mod p)), where LSB1(x) is the least significant bit of the
binary representation of 0 ≤ x < p. Then one can compute α using O(log2(p)) oracle
queries.

Exercise 21.7.6. Prove Lemma 21.7.5.

Lemmas 21.7.3 and 21.7.5 show that the hidden number problem can be easy if the
values ti in Definition 21.7.2 are chosen adaptively. However, it intuitively seems harder
to solve the hidden number problem when the ti are randomly chosen. On the other
hand, as k grows the HNP becomes easier; the case k = log2(p) being trivial. Hence, one
could hope to be able to solve the HNP as long as k is sufficiently large. We now explain
the method of Boneh and Venkatesan [85] to solve the HNP using lattices.

Definition 21.7.7. Let (ti, ui = MSBk(αti)) for 1 ≤ i ≤ n. Define a lattice L ⊆ Rn+1

by the rows of the basis matrix

B =

p 0 0 · · · 0 0
0 p 0 0 0
...

...
...

...
0 0 0 · · · p 0
t1 t2 t3 · · · tn 1/2k+1

.

Define the vector u = (u1, u2, . . . , un, 0) ∈ Rn+1 where |ui − (αti (mod p))| < p/2k+1.

21.7. BIT SECURITY OF DIFFIE-HELLMAN 471

Lemma 21.7.8. Let L, u and n be as in Definition 21.7.7. Then det(L) = pn/2k+1 and
there exists a vector v ∈ L such that ‖u− v‖ <

√
n+ 1p/2k+1.

Proof: The first statement is trivial. For the second, note that ui = MSBk(αti (mod p))
is the same as saying αti = ui + ǫi + lip for some ǫi, li ∈ Z such that |ǫi| ≤ p/2k+1, for
1 ≤ i ≤ n. Now define v ∈ L by

v = (−l1,−l2, . . . ,−ln, α)B = (αt1 − l1p, . . . , αtn − lnp, α/2k+1)

= (u1 + ǫ1, . . . , un + ǫn, α/2
k+1).

The result follows since α/2k+1 < p/2k+1. �

We now show that, for certain parameters, it is reasonable to expect that any vector
in the lattice L that is close to u gives the solution α.

Theorem 21.7.9. Let p > 28 be prime and let α ∈ F∗
p. Let n = 2⌈

√
log2(p)⌉ ∈ N

and let k ∈ R be such that log2(p) − 1 ≥ k > µ = 1
2

√
log2(p) + 3. Suppose t1, . . . , tn

are chosen uniformly and independently at random in F∗
p and set ui = MSBk(αti) for

1 ≤ i ≤ n. Construct the lattice L as above. Let u = (u1, . . . , un, 0). Then, with
probability at least 1− 1/2n ≥ 63/64 over all choices for t1, . . . , tn, any vector v ∈ L such
that ‖v − u‖ < p/2µ+1 is of the form

v = (βt1 (mod p), . . . , βtn (mod p), β/2k+1)

where β ≡ α (mod p).

Proof: In the first half of the proof we consider t1, . . . , tn as fixed values. Later in the
proof we compute a probability over all choices for the ti.

First, note that every vector in the lattice is of the form

v = (βt1 − l1p, βt2 − l2p, . . . , βtn − lnp, β/2k+1)

for some β, l1, . . . , ln ∈ Z. If β ≡ α (mod p) then we are done, so suppose now that
β 6≡ α (mod p). Suppose also that ‖v−u‖ < p/2µ+1, which implies |(βti (mod p))−ui| <
p/2µ+1 for all 1 ≤ i ≤ n. Note that

|(β − α)ti (mod p)| = |(βti (mod p))− ui + ui − (αti (mod p))|
≤ |(βti (mod p))− ui|+ |(αti (mod p))− ui|
< p/2µ+1 + p/2µ+1 = p/2µ.

We now consider γ = (β − α) as a fixed non-zero element of Fp and denote by A the
probability, over all t ∈ F∗

p, that γt ≡ u (mod p) for some u ∈ Z such that |u| < p/2µ and
u 6= 0. Since γt is uniformly distributed over F∗

p it follows that

A ≤ 2(p/2µ)

p− 1
≤ 1

p− 1

(
2(p− 1) + 2

2µ

)
<

2

2µ
+

2

p− 1
<

4

2µ
.

Since there are n uniformly and independently chosen t1, . . . , tn ∈ F∗
p the probability

that |γti (mod p)| < p/2µ for all 1 ≤ i ≤ n is An. Finally, there are p − 1 choices for
β ∈ {0, 1, . . . , p− 1} such that β 6≡ α (mod p). Hence, the probability over all such β and
all t1, . . . , tn that ‖v − u‖ < p/2µ+1 is at most

(p− 1)An <
(p− 1)4n

2µn
<

2log2(p)+2n

2µn
.

Now, µn = (12
√

log2(p) + 3)2⌈
√

log2(p)⌉ ≥ log2(p) + 3n so (p− 1)An < 2−n. Since n ≥ 6
the result follows. �

472 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

Corollary 21.7.10. Let p > 232 be prime, let n = 2⌈
√

log2(p)⌉ and let k = ⌈
√

log2(p)⌉+
⌈log2(log2(p))⌉. Given (ti, ui = MSBk(αti)) for 1 ≤ i ≤ n as in Definition 21.7.2 one can
compute α in polynomial-time.

Proof: One constructs the basis matrix B for the lattice L in polynomial-time. Note
that n = O(

√
log(p)) so that the matrix requires O(log(p)2) bits storage.

Running the LLL algorithm with factor δ = 1/4 + 1/
√

2 is a polynomial-time com-
putation (the lattice is not a subset of Zn+1 so Remark 17.5.5 should be applied, not-
ing that only one column has non-integer entries) which returns an LLL-reduced basis.
Let u be as above. The Babai nearest plane algorithm finds v such that ‖v − u‖ <
(1.6)2(n+1)/4

√
n+ 1p/2k+1 by Theorem 18.1.7 and Lemma 21.7.8. This computation

requires O(log(p)4.5) bit operations by Exercise 18.1.9. To apply Theorem 21.7.9 we
need the vector v output from the Babai algorithm to be within p/2µ+1 of u where
µ = 1

2

√
log2(p) + 3. Hence, we need

(1.6)2(n+1)/4
√
n+ 1

2k+1
<

1

2µ+1
,

which is µ + log2(1.6) + (n + 1)/4 + log2(
√
n+ 1) < k = ⌈

√
log2(p)⌉ + ⌈log2(log2(p))⌉.

Since

µ+ log2(1.6) + (n+ 1)/4 + log2(
√
n+ 1) =

√
log2(p)/2 + 3.95 + ⌈

√
log2(p)⌉/2 + 1

2 log2(n+ 1)

≤ ⌈
√

log2(p)⌉+ 3.95 + 1
2 log2(n+ 1)

the result follows whenever p is sufficiently large (the reader can check that p > 232 is
sufficient).

It follows from Theorem 21.7.9 that, with probability at least 63/64 the vector v =
(v1, . . . , vn+1) ∈ Rn+1 output by the Babai algorithm is such that vn+12k+1 ≡ α (mod p).
It follows that the hidden number α can be efficiently computed. �

Note that if p ≈ 2160 then µ ≈ 9.32. In practice, the algorithm works well for primes
of this size. For example, Howgrave-Graham and Smart [299] present results of practical
experiments where 8 of the most significant bits are provided by an oracle. We stress that
these results do not show that all of the k = ⌈

√
log2(p)⌉+⌈log2(log2(p))⌉ most significant

bits are hard. Instead, one can only deduce that there is a predicate defined on these k
bits that is a hardcore predicate for CDH.

Nguyen and Shparlinski [459] also remark that one could use other methods than
LLL and the Babai nearest plane algorithm. They show that if one uses the Ajtai,
Kumar and Sivakumar algorithm for CVP then one only needs k = ⌊log(log(p))⌋ bits to
obtain an algorithm for the hidden number problem with complexity of pO(1/ log(log(p)))

bit operations. They further show that if one has a perfect oracle for CVP (with respect
to the ℓ∞ norm) then one can solve the hidden number problem in polynomial time given
only k = 1 + ǫ bits for any ǫ > 0.

One final remark, the methods in this section assume a perfect oracle that outputs
MSB1(αt (mod p)). Since there seems to be no way to determine whether the output of
the oracle is correct, it is an open problem to get results in the presence of an oracle that
sometimes makes mistakes (though, as we mention in the next section, when applying the
hidden number problem to the bit security of CDH then there is a solution in the case
of oracles with a relatively low probability of giving an incorrect answer). For further
discussion and applications of the hidden number problem see Shparlinski [559].

21.7.2 Hard Bits for CDH Modulo a Prime

We can finally state a result about hard bits for CDH.

21.7. BIT SECURITY OF DIFFIE-HELLMAN 473

Theorem 21.7.11. Let p > 232 be prime, let g be a primitive root modulo p and let
k = ⌈

√
log2(p)⌉ + ⌈log2(log2(p))⌉. Suppose there is no polynomial-time algorithm to

solve10 CDH in F∗
p. Then there is no polynomial-time algorithm to compute the k most

significant bits of gab when given g, ga and gb.

Proof: Let (g, ga, gb) be an instance of the CDH problem in 〈g〉 and write α = gab for
the solution. We assume that gcd(b, p− 1) = 1 (this requirement is removed by González
Vasco and Shparlinski [261]; other work mentioned below allows g to have prime order,
in which case this restriction disappears).

Given a polynomial-time algorithm A such that A(g, gx, gy) = MSBk(gxy (mod p))
then one can call A(g, gagr, gb) polynomially many times for uniformly random r ∈
{1, 2, . . . , p − 2} to get MSBk(αt) where t = gbr (mod p). Applying Corollary 21.7.10
gives a polynomial time algorithm to compute α. �

A number of significant open problems remain:

1. Theorem 21.7.11 shows it is hard to compute all of MSBk(gab) but that does not
imply that, say, MSB1(gab) is hard. A stronger result would be to determine specific
hardcore bits for CDH, or at least to extend the results to MSBk for smaller values
of k. Boneh and Venkatesan [86] give a method that works for k = ⌈2 log(log(p))⌉
bits (where g is a primitive root in F∗

p) but which needs a hint depending on p and
g; they claim this is a non-uniform result but this depends on the instance generator
(see the footnote of Section 21.4.3). For k = ⌊log(log(p))⌋ one can also consider the
approach of Nguyen and Shparlinski [459] mentioned above.

Akavia [8] uses a totally different approach to prove that MSB1 is hard for CDH,
but the method is again at best non-uniform (i.e., needs polynomial-sized auxiliary
information depending on p and gb).

2. We assumed perfect oracles for computing MSBk(αt) in the above results. For non-
perfect oracles one can use the above methods to generate a list of candidate values
for gab and then apply the CDH self-corrector of Section 21.3. We refer to González
Vasco, Näslund and Shparlinski [260] for details.

The method of Akavia [8] also works when the oracle for MSB1 is unreliable.

3. The above results assumed that g is a primitive root modulo p, whereas in prac-
tice one chooses g to lie in a small subgroup of F∗

p of prime order. The proof of
Theorem 21.7.11 generates values t that lie in 〈g〉 and so they are not uniformly at
random in F∗

p. González Vasco and Shparlinski have given results that apply when
the order of g is less than p− 1 (see Chapter 14 of [558] for details and references).
Shparlinski and Winterhof [560, 561], building on work of Bourgain and Konyagin,
have obtained results when the order of g is at least log(p)/ log(log(p))1−ǫ.

Exercise 21.7.12. This exercise concerns a static Diffie-Hellman key exchange protocol
due to Boneh and Venkatesan [85] for which one can prove that the most significant bit
is a hardcore bit. Suppose Alice chooses a prime p, an integer 1 ≤ a < p − 1 such that
gcd(a, p − 1) = 1 and sets g = 2a

−1 (mod p−1) (mod p). Alice makes p and g public and
keeps a private. When Bob wants to communicate with Alice he sends gx for random
1 ≤ x < p−1 so that Alice and Bob share the key 2x. Prove that MSB1(2x) is a hardcore
bit.

10As we have seen, to make such a statement precise one needs an instance generator that outputs
groups from a family.

474 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

[Hint: Suppose one has a perfect oracle A that on input gy outputs MSB1(2y). Then one
can store Bob’s tranmission gx and call A(gxgy) to get α2y, where α = 2x is the desired
hidden number. Then apply Lemma 21.7.3.]

Exercise 21.7.13. Let g ∈ F∗
p be a primitive root and let ǫ > 0. Show that if one has a

perfect oracle for MSB1+ǫ(g
ab) then one can solve DDH in F∗

p.

21.7.3 Hard Bits for CDH in Other Groups

So far we have only considered CDH in (subgroups of) F∗
p where p is prime. It is natural

to consider CDH in subgroups of F∗
pm , in algebraic tori, in trace systems such as LUC and

XTR, and in elliptic curves. The first issue is what is meant by “bits” of such a value.
In practice, elements in such a group are represented as an n-tuple of elements in Fp and
so it is natural to consider one component in Fp and take bits of it as done previously.
When p is small one can consider a sequence of bits, each from different components. An
early reference for bit security of CDH in this setting is Verheul [619].

It is possible to extend the results to traces relatively easily. The idea is that if
{θ1, . . . , θm} is a basis for Fpm over Fp, if α =

∑m
j=1 αjθj is hidden and if ti =

∑m
j=1 ti,jθj

are known then Tr(αti) is a linear equation in the unknown αi. Li, Näslund and Shpar-
linski [387] have studied the bit security of CDH in LUC and XTR. We refer to Chapters
6 and 19 of Shparlinski [558] for further details and references.

Exercise 21.7.14. Let F2m be represented using a normal basis and let g ∈ F∗
2m . Suppose

one has a perfect oracle A such that A(g, ga, gb) returns the first coefficient of the normal
basis representation of gab. Show how to use A to compute gab. Hence, conclude that the
first coefficient is a hardcore bit for CDH in F∗

2m .

Exercise 21.7.15. Let F2m = F2[x]/(F (x)) and let g ∈ F∗
2m have prime order r > m.

Suppose one has a perfect oracle A such that A(g, ga, gb) returns the constant coefficient
of the polynomial basis representation of gab. Show how to use A to compute gab. Hence,
conclude that the constant coefficient is a hardcore bit for CDH in F∗

2m .

Hard Bits for Elliptic Curve Diffie-Hellman

We now consider the case of elliptic curves E over Fq. A typical way to extract bits from
an elliptic curve point P is to consider the x-coordinate x(P) as an element of Fq and
then extract bits of this. It seems hard to give results for the bit security of CDH using
an oracle A(P, [a]P, [b]P) = MSBk(x([ab]P)); the natural generalisation of the previous
approach is to call A(P, [a]P + [z]P, [b]P) = MSBk(x([ab]P + [zb]P)) but the problem is
that it is difficult to infer anything useful about x([ab]P) from x([ab]P + [zb]P) (similarly
for least significant bits); see Jao, Jetchev and Venkatesan [309] for some results. However,
Boneh and Shparlinski [84] had the insight to consider a more general oracle.

Definition 21.7.16. Let p be an odd prime and k ∈ N. Let Ax,k(A,B, P, [a]P, [b]P)
be an oracle that returns LSBk(x([ab]P)) where P ∈ E(Fp) for the elliptic curve E :
y2 = x3 + Ax + B. Similarly, let Ay,k(A,B, P, [a]P, [b]P) be an oracle that returns
LSBk(y([ab]P)).

The crucial idea is that, given a point P = (xP , yP) ∈ E(Fp) where E : y2 = x3 +
Ax+B, one can consider an isomorphism φ(x, y) = (u2x, u3y) and φ(P) ∈ E′(Fp) where
E′ : Y 2 = X3 + u4AX + u6B. Hence, instead of randomising instances of CDH in a way
analogous to that done earlier, one calls the oracle Ax,k(u4A, u6B, φ(P), φ([a]P), φ([b]P))
to get LSBk(x(φ([ab]P))) = LSBk(u2x([ab]P) (mod p)) where u is controlled by the

21.8. FURTHER TOPICS 475

attacker. This is very similar to the easy case of the hidden number problem in F∗
p from

Lemma 21.7.5.

Lemma 21.7.17. Suppose p ≡ 2 (mod 3). Then LSB1(y([ab]P)) is a hardcore bit for
CDH on elliptic curves over Fp.

Proof: We suppose Ay,1 is a perfect oracle for LSB1(y([ab]P)) as above. Calling

Ay,1(u4A, u6B, φ(P), φ([a]P), φ([b]P))

gives LSB1(u3y([ab]P)). Since gcd(3, p − 1) = 1 it follows that cubing is a permutation
of F∗

p and one can perform the method of Lemma 21.7.5 to compute y([ab]P). Given
y([ab]P) there are at most 3 choices for x([ab]P) and so CDH is solved with noticeable
probability. �

In the general case (i.e., when p 6≡ 2 (mod 3)) Boneh and Shparlinski have to work
harder. They use the method of Alexi, Chor, Goldreich and Schnorr [9] or the simplified
version by Fischlin and Schnorr [203] to extend the idea to non-perfect oracles.11 Once
this is done, the following trick can be applied to determine LSB1(tx([ab]P)): when t is
a square one calls the oracle for LSB1(u2x([ab]P)) on u =

√
t (mod p), and when t is not

a square one flips a coin. The resulting non-perfect oracle for LSB1 therefore solves the
problem. We refer to [84] for the details.

We make some remarks.

1. A nice feature of the elliptic curve results is that they are independent of the order
of the point P and so work for subgroups of any size.

2. The literature does not seem to contain bit security results for CDH on elliptic
curves over non-prime fields. This would be a good student project.

3. Jetchev and Venkatesan [314] use isogenies to extend the applicability of the Boneh-
Shparlinski method. Their motivation is that if one has an LSB1(x([ab]P)) oracle
that works with only small (but noticeable) probability then it is possible to have
a CDH instance on an elliptic curve E for which the oracle does not work for any
twist of E. By moving around the isogeny class they claim that the probability of
success increases. However, it is still possible to have a CDH instance on an elliptic
curve E for which the oracle does not work for any elliptic curve in the isogeny class
of E.

21.8 Further Topics

There are a number of other results related to the Diffie-Hellman problem that we do
not have to space to cover. For example, Coppersmith and Shparlinski considered the
existence of polynomial relations between gx, gy and gxy. Canetti, Friedlander and Sh-
parlinski considered the distribution of Diffie-Hellman triples (gx, gy, gxy) in G3. We refer
to [558] for a survey of these topics and references.

11This is why Boneh and Shparlinski consider least significant bits rather than most significant bits for
their result. The technique of Alexi et al is to randomise the query LSB1(tα) as LSB1(sα)⊕LSB1((t+s)α)
for suitable values s. A good student project would be to obtain an analogous result for other bits (e.g.,
most significant bits).

476 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

Chapter 22

Digital Signatures Based on
Discrete Logarithms

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Public key signatures and their security notions were defined in Section 1.3.2. They
are arguably the most important topic in public key cryptography (for example, to provide
authentication of automatic software updates; see Section 1.1). This chapter gives some
digital signature schemes based on the discrete logarithm problem. The literature on this
topic is enormous and we only give a very brief summary of the area. RSA signatures are
discussed in Section 24.6.

22.1 Schnorr Signatures

We assume throughout this section that an algebraic group G and an element g ∈ G
of prime order r are known to all users. The values (G, g, r) are known as system
parameters. Let h = ga be a user’s public key. A digital signature, on a message m

with respect to a public key h, can be generated by a user who knows the private key
a. It should be hard to compute a signature for a given public key without knowing the
private key.

To explain the Schnorr signature scheme it is simpler to first discuss an identification
scheme.

22.1.1 The Schnorr Identification Scheme

Informally, a public key identification scheme is a protocol between a Prover and
a Verifier, where the Prover has a public key pk and private key sk, and the Verifier
has a copy of pk. The protocol has three communication stages: first the Prover sends a
commitment s0; then the Verifier sends a challenge s1; then the Prover sends a response s2.

477

478CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

The Verifier either accepts or rejects the proof. The protocol is supposed to convince the
Verifier that they are communicating with a user who knows the private key corresponding
to the Prover’s public key. In other words, the Verifier should be convinced that they are
communicating with the Prover.

For the Schnorr scheme [522, 523] the Prover has public key h = ga where g is an
element of an algebraic group of prime order r and 1 ≤ a < r is chosen uniformly at
random. The Prover chooses a random integer 0 ≤ k < r, computes s0 = gk and sends
s0 to the Verifier. The Verifier sends a “challenge” 1 ≤ s1 < r to the Prover. The Prover
returns s2 = k + as1 (mod r). The Verifier then checks whether

gs2 = s0h
s1 (22.1)

and accepts the proof if this is the case. In other words, the Prover has successfully
identified themself to the Verifier if the Verifier accepts the proof.

Exercise 22.1.1. Show that the Verifier in an execution of the Schnorr identification
scheme does accept the proof when the Prover follows the steps correctly.

Exercise 22.1.2. Let p = 311 and r = 31 | (p− 1). Let g = 169, which has order r. Let
a = 11 and h = ga ≡ 47 (mod p). Which of the following is a transcript (s0, s1, s2) of a
correctly performed execution of the Schnorr identification scheme?

(15, 10, 12), (15, 10, 27), (16, 10, 12), (15, 16, 0).

Security of the Private Key

Unlike public key encryption (at least, under passive attacks), with identification schemes
and digital signature schemes a user is always outputting the results of computations
involving their private key. Hence, it is necessary to ensure that we do not leak information
about the private key. An attack of this type on GGH signatures was given by Nguyen
and Regev; see Section 19.11. Hence, we now explain why executions of the Schnorr
identification protocol do not leak the private key.

A protocol (involving a secret) that does not leak any information about the secret
is known as “zero knowledge”. It is beyond the scope of this book to discuss this topic
in detail, but we make a few remarks in the setting of the Schnorr identification scheme.
First, consider a Verifier who really does choose s1 independently and uniformly at random
(rather than as a function of s0 and h). It is easy to see that anyone can produce triples
(s0, s1, s2) that satisfy equation (22.1), without knowing the private key (just choose s1
and s2 first and solve for s0). Hence, a protocol transcript (s0, s1, s2) itself carries no
information about a (this shows that the protocol is “honest verifier zero knowledge”).
However, this argument does not imply that the protocol leaks no information about the
secret to an adversary who chooses s1 carefully. We now argue that the protocol is secure
in this setting. The idea is to consider any pair (s1, s2). Then, for every 1 ≤ a < r,
there is some integer 0 ≤ k < r such that s2 ≡ k + as1 (mod r). Now, if k were known
to the verifier then they could solve for a. But, since the discrete logarithm problem is
hard, it is computationally infeasible to determine any significant information about the
distribution of k from s0. Hence s2 leaks essentially no information about a. Furthermore,
there are no choices for s1 that more readily allow the Verifier to determine a.

For security, k must be chosen uniformly at random; see Exercise 22.1.3 and Sec-
tion 22.3 for attacks if some information on k is known. We stress that such attacks are
much stronger than the analogous attacks for Elgamal encryption (see Exercise 20.4.1);
there the adversary only learns something about a single message, whereas here they learn
the private key!

22.1. SCHNORR SIGNATURES 479

Exercise 22.1.3. Suppose the random values k used by a prover are generated using the
linear congruential generator ki+1 = Aki + B (mod r) for some 1 ≤ A,B < r. Suppose
an adversary knows A and B and sees two protocol transcripts (s0, s1, s2) and (s′0, s

′
1, s

′
2)

generated using consecutive outputs ki and ki+1 of the generator. Show how the adversary
can determine the private key a.

A generalisation of Exercise 22.1.3, where the modulus for the linear congruential
generator is not r, is given by Bellare, Goldwasser and Micciancio [34].

Security Against Impersonation

Now we explain why the Verifier is convinced that the prover must know the private
key a. The main ideas will also be used in the security proof of Schnorr signatures, so
we go through the argument in some detail. First, we define an adversary against an
identification protocol.

Definition 22.1.4. An adversary against an identification protocol (with an honest
verifier) is a polynomial-time randomised algorithm A that takes as input a public key,
plays the role of the Prover in the protocol with an honest Verifier, and tries to make
the Verifier accept the proof. The adversary repeatedly and adaptively sends a value s0,
receives a challenge s1 and answers with s2 (indeed, the sessions of the protocol can be
interleaved). The adversary is successful if the Verifier accepts the proof with noticeable
probability (i.e., the probability, over all outputs s0 by A and all choices for s1, that the
adversary can successfully respond with s2 is at least one over a polynomial function of
the security parameter). The protocol is secure if there is no successful adversary.

An adversary is just an algorithm A so it is reasonable to assume that A can be run
in very controlled conditions. In particular, we will assume throughout this section that
A can be repeatedly run so that it always outputs the same first commitment s0 (think
of A as a computer programme that calls a function Random to obtain random bits and
then simply arrange that the function always returns the same values to A). This will
allow us to respond to the same commitment with various different challenges s1. Such
an attack is sometimes known as a rewinding attack (Pointcheval and Stern [483] call
it the oracle replay attack): If A outputs s0, receives a challenge s1, and answers with
s2 then re-running A on challenge s′1 is the same as “rewinding” the clock back to when
A had just output s0 and then giving it a different challenge s′1.

Theorem 22.1.5. The Schnorr identification scheme is secure against impersonation (in
the sense of Definition 22.1.4) if the discrete logarithm problem is hard.

We first prove the result for perfect adversaries (namely, those that impersonate the
user successfully every time the protocol is run). Later we discuss the result for more
general adversaries.
Proof: (In the case of a perfect adversary) We build an expected polynomial-time algo-
rithm (called the simulator) that solves a DLP instance (g, h) where g has prime order r
and h = ga where 0 ≤ a < r is chosen uniformly at random.

The simulator will play the role of the Verifier and will try to solve the DLP by
interacting with A. First, the simulator starts A by giving it h as the public key and
giving some choice for the function Random. The adversary outputs a value s0, receives a
response s1 (chosen uniformly at random) from the simulator, then outputs s2. Since A
is perfect we assume that (s0, s1, s2) satisfy the verification equation.

First note that if values s0 and s2 satisfy equation (22.1) then s0 lies in the group
generated by g and so is of the form s0 = gk for some 0 ≤ k < r. Furthermore, it then
follows that s2 ≡ k + as1 (mod r).

480CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

Now the simulator can re-run A on the same h and the same function Random (this
is the rewinding). It follows that A will output s0 again. The simulator then gives A a
challenge s′1 6= s1. Since A is perfect, it responds with s′2 satisfying equation (22.1).

We have s2 ≡ k + as1 (mod r) and s′2 ≡ k + as′1 (mod r). Hence the simulator can
compute a ≡ (s2− s′2)(s1− s′1)

−1 (mod r) and solve the DLP. In other words, if there is no
polynomial-time algorithm for the DLP then there can be no polynomial-time adversary
A against the protocol. �

The above proof gives the basic idea, but is not sufficient since we must consider ad-
versaries that succeed with rather small probability. There are various issues to deal with.
For example, A may not necessarily succeed on the first execution of the identification
protocol. Hence, one must consider many executions (si,0, si,1, si,2) for 1 ≤ i ≤ t and guess
the value i into which one introduces the challenge s′i,1. Also, A may only succeed for a
small proportion of the challenges s1 for a given s0 (it is necessary for the proof that A
can succeed on two different choices of s1 for the same value s0). This latter issue is not
a problem (since A succeeds with noticeable probability, it must succeed for a noticeable
proportion of values s1 for most values s0). The former issue is more subtle and is solved
using the forking lemma.

The forking lemma was introduced by Pointcheval and Stern [483]. A convenient
generalisation has been given by Bellare and Neven [36]. The forking lemma determines
the probability that a rewinding attack is successful. More precisely, consider an algorithm
A (the adversary against the signature scheme) that takes as input a Random function and
a list of responses s1 to its outputs s0. We will repeatedly choose a Random function and
run A twice, the first time with a set of values (s1,1, . . . , st,1) being the responses in
the protocol and the second time with a set (s1,1, . . . , sj−1,1, s

′
j,1, . . . , s

′
t,1) of responses

for some 1 ≤ j ≤ t. Note that A will output the same values si,0 in both runs when
1 ≤ i ≤ j. The forking lemma gives a lower bound on the probability that A succeeds in
the identification protocol in the j-th execution as desired. Lemma 1 of [36] states that
the success probability is at least p(p/t− 1/r) where p is the success probability of A, t
is the number of executions of the protocol in each game, and r is the size of the set of
possible responses. Hence, if p is noticeable, t is polynomial and 1/r is negligible then the
simulator solves the DLP with noticeable probability. We refer to [36, 483] and Section
10.4.1 of Vaudenay [616] for further details.

Exercise 22.1.6. Show that if the challenge values s1 chosen by a Verifier can be pre-
dicted (e.g., because the Verifier is using a weak pseudorandom number generator) then
a malicious player can impersonate an honest user in the Schnorr identification scheme.

Exercise 22.1.7. In the Schnorr identification scheme as presented above, the challenge
is a randomly chosen integer 1 ≤ s1 < r. Instead, for efficiency1 reasons, one could choose
1 ≤ s1 < 2l for some l such that l ≥ κ (where κ is the security parameter, but where 2l

is significantly smaller than r). Show that the proof of Theorem 22.1.5 still holds in this
setting.

Exercise 22.1.8. Explain why the Schnorr identification scheme cannot be implemented
in an algebraic group quotient.

22.1.2 Schnorr Signatures

We now present the Schnorr signature scheme [522, 523], which has very attractive
security and efficiency. The main idea is to make the identification protocol of the previous

1One could speed up signature verification using similar methods to Exercise 22.1.13.

22.1. SCHNORR SIGNATURES 481

section non-interactive by replacing the challenge s1 by a random integer that depends
on the message being signed. This idea is known as the Fiat-Shamir transform. By
Exercise 22.1.6 it is important that s1 cannot be predicted and so it is also necessary to
make it depend on s0.

More precisely, one sets s1 = H(m‖s0) where H is a cryptographic hash function from
{0, 1}∗ to {0, 1}l for some parameter l and where m and s0 are interpreted as binary
strings (and where ‖ denotes concatenation of binary strings as usual).

One would therefore obtain the following signature scheme, which we call naive
Schnorr signatures: To sign a message m choose a random 0 ≤ k < r, compute
s0 = gk, s1 = H(m‖s0) and s2 = k+ as1 (mod r), and send the signature (s0, s2) together
with m. A verifier, given m, (s0, s2) and the public key h, would compute s1 = H(m‖s0)
and accept the signature if

gs2 = s0h
s1 . (22.2)

Schnorr makes the further observation that instead of sending (s0, s2) one could send
(s1, s2). This has major implications for the size of signatures. For example, g may be
an element of order r in F∗

p (for example, with r ≈ 2256 and p ≈ 23072). In this case,

s0 = gk requires 3072 bits, s2 requires 256 bits, and s1 may require as little as 128 bits. In
other words, signatures would have 3072 + 256 = 3328 bits in the naive scheme, whereas
Schnorr signatures only require 128 + 256 = 384 bits.

We present the precise Schnorr signature scheme in Figure 22.1.

KeyGen: This is the same as classic textbook Elgamal encryption. It outputs an
algebraic group, an element g of prime order r, a public key h = ga and a private key
1 ≤ a < r where a is uniformly chosen.

Sign(g, a,m): Choose uniformly at random 0 ≤ k < r, compute s0 = gk, s1 = H(m‖s0)
and s2 = k + as1 (mod r), where the binary string s1 is interpreted as an integer in the
usual way. The signature is (s1, s2).

Verify(g, h,m, (s1, s2)): Ensure that h is a valid public key for the user in question then
test whether

s1 = H(m‖gs2h−s1).

Figure 22.1: Schnorr Signature Scheme.

Example 22.1.9. Let p = 311 and r = 31 | (p− 1). Let g = 169 which has order r. Let
a = 11 and h = ga ≡ 47 (mod p).

To sign a message m (a binary string) let k = 20 and s0 = gk ≡ 225 (mod p). The
binary expansion of s0 is (11100001)2. We must now compute s1 = H(m‖11100001).
Since we don’t want to get into the details of H , let’s just suppose that the output length
of H is 4 and that s1 is the binary string 1001. Then s1 corresponds to the integer
9. Finally, we compute s2 = k + as1 ≡ 20 + 11 · 9 ≡ 26 (mod r). The signature is
(s1, s2) = (9 = (1001)2, 26). To verify the signature one computes

gs2h−s1 = 1692647−9 ≡ 225 (mod p)

and checks that s1 = H(m‖11100001).

Exercise 22.1.10. Show that the Verify algorithm does succeed when given a pair (s1, s2)
output by the Sign algorithm.

482CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

22.1.3 Security of Schnorr Signatures

The security of Schnorr signatures essentially follows from the same ideas as used in
Theorem 22.1.5. In particular, the security depends on the discrete logarithm problem
(rather than CDH or DDH as is the case for Elgamal encryption). However, since the
challenge is now a function of the message m and s0, the exact argument of Theorem 22.1.5
cannot be used directly.

One approach is to replace the hash function by a random oracle H (see Section 3.7).
The simulator can then control the values of H and the proof of Theorem 22.1.5 can be
adapted to work in this setting. A careful analysis of Schnorr signatures in the random
oracle model, using this approach and the forking lemma, was given by Pointcheval and
Stern [483]. We refer to Theorem 14 of their paper for a precise result in the case where
the output of H is (Z/rZ)∗. A proof is also given in Section 10.4.2 of Vaudenay [616].
An analysis of the case where the hash function H maps to {0, 1}l where l < log2(r) is
given by Neven, Smart and Warinschi [453].

There is no known proof of the security of Schnorr signatures in the standard model
(even under very strong assumptions about the hash function). Paillier and Vergnaud [476]
give evidence that one cannot give a reduction, in the standard model, from signature
forgery for Schnorr signatures (with H mapping to Z/rZ) to DLP. More precisely, they
show that if there is a reduction of a certain type (which they call an algebraic reduction)
in the standard model from signature forgery for Schnorr signatures to DLP, then there
is an algorithm for the “one-more DLP”. We refer to [476] for the details.

We now discuss some specific ways to attack the scheme:

1. Given a signature (s1, s2) on message m, if one can find a message m′ such that
H(m‖gs2h−s1) = H(m′‖gs2h−s1), then one has a signature also for the message m′.
This fact can be used to obtain an existential forgery under a chosen-message attack.

While one expects to be able to find hash collisions after roughly 2l/2 computations
of H (see Section 3.2), what is needed here is not a general hash collision. Instead,
we need a collision of the form H(m‖R) = H(m′‖R) where R = gs2h−s1 is not known
until a signature (s1, s2) on m has been obtained. Hence, the adversary must first
output a message m, then get the signature (s1, s2) on m, then find m′ such that
H(m‖R) = H(m′‖R). This is called the random-prefix second-preimage problem
in Definition 4.1 of [453]. When R is sufficiently large it seems that solving this
problem is expected to require around 2l computations of H .

2. There is a passive existential forgery attack on Schnorr signatures if one can compute
pre-images of H of a certain form. Precisely, choose any (s1, s2) (for example, if the
output of H is highly non-uniform then choose s1 to be a “very likely” output of
H), compute R = gs2h−s1 , then find a bitstring m such that H(m‖R) = s1. This
attack is prevented if the hash function is hard to invert.

Hence, given a security parameter κ (so that breaking the scheme is required to take
more than 2κ bit operations) one can implement the Schnorr signature scheme with
r ≈ 22κ and l = κ. For example, taking κ = 128, 2255 < r < 2256 and l = 128 gives
signatures of 384 bits.

Exercise 22.1.11.⋆ Fix g ∈ G of order r and m ∈ {0, 1}∗. Can a pair (s1, s2) be a
Schnorr signature on the same message m for two different public keys? Are there any
security implications of this fact?

22.2. OTHER PUBLIC KEY SIGNATURE SCHEMES 483

22.1.4 Efficiency Considerations for Schnorr Signatures

The Sign algorithm performs one exponentiation, one hash function evaluation, and one
computation modulo r. The Verify algorithm performs a multi-exponentiation gs2h−s1

where 0 ≤ s2 < r and 1 ≤ s1 < 2l and one hash function evaluation. Hence, signing is
faster than verifying.

There are a number of different avenues to speed up signature verification, depending
on whether g is fixed for all users, whether one is always verifying signatures with respect
to the same public key h or whether h varies, etc. We give a typical optimisation in
Example 22.1.13. More dramatic efficiency improvements are provided by online/offline
signatures (see Section 22.4), server-aided signature verification etc.

Exercise 22.1.12. Show how to modify the Schnorr signature scheme (with no loss of
security) so that the verification equation becomes

s1 = H(m‖gs2hs1).

Example 22.1.13. Suppose a server must verify many Schnorr signatures (using the
variant of Exercise 22.1.12), always for the same value of g but for varying values of h.
Suppose that 2l−1 <

√
r < 2l (where l is typically also the output length of the hash

function). One strategy to speed up signature verification is for the server to precompute

and store the group element g1 = g2
l

.
Given a signature (s1, s2) with 0 ≤ s1 < 2l and 0 ≤ s2 < r one can write s2 = s2,0+2ls2,1

with 0 ≤ s2,0, s2,1 < 2l. The computation of gs2hs1 is performed as the 3-dimensional
multi-exponentiation (see Section 11.2)

gs2,0g
s2,1

1 hs1 .

The cost is roughly l squarings and 3l/2 multiplications (the number of multiplications
can be easily reduced using window methods, signed representations etc).

Schnorr [523] presents methods to produce the group elements gk without having
to perform a full exponentiation for each signature (the paper [523] is particularly con-
cerned with making signatures efficient for smartcards). Schnorr’s specific proposals were
cryptanalysed by de Rooij [168].

22.2 Other Public Key Signature Schemes

The Schnorr signature scheme is probably the best public key signature scheme for practi-
cal applications.2 A number of similar schemes have been discovered, the most well-known
of which are Elgamal and DSA signatures. We discuss these schemes very briefly in this
section.

22.2.1 Elgamal Signatures in Prime Order Subgroups

Elgamal [192] proposed the first efficient digital signature based on the discrete logarithm
problem. We present the scheme for historical reasons, and because it gives rise to some
nice exercises in cryptanalysis. For further details see Section 11.5.2 of [418] or Section
7.3 of [592].

2However, Schnorr signatures are not very widely used in practice. The reason for their lack of use
may be the fact that they were patented by Schnorr.

484CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

Assume that g is an element of prime3 order r in an algebraic group G. In this section
we always think of G as being the “full” algebraic group (such as F∗

q or E(Fq)) and assume
that testing membership g ∈ G is easy. The public key of user A is h = ga and the private
key is a, where 1 ≤ a < r is chosen uniformly at random.

The Elgamal scheme requires a function F : G → Z/rZ. The only property required
of this function is that the output distribution of F restricted to 〈g〉 should be close to
uniform (in particular, F is not required to be hard to invert). In the case where G = F∗

p

it is usual to define F : {0, 1, . . . , p − 1} → {0, 1, . . . , r − 1} by F (n) = n (mod r). If G
is the set of points on an elliptic curve over a finite field then one could define F (x, y)
by interpreting x (or x and y) as binary strings, letting n be the integer whose binary
expansion is x (or x‖y), and then computing n (mod r).

To sign a message m with hash H(m) ∈ Z/rZ one chooses a random integer 1 ≤ k < r,
computes s1 = gk, computes s2 = k−1(H(m) − aF (s1)) (mod r), and returns (s1, s2). To
verify the signature (s1, s2) on message m one checks whether s1 ∈ 〈g〉, 0 ≤ s2 < r, and

hF (s1)ss21 = gH(m)

in G. Elgamal signatures are the same size as naive Schnorr signatures.
A striking feature of the scheme is the way that s1 appears both as a group element

and as an exponent (this is why we need the function F). In retrospect, this is a poor
design choice for both efficiency and security. The following exercises explore these issues
in further detail. Pointcheval and Stern give a variant of Elgamal signatures (the trick is
to replace H(m) by H(m‖s1)) and prove the security in Sections 3.3.2 and 3.3.3 of [483].

Exercise 22.2.1. Show that the Verify algorithm succeeds if the Sign algorithm is run
correctly.

Exercise 22.2.2. Show that one can verify Elgamal signatures by computing a single 3-
dimensional multi-exponentiation. Show that the check s1 ∈ 〈g〉 can therefore be omitted
if gcd(s2,#G) = 1. Hence, show that the time to verify an Elgamal signature when F
and H map to Z/rZ is around twice the time of the method in Example 22.1.13 to verify
a Schnorr signature. Explain why choosing F and H to map to l-bit integers where l ≈
log2(r)/2 does not lead to a verification algorithm as fast as the one in Example 22.1.13.

Exercise 22.2.3. (Elgamal [192]) Suppose the hash function H is deleted in Elgamal
signatures (i.e., we are signing messages m ∈ Z/rZ). Give a passive existential forgery in
this case. (i.e., the attack only requires the public key).

Exercise 22.2.4.⋆ Consider the Elgamal signature scheme in F∗
p with the function

F (n) = n (mod r). Suppose the function F (n) computes n (mod r) for all n ∈ N (not
just 0 ≤ n < p) and that the check s1 ∈ 〈g〉 does not include any check on the size of the
integer s1 (for example, it could simply be the check that sr1 ≡ 1 (mod p) or the implicit
check of Exercise 22.2.2). Give a passive selective forgery attack.

Exercise 22.2.5. Consider the following variant of Elgamal signatures in a group 〈g〉
of order r: The signature on a message m for public key h is a pair (s1, s2) such that
0 ≤ s1, s2 < r, and

hs1gH(m) = gs2 .

Show how to determine the private key of a user given a valid signature.

3The original Elgamal signature scheme specifies that g is a primitive root in F∗

p, but for compatibility
with all other cryptographic protocols in this book we have converted it to work with group elements of
prime order in any algebraic group.

22.2. OTHER PUBLIC KEY SIGNATURE SCHEMES 485

Exercise 22.2.6.⋆ (Bleichenbacher [66]) Consider the Elgamal encryption scheme in F∗
p

with the function F (n) = n (mod r). Suppose the checks s1 ∈ 〈g〉 and 0 ≤ s2 < r are not
performed by the Verify algorithm. Show how an adversary who has maliciously chosen
the system parameter g can produce selective forgeries for any public key under a passive
attack.

Exercise 22.2.7. (Vaudenay [615]) Let H be a hash function with l-bit output. Show
how to efficiently compute an l-bit prime r, and messages m1,m2 such that H(m1) ≡
H(m2) (mod r). Hence, show that if one can arrange for an algebraic group with subgroup
of order r to be used as the system parameters for a signature scheme then one can obtain
a signature on m1 for any public key h by obtaining from user A a signature on m2.

A convenient feature of Elgamal signatures is that one can verify a batch of signatures
faster than individually verifying each of them. Some details are given in Exercise 22.2.8.
Early work on this problem was done by Naccache, M’Räıhi, Vaudenay and Raphaeli [449]
(in the context of DSA) and Yen and Laih [637]. Further discussion of the problem is
given by Bellare, Garay and Rabin [33].

Exercise 22.2.8. Let (s1,i, s2,i) be purported signatures on messages mi with respect to
public keys hi for 1 ≤ i ≤ t. A verifier can choose random integers 1 ≤ wi < r and verify
all signatures together by testing whether s1,i ∈ 〈g〉 and 0 ≤ s2,i < r for all i and the
single equation

(
t∏

i=1

h
wiF (s1,i)
i

)(
t∏

i=1

s
wis2,i
1,i

)
= g

∑t
i=1 wiH(mi). (22.3)

Show that if all the signatures (s1,i, s2,i) are valid then the batch is declared valid. Show
that if there is at least one invalid signature in the batch then the probability the batch
is declared valid is at most 1/(r− 1). Show how to determine, with high probability, the
invalid signatures using a binary search.

If one uses the methods of Exercise 22.2.2 then verifying the t signatures separately
requires t three-dimensional multi-exponentiations. One can break equation (22.3) into
about 2t/3 three-dimensional multi-exponentiations. So, for groups where testing s1,i ∈
〈g〉 is easy (e.g., elliptic curves of prime order), the batch is asymptotically verified in
about 2/3 the time of verifying the signatures individually. Show how to speed up ver-
ification of a batch of signatures further if the public keys hi are all equal. How much
faster is this than verifying the signatures individually?

Yen and Laih [637] consider batch verification of naive Schnorr signatures as mentioned
in Section 22.1.2. Given t signatures (s0,i, s2,i) on messages mi and for keys hi, Yen and
Laih choose 1 ≤ wi < 2l (for a suitable small value of l; they suggest l = 15) and verify
the batch by testing s0,i ∈ 〈g〉, 0 ≤ s2,i < r and

g
∑t
i=1 wis2 =

t∏

i=1

swi0,i

t∏

i=1

h
wiH(mi‖s0,i)
i .

Give the verification algorithm when the public keys are all equal. Show that the cost is
roughly l/(3 log2(r)) times the cost of verifying t Elgamal signatures individually.

Explain why it seems impossible to verify batches of Schnorr signatures faster than
verifying each individually.

486CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

22.2.2 DSA

A slight variant of the Elgamal signature scheme was standardised by NIST4 as a digital
signature standard. This is often called DSA.5 In the case where the group G is an
elliptic curve then the scheme is often called ECDSA.

In brief, the scheme has the usual public key h = ga where g is an element of prime
order r in an algebraic group G and 1 ≤ a < r is chosen uniformly at random. As with
Elgamal signatures, a function F : G → Z/rZ is required. To sign a message with hash
value H(m) one chooses a random 1 ≤ k < r and computes s1 = F (gk). If s1 = 0
then repeat6 for a different value of k. Then compute s2 = k−1(H(m) + as1) (mod r)
and, if s2 = 0 then repeat for a different value of k. The signature on message m is
(s1, s2). To verify the signature one first checks that 1 ≤ s1, s2 < r, then computes
u1 = H(m)s−1

2 (mod r), u2 = s1s
−1
2 (mod r), then determines whether or not

s1 = F (gu1hu2). (22.4)

Note that a DSA signature is a pair of integers modulo r so is shorter in general
than an Elgamal signature but longer in general than a Schnorr signature. Verification is
performed using multi-exponentiation.

Exercise 22.2.9. Show that Verify succeeds on values output by Sign.

Exercise 22.2.10. The case s1 = 0 is prohibited in DSA signatures. Show that if this
check was omitted and if an adversary could find an integer k such that F (gk) = 0
then the adversary could forge DSA signatures for any message. Hence show that, as in
Exercise 22.2.6, an adversary who maliciously chooses the system parameters could forge
signatures for any message and any public key.

Exercise 22.2.11. The case s2 = 0 is prohibited in DSA signatures since the Verify
algorithm fails when s2 is not invertible. Show that if a signer outputs a signature (s1, s2)
produced by the Sign algorithm but with s2 = 0 then an adversary would be able to
determine the private key a.

We saw in Exercise 22.2.2 that verifying Elgamal signatures is slow compared with
verifying Schnorr signatures using the method in Example 22.1.13. Exercise 22.2.12 shows
a variant of DSA (analogous to naive Schnorr signatures) that allows signature verification
closer in speed to Schnorr signatures.

Exercise 22.2.12. (Antipa, Brown, Gallant, Lambert, Struik and Vanstone [11]) Con-
sider the following variant of the DSA signature scheme: To sign m choose 1 ≤ k < r
randomly, compute s0 = gk, s2 = k−1(H(m) + aF (s0)) (mod r) and return (s0, s2). To
verify (m, s0, s2) one computes u1 = H(m)s−1

2 (mod r), u2 = F (s0)s−1
2 (mod r) as in

standard DSA and checks whether

s0 = gu1hu2 . (22.5)

Show that one can also verify the signature by checking, for any 1 ≤ v < r, whether

sv0 = gu1vhu2v. (22.6)

Show that one can efficiently compute an integer 1 ≤ v < r such that the equation (22.6)
can be verified more quickly than equation (22.5).

4NIST stands for “National Institute of Standards and Technology” and is an agency that develops
technology standards for the USA.

5DSA stands for “digital signature algorithm”.
6The events s1 = 0 and s2 = 0 occur with negligible probability and so do not effect the performance

of the signing algorithm.

22.2. OTHER PUBLIC KEY SIGNATURE SCHEMES 487

There is no proof of security for DSA signatures in the standard or random oracle
model. A proof of security in the random oracle model of a slightly modified version
of DSA (the change is to replace H(m) with H(m‖s1)) was given by Pointcheval and
Vaudenay [484, 105] (also see Section 10.4.2 of [616]). A proof of security for DSA in the
generic group model7 was given by Brown; see Chapter II of [65].

Exercise 22.2.13. Consider a digital signature scheme where a signature on message m

with respect to public key h is an integer 0 ≤ s < r such that

s = H(m‖hs).

What is the problem with this signature scheme?

22.2.3 Signatures Secure in the Standard Model

None of the signature schemes considered so far has a proof of security in the standard
model. Indeed, as mentioned, Paillier and Vergnaud [476] give evidence that Schnorr sig-
natures cannot be proven secure in the standard model. In this section we briefly mention
a signature scheme due to Boneh and Boyen [76, 77] that is secure in the standard model.
However, the security relies on a very different computational assumption than DLP and
the scheme needs groups with an extra feature (namely, a pairing; see Definition 22.2.14).
We present a simple version of their scheme that is unforgeable under a weak chosen-
message attack if the q-strong Diffie-Hellman problem holds (these notions are defined
below).

We briefly introduce pairing groups (more details are given in Chapter 26). We use
multiplicative notation for pairing groups, despite the fact that G1 and G2 are typically
subgroups of elliptic curves over finite fields and hence are usually written additively.

Definition 22.2.14. (Pairing groups) Let G1, G2, GT be cyclic groups of prime order
r. A pairing is a map e : G1 ×G2 → GT such that

1. e is non-degenerate and bilinear, i.e., g1 ∈ G1 − {1} and g2 ∈ G2 − {1} implies
e(g1, g2) 6= 1 and e(ga1 , g

b
2) = e(g1, g2)ab for a, b ∈ Z,

2. there is a polynomial-time algorithm to compute e(g1, g2).

For the Boneh-Boyen scheme we also need there to be an efficiently computable injective
group homomorphism ψ : G2 → G1 (for example, a distortion map; see Section 26.6.1).

We will assume that elements in G1 have a compact representation (i.e., requiring not
much more than log2(r) bits) whereas elements of G2 do not necessarily have a compact
representation. The signature is an element of G1 and hence is very short. Figure 22.2
gives the (weakly secure) Boneh-Boyen Signature Scheme.

Exercise 22.2.15. Show that if the Verify algorithm for weakly secure Boneh-Boyen

signatures accepts (m, s) then s = g
(m+a)−1 (mod r)
1 .

The Boneh-Boyen scheme is unforgeable under a weak chosen-message attack if the
q-strong Diffie-Hellman problem holds. We define these terms now.

Definition 22.2.16. A weak chosen-message attack (called a generic chosen-
message attack by Goldwasser, Micali and Rivest [258]) on a signature scheme is an

7The generic group model assumes that any algorithm to attack the scheme is a generic algorithm for
the group G. This seems to be a reasonable assumption when using elliptic curves.

488CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

KeyGen: Choose g2 ∈ G2 − {1} uniformly at random and set g1 = ψ(g2). Let z =
e(g1, g2). Choose 1 ≤ a < r and set u = ga2 . The public key is pk = (g1, g2, u, z) and the
private key is a.

Sign(m, a): We assume that m ∈ Z/rZ. If a + m ≡ 0 (mod r) then return ⊥, else

compute s = g
(a+m)−1 (mod r)
1 and return s.

Verify(m, s, pk): Check that s ∈ G1 and then check that

e(s, ugm2) = z.

Figure 22.2: Weakly Secure Boneh-Boyen Signature Scheme.

adversary A that outputs a list m1, . . . ,mt of messages, receives a public key and signa-
tures s1, . . . , st on these messages, and then must output a message m and a signature s.
The adversary wins if Verify(m, s, pk) = “valid” and if m 6∈ {m1, . . . ,mt}.

Hence, a weak chosen message attack is closer to a known message attack than a
chosen message attack.

Definition 22.2.17. Let q ∈ N (not necessarily prime). Let G1, G2, GT be pairing groups
as in Definition 22.2.14. Let g1 ∈ G1 − {1} and g2 ∈ G2 − {1}. The q-strong Diffie-

Hellman problem (q-SDH) is, given (g1, g2, g
a
2 , g

a2

2 , . . . , ga
q

2), where 1 ≤ a < r is chosen
uniformly at random, to output a pair

(
m, g

(m+a)−1 (mod r)
1

)

where 0 ≤ m < r.

This problem may look rather strange at first sight since the value q can vary. The
problem is mainly of interest when q is polynomial in the security parameter (otherwise,
reading the problem description is not polynomial-time). Problems (or assumptions)
like this are sometimes called parameterised since there is a parameter (in this case q)
that determines the size for a problem instance. Such problems are increasingly used
in cryptography, though many researchers would prefer to have systems whose security
relies on more familiar assumptions.

There is evidence that the computational problem is hard. Theorem 5.1 of Boneh
and Boyen [76] shows that a generic algorithm for q-SDH needs to make Ω(

√
r/q) group

operations to have a good chance of success. The algorithms of Section 21.5 can be used
to solve q-SDH. In particular, if q | (r − 1) (and assuming q <

√
r) then Theorem 21.5.1

gives an algorithm to compute a with complexity O(
√
r/q) group operations, which meets

the lower bound for generic algorithms.

Exercise 22.2.18. Show that one can use ψ and e to verify that the input to an instance
of the q-SDH is correctly formed. Similarly, show how to use e to verify that a solution
to a q-SDH instance is correct.

Theorem 22.2.19. If the q-SDH problem is hard then the weak Boneh-Boyen signature
scheme is secure under a weak chosen message attack, where the adversary requests at
most q − 1 signatures.

Proof: (Sketch) Let (g1, g2, g
a
2 , g

a2

2 , . . . , ga
q

2) be a q-SDH instance and let A be an adver-
sary against the scheme. Suppose A outputs messages m1, . . . ,mt with t < q.

22.3. LATTICE ATTACKS ON SIGNATURES 489

Without loss of generality, t = q − 1 (since one can just add dummy messages). The

idea of the proof is to choose a public key so that one knows g
(mi+a)

−1

1 for all 1 ≤ i ≤ t.
The natural way to do this would be to set

g′1 = g
∏t
i=1(mi+a)

1

but the problem is that we don’t know a. The trick is to note that F (a) =
∏t
i=1(mi+a) =∑t

i=0 Fia
i is a polynomial in a with explicitly computable coefficients in Z/rZ. One can

therefore compute g′2 = g
F (a)
2 , g′1 = ψ(g′2) and h = g

aF (a)
2 using, for example,

g′2 =

t∏

i=0

(
ga

i)Fi
.

Similarly, one can compute signatures for all the messages mi. Hence, the simulator
provides to A the public key (g′1, g

′
2, h, z

′ = e(g′1, g
′
2)) and all t signatures.

Eventually, A outputs a forgery (m, s) such that m 6= mi for 1 ≤ i ≤ t. If t < q − 1
and q is polynomial in the security parameter then m is one of the dummy messages with
negligible probability (q − 1− t)/r. One has

s = g
′(m+a)−1 (mod r)
1 = g

F (a)(m+a)−1 (mod r)
1 .

The final trick is to note that the polynomial F (a) can be written as G(a)(a + m) + c
for some explicitly computable values G(a) ∈ (Z/rZ)[a] and c ∈ (Z/rZ)∗. Hence, the
rational function F (a)/(a+ m) can be written as

F (a)

a+ m
= G(a) +

c

a+ m
.

One can therefore deduce g
(a+m)−1 (mod r)
1 as required. �

A fully secure signature scheme is given in [76] and it requires an extra element in the
public key and an extra element (in Z/rZ) in the signature. The security proof is rather
more complicated, but the essential idea is the same.

Jao and Yoshida [313] showed the converse result, namely that if one can solve q-SDH
then one can forge signatures for the Boneh-Boyen scheme.

22.3 Lattice Attacks on Signatures

As mentioned earlier, there is a possibility that signatures could leak information about
the private key. Indeed, Nguyen and Regev [457] give such an attack on lattice-based
signatures.

The aim of this section is to present an attack due to Howgrave-Graham and Smart [299].
They determine the private key when given some signatures and given some bits of the
random values k (for example, due to a side-channel attack or a weak pseudorandom
number generator). The analysis of their attack was improved by Nguyen and Shparlin-
ski [459, 460] (also see Chapter 16 of [558]).

The attack works for any signature scheme where one can obtain from a valid signa-
ture a linear equation modulo r with two unknowns, namely the private key a and the
randomness k. We now clarify that this attack applies to the s2 value for the Schnorr,
Elgamal and DSA signature schemes:

Schnorr: s2 ≡ k + as1 (mod r) where s1, s2 are known.

490CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

Elgamal: ks2 ≡ H(m)− aF (s1) (mod r) where H(m), F (s1) and s2 are known.

DSA: ks2 ≡ H(m) + as1 (mod r) where H(m), s1 and s2 are known.

Suppose we are given a message m and a valid signature (s1, s2) and also the l most
or least significant bits of the random value k used by the Sign algorithm to generate s1.
Writing these known bits as k0 we have, in the case of least significant bits, k = k0 + 2lz
where 0 ≤ z < r/2l. Indeed, one gets a better result by writing

k = k0 + 2l⌊r/2l+1⌋+ 2lz (22.7)

with −r/2l+1 ≤ z ≤ r/2l+1. Then one can re-write any of the above linear equations in
the form

z ≡ ta− u (mod r)

for some t, u ∈ Z that are known. In other words, we know

(
t, u = MSBl(at (mod r))

)
, (22.8)

which is an instance of the hidden number problem (see Section 21.7.1).
If the values t in equation (22.8) are uniformly distributed in Z/rZ then Corol-

lary 21.7.10 directly implies that if r > 232 and if we can determine l ≥ ⌈
√

log2(r)⌉ +
⌈log2(log2(r))⌉ consecutive bits of the randomness k then one can determine the private
key a in polynomial-time given n = 2⌈

√
log2(r)⌉ message-signature pairs. As noted in

[459], in the practical attack the values t arising are not uniformly distributed. We refer
to [459, 460] for the full details. In practice, the attack works well for current values for
r when l = 4, see Section 4.2 of [459].

Exercise 22.3.1. Show how to obtain an analogue of equation (22.7) when the l most
significant bits are known.

Bleichenbacher has described a similar attack on a specific implementation of DSA
that used a biased random generator for the values k.

22.4 Other Signature Functionalities

There are many topics that are beyond the scope of this book. We briefly mention some
of them now.

• One time signatures. These are fundamental in provable security and are used as
a tool in many theoretical public key schemes. However, since these are usually
realised without using the number theoretic structures presented in this book we do
not give the details. Instead, we refer the reader to Section 11.6 of [418], Section 12.5
of [334] and Section 7.5.1 of [592].

• Online/offline signatures. The goal here is to design public key signature schemes
that possibly perform some (slow) precomputations when they are “offline” but
that generate a signature on a given message m extremely quickly. The typical
application is smart cards or other tokens that may have extremely constrained
computing power.

The first to suggest a solution to this problem seems to have been Schnorr in his
paper [522] on efficient signatures for smart cards. The Schnorr signature scheme

22.4. OTHER SIGNATURE FUNCTIONALITIES 491

already has this functionality: if s0 = gk is precomputed during the idle time
of the device, then generating a signature on message m only requires computing
s1 = H(m‖s0) and s2 = k + as1 (mod r). The computation of s1 and s2 is relatively
fast since no group operations are performed.

A simple idea due to Girault [254] (proposed for groups of unknown order, typically
(Z/NZ)∗) is to make Schnorr signatures even faster by omitting the modular re-
duction in the computation of s2. In other words, k, a, s1 are all treated as integers
and s2 is computed as the integer k + as1. To maintain security it is necessary to
take k to be bigger than 2lr (i.e., bigger than any possible value for the integer as1).
This idea was fully analysed (and generalised to groups of known order) by Girault,
Poupard and Stern [255].

• Threshold signatures. The idea is to have a signature that can only be generated
by a collection of users. There is a large literature on this problem and we do not
attempt a full treatment of the subject here.

A trivial example is when two users hold additive shares a1, a2 of a private key (in
other words, h = ga1+a2 = ga1ga2 is the public key). A Schnorr signature on message
m can be computed as follows: User i ∈ {1, 2} chooses a random integer 0 ≤ ki < r,
computes gki , and sends it to the other. Both users can compute s0 = gk1gk2 . User
i ∈ {1, 2} can then compute s1 = H(m‖s0) and s2,i = ki + ais1 (mod r). The
signature is (s0, s2,1 + s2,2 (mod r)).

• Signatures with message recovery. Usually a signature and a message are sent
together. Signatures with message recovery allow some (or all) of the message
to be incorporated in the signature. The whole message is recovered as part of
the signature verification process. We refer to Section 11.5.4 of [418] for Elgamal
signatures with message recovery.

• Undeniable signatures. These are public key signatures that can only be verified by
interacting with the signer (or with some other designated verifier). A better name
would perhaps be “invisible signatures” or “unverifiable signatures”. We refer to
Section 7.6 of [592].

• Identity-Based Signatures. Identity-based cryptography is a concept introduced by
Shamir. The main feature is that a user’s public key is defined to be a function
of their “identity” (for example, their email address) together with some master
public key. Each user obtains their private key from a Key Generation Center that
possesses the master secret. One application of identity-based cryptography is to
simplify public-key infrastructures.

An identity-based signature is a public-key signature scheme for which it is not
necessary to verify a public key certificate on the signer’s key before verifying the
signature (though note that it may still be necessary to verify a certificate for the
master key of the system). There are many proposals in the literature, but we do
not discuss them in this section. One example is given in Section 24.6.3).

492CHAPTER 22. DIGITAL SIGNATURES BASED ON DISCRETE LOGARITHMS

Chapter 23

Public Key Encryption Based
on Discrete Logarithms

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Historically, encryption has been considered the most important part of cryptography.
So it is not surprising that there is a vast literature about public key encryption. It is
important to note that, in practice, public key encryption is not usually used to encrypt
documents. Instead, one uses public key encryption to securely send keys, and the data
is encrypted using symmetric encryption.

It is beyond the scope of this book to discuss all known results on public key encryption,
or even to sketch all known approaches to designing public key encryption schemes. The
goal of this chapter is very modest. We simply aim to give some definitions and to provide
two efficient encryption schemes (one secure in the random oracle model and one secure
in the standard model). The encryption schemes in this chapter are all based on Elgamal
encryption, the “textbook” version of which has already been discussed in Sections 20.3
and 20.4.

Finally, we emphasise that this Chapter only discusses confidentiality and not simul-
taneous confidentiality and authentication. The reader is warned that naively combining
signatures and encryption does not necessarily provide the expected security (see, for
example, the discussion in Section 1.2.3 of Joux [317]).

23.1 CCA Secure Elgamal Encryption

Recall that security notions for public key encryption were given in Section 1.3.1. As we
have seen, the textbook Elgamal encryption scheme does not have OWE-CCA security,
since one can easily construct a related ciphertext whose decryption yields the original
message. A standard way to prevent such attacks is to add a message authentication code
(MAC); see Section 3.3.

493

494 CHAPTER 23. ENCRYPTION FROM DISCRETE LOGARITHMS

We have also seen (see Section 20.3) that Elgamal can be viewed as static Diffie-
Hellman key exchange followed by a specific symmetric encryption. Hence, it is natural
to generalise Elgamal encryption so that it works with any symmetric encryption scheme.
The scheme we present in this section is known as DHIES and, when implemented with
elliptic curves, is called ECIES. We refer to Abdalla, Bellare and Rogaway [1] or Chapter
III of [65] for background and discussion.

Let κ be a security parameter. The scheme requires a symmetric encryption scheme,
a MAC scheme and a key derivation function. The symmetric encryption functions Enc
and Dec take an l1-bit key and encrypt messages of arbitrary length. The MAC function
MAC takes an l2-bit key and a message of arbitrary length and outputs an l3-bit binary
string. The key derivation function is a function kdf : G → {0, 1}l1+l2 . The values l1,
l2 and l3 depend on the security parameter. Note that it is important that the MAC is
evaluated on the ciphertext not the message, since a MAC is not required to have any
confidentiality properties. The DHIES encryption scheme is given in Figure 23.1.

KeyGen(κ): Generate an algebraic group or algebraic group quotient G whose order
is divisible by a large prime r (so that the discrete logarithm problem in the subgroup
of prime order r requires at least 2κ bit operations).
Choose a random g ∈ G of exact order r. Choose a random integer 0 < a < r and set
h = ga.
The public key is (G, g, h) and the private key is a. Alternatively, (G, g) are system
parameters that are fixed for all users and only h is the public key.

The message space is Mκ = {0, 1}∗.
The ciphertext space is Cκ = G× {0, 1}∗ × {0, 1}l3.

Encrypt(m, h): (m ∈ {0, 1}∗ and h is the authentic public key of the receiver)

• Choose a random 0 < k < r and set c1 = gk.

• Set K = kdf(hk) and parse K as K1‖K2 where K1 and K2 are l1 and l2 bit binary
strings respectively.

• Set c2 = EncK1(m) and c3 = MACK2(c2).

• Transmit the ciphertext (c1, c2, c3).

Decrypt(c1, c2, c3, a):

• Check that c1 ∈ G and that c3 is an l3-bit string (if not then return ⊥ and halt).

• Compute K = kdf(ca1) and parse it as K1‖K2.

• Check whether c3 = MACK2(c2) (if not then return ⊥ and halt).

• Return m = DecK1(c2).

Figure 23.1: DHIES Public Key Encryption.

Exercise 23.1.1. Show that decryption does return the message when given a ciphertext
produced by the DHIES encryption algorithm.

A variant of DHIES is to compute the key derivation function on the pair of group (or
algebraic group quotient) elements (gk, hk) rather than just hk. This case is presented in

23.1. CCA SECURE ELGAMAL ENCRYPTION 495

Section 10 of Cramer and Shoup [161]. As explained in Section 10.7 of [161], this variant
can yield a tighter security reduction.

23.1.1 The KEM/DEM Paradigm

Shoup introduced a formalism for public key encryption that has proved to be useful.
The idea is to separate the “public key” part of the system (i.e., the value c1 in Fig-
ure 23.1) from the “symmetric” part (i.e., (c2, c3) in Figure 23.1). A key encapsulation
mechanism (or KEM) outputs a public key encryption of a random symmetric key (this
functionality is very similar to key transport; the difference being that a KEM gener-
ates a fresh random key as part of the algorithm). A data encapsulation mechanism
(or DEM) is the symmetric part. The name hybrid encryption is used to describe an
encryption scheme obtained by combining a KEM with a DEM.

More formally, a KEM is a triple of three algorithms (KeyGen, Encrypt and Decrypt)1

that depend on a security parameter κ. Instead of a message space, there is space Kκ
of possible keys to be encapsulated. The randomised algorithm Encrypt takes as input
a public key and outputs a ciphertext c and a symmetric key K ∈ Kκ (where κ is the
security parameter). One says that c encapsulates K. The Decrypt algorithm for a
KEM takes as input a ciphertext c and the private key and outputs a symmetric key K
(or ⊥ if the decryption fails). The Encrypt algorithm for a DEM takes as input a message
and a symmetric key K and outputs a ciphertext. The Decrypt algorithm of a DEM takes
a ciphertext and a symmetric key K and outputs either ⊥ or a message.

The simplest way to obtain a KEM from Elgamal is given in Figure 23.2. The DEM
corresponding to the hybrid encryption scheme in Section 23.1 takes as input m and K,
parses K as K1‖K2, computes c2 = EncK1(m) and c3 = MACK2(c2) and outputs (c2, c3).

KeyGen(κ): This is the same as standard Elgamal; see Figure 23.1.

Encrypt(h): Choose random 0 ≤ k < r and set c = gk and K = kdf(hk). Return the
ciphertext c and the key K.

Decrypt(c, a): Return ⊥ if c 6∈ 〈g〉. Otherwise return kdf(ca).

Figure 23.2: Elgamal KEM.

Shoup has defined an analogue of IND-CCA security for a KEM. We refer to Section
7 of Cramer and Shoup [161] for precise definitions for KEMs, DEMs and their security
properties, but give an informal statement now.

Definition 23.1.2. An IND-CCA adversary for a KEM is an algorithm A that plays
the following game: The input to A is a public key. The algorithm A can also query
a decryption oracle that will provide decryptions of any ciphertext of its choosing. At
some point the adversary requests a challenge, which is a KEM ciphertext c∗ together
with a key K∗ ∈ Kκ. The challenger chooses K∗ to be either the key corresponding to
the ciphertext c∗ or an independently chosen random element of Kκ (both cases with
probability 1/2). The game continues with the adversary able to query the decryption
oracle with any ciphertext c 6= c∗. Finally, the adversary outputs a guess for whether
K∗ is the key corresponding to c∗, or a random key (this is the same as the “real or
random” security notion for key exchange in Section 20.5). Denote by Pr(A) the success
probability of A in this game and define the advantage Adv(A) = |Pr(A) − 1/2|. The
KEM is IND-CCA secure if every polynomial-time adversary has negligible advantage.

1Sometimes the names Encap and Decap are used instead of Encrypt and Decrypt.

496 CHAPTER 23. ENCRYPTION FROM DISCRETE LOGARITHMS

Theorem 5 of Section 7.3 of [161] shows that, if a KEM satisfies IND-CCA security
and if a DEM satisfies an analogous security property, then the corresponding hybrid
encryption scheme has IND-CCA security. Due to lack of space we do not present the
details.

23.1.2 Proof of Security in the Random Oracle Model

We now sketch a proof that the Elgamal KEM of Figure 23.2 has IND-CCA security. The
proof is in the random oracle model. The result requires a strong assumption (namely, the
Strong-Diffie-Hellman or gap-Diffie-Hellman assumption). Do not be misled by the use
of the word “strong”! This computational problem is not harder than the Diffie-Hellman
problem. Instead, the assumption that this problem is hard is a stronger (i.e., less likely
to be true) assumption than the assumption that the Diffie-Hellman problem is hard.

Definition 23.1.3. Let G be a group of prime order r. The strong Diffie-Hellman
problem (Strong-DH) is: Given g, ga, gb ∈ G (where 1 ≤ a, b < r), together with a deci-
sion static Diffie-Hellman oracle (DStatic-DH oracle) Ag,ga(h1, h2) (i.e., Ag,ga (h1, h2) =
1 if and only if h2 = ha1), to compute gab.

An instance generator for Strong-DH takes as input a security parameter κ, outputs
a group G and an element g of prime order r (with r > 22κ) and elements ga, gb ∈ G
where 1 ≤ a, b < r are chosen uniformly at random. As usual, we say that Strong-DH
is hard for the instance generator if all polynomial-time algorithms to solve the problem
have negligible success probability. The strong Diffie-Hellman assumption is that
there is an instance generator for which the Strong-DH problem is hard.

It may seem artificial to include access to a decision oracle as part of the assumption.
Indeed, it is a significant drawback of the encryption scheme that such an assumption is
needed for the security. Nevertheless, the problem is well-defined and seems to be hard
in groups for which the DLP is hard. A related problem is the gap Diffie-Hellman
problem: again the goal is to compute gab given (g, ga, gb), but this time one is given
a full DDH oracle. In some situations (for example, when using supersingular elliptic
or hyperelliptic curves) one can use pairings to provide a DDH oracle and the artificial
nature of the assumption disappears. The proof of Theorem 23.1.4 does not require a full
DDH oracle and so it is traditional to only make the Strong-DH assumption.

Theorem 23.1.4. The Elgamal KEM of Figure 23.2, with the key derivation function
replaced by a random oracle, is IND-CCA secure if the strong Diffie-Hellman problem is
hard.

Proof: (Sketch) Let (g, ga, gb) be the Strong-DH instance and let Ag,ga be the DStatic-
DH oracle. Let B be an IND-CCA adversary against the KEM. We want to use B to
solve our Strong-DH instance. To do this we will simulate the game that B is designed to
play. The simulation starts B by giving it the public key (g, ga). Note that the simulator
does not know the corresponding private key.

Since the key derivation function is now a random oracle, it is necessary for B to
query the simulator whenever it wants to compute kdf; this fact is crucial for the proof.
Indeed, the whole idea of the proof is that when B requests the challenge ciphertext we
reply with c∗ = gb and with a randomly chosen K∗ ∈ Kκ. Since kdf is a random oracle,
the adversary can have no information about whether or not c∗ encapsulates K∗ unless
the query kdf((c∗)a) is made. Finally, note that (c∗)a = gab is precisely the value the
simulator wants to find.

More precisely, let E be the event (on the probability space of Strong-DH instances
and random choices made by B) that B queries kdf on (c∗)a = gab. The advantage of B is

23.1. CCA SECURE ELGAMAL ENCRYPTION 497

Adv(B) =
∣∣Pr(B)− 1

2

∣∣ where Pr(B) is the probability that B wins the IND-CCA security
game. Note that Pr(B) = Pr(B|E) Pr(E) + Pr(B|¬E) Pr(¬E). When kdf is a random
oracle we have Pr(B|¬E) = 1/2. Writing Pr(B|E) = 1/2 + u for some −1/2 ≤ u ≤ 1/2
we have Pr(B) = 1/2 + uPr(E) and so Adv(B) = |u|Pr(E). Since Adv(B) is assumed
to be non-negligible it follows that Pr(E) is non-negligible. In other words, a successful
adversary makes an oracle query on the value gab with non-negligible probability.

To complete the proof it is necessary to explain how to simulate kdf and Decrypt
queries, and to analyse the probabilities. The simulator maintains a list of all queries
to kdf. The list is initially empty. Every time that kdf(u) is queried the simulator first
checks whether u ∈ G and returns ⊥ if not. Then the simulator checks whether an entry
(u,K) appears in the list of queries and, if so, returns K. If no entry appears in the list
then use the oracle Ag,ga to determine whether u = gab (i.e., if Ag,ga(gb, u) = 1). If this
is the case then gab has been computed and the simulation outputs that value and halts.
In all other cases, a value K is chosen uniformly and independently at random from Kκ,
(u,K) is added to the list of kdf queries, and K is returned to B.

Similarly, when a decryption query on ciphertext c is made then one checks, for each
pair (u,K) in the list of kdf values, whether Ag,ga (c, u) = 1. If this is the case then return
K. If there is no such triple then return a random K ′ ∈ K.

One can check that the simulation is sound (in the sense that Decrypt does perform
the reverse of Encrypt) and that the outputs of kdf are indistinguishable from random.
Determining the advantage of the simulator in solving the strong-DH problem is then
straightforward. We refer to Section 10.4 of Cramer and Shoup [161] for a careful proof
using the “game hopping” methodology (actually, that proof applies to the variant in
Exercise 23.1.5, but it is easily adapted to the general case). �

Exercise 23.1.5. A variant of the scheme has the key derivation function applied to
the pair (gk, hk) in Encrypt instead of just hk (respectively, (c1, c

a
1) in Decrypt). Adapt

the security proof to this case. What impact does this have on the running time of the
simulator?

The IND-CPA security of the Elgamal KEM can be proved in the standard model
(the proof is analogous to the proof of Theorem 20.4.10) under the assumption of Defini-
tion 23.1.6. The IND-CCA security can also be proved in the standard model under an
interactive assumption called the oracle Diffie-Hellman assumption. We refer to Abdalla,
Bellare and Rogaway [1] for the details of both these results.

Definition 23.1.6. Let G be a group and kdf : G → K a key derivation function.
The hash Diffie-Hellman problem (Hash-DH) is to distinguish the distributions
(g, ga, gb, kdf(gab)) and (g, ga, gb,K) where K is chosen uniformly from K. The hash
Diffie-Hellman assumption is that there exist instance generators such that all polynomial-
time algorithms for Hash-DH have negligible advantage.

Exercise 23.1.7. Let G be a group of prime order r and let kdf : G → {0, 1}l be
a key derivation function such that log2(r)/2 < l < log2(r) and such that the output
distribution is statistically close to uniform. Show that DDH ≤R Hash-DH ≤R CDH.

An elegant variant of Elgamal, with IND-CCA security in the random oracle model
depending only on CDH rather than strong Diffie-Hellman, is given by Cash, Kiltz and
Shoup [120].

498 CHAPTER 23. ENCRYPTION FROM DISCRETE LOGARITHMS

23.2 Cramer-Shoup Encryption

In their landmark paper [159], Cramer and Shoup gave an encryption scheme with a proof
of CCA security in the standard model. Due to lack of space we will only be able to give
a sketch of the security analysis of the scheme.

To motivate how they achieve their result, consider the proof of security for the El-
gamal KEM (Theorem 23.1.4). The simulator uses the adversary to solve an instance of
the CDH problem. To do this one puts part of the CDH instance in the public key (and
hence, one does not know the private key) and part in the challenge ciphertext. To prove
CCA security we must be able to answer decryption queries without knowing the private
key. In the proof of Theorem 23.1.4 this requires a DDH oracle (to determine correct
ciphertexts from incorrect ones) and also the use of the random oracle model (to be able
to “see” some internal operations of the adversary).

In the random oracle model one generally expects to be able to prove security under an
assumption of similar flavour to CDH (see Theorem 20.4.11 and Theorem 23.1.4). On the
other hand, in the standard model one only expects2 to be able to prove security under
a decisional assumption like DDH (see Theorem 20.4.10). The insight of Cramer and
Shoup is to design a scheme whose security depends on DDH and is such that the entire
DDH instance can be incorporated into the challenge ciphertext. The crucial consequence
is that the simulator can now generate public and private keys for the scheme, run the
adversary, and be able to handle decryption queries.

The proof of security hinges (among other things) on the following result.

Lemma 23.2.1. Let G be a group of prime order r. Let g1, g2, u1, u2, h ∈ G with
(g1, g2) 6= (1, 1). Consider the set

Xg1,g2,h = {(z1, z2) ∈ (Z/rZ)2 : h = gz11 g
z2
2 }.

Then #Xg1,g2,h = r. Let 0 ≤ k < r be such that u1 = gk1 . If u2 = gk2 then uz11 u
z2
2 = hk

for all (z1, z2) ∈ Xg1,g2,h. If u2 6= gk2 then

{uz11 uz22 : (z1, z2) ∈ Xg1,g2,h} = G.

Exercise 23.2.2. Prove Lemma 23.2.1.

Figure 23.3 presents the basic Cramer-Shoup encryption scheme. The scheme
requires a group G of prime order r and the message m is assumed to be an element of G.
Of course, it is not necessary to “encode” data into group elements, in practice one would
use the Cramer-Shoup scheme as a KEM; we briefly describe a Cramer-Shoup KEM at
the end of this section. The scheme requires a target-collision-resistant hash function
H : G3 → Z/rZ (see Definition 3.1.2) chosen at random from a hash family.

Exercise 23.2.3. Show that the value v = ckdkα computed in the Encrypt algorithm
does satisfy equation (23.1).

Exercise 23.2.4. Show that the tests u1, u2 ∈ G and equation (23.1) imply that v ∈ G.

Exercise 23.2.5. Show that the final stage of Decrypt in the Cramer-Shoup scheme can
be efficiently performed using multiexponentiation as

m = eur−z11 ur−z22 .

2Unless performing “bit by bit” encryption, which is a design approach not considered in this book.

23.2. CRAMER-SHOUP ENCRYPTION 499

KeyGen(κ): Generate a group G of prime order r as in Figure 23.1. Choose random
g1, g2 ∈ G− {1}. Choose integers 0 ≤ x1, x2, y1, y2, z1, z2 < r uniformly at random and
set

c = gx1
1 gx2

2 , d = gy11 g
y2
2 , h = gz11 g

z2
2 .

Choose a target-collision-resistant hash function H . The public key is pk =
(G,H, g1, g2, c, d, h). The private key is sk = (x1, x2, y1, y2, z1, z2).

Encrypt(m, pk): Choose 0 ≤ k < r uniformly at random, compute u1 = gk1 , u2 =
gk2 , e = hkm, α = H(u1, u2, e) and v = ckdkα (mod r). The ciphertext is c = (u1, u2, e, v).

Decrypt(u1, u2, e, v, sk): First check that u1, u2, e ∈ G and output ⊥ if this is not the
case. Next, compute α = H(u1, u2, e) and check whether

v = u
x1+y1α (mod r)
1 u

x2+y2α (mod r)
2 . (23.1)

Return ⊥ if this condition does not hold. Otherwise output

m = eu−z11 u−z22 .

Figure 23.3: Basic Cramer-Shoup Encryption Scheme.

Example 23.2.6. Let p = 311, r = 31 and denote by G the subgroup of order r in F∗
p.

Take g1 = 169 and g2 = 121. Suppose (x1, x2, y1, y2, z1, z2) = (1, 2, 3, 4, 5, 6) so that the
public key is

(g1, g2, c, d, h) = (169, 121, 13, 260, 224).

To encrypt m = 265 ∈ G choose, say, k = 15 and set u1 = gk1 = 24, u2 = gk2 = 113 and
e = mhk = 126. Finally, we must compute α. Since we don’t want to get into the details
of H , suppose α = H(u1, u2, e) = 20 and so set v = ckdkα (mod r) = c15d21 = 89. The
ciphertext is (u1, u2, e, v) = (24, 113, 126, 89).

To decrypt one first checks that ur1 = ur2 = er = 1. Then one recomputes α and checks
equation (23.1). Since

u
x1+y1α (mod r)
1 u

x2+y2α (mod r)
2 = u301 u

20
2 = 89

the ciphertext passes this test. One then computes eur−z11 ur−z22 = 126 ·2426 ·11325 = 265.

Exercise 23.2.7. Using the same private keys as Example 23.2.6, which of the following
ciphertexts are valid, and for those that are, what is the corresponding message? Assume
that H(243, 83, 13) = 2.

(243, 83, 13, 97), (243, 83, 13, 89), (243, 83, 13, 49).

We now turn to the security analysis. Note that the condition of equation (23.1) does
not imply that the ciphertext (u1, u2, e, v) was actually produced by the Encrypt algo-
rithm. However, we now show that, if u1 and u2 are not of the correct form, then the
probability that a randomly chosen v satisfies this condition is 1/r. Indeed, Lemma 23.2.8
shows that an adversary who can solve the discrete logarithm problem cannot even con-
struct an invalid ciphertext that satisfies this equation with probability better than 1/r.

Lemma 23.2.8. Let G be a cyclic group of prime order r. Let g1, g2, c, d, v ∈ G and

α ∈ Z/rZ be fixed. Suppose u1 = gk1 and u2 = gk+k
′

2 where k′ 6≡ 0 (mod r). Then
the probability, over all choices (x1, x2, y1, y2) such that c = gx1

1 gx2
2 and d = gy11 g

y2
2 , that

v = ux1+αy1
1 ux2+αy2

2 is 1/r.

500 CHAPTER 23. ENCRYPTION FROM DISCRETE LOGARITHMS

Proof: Write g2 = gw1 , c = gw1
1 and d = gw2

1 for some 0 ≤ w,w1, w2 < r with w 6= 0. The
values c and d imply that x1 +wx2 = w1 and y1 +wy2 = w2. Now ux1+αy1

1 ux2+αy2
2 equals

g1 to the power

k(x1 + αy1) + (k + k′)w(x2 + αy2) = k((x1 + wx2) + α(y1 + wy2)) + k′w(x2 + αy2)

= k(w1 + αw2) + k′w(x2 + αy2).

The values w,w1, w2, k, k
′, α are all uniquely determined but, by Lemma 23.2.1, x2 and

y2 can take any values between 0 and r−1. Hence, ux1+αy1
1 ux2+αy2

2 equals any fixed value
v for exactly r of the r2 choices for (x2, y2). �

Theorem 23.2.9. The basic Cramer-Shoup encryption scheme is IND-CCA secure if
DDH is hard and if the function H is target-collision-resistant.

Proof: (Sketch) Let A be an adversary against the Cramer-Shoup scheme. Given a
DDH instance (g1, g2, u1, u2) the simulator performs the KeyGen algorithm using the
given values g1, g2. Hence, the simulator knows the private key (x1, x2, y1, y2, z1, z2). The
simulator runs A with this public key.

The algorithm A makes decryption queries and these can be answered correctly by the
simulator since it knows the private key. Eventually, A outputs two messages (m0,m1)
and asks for a challenge ciphertext. The simulator chooses a random b ∈ {0, 1}, computes
e = uz11 u

z2
2 mb, α = H(u1, u2, e) and v = ux1+y1α

1 ux2+y2α
2 . Here, and throughout this

proof, u1 and u2 denote the values in the DDH instance that was given to the simulator.
The simulator returns

c∗ = (u1, u2, e, v).

to A. The adversary A continues to make decryption queries, which are answered as
above. Eventually, A outputs a bit b′. The simulator returns “valid” as the answer to the
DDH instance if b = b′ and “invalid” otherwise.

The central idea is that if the input is a valid DDH tuple then c∗ is a valid encryption
of mb and so A ought to be able to guess b correctly with non-negligible probability. On
the other hand, if the input is not a valid DDH tuple then, by Lemma 23.2.1, uz11 u

z2
2

could be any element in G (with equal probability) and so c∗ could be an encryption of
any message m ∈ G. Hence, given c∗, both messages m0 and m1 are equally likely and so
the adversary can do no better than output a random bit. (Of course, A may actually
output a fixed bit in this case, such as 0, but this is not a problem since b was randomly
chosen.)

There are several subtleties remaining in the proof. First, by Lemma 23.2.8, before the
challenge ciphertext has been received there is a negligible probability that a ciphertext
that was not produced by the Encrypt algorithm satisfies equation (23.1). Hence, the
simulation is correct with overwhelming probability. However, the challenge ciphertext is
potentially an example of a ciphertext that satisfies equation (23.1) and yet is not a valid
output of the algorithm Encrypt. It is necessary to analyse the probability that A can
somehow produce another ciphertext that satisfies equation (23.1) without just running
the Encrypt algorithm. The target-collision-resistance of the hash function enters at this
point (since a ciphertext of the form (u1, u2, e

′, v) such that H(u1, u2, e
′) = H(u1, u2, e)

would pass the test). Due to lack of space we refer to Section 4 of [159] (for a direct
proof) or Section 6.2 of [161] (for a proof using “game hopping”). �

A number of variants of the basic scheme are given by Cramer and Shoup [161] and
other authors. In particular, one can design a KEM based on the Cramer-Shoup scheme
(see Section 9 of [161]): just remove the component e of the ciphertext and set the encap-
sulated key to be K = kdf(gk1 , h

k). An alternative KEM (with even shorter ciphertext)

23.3. OTHER ENCRYPTION FUNCTIONALITIES 501

was proposed by Kurosawa and Desmedt [359]. Their idea was to set K = kdf(v) where
v = ckdαk for α = H(u1, u2). The KEM ciphertext is therefore just (u1, u2) = (gk1 , g

k
2).

The security again follows from Lemma 23.2.8: informally, querying the decryption oracle
on badly formed (u1, u2) gives no information about the key K.

Exercise 23.2.10. Write down a formal description of the Cramer-Shoup KEM.

Exercise 23.2.11. Show that an adversary against the Cramer-Shoup scheme who knows
any pair (z1, z2) such that h = gz11 g

z2
2 can decrypt valid ciphertexts.

Exercise 23.2.12. Suppose an adversary against the Cramer-Shoup scheme knows x1, x2, y1, y2.
Show how the adversary can win the OWE-CCA security game.

Exercise 23.2.13. Suppose the checks that u1, u2 ∈ G are omitted in the Cramer-Shoup
cryptosystem. Suppose G ⊂ F∗

p where l | (p− 1) is a small prime (say l < 210). Suppose
the Decrypt algorithm uses the method of Exercise 23.2.5. Show how to determine, using
a decryption oracle, z1 (mod l) and z2 (mod l). Show that if p − 1 has many such small
factors l then one could recover the values z1 and z2 in the private key of the Cramer-
Shoup scheme.

Cramer and Shoup [160] have shown how the above cryptosystem fits into a gen-
eral framework for constructing secure encryption schemes using “universal hash proof
systems”. We do not have space to present this topic.

23.3 Other Encryption Functionalities

There are many variants of public key encryption (such as threshold decryption, server-
aided decryption, etc). In this section we briefly sketch two important variants: homo-
morphic encryption and identity-based encryption.

23.3.1 Homomorphic Encryption

Let c1, . . . , ck be ciphertexts that are encryptions under some public key of messages
m1, . . . ,mk . The goal of homomorphic encryption is for any user to be able to efficiently
compute a ciphertext that encrypts F (m1, . . . ,mk) for any function F , given only a de-
scription of the function F and the ciphertexts c1, . . . , ck. An encryption scheme that has
this property is called fully homomorphic.

Homomorphic encryption schemes allow third parties to perform computations on en-
crypted data. A common additional security requirement is that the resulting ciphertexts
do not reveal to a user with the private key what computation was performed (except its
result). A typical application of homomorphic encryption is voting: If users encrypt either
0 or 1 under a certain public key3 then a trusted third party can compute a ciphertext
that is an encryption of the sum of all the users’ votes, and then this ciphertext can be
decrypted to give the total number of votes. If the user with the private key never sees
the individual votes then they cannot determine how an individual user voted. A general
survey on homomorphic encryption that gives some references for applications is Fontaine
and Galand [208].

For many applications it is sufficient to consider encryption schemes that only allow
a user to compute F (m1, . . . ,mk) for certain specific functions (for example, addition in
the voting application). In this section we focus on the case where F (m1,m2) is a group
operation.

3It is necessary for users to prove that their vote lies in {0, 1}.

502 CHAPTER 23. ENCRYPTION FROM DISCRETE LOGARITHMS

Definition 23.3.1. Let G be a group (written multiplicatively). A public key encryption
scheme with message space G and ciphertext space C is said to be homomorphic for the
group G if there is some efficiently computable binary operation ⋆ on C such that, for all
m1,m2 ∈ G, if c1 is an encryption of m1 and c2 is an encryption of m2 (both with respect
to the same public key) then c1 ⋆ c2 is an encryption of m1m2.

Exercise 23.3.2 shows that one cannot have CCA security when using homomorphic
encryption. Hence, the usual security requirement of a homomorphic encryption scheme
is that it should have IND-CPA security.

Exercise 23.3.2. Show that a homomorphic encryption scheme does not have IND-CCA
security.

Exercise 23.3.3. Let G = 〈g〉 where g is an element of order r in a group. Let c1 =
(c1,1, c1,2) = (gk1 ,m1h

k1) and c2 = (c2,1, c2,2) = (gk2 ,m2h
k2) be classic textbook Elgamal

encryptions of m1,m2 ∈ G. Define c1 ⋆ c2 = (c1,1c2,1, c1,2c2,2). Show that c1 ⋆ c2 is an
encryption of m1m2 and hence that classic textbook Elgamal encryption is homomorphic
for the group G.

Exercise 23.3.4. Let G = Fl2 ∼= {0, 1}l. Note that G is a group under addition modulo 2
(equivalently, under exclusive-or ⊕). For 1 ≤ i ≤ 2 let ci = (ci,1, ci,2) = (gki ,mi⊕H(hki))
be semi-textbook Elgamal encryptions of messages mi ∈ G. Consider the operation
c1 ⋆ c2 = (c1,1c2,1, c1,2 ⊕ c2,2). Show that semi-textbook Elgamal is not homomorphic
with respect to this operation.

Exercise 23.3.5. A variant of Elgamal encryption that is homomorphic with respect to
addition is to encrypt m as (c1 = gk, c2 = gmhk). Prove that if (ci,1, ci,2) are ciphertexts
encrypting messages mi for i = 1, 2 then (c1,1c2,1, c1,2c2,2) encrypts m1 + m2. Give
a decryption algorithm for this system and explain why it is only practical when the
messages m are small integers. Hence show that this scheme does not strictly satisfy
Definition 23.3.1 when the order of g is large.4

23.3.2 Identity-Based Encryption

Section 22.4 briefly mentioned identity-based signatures. Recall that in identity-based
cryptography a user’s public key is defined to be a function of their “identity” (for exam-
ple, their email address). There is a master public key. Each user obtains their private
key from a key generation center (which possesses the master secret).

In this section we sketch the basic Boneh-Franklin scheme [80] (the word “basic”
refers to the fact that this scheme only has security against a chosen plaintext attack).
The scheme uses pairing groups (see Definition 22.2.14 and Chapter 26). Hence, let G1,
G2 and GT be groups of prime order r and let e : G1 × G2 → GT be a non-degenerate
bilinear pairing.

The first task is to determine the master keys, which are created by the key generation
center. Let g ∈ G2 have order r. The key generation center chooses 1 ≤ s < r and
computes g′ = gs. The master public key is (g, g′) and the master private key is s. The
scheme also requires hash functions H1 : {0, 1}∗ → G1 and H2 : GT → {0, 1}l (where l
depends on the security parameter). The message space will be {0, 1}l and the ciphertext
space will be G2 × {0, 1}l.

The public key of a user with identity id ∈ {0, 1}∗ is Qid = H1(id) ∈ G1. With
overwhelming probability Qid 6= 1, in which case e(Qid, g) 6= 1. The user obtains the

4The order of g must be large for the scheme to have IND-CPA security.

23.3. OTHER ENCRYPTION FUNCTIONALITIES 503

private key
Q′

id = H1(id)s

from the key generation center.
To Encrypt a message m ∈ {0, 1}l to the user with identity id one obtains the master

key (g, g′), computes Qid = H1(id), chooses a random 1 ≤ k < r and computes c1 =
gk, c2 = m⊕H2(e(Qid, g

′)k). The ciphertext is (c1, c2).
To Decrypt the ciphertext (c1, c2) the user with private key Q′

id
computes

m = c2 ⊕H2(e(Q′
id, c1)).

This completes the description of the basic Boneh-Franklin scheme.

Exercise 23.3.6. Show that the Decrypt algorithm does compute the correct message
when (c1, c2) are the outputs of the Encrypt algorithm.

Exercise 23.3.7. Show that the basic Boneh-Franklin scheme does not have IND-CCA
security.

The security model for identity-based encryption takes into account that an adversary
can ask for private keys on various identities. Hence, the IND security game allows an
adversary to output a challenge identity id

∗ and two challenge messages m0,m1. The
adversary is not permitted to know the private key for identity id∗ (though it can receive
private keys for any other identities of its choice). The adversary then receives an encryp-
tion with respect to identity id∗ of mb for randomly chosen b ∈ {0, 1} and must output a
guess for b.

Exercise 23.3.8. Suppose there is an efficiently computable group homomorphism ψ :
G2 → G1. Show that if an adversary knows ψ and can compute preimages of the hash
function H1 then it can determine the private key for any identity by making a private
key query on a different identity.

If the output of H2 is indistinguishable from random l-bit strings then it is natural
to believe that obtaining the message from a ciphertext under a passive attack requires
computing

e(Q′
id
, c1) = e(Qs

id
, gk) = e(Qid, g)sk.

Hence, it is natural that the security (at least, in the random oracle model) depends on
the following computational problem.

Definition 23.3.9. Let G1, G2 and GT be groups of prime order r and let e : G1 ×
G2 → GT be a non-degenerate bilinear pairing. The bilinear Diffie-Hellman problem
(BDH) is: Given Q ∈ G1, g ∈ G2, ga and gb, where 1 ≤ a, b < r, to compute

e(Q, g)ab.

Exercise 23.3.10. Show that if one can solve CDH in G2 or in GT then one can solve
BDH.

As seen in Exercise 23.3.7, the basic Boneh-Franklin scheme does not have IND-CCA
security. To fix this one needs to provide some extra components in the ciphertext.
Alternatively, one can consider the basic Boneh-Franklin scheme as an identity-based
KEM: The ciphertext is c1 = gk and the encapsulated key is K = kdf(e(Qid, g

′)k). In the
random oracle model (treating both H1 and kdf as random oracles) one can show that
the Boneh-Franklin identity-based KEM has IND-CCA security (in the security model for

504 CHAPTER 23. ENCRYPTION FROM DISCRETE LOGARITHMS

identity-based encryption as briefly mentioned above) assuming that the BDH problem
is hard. We refer to Boneh and Franklin [80, 81] for full details and security proofs.

There is a large literature on identity-based encryption and its extensions, including
schemes that are secure in the standard model. We do not discuss these topics further in
this book.

Part VI

Cryptography Related to
Integer Factorisation

505

Chapter 24

The RSA and Rabin
Cryptosystems

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

The aim of this chapter is to briefly present some cryptosystems whose security is
based on computational assumptions related to the integer factorisation problem. In
particular, we study the RSA and Rabin cryptosystems. We also present some security
arguments and techniques for efficient implementation.

Throughout the chapter we take 3072 bits as the benchmark length for an RSA mod-
ulus. We make the assumption that the cost of factoring a 3072-bit RSA modulus is 2128

bit operations. These figures should be used as a very rough guideline only.

24.1 The Textbook RSA Cryptosystem

Figure 24.1 recalls the “textbook” RSA cryptosystem, which was already presented in
Section 1.2. We remind the reader that the main application of RSA encryption is to
transport symmetric keys, rather than to encrypt actual documents. For digital signatures
we always sign a hash of the message, and it is necessary that the hash function used in
signatures is collision-resistant.

In Section 1.3 we noted that the security parameter κ is not necessarily the same as
the bit-length of the RSA modulus. In this chapter it will be convenient to ignore this,
and use the symbol κ to denote the bit-length of an RSA modulus N . We always assume
that κ is even.

As we have seen in Section 1.2, certain security properties can only be satisfied if the
encryption process is randomised. Since the RSA encryption algorithm is deterministic
it follows that the message m used in RSA encryption should be obtained from some
randomised padding scheme. For example, if N is a 3072-bit modulus then the
“message” itself may be a 256-bit AES key and may have 2815 random bits appended to

507

508 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

KeyGen(κ): (Assume κ even.) Generate two distinct primes p and q uniformly at
random in the range 2κ/2−1 < p, q < 2κ/2. Set N = pq so that 2κ−2 < N < 2κ is
represented by κ bits (see Exercise 24.1.1 to ensure that N has leading bit 1).
Choose a random κ-bit integer e coprime to (p− 1) and (q− 1) (or choose e = 216 + 1 =
65537 and insist p, q 6≡ 1 (mod e)). Define d = e−1 (mod λ(N)) where λ(N) = lcm(p−
1, q− 1) is the Carmichael lambda function. Output the public key pk = (N, e) and
the private key sk = (N, d).
Renaming p and q, if necessary, we may assume that p < q. Then p < q < 2p and so√
N/2 < p <

√
N .

In textbooks, the message space and ciphertext space are usually taken to be Cκ =
Mκ = (Z/NZ)∗, but it fits Definition 1.3.1 better (and is good training) to define them
to be Cκ = {0, 1}κ and Mκ = {0, 1}κ−2 or {0, 1}κ−1.

Encrypt(m, (N, e)): Assume that m ∈ Mκ.

• Compute c = me (mod N) (see later for padding schemes).

• Return the ciphertext c.

Decrypt(c, (N, d)): Compute m = cd (mod N) and output either m, or ⊥ if m 6∈ Mκ.

Sign(m, (N, d)): Compute s = md (mod N).

Verify(m, s, (N, e)): Check whether m ≡ se (mod N).

Figure 24.1: Textbook RSA Public Key Encryption and Signature Schemes.

it. More elaborate padding schemes will be described in Section 24.7.2.

Exercise 24.1.1. Give a KeyGen algorithm that takes as input a security parameter κ
(assumed to be even) and an l-bit string u (where l < κ/2) and outputs a κ-bit product
N = pq of two κ/2-bit primes such that the l most significant bits of N are equal to u.
In particular, one can ensure that 2κ−1 < N < 2κ and so N is a κ-bit integer.

Exercise 24.1.2. Let N ∈ N. Prove that the Carmichael function λ(N) divides the
Euler function ϕ(N). Prove that RSA decryption does return the message.

An odd prime p is a safe prime (or Sophie-Germain prime) if (p − 1)/2 is also
prime (see Exercise 12.2.10). For certain applications it is necessary to restrict to RSA
moduli that are products of safe primes (usually so that (Z/NZ)∗ has no elements of
small order, except for order 2). It is conjectured that there is some constant c > 0 such
that, for all sufficiently large k ∈ N, there are at least c2k/k2 safe primes p such that
2k−1 < p < 2k.

Exercise 24.1.3. Once upon a time it was thought to be necessary to insist that p and
q be strong primes for RSA.1 A prime p is a strong prime if p − 1 and p + 1 have
large prime factors r1 and r2 respectively, and r1 − 1 has a large prime factor r3. It is
conjectured that there are infinitely many strong primes. Give an algorithm that takes as
input integers k, k1, k2, k3 such that k3 < k1 < k and k2 < k and generates a k-bit strong
prime p such that each prime ri as above has ki bits.

1This was so that N = pq would not succumb to certain special purpose factoring algorithms. Nowa-
days it is realised that if p and q are chosen uniformly at random then no special purpose factoring
algorithm will be successful with noticeable probability and so it is unnecessary to test for special cases.

24.1. THE TEXTBOOK RSA CRYPTOSYSTEM 509

24.1.1 Efficient Implementation of RSA

As we have seen in Section 12.2, κ/2-bit probable primes can be found in expected time
of O(κ5) bit operations (or O(κ4+o(1)) using fast arithmetic). One can make this provable
using the AKS method, with asymptotic complexity O(κ5+o(1)) bit operations using fast
arithmetic. In any case, RSA key generation is polynomial-time. A more serious challenge
is to ensure that encryption and decryption (equivalently, signing and verification) are as
fast as possible.

Encryption and decryption are exponentiation modulo N and thus requireO(log(N)M(log(N)))
bit operations, which is polynomial-time. For current RSA key sizes, Karatsuba multi-
plication is most appropriate, hence one should assume that M(log(N)) = log(N)1.58.
Many of the techniques mentioned in earlier chapters to speed up exponentiation can be
used in RSA, particularly sliding window methods. Since e and d are fixed one can also
pre-compute addition chains to minimise the cost of exponentiation.

In practice the following two improvements are almost always used.

• Small public exponents e (also called low-exponent RSA). Traditionally e = 3
was proposed, but these days e = 65537 = 216 + 1 is most common. Encryption
requires only 16 modular squarings and a modular multiplication.

• Use the Chinese remainder theorem (CRT) to decrypt.2 Let dp ≡ e−1 (mod p− 1)
and dq ≡ e−1 (mod q − 1). These are called the CRT private exponents. Given
a ciphertext c one computes mp = cdp (mod p) and mq = cdq (mod q). The message
m is then computed using the Chinese remainder theorem (it is convenient to use
the method of Exercise 2.6.3 for the CRT).

For this system the private key is then sk = (p, q, dp, dq). If we denote by T =
c log(N)M(log(N)) the cost of a single exponentiation modulo N to a power d ≈ N
then the cost using the Chinese remainder theorem is approximately 2c(log(N)/2)M(log(N)/2)
(this is assuming the cost of the Chinese remaindering is negligible). When using
Karatsuba multiplication this speeds up RSA decryption by a factor of approxi-
mately 3 (in other words, the new running time is a third of the old running time).

24.1.2 Variants of RSA

There has been significant effort devoted to finding more efficient variants of the RSA
cryptosystem. We briefly mention some of these now.

Example 24.1.4. (Multiprime-RSA3) Let p1, . . . , pk be primes of approximately κ/k
bits and let N = p1 · · · pk. One can use N as a public modulus for the RSA cryptosystem.
Using the Chinese remainder theorem for decryption has cost roughly the same as k
exponentiations to powers of bit-length κ/k and modulo primes of bit-length κ/k. Hence,
the speedup is roughly by a factor k/k2.58 = 1/k1.58.

To put this in context, going from a single exponentiation to using the Chinese re-
mainder theorem in the case of 2 primes gave a speedup by a factor of 3. Using 3 primes
gives an overall speedup by a factor of roughly 5.7, which is a further speedup of a factor
1.9 over the 2-prime case. Using 4 primes gives an overall speedup of about 8.9, which is
an additional speedup over 3 primes by a factor 1.6.

However, there is a limit to how large k can be, as the complexity of the elliptic curve
factoring method mainly depends on the size of the smallest factor of N .

2This idea is often credited to Quisquater and Couvreur [493] but it also appears in Rabin [494].
3This idea was proposed (and patented) by Collins, Hopkins, Langford and Sabin.

510 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

Exercise 24.1.5. (Tunable balancing of RSA) An alternative approach is to construct the
public key (N = pq, e) so that the Chinese remainder decryption exponents are relatively
short. The security of this system will be discussed in Section 24.5.2.

Let κ, ne, nd be the desired bit-lengths of N, e and d (mod p − 1), d (mod q − 1).
Assume that ne + nd > κ/2. Give an algorithm to generate primes p and q of bit-length
κ/2, integers dp and dq of bit-length nd and an integer e of bit-length ne such that
edp ≡ 1 (mod p− 1) and edq ≡ 1 (mod q − 1).

The fastest variant of RSA is due to Takagi and uses moduli of the form N = prq.
For some discussion about factoring such integers see Section 19.4.3.

Example 24.1.6. (Takagi-RSA [599]) Let N = prq where p and q are primes and r > 1.
Suppose the public exponent e in RSA is small. One can compute cd (mod N) as follows.
Let dp ≡ d (mod p − 1) and dq ≡ d (mod q − 1). One first computes mp = cdp (mod p)
and mq = cdq (mod q).

To determine m (mod pr) one uses Hensel lifting. If we have determined mi =
m (mod pi) such that me

i ≡ c (mod pi) then we lift to a solution modulo pi+1 by writing
mi+1 = mi + xpi, where x is a variable. Then

me
i+1 = (mi + xpi)e ≡ me

i + x(eme−1
i)pi ≡ c (mod pi+1) (24.1)

gives a linear equation in x modulo p. Note that computing me
i (mod pi+1) in equa-

tion (24.1) is only efficient when e is small. If e is large then the Hensel lifting stage is no

faster than just computing ce
−1 (mod ϕ(pr)) (mod pr) directly.

The total cost is two “full” exponentiations to compute mp and mq, r−1 executions of
the Hensel lifting stage, plus one execution of the Chinese remainder theorem. Ignoring
everything except the two big exponentiations one has an algorithm whose cost is 2/(r+
1)2.58 times faster than naive textbook RSA decryption. Taking r = 2 this is about 9
times faster than standard RSA (i.e., about 1.6 times faster than using 3-prime RSA) and
taking r = 3 is about 18 times faster than standard RSA (i.e., about 2 times faster than
using 4-prime RSA).

Exercise 24.1.7. Let N = (220 + 7)3(219 + 21) and let c = 474776119073176490663504
be the RSA encryption of a message m using public exponent e = 3. Determine the
message using the Takagi decryption algorithm.

Exercise 24.1.8. Describe and analyse the RSA cryptosystem using moduli of the form
N = prqs. Explain why it is necessary that r 6= s.

Exercise 24.1.9. Write pseudocode for Takagi-RSA decryption.

Exercise 24.1.10. (Shamir’s RSA for paranoids [548]) Let N = pq where q is much
larger than p (for example, p ≈ 2500 and q ≈ 24500). The assumption is that factoring
numbers of this form is much harder than factoring N = pq where p, q ≈ 2500. Suppose
one is encrypting a (padded) message m such that 1 ≤ m < p and suppose we use public
exponent e > 2 log2(N)/ log2(p) (so that, typically, me ≈ N2). Encryption is computing
c = me (mod N) as usual. Shamir’s observation is that one can decrypt by computing
m = cdp (mod p) where edp ≡ 1 (mod p− 1).

How much faster is this than RSA decryption using CRT with a 5000-bit modulus if
the primes have equal size? If no padding scheme is used (i.e., every 1 ≤ m < p is a valid
message) give an adaptive (CCA1) attack on this scheme that yields the factorisation of
a user’s modulus.

24.1. THE TEXTBOOK RSA CRYPTOSYSTEM 511

24.1.3 Security of Textbook RSA

We have presented “textbook” RSA above. This is unsuitable for practical applications for
many reasons. In practice, RSA should only be used with a secure randomised padding
scheme. Nevertheless, it is instructive to consider the security of textbook RSA with
respect to the security definitions presented earlier.

Exercise 1.3.4 showed that textbook RSA encryption does not have OWE-CCA se-
curity and Exercise 1.3.9 showed that textbook RSA signatures do not have existential
forgery security even under a passive attack. We recall one more easy attack.

Exercise 24.1.11. Show that one can use the Jacobi symbol to attack the IND-CPA
security of RSA encryption.

Despite the fact that RSA is supposed to be related to factoring, the security actually
relies on the following computational problem.

Definition 24.1.12. Let N, e be such that gcd(e, λ(N)) = 1. The RSA problem
(also called the e-th roots problem) is: Given y ∈ (Z/NZ)∗ to compute x such that
xe ≡ y (mod N).

It is clear that the RSA problem is not harder than factoring.

Lemma 24.1.13. The OWE-CPA security of textbook RSA is equivalent to the RSA
problem.

Proof: (Sketch) We show that an algorithm to break OWE-CPA security of textbook
RSA can be used to build an algorithm to solve the RSA problem. Let A be an adversary
against the OWE-CPA security of RSA. Let (N, e, c) be a challenge RSA problem instance.
If 1 < gcd(c, N) < N then split N and solve the RSA problem. Otherwise, call the
adversary A on the public key (N, e) and offer the challenge ciphertext c. If A returns
the message m then we are done. If A returns ⊥ (e.g., because the decryption of c does
not lie in Mκ) then replace c by cre (mod N) for a random 1 < r < N and repeat. When
Mκ = {0, 1}κ−2 then, with probability at least 1/4, the reduction will succeed, and so one
expects to perform 4 trials. The converse is also immediate. �

Exercise 24.1.14. Show that textbook RSA has selective signature forgery under passive
attacks if and only if the RSA problem is hard.

One of the major unsolved problems in cryptography is to determine the relationship
between the RSA problem and factoring. There is no known reduction of factoring to
breaking RSA. Indeed, there is some indirect evidence that breaking RSA with small
public exponent e is not as hard as factoring: Boneh and Venkatesan [87] show that an
efficient “algebraic reduction”4 from FACTOR to low-exponent RSA can be converted
into an efficient algorithm for factoring. Similarly, Coppersmith [141] shows that some
variants of the RSA problem, where e is small and only a small part of an e-th root x is
unknown, are easy (see Exercise 19.1.15).

Definition 24.1.15 describes some computational problems underlying the security of
RSA. The reader is warned that some of these names are non-standard.

Definition 24.1.15. Let S be a set of integers, for example S = N or S = {pq : p and q
are primes such that p < q < 2p}. We call the latter set the set of RSA moduli.

4We do not give a formal definition. Essentially this is an algorithm that takes as input N , queries an
oracle for the RSA problem, and outputs a finite set of short algebraic formulae, one of which splits the
integer N .

512 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

FACTOR: Given N ∈ S to compute the list of prime factors of N .

COMPUTE-PHI: Given N ∈ S to compute ϕ(N).

COMPUTE-LAMBDA: Given N ∈ S to compute λ(N).

RSA-PRIVATE-KEY: Given (N, e) ∈ S ×N to output ⊥ if e is not coprime to λ(N),
or d such that ed ≡ 1 (mod λ(N)).

Exercise 24.1.16. Show that RSA ≤R RSA-PRIVATE-KEY≤R COMPUTE-LAMBDA
≤R FACTOR for integers N ∈ N.

Exercise 24.1.16 tells us that FACTOR is at least as hard as RSA. A more useful
interpretation is that the RSA problem is no harder than factoring. We are interested in
the relative difficulty of such problems, as a function of the input size. Lemma 24.1.17 is
the main tool for comparing these problems.5

Lemma 24.1.17. Let A be a perfect oracle that takes as input an integer N and outputs a
multiple of λ(N). Then one can split N in randomised polynomial-time using an expected
polynomially many queries to A.

Proof: Let N be the integer to be factored. We may assume that N is composite, not
a prime power, odd and has no very small factors. Let M be the output of the oracle
A on N . (Note that the case of non-perfect oracles is not harder: one can easily test
whether the output of A is correct by taking a few random integers 1 < a < N such that
gcd(a,N) = 1 and checking whether aM ≡ 1 (mod N).)

Since N is odd we have that M is even. Write M = 2rm where m is odd. Now
choose uniformly at random an integer 1 < a < N . Check whether gcd(a,N) = 1. If not
then we have split N , otherwise compute a0 = am (mod N), a1 = a20 (mod N), . . . , ar =
aM (mod N) (this is similar to the Miller-Rabin test; see Section 12.1.2). We know that
ar = 1, so either a0 = 1 or else somewhere along the way there is a non-trivial square root
x of 1. If x 6= −1 then gcd(x + 1, N) yields a non-trivial factor of N . All computations
require a polynomially bounded number of bit operations.

Let p and q be two distinct prime factors of N . Since a is chosen uniformly at random
it follows that gcd(a,N) > 1 or (ap) = −(aq) with probability at least 1/2. In either case
the above process splits N . The expected number of trials to split N is therefore at most
2.

Repeating the above process on each of the factors in turn one can factorN completely.
The expected number of iterations is O(log(N)). For a complete anaysis of this reduction
see Section 7.7 of Talbot and Welsh [600] or Section 10.6 of Shoup [556]. �

Two special cases of Lemma 24.1.17 are FACTOR ≤R COMPUTE-LAMBDA and
FACTOR ≤R COMPUTE-PHI. Note that these reductions are randomised and the run-
ning time is only an expected value. Coron and May [151] showed a deterministic poly-
nomial time reduction FACTOR ≤R RSA-PRIVATE-KEY (also see Section 4.6 of [411]).

Exercise 24.1.18. Restricting attention to integers of the form N = pq where p and q
are distinct primes, show that FACTOR ≤R RSA-PRIVATE KEY.

Exercise 24.1.19. Give a more direct (and deterministic) reduction of FACTOR to
COMPUTE-PHI for integers of the form N = pq where p and q are distinct primes.

5The original RSA paper credits this result to G. Miller.

24.2. THE TEXTBOOK RABIN CRYPTOSYSTEM 513

Exercise 24.1.20.⋆ Suppose one has a perfect oracle A that takes as input pairs (N, g),
where N is an RSA modulus and g is uniformly chosen in (Z/NZ)∗, and returns the
order of g modulo N . Show how to use A to factor an RSA modulus N in expected
polynomial-time.

Exercise 24.1.21. The STRONG-RSA problem is: Given an RSA modulus N and
y ∈ N to find any pair (x, e) of integers such that e > 1 and

xe ≡ y (mod N).

Give a reduction from STRONG-RSA to RSA. This shows that the STRONG-RSA prob-
lem is not harder than the RSA problem.6

We end with some cryptanalysis exercises.

Exercise 24.1.22. Let N = pq be an RSA modulus. Let A be an oracle that takes as
input an integer a and returns a (mod ϕ(N)). Show how to use A to factor N .

An interesting question is to study the bit security of RSA. More precisely, if (N, e) is
an RSA public key one considers an (not necessarily perfect) oracle which computes the
least significant bit of x given y = xe (mod N). It can be shown that if one has such an
oracle then one can compute x. One approach is to use the binary Euclid algorithm; due
to lack of space we simply refer to Alexi, Chor, Goldreich and Schnorr [9] for details of
the method and a comprehensive list of references. A simpler approach, which does not
use the binary Euclid algorithm, was given by Fischlin and Schnorr [203]. A complete
analysis of the security of any bit (not just the least significant bit) was completed by
H̊astad and Näslund [279].

Exercise 24.1.23. Consider the following variant of RSA encryption. Alice has a public
keyN and two public exponents e1, e2 such that e1 6= e2 and gcd(ei, λ(N)) = 1 for i = 1, 2.
To encrypt to Alice one is supposed to send c1 = me1 (mod N) and c2 = me2 (mod N).
Show that if gcd(e1, e2) = 1 then an attacker can determine the message given the public
key and a ciphertext (c1, c2).

Exercise 24.1.24. Consider the following signature scheme based on RSA. The public
key is an integer N = pq, an integer e coprime to λ(N) and an integer a such that
gcd(a,N) = 1. The private key is the inverse of e modulo λ(N), as usual. Let H be a
collision-resistant hash function. The signature on a message m is an integer s such that

se ≡ aH(m) (mod N)

where H(m) is interpreted as an integer. Explain how the signer can generate signatures
efficiently. Find a known message attack on this system that allows an adversary to make
selective forgery of signatures.

24.2 The Textbook Rabin Cryptosystem

The textbook Rabin cryptosystem [494] is given in Figure 24.2. Rabin is essentially RSA
with the optimal choice of e, namely e = 2.7 As we will see, the security of Rabin is

6The word “strong” is supposed to indicate that the assumption that STRONG-RSA is hard is a
stronger assumption than the assumption that RSA is hard. Of course, the computational problem is
weaker than RSA, in the sense that it might be easier to solve STRONG-RSA than RSA.

7The original paper [494] proposed encryption as EN,b(x) = x(x + b) (mod N) for some integer b.
However, there is a gain in efficiency with no loss of security by taking b = 0.

514 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

more closely related to factoring than RSA. We first have to deal with the problem that if
N = pq where p and q are distinct primes then squaring is a four-to-one map (in general)
so it is necessary to have a rule to choose the correct solution in decryption.

Lemma 24.2.1. Suppose p and q are primes such that p ≡ q ≡ 3 (mod 4). Let N = pq
and 1 < x < N be such that (xN) = 1. Then either x or N − x is a square modulo N .

Exercise 24.2.2. Prove Lemma 24.2.1.

Definition 24.2.3. Let p ≡ q ≡ 3 (mod 4) be primes. Then N = pq is called a Blum
integer.

KeyGen(κ): Generate two random κ/2-bit primes p and q such that p ≡ q ≡ 3 (mod 4)
and set N = pq. Output the public key pk = N and the private key sk = (p, q).

The message space and ciphertext space depend on the redundancy scheme (suppose
for the moment that they are Cκ = Mκ = (Z/NZ)∗).

Encrypt(m, N): Compute c = m2 (mod N) (with some redundancy or padding
scheme).

Decrypt(c, (p, q)): We want to compute
√
c (mod N), and this is done by the following

method: Compute mp = c(p+1)/4 (mod p) and mq = c(q+1)/4 (mod q) (see Section 2.9).
Test that m2

p ≡ c (mod p) and m2
q ≡ c (mod q), and if not then output ⊥. Use the

Chinese remainder theorem (Exercise 2.6.3) to obtain four possibilities for m (mod N)
such that m ≡ ±mp (mod p) and m ≡ ±mq (mod q). Use the redundancy (see later) to
determine the correct value m and return ⊥ if there is no such value.

Sign(m, (p, q)): Ensure that (m

N) = 1 (possibly by adding some randomness). Then
either m or N − m is a square modulo N . Compute s =

√±m (mod N) by comput-
ing (±m)(p+1)/4 (mod p), (±m)(q+1)/4 (mod q) and applying the Chinese remainder
theorem.

Verify(m, s, N): Check whether m ≡ ±s2 (mod N).

Figure 24.2: Textbook Rabin.

Note that, as with RSA, the value m in encryption is actually a symmetric key (passed
through a padding scheme) while in signing it is a hash of the message. The choice
of p, q ≡ 3 (mod 4) is to simplify the taking of square roots (and is also used in the
redundancy schemes below); the Rabin scheme can be used with other moduli.

24.2.1 Redundancy Schemes for Unique Decryption

To ensure that decryption returns the correct message it is necessary to have some redun-
dancy in the message, or else to send some extra bits. We now describe three solutions
to this problem.

• Redundancy in the message for Rabin: For example, insist that the least
significant l bits (where l > 2 is some known parameter) of the binary string m are
all ones. (Note 8.14 of [418] suggests repeating the last l bits of the message.) If l is
big enough then it is unlikely that two different choices of square root would have
the right pattern in the l bits.

24.2. THE TEXTBOOK RABIN CRYPTOSYSTEM 515

A message m is encoded as x = 2lm + (2l − 1), and so the message space is Mκ =
{m : 1 ≤ m < N/2l, gcd(N, 2lm + (2l − 1)) = 1} (alternatively, Mκ = {0, 1}κ−l−2).
The ciphertext is c = x2 (mod N). Decryption involves computing the four square
roots of c. If none, or more than one, of the roots has all l least significant bits
equal to one and so corresponds to an element of Mκ then decryption fails (return
⊥). Otherwise output the message m = ⌊x/2l⌋.
This method is a natural choice, since some padding schemes for CCA security (such
as OAEP) already have sections of the message with a fixed pattern of bits.

Note that, since N is odd, the least significant bit of N − x is different to the
least significant bit of x. Hence, the l ≥ 1 least significant bits of x and N − x
are never equal. Treating the other two square roots of x2 (mod N) as random
integers it is natural to conjecture that the probability that either of them has a
specific pattern of their l least significant bits is roughly 2/2l. This conjecture is
confirmed by experimental evidence. Hence, the probability of decryption failure is
approximately 1/2l−1.

• Extra bits for Rabin: Send two extra bits of information to specify the square
root. For example, one could send the value b1 = (m

N) of the Jacobi symbol (the set
{−1, 1} can be encoded as a bit under the map x 7→ (x+1)/2), together with the least
significant bit b2 of the message. The ciphertext space is now Cκ = (Z/NZ)∗×{0, 1}2
and, for simplicity of exposition, we take Mκ = (Z/NZ)∗.

These two bits allow unique decryption, since (−1
N) = 1, m and N − m have the

same Jacobi symbol, and if m is odd then N −m is even.

Indeed, when using the Chinese remainder theorem to compute square roots then
one computes mp and mq such that (

mp

p) = (
mq

q) = 1. Then decryption using the

bits b1, b2 is: if b1 = 1 then the decryption is ±CRT (mp,mq) and if b1 = −1 then
solution is ±CRT (−mp,mq).

This scheme is close to optimal in terms of ciphertext expansion (though see Exer-
cise 24.2.6 for an improvement) and decryption never fails. The drawbacks are that
the ciphertext contains some information about the message (and so the scheme is
not IND-CPA secure), and encryption involves computing the Jacobi symbol, which
typically requires far more computational resources than the single squaring modulo
N .

• Williams: Let N = pq where p, q ≡ 3 (mod 4). If p 6≡ ±q (mod 8) then (2
N) = −1.

Hence, for every 1 ≤ x < N exactly one of x, N − x, 2x, N − 2x is a square
modulo N (see Exercise 24.6.3). Without loss of generality we therefore assume
that p ≡ 3 (mod 8) and q ≡ 7 (mod 8). The integer N is called a Williams
integer in this situation.

Williams [633] suggests encoding a message 1 ≤ m < N/8 − 1 (alternatively, m ∈
Mκ = {0, 1}κ−5) as an integer x such that x is even and (xN) = 1 (and so x or −x
is a square modulo N) by

x = P (m) =

{
4(2m + 1) if (2m+1

N) = 1,
2(2m + 1) if (2m+1

N) = −1

The encryption of m is then c = P (m)2 (mod N). One has Cκ = (Z/NZ)∗.

To decrypt one computes square roots to obtain the unique even integer 1 < x < N
such that (xN) = 1 and x2 ≡ c (mod N). If 8 | x then decryption fails (return
⊥). Otherwise, return m = (x/2 − 1)/2 if x ≡ 2 (mod 4) and m = (x/4 − 1)/2 if
x ≡ 0 (mod 4).

516 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

Unlike the extra bits scheme, this does not reveal information about the ciphertext.
It is almost optimal from the point of view of ciphertext expansion. But it still
requires the encrypter to compute a Jacobi symbol (hence losing the performance
advantage of Rabin over RSA). The Rabin cryptosystem with the Williams padding
is sometimes called the Rabin-Williams cryptosystem.

Exercise 24.2.4. Prove all the unproved claims in the above discussion of the Williams
redundancy scheme.

Exercise 24.2.5. Let N = (259 + 21)(220 + 7). The three ciphertexts below are Rabin
encryptions for each of the three redundancy schemes above (in the first case, l = 5).
Determine the corresponding message in each case.

273067682422 , (309135051204,−1, 0) , 17521752799.

Exercise 24.2.6. (Freeman-Goldreich-Kiltz-Rosen-Segev [211]) Let N be a Williams
integer. This is a variant of the “extra bits” method. Let u1 = −1 and u2 = 2. To
encrypt message m ∈ (Z/NZ)∗ one first determines the bits b1 and b2 of the “extra bits”
redundancy scheme (i.e., b1 = 1 if and only if (m

N) = +1 and b2 is the least significant bit
of m). Compute the ciphertext

c = m2u1−b11 ub22 (mod N).

Show how a user who knows p and q can decrypt the ciphertext. Show that this scheme
still leaks the least significant bit of m (and hence is still not IND-CPA secure), but no
longer leaks (m

N).

24.2.2 Variants of Rabin

In terms of computational performance, Rabin encryption is extremely fast (as long as
encryption does not require computing a Jacobi symbol) while decryption, using the
Chinese remainder theorem, is roughly the same speed as RSA decryption.

Exercise 24.2.7. Describe and analyse the Rabin cryptosystem using moduli of the form
N = pqr where p, q and r are distinct primes. What are the advantages and disadvantages
of Rabin in this setting?

Exercise 24.2.8. (Takagi-Rabin) Describe and analyse the Rabin cryptosystem using
moduli of the form N = prqs (r 6= s). Is there any advantage from using Rabin in this
setting?

We now discuss compression of Rabin signatures. For further discussion of these ideas,
and an alternative method, see Gentry [252].

Example 24.2.9. (Bleichenbacher [68]) Suppose s is a Rabin signature on a message m,
so that s2 ≡ ±H(m) (mod N). To compress s to half the size one uses the Euclidean
algorithm on (s, N) to compute a sequence of values ri, ui, vi ∈ Z such that ri = uis+viN .
Let i be the index such that |ri| <

√
N < |ri−1|. Then ri ≡ uis (mod N) and so

r2i ≡ u2i s2 ≡ ±u2iH(m) (mod N).

One can therefore send ui as the signature. Verification is to compute w = ±u2iH(m) (mod N)
and check that w is a perfect square in Z (e.g., using the method of Exercise 2.4.9 or Ex-
ercise 2.2.8). Part 6 of Lemma 2.3.3 states |ri−1ui| ≤ N and so |ui| <

√
N . Hence, this

approach compresses the signature to half the size.

24.2. THE TEXTBOOK RABIN CRYPTOSYSTEM 517

Example 24.2.10. (Bernstein; Coron and Naccache) Another way to compress Rabin
signatures is to send the top half of the bits of s. In other words, the signature is
s′ = ⌊s/2κ/2⌋ if N < 2κ. To verify s′ one uses Coppersmith’s method to find the small
solution x to the equation

(s′2κ/2 + x)2 ±H(m) ≡ 0 (mod N).

Verification of this signature is much slower than the method of Example 24.2.9.

24.2.3 Security of Textbook Rabin

Since the Rabin cryptosystem involves squaring it is natural to assume the security is
related to computing square roots modulo N , which in turn is equivalent to factoring.
Hence, an important feature of Rabin compared with RSA is that the hardness of breaking
Rabin can be shown to be equivalent to factoring.

Definition 24.2.11. Let S = N or S = {pq : p, q ≡ 3 (mod 4), primes}. The computa-
tional problem SQRT-MOD-N is: Given N ∈ S and y ∈ Z/NZ to output ⊥ if y is not
a square modulo N , or a solution x to x2 ≡ y (mod N).

Lemma 24.2.12. SQRT-MOD-N is equivalent to FACTOR.

Proof: Suppose we have a FACTOR oracle and are given a pair (N, y). Then one can
use the oracle to factor N and then solve SQRT-MOD-N using square roots modulo p and
Hensel lifting and the Chinese remainder theorem. This reduction is polynomial-time.

Conversely, suppose we have a SQRT-MOD-N oracle A and let N be given. First, if
N = pe then we can factor N in polynomial time (see Exercise 2.2.9). Hence we may now
assume that N has at least two distinct prime factors.

Choose a random x ∈ Z∗
N and set y = x2 (mod N). Call A on y to get x′. We have

x2 ≡ (x′)2 (mod N) and there are at least four possible solutions x′. All but two of
these solutions will give a non-trivial value of gcd(x − x′, N). Hence, since x was chosen
randomly, there is probability at least 1/2 that we can split N . Repeating this process
splits N (the expected number of trials is at most 2). As in Lemma 24.1.17 one can
repeat the process to factor N in O(log(N)) iterations. The entire reduction is therefore
polynomial-time. �

An important remark about the above proof is that the oracle A is not assumed to
output a random square root x′ of y. Indeed, A could be deterministic. The randomness
comes from the choice of x in the reduction.

Exercise 24.2.13. Consider the computational problem FOURTH-ROOT: Given y ∈ Z∗
N

compute a solution to x4 ≡ y (mod N) if such a solution exists. Give reductions that show
that FOURTH-ROOT is equivalent to FACTOR in the case N = pq with p, q distinct
odd primes.

It is intuitively clear that any algorithm that breaks the one-way encryption property
(or selective signature forgery) of Rabin under passive attacks must compute square roots
modulo N . We have seen that SQRT-MOD-N is equivalent to FACTOR. Thus we expect
breaking Rabin under passive atacks to be as hard as factoring. However, giving a precise
security proof involves taking care of the redundancy scheme.

Theorem 24.2.14. Let N = pq, where p ≡ q ≡ 3 (mod 4) are primes, and define SN,l =
{1 ≤ x < N : gcd(x,N) = 1, 2l | (x + 1)}. Assume the probability, over x ∈ Z∗

N − SN,l,
that there exists y ∈ SN,l with x 6= y but x2 ≡ y2 (mod N), is 1/2l−1. Then breaking

518 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

the one-way encryption security property of the Rabin cryptosystem with the “redundancy
in the message” redundancy scheme where l = O(log(log(N))) under passive attacks is
equivalent to factoring Blum integers.

Theorem 24.2.15. Breaking the one-way encryption security property of the Rabin cryp-
tosystem with the “extra bits” redundancy scheme under passive attacks is equivalent to
factoring products N = pq of primes p ≡ q ≡ 3 (mod 4).

Theorem 24.2.16. Breaking the one-way encryption security property of the Rabin cryp-
tosystem with the Williams redundancy scheme under passive attacks is equivalent to fac-
toring products N = pq of primes p ≡ q ≡ 3 (mod 4), p 6≡ ±q (mod 8).

Note that Theorem 24.2.14 gives a strong security guarantee when l is small, but in
that case decryption failures are frequent. Indeed, there is no choice of l for the Rabin
scheme with redundancy in the message that provides both a tight reduction to factoring
and negligible probability of decryption failure.

We prove the first and third of these theorems and leave Theorem 24.2.15 as an
exercise.
Proof: (Theorem 24.2.14) Let A be an oracle that takes a Rabin public key N and
a ciphertext c (with respect to the “redundancy in the message” padding scheme) and
returns either the corresponding message m or an invalid ciphertext symbol ⊥.

Choose a random x ∈ Z∗
N such that neither x nor N−x satisfy the redundancy scheme

(i.e., the l least significant bits are not all 1). Set c = x2 (mod N) and call the oracle A
on c. The oracle A answers with either a message m or ⊥.

According to the (heuristic) assumption in the theorem, the probability that exactly
one of the two (unknown) square roots of c modulo N has the correct l least significant
bits is 2−(l−1). If this is the case then calling the oracle A on c will output a value m such
that, writing x′ = 2lm + (2l − 1), we have (x′)2 ≡ x2 (mod N) and x′ 6≡ ±x (mod N).
Hence gcd(x′ − x,N) will split N .

We expect to require approximately 2l−1 trials before factoring N with this method.
Hence, the reduction is polynomial-time if l = O(log(log(N))). �

Proof: (Proof of Theorem 24.2.16; following Williams [633]) Let A be an oracle that
takes a Rabin public key N and a ciphertext c (with respect to the Williams redundancy
scheme) and returns either the corresponding message m or an invalid ciphertext symbol
⊥.

Choose a random integer x such that (xN) = −1, e.g., let x = ±2z2 (mod N) for
random z ∈ (Z/NZ)∗. Set c = x2 (mod N) and call A on (N, c). The oracle computes

the unique even integer 1 < x′ < N such that (x′)2 ≡ c (mod N) and (x
′

N) = 1. The
oracle then attempts to decode x′ to obtain the message. If 8 ∤ x′ (which happens with
probability 3/4) then decoding succeeds and the corresponding message m is output by
the oracle. Given m we can recover the value x′ as 2(2m+ 1) or 4(2m+ 1), depending on
the value of (2m+1

N), and then factor N as gcd(x′ − x,N).
If 8 | x′ then the oracle outputs ⊥ so we compute c′ = c2−4 (mod N) and call the

oracle on c′. The even integer x′′ computed by the oracle is equal to x′/4 and so the
above argument may apply. In extremely rare cases one might have to repeat the process
1
2 log2(N) times, but the expected number of trials is constant. �

Exercise 24.2.17. Prove Theorem 24.2.15.

Exercise 24.2.18. Prove Theorem 24.2.14 when the message space is {0, 1}κ−l−2.

The above theorems show that the hardness guarantee for the Rabin cryptosystem is
often stronger than for the RSA cryptosystem (at least, under passive attacks). Hence

24.2. THE TEXTBOOK RABIN CRYPTOSYSTEM 519

the Rabin cryptosystem is very attractive: it has faster public operations and also has a
stronger security guarantee than RSA. On the other hand, the ideas used in the proofs of
these theorems can also be used to give adaptive (CCA) attacks on the Rabin scheme that
allow the attacker to determine the private key (i.e., the factorisation of the modulus). In
comparison, a CCA attack on textbook RSA only decrypts a single message rather than
computes the private key.

Example 24.2.19. We describe a CCA attacker giving a total break of Rabin with
“redundancy in the message”.

As in the proof of Theorem 24.2.14 the adversary chooses a random x ∈ Z∗
N such that

neither x nor N − x satisfy the redundancy scheme (i.e., the l least significant bits are
not all 1). Set c = x2 (mod N) and call the decryption oracle on c. The oracle answers
with either a message m or ⊥. Given m one computes x′ such that gcd(x′ − x,N) splits
N .

Exercise 24.2.20. Give CCA attacks giving a total break of Rabin when using the other
two redundancy schemes (“extra bits” and Williams).

As we have seen, the method to prove that Rabin encryption has one-way security
under a passive attack is also the method to give a CCA attack on Rabin encryption. It
was remarked by Williams [633] that such a phenomenon seems to be inevitable. This
remark has been formalised and discussed in detail by Paillier and Villar [477].

Exercise 24.2.21. Generalise Rabin encryption to N = pq where p ≡ q ≡ 1 (mod 3)
and encryption is c = m3 (mod N). How can one specify redundancy? Is the security
related to factoring in this case?

Exercise 24.2.22. Consider the following public key cryptosystem related to Rabin: A
user’s public key is a product N = pq where p and q are primes congruent to 3 modulo
4. To encrypt a message 1 < m < N to the user compute and send

c1 = m2 (mod N) and c2 = (m + 1)2 (mod N).

Show that if x2 ≡ y2 (mod N) and (x+ 1)2 ≡ (y + 1)2 (mod N) then x ≡ y (mod N).
Hence show that decryption is well-defined.

Show that this cryptosystem does not have OWE security under a passive attack.

24.2.4 Other Computational Problems Related to Factoring

We now give some other computational problems in algebraic groups modulo N that are
related to factoring.

Exercise 24.2.23. Let N = pq ∈ N be a product of two large primes p ≡ q ≡ 3 (mod 4)
and let G = {x2 : x ∈ (Z/NZ)∗}. Let A be an oracle for CDH in G (i.e., A(g, ga, gb) =
gab). Show how to use A to factor N .

Exercise 24.2.24. Let N = pq. Show how to factor N when given M = (p+ 1)(q + 1).

More generally, given N = pq and M = Φk(p)Φk(q) one can split N as follows: Write
F1(x, y) = xy − N and F2(x, y) = Φk(x)Φk(y) − M . One then takes the resultant of
F1(x, y) and F2(x, y) to get a polynomial G(x). Note that G(x) has p as a root, so one
can find p by taking real roots of G(x) to high precision.

Exercise 24.2.25. Let N = pq = 1125907426181141 and M = (p2 + p+ 1)(q2 + q+ 1) =
1267668742445499725931290297061. Determine p and q using resultants as above.

520 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

Exercise 24.2.26. Let N = pq where p ≡ q ≡ 1 (mod 4) are primes. Recall that the
torus T2(Z/NZ) has order (p + 1)(q + 1). Let G = {g2 : g ∈ T2(Z/NZ)}. Let A be an
oracle for CDH in G. Use the method of Exercise 24.2.23 to factor N using A.

Exercise 24.2.27. LetN = pq where p and q are odd primes and let E : y2 = x3+a4x+a6
be an elliptic curve. Suppose A is an oracle that, on input (P, [a]P, [b]P), where P has
odd order, outputs [ab]P in 〈P 〉. Explain why one can not immediately factor N using
this oracle. Consider now an oracle A, taking input (a4, a6, P, [a]P, [b]P) where P lies on
the elliptic curve y2 = x3 + a4x+ a6 modulo N and P has odd order, that outputs [ab]P .
Show how to use A to factor N .

There are two approaches to using information about #E(Z/NZ) to split N . One is
more suitable when one has an oracle that computes #E(Z/NZ) and the other is more
suitable when E is fixed.

Example 24.2.28. (Kunihiro and Koyama [358]) Let N = pq be a product of two primes.
Let A be an oracle that takes as input (N, a4, a6) and returns M = #E(Z/NZ) where
E : y2 = x3 + a4x+ a6.

Given the oracle A one can split N using exactly the same method as Lemma 24.1.17.
First choose a random elliptic curve E together with a point P on it modulo N . Use
the oracle A to compute M = #E(Z/NZ). Now, find small prime factors l of M (such
as l = 2) and compute [M/l]P = (x : y : z) in projective coordinates. There is a good
chance that l divides both #E(Fp) and #E(Fq) and that P (mod p) has order divisible
by l but P (mod q) does not. Hence, gcd(z,N) splits N .

Exercise 24.2.29. (Mart́ın Mollev́ı, Morillo and Villar [400]) Use the method of Exam-
ple 24.2.28 to show how to factorN given an oracleA that takes as input (N, a4, a6, xP , yP)
and returns the order of the point P = (xP , yP) ∈ E(Z/NZ).

Example 24.2.30. Let N = pq be a product of two primes. Let E : y2 = x3 + a4x+ a6
be an elliptic curve modulo N such that E is not supersingular modulo p or q. Let
M = #E(Z/NZ) be given.

Now choose a random integer 1 ≤ xP < N . There may not be a point on E(Z/NZ)
with x-coordinate xP . Indeed, we hope that there is not. Then there is a quadratic
twist E′ : uY 2 = X3 + a4X + a6 of E with a point P = (xP , yP) ∈ E′(Z/NZ). With
probability 1/2 we have #E(Fp) = #E′(Fp) but #E(Fp) 6= #E′(Fp) (or vice versa). It
is not necessary to compute yP or to determine E′. Using x-coordinate only arithmetic
on E one can compute the projective representation (xQ : zQ) for the x-coordinate of
Q = [M](xP , yP) on E′. Then gcd(zQ, N) splits N .

Exercise 24.2.31. Adapt the methods in Examples 24.2.28 and 24.2.30 to give alterna-
tive methods to factor N = pq given #T2(Z/NZ) or #T6(Z/NZ).

24.3 Homomorphic Encryption

Homomorphic encryption was defined in Section 23.3.1. We first remark that the textbook
RSA scheme is homomorphic for multiplication modulo N : If c1 ≡ me

1 (mod N) and c2 ≡
me

2 (mod N) then c1c2 ≡ (m1m2)e (mod N). Indeed, this property is behind the CCA
attack on textbook RSA encryption. Padding schemes can destroy this homomorphic
feature.

Exercise 24.3.1. Show that textbook Rabin encryption is not homomorphic for multi-
plication when using any of the redundancy schemes of Section 24.2.1.

24.3. HOMOMORPHIC ENCRYPTION 521

We now give a scheme that is homomorphic for addition, and that allows a much
larger range of values for the message compared with the scheme in Exercise 23.3.5.

Example 24.3.2. (Paillier [474]) Let N = pq be a user’s public key. To encrypt a
message m ∈ Z/NZ to the user choose a random integer 1 < u < N (note that, with
overwhelming probability, u ∈ (Z/NZ)∗) and compute the ciphertext

c = (1 +Nm)uN (mod N2).

To decrypt compute
cλ(N) ≡ 1 + λ(N)Nm (mod N2)

and hence determine m (mod N) (this requires multiplication by λ(N)−1 (mod N)).
The homomorphic property is: if c1 and c2 are ciphertexts encrypting m1 and m2

respectively, then
c1c2 ≡ (1 +N(m1 + m2))(u1u2)N (mod N2)

encrypts m1 + m2 (mod N).

Exercise 24.3.3. Verify the calculations in Example 24.3.2.

As always, one cannot obtain CCA secure encryption using a homomorphic scheme.
Hence, one is only interested in passive attacks. To check whether or not a Paillier cipher-
text c corresponds to a specific message m is precisely solving the following computational
problem.

Definition 24.3.4. Let N = pq. The composite residuosity problem is: Given
y ∈ Z/N2Z to determine whether or not y ≡ uN (mod N2) for some 1 < u < N .

Exercise 24.3.5. Show that the Paillier encryption scheme has IND-CPA security if and
only if the composite residuosity problem is hard.

Exercise 24.3.6. Show that composite residuosity is not harder than factoring.

Exercise 24.3.7. Show how to use the Chinese remainder theorem to speed up Paillier
decryption.

Encryption using the Paillier scheme is rather slow, since one needs an exponentiation
to the power N modulo N2. One can use sliding windows for this exponentiation, though
sinceN is fixed one might prefer to use an addition chain optimised for N . Exercises 24.3.8
and 24.3.9 suggest variants with faster encryption. The disadvantage of the scheme in
Exercise 24.3.8 is that it requires a different computational assumption. The disadvantage
of the scheme in Exercise 24.3.9 is that it is no longer homomorphic.

Exercise 24.3.8.⋆ Consider the following efficient variant of the Paillier cryptosystem.
The public key of a user consists of N and an integer h = uN (mod N2) where 1 < u < N
is chosen uniformly at random. To encrypt a message m to the user, choose a random
integer 0 ≤ x < 2k (e.g., with k = 256) and set

c ≡ (1 +Nm)hx (mod N2).

State the computational assumption underlying the IND-CPA security of the scheme.
Give an algorithm to break the IND-CPA security that requires O(2k/2) multiplications
modulo N2. Use multi-exponentiation to give an even more efficient variant of the Paillier
cryptosystem, at the cost of even larger public keys.

522 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

Exercise 24.3.9. (Catalano, Gennaro, Howgrave-Graham, Nguyen [125]) A version of
the Paillier cryptosystem for which encryption is very efficient is the following: The public
key is (N, e) such that gcd(e,Nλ(N)) = 1. One thinks of e as being small. To encrypt
one chooses a random integer 1 < u < N and computes

c = (1 +Nm)ue (mod N2).

Decryption begins by performing RSA decryption of c modulo N to obtain u.

Write down the decryption algorithm for this system. Explain why this encryption
scheme is no longer homomorphic.

Exercise 24.3.10. Consider the following variant of the Paillier cryptosystem: The
public key consists of N = pq and an integer g such that gλ(N) ≡ 1 + N (mod N2). To
encrypt a message 0 ≤ m < N compute gmuN (mod N2) where 1 < u < N is random.

Give key generation and decryption algorithms for this cryptosystem. Give a chosen
ciphertext attack on this cryptosystem that reveals the private key.8

Exercise 24.3.11. (Damg̊ard-Jurik [165]) Generalise the Paillier cryptosystem so the
message space is Z/NkZ. Explain how to decrypt.

Exercise 24.3.12. (Okamoto-Uchiyama [471]) Let N = p2q where p and q are distinct
primes of similar size such that p ∤ (q − 1). Choose a random element 1 < u < N (note
that, with overwhelming probability, u ∈ (Z/NZ)∗) and set g = uN(1 − p) (mod N).
The public key of the Okamoto-Uchiyama scheme is (N, g). To encrypt a message
m ∈ Z/pZ (in practice, since p is not known, one would assume 0 ≤ m < N1/3) one
chooses a random element 1 < u < N and computes

c = gmuN (mod N).

To decrypt one computes ((cp−1 (mod p2))− 1)/p.
Show that gp−1 ≡ 1 + p (mod p2) and hence that decryption does compute m. Show

that the scheme is homomorphic with respect to addition modulo p. Define the compu-
tational problem underlying the IND-CPA security of this scheme.

Show that if one has access to a decryption oracle then one can determine the factori-
sation of N .

24.4 Algebraic Attacks on Textbook RSA and Rabin

The goal of this section is to briefly describe a number of relatively straightforward attacks
on the textbook RSA and Rabin cryptosystems. These attacks can all be prevented if one
uses a sufficiently good padding scheme. Indeed, by studying these attacks one develops
a better idea of what properties are required of a padding scheme.

24.4.1 The H̊astad Attack

We now present an attack that can be mounted on the RSA or Rabin schemes in a multi-
user situation. Note that such attacks are not covered by the standard security model for
encryption as presented in Chapter 1.

8This scheme was proposed by Choi, Choi and Won at ICISC 2001 and an attack was given by Sakurai
and Takagi at ACISP 2002.

24.4. ALGEBRAIC ATTACKS ON TEXTBOOK RSA AND RABIN 523

Example 24.4.1. Suppose three users have RSA public keys N1, N2, N3 and all use
encryption exponent e = 3. Let 0 < m < min{N1, N2, N3} be a message. If m is
encrypted to all three users then an attacker can determine m from the three ciphertexts
c1, c2 and c3 as follows: The attacker uses the Chinese remainder theorem to compute
1 < c < N1N2N3 such that c ≡ m3 (mod Ni) for 1 ≤ i ≤ 3. It follows that c = m3 over Z
and so one can determine m using root finding algorithms.

This attack is easily prevented by using randomised padding schemes (assuming that
the encryptor is not so lazy that they re-use the same randomness each time). Neverthe-
less, this attack seems to be one of the reasons why modern systems use e = 65537 = 216+1
instead of e = 3.

Exercise 24.4.2. Show that the H̊astad attack applies when the same message is sent
using textbook Rabin encryption (with any of the three redundancy schemes) to two
users.

Exercise 24.4.3. Two users have Rabin public keysN1 = 144946313 andN2 = 138951937.
The same message m is encrypted using the “extra bits” padding scheme to the two users,
giving ciphertexts

C1 = (48806038,−1, 1) and C2 = (14277753,−1, 1).

Use the H̊astad attack to find the corresponding message.

24.4.2 Algebraic Attacks

We already discussed a number of easy algebraic attacks on textbook RSA, all of which
boil down to exploiting the multiplicative property

me
1m

e
2 ≡ (m1m2)e (mod N).

We also noted that, since textbook RSA is deterministic, it can be attacked by trying all
messages. Hence, if one knows that 1 ≤ m < 2k (for example, if m is a k-bit symmetric
key) then one can attack the system in at most 2k exponentiations modulo N . We now

show that one can improve this to roughly
√

2k exponentiations in many cases.

Exercise 24.4.4. (Boneh, Joux, Nguyen [82]) Suppose c = me (mod N) where 1 ≤ m <
2k. Show that if m = m1m2 for two integers 1 < m1,m2 < B then one can determine m

in O(B) exponentiations modulo N . If B = 2k/2+ǫ then the probability that m splits in
this way is noticeable.

24.4.3 Desmedt-Odlyzko Attack

This is a “lunchtime attack”, proposed by Desmedt and Odlyzko in [170], on textbook
RSA signatures. It can produce more forgeries than calls to the signing oracle. The
basic idea is to query the signing oracle on the first r prime numbers p1, . . . , pr to get
signatures s1, . . . , sr. Then, for any message m, if m is a product of powers of the first r
primes m =

∏r
i=1 p

fi
i then the corresponding signature is

s =

r∏

i=1

s
fi
i .

This attack is not feasible if messages are random elements between 1 and N (as the
probability of smoothness is usually negligible) but it can be effective if messages in the
system are rather small.

524 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

Exercise 24.4.5. Let N = 9178628368309 and e = 7 be an RSA public key. Sup-
pose one learns that the signatures of 2, 3 and 5 are 872240067492, 6442782604386 and
1813566093366 respectively. Determine the signatures for messages m = 6, 15, 12 and 100.

An analogous attack applies to encryption: Ask for decryptions of the first r primes
(treating them as ciphertexts) and then, given a challenge ciphertext c, if c ≡ ∏r

i=1 p
ei
i

then one can work out the decryption of c. Since ciphertexts (even of small messages) are
of size up to N this attack is usually not faster than factoring the modulus.

This idea, together with a number of other techniques, has been used by Coron,
Naccache, Tibouchi and Weinmann [153] to attack real-world signature proposals.

24.4.4 Related Message Attacks

This attack is due to Franklin and Reiter.9 Consider textbook RSA with small exponent
e or textbook Rabin (e = 2). Suppose we obtain ciphertexts c1 and c2 (with respect to the
same public key (N, e)) for messages m and m+ a for some known integer a. Then m is a
common root modulo N of the two polynomials F1(x) = xe−c1 and F2(x) = (x+a)e−c2
(in the case of Rabin we may have polynomials like F1(x) = (2l(x + 1) − 1)2 − c1 or
F1(x) = (2(2x + 1))2 − c1). Hence one can run Euclid’s algorithm on F1(x) and F2(x)
in (Z/NZ)[x] and this will either lead to a factor of N (since performing polynomial
division in (Z/NZ)[x] involves computing inverses modulo N) or will output, with high
probability, a linear polynomial G(x) = x−m.

Euclid’s algorithm for polynomials of degree e has complexity O(e2M(log(N))) or
O(M(e) log(e)M(log(N))) bit operations. Hence, this method is feasible only when e is
rather small (e.g., e < 230).

Exercise 24.4.6. Extend the Franklin-Reiter attack to ciphertexts c1 and c2 (again, for
the same public key) where c1 is an encrypion of m and c2 is an encryption of am+ b for
known integers a and b.

Exercise 24.4.7. Let N = 2157212598407 and e = 3. Suppose we have ciphertexts

c1 = 1429779991932 and c2 = 655688908482

such that c1 is the encryption of m and c2 is the encryption of m + 210. Determine the
message m.

These ideas have been extended by Coppersmith, Franklin, Patarin and Reiter [144].
Among other things they study how to break related encryptions for any polynomial
relation by using resultants (see Exercise 24.4.8).

Exercise 24.4.8. Let (N, e) be an RSA key. Suppose one is given c1 = me
1 (mod N),

c2 = me
2 (mod N) and a polynomial P (x, y) ∈ Z[x, y] such that P (m1,m2) ≡ 0 (mod N).

Let d be a bound on the total degree of P (x, y). Show how to compute m1 and m2 in
O((d + e)3d2M(log(N))) bit operations.

24.4.5 Fixed Pattern RSA Signature Forgery

The aim of this section is to present a simple padding scheme, often called fixed pattern
padding for RSA. We then sketch why this approach may not be sufficient to obtain
RSA signatures secure against adaptive attackers. These ideas originate in the work

9The idea was presented at the “rump session” of CRYPTO 1995.

24.4. ALGEBRAIC ATTACKS ON TEXTBOOK RSA AND RABIN 525

of De Jonge and Chaum and later work by Girault and Misarsky. We present the more
recent attacks by Brier, Clavier, Coron and Naccache [106]. An attack on RSA encryption
with fixed padding is given in Section 19.4.1.

Example 24.4.9. Suppose we are using moduli of length 3072 bits and that messages
(or message digests) m are of length at most 1000 bits.

The padding scheme uses a fixed value P = 23071 and the signature on the message
digest m (such that 0 ≤ m < 21000) is

s = (P + m)d (mod N).

The verifier computes se (mod N) and checks it is of the correct form P + m with
0 ≤ m < 21000.

The following method (from [106]) forges signatures if messages are roughly N1/3 in
size. We assume that a signing oracle is available (we assume the signing oracle will
only generate signatures if the input is correctly padded) and that a hash function is not
applied to the messages. Suppose m is the target message, so we want to compute the
d-th power of z = P + m. The idea is to find small values u, v, w such that

z(z + u) ≡ (z + v)(z + w) (mod N). (24.2)

Then given signatures on m + u,m + v and m + w (i.e., d-th powers of z + u, z + v and
z + w) one can compute the signature on m as required.

To find small solutions to equation (24.2) we expand and simplify to

z(u− v − w) ≡ vw (mod N).

Running the extended Euclidean algorithm (the basic version rather than the fast version
of Algorithm 1) on z and N gives a number of integers s, r such that

zs ≡ r (mod N) and |rs| ≈ N.

One can run Euclid until a solution with |s| ≈ N1/3 and |r| ≈ N2/3 is found. One then
tries to factor r as a product r = vw of numbers of a similar size. If this is feasible (for
example, if r has a large number of small prime factors) then set u = s + v + w and we
have a solution. This approach is reasonable as long as the messages are at least one third
of the bit-length of the modulus.

Example 24.4.10. Let N = 1043957 ≈ 220.
Suppose P = 219 is the fixed padding and suppose messages are restricted to be 10-bit

binary strings. Thus
z = P + m

where 0 ≤ m < 210.
Suppose have access to a signing oracle and would like to forge a signature on the

message m = 503 that corresponds to z = P + 503 = 524791.
We apply Euclid’s algorithm on N and z to solve the congruence zs ≡ r (mod N)

where s ≈ N1/3 ≈ 101.

i q ri si ti
−1 – 1043957 1 0
0 – 524791 0 1
1 1 519166 1 −1
2 1 5625 −1 2
3 92 1666 93 −185

526 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

This gives the solution −185z ≡ 1666 (mod N) and | − 185| ≈ N1/3. So set s = −185
and r = 1666. We try to factor r and are lucky that 1666 = 2 · 72 · 17. So choose v = 34
and w = 49. Finally, choose u = v + w − 185 = −102. One can check that

z(z + u) ≡ (z + v)(z + w) (mod N)

and that z + u, z + v and z + w are all between P and P + 210. Hence, if one obtains
signatures s1, s2, s3 on m + u = 401,m + v = 537 and m + w = 552 then one has the
signature on z as s2s3s

−1
1 (mod N).

The success of this attack depends on the cost of factoring r and the probability
that it can be written as a product of integers of similar size. Hence, the attack has
subexponential complexity. For fixed m the attack may not succeed (since r might not
factor as a product of integers of the required size). On the other hand, if m can vary
a little (this is now more like an existential forgery) then the attack should succeed. A
method for existential forgery that does not require factoring is given in Example 24.4.13.

Exercise 24.4.11. Give a variant of the above attack for the case where messages can
be of size N1/2 and for which it is only necessary to obtain signatures on two messages.

Exercise 24.4.12. One could consider affine padding Am + B instead of P + m, where
A and B are fixed integers and m is small. Show that, from the point of view of attacks,
the two padding schemes are equivalent.

Example 24.4.13. We show sketch the existential forgery from [106]. As before we seek
messages m1, . . . ,m4 of size N1/3 such that

(P + m1)(P + m2) ≡ (P + m3)(P + m4) (mod N).

Writing m1 = x+ t,m2 = y + t,m3 = t and m4 = x+ y + z + t the equation is seen to be
equivalent to Pz ≡ xy − tz (mod N). One again uses Euclid to find s ≈ N1/3, r ≈ N2/3

such that Ps ≡ r (mod N). One sets z = s and then wants to find x, y, t such that
xy = r+tz. To do this choose a random integer N1/3 < y < 2N1/3 such that gcd(y, z) = 1
and set t ≡ −z−1r (mod y). One then easily solves for the remaining values and one can
check that the mi are roughly of the right size.

For further details and results we refer to Brier, Clavier, Coron and Naccache [106]
and Lenstra and Shparlinski [374].

This idea, together with other techniques, has been used to cryptanalyse the ISO/IEC
9796-1 signature standard with great success. We refer to Coppersmith, Coron, Grieu,
Halevi, Jutla, Naccache and Stern [143].

24.4.6 Two Attacks by Bleichenbacher

Example 24.4.14. (Bleichenbacher) Consider a padding scheme for RSA signatures with
e = 3 that is of the following form.

00 01 FF FF · · · FF Special block H(m)

In other words, to verify a signature s one computes s3 (mod N) and checks if the
resulting integer corresponds to a binary string of the above form.

Suppose now that the verification algorithm parses the binary string from the left
hand side (most significant bit) and does not check that H(m) sits in the least significant
bits (this was the case for some padding schemes in practice). In other words, a signature
will verify if s3 (mod N) is an integer whose binary representation is as follows, where r
is any binary string.

24.5. ATTACKS ON RSA PARAMETERS 527

00 01 FF FF · · · FF Special block H(m) r

Bleichenbacher noticed that a forger could choose r to ensure that the integer is a
cube in Z.

Precisely, suppose 23071 < N < 23072, that the “special block” is 0000 (i.e., 32 zero
bits), and that H has 256-bit output. Let m be a message such that H(m) ≡ 1 (mod 3).
We want to find r such that

y = 23057 − 22360 +H(m)22072 + r

is a cube. Note that

(21019− (2288−H(m))234/3)3 = 23057− 22360 +H(m)22072 + 21087((2288−H(m))/3)2 + z

where |z| < 2980 and so is of the right form. To find the right value one can take an
integer of the form y, take its cube root in R and then round up to the nearest integer.

Exercise 24.4.15. Compute a signature using the method of example 24.4.14 for the
hash value H(m) = 4. Check your answer.

Bleichenbacher has also given a chosen ciphertext attack on RSA encryption when
using a fixed padding scheme [67]. More precisely, suppose a message m is padded as in
the figure below to form an integer x, and is then encrypted as c = xe (mod N).

00 02 non-zero padding string 00 m

Bleichenbacher supposes an attacker has access to an oracle that determines, given an
integer c, whether the corresponding e-th root x has binary expansion in this form. Such
an oracle is provided by a decryption oracle that either outputs m or ⊥. Error messages
from a server may also provide such an oracle.

We do not have space to give the details. The basic idea is that, given a challenge c,
one computes c′ = cre (mod N) for various integers r and determines intervals containing
the message according to the error response. The attack eventually reveals the message
(after perhaps a million queries to the oracle).

24.5 Attacks on RSA Parameters

In this section we briefly recall some attacks on certain choices of RSA public key.

24.5.1 Wiener Attack on Small Private Exponent RSA

One proposal to speed-up RSA decryption is to choose d to be a small integer. Key
generation is performed by first choosing d and then setting e = d−1 (mod λ(N)). This is
called small private exponent RSA.10 We present the famous Wiener attack, which
is a polynomial-time attack on private exponents d < N1/4.

Exercise 24.5.1. Give a brute-force attack on small private exponent RSA that tries
each odd integer d > 1 in turn. What is the complexity of this attack?

10The reader should remember that, in practice, it is more efficient to use the Chinese remainder
theorem to speed up RSA decryption than small private exponents.

528 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

We now sketch Wiener’s idea [630]. We assume the key generation of Figure 24.1 is
used, so that N = pq where p < q < 2p. Consider the equation defining e and d

ed = 1 + kϕ(N)

(a similar attack can be mounted using the equation ed = 1+kλ(N), see Exercise 24.5.5).
Since e < ϕ(N) we have k < d. Now ϕ(N) = N + 1− (p+ q) and

√
N ≤ (p+ q) < 3

√
N

so ϕ(N) = N − u where 0 ≤ u = p+ q − 1 ≤ 3
√
N . Rearranging gives

−ed+ kN = (−1 + ku) < 3k
√
N. (24.3)

If d is smaller than
√
N/3 then the right hand side is < N . Hence, one could try to find

d by running the extended Euclidean algorithm on (e,N) and testing the coefficient of e
to see if it is a candidate value for ±d (e.g., by testing whether (xe)d ≡ x (mod N) for
a random 1 < x < N). Note that one must use the basic extended Euclidean algorithm
rather than the faster variant of Algorithm 1. We now explain that this method is
guaranteed to find d when it is sufficiently small.

Theorem 24.5.2. Let N = pq where p < q < 2p are primes. Let e = d−1 (mod ϕ(N))
where 0 < d < N1/4/

√
3. Then given (N, e) one can compute d in polynomial time.

Proof: Using the notation above, (d, k, uk − 1) is a solution to equation (24.3) with
0 < k < d and 0 ≤ u < 3

√
N .

The Euclidean algorithm finds all triples (s, t, r) satisfying es+Nt = r with |sr| < N
and |tr| < e. Hence, if |d(uk − 1)| < N then the required solution will be found. If
0 < d < N1/4/

√
3 then

|duk| < d2u <
N1/2

3
3
√
N = N

which completes the proof. �

Example 24.5.3. Let N = 86063528783122081 with d = 8209. One computes that
e = 14772019882186053.

One can check that
ed = 1 + 1409ϕ(N).

Running Euclid’s algorithm with r−1 = N and r0 = e and writing si, ti be such that
ri = siN + tie one finds the following table of values.

i q ri si ti
−1 −− 86063528783122081 1 0
0 −− 14772019882186053 0 1
1 5 12203429372191816 1 −5
2 1 2568590509994237 −1 6
3 4 1929067332214868 5 −29
4 1 639523177779369 −6 35
5 3 10497798876761 23 −134
6 60 9655245173709 −138 8075
7 1 842553703052 1409 −8209

One sees that d is found in only 7 steps.

Exercise 24.5.4. Consider the RSA public key (N, e) = (11068562742977, 10543583750987).
Use the Wiener attack to determine the private key.

24.5. ATTACKS ON RSA PARAMETERS 529

Exercise 24.5.5. Show how to perform the Wiener attack when ϕ(N) is replaced by
λ(N). What is the bound on the size of d for which the attack works?

Exercise 24.5.6. Let (N, e) = (63875799947551, 4543741325953) be an RSA public key
where N = pq with gcd(p − 1, q − 1) > 2 and small private exponent d such that ed ≡
1 (mod λ(N)). Use the Wiener attack to find d.

Exercise 24.5.7. Show that one can prevent the Wiener attack by adding a sufficiently
large multiple of ϕ(N) to e.

Wiener’s result has been extended in several ways. Dujella [184] and Verheul and van
Tilborg [621] show how to extend the range of d, while still using Euclid’s algorithm.
Their algorithms are exponential time. Boneh and Durfee [78] used lattices to extend the
attack to d < N0.284 and, with significant further work, extended the range to d < N0.292.
Blömer and May [71] give a simpler formulation of the Boneh-Durfee attack for d < N0.284.
Some unsuccessful attempts to extend Wiener’s method to larger d are discussed by
Suk [595] and Bauer [31].

24.5.2 Small CRT Private Exponents

As mentioned in Section 24.1.1, a common way to speed up RSA decryption is to use
the Chinese remainder theorem. Indeed, one can choose the CRT private exponents dp
and dq to be small (subject to dp ≡ dq (mod gcd(p − 1, q − 1)) and define e such that
edp ≡ 1 (mod p− 1) and edq ≡ 1 (mod q− 1). Of course, one should take dp 6= dq, or else
one can just apply the Wiener attack. We now show that these values cannot be taken
to be too small.

Exercise 24.5.8. Give a brute-force attack on small private CRT exponents.

We now present a “birthday attack”, which is attributed to Pinch in [492]. Let dp
be such that edp ≡ 1 (mod p − 1) and edp 6≡ 1 (mod q − 1). Suppose we know that

1 < dp < K and let L = ⌈
√
K⌉. Then dp = d0 + Ld1 where 0 ≤ d0, d1 < L and, for a

random integer 1 < m < N one expects

gcd(med0−1mLed1 − 1, N) = p.

The problem is to detect this match. The idea is to use the method of Section 2.16 for
evaluating polynomials. So, define

G(x) =

L−1∏

j=0

(mej−1x− 1) (mod N).

This polynomial has degree L and can be constructed using the method in the proof
of Theorem 2.16.1 in O(M(L) log(L)M(log(N))) bit operations. The polynomial G(x)
requires L log2(N) bits of storage.

Now, compute c = mLe (mod N). We wish to evaluate G(cd1) (mod N) for each of
the candidate values 0 ≤ d1 < L (to obtain a list of L values). This can be performed
using Theorem 2.16.1 in O(L log(L)2 log(log(L))M(log(N))) bit operations. For each
value G(cd1) (mod N) in the list we can compute

gcd(G(cd1), N)

to see if we have split N . The total running time of the attack is Õ(
√
K) bit operations.

530 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

Exercise 24.5.9. (Galbraith, Heneghan and McKee [220]) Suppose one chooses private
CRT exponents of bit-length n and Hamming weight w. Use the ideas of this section
together with those of Section 13.6 to give an algorithm to compute a CRT private
exponent, given n and w, with complexity O(

√
wW log(W)2 log(log(W))M(log(N))) bit

operations where W =
(n/2
w/2

)
.

When e is also small (e.g., when using the key generation method of Exercise 24.1.5)
then there are lattice attacks on small CRT private exponents. We refer to Bleichenbacher
and May [69] for details.

24.5.3 Large Common Factor of p− 1 and q − 1

Variants of RSA have been proposed for moduli N = pq where there is some integer r
greater than 2 such that both r | (p − 1) and r | (q − 1). For example, as follows from
the solution to Exercise 24.5.5, one can prevent the Wiener attack by taking r large. We
explain in this section why such variants of RSA must be used with caution.

First we remark, following McKee and Pinch [414], that r should not be considered
as a secret. This is because r is a factor of N − 1 and so the elliptic curve method or
the Pollard rho factoring method can be used to compute a, usually short, list of possible
values for r. Note that there is no way to determine the correct value of r from the list, but
the attacks mentioned below can be repeated for each candidate value for r. Certainly, if
r is small then it can be easily found this way. Even if r is large, since factoring N − 1 in
this setting is not harder than factoring N , it follows that the problem of computing r is
not harder than the most basic assumption underlying the scheme.

Even if r is not known, as noted by McKee and Pinch [414], it cannot be too large:
applying the Pollard rho method by iterating the function

x 7→ xN−1 + 1 (mod N)

will produce a sequence that repeats modulo p after O(
√
p/r) terms, on average. Hence,

if r is too large then the factorisation of N will be found even without knowing r.
We now explain a method to factor N when r is known. Suppose N = pq where

p < q < 2p are primes. Write

p = xr + 1 , q = yr + 1.

Then
(N − 1)/r = xyr + (x + y) = ur + v (24.4)

where u and v (0 ≤ v < r) are known and x, y are unknown.

Exercise 24.5.10. Let the notation be as above. Show that if r >
√

3N1/4 then one can
determine x and y in polynomial-time.

Exercise 24.5.11. (McKee and Pinch [414]) Let the notation be as above and suppose
that r <

√
3N1/4. Write

x+ y = v + cr , xy = u− c
where c ∈ N. Show that c < 3N1/2/r2. Then show that

(x − y)2 = r2c2 + (2rv + 4)c+ v2 − 4u.

Hence, show how to determine c by exhaustive search in O(N1/2 log(N)2/r2) bit opera-
tions.

24.6. DIGITAL SIGNATURES BASED ON RSA AND RABIN 531

Exercise 24.5.12. Let the notation be as above. Show that the exponent of (Z/NZ)∗

divides xyr. Hence, deduce that

zur ≡ zxyr+cr ≡ zcr (mod N)

for every z ∈ (Z/NZ)∗. Given r, show how to find c (and hence split N) in an expected
O(N1/4M(log(N))/r) bit operations using the Pollard kangaroo algorithm (one could also
use baby-step-giant-step).

Exercise 24.5.13. Suppose N = pq where p and q are 1536-bit primes such that p− 1
and q−1 have a large common factor r. Show that, to ensure security against an attacker
who can perform 2128 operations, one should impose the restriction 1 ≤ r < 2640.

Exercise 24.5.14. Generalise the above attacks to the case where r | (p+1) and r | (q+1).

24.6 Digital Signatures Based on RSA and Rabin

There are numerous signature schemes based on RSA and Rabin. Due to lack of space
we just sketch two schemes in the random oracle model. Hohenberger and Waters [292]
have given an RSA signature scheme in the standard model whose security relies only on
the Strong-RSA assumption.

24.6.1 Full Domain Hash

A simple way to design RSA signatures that are secure in the random oracle model is to
assume each user has a hash function H : {0, 1}∗ → (Z/NZ)∗ where N is their public
key.11 Such a hash function is called a full domain hash, since the hash output is the
entire domain of the RSA trapdoor permutation. Constructing such a hash function is
not completely trivial; we refer to Section 3.6. The signature on a message m in this case
is s = H(m)d (mod N). These ideas were formalised by Bellare and Rogaway, but we
present the slightly improved security result due to Coron.

Theorem 24.6.1. RSA signatures with full domain hash (FDH-RSA) have UF-CMA
security in the random oracle model (i.e., where the full domain hash function is replaced
by a random oracle) if the RSA problem is hard.

Proof: (Sketch) Let A be an perfect12 adversary playing the UF-CMA game. We build a
simulator that takes an instance (N, e, y) of the RSA problem and, usingA as a subroutine,
tries to solve the RSA problem.

The simulator in this case starts by running the adversary A on input (N, e). The
adversary will make queries to the hash function H , and will make decryption queries.
The adversary will eventually output a pair (m∗, s∗) such that s∗ is a valid signature on
m∗. To explain the basic idea of the simulator we remark that if one could arrange that
H(m∗) = y then (s∗)e ≡ y (mod N) and the RSA instance is solved.

The simulator simulates the random oracleH in the following way. First, the simulator
will maintain a list of pairs (m, H(m)) where m was a query to the random oracle and
H(m) ∈ (Z/NZ)∗ was the value returned. This list is initially empty. For each query
m to the random oracle the simulator first checks if m has already been queried and, if

11In practice one designs H : {0, 1}∗ → {0, 1, . . . , N − 1} since the probability that a random element
of Z/NZ does not lie in (Z/NZ)∗ is negligible.

12The proof in the general case, where the adversary succeeds with non-negligible probability ǫ, requires
minor modifications.

532 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

so, responds with the same value H(m). If not, the simulator chooses a random element
1 < r < N , computes gcd(r,N) (and if this is not 1 then factors N , solves the RSA
instance, and halts), computes z = re (mod N) and with some probability 1 − p (we
determine p at the end of the proof) returns z as H(m) and with probability p returns
yz (mod N). The information (m, H(m), r) is stored.

When the simulator is asked by the adversary to sign a message m it performs the
following: First it computes H(m) and the corresponding value r. If H(m) = re (mod N)
then the simulator returns s = r. If H(m) = yre (mod N) then the simulator fails.

Eventually, the adversary outputs a pair (m∗, s∗). If H(m∗) = yre (mod N) where r
is known to the simulator, and if (s∗)e ≡ H(m∗) (mod N), then y = (s∗r−1)e (mod N)
and so the simulator returns s∗r−1 (mod N). Otherwise, the simulator fails.

To complete the proof it is necessary to argue that the simulator succeeds with non-
negligible probability. If the adversary makes qS signing queries then the probability that
the simulator can answer all of them is (1 − p)qS . The probability that the message m∗

corresponds to a random oracle query that allows us to solve the RSA problem is p. Hence,
the probability of success is (ignoring some other negligible factors) (1 − p)qSp. Assume
that qS ≥ 1 and that qS is known (in practice, one can easily learn a rough estimate of
qS by experimenting with the adversary A). Choose p = 1/qS so that the probability of
success is (1 − 1/qS)qS 1

qS
, which tends to 1/(eqS) for large qS (where e = 2.71828 . . .).

Since a polynomial-time adversary can only make polynomially many signature queries
the result follows. We refer to Coron [148] for all the details. �

One problem with the full domain hash RSA scheme is the major loss of security (by
a factor of qS) in Theorem 24.6.1. In other words, the reduction is not tight. This can
be avoided by including an extra random input to the hash function. In other words, an
RSA signature is (s1, s2) such that se2 ≡ H(m‖s1) (mod N). Then, when the simulator
is asked to output a signature on message m, it can choose a “fresh” value s∗1 and define
H(m‖s∗1) = (s∗2)e (mod N) as above. This approach avoids previous queries to H(m‖s1)
with high probability. Hence, the simulator can answer “standard” hash queries with
yre (mod N) and “special” hash queries during signature generation with re (mod N).
This scheme is “folklore”, but the details are given in Appendix A of Coron [149]. The
drawback is that the extra random value s1 must be included as part of the signature.
The PSS signature padding scheme was designed by Bellare and Rogaway [41] precisely
to allow extra randomness in this way without increasing the size of the signature. We
refer to [149] for a detailed analysis of RSA signatures using the PSS padding.

Exercise 24.6.2. Give a security proof for the RSA full domain hash signature scheme
with verification equation H(m‖s1) = se2 (mod N).

The above results are all proved in the random oracle model. Paillier [475] has given
some evidence that full domain hash RSA and RSA using PSS padding cannot be proved
secure in the standard model. Theorem 1 of [475] states that if one has a “black box”
reduction from the RSA problem to selective forgery for a signature scheme under a passive
attack, then under an adaptive chosen message attack one can, in polynomial-time, forge
any signature for any message.

24.6.2 Secure Rabin-Williams Signatures in the Random Oracle
Model

In this section we give a tight security result, due to Bernstein [47], for Rabin signatures.
We assume throughout that N = pq is a Williams integer; in other words, a product of
primes p ≡ 3 (mod 8) and q ≡ 7 (mod 8) (such integers were discussed in Section 24.2.1).

24.6. DIGITAL SIGNATURES BASED ON RSA AND RABIN 533

We assume that H : {0, 1}∗ → {0, 1}κ is a cryptographic hash function (which will be
modelled as a random oracle) where 2κ < N < 2κ+O(log(κ)).

Exercise 24.6.3. Suppose p ≡ 3 (mod 8) and q ≡ 7 (mod 8) are primes and N = pq.
Then (−1

p) = (−1
q) = (2

p) = −1 while (2q) = 1. Show that, for any integer h ∈ (Z/NZ)∗,

there are unique integers e ∈ {1,−1} and f ∈ {1, 2} such that efh is a square modulo N .

The signature scheme for public key N is as follows. For a message m ∈ {0, 1}∗ one
computes H(m) and interprets it as an integer modulo N (with overwhelming probability,
H(m) ∈ (Z/NZ)∗). The signer determines the values e and f as in Exercise 24.6.3 and
determines the four square roots s1, s2, s3, s4 satisfying s2i ≡ H(m)ef (mod N). The
signer then deterministically chooses one of the values si (for example, by ordering the
roots as integers s1 < s2 < s3 < s4 and then generating an integer i ∈ {1, 2, 3, 4} using a
pseudorandom number generator with a secret key on input m). The signature is the triple
s = (e, f, (ef)−1si (mod N)). It is crucially important that, if one signs the same message
twice, then the same signature is output. To verify a signature s = (e, f, s) for public key
N and message m one computes H(m) and then checks that efs2 ≡ H(m) (mod N).

Exercise 24.6.4. Show that if a signer outputs two signatures (e1, f1, s1) and (e2, f2, s2)
for the same message m such that s1 6≡ ±s2 (mod N) then one can factor the modulus.

Exercise 24.6.5. Show that it is not necessary to compute the Jacobi symbol (H(m)
N)

when generating Rabin-Williams signatures as above. Instead, one can computeH(m)(p+1)/4 (mod p)
and H(m)(q+1)/4 (mod q), as is needed to compute the si, and determine e and f with
only a little additional computation.

Theorem 24.6.6. The Rabin-Williams signature scheme sketched above has UF-CMA
security in the random oracle model (i.e., if H is replaced by a random oracle) if factoring
Williams integers is hard and if the pseudorandom generator is indistinguishable from a
random function.

Proof: (Sketch) Let A be a perfect adversary against the Rabin-Williams signature
scheme and let N be a Williams integer to be factored. The simulator runs the adversary
A on N .

The simulator must handle the queries made by A to the random oracle. To do this
it maintains a list of hash values, which is initially empty. When A queries H on m

the simulator first checks whether m appears on the list of hash values, and, if it does,
responds with the same value as previously. If H has not been previously queried on
m the simulator chooses random s ∈ (Z/NZ)∗, e ∈ {−1, 1}, f ∈ {1, 2} and computes
h = efs2 (mod N). If 0 ≤ h < 2κ then return h and store (m, e, f, s, h) in the list. If
h is too big then repeat with a different choice for (s, e, f). Since N < 2κ+O(log(κ)) the
expected number of trials is polynomial in log(N).

When A makes a signature query on m the simulator first queries H(m) and gets the
values (e, f, s) from the hash list such that H(m) ≡ efs2 (mod N). The simulator can
therefore answer with (e, f, s), which is a valid signature. (It is necessary to show that the
values (e, f, s) output in this way are indistinguishable from the values output in the real
cryptosystem, and this requires that the pseudorandom choice of s from among the four
possible roots be computationally indistinguishable from random; note that the adversary
cannot detect whether or not a pseudorandom generator has actually been used since it
does not know the secret key for the generator.)

Finally, A outputs a signature (e∗, f∗, s∗) on a message m∗. Recalling the values
(e, f, s) from the construction of H(m∗) we have e∗ = e, f∗ = f and (s∗)2 ≡ s2 (mod N).

534 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

With probability 1/2 we can factor N as gcd(N, s∗ − s). We refer to Section 6 of Bern-
stein [47] for the full details. �

Exercise 24.6.7. Show that if one can find a collision for the hash function H in Bern-
stein’s variant of Rabin-Williams signatures and one has access to a signing oracle then
one can factor N with probability 1/2.

Exercise 24.6.8. Suppose the pseudorandom function used to select the square root in
Rabin-Williams signatures is a function of H(m) rather than m. Show that, in contrast
to Exercise 24.6.7, finding a collision in H no longer leads to an algorithm to split N . On
the other hand, show that if one can compute a preimage for H and one has access to a
signing oracle then one can factor N with probability 1/2.

Exercise 24.6.9. Adapt the proof of Theorem 24.6.6 to the case where H has full domain
output.

Exercise 24.6.10. Adapt the proof of Theorem 24.6.1 to the case where H : {0, 1}∗ →
{0, 1}κ where 2κ < N < 2κ+O(log(κ)).

24.6.3 Other Signature and Identification Schemes

Example 24.6.11. Let (N, e) be an RSA public key for a trusted authority, where e is
a large prime. Shamir [547] proposed the following identity-based signature scheme. A
user with identity id ∈ {0, 1}∗ has a corresponding public key H1(id) ∈ (Z/NZ)∗, where
H1 is a cryptographic hash function. The user obtains their private key sid such that

se
id
≡ H1(id) (mod N)

from the trusted authority.
To sign a message m ∈ {0, 1}∗ the user chooses a random integer 1 < r < N , computes

s1 = re (mod N), then computes s2 = sidr
H2(m‖s1) (mod N) where H2 : {0, 1}∗ →

{0, 1, . . . , N−1} is a cryptographic hash function and s1 is represented as a binary string.
The signature is (s1, s2).

To verify a signature one checks that

se2 ≡ H1(id)s
H2(m‖s1)
1 (mod N).

Exercise 24.6.12. Show that outputs (s1, s2) of the Shamir signature algorithm do satisfy
the verification equation.

The security of Shamir signatures was analysed by Bellare, Namprempre and Neven [35]
(also see Section 4 of [335]). They show, in the random oracle model, that the scheme is
secure against existential forgery if the RSA problem is hard.

Exercise 24.6.13. Show how to break the Shamir signature scheme under a known
message attack if e is small (for example, e = 3).

Exercise 24.6.14. Consider the following modified version of the Shamir identity-based
signature scheme: The verification equation for signature (s1, s2) on message m and iden-
tity id is

se2 ≡ H1(id)s
H2(m)
1 (mod N).

Show how the user with private key sid can generate signatures. Give a selective forgery
under a known message attack for this scheme.

24.6. DIGITAL SIGNATURES BASED ON RSA AND RABIN 535

Exercise 24.6.15. Consider the following modified version of the Shamir identity-based
signature scheme: The verification equation for signature s on message m and identity id

is
se ≡ H1(id)H2(m) (mod N).

Show how the user with private key sid can generate signatures. Show how to compute
the private key for this scheme under a known message attack.

We now briefly present two interactive identification schemes that are convenient al-
ternatives to RSA and Rabin signatures for constrained devices. The notion of an iden-
tification scheme was sketched in Section 22.1.1; recall that it is an interactive protocol
between a prover and a verifier.

Example 24.6.16. (Feige, Fiat and Shamir [201]) A prover has public key (N, v1, . . . , vk),
where N = pq is an RSA modulus and 1 < vj < N for 1 ≤ j ≤ k. The private key is a
list of integers u1, . . . , uk such that vj ≡ u2j (mod N) for 1 ≤ j ≤ k. The identification
protocol is as follows: The prover chooses a random integer 1 < r < N and send s1 =
r2 (mod N) to the verifier. The verifier sends a challenge c = (c1, . . . , ck) ∈ {0, 1}k. The
prover computes

s2 = r
k∏

j=1

u
cj
j (mod N)

and sends it to the verifier. The verifier checks that

s22 ≡ s1

k∏

j=1

v
cj
j (mod N).

One can try to impersonate a user by guessing the challenge c and defining s1 accordingly;
this succeeds with probability 1/2k. The protocol can be repeated a number of times if
necessary. For example, one might choose k = 20 and repeat the protocol 4 times.

The point is that both signing and verification are only a small number of modular
multiplications (in contrast to Rabin signatures, for which signing requires computing two
large exponentiations). The security is based on factoring (see Exercise 24.6.17).

The public key can be shortened by choosing v1, . . . , vk to be the first k primes.
Alternatively, the scheme can be made identity-based by defining v1, . . . , vk as a function
of the identity of a user; the user can get the values ui from the trusted authority who
knows the factorisation of N . The identification scheme can be turned into a signature
scheme (either public key or identity-based) by choosing the value c as the output of
a hash function H(m‖s1); but then k should be taken to be very large. For further
discussion of these schemes see Sections 10.4.2 and 11.4.1 of Menezes, van Oorschot and
Vanstone [418].

Exercise 24.6.17. Let A be an algorithm that takes as input a public key for the Feige-
Fiat-Shamir scheme, outputs a value s1, receives two distinct challenges c1 and c2 and
outputs values s2,1 and s2,2 satisfying the verification equation for c1 and c2 respectively.
Show how to use A to compute square roots modulo N .

Example 24.6.18. (Guillou and Quisquater [271]) A prover has public key (N, e, u)
where N = pq is an RSA modulus, e is an RSA exponent (i.e., gcd(e, ϕ(N)) = 1) and
1 < u < N is a randomly chosen integer. The private key is an integer s such that
se ≡ u (mod N). The identification protocol is as follows: The prover chooses a random
integer 1 < r < N and sends s1 = re (mod N) to the verifier. The verifier sends a

536 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

challenge 0 ≤ c < 2k to the prover, who replies with s2 = rsc (mod N). The verifier
checks that

se2 ≡ s1u
c (mod N).

When e and c are small then both the prover and verifier have easy computations (in
contrast with RSA, where at least one party must perform a large exponentiation). Hence
this scheme can be more suitable than RSA in constrained environments. The security
depends on the RSA problem (see Exercise 24.6.19).

One can try to impersonate a user by guessing the challenge c and defining s1 accord-
ingly; this succeeds with probability 1/2k. The protocol can be repeated a number of
times if necessary.

The scheme can be made identity-based by replacing u with H1(id). Each user can
get their private key sid such that se

id
≡ H1(id) (mod N) from the trusted authority.

The scheme can be turned into a signature scheme (either public key or identity-based)
by setting c = H(m‖s1); but then k should be sufficiently large. A variant with lower
bandwidth is to send only some bits of s1 and change the verification equation to checking
that the appropriate bits of se2u

−c (mod N) equal those of s1. For further discussion of
these schemes see Sections 10.4.3 and 11.4.2 of Menezes, van Oorschot and Vanstone [418].

Exercise 24.6.19. Let A be an algorithm that takes as input a public key for the Guillou-
Quisquater scheme, outputs a value s1, receives two distinct challenges c1 and c2 and
outputs values s2,1 and s2,2 satisfying the verification equation for c1 and c2 respectively.
Show how to use A to solve the RSA problem.

24.7 Public Key Encryption Based on RSA and Rabin

24.7.1 Padding Schemes for RSA and Rabin

To prevent algebraic attacks such as those mentioned in Sections 1.2 and 24.4 it is neces-
sary to use randomised padding schemes for encryption with RSA. Three goals of padding
schemes for RSA are listed below.

1. To introduce randomness into the message and expand short messages to full size.

2. To ensure that algebraic relationships among messages do not lead to algebraic
relationships between the corresponding ciphertexts.

3. To ensure that random elements of Z∗
N do not correspond to valid ciphertexts. This

means that access to a decryption oracle in CCA attacks is not useful.

Example 24.7.1. Consider the following naive padding scheme when using 3072-bit RSA
moduli: suppose messages are restricted to be at most 256 bits, and suppose a random
2815-bit value is r appended to the message to bring it to full length (i.e., the value input
to the RSA function is m + 2256r). This certainly adds randomness and destroys many
algebraic relationships. However, there is an easy CCA attack on the OWE-security of
RSA with this padding scheme.

To see this, suppose 23071 < N < 23072 and let c be the ciphertext under attack. With
probability 1/2 the most significant bit of r is zero and so c′ = c2e (mod N) is a valid
padding of 2m (except that the most significant bit of m is lost). Hence, by decrypting c′

one determines all but the most significant bit of m. Similarly, if the least significant bit
of m is zero then one can make a decryption query on c′ = 2−ec (mod N).

Exercise 24.7.2. Consider the situation of Example 24.7.1 again. Find a CCA attack on
RSA with the padding scheme 1+2m+2257r+23071 where 0 ≤ m < 2256 and 0 ≤ r < 22813.

24.7. PUBLIC KEY ENCRYPTION BASED ON RSA AND RABIN 537

24.7.2 OAEP

In this section we present the OAEP (Optimal Asymmetric Encryption Padding) scheme,
which was developed by Bellare and Rogaway [40] (for more details see Section 5.9.2 of
Stinson [592]). The word “optimal” refers to the length of the padded message compared
with the length of the original message: the idea is that the additional bits in an OAEP
padding of a message are as small as can be.

The padding scheme takes as input an n-bit message m and outputs a κ-bit binary
string S that can then be encrypted (in the case of RSA one encrypts by interpreting S as
an element of Z∗

N and raising to the power e modulo N). Similarly, to decrypt a ciphertext
c corresponding to an RSA-OAEP message one computes cd (mod N), interprets this
number as a bitstring S, and then unpads to get m or ⊥. Figure 24.3 describes the OAEP
scheme in detail. As usual, a‖b denotes the concatenation of two binary strings and a⊕ b
denotes the bitwise XOR of two binary strings of the same length.

System Parameters: Suppose we are using (κ+ 1)-bit RSA moduli (e.g., κ = 3071).
Let κ0 and κ1 be chosen so that no adversary can perform 2κi operations, e.g. κ0 =
κ1 = 128. Set n = κ− κ0 − κ1. Messages are defined to be n-bit strings.
Let G be a cryptographic hash function mapping κ0 bit strings to n+κ1 bit strings and
H be a cryptographic hash function from n+ κ1 bit strings to κ0 bit strings.

Pad: Let m be an n-bit string.

1. Choose a random κ0-bit string R.

2. Set S1 = (m‖0κ1)⊕G(R), where 0κ1 denotes a κ1-bit string of zeroes.

3. Set S2 = R⊕H(S1).

4. Set S = S1‖S2.

Unpad: Given a κ-bit string S one calls the low κ0 bits S2 and the high n+κ1 bits S1.

1. Compute R = S2 ⊕H(S1).

2. Compute S3 = S1 ⊕G(R).

3. Check whether the low κ1 bits of S3 are all zero, if not output ⊥ and halt.

4. Obtain m as the top n bits of S3.

Figure 24.3: OAEP.

The RSA-OAEP scheme does achieve the three goals of padding schemes mentioned
earlier. First, the padding scheme is randomised and has full length. Second, since S1

and S2 are both XORs with outputs of hash functions, the bitstring S “looks random”
and algebraic relationships among messages do not lead to algebraic relationships among
their paddings. Third, if you have a decryption oracle and you send it a random element
of Z∗

N then it will output ⊥ with high probability.

The security of RSA-OAEP has a complicated history. Bellare and Rogaway [40] gave
an IND-CCA security result, assuming that the RSA problem is hard, in the random
oracle model, but Shoup [555] found a flaw in their security proof (though not an attack
on their scheme). Shoup also gave a variant of OAEP (called OAEP+) together with a
security proof in the random oracle model. Fujisaki, Okamoto, Pointcheval and Stern [215]
were able to give a proof of the security of RSA using OAEP in the random oracle model
by exploiting the random self-reducibility of RSA. The reader is referred to these papers,

538 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

and the excellent survey by Gentry [252], for the details.

24.7.3 Rabin-SAEP

Boneh [74] has considered a padding scheme (which he calls SAEP) that is simpler than
OAEP and is suitable for encrypting short messages with Rabin. Note that the restriction
to short messages is not a serious problem in practice, since public key encryption is mainly
used to transport symmetric keys; nevertheless, this restriction means that SAEP is not
an “optimal” padding. The scheme can also be used for RSA with extremely short public
exponents (such as e = 3). We sketch the proof of security of Rabin encryption using this
padding, as it is relatively straightforward and it is also a nice application of some of the
cryptanalysis techniques already seen in Section 24.4.

Let κ ∈ N be a security parameter (for example, κ = 3070). Suppose N = pq is an
RSA modulus such that 2κ+1 < N < 2κ+1 + 2κ. We will also assume that p ≡ q ≡
3 (mod 4). Suppose 0 < κ0, κ1 < κ0 + κ1 < κ (later we will insist that κ1 > (κ + 2)/2
and 0 < n = κ− κ0 − κ1 < κ/4). Let H : {0, 1}κ1 → {0, 1}n+κ0 be a cryptographic hash
function. The SAEP padding of a message m ∈ {0, 1}n is as follows:

1. Set S0 = m‖0κ0.

2. Choose a random element R ∈ {0, 1}κ1.

3. Set S1 = S0 ⊕H(R).

4. Output S = S1‖R.

To unpad an SAEP bitstring S one first writes S as S1‖R where R ∈ {0, 1}κ1, then
computes S0 = S1 ⊕H(R), then writes S0 = m‖S2 where S2 ∈ {0, 1}κ0. If S2 is not the
all zero string then return ⊥, else return m.

Rabin-SAEP encryption proceeds by taking a message m ∈ {0, 1}n, padding it as
above, interpreting the bitstring as an integer 0 ≤ x < 2κ < N/2, and computing c =
x2 (mod N). As usual, with overwhelming probability we have gcd(x,N) = 1, so we
assume that this is the case.

To decrypt the ciphertext c one computes the four square roots 1 ≤ x1, . . . , x4 < N
of c modulo N in the usual way. Writing these such that x3 = N − x1, x4 = N − x2 it
follows that at exactly two of them are less than N/2. Hence, at most two are less than
2κ. For each root x such that x < 2κ perform the unpad algorithm to get either ⊥ or a
message m. If there are two choices for x, and either both give ⊥ or both give messages,
then output ⊥. Otherwise, output m. An integer c is said to be a valid ciphertext if it
decrypts to a message m, otherwise it is an invalid ciphertext.

Exercise 24.7.3. Show that if S is the output of the pad algorithm on m ∈ {0, 1}n then
m is the output of unpad on S. Then show that if c is a Rabin-SAEP encryption of a
message m ∈ {0, 1}n then the decryption algorithm on c outputs m with overwhelming
probability.

We will now study the security of the scheme. Intuitively, a CCA attacker of the
Rabin-SAEP scheme either computes at least one square root of the challenge ciphertext
c∗, or else computes a ciphertext c related to c∗ in the sense that if c∗ is an encryption
of m then c is an encryption of m⊕ z for some bitstring z. In this latter case, there is a
square root of c that differs from the desired square root of c∗ only in some of the most
significant n bits. The proof of Theorem 24.7.5 shows how either situation leads to the
factorisation of N .

24.7. PUBLIC KEY ENCRYPTION BASED ON RSA AND RABIN 539

Lemma 24.7.4. Let κ ∈ N (with κ > 10). Let N = pq, where p ≡ q ≡ 3 (mod 4)
are prime. Suppose further that 2κ+1 < N < 2κ+1 + 2κ. Let y = x2 (mod N) where
0 < x < 2κ is randomly chosen. Then there is an integer 0 < x′ < 2κ such that x′ 6= x
but y ≡ (x′)2 (mod N) with probability at least 1/3.

Proof: We know that 2κ < N/2 < 3
22κ.

Let A = {0 < x < 2κ : gcd(x,N) = 1 and x2 (mod N) has exactly one square root in
the range} and B = {0 < x < 2κ : gcd(x,N) = 1 and x2 (mod N) has exactly two square
roots in the range}. Note that #A+ #B ≥ 2κ − p− q + 1.

Since every such y = x2 (mod N) has exactly two square roots between 0 and N/2, it
follows that for each x ∈ A then the other square root x′ satisfies 2κ ≤ x′ < N/2. Hence,
#A < N/2− 2κ and so #B > 2κ+1 −N/2− p− q.

Finally, the probability of having two roots is

#B

2κ
> 2− N

2κ+1
− p+ q

2κ
>

1

2
− p+ q

2κ
,

which is 1/2− ǫ for some small ǫ > 0, and certainly greater than 1/3 when p, q > 25. �

Theorem 24.7.5. Let N = pq be a public key for the Rabin-SAEP encryption scheme.
Suppose 0 < κ0, κ1 < κ are parameters such that κ1 > (κ+2)/2 and n = κ−κ0−κ1 < κ/4.
If factoring Blum integers is hard then Rabin-SAEP has IND-CCA security in the random
oracle model (i.e., when the hash function H is replaced by oracle access to a random
function).

Proof: (Sketch) Let A be an adversary against IND-CCA security of Rabin-SAEP in the
random oracle model. We build a simulator that takes as input an integer N = pq and
attempts to factor it. The simulator will run A on the public key N .

The adversary A makes queries to the hash function oracle, decryption queries, and,
at some point, gives two messages m0 and m1 and requests a challenge ciphertext c∗ that
is an encryption of mb where b ∈ {0, 1}. The adversary eventually outputs a guess for the
bit b. The simulator has to respond to these queries.

To respond to the request for the challenge ciphertext the simulator will choose a ran-
dom 0 < a† < 2κ and compute c∗ = (a†)2 (mod N). By Lemma 24.7.4, with probability
at least 1/3 there is a second value 0 < a∗ < 2κ such that c∗ ≡ (a∗)2 (mod N). The
entire security proof is designed so that the simulator has a chance to learn the value a∗.
Once the simulator knows a∗ it can factor N by computing gcd(N, a†−a∗). Without loss
of generality, a† is chosen at the start of the simulation.

Let r† and r∗ be the κ1 least significant bits of a† and a∗ respectively. Note that r† is
known to the simulator but r∗ is not. The question of whether c∗ is a valid ciphertext,
and if so, whether it encrypts message m0 or m1, depends entirely on the values H(r†),
H(r∗), a† and a∗. Surprisingly, it is not necessary for the simulator to ensure that c∗

is a valid encryption of either m0 or m1. The crux of the proof is the observation that,
in order to be able to answer the above questions, one has to perform some operations
involving r∗. For the remainder of the proof we assume that the value H(r†) is such that
a† does not correspond to a correct SAEP padding of a message. Further, it may help the
reader to imagine that the value of H on r∗ is such that x∗ ⊕H(r∗) (where a∗ = x∗‖r∗)
has its κ0 least significant bits equal to zero.13

Boneh shows that either A makes a query to the hash function H on r∗, or A makes
a query to the decryption oracle with a ciphertext c that is an encryption using the value
r∗. These observations are exploited as follows.

13As we will see, the point is that this computation need never be performed, since as soon as r∗ is
queried to H the simulator wins and the game is over.

540 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

• If c is a ciphertext such that a corresponding value r has been queried to H , then
the polynomial F (y) = (y2κ1 + r)2 − c has a root modulo N with 0 ≤ y <

√
N ,

and this can be efficiently found using Coppersmith’s method (see Theorem 19.1.9;
it is easy to make F (y) monic before applying the theorem). For each decryption
query on c one therefore repeats the above process for all values r that have been
queried to H (we may assume at this point that r 6= r∗). A solution to this equation
gives one of the roots of the ciphertext. In the case where the adversary is asking
the simulator to decrypt a ciphertext that it has previously encrypted, then the
simulator will respond correctly. We stress that if none of the values r queried to
H correspond to the value c then there is not likely to be a small solution to the
equation and Coppersmith’s method does not provide any useful output.

• Alternatively, suppose c is a valid ciphertext that shares the value r∗ with c∗. Let
x be the corresponding square root of c, so that c = x2 (mod N) and the κ1
least significant bits of x equal r∗. Even though H(r∗) has not yet been queried
(otherwise, we have already factored N) if c∗ and c are valid ciphertexts then we
do not just have x ≡ a∗ ≡ r∗ (mod 2κ1) but x ≡ a∗ (mod 2κ0+κ1).

Let z be such that x = a∗ + 2κ0+κ1z. Then F1(y) = y2 − c∗ and F2(y, z) =
(y + 2κ0+κ1z)2 − c have a root y modulo N in common. Taking the resultant of
F1(y) and F2(y, z) with respect to y gives a degree 4 polynomial F (z) with a root
0 < z < N1/4. In such a situation, z can be computed by Coppersmith’s theorem
(again, it is easy to make the polynomial monic). Once z is computed one solves
for y using the polynomial gcd and hence obtains the desired root a∗ of c∗. These
calculations will fail (in the sense that Coppersmith’s algorithm does not output a
small root) if c does not have a root x such that x ≡ a∗ (mod 2κ0+κ1).

All the main ideas are now in place, so we can finally describe the simulator. First we
explain how the simulator handles queries to the oracle H .

1. The simulator creates a table of values (r,H(r)), which is initially set to have the
single entry (r†, H(r†)) where H(r†) is chosen uniformly at random.

2. If A queries the oracle H on a value r such that r already appears in the table, then
the simulator returns the corresponding value H(r).

3. If A queries the oracle H on a new value r then the simulator runs Coppersmith’s
algorithm on F (y) = (y2κ1 + r)2 − c∗ in the hope of finding a root of c∗. If this
succeeds then the root must be a∗ (since if r = r† we do not execute this step) and
N is factored.

4. If r is new and Coppersmith’s method does not yield a root of c∗ then choose
uniformly at random a value H(r), add (r,H(r)) to the table, and return H(r).

Now we explain how to handle decryption queries.

1. If A asks to decrypt a ciphertext c then, for each value r in the table of hash queries,
run Coppersmith’s algorithm on F (y) = (y2κ1 + r)2 − c. If a square root of c is
computed then perform the SAEP unpad algorithm and output the message or ⊥
accordingly. Note that this is not exactly the same as the decryption algorithm,
since it would check all square roots of c in the range of interest.

2. If step 1 does not succeed then compute the polynomial F (z) as the resultant of
F1(y) = y2 − c∗ and F2(y, z) = (y + 2κ0+κ1z)2 − c with respect to y as discussed
above. If Coppersmith’s method succeeds for F (z) then the simulator can compute
a∗ and factor N .

24.7. PUBLIC KEY ENCRYPTION BASED ON RSA AND RABIN 541

3. If neither of these steps succeed then output ⊥.

The main claim is that if A has a non-negligible probability of success then one of the
above approaches for finding a∗ succeeds with non-negligible probability. For complete
details, and in particular, a careful analysis of the probabilities, we refer to Boneh [74].
�

Exercise 24.7.6. Prove the analogue of Theorem 24.7.5 when using SAEP padding with
RSA and encryption exponent e = 3. Give the restriction on the sizes of n, κ0 and κ1 in
this case.

24.7.4 Further Topics

Hybrid Encryption

It is standard in cryptography that encryption is performed using a hybrid system. A
typical scenario is to use public key cryptography to encrypt a random session key K1‖K2.
Then the document is encrypted using a symmetric encryption scheme such as AES with
the key K1. Finally a MAC (message authentication code) with key K2 of the symmetric
ciphertext is appended to ensure the integrity of the transmission.

Encryption Secure in the Standard Model

Cramer and Shoup [160] have given an encryption scheme, using the universal hash proof
systems framework based on the Paillier cryptosystem. Their scheme (using N = pq where
p and q are safe primes) has IND-CCA security in the standard model if the composite
residuosity problem is hard (see Definition 24.3.4). We do not have space to present this
scheme.

Hofheinz and Kiltz [291] have shown that the Elgamal encryption scheme of Sec-
tion 23.1, when implemented in a certain subgroup of (Z/NZ)∗, has IND-CCA security
in the random oracle model if factoring is hard, and in the standard model if a certain
higher residuosity assumption holds.

542 CHAPTER 24. THE RSA AND RABIN CRYPTOSYSTEMS

Part VII

Advanced Topics in Elliptic
and Hyperelliptic Curves

543

Chapter 25

Isogenies of Elliptic Curves

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Isogenies are a fundamental object of study in the theory of elliptic curves. The
definition and basic properties were given in Sections 9.6 and 9.7. In particular, they are
group homomorphisms.

Isogenies are used in algorithms for point counting on elliptic curves and for computing
class polynomials for the complex multiplication (CM) method. They have applications
to cryptanalysis of elliptic curve cryptosystems. They also have constructive applications:
prevention of certain side-channel attacks; computing distortion maps for pairing-based
cryptography; designing cryptographic hash functions; relating the discrete logarithm
problem on elliptic curves with the same number of points. We do not have space to
discuss all these applications.

The purpose of this chapter is to present algorithms to compute isogenies from an
elliptic curve. The most important result is Vélu’s formulae, that compute an isogeny
given an elliptic curve and a kernel subgroup G. We also sketch the various ways to find
an isogeny given an elliptic curve and the j-invariant of an elliptic curve ℓ-isogenous to E.
Once these algorithms are in place we briefly sketch Kohel’s results, the isogeny graph,
and some applications of isogenies. Due to lack of space we are unable to give proofs of
most results.

Algorithms for computing isogenies on Jacobians of curves of genus 2 or more are
much more complicated than in the elliptic case. Hence, we do not discuss them in this
book.

25.1 Isogenies and Kernels

Let E : y2 + a1xy + a3 = x3 + a2x
2 + a4x + a6 be an elliptic curve over k. Recall from

Section 9.6 that a non-zero isogeny φ : E → Ẽ over k of degree d is a morphism of degree
d such that φ(OE) = OẼ . Such a map is automatically a group homomorphism and has
kernel of size dividing d.

545

546 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

Theorem 9.7.5 states that a separable isogeny φ : E → Ẽ over k may be written in
the form

φ(x, y) = (φ1(x), cyφ1(x)′ + φ3(x)), (25.1)

where φ1(x), φ3(x) ∈ k(x), where φ1(x)′ = dφ1(x)/dx is the (formal) derivative of the

rational function φ1(x), where c ∈ k
∗

is a non-zero constant, and where (writing ãi for

the coefficients of Ẽ)

2φ3(x) = −ã1φ1(x)− ã3 + (a1x+ a3)φ1(x)′.

Lemma 9.6.13 showed that if φ1(x) = a(x)/b(x) in equation (25.1) then the degree of φ
is max{degx(a(x)), degx(b(x))}. The kernel of an isogeny φ with φ1(x) = a(x)/b(x) is
{OE} ∪ {P = (xP , yP) ∈ E(k) : b(xP) = 0}. The kernel of a separable isogeny of degree
d has d elements.

Let E be an elliptic curve over a field k and G a finite subgroup of E(k) that is defined

over k. Theorem 9.6.19 states that there is a unique elliptic curve Ẽ (up to isomorphism)

and a separable isogeny φ : E → Ẽ over k such that ker(φ) = G. We sometimes write

Ẽ = E/G. Let ℓ be a prime such that gcd(ℓ, char(k)) = 1. Since E[ℓ] is isomorphic (as a
group) to the product of two cyclic groups, there are ℓ+ 1 different subgroups of E[ℓ] of
order ℓ. It follows that there are ℓ + 1 isogenies of degree ℓ, not necessarily defined over
k, from E to other curves (some of these isogenies may map to the same image curve).

As implied by Theorem 9.6.18 and discussed in Exercise 9.6.20, an isogeny is essentially
determined by its kernel. We say that two separable isogenies φ1, φ2 : E → Ẽ are
equivalent isogenies if ker(φ1) = ker(φ2).

Exercise 25.1.1. Let φ : E → Ẽ be a separable isogeny. Show that if λ ∈ Aut(Ẽ)
then λ ◦ φ is equivalent to φ. Explain why φ ◦ λ is not necessarily equivalent to φ for
λ ∈ Aut(E).

Theorem 25.1.2 shows that isogenies can be written as “chains” of prime-degree iso-
genies. Hence, in practice one can restrict to studying isogenies of prime degree. This
observation is of crucial importance in the algorithms.

Theorem 25.1.2. Let E and Ẽ be elliptic curves over k and let φ : E → Ẽ be a separable
isogeny that is defined over k. Then φ = φ1 ◦ · · · ◦ φk ◦ [n] where φ1, . . . , φk are isogenies

of prime degree that are defined over k and deg(φ) = n2
∏k
i=1 deg(φi).

Proof: Theorem 9.6.19 states that φ is essentially determined by its kernel subgroup G
and that φ is defined over k if and only if G is. We will also repeatedly use Theorem 9.6.18,
that states that an isogeny φ : E → Ẽ defined over k factors as φ = φ2 ◦ φ1 (where

φ1 : E → E1 and φ2 : E1 → Ẽ are isogenies over k) whenever ker(φ) has a subgroup
G = ker(φ1) defined over k.

First, let n be the largest integer such that E[n] ⊆ G = ker(φ) and note that φ = φ′◦[n]
where [n] : E → E is the usual multiplication by n map. Set i = 1, define E0 = E and set
G = G/E[n]. Now, let ℓ | #G be a prime and let P ∈ G have prime order ℓ. There is an
isogeny φi : Ei−1 → Ei of degree ℓ with kernel 〈P 〉. Let σ ∈ Gal(k/k). Since σ(P) ∈ G
but E[ℓ] 6⊆ G it follows that σ(P) ∈ 〈P 〉 and so 〈P 〉 is defined over k. It follows that φi
is defined over k. Replace G by φi(G) ∼= G/〈P 〉 and repeat the argument. �

Exercise 25.1.3. How must the statement of Theorem 25.1.2 be modified if the require-
ment that φ be separable is removed?

25.1. ISOGENIES AND KERNELS 547

Exercise 25.1.4. Let E be an ordinary elliptic curve. Let φ1 : E → E1 and φ2 : E1 → E2

be non-zero separable isogenies over k of coprime degrees e and f respectively. Show that
there is an elliptic curve Ẽ1 over k, and a pair of non-zero separable isogenies ψ1 : E → Ẽ1

and ψ2 : Ẽ1 → E2 of degrees f and e respectively, such that φ2 ◦ φ1 = ψ2 ◦ ψ1.

25.1.1 Vélu’s Formulae

We now present explicit formulae, due to Vélu [617], for computing a separable isogeny
from an elliptic curve E with given kernel G. These formulae work in any characteristic.
As motivation for Vélu’s formulae we now revisit Example 9.6.9.

Example 25.1.5. Let E : y2 = x3 + x and consider the subgroup of order 2 generated
by the point (0, 0). From Example 9.2.4 we know that the translation by (0, 0) map is
given by

τ(0,0)(x, y) =

(
1

x
,
−y
x2

)
.

Hence, it follows that functions invariant under this translation map include

X = x+ 1/x = (x2 + 1)/x, Y = y − y/x2 = y(x2 − 1)/x2.

One can compute that X3 = (x6 + 3x4 + 3x2 + 1)/x3 and so

Y 2 = y2(x2 − 1)2/x4

= (x6 − x4 − x2 + 1)/x3

= X3 − 4X.

It follows that the map

φ(x, y) =

(
x2 + 1

x
, y
x2 − 1

x2

)

is an isogeny from E to Ẽ : Y 2 = X3 − 4X .
We remark that φ can also be written as

φ(x, y) =

(
y2

x2
, y
x2 − 1

x2

)

and can be written projectively as

φ(x : y : z) = (x(x2 + z2) : y(x2 − z2) : x2z)

= (y(x2 + z2) : xy2 − x2z − z3 : xyz)

= (y2z : y(x2 − z2) : x2z)

= (xy2 : y(y2 − 2xz) : x3).

Theorem 25.1.6. (Vélu) Let E be an elliptic curve over k defined by the polynomial

F (x, y) = x3 + a2x
2 + a4x+ a6 −

(
y2 + a1xy + a3y

)
= 0.

Let G be a finite subgroup of E(k). Let G2 be the set of points in G − {OE} of order 2
and let G1 be such that #G = 1 + #G2 + 2#G1 and

G = {OE} ∪G2 ∪G1 ∪ {−Q : Q ∈ G1}.

548 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

Write

Fx =
∂F

∂x
= 3x2 + 2a2x+ a4 − a1y and Fy =

∂F

∂y
= −2y − a1x− a3.

For a point Q = (xQ, yQ) ∈ G1 ∪G2 define the quantities

u(Q) = (Fy(Q))
2

= (−2yQ − a1xQ − a3)
2

and

t(Q) =

{
Fx(Q) if Q ∈ G2

2Fx(Q)− a1Fy(Q) if Q ∈ G1.

Note that if Q ∈ G2 then Fy(Q) = 0 and so u(Q) = 0.
Define

t(G) =
∑

Q∈G1∪G2

t(Q) and w(G) =
∑

Q∈G1∪G2

(u(Q) + xQt(Q))

and set

A1 = a1, A2 = a2, A3 = a3, A4 = a4 − 5t(G), A6 = a6 − (a21 + 4a2)t(G)− 7w(G).

Then the map φ : (x, y) 7→ (X,Y) where

X = x+
∑

Q∈G1∪G2

t(Q)

x− xQ
+

u(Q)

(x− xQ)2

and

Y = y−
∑

Q∈G1∪G2

u(Q)
2y + a1x+ a3

(x− xQ)3
+t(Q)

a1(x− xQ) + y − yQ
(x− xQ)2

+
a1u(Q)− Fx(Q)Fy(Q)

(x− xQ)2

is a separable isogeny from E to

Ẽ : Y 2 +A1XY +A3Y = X3 +A2X
2 +A4X +A6

with kernel G. Further, φ satisfies

φ∗
(

dX

2Y +A1X +A3

)
=

dx

2y + a1x+ a3
.

Proof: (Sketch) The basic idea (as used in Example 25.1.5) is that the function

X(P) =
∑

Q∈G
x(P +Q)

on E is invariant under G (in the sense that X = X ◦ τQ for all Q ∈ G) and so can be
considered as “defined on E/G”. To simplify some calculations sketched below it turns
out to be more convenient to subtract the constant

∑
Q∈G−{OE} x(Q) from X . (Note

that x(Q) = xQ.) Let t∞ = −x/y be a uniformizer on E at OE (one could also take
t∞ = x/y, but this makes the signs more messy). The function x can be written as
t−2
∞ − a1t−1

∞ − a2 − a3t∞ − (a1a3 + a4)t2∞ − · · · (for more details about the expansions of
x, y and ωE in terms of power series see Section IV.1 of Silverman [564]). It follows that
X = t−2

∞ − a1t−1
∞ − · · · and so vOE (X) = −2.

25.1. ISOGENIES AND KERNELS 549

One can also show that y = −t−3
∞ − a1t

−2
∞ − a2t

−1
∞ − · · · . The function Y (P) =∑

Q∈G y(P + Q) is invariant under G and has vOE (Y) = −3. One can therefore show
(see Section 12.3 of Washington [626]) that the subfield k(X,Y) of k(x, y) is the function

field of an elliptic curve Ẽ (Washington [626] does this in Lemma 12.17 using the Hurwitz
genus formula). The map φ : (x, y) 7→ (X,Y) is therefore an isogeny of elliptic curves. By
considering the expansions in terms of t∞ one can show that the equation for the image
curve is Y 2 + A1XY +A3Y = X3 + A2X

2 +A4X + A6 where the coefficients Ai are as
in the statement of the Theorem.

Now, let ωE = dx/(2y + a1x + a3). One has dx = (−2t−3
∞ + a1t

−2
∞ + · · ·)dt∞ and

2y + a1x + a3 = −2t−3
∞ − a1t

−2
∞ + · · · and so ωE = (1 − a1t∞ + · · ·)dt∞. Similarly,

φ∗(ωẼ) = d(X ◦ φ)/(2Y ◦ φ + A1X ◦ φ + A3) = d(t−2
∞ + a1t

−1
∞ + · · ·)/(−2t−3

∞ + · · ·) =
(1 + · · ·)dt∞. It follows that the isogeny is separable and that φ∗(ωẼ) = fωE for some
function f . Further, div(ωE) = 0 and div(φ∗(ωẼ)) = φ∗(div(ωẼ)) = 0 (by Lemma 8.5.36,
since φ is unramified1) and so div(f) = 0. It follows that f is a constant, and the power
series expansions in terms of t∞ imply that f = 1 as required.

Write the isogeny as φ(x, y) = (φ1(x), yφ2(x) + φ3(x)). By Theorem 9.7.5 the isogeny
is determined by φ1(x) (for the case char(k) = 2 see Exercise 9.7.6). Essentially, one only
has to prove Vélu’s formula for φ1(x); we do this now. First, change the definition of X
to

X(P) = xP +
∑

Q∈G−{OE}
(xP+Q − xQ)

where P is a “generic point” (i.e., P = (xP , yP) where xP and yP are variables) on the
elliptic curve and Q ∈ G−{OE}. Let F (x, y) be as in the statement of the Theorem and
let y = l(x) be the equation of the line through P and Q (so that l(x) = λ(x− xQ) + yQ
where λ = (yP − yQ)/(xP − xQ)). Define

F1(x) = F (x, l(x)) = (x− xQ)(x− xP)(x− xP+Q).

Further,

∂F1

∂x
(Q) = (xQ − xP)(xQ − xP+Q)

and
∂F1

∂x
=
∂F

∂x
+

∂F

∂y

∂l

∂x
= Fx + Fy · λ.

Hence, xP+Q−xQ = Fx(Q)/(xP −xQ)+(yP −yQ)Fy(Q)/(xP −xQ)2. One now considers
two cases: When [2]Q = OE then Fy(Q) = 0. When [2]Q 6= OE then it is convenient to
consider

xP+Q − xQ + xP−Q − x−Q.

Now, x−Q = xQ, y−Q = yQ+Fy(Q), Fx(−Q) = Fx(Q)−a1Fy(Q) and Fy(−Q) = −Fy(Q).
The formula for φ1(x) follows.

Now we sketch how to obtain the formula for the Y -coordinate of the isogeny in the
case char(k) 6= 2. Note that φ1(x) = x +

∑
Q[t(Q)/(x − xQ) + u(Q)/(x − xQ)2] and so

φ1(x)′ = 1 −∑Q[t(Q)/(x − xQ)2 + 2uQ/(x − xQ)3]. Using φ3(x) = (−A1φ1(x) − A3 +

1This was already discussed in Section 9.6. One can directly see that separable isogenies are unramified
since if φ(P1) = P2 then the set of pre-images under φ of P2 is {P1 +Q : Q ∈ ker(φ)}.

550 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

(a1x+ a3)φ1(x)′)/2 one computes

yφ2(x) + φ3(x) = yφ1(x)′ + φ3(x)

= y

1−

∑

Q

t(Q)/(x− xQ)2 + 2u(Q)/(x− xQ)3

−(a1x+ a3)/2− a1
∑

Q

[t(Q)/(x− xQ)2 + 2u(Q)/(x− xQ)3]

+(a1x+ a3)/2 + (a1x+ a3)
∑

Q

[−t(Q)/(x− xQ)2 − 2u(Q)/(x− xQ)3]

= y −
∑

Q

[
t(Q)

y + a1(x− xQ)− yQ
(x− xQ)2

+ u(Q)
2y + a1x+ a3

(x − xQ)3

+
t(Q)((a1xQ + a3)/2 + yQ) + a1u(Q)/2

(x− xQ)2

]
.

It suffices to show that the numerator of the final term in the sum is equal to a1u(Q)−
Fx(Q)Fy(Q). However, this follows easily by noting that (a1xQ+a3)/2+yQ = −Fy(Q)/2,
u(Q) = Fy(Q)2 and using the facts that Fy(Q) = 0 when [2]Q = OE and t(Q) =
2Fx(Q)− a1Fy(Q) otherwise. �

Corollary 25.1.7. Let E be an elliptic curve defined over k and G a finite subgroup of
E(k) that is defined over k. Then there is an elliptic curve Ẽ = E/G defined over k and

an isogeny φ : E → Ẽ defined over k with ker(φ) = G.

Proof: It suffices to show that the values t(G), w(G) and the rational functions X and
Y in Theorem 25.1.6 are fixed by any σ ∈ Gal(k/k). �

Corollary 25.1.8. Let φ : E → Ẽ be a separable isogeny of odd degree ℓ between elliptic
curves over k. Write φ(x, y) = (φ1(x), φ2(x, y)), where φ1(x) and φ2(x, y) are rational
functions. Then φ1(x, y) = u(x)/v(x)2, where deg(u(x)) = ℓ and deg(v(x)) = (ℓ − 1)/2.
Also, φ2(x, y) = (yw1(x)+w2(x))/v(x)3, where deg(w1(x)) ≤ 3(ℓ−1)/2 and deg(w2(x)) ≤
(3ℓ− 1)/2.

Exercise 25.1.9. Prove Corollary 25.1.8.

Definition 25.1.10. An isogeny φ : E → Ẽ is normalised if φ∗(ωẼ) = ωE .

Vélu’s formulae give a normalised isogeny. Note that normalised isogenies are in-
compatible with Theorem 9.7.2 (which, for example, implies [m]∗(ωE) = mωE). For this

reason, in many situations one needs to take an isomorphism from Ẽ to obtain the desired
isogeny. Example 25.1.12 shows how this works.

Exercise 25.1.11. Let φ : E → Ẽ be an isogeny given by rational functions as in
equation (25.1). Show that φ is normalised if and only if c = 1.

Example 25.1.12. Let E : y2 + xy + 3y = x3 + 2x2 + 4x+ 2 over F311. Then

E[2] = {OE , (−1,−1), (115, 252), (117, 251)} ⊂ E(F311).

Let G = E[2]. Applying the Vélu formulae one computes t(G) = 8, w(G) = 306, A1 =
1, A2 = 2, A3 = 3, A4 = 275 and A6 = 276. One can check that E and

Ẽ : Y 2 +XY + 3Y = X3 + 2X2 + 275X + 276

25.1. ISOGENIES AND KERNELS 551

have the same j-invariant, but they are clearly not the same Weierstrass equation. Hence,
the Vélu isogeny with kernel E[2] is not the isogeny [2] : E → E.

To recover the map [2] one needs to find a suitable isomorphism from Ẽ to E. The
isomorphism will have the form (X,Y) 7→ (u2X+ r, u3Y + su2X+ t) where we must have
u = 1/2 to have the correct normalisation for the action of the isogeny on the invariant
differential (see Exercise 25.1.13). One can verify that taking r = 291, s = 233 and t = 67

gives the required isomorphism from Ẽ to E and that the composition of the Vélu isogeny
and this isomorphism is the map [2].

Exercise 25.1.13. Show that if φ : (x, y) 7→ (u2x+ r, u3y+ su2x+ t) is an isomorphism

from E to Ẽ then φ∗(ωẼ) = 1
uωE .

Exercise 25.1.14. Determine the complexity of constructing and computing the Vélu
isogeny. More precisely, show that if d = #G and G ⊂ E(Fqn) then O(dM(n, q)) bit
operations are sufficient, where M(n, q) = M(n log(nq)) is the number of bit operations
to multiply two degree n polynomials over Fq.

Further, show that if d is an odd prime then n ≤ d− 1 and so the complexity can be
written as O(d2+ǫ log(q)1+ǫ) bit operations.

Example 25.1.15. Consider E : y2 = x3 + 2x over F37, with j = 26 ≡ 1728 (mod 37).
We have #E(F37) = 2 · 52 so there is a unique point (0, 0) of order 2 over F37 giving a
2-isogeny from E. Using Vélu’s formulae one determines that the image of this isogeny
is E1 : y2 = x3 + 29x, which also has j-invariant 26 and is isomorphic to E over F37.

Now consider the other points of order 2 on E. Let α ∈ F372 satisfy α2 = −2. The
isogeny φ2 with kernel {OE , (α, 0)}maps to E2 : y2 = x3+28αx, while the isogeny φ3 with
kernel {OE , (−α, 0)} maps to E3 : y2 = x3 − 28αx. Note that there is an isomorphism

ψ : E2 → E3 over F372 . We have φ̂2 ◦ φ2 = φ̂3 ◦ φ3 = [2] on E. One can also consider

φ̂3 ◦ ψ ◦ φ2 on E, which must be an element of End(E) = Z[i] of degree 4. One can show

that it is i[2] where i(x, y) = (−x, 31y). Hence, [2] and φ̂3 ◦ψ ◦φ2 are equivalent isogenies.

Kohel [350] and Dewaghe [171] independently gave formulae for the Vélu isogeny in
terms of the coefficients of the polynomial defining the kernel, rather than in terms of the
points in the kernel. We give these formulae in Lemma 25.1.16 for the case where G has
odd order (they are also given in Section 2.4 of [350]). Since a k-rational subgroup of an
elliptic curve can have points defined over an extension of k, working with the coefficients
of the polynomial can be more efficient than working with the points in G.

Lemma 25.1.16. Let E : y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6 be an elliptic curve

over k. Let G be a cyclic subgroup of E(k) of odd order 2d+ 1. Let G1 ⊆ G be such that
#G1 = d and G = {OE} ∪G1 ∪ {−Q : Q ∈ G1}. Define

ψ(x) =
∏

Q∈G1

(x− xQ) = xd − s1xd−1 + s2x
d−2 + · · ·+ (−1)dsd (25.2)

where the si are the i-th symmetric polynomials in the roots of ψ(x) (equivalently, in
the x-coordinates of elements of G1). Define b2 = a21 + 4a2, b4 = 2a4 + a1a3 and b6 =

a23 + 4a6. Then there is an isogeny φ : E → Ẽ, with ker(φ) = G, of the form φ(x, y) =
(A(x)/ψ(x)2 , B(x, y)/ψ(x)3) where A(x) and B(x, y) are polynomials. Indeed,

A(x)

ψ(x)2
= (2d+1)x−2s1−(4x3+b2x

2+2b4x+b6)(ψ(x)′/ψ(x))′−(6x2+b2x+b4)(ψ(x)′/ψ(x)).

The proof of Lemma 25.1.16 is given as a sequence of exercises.

552 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

Exercise 25.1.17. Let the notation be as in Lemma 25.1.16. Let Fx(Q), Fy(Q), t(Q)
and u(Q) be as in Theorem 25.1.6. Show that

t(Q) = 6x2Q + b2xQ + b4 and u(Q) = 4x3Q + b2x
2
Q + 2b4xQ + b6.

Exercise 25.1.18. Let the notation be as in Lemma 25.1.16. Let Fx(Q), Fy(Q), t(Q)
and u(Q) be as in Theorem 25.1.6. Show that

xQ
x− xQ

=
x

x− xQ
− 1 ,

xQ
(x− xQ)2

=
x

(x− xQ)2
− 1

(x− xQ)
,

x2Q
(x− xQ)

=
x2

x− xQ
− x− xQ ,

x2Q
(x− xQ)2

=
x2

(x− xQ)2
− 2x

(x− xQ)
+ 1 ,

x3Q
(x− xQ)2

=
x3

(x− xQ)2
− 3x2

(x− xQ)
+ 2x+ xQ.

Exercise 25.1.19. Let the notation be as in Lemma 25.1.16. For 1 ≤ i ≤ 3 define

Si =
∑

Q∈G1

1

(x− xQ)i
.

Show that S1 = ψ(x)′/ψ(x) and that S2 = −(ψ′(x)/ψ(x))′ = ((ψ(x)′)2−ψ(x)ψ(x)′′)/ψ(x)2.

Exercise 25.1.20. Complete the proof of Lemma 25.1.16.

Exercise 25.1.21. Determine the complexity of using Lemma 25.1.16 to compute iso-
genies over finite fields. More precisely, show that if G ⊆ E(Fqn) is defined over Fq and
d = #G then one can compute ψ(x) in O(d2) operations in Fqn . Once ψ(x) ∈ Fq[x] is
computed show that one can compute the polynomials A(x) and B(x, y) for the isogeny
in O(d) operations in Fq.

25.2 Isogenies from j-invariants

Vélu’s formulae require that one knows the kernel of the desired isogeny. But in some
applications one wants to take a k-rational isogeny of a given degree d (assuming such

an isogeny exists) from E to another curve Ẽ (where Ẽ may or may not be known), and
one does not know a specific kernel. By Theorem 25.1.2 one can restrict to the case when
d = ℓ is prime. We usually assume that ℓ is odd, since the case ℓ = 2 is handled by points
of order 2 and Vélu’s formulae.

One solution is to choose a random point P ∈ E[ℓ] that generates a k-rational subgroup
of order ℓ. To find such a point, compute the ℓ-division polynomial (which has degree
(ℓ2−1)/2 when ℓ is odd) and find irreducible factors of it in k[x] of degree up to (ℓ−1)/2.
Roots of such factors are points of order ℓ, and one can determine whether or not they
generate a k-rational subgroup by computing all points in the subgroup. Roots of factors
of degree d > (ℓ− 1)/2 cannot give rise to k-rational subgroups of order ℓ. This approach
is expensive when ℓ is large for a number of reasons. For a start, finding roots of degree
at most (ℓ − 1)/2 of a polynomial of degree (ℓ2 − 1)/2 in Fq[x] takes Ω(ℓ3 log(ℓ) log(q))
bit operations.

25.2. ISOGENIES FROM J-INVARIANTS 553

A more elegant approach is to use the ℓ-th modular polynomial. It is beyond the scope
of this book to present the theory of modular functions and modular curves (some basic
references are Sections 5.2 and 5.3 of Lang [366] and Section 11.C of Cox [157]). The fun-
damental fact is that there is a symmetric polynomial, called the modular polynomial2

Φℓ(x, y) ∈ Z[x, y] such that if E is an elliptic curve over a field k and Ẽ is an elliptic
curve over k then there is a separable isogeny of degree ℓ (where gcd(ℓ, char(k)) = 1) with

cyclic kernel from E to Ẽ if and only if Φℓ(j(E), j(Ẽ)) = 0 (see Theorem 5, Section 5.3 of
Lang [366]). The modular polynomial Φℓ(x, y) is a singular model for the modular curve
X0(ℓ) over Q. This modular curve is a moduli space in the sense that a (non-cusp) point
of X0(ℓ)(k) corresponds to a pair (E,G) where E is an elliptic curve over k and where
G is a cyclic subgroup of E, defined over k, of order ℓ. Note that it is possible to have
an elliptic curve E together with two distinct cyclic subgroups G1 and G2 of order ℓ such
that the image curves E/G1 and E/G2 are isomorphic; in this case (E,G1) and (E,G2)
are distinct points of X0(ℓ) but correspond to a repeated root of Φℓ(j(E), y) (it follows
from the symmetry of Φℓ(x, y) that this is a singular point on the model). In other words,
a repeated root of Φℓ(j(E), y) corresponds to non-equivalent ℓ-isogenies from E to some

elliptic curve Ẽ.
Since there are ℓ + 1 cyclic subgroups of E[ℓ] it follows that Φℓ(j(E), y) has degree

ℓ+1. Indeed, Φℓ(x, y) = xℓ+1+yℓ+1−(xy)ℓ+ · · · with all other terms of lower degree (see
Theorem 11.18 of Cox [157] or Theorem 3 of Section 5.2 of Lang [366]). The coefficients of
Φℓ(x, y) are large (as seen in Example 25.2.1, even when ℓ = 2 the coefficients are large).

Example 25.2.1.

Φ2(x, y) = x3 + y3 − x2y2 + 1488(x2y + xy2)− 162000(x2 + y2)

+40773375xy+ 8748000000(x+ y)− 157464000000000.

Let ℓ be prime. Cohen [138] showed that the number of bits in the largest coefficient
of Φℓ(x, y) is O(ℓ log(ℓ)) (see Bröker and Sutherland [110] for a more precise bound).
Since there are roughly ℓ2 coefficients it follows that Φℓ(x, y) can be written down us-
ing O(ℓ3 log(ℓ)) bits, and it is believed that this space requirement cannot be reduced.
Hence, one expects to perform at least O(ℓ3 log(ℓ)) = O(ℓ3+ǫ) bit operations3 to compute
Φℓ(x, y). Indeed, using methods based on modular functions one can conjecturally4 com-
pute Φℓ(x, y) in O(ℓ3+ǫ) bit operations (see Enge [194]). Using modular functions other
than the j-function can lead to polynomials with smaller coefficients, but this does not
affect the asymptotic complexity.

The fastest method to compute modular polynomials is due to Bröker, Lauter and
Sutherland [109]. This method exploits some of the ideas explained later in this chapter
(in particular, isogeny volcanoes). The method computes Φℓ(x, y) modulo small primes
and then determines Φℓ(x, y) by the Chinese remainder theorem. Under the Generalized
Riemann Hypothesis (GRH) the complexity is O(ℓ3 log(ℓ)3 log(log(ℓ))) bit operations. For
the rest of the chapter we abbreviate the cost as O(ℓ3+ǫ) bit operations. The method
can also be used to compute Φℓ(x, y) modulo p, in which case the space requirements are
O(ℓ2 log(ℓ)2 + ℓ2 log(p)) bits.

The upshot is that, given an elliptic curve E over k, the j-invariants of elliptic curves
Ẽ that are ℓ-isogenous over k (where gcd(ℓ, char(k)) = 1) are given by the roots of

2The reader should not confuse the modular polynomial Φℓ(x, y) with the cyclotomic polynomial
Φm(x).

3Recall that a function f(ℓ) is O(ℓ3+ǫ) if, for every ǫ > 0, there is some C(ǫ), L(ǫ) ∈ R>0 such that
f(ℓ) < C(ǫ)ℓ3+ǫ for all ℓ > L(ǫ).

4Enge needs an assumption that rounding errors do not affect the correctness of the output.

554 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

Φℓ(j(E), y) in k. When E is ordinary, Theorem 25.4.6 implies that Φℓ(j(E), y) has either
0, 1, 2 or ℓ+ 1 roots in k (counted with multiplicities).

Exercise 25.2.2. Given the polynomial Φℓ(x, y) and a value j ∈ Fq show that one can
compute F (y) = Φℓ(j, y) ∈ Fq[y] inO(ℓ2(ℓ log(ℓ) log(q)+M(log(q)))) bit operations. Show
also that one can then compute the roots ̃ ∈ Fq of F (y) = Φℓ(j(E), y) (or determine
that there are no roots) in expected time bounded by O(ℓ2 log(ℓ) log(q)) field operations
(which is O(ℓ2+ǫ log(q)3) bit operations).

For the rest of this section we consider algorithms to compute an ℓ-isogeny φ : E → Ẽ
given an elliptic curve E and the j-invariant of Ẽ.

Exercise 25.2.3. Let E be an elliptic curve over Fq and let E′ over Fq be a twist of E.
Show that there is an Fq-rational isogeny of degree ℓ from E (to some elliptic curve) if and
only if there is an Fq-rational isogeny of degree ℓ from E′. Show that End(E) ∼= End(E′)
(where ∼= denotes ring isomorphism).

25.2.1 Elkies’ Algorithm

Let ℓ > 2 be a prime and let E be an elliptic curve over k where char(k) = 0 or char(k) >
ℓ + 2. Assume j(E) 6= 0, 1728 (for the case j(E) ∈ {0, 1728} one constructs isogenies
using the naive method or the methods of the following sections). Let ̃ ∈ k be such that
Φℓ(j(E), ̃) = 0. We also assume that ̃ is a simple root of Φℓ(j(E), y) (more precisely,
(∂Φℓ(x, y)/∂x)(j, ̃) 6= 0 and (∂Φℓ(x, y)/∂y)(j, ̃) 6= 0); see page 248 of Schoof [530] for a
discussion of why this condition is not too severe.

Elkies gave a method to determine an explicit equation for an elliptic curve Ẽ, such
that j(Ẽ) = ̃, and a polynomial giving the kernel of an ℓ-isogeny from E to Ẽ. Elkies’
original motivation (namely, algorithms for point counting) only required computing the
kernel polynomial of the isogeny, but as we have seen, from this information one can easily
compute the rational functions describing the isogeny. The method also works when ℓ > 2
is composite, but that is not of practical relevance. The condition that char(k) not be
small (if it is non-zero) is essential.

We use the same notation as in Lemma 25.1.16: ψ(x) is the polynomial of degree
(ℓ− 1)/2 whose roots are the x-coordinates of affine points in the kernel G of the isogeny
and si are the i-th symmetric polynomials in these roots. We also define

pi =
∑

P∈G−{OE}
xiP

so that p1 = 2s1 and p2 = 2(s21 − 2s2) (these are Newton’s formulae; see Lemma 10.7.6).

While the value ̃ specifies the equation for the isogenous curve Ẽ (up to isomorphism)
it does not, in general, determine the isogeny (see pages 37 and 44 of Elkies [193] for
discussion). It is necessary to have some extra information, and for this the coefficient p1
suffices and can be computed using partial derivatives of the modular polynomial (this is
why the condition on the partial derivatives is needed).

The explanation of Elkies’ algorithm requires theory that we do not have space to
present. We refer to Schoof [530] for a good summary of the details (also see Elkies [193]
for further discussion). The basic idea is to use the fact (Deuring lifting theorem) that
the isogeny lifts to an isogeny between elliptic curves over C. One can then interpret the
ℓ-isogeny in terms of Tate curves5 C∗/qZ (we have not presented the Tate curve in this

5The notation q here refers to q(z) = exp(2πiz) and not a prime power.

25.2. ISOGENIES FROM J-INVARIANTS 555

book; see Section C.14 of [564] or Section 5.3 of [565]) as a map from q(z) to q(z)ℓ. As
discussed on page 40 of Elkies [193], this isogeny is not normalised. There are a number
of relations between the modular j-function, certain Eisenstein series, the equation of the
elliptic curve (in short Weierstrass form) and the kernel polynomial of the isogeny. These
relations give rise to formulae that must also hold over k. Hence, one can work entirely
over k and obtain the kernel polynomial.

The details of this approach are given in Sections 7 and 8 of Schoof [530]. In particular:
Theorem 7.3 shows how to get j′ (derivative); Proposition 7.1 allows one to compute the
coefficients of the elliptic curve; Proposition 7.2 gives the coefficient p1 of the kernel poly-
nomial (which is a function of values specified in Proposition 7.1 and Theorem 7.3). The
coefficients of the kernel polynomial are related to the coefficients of the series expansion
of the Weierstrass ζ-function (see Theorem 8.3 of [530]).

The algorithm is organised as follows (see Algorithm 28). One starts with an ordinary
elliptic curve E : y2 = x3 + Ax +B over k and j = j(E). We assume that j 6∈ {0, 1728}
and char(k) = 0 or char(k) > ℓ + 2. Let φx = (∂Φℓ∂x)(j, ̃), φy = (∂Φℓ∂y)(j, ̃), φxx =

(∂
2Φℓ
∂x2)(j, ̃), φyy = (∂

2Φℓ
∂y2)(j, ̃) and φxy = (∂

2Φℓ
∂x∂y)(j, ̃). One computes the derivative j′

and the corresponding values for E4 and E6. Given ̃ one computes ̃′ and then the
coefficients Ã and B̃ of the image curve Ẽ. Finally one computes p1, from which it is
relatively straightforward to compute all the coefficients of the kernel polynomial ψ(x).

Algorithm 28 Elkies’ algorithm (Source code provided by Drew Sutherland)

Input: A,B ∈ k, ℓ > 2, j, ̃ ∈ k
Output: Ã, B̃, ψ(x)
1: Compute φx, φy, φxx, φyy and φxy ⊲ Compute Ã and B̃
2: Let m = 18B/A, let j′ = mj, and let k = j′/(1728− j)
3: Let ̃′ = −j′φx/(ℓφy), let m̃ = ̃′/̃, and let k̃ = ̃′/(1728− ̃)
4: Let Ã = ℓ4m̃k̃/48 and B̃ = ℓ6m̃2k̃/864
5: Let r = −(j′2φxx + 2ℓj′̃′φxy + ℓ2̃′2φyy)/(j′φx) ⊲ Compute p1
6: Let p1 = ℓ(r/2 + (k − ℓk̃)/4 + (ℓm̃−m)/3)
7: Let d = (ℓ− 1)/2 ⊲ Compute the power sums tn of the roots of ψ(x)
8: Let t0 = d, t1 = p1/2, t2 = ((1−10d)A−Ã)/30, and t3 = ((1−28d)B−42t1A−B̃)/70
9: Let c0 = 0, c1 = 6t2 + 2At0, c2 = 10t3 + 6At1 + 4Bt0

10: for n = 2 to d− 1 do
11: Let s =

∑n−1
i=1 cicn−i

12: Let

cn+1 =
3s− (2n− 1)(n− 1)Acn−1 − (2n− 2)(n− 2)Bcn−2

(n− 1)(2n+ 5)

13: end for
14: for n = 3 to d− 1 do
15: Let

tn+1 =
cn − (4n− 2)Atn−1 − (4n− 4)Btn−2

4n+ 2

16: end for
17: Let s0 = 1 ⊲ Compute the symmetric functions sn of the roots of ψ(x)
18: for n = 1 to d do
19: Let sn = −1

n

∑n
i=1(−1)itisn−i

20: end for
21: return ψ(x) =

∑d
i=0(−1)isix

d−i

556 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

Exercise 25.2.4. Show that Elkies’ algorithm requires O(d2) = O(ℓ2) operations in k.

Bostan, Morain, Salvy and Schost [93] have given algorithms (exploiting fast arith-
metic on power series) based on Elkies’ methods. The algorithms apply when the char-
acteristic of the field is zero or is sufficiently large compared with ℓ. There is a slight
difference in scope: Elkies’ starts with only j-invariants whereas Bostan et al assume that
one is given elliptic curves E and Ẽ in short Weierstrass form such that there is a nor-
malised isogeny of degree ℓ over k from E to Ẽ. In general, one needs to perform Elkies’
method before one has such an equation for Ẽ and so the computations with modular
curves still dominate the cost. Theorem 2 of [93] states that one can compute the rational
functions giving the isogeny in O(M(ℓ)) operations in k when char(k) > 2ℓ− 1 and when
the coefficient p1 is known. Note that Bostan et al are not restricted to prime degree
isogenies. An application of the result of Bostan et al is to determine whether there is
a normalised isogeny from E to Ẽ without needing to compute modular polynomials.
Lercier and Sirvent [384] (again, assuming one is given explicit equations for E and Ẽ
such that there is a normalised ℓ-isogeny between them) have showed how to achieve a
similarly fast method even when the characteristic of the field is small.

A number of calculations can fail when char(k) is non-zero but small compared with
ℓ, due to divisions by small integers arising in the power series expansions for the mod-
ular functions. Algorithms for the case of small characteristic will be mentioned in Sec-
tion 25.2.3.

25.2.2 Stark’s Algorithm

Stark [581] gave a method to compute the rational function giving the x-coordinate of an
endomorphism φ : E → E corresponding to a complex number β (interpreting End(E) as
a subset of C). The idea is to use the fact that, for an elliptic curve E over the complex
numbers given by short Weierstrass form,

℘(βz) =
A(℘(z))

B(℘(z))
(25.3)

where A and B are polynomials and where ℘(z) = z−2 + 3G4z
2 + · · · is the Weierstrass

function (see Theorem VI.3.5 of Silverman [564]). This isogeny is not normalised (since
℘(βz) = β−2z−2 + · · · it follows that the pullback of ωE under φ is βωE). Stark’s idea
is to express ℘ as a (truncated) power series in z; the coefficients of this power series
are determined by the coefficients of the elliptic curve E. One computes A and B by
taking the continued fraction expansion of the left hand side of equation (25.3). One can
apply this algorithm to curves over finite fields by applying the Deuring lifting theorem.
Due to denominators in the power series coefficients of ℘(z) the method only works when
char(k) = 0 or char(k) is sufficiently large. Stark’s paper [581] gives a worked example in
the case β =

√
−2.

The idea generalises to normalised isogenies φ : E → Ẽ by writing ℘Ẽ(z) = A(℘E(z))/B(℘E(z))
where now the power series for ℘E(z) and ℘Ẽ(z) are different since the elliptic curve
equations are different. Note that it is necessary to have actual curve equations for the
normalised isogeny, not just j-invariants. We refer to Section 6.2 of Bostan, Morain, Salvy
and Schost [93] for further details and complexity estimates.

25.2.3 The Small Characteristic Case

As we have seen, the Elkies and Stark methods require the characteristic of the ground
field to be either zero or relatively large since they use lifting to short Weierstrass forms

25.3. ISOGENY GRAPHS OF ELLIPTIC CURVES OVER FINITE FIELDS 557

over C and since the power series expansions have rational coefficients that are divisible
by various small primes. Hence, there is a need for algorithms that handle the case
when char(k) is small (especially, char(k) = 2). A number of such methods have been
developed by Couveignes, Lercier, Morain and others. We briefly sketch Couveignes’
“second method” [155].

Let p be the characteristic of the field. We assume that p is “small” (in the sense that

an algorithm performing p operations is considered efficient). Let E and Ẽ be ordinary6

elliptic curves over Fpm .

The basic idea is to use the fact that if φ : E → Ẽ is an isogeny of odd prime degree
ℓ 6= p (isogenies of degree p are easy: they are either Frobenius or Verschiebung) then φ

maps points of order pk on E to points of order pk on Ẽ. Hence, one can try to determine
the rational functions describing φ by interpolation from their values on E[pk]. One could
interpolate using any torsion subgroup of E, but using E[pk] is the best choice since it
is a cyclic group and so there are only ϕ(pk) = pk − pk−1 points to check (compared

with ϕ(n2) if using E[n]). The method can be applied to any elliptic curve Ẽ in the
isomorphism class, so in general it will not return a normalised isogeny.

Couveignes’ method is as follows: First, compute points P ∈ E[pk] − E[pk−1] and

P̃ ∈ Ẽ[pk] − Ẽ[pk−1] over Fp and guess that φ(P) = P̃ . Then try to determine the

rational function φ1(x) = u(x)/v(x) by interpolating φ1(x([i]P)) = x([i]P̃); if this does

not work then try another guess for P̃ . The interpolation is done as follows (we assume
pk > 2ℓ). First, compute a polynomial A(x) of degree d where 2ℓ < d ≤ pk such that

A(x([i]P)) = x([i]P̃) for 1 ≤ i ≤ d. Also compute B(x) =
∏d
i=1(x− x([i]P)). If the guess

for P̃ is correct then A(x) ≡ u(x)/v(x) (mod B(x)) where deg(u(x)) = ℓ, deg(v(x)) = ℓ−1
and v(x) is a square. Writing this equation as A(x)v(x) = u(x) + B(x)w(x) it follows
that u(x) and v(x) can be computed using Euclid’s algorithm. The performance of the
algorithm depends on the method used to determine points in E[pk], but is dominated
by the fact that these points lie in an extension of the ground field of large degree, and
that one expects to try around 1

2p
k ≈ ℓ choices for P̃ before hitting the right one. The

complexity is polynomial in ℓ, p and m (where E is over Fpm). When p = 2 the fastest
method was given by Lercier [382]. For further details we refer to the surveys by Lercier
and Morain [383] and De Feo [202].

25.3 Isogeny Graphs of Elliptic Curves over Finite
Fields

Let E be an elliptic curve over Fq. The Fq-isogeny class of E is the set of Fq-isomorphism
classes of elliptic curves over Fq that are isogenous over Fq to E. Tate’s isogeny theorem

states that two elliptic curves E and Ẽ over Fq are Fq-isogenous if and only if #E(Fq) =

#Ẽ(Fq) (see Theorem 9.7.4 for one implication).
We have seen in Sections 9.5 and 9.10 that the number of Fq-isomorphism classes

of elliptic curves over Fq is roughly 2q and that there are roughly 4
√
q possible values

for #E(Fq). Hence, if isomorphism classes were distributed uniformly across all group
orders one would expect around 1

2

√
q elliptic curves in each isogeny class. The theory of

complex multiplication gives a more precise result (as mentioned in Section 9.10.1). We

6The restriction to ordinary curves is not a significant problem. In practice we are interested in elliptic
curves over Fpm where m is large, whereas supersingular curves are all defined over Fp2 . Indeed, for small
p there are very few supersingular curves, and isogenies of small degree between them can be computed
by factoring division polynomials and using Vélu’s formulae.

558 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

denote by πq the q-power Frobenius map; see Section 9.10 for its properties. The number
of Fq-isomorphism classes of ordinary elliptic curves over Fq with q + 1 − t points is the

Hurwitz class number of the ring Z[πq] = Z[(t+
√
t2 − 4q)/2]. This is the sum of the ideal

class numbers h(O) over all orders Z[πq] ⊆ O ⊆ OK . It follows (see Remark 9.10.19) that
there are O(q1/2 log(q) log(log(q))) elliptic curves in each isogeny class. For supersingular
curves see Theorem 9.11.12.

Definition 25.3.1. Let E be an elliptic curve over a field k of characteristic p. Let S ⊆ N
be a finite set of primes. Define

XE,k,S

to be the (directed) graph7 with vertex set being the k-isogeny class of E. Vertices are

typically labelled by j(Ẽ), though we also speak of “the vertex Ẽ”.8 There is a (directed)
edge (j(E1), j(E2)) labelled by ℓ for each equivalence class of ℓ-isogenies from E1 to E2

defined over k for some ℓ ∈ S. We usually treat this as an undirected graph, since for
every ℓ-isogeny φ : E1 → E2 there is a dual isogeny φ̂ : E2 → E1 of degree ℓ (though see
Remark 25.3.2 for an unfortunate, though rare, complication).

Remark 25.3.2. Edges in the isogeny graph correspond to equivalence classes of iso-
genies. It can happen that two non-equivalent isogenies from E1 → E2 have equivalent
dual isogenies from E2 → E1. It follows that there are two directed edges in the graph
from E1 to E2 but only one directed edge from E2 to E1. (Note that this does not con-

tradict the fact that isogenies satisfy
̂̂
φ = φ, as we are speaking here about isogenies up

to equivalence.) Such an issue was already explained in Exercise 25.1.1; it only arises if
#Aut(E2) > 2 (i.e., if j(E2) = 0, 1728).

Definition 25.3.3. A (directed) graph is k-regular if every vertex has (out-)degree k
(a loop is considered as having degree 1). A path in a graph is a sequence of (directed)
edges between vertices, such that the end vertex of one edge is the start vertex of the
next. We will also describe a path as a sequence of vertices. A graph is connected if there
is a path from every vertex to every other vertex. The diameter of a connected graph is
the maximum, over all pairs v1, v2 of vertices in the graph, of the length of the shortest
path from v1 to v2.

There are significant differences (both in the structure of the isogeny graph and the
way it is used in applications) between the ordinary and supersingular cases. So we
present them separately.

25.3.1 Ordinary Isogeny Graph

Fix an ordinary elliptic curve E over Fq such that #E(Fq) = q+1− t. The isogeny graph
of elliptic curves isogenous over Fq to E can be identified, using the theory of complex
multiplication, with a graph whose vertices are ideal classes (in certain orders). The goal
of this section is to briefly sketch this theory in the special case (the general case is given
in Section 25.4) of the sub-graph where all elliptic curves have the same endomorphism
ring, in which case the edges correspond to multiplication by prime ideals. We do not

7Some authors would use the name “multi-graph”, since there can be loops and/or multiple edges
between vertices.

8In the supersingular case one can label vertices as j(Ẽ) without ambiguity only when k is algebraically
closed: when k is finite then, in the supersingular case, one has two distinct vertices in the graph for
Ẽ and its quadratic twist. For the ordinary case there is no ambiguity by Lemma 9.11.13 (also see
Exercise 25.3.8).

25.3. ISOGENY GRAPHS OF ELLIPTIC CURVES OVER FINITE FIELDS 559

have space to give all the details; good references for the background are Cox [157] and
Lang [366].

The endomorphism ring of E (over Fq) is an order O in the quadratic imaginary field

K = Q(
√
t2 − 4q). (We refer to Section A.12 for background on orders and conductors.)

Let OK be the ring of integers of K. Then Z[πq] = Z[(t +
√
t2 − 4q)/2] ⊆ O ⊆ OK and

if OK = Z[θ] then O = Z[cθ] where c is the conductor of O. The ideal class group Cl(O)
is defined to be the classes of invertible O-ideals that are prime to the conductor; see
Section 7 of [157] or Section 8.1 of [366]. There is an explicit formula for the order h(O)
of the ideal class group Cl(O) in terms of the class number h(OK) of the number field;
see Theorem 7.24 of [157] or Theorem 8.7 of [366].

There is a one-to-one correspondence between the set of isomorphism classes of elliptic
curves E over Fq with End(E) = O and the set Cl(O). Precisely, to an invertible O-ideal
a one associates the elliptic curve E = C/a over C. An O-ideal a′ is equivalent to a in
Cl(O) if and only if C/a′ is isomorphic to E. One can show that End(E) = O. The theory
of complex multiplication shows that E is defined over a number field (called the ring
class field) and has good reduction modulo the characteristic p of Fq. This correspondence
is not canonical, since the reduction modulo p map is not well-defined (it depends on a
choice of prime ideal above p in the ring class field).

Let a be an invertible O-ideal and E = C/a. Let l be an invertible O-ideal and,
interpreting l ⊆ End(E), consider the set E[l] = {P ∈ E(C) : φ(P) = OE for all φ ∈ l}.
Since O ⊆ C we can interpret l ⊆ C, in which case

E[l] ∼= {z ∈ C/a : αz ∈ a, for all α ∈ l}
∼= l−1a/a.

It follows that #E[l] is equal to the norm of the ideal l. The identity map on C induces
the isogeny

C/a→ C/l−1a

with kernel l−1a/a ∼= E[l]. The above remarks apply to elliptic curves over C, but the
theory reduces well to elliptic curves over finite fields, and indeed, every isogeny from E
to an elliptic curve Ẽ with End(E) = End(Ẽ) arises in this way. This shows that, not
only do ordinary elliptic curves correspond to ideals in O, but so do their isogenies.

Exercise 25.3.4. Show that if l = (ℓ) where ℓ ∈ N then the isogeny C/a→ C/l−1a is [ℓ].

Exercise 25.3.5. Suppose the prime ℓ splits in O as (ℓ) = l1l2 in O. Let φ : E → Ẽ

correspond to the ideal l1. Show that φ̂ corresponds to l2.

Let ℓ be a prime. Then ℓ splits in OK = Z[θ] if and only if the minimal polynomial of
θ factors modulo ℓ with two linear factors. If D is the discriminant of K then ℓ splits if
and only if the Kronecker symbol satisfies (Dℓ) = +1. Note that the Kronecker symbol is
the Legendre symbol when ℓ is odd and

(D2) =

0 D ≡ 0 (mod 4),
1 D ≡ 1 (mod 8),
−1 D ≡ 5 (mod 8).

(25.4)

Let E be an elliptic curve over Fq with End(E) = O and let ℓ be coprime to the conductor
of O. There are 1 + (Dℓ) prime ideals l above ℓ, and so there are this many isogenies of
degree ℓ from E. It follows that there are ℓ-isogenies in the isogeny graph for roughly half
the primes ℓ.9

9Of course, there are still ℓ+ 1 isogenies of degree ℓ for each ℓ, but the rest of them are not to curves
Ẽ such that End(Ẽ) = O.

560 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

Let E be an elliptic curve over Fq corresponding to an O-ideal a. Let S ⊆ N be a
finite set of primes that are all co-prime to the conductor. Let G be the component of
E in the isogeny graph XE,Fq,S of Definition 25.3.1. Let S′ = {l1, . . . , lk} be the set of
classes of invertible O-ideals above primes ℓ ∈ S and let 〈S′〉 be the subgroup of Cl(O)
generated by S′. From the above discussion it follows that G can be identified with the
graph whose vertices are the O-ideal classes in the coset a〈S′〉 and such that, for each
b ∈ a〈S′〉 and each li ∈ S′ there is an edge between b and l−1

i b. Since ideal class groups
are well-understood, this correspondence illuminates the study of the isogeny graph. For
example, an immediate corollary is that the graph of elliptic curves E with End(E) = O
is connected if and only if S′ generates Cl(O). A well-known result of Bach states that
(assuming the Riemann hypothesis for the Dedekind zeta function of K and Hecke L-
functions for characters of Cl(OK)) the group Cl(OK) is generated by prime ideals of
norm less than 6 log(|∆K |)2 (see page 376 of [20]) where ∆K is the discriminant of OK .
Another immediate corollary is that the graph is regular (i.e., every vertex has the same
degree).

Remark 25.3.6. We stress that there is no canonical choice of O-ideal a corresponding
to an elliptic curve E with End(E) = O. However, given a pair (E, Ẽ) of isogenous elliptic

curves with End(E) = End(Ẽ) = O the ideal class corresponding to the isogeny between
them is well-defined. More precisely, if E is identified with C/a for some O-ideal a then

there is a unique ideal class represented by b such that Ẽ is identified with C/b−1a. The
only algorithm known to find such an ideal b is to compute an explicit isogeny from E to
Ẽ (using algorithms presented later in this chapter) and then determine the corresponding

ideal. If one could determine b efficiently from E and Ẽ then navigating the ordinary
isogeny graph would be much easier.

Exercise 25.3.7. Let E1 be an elliptic curve with End(E1) = O. Let l be a prime ideal
of O above ℓ. Suppose l has order d in Cl(O). Show that there is a cycle E1 → E2 →
· · · → Ed → E1 of ℓ-isogenies.

Exercise 25.3.8. Let E be an ordinary elliptic curve over Fq and let E′ be the quadratic
twist of E. Show that the graphs XE,Fq,S and XE′,Fq,S are identical.

Remark 25.3.9. Let ℓ split in O = Z[θ] ⊆ End(E) and let l1 = (ℓ, a+θ) and l2 = (ℓ, b+θ)

be the corresponding prime ideals. Given an isogeny φ : E → Ẽ of degree ℓ one can
determine whether φ corresponds to l1 or l2 as follows: Compute (using the Elkies method

if only j(E) and j(Ẽ) are known) the polynomial determining the kernel of φ; compute an
explicit point P ∈ ker(φ); check whether [a]P + θ(P) = OE or [b]P + θ(P) = OE , where θ
is now interpreted as an element of End(E). This trick is essentially due to Couveignes,
Dewaghe, and Morain (see Section 3.2 of [156]; also see pages 49-50 of Kohel [350] and
Galbraith, Hess and Smart [221]).

Remark 25.3.10. The ideas mentioned above show that all elliptic curves over Fq with
the same endomorphism ring are isogenous over Fq. Combined with the results of Sec-
tion 25.4 one can prove Tate’s isogeny theorem, namely that any two elliptic curves over
Fq with the same number of points are isogenous over Fq.

More details about the structure of the ordinary isogeny graph will be given in Sec-
tion 25.4. In particular, that section will discuss isogenies between elliptic curves whose
endomorphism rings are different orders in the same quadratic field.

25.3. ISOGENY GRAPHS OF ELLIPTIC CURVES OVER FINITE FIELDS 561

25.3.2 Expander Graphs and Ramanujan Graphs

Let X be a finite (directed) graph on vertices labelled {1, . . . , n}. The adjacency matrix
of X is the n × n integer matrix A with Ai,j being the number of edges from vertex i
to vertex j. The eigenvalues of a finite graph X are defined to be the eigenvalues
of its adjacency matrix A. For the rest of this section we assume that all graphs are
un-directed. Since the adjacency matrix of an un-directed graph is real and symmetric,
the eigenvalues are real.

Lemma 25.3.11. Let X be a k-regular graph. Then k is an eigenvalue, and all eigen-
values λ are such that |λ| ≤ k.
Proof: The first statement follows since (1, 1, . . . , 1) is an eigenvector with eigenvalue
k. The second statement is also easy (see Proposition 1.1.2 of Davidoff, Sarnak and
Valette [166] or Theorem 1 of Murty [446]). �

Let X be a k-regular graph. We denote by λ(X) the maximum of the absolute values
of all the eigenvalues that are not equal to ±k. Alon and Boppana showed that the lim
inf of λ(X) over any family of k-regular graphs (as the number of vertices goes to ∞) is
at least 2

√
k − 1 (see Theorem 1.3.1 of Davidoff, Sarnak and Valette [166], Theorem 3.2

of Pizer [481] or Theorem 10 of Murty [446]). The graph X is said to be Ramanujan if
λ(X) ≤ 2

√
k − 1. Define λ1(X) to be the largest eigenvalue that is strictly less than k.

Let G be a finite group and S a subset of G such that g ∈ S implies g−1 ∈ S (we also
allow S to be a multi-set). The Cayley graph of G is the graph X with vertex set G
and an edge between g and gs for all g ∈ G and all s ∈ S. Murty [446] surveys criteria
for when a Cayley graph is a Ramanujan graph. If certain character sums are small then
X may be a Ramanujan graph; see Section 2 of [446].

Definition 25.3.12. Let X be a graph and A a subset of vertices of X . The vertex
boundary of A in X is

δv(A) = {v ∈ X −A : there is an edge between v and a vertex in A}.

Let EX be the set of edges (x, y) in X . The edge boundary of A in X is

δe(A) = {(x, y) ∈ EX : x ∈ A and y ∈ X −A}.

Let c > 0 be real. A k-regular graph X with #X vertices is a c-expander if, for all
subsets A ⊆ X such that #A ≤ #X/2,

#δv(A) ≥ c#A.

Exercise 25.3.13. Show that δv(A) ≤ δe(A) ≤ kδv(A).

Exercise 25.3.14. Let X be a k-regular graph with n vertices that is a c-expander.
Show that if n is even then 0 ≤ c ≤ 1 and if n is odd then 0 ≤ c ≤ (n+ 1)/(n− 1).

Expander graphs have a number of theoretical applications; one important property
is that random walks on expander graphs reach the uniform distribution quickly.

Let X be a k-regular graph. Then

#δe(A) ≥ k − λ1(X)

2
#A (25.5)

when #A ≤ #X/2 (see Theorem 1.3.1 of Davidoff, Sarnak and Valette [166] or Section 4
of Murty [446]10). Hence #δv(A) ≥ (12 − λ1(X)/(2k))#A and so Ramanujan graphs are
expander graphs. Indeed, small values for λ1(X) give large expansion factors. We refer
to [166, 446] for further details, and references.

562 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

1 2 3

4 5 6

Figure 25.1: A 3-regular graph.

Exercise 25.3.15. Consider the 3-regular graph X in Figure 25.1. Determine the eigen-
values of X . Is this graph Ramanujan? Determine δv({1}), δv({1, 2}) and δv({1, 3}).
Verify that #δv(A) ≥ #A for all subsets A of vertices of X such that #A ≤ 3 and so X
is an expander.

Exercise 25.3.16. For every c > 0 find an integer n ∈ N, a graph X with n vertices,
and a subset A of X such that #A ≤ n/2 but #δv(A) < c#A. (Such a graph is very far
from being an expander.)

Consider the ordinary isogeny graph of elliptic curves over Fq with End(E) = OK ,

the ring of integers in K = Q(
√
t2 − 4q). This was shown in the previous section to be a

Cayley graph for the ideal class group Cl(OK). Jao, Miller and Venkatesan [311] show,
assuming a generalisation of the Riemann hypothesis, that the ordinary isogeny graph
is an expander graph (indeed, it is “nearly Ramanujan”, i.e., λ1(X) ≤ O(kβ) for some
0 < β < 1).

25.3.3 Supersingular Isogeny Graph

For the supersingular isogeny graph we work over Fp. The graph is finite. Indeed,
Theorem 9.11.12 implies p/12 − 1 < #XE,Fp,S

< p/12 + 2. Note that it suffices to

consider elliptic curves defined over Fp2 (although the isogenies between them are over

Fp in general).
In contrast to the ordinary case, the supersingular graph is always connected using

isogenies of any fixed degree. A proof of this result, attributed to Serre, is given in
Section 2.4 of Mestre [419].

Theorem 25.3.17. Let p be a prime and let E and Ẽ be supersingular elliptic curves
over Fp. Let ℓ be a prime different from p. Then there is an isogeny from E to Ẽ over
Fp whose degree is a power of ℓ.

Proof: See Corollary 78 of Kohel [350] or Section 2.4 of Mestre [419]. �

Hence, one can choose any prime ℓ (e.g., ℓ = 2) and consider the ℓ-isogeny graph
XE,Fp,{ℓ} on supersingular curves over Fp. It follows that the graph is (ℓ+ 1)-regular and
connected.

Exercise 25.3.18. Let p = 103. Determine, using Theorem 9.11.12, the number of
isomorphism classes of supersingular elliptic curves over Fp and over Fp2 . Determine the
2-isogeny graph whose vertices are supersingular elliptic curves over Fp2 .

Exercise 25.3.19. Determine the supersingular 2-isogeny graph over F11. Interpret the
results in light of Remark 25.3.2.11

[Hint: The isomorphism classes of elliptic curves with j(E) = 0 and j(E) = 1728 are
supersingular modulo 11; this follows from the theory of complex multiplication and the
facts that (−3

11) = (−4
11) = −1.]

10Note that the proof on page 16 of [446] is for δe(A), not δv(A) as stated.
11This example was shown to me by David Kohel.

25.4. THE STRUCTURE OF THE ORDINARY ISOGENY GRAPH 563

Exercise 25.3.20. Find a prime p such that the set of isomorphism classes of supersin-
gular elliptic curves over Fp does not form a connected subgraph of XE,Fp,{2}.

There is a one-to-one correspondence between supersingular elliptic curves E over Fp
and projective right modules of rank 1 of a maximal order of the quaternion algebra over
Q ramified at p and∞ (see Section 5.3 of Kohel [350] or Gross [268]). Pizer has exploited
this structure (and connections with Brandt matrices and Hecke operators) to show that
the supersingular isogeny graph is a Ramanujan graph. Essentially, the Brandt matrix
gives the adjacency matrix of the graph. A good survey is [481], though be warned that
the paper does not mention the connection to supersingular elliptic curves.

The supersingular isogeny graph has been used by Charles, Goren and Lauter [128] to
construct a cryptographic hash function. It has also been used by Mestre and Oesterlé [419]
for an algorithm to compute coefficients of modular forms.

25.4 The Structure of the Ordinary Isogeny Graph

This section presents Kohel’s results on the structure of the isogeny graph of ordinary
elliptic curves over finite fields. Section 25.4.2 gives Kohel’s algorithm to compute End(E)
for a given ordinary elliptic curve over a finite field.

25.4.1 Isogeny Volcanoes

Let E be an ordinary elliptic curve over Fq and let #E(Fq) = q + 1 − t. Denote by

K the number field Q(
√
t2 − 4q) and by OK the ring of integers of K. We know that

End(E) = EndFq
(E) is an order in OK that contains the order Z[πq] = Z[(t+

√
t2 − 4q)/2]

of discriminant t2 − 4q. Let ∆K be the discriminant of K, namely ∆K = (t2 − 4q)/c2

where c is the largest positive integer such that ∆K is an integer congruent to 0 or 1
modulo 4. The integer c is the conductor of the order Z[πq].

Suppose E1 and E2 are elliptic curves over Fq such that End(Ei) = Oi, for i = 1, 2,
where O1 and O2 are orders in K containing Z[πq]. We now present some results about
the isogenies between such elliptic curves.

Lemma 25.4.1. Let φ : E → Ẽ be an isogeny of elliptic curves over Fq. If [End(E) :

End(Ẽ)] = ℓ (or vice versa) then the degree of φ is divisible by ℓ.

Proof: See Propositions 21 and 22 of Kohel [350]. �

Definition 25.4.2. Let ℓ be a prime and E an elliptic curve. Let End(E) = O. An

ℓ-isogeny φ : E → Ẽ is called horizontal (respectively, ascending, descending) if

End(Ẽ) ∼= O (respectively, [End(Ẽ) : O] = ℓ, [O : End(Ẽ)] = ℓ).

Exercise 25.4.3. Let φ : E → Ẽ be an ℓ-isogeny. Show that if φ is horizontal (resp.,

ascending, descending) then φ̂ is horizontal (resp., descending, ascending).

Example 25.4.4. We now give a picture of how the orders relate to one another. Suppose
the conductor of Z[πq] is 6 (e.g., q = 31 and t = ±4), so that [OK : Z[πq]] = 6. Write
OK = Z[θ]. Then the orders O2 = Z[2θ] and O3 = Z[3θ] are contained in OK and are

564 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

such that [OK : Oi] = i for i = 2, 3.

OK

O3 O2

Z[πq]

2

�
�
�3

2

�
��3

Definition 25.4.5. Let the notation be as above. If End(E) = OK then E is said to be
on the surface of the isogeny graph.12 If End(E) = Z[πq] then E is said to be on the
floor of the isogeny graph.

By the theory of complex multiplication, the number of isomorphism classes of elliptic
curves over Fq on the surface is equal to the ideal class number of the ring OK .

Theorem 25.4.6. Let E be an ordinary elliptic curve over Fq as above and let O =
End(E) be an order in OK containing Z[πq]. Let c = [OK : O] and let ℓ be a prime.

Every ℓ-isogeny φ : E → Ẽ arises from one of the following cases.

• If ℓ ∤ c then there are exactly (1+(t
2−4q
ℓ)) equivalence classes of horizontal ℓ-isogenies

over Fq from E to other elliptic curves.13

• If ℓ | c then there are no horizontal ℓ-isogenies starting at E.

• If ℓ | c there is exactly one ascending ℓ-isogeny starting at E.

• If ℓ | [O : Z[πq]] then the number of equivalence classes of ℓ-isogenies starting from
E is ℓ + 1, where the horizontal and ascending isogenies are as described and the
remaining isogenies are descending.

• If ℓ ∤ [O : Z[πq]] then there is no desending ℓ-isogeny.

Proof: See Proposition 23 of Kohel [350]. A proof over C is also given in Appendix A.5
of [217]. �

Corollary 25.4.7. Let E be an ordinary elliptic curve over Fq with #E(Fq) = q+ 1− t.
Let c be the conductor of Z[

√
t2 − 4q] and suppose ℓ | c. Then ℓ ∤ [End(E) : Z[πq]] if and

only if there is a single ℓ-isogeny over Fq starting from E.

Example 25.4.8. Let q = 67 and consider the elliptic curve E : y2 = x3 + 11x+ 21 over
Fq. One has #E(Fq) = 64 = q + 1− t where t = 4 and t2 − 4q = 22 · 32 · (−7). Further,
j(E) = 42 ≡ −3375 (mod 67), so E has complex multiplication by (1 +

√
−7)/2. Since

the ideal class number of Q(
√
−7) is 1, it follows that E is the unique elliptic curve up to

isomorphism on the surface of the isogeny graph.
Since 2 splits in Z[(1 +

√
−7)/2] there are two 2-isogenies from E to elliptic curves on

the surface (i.e., to E itself) and so there is only one 2-isogeny down from E. Using the
modular polynomial we deduce that the 2-isogeny down maps to the isomorphism class

12Kohel’s metaphor was intended to be aquatic: the floor represents the ocean floor and the surface
represents the surface of the ocean.

13The symbol (t
2
−4q
ℓ

) is the Kronecker symbol as in equation (25.4).

25.4. THE STRUCTURE OF THE ORDINARY ISOGENY GRAPH 565

42

14

33

51 35

57

44 4 18 32

OK

O2

O3

O6

Figure 25.2: A 2-isogeny graph with two volcanoes. The symbols on the left hand side
denote the endomorphism ring of curves on that level, using the same notation as Exam-
ple 25.4.4.

of elliptic curves with j-invariant 14. One can verify that the only 2-isogeny over Fq from
j = 14 is the ascending isogeny back to j = 42.

We have (−7
3) = −1 so there are no horizontal 3-isogenies from E. Hence, we expect

four 3-isogenies down from E. Using the modular polynomial we compute the corre-
sponding j-invariants to be 33, 35, 51 and 57. One can now consider the 2-isogeny graphs
containing these elliptic curves on their surfaces. It turns out that the graph is connected,
and that there is a cycle of horizontal 2-isogenies from j = 33 to j = 51 to j = 35 to
j = 57. For each vertex we therefore only expect one 2-isogeny down to the floor. The cor-
responding j-invariants are 44, 4, 18 and 32 respectively. Figure 25.2 gives the 2-isogeny
graph in this case.

Exercise 25.4.9. Draw the 3-isogeny graph for the elliptic curves in Example 25.4.8. Is
XE,Fq,{2,3} connected? If so, what is its diameter?

Fix a prime ℓ | c where c is the conductor of Z[πq]. Consider the sub-graph of the
isogeny graph corresponding to isogenies whose degree is equal to ℓ. We call this the
ℓ-isogeny graph. This graph is often not connected (for example, it is not connected when
c is not a power of ℓ or when primes above ℓ do not generate Cl(OK)). Even when ℓ splits
and c is 1 or a power of ℓ, the graph is often not connected (the graph is connected only
when the prime ideals above ℓ generate the ideal class group). Theorem 25.4.6 shows
that each component of the ℓ-isogeny graph has a particular shape (that Fouquet and
Morain [209] call a volcano).

We now give a precise definition for volcanoes. Let #E(Fq) = q + 1 − t and let c be

the conductor of Z[πq] and suppose ℓm‖c. Let K = Q(
√
t2 − 4q) and denote by OK the

maximal order in K. A volcano is a connected component of the graph XE,Fq,{ℓ}. A
volcano has m + 1 “levels” V0, . . . , Vm, being sub-graphs of the ℓ-isogeny graph; where
vertices in Vi (i.e., on level i) correspond to isomorphism classes of elliptic curves Ẽ such

that ℓi‖[OK : End(Ẽ)]. In other words, V0 is on the surface of this component of the
ℓ-isogeny graph (but not necessarily on the surface of the entire isogeny graph XE,Fq,S)
and Vm is on the floor of this component of the ℓ-isogeny graph (though, again, not

566 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

necessarily on the floor of the whole isogeny graph). The surface of a volcano (i.e., V0)
is also called the crater. The graph V0 is a connected regular graph with each vertex of
degree at most 2. For all 0 < i ≤ m and every vertex v ∈ Vi there is a unique edge from
v “up” to a vertex in Vi−1. For all 0 ≤ i < m and every v ∈ Vi, the degree of v is ℓ+ 1.
Every vertex in Vm has degree 1.

25.4.2 Kohel’s Algorithm (Ordinary Case)

Kohel used the results of Section 25.4.1 to develop deterministic algorithms for computing
End(E) (i.e., determining the level) for an elliptic curve E over Fq. We sketch the
algorithm for ordinary curves. Two facts are of crucial importance in Kohel’s algorithm.
The first (Corollary 25.4.7) is that one can recognise the floor when standing on it. The
second fact is that if one starts a chain of ℓ-isogenies with a descending isogeny, and avoids
backtracking, then all the isogenies in the chain are descending.

Before going any further, we discuss how to compute a non-backtracking chain of ℓ-
isogenies. Given j(E) one can compute the j-invariants of ℓ-isogenous curves over Fq by
computing the roots of F (y) = Φℓ(j(E), y) in Fq. Recall that one computes Φℓ(x, y) in
O(ℓ3+ǫ) bit operations and finds the roots of F (y) in Fq in expected time bounded by
O(ℓ2 log(ℓ) log(q)) operations in Fq. Let j0 = j(E) and let j1 be one of the roots of of
F (y). We want to find, if possible, j2 ∈ Fq such that there are ℓ-isogenies from E to E1

(where j(E1) = j1) and from E1 to E2 (where j(E2) = j2) and such that j2 6= j0 (so the
second isogeny is not the dual of the first). The trick is to find roots of Φℓ(j1, y)/(y− j0).
This process can be repeated to compute a chain j0, j1, j2, . . . of j-invariants of ℓ-isogenous
curves. As mentioned earlier, an alternative approach to walking in the isogeny graph is
to find Fq-rational factors of the ℓ-division polynomial and use Vélu’s formulae; this is
less efficient in general and the method to detect backtracking is to compute the image
curve using Vélu’s formulae and then compute its j-invariant.

The basic idea of Kohel’s algorithm is, for each prime ℓ dividing14 the conductor of
Z[πq], to find a chain of ℓ-isogenies from E to an elliptic curve on the floor. Suppose ℓ is a
prime and ℓm‖c. Kohel (on page 46 of [350]) suggests to take two non-backtracking chains
of ℓ-isogenies of length at most m from E. If E is on the floor then this is immediately
detected. If E is not on the surface then at least one of the initial ℓ-isogenies is descending,
so in at most m steps one finds oneself on the floor. So if after m steps neither chain of
isogenies has reached the floor then it follows that we must have started on the surface
(and some or all of the ℓ-isogenies in the chain were along the surface). Note that, apart
from the algorithm for computing roots of polynomials, the method is deterministic.

Exercise 25.4.10. Let E : y2 = x3 + 3x + 6 over F37 be an elliptic curve. Note that
#E(F37) = 37 + 1 − 4 and 42 − 4 · 37 = −24 · 7. Hence the conductor is 4. We have
j(E) = 10. Using the modular polynomial one finds the following j-invariants of elliptic
curves 2-isogenous to E: 11, 29, 31. Further, there is a single 2-isogeny from j-invariants
11, 31 (in both cases, back to j = 10). But from 29 there is a 2-isogeny to j = 10 and two
2-isogenies to j = 29. What is End(E)? Give j-invariants for a curve on the floor and a
curve on the surface.

The worst case of Kohel’s algorithm is when the conductor is divisible by one or more
very large primes ℓ (since determining the j-invariant of an ℓ-isogenous curve is polynomial
in ℓ and so exponential in the input size). Since c can be as big as

√
q the above method

(i.e., taking isogenies to the floor) would therefore have worst-case complexity of at least

14It is necessary to find the square factors of t2 − 4q, which can be done in deterministic time Õ(q1/6);
see Exercise 12.5.1.

25.5. CONSTRUCTING ISOGENIES BETWEEN ELLIPTIC CURVES 567

q1/2 bit operations (indeed, it would be O(q3/2+ǫ) operations in Fq if one includes the
cost of generating modular polynomials). Kohel (pages 53 to 57 of [350]) noted that when
ℓ is very large one can more efficiently resolve the issue of whether or not ℓ divides the
conductor by finding elements in the ideal class group that are trivial for the maximal
order but non-trivial for an order whose conductor is divisible by ℓ; one can then “test”
such a relation using isogenies. Using these ideas Kohel proves in Theorem 24 of [350]
that, assuming a certain generalisation of the Riemann hypothesis, his algorithm requires
O(q1/3+ǫ) bit operations. Kohel also considers the case of supersingular curves.

Bisson and Sutherland [58] consider a randomised version of Kohel’s method using
ideas from index calculus algorithms in ideal class groups. Their algorithm has heuris-
tic subexponential expected complexity of O(Lq(1/2,

√
3/2)) bit operations. We do not

present the details.

Remark 25.4.11. An important remark is that neither of the two efficient ways to
generate elliptic curves over finite fields is likely to lead to elliptic curves E such that the
conductor of End(E) is divisible by a large prime.

• When generating elliptic curves by choosing a random curve over a large prime field
and counting points, then t2− 4q behaves like a random integer and so is extremely
unlikely to be divisible by the square of a very large prime

• When using the CM method then it is automatic that the curves have q+1−t points
where t2 − 4q has a very large square factor. It is easy to arrange that the square
factor is divisible by a large prime. However, the elliptic curve itself output by the
CM method has End(E) being the maximal order. To get End(E) to be a non-
maximal order one can either use class polynomials corresponding to non-maximal
orders or use descending isogenies. Either way, it is infeasible to compute a curve
E such that a very large prime divides the conductor of End(E). Furthermore,
Kohel’s algorithm is not needed in this case, since by construction one already
knows End(E).

Hence, in practice, the potential problems with large primes dividing the conductor of
End(E) do not arise. It is therefore safe to assume that determining End(E) in practice
is easy.

25.5 Constructing Isogenies Between Elliptic Curves

The isogeny problem for elliptic curves is: given two elliptic curves E and Ẽ over
Fq with the same number of points, to compute an isogeny between them. Solving this
problem is usually considered in two stages:

1. Performing a pre-computation, that computes a chain of prime-degree isogenies
from E to Ẽ. The chain is usually computed as a sequence of explicit isogenies,
though one could store just the “Elkies information” for each isogeny in the chain.

2. Given a specific point P ∈ E(Fq) to compute the image of P under the isogeny.

The precomputation is typically slow, while it is desirable that the computation of the
isogeny be fast (since it might be performed for a large number of points).

An algorithm to solve the isogeny problem, requiring exponential time and space in
terms of the input size, was given by Galbraith [217]. For the case of ordinary elliptic
curves, an improved algorithm with low storage requirements was given by Galbraith,
Hess and Smart [221]. We briefly sketch both algorithms in this section.

568 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

We now make some preliminary remarks in the ordinary case. Let c1 be the conductor
of End(E) and c2 the conductor of End(Ẽ). If there is a large prime ℓ that divides c1 but

not c2 (or vice versa), then any isogeny between E and Ẽ will have degree divisible by
ℓ and hence the isogeny will be slow to compute. Since the conductor is a square factor
of t2 − 4q it can be, in theory, as big as q1/2. It follows that one does not expect an
efficient algorithm for this problem in general. However, as mentioned in Remark 25.4.11,
in practice one can ignore this bad case and assume the primes dividing the conductor
are moderate.

For the rest of this section, in the ordinary case, we assume that End(E) = End(Ẽ) =
O. (If this is not the case then take vertical isogenies from E to reduce to it.) Usually O
is the maximal order. This is desirable, because the class number of the maximal order is
typically smaller (and never larger) than the class number of the sub-orders, and so the
algorithm to find the isogeny works more quickly in this case. However, for the sake of
generality we do not insist that O is the maximal order. The general case could appear
if there is a very large prime dividing the conductor of O.

25.5.1 The Galbraith Algorithm

The algorithm of Galbraith [217] finds a path between two vertices in the isogeny graph
XE,k,S using a breadth-first search (see Section 22.2 of [146]). This algorithm can be used
in both the ordinary and supersingular cases. More precisely, one starts with sets X0 =
{j(E)} and Y0 = {j(Ẽ)} (we are assuming the vertices of the isogeny graph are labelled
by j-invariants) and, at step i, computes Xi = Xi−1 ∪ δv(Xi−1) and Yi = Yi−1 ∪ δv(Yi−1)
where δv(X) is the set of vertices in the graph that are connected to a vertex in X by
an edge. Computing δv(X) involves finding the roots in k of Φℓ(j, y) for every j ∈ X
and every ℓ ∈ S. In the supersingular case the set S of possible isogeny degrees usually
consists of a single prime ℓ. In the ordinary case S could have as many as log(q) elements,
and one might not compute the whole of δv(X) but just the boundary in a subgraph
corresponding to a (random) subset of S. In either case, the cost of computing δv(X) is
clearly proportional to #X .15 The algorithm stops when Xi ∩ Yi 6= ∅, in which case it is
easy to compute the isogeny from E to Ẽ.

Exercise 25.5.1. Write pseudocode for the above algorithm.

Under the (probably unreasonable) assumption that new values in δv(Xi) behave like
uniformly chosen elements in the isogeny graph, one expects from the birthday paradox
that the two sets have non-empty intersection when #Xi+#Yi ≥

√
π#XE,k,S . Since the

graph is an expander, we know that #Xi = #Xi−1 + #δv(Xi−1) ≥ (1 + c)#Xi−1 when
Xi−1 is small, and so #Xi ≥ (1 + c)i.

In the supersingular case we have #XE,k,S = O(q) and in the ordinary case we have
#XE,k,S = h(O) = O(q1/2 log(q)). In both cases, one expects the algorithm to terminate
after O(log(q)) steps. Step i involves, for every vertex j ∈ Xi (or j ∈ δv(Xi−1)) and every
ℓ ∈ S, computing roots of Φℓ(j, y) in Fq. One can check that if all ℓ are polynomially
bounded in log(q) then the expected number of bit operations is bounded by

√
#XE,k,S

times a polynomial in log(q).
In the supersingular case the algorithm performs an expected Õ(q1/2) bit operations.

In the ordinary case, by Bach’s result (and therefore, assuming various generalisations
of the Riemann hypothesis) we can restrict to isogenies of degree at most 6 log(q)2 and
so each step is polynomial-time (the dominant cost of each step is finding roots of the

15When all ℓ ∈ S are used at every step, to compute δv(Xi) it suffices to consider only vertices
j ∈ δv(Xi−1).

25.5. CONSTRUCTING ISOGENIES BETWEEN ELLIPTIC CURVES 569

modular polynomial; see Exercise 25.2.2). The total complexity is therefore an expected
Õ(q1/4) bit operations. The storage required is expected to be O(q1/4 log(q)2) bits.

Exercise 25.5.2. Let m ∈ N. Suppose all ℓ ∈ S are such that ℓ = O(log(q)m). Let

φ : E → Ẽ be the isogeny output by the Galbraith algorithm. Show, under the same
heuristic assumptions as above, that one can evaluate φ(P) for P ∈ E(Fq) polynomial-
time.

Exercise 25.5.3. Isogenies of small degree are faster to compute than isogenies of large
degree. Hence, the average cost to compute an ℓ-isogeny can be used as a weight for
the edges in the isogeny graph corresponding to ℓ-isogenies. It follows that there is a
well-defined notion of shortest path in the isogeny graph between two vertices. Show how
Dijkstra’s algorithm (see Section 24.3 of [146]) can be used to find a chain of isogenies
between two elliptic curves that can be computed in minimal time. What is the complexity
of this algorithm?

25.5.2 The Galbraith-Hess-Smart Algorithm

We now restrict to the ordinary isogeny graph and sketch the algorithm of Galbraith,
Hess and Smart [221]. The basic idea is to replace the breadth-first search by a random
walk, similar to that used in the kangaroo algorithm.

Let H be a hash function from Fq to a set S of prime ideals of small norm. One

starts random walks at x0 = j(E) and y0 = j(Ẽ) and stores ideals a0 = (1), b0 = (1).
One can think of (x0, a0) as a “tame walk” and (y0, b0) as a “wild walk”. Each step of
the algorithm computes new values xi and yi from xi−1 and yi−1: To compute xi set
l = H(xi−1) and ℓ = N(l); find the roots of Φℓ(xi−1, z); choose the root corresponding to
the ideal l (using the trick mentioned in Remark 25.3.9) and call it xi. The same process
is used (with the same function H) for the sequence yi. The ideals are also updated as
ai = ai−1l (reduced in the ideal class group to some short canonical representation of
ideals). If xi = yj then the walks follow the same path. We designate certain elements of
Fq as being distinguished points, and if xi or yi is distinguished then it is stored together
with the corresponding ideal a or b. After a walk hits a distinguished point there are two
choices: it could be allowed to continue or it could be restarted at a j-invariant obtained
by taking a short random isogeny chain (perhaps corresponding to primes not in S) from

E or Ẽ.
Once a collision is detected one has an isogeny corresponding to ideal a from j(E) to

some j, and an isogeny corresponding to ideal b from j(Ẽ) to j. Hence, the ideal ab−1

gives the isogeny from j(E) to j(Ẽ).
Stolbunov has noted that, since the ideal class group is Abelian, it is not advisable to

choose S such that l, l−1 ∈ S (since such a choice means that walks remain “close” to the
original j-invariant, and cycles in the random walk might arise). It is also faster to use
isogenies of small degree more often than those with large degree. We refer to Galbraith
and Stolbunov [230] for further details.

The remaining problem is that the ideal ab−1 is typically of large norm. By construc-
tion, it is a product of exponentially many small primes. Since the ideal class group is
commutative, such a product has a short representation (storing the exponents for each
prime), but this leads to an isogeny that requires exponential computation. The proposal
from [221] is to represent ideals using the standard representation for ideals in quadratic
fields, and to “smooth” the ideal using standard techniques from index calculus algo-
rithms in ideal class groups. It is beyond the scope of this book to discuss these ideas
in detail. However, we note that the isogeny then has subexponential length and uses

570 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

primes ℓ of subexponential degree. Hence, the second stage of the isogeny computation is
subexponential-time; this is not as fast as it would be with the basic Galbraith algorithm.
The idea of smoothing an isogeny has also been used by Bröker, Charles and Lauter [108]
and Jao and Soukharev [312].

Since the ordinary isogeny graph is conjecturally an expander graph, we know that
a random walk on it behaves close to the uniform distribution after sufficiently many
steps. We make the heuristic assumption that the pseudorandom walk proposed above
has this property when the number of different primes used is sufficiently large and the
hash function H is good. Then, by the birthday paradox, one expects a collision after√
πh(O) vertices have been visited. As a result, the heuristic expected running time of

the algorithm is O(q1/4) isogeny chain steps, and the storage can be made low by making
distinguished elements rare. The algorithm can be distributed: using L processors of
equal power one solves the isogeny problem in Õ(q1/4/L) bit operations.

25.6 Relating the Discrete Logarithm Problem on Isoge-
nous Curves

The main application of the algorithms in Section 25.5 is to relate the discrete logarithm
problem on curves with the same number of points. More precisely, let E and Ẽ be
elliptic curves over Fq with #E(Fq) = #Ẽ(Fq). Let r be a large prime dividing #E(Fq).
A natural question is whether the discrete logarithm problem (in the subgroup of order r)

has the same difficulty in both groups E(Fq) and Ẽ(Fq). To study this question one wants

to reduce the discrete logarithm problem from E(Fq) to Ẽ(Fq). If we have an isogeny

φ : E → Ẽ of degree not divisible by r, and if φ can be efficiently computed, then we
have such a reduction.

As we have seen, if there is a very large prime dividing the conductor of End(E) but

not the conductor of End(Ẽ) (or vice versa) then it is not efficient to compute an isogeny

from E to Ẽ. In this case one cannot make any inference about the relative difficulty
of the DLP in the two groups. No example is known of elliptic curves E and Ẽ of this
form (i.e., with a large conductor gap) but for which the DLP on one is known to be
significantly easier than the DLP on another. The nearest we have to an example of this
phenomenon is with elliptic curves E with #Aut(E) > 2 (and so one can accelerate the
Pollard rho method using equivalence classes as in Section 14.4) but with an isogeny from

E to Ẽ with #Aut(Ẽ) = 2.

On the other hand, if the conductors of End(E) and End(Ẽ) have the same very
large prime factors (or no large prime factors) then we can (conditional on a generalised
Riemann hypothesis) compute an isogeny between them in Õ(q1/4) bit operations. This
is not a polynomial-time reduction. But, since the current best algorithms for the DLP
on elliptic curves run in Õ(q1/2) bit operations, it shows that from a practical point of
view the two DLPs are equivalent.

Jao, Miller and Venkatesan [310] have a different, and perhaps more useful, interpre-
tation of the isogeny algorithms in terms of random self-reducibility of the DLP in an
isogeny class of elliptic curves. The idea is that if E is an elliptic curve over Fq then by
taking a relatively short random walk in the isogeny graph one arrives at a “random”
(again ignoring the issue of large primes dividing the conductor) elliptic curve Ẽ over Fq
such that #Ẽ(Fq) = #E(Fq). Hence, one easily turns a specific instance of the DLP (i.e.,
for a specific elliptic curve) into a random instance. It follows that if there were a “large”
set of “weak” instances of the DLP in the isogeny class of E then, after enough trials,

25.6. RELATING DISCRETE LOGS 571

one should be able to reduce the DLP from E to one of the elliptic curves in the weak
class. One concludes that either the DLP is easy for “most” curves in an isogeny class,
or is hard for “most” curves in an isogeny class.

572 CHAPTER 25. ISOGENIES OF ELLIPTIC CURVES

Chapter 26

Pairings on Elliptic Curves

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

This chapter is a very brief summary of the mathematics behind pairings on elliptic
curves. Pairing-based cryptography was created by Sakai, Ohgishi and Kasahara [509] and
Joux [316]. Some applications of pairings in elliptic curve cryptography have already been
presented in the book (for example, the identity-based encryption scheme of Boneh and
Franklin in Section 23.3.2 and the Boneh-Boyen signature scheme in Section 22.2.3). We
present several other important applications of pairings, such as the Menezes-Okamoto-
Vanstone/Frey-Rück reduction of the discrete logarithm problem from elliptic curves to
finite fields.

Due to lack of space we do not give full details of the subject. Good general references
for pairings and pairing-based cryptography are Chapters IX and X of [65], Chapters 6,
16 and 24 of [16] and [320].

26.1 Weil Reciprocity

The following theorem is an important tool for studying pairings. Recall that a divisor
on a curve C over a field k is a finite sum D =

∑
P∈C(k) nP (P) (i.e., nP = 0 for all but

finitely many P ∈ C(k)). The support of a divisor D is the set of points Supp(D) =
{P ∈ C(k) : nP 6= 0}. To a function f on a curve one associates the divisor div(f) as in
Definition 7.7.2. If f is a function on a curve and D is a divisor such that the support of
D is distinct from the support of div(f) then f(D) is defined to be

∏
P∈C(k),nP 6=0 f(P)nP .

Exercise 26.1.1. Let D1 and D2 be divisors with disjoint support on a curve C. Suppose
D1 is principal. Show that f(D2) is well-defined, subject to div(f) = D1, if and only if
D2 has degree zero.

Theorem 26.1.2. (Weil reciprocity) Let C be a curve over a field k. Let f, g ∈ k(C)

573

574 CHAPTER 26. PAIRINGS ON ELLIPTIC CURVES

be functions such that Supp(div(f)) ∩ Supp(div(g)) = ∅. Then

f(div(g)) = g(div(f)).

Proof: (Sketch) One first shows that the result holds for functions on C = P1. Then take
any covering φ : C → P1 and apply the pullback. We refer to the appendix of Chapter IX
of [65] for details. A proof over C is given in the appendix to Section 18.1 of Lang [366].
�

Pages 24-26 of Charlap and Coley [126] present a generalised Weil reciprocity that
does not require the divisors to have disjoint support.

26.2 The Weil Pairing

The Weil pairing plays an important role in the study of elliptic curves over number fields,
but tends to be less important in cryptography. For completeness, we briefly sketch its
definition.

Let E be an elliptic curve over k and let n ∈ N be coprime to char(k). Let P,Q ∈ E[n].
Then there is a function f ∈ k(E) such that div(f) = n(Q)− n(OE). Let Q′ ∈ E(k) be
any point such that [n]Q′ = Q, and so [n2]Q′ = OE . Note that [n] is unramified and the
divisor D = [n]∗((Q)− (OE)) is equal to

∑

R∈E[n]

(Q′ +R)− (R).

Since
∑

R∈E[n]R = OE and [n2]Q′ = OE it follows from Theorem 7.9.9 that D is a

principal divisor. So there is a function g ∈ k(E) such that div(g) = D = [n]∗((Q) −
(OE)). Now, consider the function [n]∗f = f ◦ [n]. One has div([n]∗f) = [n]∗(div(f)) =
[n]∗(n(Q) − n(OE)) = nD. Hence the functions f ◦ [n] and gn have the same divisor.
Multiplying f by a suitable constant gives f ◦ [n] = gn. Now, for any point U ∈ E(k)
such that [n]U 6∈ E[n2] we have

g(U + P)n = f([n]U + [n]P) = f([n]U) = g(U)n.

In other words, g(U + P)/g(U) is an n-th root of unity in k.

Lemma 26.2.1. Let the notation be as above. Then g(U + P)/g(U) is independent of
the choice of the point U ∈ E(k).

Proof: See Section 11.2 of Washington [626]. The proof is described as “slightly techni-
cal” and uses the Zariski topology. �

Definition 26.2.2. Let E be an elliptic curve over a field k and let n ∈ N be such that
gcd(n, char(k)) = 1. Define

µn = {z ∈ k
∗

: zn = 1}.
The Weil pairing is the function

en : E[n]× E[n]→ µn

defined (using the notation above) as en(P,Q) = g(U +P)/g(U) for any point U ∈ E(k),
U 6∈ E[n2] and where div(g) = [n]∗((Q)− (OE)).

Theorem 26.2.3. The Weil pairing satisfies the following properties.

26.2. THE WEIL PAIRING 575

1. (Bilinear) For P1, P2, Q ∈ E[n], en(P1+P2, Q) = en(P1, Q)en(P2, Q) and en(Q,P1+
P2) = en(Q,P1)en(Q,P2).

2. (Alternating) For P ∈ E[n], en(P, P) = 1.

3. (Non-degenerate) If en(P,Q) = 1 for all Q ∈ E[n] then P = OE .
4. (Galois invariant) If E is defined over k and σ ∈ Gal(k/k) then en(σ(P), σ(Q)) =

σ(en(P,Q)).

5. (Compatible) If P ∈ E[nm] and Q ∈ E[n] then

enm(P,Q) = en([m]P,Q).

Proof: See Theorem III.8.1 of Silverman [564] or Theorem 11.7 of Washington [626].
The non-degeneracy proof in [564] is very sketchy, but the treatment in [626] fills in the
missing details. The non-degeneracy also needs the fact that the genus of E is not zero,
so there is no function with divisor (P)− (OE) (see Corollary 8.6.5). �

Exercise 26.2.4. Show that any function e : E[n]× E[n] → µn that has the properties
of the Weil pairing as in Theorem 26.2.3 also has the following properties.

1. e(OE , P) = e(P,OE) = 1 for all P ∈ E[n].

2. e(−P,Q) = e(P,Q)−1 for all P,Q ∈ E[n].

3. e(P,Q) = e(Q,P)−1 for all P,Q ∈ E[n].

4. If {P,Q} generate E[n] then the values of e on E[n]×E[n] are uniquely determined
by the single value e(P,Q).

Exercise 26.2.5. Let E be an elliptic curve over Fq and let n ∈ N. Prove that E[n] ⊆
E(Fq) implies n | (q − 1).

For elliptic curves over C the Weil pairing has a very simple interpretation. Recall
that an elliptic curve over C is isomorphic (as a manifold) to C/L, where L is a lattice of
rank 2, and that this isomorphism also preserves the group structure. Fix a pair {z1, z2}
of generators for L as a Z-module. The points of order n are 1

nL/L, so are identified with
{(az1 + bz2)/n : 0 ≤ a, b < n}. The function

en((az1 + bz2)/n, (cz1 + dz2)/n) = exp(2πi(ad− bc)/n)

is easily checked to be bilinear, non-degenerate and alternating. Hence, it is (a power of)
the Weil pairing. We refer to the appendix of Section 18.1 of Lang [366] for further details.
Connections with the intersection pairing are discussed in Section 12.2 of Husemoller [302]
and Edixhoven [189].

There is an alternative definition1 of the Weil pairing that is more useful for imple-
mentation, but for which it is harder to prove non-degeneracy. For P,Q ∈ E[n] let DP

and DQ be degree zero divisors such that DP ≡ (P) − (OE), DQ ≡ (Q) − (OE) and
Supp(DP) ∩ Supp(DQ) = ∅. Let fP , fQ ∈ k(E) be functions such that div(fP) = nDP

and div(fQ) = nDQ. Then

en(P,Q) = fQ(DP)/fP (DQ). (26.1)

1The literature is inconsistent and some of the definitions (for example, Section 18.1 of Lang [366],
Exercise 3.16 of Silverman [564] and Section 3 of Miller [427]) are actually for en(Q,P) = en(P,Q)−1.
For further discussion of this issue see Remark 11.3 and Section 11.6 of Washington [626]. Also see the
“Warning” at the end of Section 4 of Miller [429].

576 CHAPTER 26. PAIRINGS ON ELLIPTIC CURVES

The equivalence is shown in Theorem 4 of the extended and unpublished version of
Hess [282], and in Section 11.6.1 of Washington [626].

The Weil pairing can be generalised from E[n]×E[n] to ker(φ)×ker(φ̂) ⊆ E[n]× Ẽ[n]

where φ : E → Ẽ is an isogeny. For details see Exercise 3.15 of Silverman [564] or
Garefalakis [237]. For the Weil pairing on Jacobian varieties of curves of genus g > 1 we
refer to Section 20 of Mumford [444].

26.3 The Tate-Lichtenbaum Pairing

Tate defined a pairing for Abelian varieties over local fields and Lichtenbaum showed how
to compute it efficiently in the case of Jacobian varieties of curves. Frey and Rück [213]
showed how to compute it for elliptic curves over finite fields, and emphasised its cryp-
tographic relevance. This pairing is the basic building block of most pairing-based cryp-
tography.

Exercise 26.3.1. Let E be an elliptic curve over a finite field Fq and let n ∈ N be such
that gcd(n, q) = 1 and n | #E(Fq). Define

nE(Fq) = {[n]Q : Q ∈ E(Fq)}.

Show that nE(Fq) is a group. Show that E(Fq)[n] = {P ∈ E(Fq) : [n]P = OE},
E(Fq)/nE(Fq) = {P + nE(Fq) : P ∈ E(Fq)} and F∗

q/(F
∗
q)
n are finite groups of exponent

n.

Let notation be as in Exercise 26.3.1. Let P ∈ E(Fq)[n] and Q ∈ E(Fq). Then n(P)−
n(OE) is principal, so there is a function f ∈ Fq(E) such that div(f) = n(P) − n(OE).
Let D be a divisor on E with support disjoint from Supp(div(f)) = {OE , P} but such
that D is equivalent to (Q) − (OE) (for example, D = (Q + R) − (R) for some point2

R ∈ E(Fq), R 6∈ {OE , P,−Q,P −Q}). We define the Tate-Lichtenbaum pairing to be

tn(P,Q) = f(D). (26.2)

We will explain below that

tn : E(Fq)[n]× E(Fq)/nE(Fq)→ F∗
q/(F

∗
q)
n.

First we show that the pairing is well-defined. We sketch the proof, as it is a nice and
simple application of Weil reciprocity.

Lemma 26.3.2. Let the notation be as above. Let P ∈ E(Fq)[n] and let f ∈ Fq(E) be
such that div(f) = n(P) − n(OE). Let D1, D2 be divisors on E defined over Fq with
support disjoint from {OE , P}.

1. Suppose D1 ≡ D2 ≡ (Q)− (OE) for some point Q ∈ E(Fq). Then f(D1)/f(D2) ∈
(F∗
q)
n.

2. Suppose D1 ≡ (Q1)− (OE) and D2 ≡ (Q2)− (OE) where Q1, Q2 ∈ E(Fq) are such
that Q1 6= Q2 and and Q1 −Q2 ∈ nE(Fq). Then f(D1)/f(D2) ∈ (F∗

q)
n.

2One can usually take R ∈ E(Fq), but see page 187 of [65] for an example that shows that this is not
always possible.

26.3. THE TATE-LICHTENBAUM PAIRING 577

Proof: The first statement is a special case of the second, but it is a convenient stepping-
stone for the proof. For the first statement, write D2 = D1 + div(h) where h is a function
on E defined over Fq. Note that Supp(div(h)) ∩ {OE, P} = ∅. We have

f(D2) = f(D1 + div(h)) = f(D1)f(div(h)).

Now, applying Weil reciprocity gives f(div(h)) = h(div(f)) = h(n(P) − n(OE)) =
(h(P)/h(OE))n ∈ (F∗

q)
n.

For the second statement write Q1 − Q2 = [n]R for some R ∈ E(Fq). We may
assume that R 6= OE , since the first statement has already been proved. Then (Q1) −
(Q2) = n((R + S) − (S)) + div(h0) for some h0 ∈ Fq(E) and some S ∈ E(Fq) with
S 6∈ {OE,−R,P, P − R}.3 We also have D1 = (Q1)− (OE) + div(h1) and D2 = (Q2) −
(OE) + div(h2) for some h1, h2 ∈ Fq(E). Putting everything together

f(D2) = f(D1 − n((R + S)− (S)) + div(h2)− div(h1)− div(h0))

= f(D1)f((R + S)− (S))nf(div(h2/(h0h1))).

Since Supp(div(h2/(h0h1))) ⊆ Supp(D1)∪Supp(D2)∪{R+S, S} is disjoint from {OE , P} =
∅ the result follows from Weil reciprocity. �

Theorem 26.3.3. The Tate-Lichtenbaum pairing satisfies the following properties.

1. (Bilinear) For P1, P2 ∈ E(Fq)[n], and Q ∈ E(Fq), tn(P1+P2, Q) = tn(P1, Q)tn(P2, Q).
For Q ∈ E(Fq)[n] and P1, P2 ∈ E(Fq), tn(Q,P1 + P2) = tn(Q,P1)tn(Q,P2).

2. (Non-degenerate) Assume F∗
q contains a non-trivial n-th root of unity. Let P ∈

E(Fq)[n]. If tn(P,Q) = 1 for all Q ∈ E(Fq) then P = OE. Let Q ∈ E(Fq). If
tn(P,Q) = 1 for all P ∈ E(Fq)[n] then Q ∈ nE(Fq).

3. (Galois invariant) If E is defined over Fq and σ ∈ Gal(Fq/Fq) then tn(σ(P), σ(Q)) =
σ(tn(P,Q)).

Proof: Bilinearity can be proved using ideas similar to those used to prove Lemma 26.3.2
(for all the details see Theorem IX.7 of [65]). Non-degeneracy in the case of finite fields
was shown by Frey and Rück [213], but simpler proofs can be found in Hess [282] and
Section 11.7 of Washington [626]. Galois invariance is straightforward (see Theorem IX.7
of [65]). �

26.3.1 Miller’s Algorithm

We now briefly explain how to compute the Tate-Lichtenbaum pairing (and hence the
Weil pairing via equation (26.1)). The algorithm first appears in Miller [427].

Definition 26.3.4. Let P ∈ E(k) and i ∈ N. A Miller function fi,P ∈ k(E) is
a function on E such that div(fi,P) = i(P) − ([i]P) − (i − 1)(OE). Furthermore, we
assume that Miller functions are “normalised at infinity” in the sense that the power
series expansion at infinity with respect to the canonical uniformizer t∞ = x/y is 1.

Exercise 26.3.5. Show that f1,P = 1. Show that if fi,P and fj,P are Miller functions
then one can take

fi+j,P = fi,P fj,P l(x, y)/v(x, y)

where l(x, y) and v(x, y) are the lines arising in the elliptic curve addition of [i]P to
[j]P (and so div(l(x, y)) = ([i]P) + ([j]P) + (−[i + j]P) − 3(OE) and div(v(x, y)) =
([i + j]P) + (−[i+ j]P)− 2(OE)).

3Some tedious calculations are required to show that one can choose S ∈ E(Fq) rather than E(Fq) in
all cases, but the claim is easy when n is large.

578 CHAPTER 26. PAIRINGS ON ELLIPTIC CURVES

We can now give Miller’s algorithm to compute fn,P (D) for any divisor D (see Al-
gorithm 29). The basic idea is to compute the Miller function out of smaller Miller
functions using a “square-and-multiply” strategy. As usual, we write an integer n in bi-
nary as (1nm−1 . . . n1n0)2 where m = ⌊log2(n)⌋. Note that the lines l and v in lines 6
and/or 10 may be simplified if the operation is [2]T = OE or T + P = OE .

Algorithm 29 Miller’s Algorithm

Input: n = (1nm−1 . . . n1n0)2 ∈ N, P ∈ E(k), such that [n]P = OE , D ∈ Divk(E)
Output: fn,P (D)
1: f = 1
2: T = P
3: i = m− 1 = ⌊log2(n)⌋ − 1
4: while i ≥ 0 do
5: Calculate lines l and v for doubling T
6: f = f2 · l(D)/v(D)
7: T = [2]T
8: if ni = 1 then
9: Calculate lines l and v for addition of T and P

10: f = f · l(D)/v(D)
11: T = T + P
12: end if
13: i = i− 1
14: end while
15: return f

The main observation is that Miller’s algorithm takes O(log2(n)) iterations, each of
which comprises field operations in k if P and all points in the support of D lie in E(k).
There are a number of important techniques to speed up Miller’s algorithm in practice; we
mention some of them in the following sections and refer to Chapter IX of [65], Chapter XII
of [320] or Section 16.4 of [16] for further details.

Exercise 26.3.6. Give simplified versions of lines 6 and 10 of Algorithm 29 that apply
when [2]T = OE or T + P = OE .

26.3.2 The Reduced Tate-Lichtenbaum Pairing

Definition 26.3.7. Let n, q ∈ N be such that gcd(n, q) = 1. Define the embedding
degree k(q, n) ∈ N to be the smallest positive (non-zero) integer such that n | (qk(q,n)−1).

Let E be an elliptic curve over Fq and suppose n | #E(Fq) is such that gcd(n, q) = 1.
Let k = k(q, n) be the embedding degree. Then µn ⊆ F∗

qk (in some cases µn can lie

in a proper subfield of Fqk) and so the Tate-Lichtenbaum pairing maps into F∗
qk/(F

∗
qk)n.

In practice it is inconvenient to have a pairing taking values in this quotient group, as
cryptographic protocols require well-defined values. To have a canonical representative
for each coset in F∗

qk/(F
∗
qk)n it would be much more convenient to use µn. This is easily

achieved using the facts that if z ∈ F∗
qk then z(q

k−1)/n ∈ µn, and that the cosets z1(F∗
qk)n

and z2(F∗
qk)n are equal if and only if z

(qk−1)/n
1 = z

(qk−1)/n
2 . Also, exponentiation is a

group homomorphism from F∗
qk/(F

∗
qk)n to µn.

For this reason, one usually considers the reduced Tate-Lichtenbaum pairing

t̂n(P,Q) = tn(P,Q)(q
k−1)/n,

26.3. THE TATE-LICHTENBAUM PAIRING 579

which maps E(Fq)[n]×E(Fq)/nE(Fq) to µn. The exponentiation to the power (qk− 1)/n
is called the final exponentiation.

Exercise 26.3.8. Let n | N | (qk − 1). Show that

tn(P,Q)(q
k−1)/n = tN (P,Q)(q

k−1)/N .

Exercise 26.3.9. Explain why working in a group whose order has low Hamming weight
leads to relatively fast pairings. Suppose n = E(Fq) has low Hamming weight but r |
n does not. Explain how to compute the reduced Tate-Lichtenbaum pairing t̂r(P,Q)
efficiently if n/r is small.

In the applications one usually chooses the elliptic curve E to satisfy the mild condi-
tions in Exercise 26.3.10. In these cases it follows from the Exercise that we can identify
E(Fqk)/rE(Fqk) with E(Fqk)[r]. Hence, if the conditions hold, we may interpret the
reduced Tate-Lichtenbaum pairing as a map

t̂r : E[r] × E[r]→ µr,

just as the Weil pairing is.

Exercise 26.3.10. Let E be an elliptic curve over Fq and let r be a prime such that
r‖#E(Fq), gcd(r, q) = 1, E[r] ⊆ E(Fqk) and r2‖#E(Fqk), where k = k(q, r) is the
embedding degree. Show that E[r] is set of representatives for E(Fqk)/rE(Fqk).

In most cryptographic situations one restricts to the case of points of prime order r.
Further, one can often insist that P ∈ E(Fq) and Q ∈ E(Fqk). An important observation

is that if k > 1 and z ∈ F∗
q then z(q

k−1)/r = 1. This allows us to omit some computations
in Miller’s algorithm. A further trick, due4 to Barreto, Kim, Lynn and Scott [29], is
given in Lemma 26.3.11 (a similar fact for the Weil pairing is given in Proposition 8 of
Miller [429]).

Lemma 26.3.11. Let E be an elliptic curve over Fq, P ∈ E(Fq) a point of prime order
r (where r > 4 and gcd(q, r) = 1), and Q ∈ E(Fqk)−E(Fq) where k > 1 is the embedding
degree. Then

t̂r(P,Q) = fr,P (Q)(q
k−1)/r.

Proof: A proof for general curves (and without any restriction on r) is given in Lemma 1
of Granger, Hess, Oyono, Thériault and Vercauteren [265]. We give a similar argument.

We have t̂r(P,Q) = fr,P ((Q+R)−(R))(q
k−1)/r for any pointR ∈ E(Fqk)−{OE, P,−Q,P−

Q}. Choose R ∈ E(Fq)− {OE, P}. Since fr,P (R) ∈ F∗
q and k > 1 it follows that

t̂r(P,Q) = fr,P (Q+R)(q
k−1)/r.

Now, it is not possible to take R = OE in the above argument. Instead we need to prove

that fr,P (Q+R)(q
k−1)/r = fr,P (Q)(q

k−1)/r directly. It suffices to prove that

fr,P ((Q +R)− (Q))(q
k−1)/r = 1.

To do this, note that (Q+ R)− (Q) ≡ (R)− (OE) ≡ ([2]R)− (R). Set, for example,
R = [2]P so that ([2]R) − (R) has support disjoint from {OE , P} (this is where the

4Though be warned that the “proof” in [29] is not rigorous.

580 CHAPTER 26. PAIRINGS ON ELLIPTIC CURVES

condition r > 4 is used). Then there is a function h ∈ Fqk(E) such that (Q+R)− (Q) =
([2]R)− (R) + div(h). We have

fr,P ((Q+R)− (Q)) = fr,p(([2]R)− (R) + div(h)) = fr,P (([2]R)− (R))h(div(fr,P)).

Finally, note that fr,P (([2]R) − (R)) ∈ F∗
q and that h(div(fr,P)) = (h(P)/h(OE))r ∈

(F∗
qk)r. The result follows. �

Exercise 26.3.12. Let the embedding degree k be even, r ∤ (qk/2 − 1), P ∈ E(Fq) and
Q = (xQ, yQ) ∈ E(Fqk) points of order r. Suppose xQ ∈ Fqk/2 (this is usually the case
for points of cryptographic interest). Show that all vertical line functions can be omitted
when computing the reduced Tate-Lichtenbam pairing.

26.3.3 Ate Pairing

Computing pairings on elliptic curves usually requires significantly more effort than ex-
ponentiation on an elliptic curve. There has been a concerted research effort to make
pairing computation more efficient, and a large number of techniques are known. Due
to lack of space we focus on one particular method known as “loop shortening”. This
idea originates in the work of Duursma and Lee [187] (for hyperelliptic curves) and was
further developed by Barreto, Galbraith, Ó hÉigeartaigh and Scott [28]. We present the
idea in the ate pairing formulation of Hess, Smart and Vercauteren [284]. Note that the
ate pairing is not a “new” pairing. Rather, it is a way to efficiently compute a power, of
a restriction to certain subgroups, of the Tate-Lichtenbaum pairing.

Let E be an elliptic curve over Fq and let r be a large prime such that r | #E(Fq) =
q + 1 − t and r | (qk − 1) for some relatively small integer k, but r ∤ (q − 1). It follows
that #(E[r]∩E(Fq)) = r. Since the Frobenius map is linear on the Fr-vector space E[r],
and its characteristic polynomial satisfies

x2 − tx+ q ≡ (x− 1)(x− q) (mod r),

it follows that πq has distinct eigenvalues 1 and q (mod r) and corresponding eigenspaces
(i.e., subgroups)

G1 = E[r] ∩ ker(πq − [1]) , G2 = E[r] ∩ ker(πq − [q]). (26.3)

Since, r | (qk−1) and q ≡ (t−1) (mod r) it follows that r | ((t−1)k−1). Let T = t−1
and N = gcd(T k−1, qk−1). Note that r | N . Define the ate pairing aT : G2×G1 → µr
by

aT (Q,P) = fT,Q(P)(q
k−1)/N .

The point is that |t| ≤ 2
√
q and, typically, r ≈ q. Hence, computing the Miller

function fT,Q typically requires at most half the number of steps as required to compute
fr,P . On the downside, the coefficients of the function fT,Q lie in Fqk , rather than Fq as
before. Nevertheless, the ate pairing often leads to faster pairings if carefully implemented
(especially when twists are exploited).

Theorem 26.3.13. Let the notation be as above (in particular, T = t − 1 and N =

gcd(T k − 1, qk − 1)). Let L = (T k − 1)/N and c =
∑k−1
i=0 q

iT k−1−i (mod r). Then

aT (Q,P)c = tr(Q,P)L(q
k−1)/r.

Hence, aT is bilinear, and aT is non-degenerate if and only if r ∤ L.

26.3. THE TATE-LICHTENBAUM PAIRING 581

Proof: (Sketch) Consider tr(Q,P)(q
k−1)/r = fr,Q(P)(q

k−1)/r. Since r | N , Exercise 26.3.8
implies that this is equal to

fN,Q(P)(q
k−1)/N .

Indeed,

tr(Q,P)L(q
k−1)/r = fLN,Q(P)(q

k−1)/N = fTk−1,Q(P)(q
k−1)/N .

Now, [T k − 1]Q = OE so one can take fTk,Q = fTk−1,Q. (To prove this note that
div(fTk,Q) = T k(Q)− ([T k]Q) − (T k − 1)(OE) = T k(Q)− (Q)− (T k − 1)(OE) = (T k −
1)(Q)− (T k − 1)(OE).) Hence, the L-th power of the reduced Tate-Lichtenbaum pairing

is fTk,Q(P)(q
k−1)/N . Now,

fTk,Q(P) = fT,Q(P)T
k−1

fT,[T]Q(P)T
k−2 · · · fT,[Tk−1]Q(P), (26.4)

which follows by considering the divisors of the left- and right-hand sides. The final step,
and the only place we use πq(Q) = [q]Q = [T]Q, is to note that

fT,[T]Q(P) = fT,πq(Q)(P) = f qT,Q(P). (26.5)

where f q denotes raising all coefficients of the rational function f to the power q. This
follows because E and P are defined over Fq, so σ(fT,Q(P)) = fT,σ(Q)(P) for all σ ∈
Gal(Fqk/Fq). One therefore computes fTk,Q(P) = fT,Q(P)c, which completes the proof.
�

Exercise 26.3.14. Generalise Theorem 26.3.13 to the case where T ≡ qm (mod r) for
some m ∈ N. What is the corresponding value of c?

26.3.4 Optimal Pairings

Lee, Lee and Park [369], Hess [283] and Vercauteren [618] have used combinations of
pairings that have the potential for further loop shortening over that provided by the ate
pairing.

Ideally, one wants to compute a pairing as fM,Q(P), with some final exponentation,
where M is as small as possible. Hess and Vercauteren conjecture that the smallest
possible value for log2(M), for points of prime order r in an elliptic curve E over Fq with
embedding degree k(q, r), is log2(r)/ϕ(k(q, r)). For such a pairing, Miller’s algorithm
would be sped up by a factor of approximately ϕ(k(q, r)) compared with the time required
when not using loop shortening. The method of Vercauteren actually gives a pairing as a
product of

∏l
i=0 fMi,Q(P)q

i

(together with some other terms) where all the integers Mi

are of the desired size; such a pairing is not automatically computed faster than the naive
method, but if the integers Mi all have a large common prefix in their binary expansions
then such a saving can be obtained. If a pairing can be computed with approximately
log2(r)/ϕ(k(q, r)) iterations in Miller’s algorithm then it is called an optimal pairing.

The basic principle of Vercauteren’s construction is to find a multiple ur, for some
u ∈ N, of the group order that can be written in the form

ur =

l∑

i=0

Miq
i (26.6)

where the Mi ∈ Z are “small”. One can then show, just like with the ate pairing, that a
certain power of the Tate-Lichtenbaum pairing is

(
l∏

i=0

fMi,Q(P)q
i

l∏

i=1

gi(P)

)(qk−1)/r

, (26.7)

582 CHAPTER 26. PAIRINGS ON ELLIPTIC CURVES

where the functions gi take into account additions of certain elliptic curve points. Ver-
cauteren proves that if

ukqk−1 6≡ (qk−1)
r

(
l∑

i=0

iMiq
i−1

)
(mod r)

then the pairing is non-degenerate. The value of equation (26.7) can be computed ef-
ficiently only if all fMi,Q(P) can, in some sense, be computed simultaneously. This is
easiest when all but one of the Mi are small (i.e., in {−1, 0, 1}) or when the Mi have a
large common prefix of most significant bits (possibly in signed binary expansion).

Vercauteren [618] suggests finding solutions to equation (26.6) using lattices. More
precisely, given r and q one considers the lattice spanned by the rows of the following
matrix

B =

r 0 0 · · · 0
−q 1 0 · · · 0
−q2 0 1 · · · 0

...
...

...
. . .

...
−ql 0 0 · · · 1

. (26.8)

One sees that (u,M1,M2, . . . ,Ml)B = (M0,M1, . . . ,Ml) and so candidate values for
u,M0, . . . ,Ml can be found by finding short vectors in the lattice. A demonstration
of this method is given in Example 26.6.3.

Note that loop shortening methods should not be confused with the methods, starting
with Scott [534], that use an endomorphism on the curve to “recycle” some computations
in Miller’s algorithm. Such methods do not reduce the number of squarings in Miller’s
algorithm and, while valuable, do not give the same potential performance improvements
as methods that use loop shortening.

26.3.5 Pairing Lattices

Hess [283] developed a framework for analysing pairings that is closely related to the
framework in the previous section. We briefly sketch the ideas.

Definition 26.3.15. Let notation be as in Section 26.3.3, in particular q is a prime power,
r is a prime, q is a primitive k-th root of unity modulo r, and the groups G1 and G2 are
as in equation (26.3). Let s ≡ qm (mod r) for some m ∈ N. For any h(x) ∈ Z[x] write

h(x) =
∑d

i=0 hix
i. Let P ∈ G1, Q ∈ G2 and define fs,h(x),Q to be a function normalised

at infinity (in the sense of Definition 26.3.4) such that

div(fs,h(x),Q) =

d∑

i=0

hi(([s
i]Q)− (OE)).

Define
as,h(x)(Q,P) = fs,h(x),Q(P)(q

k−1)/r.

We stress here that h is a polynomial, not a rational function (as it was in previous
sections).

Since [s]Q = [qm]Q = πmq (Q), a generalisation of equation (26.5) shows that fhi,[si]Q(P) =

fhi,Q(P)q
mi

. It follows that one can compute fs,h(x),Q(P) efficiently using Miller’s algo-
rithm in a similar way to computing the pairings in the previous section. The running

26.4. REDUCTION OF ECDLP TO FINITE FIELDS 583

time of Miller’s algorithm is proportional to
∑d
i=0 log2(max{1, |hi|}) in the worse case (it

performs better when the hi have a large common prefix in their binary expansion).
Hess [283] shows that, for certain choices of h(x), as,h(x) is a non-degenerate and

bilinear pairing. The goal is also to obtain good choices for h(x) so that the pairing
can be computed using a short loop. One of the major contributions of Hess [283] is to
prove lower bounds on the size of the coefficients of any polynomial h(x) that leads to a
non-degenerate, bilinear pairing. This supports the optimality conjecture mentioned in
the previous section.

Lemma 26.3.16. Let notation be as in Definition 26.3.15.

1. as,r(Q,P) is the Tate pairing.

2. as,x−s(Q,P) is a power of the ate pairing.

3. as,h(x)x(Q,P) = as,h(x)(Q,P)s.

4. Let h(x), g(x) ∈ Z[x]. Then

as,h(x)+g(x)(Q,P) = as,h(x)(Q,P)as,g(x)(Q,P) and as,h(x)g(x)(Q,P) = as,h(x)(Q,P)g(s).

Exercise 26.3.17.⋆ Prove Lemma 26.3.16.

Theorem 26.3.18. Let notation be as above. Let s ∈ N be such that s is a primitive
k-th root of unity modulo r2. Let h(x) ∈ Z[x] be such that h(s) ≡ 0 (mod r) but r2 ∤ h(s).
Then as,h(x) is a non-degenerate, bilinear pairing on G2 ×G1.

Proof: Since sk ≡ 1 (mod r) it follows that s ≡ qm (mod r) for some m ∈ N. Since
h(s) ≡ 0 (mod r) we can write

h(x) = g1(x)(x − s) + g2(x)r

for some g1(x), g2(x) ∈ Z[x]. It follows from Lemma 26.3.16 that, for some c ∈ N,

as,h(x)(Q,P) = aT (Q,P)cg1(s)t̂r(Q,P)g2(s)

and so as,h(x) is a bilinear pairing on G2 ×G1.

Finally, we need to prove non-degeneracy. By assumption, r2 | (sk − 1) and so, in
the version of Theorem 26.3.13 of Exercise 26.3.14, r | L. It follows that aT (Q,P) = 1.
Hence, as,h(x)(Q,P) = t̂r(Q,P)g2(s). To complete the proof, note that g2(s) = h(s)/r,
and so as,h(x) is non-degenerate if and only if r2 ∤ h(s). �

Hess [283] explains that this construction is “complete” in the sense that every bilinear
map coming from functions in a natural class must correspond to some polynomial h(x).

Hess also proves that any polynomial h(x) =
∑d

i=0 hix
i ∈ Z[x] satisfying the required

conditions is such that
∑d

i=0 |hi| ≥ r1/ϕ(k). Polynomials h(x) that have one coefficient
of size r1/ϕ(k) and all other coefficients small satisfy the optimality conjecture. Good
choices for the polynomial h(x) are found by considering exactly the same lattice as in
equation (26.8) (though in [283] it is written with q replaced by s).

26.4 Reduction of ECDLP to Finite Fields

An early application of pairings in elliptic curve cryptography was to reduce the discrete
logarithm problem in E(Fq)[n], when gcd(n, q) = 1, to the discrete logarithm problem in

584 CHAPTER 26. PAIRINGS ON ELLIPTIC CURVES

the multiplicative group of a finite extension of Fq. Menezes, Okamoto and Vanstone [417]
used the Weil pairing to achieve this, while Frey and Rück [213] used the reduced Tate-
Lichtenbaum pairing. The case gcd(n, q) 6= 1 will be handled in Section 26.4.1.

The basic idea is as follows: Given an instance P , Q = [a]P of the discrete logarithm
problem in E(Fq)[n] and a non-degenerate bilinear pairing e, one finds a point R ∈ E(Fq)
such that z = e(P,R) 6= 1. It follows that e(Q,R) = za in µn ⊆ F∗

qk where k = k(q, n)
is the embedding degree. When q is a prime power that is not prime then there is the
possibility that µr lies in a proper subfield of Fqk , in which case re-define k to be the
smallest positive rational number such that Fqk is the smallest field of characteristic
char(Fq) containing µn.

The point is that if k is sufficiently small then index calculus algorithms in F∗
qk could

be faster than the baby-step-giant-step or Pollard rho algorithms in E(Fq)[n]. Hence,
one has reduced the discrete logarithm problem to a potentially easier problem. The
reduction of the DLP from E(Fq) to a subgroup of F∗

qk is called the MOV/FR attack.

Menezes, Okamoto and Vanstone [417] suggested to use the Weil pairing for the above
idea. In this case, the point R can, in principle, be defined over a large extension of
Fq. Frey and Rück explained that the Tate-Lichtenbaum pairing is a more natural choice,
since it is sufficient to take a suitable point R ∈ E(Fqk) where k = k(q, n) is the embedding
degree. Balasubramanian and Koblitz [26] showed that, in most cases, it is also sufficient
to work in E(Fqk) when using the Weil pairing.

Theorem 26.4.1. Let E be an elliptic curve over Fq and let r be a prime dividing
#E(Fq). Suppose that r ∤ (q− 1) and that gcd(r, q) = 1. Then E[r] ⊂ E(Fqk) if and only
if r divides (qk − 1).

Proof: See [26]. �

Balasubramanian and Koblitz also show that a “random” curve is expected to have
very large embedding degree. Hence, the MOV/FR attack is not a serious threat to the
ECDLP on randomly chosen elliptic curves. However, as noted by Menezes, Okamoto and
Vanstone, supersingular elliptic curves are always potentially vulnerable to the attack.

Theorem 26.4.2. Let E be a supersingular elliptic curve over Fq and suppose r | #E(Fq).
Then the embedding degree k(q, r) is such that k(q, r) ≤ 6.

Proof: See Corollary 9.11.9. �

26.4.1 Anomalous Curves

The discrete logarithm problem on elliptic curves over Fp with p points (such curves are
called anomalous elliptic curves) can be efficiently solved. This was first noticed by
Semaev [537] and generalised to higher genus curves by Rück [506]. We present their
method in this section. An alternative way to view the attack (using p-adic lifting rather
than differentials) was given by Satoh and Araki [512] and Smart [570].

The theoretical tool is an observation of Serre [541].

Lemma 26.4.3. Let P ∈ E(Fp) have order p. Let fP be a function in Fp(E) with
div(fP) = p(P)− p(OE). Then the map

P 7→ dfP
fP

is a well-defined group homomorphism from E(Fp)[p] to ΩFp(E).

26.5. COMPUTATIONAL PROBLEMS 585

Proof: First note that fP is defined up to a constant, and that d(cfP)/(cfP) = dfP /fP .
Hence, the map is well-defined.

Now let Q = [a]P and let fP be as in the statement of the lemma. Then there is a
function g such that

div(g) = (Q)− a(P) + (a− 1)(OE).

One has

div(gpfaP) = pdiv(g) + adiv(fP)

= p(Q)− ap(P) + p(a− 1)(OE) + ap(P)− ap(OE)

= p(Q)− p(OE).

Hence, one can let fQ = gpfaP . Now, using part 4 of Lemma 8.5.17,

dfQ
fQ

=
d(gpfaP)

gpfaP
=
gpdfaP + faPdg

p

gpfaP
.

Part 6 of Lemma 8.5.17 gives dgp = pgp−1dg = 0 (since we are working in Fp) and
dfaP = afa−1

P dfP . Hence,
dfQ
fQ

= a
dfP
fP

,

which proves the result. �

Exercise 26.4.4. Generalise Lemma 26.4.3 to arbitrary curves.

Lemma 26.4.3 therefore maps the DLP in E(Fp)[p] to a DLP in ΩFp(E). It remains
to solve the DLP there.

Lemma 26.4.5. Let the notation be as in Lemma 26.4.3. Let t be a uniformizer at OE.
Write fP = t−p + f1t

−(p−1) + f2t
−(p−2) + · · · . Then

dfP
fP

= (f1 + · · ·)dt.

Proof: Clearly, f−1
P = tp − f1tp+1 + · · · . From part 8 of Lemma 8.5.17 we have

dfP =

(
∂fP
∂t

)
dt = (−pt−p−1 − (p− 1)f1t

−p + · · ·)dt.

Since we are working in Fp, we have dfP = (f1t
−p + · · ·)dt. The result follows. �

Putting together Lemma 26.4.3 and Lemma 26.4.5: if Q = [a]P then dfP /fP =
(f1+ · · ·)dt and dfQ/fQ = (af1+ · · ·)dt. Hence, as long as one can compute the expansion
of dfP /fP with respect to t, then one can solve the DLP. Indeed, this is easy: use Miller’s
algorithm with power series expansions to compute the power series expansion of fP
and follow the above calculations. Rück [506] gives an elegant formulation (for general
curves) that computes only the desired coefficient f1; he calls it the “additive version of
the Tate-Lichtenbaum pairing”.

26.5 Computational Problems

26.5.1 Pairing Inversion

We briefly discuss a computational problem that is required to be hard for many crypto-
graphic applications of pairings.

586 CHAPTER 26. PAIRINGS ON ELLIPTIC CURVES

Definition 26.5.1. Let G1, G2, GT be groups of prime order r and let e : G1×G2 → GT
be a non-degenerate bilinear pairing. The pairing inversion problem is: Given Q ∈
G2, z ∈ GT to compute P ∈ G1 such that e(P,Q) = z.

The bilinear Diffie-Hellman problem was introduced in Definition 23.3.9. In additive
notation it is: Given P,Q, [a]Q, [b]Q to compute e(P,Q)ab.

Lemma 26.5.2. If one has an oracle for pairing inversion then one can solve BDH.

Proof: Given the BDH instance P,Q, [a]Q, [b]Q compute z1 = e(P, [a]Q) and call the
pairing inversion oracle on (Q, z1) to get P ′ such that e(P ′, Q) = z1. It follows that
P ′ = [a]P . One then computes e(P ′, [b]Q) = e(P,Q)ab as required. �

Further discussion of pairing inversion is given by Galbraith, Hess and Vercauteren [222].

Exercise 26.5.3. Show that if one can solve pairing inversion then one can solve the
Diffie-Hellman problem in G1.

Exercise 26.5.4. Show that if one has an oracle for pairing inversion then one can
perform passive selective forgery of signatures in the Boneh-Boyen scheme presented in
Figure 23.3.9.

Exercise 26.5.5. Show that if one has an oracle for pairing inversion then one can solve
the q-SDH problem of Definition 22.2.17.

26.5.2 Solving DDH using Pairings

Pairings can be used to solve the decision Diffie-Hellman (DDH) problem in some cases.
First, we consider a variant of DDH that can sometimes be solved using pairings.

Definition 26.5.6. Let E(Fq) be an elliptic curve and let P,Q ∈ E(Fq) have prime
order r. The co-DDH problem is: Given (P, [a]P,Q, [b]Q) to determine whether or not
a ≡ b (mod r).

Exercise 26.5.7. Show that co-DDH is equivalent to DDH if Q ∈ 〈P 〉.
Suppose now that E[r] ⊆ E(Fq), P 6= OE , and that Q 6∈ 〈P 〉. Then {P,Q} generates

E[r] as a group. By non-degeneracy of the Weil pairing, we have er(P,Q) 6= 1. It follows
that

er([a]P,Q) = er(P,Q)a and er(P, [b]Q) = er(P,Q)b.

Hence, the co-DDH problem can be efficiently solved using the Weil pairing.
The above approach cannot be used to solve DDH, since er(P, P) = 1 by the alternat-

ing property of the Weil pairing. In some special cases, the reduced Tate-Lichtenbaum
pairing satisfies t̂r(P, P) 6= 1 and so can be used to solve DDH in 〈P 〉. In general, however,
DDH cannot be solved by such simple methods.

When E is a supersingular elliptic curve and P 6= OE then, even if t̂r(P, P) = 1,
there always exists an endomorphism ψ : E → E such that t̂r(P, ψ(P)) 6= 1. Such an
endomorphism is called a distortion map; see Section 26.6.1. It follows that DDH is
easy on supersingular elliptic curves.

26.6 Pairing-Friendly Elliptic Curves

The cryptographic protocols given in Sections 22.2.3 and 23.3.2 relied on “pairing groups”.
We now mention the properties needed to have a practical system, and give some popular
examples.

26.6. PAIRING-FRIENDLY ELLIPTIC CURVES 587

For pairing-based cryptography it is desired to have elliptic curves E over Fq such
that:

1. there is a large prime r dividing #E(Fq), with gcd(r, q) = 1;

2. the DLP in E(Fq)[r] is hard;

3. the DLP in F∗
qk is hard, where k = k(q, r) is the embedding degree;

4. computation in E(Fq) and F∗
qk is efficient;

5. elements of E(Fq) and F∗
qk can be represented compactly.

Elliptic curves with these properties are called pairing-friendly curves. Note that the
conditions are incompatible: for the DLP in F∗

qk to be hard it is necessary that qk be large

(say, at least 3000 bits) to resist index calculus attacks like those in Chapter 15, whereas
to represent elements of F∗

qk compactly we would like qk to be small. Luckily, we can use
techniques such as those in Chapter 6 to represent field elements relatively compactly.

There is a large literature on pairing-friendly elliptic curves, culminating in the “tax-
onomy” by Freeman, Scott and Teske [210]. We give two examples below.

Example 26.6.1. For a = 0, 1 define

Ea : y2 + y = x3 + x+ a

over F2. Then Ea is supersingular and #Ea(F2l) = 2l ± 2(l+1)/2 + 1 when l is odd. Some
of these integers have large prime divisors, for example 2241 − 2121 + 1 is prime. The
embedding degree can be shown to be 4 in general; this follows since

(2l + 2(l+1)/2 + 1)(2l − 2(l+1)/2 + 1) = 22l + 1 | (24l − 1).

Example 26.6.2. (Barreto-Naehrig curves [30]) Consider the polynomials

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1 and t(x) = 6x2 + 1 (26.9)

in Z[x]. Note that t(x)2 − 4p(x) = −3(6x2 + 4x + 1)2, that r(x) = p(x) + 1 − t(x) is
irreducible over Q, and that r(x) | (p(x)12 − 1). Suppose x0 ∈ Z is such that p = p(x0) is
prime and r = r(x0) is prime (or is the product of a small integer with a large prime). Then
the embedding degree k(p, r) is a divisor of 12 (and is typically equal to 12). Furthermore,
one can easily construct an elliptic curve E/Fp such that #E(Fp) = r; one of the 6 twists
of y2 = x3 + 1 will suffice. Note that p ≡ 1 (mod 3) and E is an ordinary elliptic curve.

Example 26.6.3. The family of curve parameters in Example 26.6.2 has t ≈ √p and
so the ate pairing is computed in about half the time of the reduced Tate-Lichtenbaum
pairing, as usual. We now demonstrate an optimal pairing with these parameters.

Substituting the polynomials r(x) and p(x) for the values r and q in the matrix
of equation (26.8) gives a lattice. Lattice reduction over Z[x] yields the short vector
(M0,M1,M2,M3) = (6x+2, 1,−1, 1). It is easy to verify that 6x+2+p(x)−p(x)2+p(x)3 ≡
0 (mod r(x)).

Now f1,Q = 1 and f−1,Q = vQ (and so both can be omitted in pairing computation,
by Exercise 26.3.12). The ate pairing can be computed as f6x+2,Q(P) multiplied with
three straight line functions, and followed by the final exponentiation; see Section IV
of [618]. The point is that Miller’s algorithm now runs for approximately one quarter of
the iterations as when computing the Tate-Lichtenbaum pairing.

588 CHAPTER 26. PAIRINGS ON ELLIPTIC CURVES

26.6.1 Distortion Maps

As noted, when t̂r(P, P) = 1 one can try to find an endomorphism ψ : E → E such that
t̂r(P, ψ(P)) 6= 1.

Definition 26.6.4. Let E be an elliptic curve over Fq, let r | #E(Fq) be prime, let
e : E[r] × E[r] → µr be a non-degenerate and bilinear pairing, and let P ∈ E(Fq)[r].
A distortion map with respect to E, r, e and P is an endomorphism ψ such that
e(P, ψ(P)) 6= 1.

Verheul (Theorem 5 of [620]) shows that if E is a supersingular elliptic curve then,
for any point P ∈ E(Fqk) − {OE}, a distortion map exists. In particular, when P ∈
E(Fq)[r] − {OE} and k > 1 then there is an endomorphism ψ (necessarily not defined
over Fq) such that t̂(P, ψ(P)) 6= 1. Since P is defined over the small field, we have
a compact representation for all elliptic curve points in the cryptosystem, as well as
efficiency gains in Miller’s algorithm. For this reason, pairings on supersingular curves
are often the fastest choice for certain applications.

Example 26.6.5. Consider again the elliptic curves from Example 26.6.1. An automor-
phism on Ea is ψ(x, y) = (x+ s2, y+ sx+ t) where s ∈ F22 and t ∈ F24 satisfy s2 = s+ 1
and t2 = t + s. One can represent F24m using the basis {1, s, t, st}. It is clear that if
P ∈ Ea(F2l) where l is odd then ψ(P) ∈ Ea(F24l) and ψ(P) 6∈ Ea(F22l), and so ψ is a
distortion map for P .

Exercise 26.6.6. Let E be an elliptic curve over Fq and let r | #E(Fq) be prime. Let
k = k(q, r) > 1 be the embedding degree. For any point P ∈ E(Fqk) define the trace map

Tr(P) =
∑

σ∈Gal(F
qk
/Fq)

σ(P).

Show that Tr(P) ∈ E(Fq). Now, suppose P ∈ E[r], P 6∈ E(Fq) and Tr(P) 6= OE . Show
that {P,Tr(P)} generates E[r]. Deduce that the trace map is a distortion map with
respect to E, r, er and P .

Exercise 26.6.7. Let notation be as in Exercise 26.6.6. Show that if Q ∈ E[r]∩ker(πq−
[1]) then Tr(Q) = [k]Q. Show that if Q ∈ E[r] ∩ ker(πq − [q]) then Tr(Q) = OE .
Hence, deduce that the trace map is not a distortion map for the groups G1 or G2 of
equation (26.3).

26.6.2 Using Twists to Improve Pairing-Based Cryptography

There are significant advantages from using twists in pairing-based cryptography when
using ordinary elliptic curves. Suppose we are using the ate pairing or some other opti-
mal pairing and are working with the subgroups G1, G2 ⊂ E(Fqk), which are Frobenius

eigenspaces. Then G1 ⊂ E(Fq) and it can be shown that G2 ⊂ E′(Fk/dq) where E′ is a
twist of E and d = #Aut(E). For the elliptic curve in Example 26.6.2 one can represent
the p-eigenspace of Frobenius in E(Fp12) as a subgroup of E′(Fp2) for a suitable twist of
E (this is because #Aut(E) = 6). For details we refer to [30, 284].

There are at least two advantages to this method. First, elements in the group G2

of the pairing have a compressed representation. Second, the ate pairing computation is
made much more efficient by working with Miller functions on the twisted curve E′. We
do not present any further details.

Appendix A

Background Mathematics

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

For convenience, we summarise some notation, conventions, definitions and results
that will be used in the book. This chapter is for reference only.

A.1 Basic Notation

We write R for the real numbers and define R≥0 = {x ∈ R : x ≥ 0} and similarly for
R>0. We write Z for the integers and N = Z>0 = {n ∈ Z : n > 0} = {1, 2, 3, . . .} for the
natural numbers.

We write #S for the number of elements of a finite set S. If S, T are sets we write
S − T for the set difference {s ∈ S : s 6∈ T }. We denote the empty set by ∅.

We write Z/nZ for the ring of integers modulo n (many authors write Zn). When n is
a prime and we are using the field structure of Z/nZ we prefer to write Fn. The statement
a ≡ b (mod n) means that n | (a − b). We follow a common mis-use of this notation by
writing b (mod n) for the integer a ∈ {0, 1, . . . , n − 1} such that a ≡ b (mod n). Hence,
the statement a = b (mod n) is an assignment of a to the value of the operator b (mod n)
and should not be confused with the predicate a ≡ b (mod n).

The word map f : X → Y means a function on some subset of X . In other words a
map is not necessarily defined everywhere. Usually the word function implicitly means
“defined everywhere on X”, though this usage does not apply in algebraic geometry where
a rational function is actually a rational map. If f : X → Y is a map and U ⊂ X then
we write f |U for the restriction of f to U , which is a map f |U : U → Y .

If P = (xP , yP) is a point and f is a function on points then we write f(xP , yP)
rather than f((xP , yP)) for f(P). We write f ◦ g for composition of functions (i.e.,
(f ◦g)(x) = f(g(x))); the notation fg will always mean product (i.e., fg(P) = f(P)g(P)).
The notation fn usually means exponentiating the value of the function f to the power
n, except when f is an endomorphism of an elliptic curve (or Abelian variety), in which

589

590 APPENDIX A. BACKGROUND MATHEMATICS

context it is standard to write fn for n-fold composition. Hence, we prefer to write f(P)n

than fn(P) when denoting powering (and so we write log(x)n rather than logn(x)).

A.2 Groups

Let G be a group and g ∈ G. The subgroup generated by g is 〈g〉 = {ga : a ∈ Z}.
The order of the element g is the number of elements in the group 〈g〉. The exponent
of a finite group is the smallest positive integer n such that gn = 1 for all g ∈ G.

Let G be a finite Abelian group. The classification of finite Abelian groups (see
Theorem II.2.1 of [301] or Section I.8 of [367]) states that G is isomorphic to a direct sum
of cyclic groups of orders m1,m2, . . . ,mt such that m1 | m2 | · · · | mt.

A.3 Rings

All rings in this book have a multiplicative identity 1. For any ring R, the smallest positive
integer n such that n1 = 0 is called the characteristic of the ring and is denoted char(R).
If there is no such n then we define char(R) = 0.

If R is a ring and n ∈ N then we write Mn(R) for the ring of n × n matrices with
entries in R.

If R is a ring then R∗ is the multiplicative group of invertible elements of R. The
Euler phi function ϕ(n) is the order of (Z/nZ)∗. One has

ϕ(n) = n
∏

p|n

(
1− 1

p

)
.

Theorem A.3.1. There exists N ∈ N such that ϕ(n) > n/(3 log(log(n))) for all n ∈
N>N .

Proof: Theorem 328 of [276] states that

lim inf
n→∞

ϕ(n) log(log(n))

n
= e−γ

where γ ≈ 0.57721566 is the Euler-Mascheroni constant. Since e−γ ≈ 0.56 > 1/3 the
result follows from the definition of lim inf. �

An element a ∈ R is irreducible if a 6∈ R∗ and a = bc for b, c ∈ R implies b ∈ R∗ or
c ∈ R∗. We write a | b for a, b ∈ R if there exists c ∈ R such that b = ac. An element
a ∈ R is prime if a | bc implies a | b or a | c.

An integral domain R is a unique factorisation domain (UFD) if each a ∈ R can be
written uniquely (up to ordering and multiplication by units) as a product of irreducibles.
In a UFD an element is prime if and only if it is irreducible.

A.4 Modules

Let R be a ring. An R-module M is an Abelian group, written additively, with an
operation rm for r ∈ R and m ∈M , such that (r1 +r2)m = r1m+r2m and r(m1 +m2) =
rm1 + rm2. An R-module M is finitely generated if there is a set {m1, . . . ,mk} ⊂M
such that M = {∑k

i=1 rimi : ri ∈ R}.

A.5. POLYNOMIALS 591

A finitely generated R-module M is a free module if there is a set {m1, . . . ,mk}
that generates M and is such that 0 =

∑k
i=1 rimi if and only if ri = 0 for all 1 ≤ i ≤ k.

Such an R-module is said to have rank k.
Let R be a commutative ring, M an R-module and k a field containing R. Consider

the set of all symbols of the form m ⊗ a where m ∈ M , a ∈ k under the equivalence
relation rm ⊗ a ≡ m ⊗ ra for r ∈ R, (m1 + m2) ⊗ a = (m1 ⊗ a) + (m1 ⊗ a) and
m ⊗ (a1 + a2) = (m ⊗ a1) + (m ⊗ a2). The tensor product M ⊗R k is the set of all
equivalence classes of such symbols. If M is a finitely generated free R-module with
generating set {m1, . . . ,mk} then M ⊗R k is a k-vector space of dimension k with basis
{m1 ⊗ 1, . . . ,mk ⊗ 1}.

A.5 Polynomials

Let R be a commutative ring. Denote by R[x] = R[x1, . . . , xn] the set of polynomi-
als over R in n variables. We write degxi(F (x1, . . . , xn)) to be the degree as a poly-
nomial in xi with coefficients in R[x1, . . . , xi−1, xi+1, . . . , xn]. For polynomials F (x) ∈
R[x] we write deg(F (x)) for degx(F (x)). The total degree of a polynomial F (x) =∑l

i=1 Fix
mi,1
1 · · ·xmi,nn (with Fi 6= 0) is deg(F) = max1≤i≤l

∑n
j=1mi,j .

Let R be a commutative ring with a unit 1. A degree d polynomial in R[x] is monic
if the coefficient of xd is 1.

A polynomial F (x) ∈ R[x] is divisible by G(x) ∈ R[x] if there exists a polynomial
H(x) ∈ R[x] such that F (x) = G(x)H(x). A polynomial F (x) ∈ R[x] is irreducible over
R (also called R-irreducible) if whenever F (x) = G(x)H(x) with G(x), H(x) ∈ R[x] then
either G or H is a constant polynomial.

There are various ways to show that a polynomial is irreducible. Eisenstein’s cri-
teria states that F (x) =

∑n
i=0 Fix

i ∈ R[x], where R is a UFD, is irreducible if there is a
prime p in R such that p ∤ Fn, p | Fi for 0 ≤ i < n, and p2 ∤ F0. We refer to Proposition
III.1.14 of [589], Theorem IV.3.1 of [367] or Theorem III.6.15 of [301] for proofs.

If k is a field then the polynomial ring k[x1, . . . , xn] is a UFD (Theorem III.6.14 of
[301]). Let F (x) ∈ k[x] be a polynomial in one variable of degree d. Then either F = 0
or else F (x) has at most d roots in k.

Lemma A.5.1. Let Nd,q be the number of monic irreducible polynomials of degree d in
Fq[x]. Then qd/2d ≤ Nd,q ≤ qd/d.

Proof: See Theorem 20.11 of [556] or Exercise 3.27 of [388]. A more precise result is
given in Theorem 15.5.12. �

Let F (x) ∈ k[x]. One can define the derivative F ′(x) by using the rule (Fnx
n)′ =

nFnx
n−1 for n ≥ 0 for each monomial. This is a formal algebraic operation and does not

require an interpretation in terms of calculus.

Lemma A.5.2. Let F1(x), F2(x) ∈ k[x]. Then

1. (F1(x) + F2(x))′ = F ′
1(x) + F ′

2(x).

2. (F1(x)F2(x))′ = F1(x)F ′
2(x) + F2(x)F ′

1(x).

3. (F1(F2(x))′ = F ′
1(F2(x))F ′

2(x)

4. If char(k) = p then F ′(x) = 0 if and only F (x) = G(x)p for some G(x) ∈ k[x].

Similarly, the notation ∂F/∂xi is used for polynomials F (x) ∈ k[x] and an analogue
of Lemma A.5.2 holds.

592 APPENDIX A. BACKGROUND MATHEMATICS

A.5.1 Homogeneous Polynomials

Definition A.5.3. A non-zero polynomial F (x) ∈ k[x] is homogeneous of degree d if
all its monomials have degree d, i.e.,

F (x0, . . . , xn) =
∑

i0,i1,...,in∈Z≥0

i0+i1+···in=d

Fi0,i1,...,inx
i0
0 x

i1
1 · · ·xinn .

Any polynomial F (x) ∈ k[x0, . . . , xn] can be written as a homogeneous decompo-
sition

∑m
i=0 Fi(x) for some m ∈ N where Fi(x) is a homogeneous polynomial of degree i;

see Section II.3 of [367].

Lemma A.5.4. Let R be an integral domain.

1. If F (x) ∈ R[x0, . . . , xn] is homogeneous and λ ∈ R then F (λx0, . . . , λxn) = λdF (x0, . . . , xn).

2. If F1, F2 ∈ R[x0, . . . , xn] are non-zero and homogeneous of degrees r and s respec-
tively then F1(x)F2(x) is homogeneous of degree r + s.

3. Let F1, F2 ∈ R[x0, . . . , xn] be non-zero. If F1(x)F2(x) is homogeneous then F1(x)
and F2(x) are both homogeneous.

Proof: See Exercise 1-1 (page 6) of Fulton [216]. �

A.5.2 Resultants

Let R be a commutative integral domain. Let F (x) = Fnx
n + Fn−1x

n−1 + · · ·+ F0 and
G(x) = Gmx

m+Gn−1x
n−1+· · ·+G0 be two polynomials over R with F0, Fn, G0, Gm 6= 0.

The polynomials F, xF, . . . , xm−1F,G, xG, . . . , xn−1G can be written as n+m linear com-
binations of the n+m variables 1, x, . . . , xn+m−1 and so the variable x may be eliminated
to compute the resultant (there should be no confusion between the use of the symbol
R for both the ring and the resultant)

R(F,G) = Rx(F,G) = det

F0 F1 · · · Fn 0 0 · · · 0
0 F0 · · · Fn−1 Fn 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 0 · · · 0 F0 F1 · · · Fn
G0 · · · Gm 0 · · · · · · · · · 0
0 G0 · · · Gm 0 · · · · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

...
0 0 · · · 0 0 G0 · · · Gm

.

Theorem A.5.5. Let k be a field and F (x), G(x) ∈ k[x]. Write F (x) =
∑n
i=0 Fix

i and
G(x) =

∑m
i=0Gix

i. Suppose F0G0 6= 0. Then R(F (x), G(x)) = 0 if and only if F (x) and
G(x) have a common root in k.

Proof: See Proposition IV.8.1 and Corollary IV.8.4 of Lang [367] or Proposition 3.5.8 of
Cox, Little and O’Shea [158]. �

Theorem A.5.5 is generalised to polynomials in R[x] where R is a UFD in Lemma 2.6
on page 41 of Lorenzini [394]. Section IV.2.7 of [394] also describes the relation between
R(F,G) and the norm of G(α) in the number ring generated by a root α of F (x).

If F (x, y), G(x, y) ∈ Z[x, y] then write Rx(F,G) ∈ Z[y] for the resultant, which is a
polynomial in y, obtained by treating F and G as polynomials in x over the ring R = Z[y].
If F and G have total degree d in x and y then the degree in y of Rx(F,G) is O(d2).

A.6. FIELD EXTENSIONS 593

A.6 Field Extensions

General references for fields and their extensions are Chapter II of Artin [14], Chapter V
of Hungerford [301] or Chapter V of Lang [367].

Let k be a field. An extension of k is any field k′ such that k ⊆ k′, in which case
we write k′/k. Then k′ is a vector space over k. If this vector space has finite dimension
then the degree of k′/k, denoted [k′ : k], is the vector space dimension of k′ over k.

An element θ ∈ k′ is algebraic over k if there is some polynomial F (x) ∈ k[x] such
that F (θ) = 0. An extension k′ of k is algebraic if every θ ∈ k′ is algebraic over k. If
k′/k is algebraic and k ⊆ k′′ ⊆ k′ then k′′/k and k′/k′′ are algebraic. Similarly, if k′/k is
finite then [k′ : k] = [k′ : k′′][k′′ : k].

Lemma A.6.1. Let k be a field. Every finite extension of k is algebraic.

Proof: See Theorem 4 of Section II.3 of [640], Proposition V.1.1 of [367], or Theorem
V.1.11 of [301]. �

The compositum of two fields k and k′ is the smallest field that contains both of
them. We define k(θ) = {a(θ)/b(θ) : a(x), b(x) ∈ k[x], b(θ) 6= 0} for any element θ. This
is the smallest field that contains k and θ. For example, θ may be algebraic over k (e.g.,
k(
√
−1)) or transcendental (e.g., k(x)). More generally, k(θ1, . . . , θn) = k(θ1)(θ2) · · · (θn)

is the field generated over k by θ1, . . . , θn. A field extension k′/k is finitely generated
if k′ = k(θ1, . . . , θn) for some θ1, . . . , θn ∈ k′.

Theorem A.6.2. Let k be a field. Suppose K is field that is finitely generated as a ring
over k. Then K is an algebraic extension of k.

Proof: See pages 31-33 of Fulton [216]. �

An algebraic closure of a field k is a field k such that every non-constant polynomial
in k[x] has a root in k. For details see Section V.2 of [367]. We always assume that there
is a fixed algebraic closure of k and we assume that every algebraic extension k′/k is
chosen such that k′ ⊂ k and that k′ = k. Since the main case of interest is k = Fq this
assumption is quite natural.

We recall the notions of separable and purely inseparable extensions (see Sections
V.4 and V.6 of Lang [367], Section V.6 of Hungerford [301] or Sections A.7 and A.8 of
Stichtenoth [589]). An element α, algebraic over a field k, is separable (respectively,
purely inseparable) if the minimal polynomial of α over k has distinct roots (respec-
tively, one root) in k. Hence, α is separable over k if its minimal polynomial has non-zero
derivative. If char(k) = p then α is purely inseparable if the minimal polynomial of α is
of the form xp

m − a for some a ∈ k.
Let k′/k be a finite extension of fields and let α ∈ k′. One can define the norm

and trace of α in terms of the matrix representation of multiplication by α as a linear
map on the vector space k′/k (see Section A.14 of [589] or Section IV.2 of [394]). When
k′/k is separable then an equivalent definition is to let σi : k′ → k be the n = [k′ : k]
distinct embeddings (i.e., injective field homomorphisms), then the norm of α ∈ k′ is
Nk′/k(α) =

∏n
i=1 σi(α) and the trace is Trk′/k(α) =

∑n
i=1 σi(α).

An element x ∈ K is transcendental over k if x is not algebraic over k. Unless there
is an implicit algebraic relation between x1, . . . , xn we write k(x1, . . . , xn) to mean the
field k(x1)(x2) · · · (xn) where each xi is transcendental over k(x1, . . . , xi−1).

Definition A.6.3. Let K be a finitely generated field extension of k. The transcen-
dence degree of K/k, denoted trdeg(K/k), is the smallest integer n such that there are
x1, . . . , xn ∈ K with K algebraic over k(x1, . . . , xn) (by definition xi is transcendental
over k(x1, . . . , xi−1)). Such a set {x1, . . . , xn} is called a transcendence basis for K/k.

594 APPENDIX A. BACKGROUND MATHEMATICS

Theorem A.6.4. Let K/k be a finitely generated field extension. Then the transcendence
degree is well-defined (i.e., all transcendence bases have the same number of elements).

Proof: See Theorem 25 of Section II.12 of [640], Theorem VI.1.8 of [301] or Theorem
1.6.13 of [635]. �

Theorem A.6.5. Let K/k and F/K be finitely generated field extensions. Then trdeg(F/k) =
trdeg(F/K) + trdeg(K/k).

Proof: See Theorem 26 of Section II.12 of [640]. �

Corollary A.6.6. Let K/k be finitely generated with transcendence degree 1 and let
x ∈ K be transcendental over k. Then K is a finite algebraic extension of k(x).

A perfect field is one for which every algebraic extension is separable. A convenient
equivalent definition is that a field k of characteristic p is perfect if {xp : x ∈ k} = k
(see Section V.6 of Lang [367]). We restrict to perfect fields for a number of reasons, one
of which is that the primitive element theorem does not hold for non-perfect fields, and
another is due to issues with fields of definition (see Remark 5.3.7). Finite fields, fields of
characteristic 0, and algebraic closures of finite fields are perfect (see Exercise V.7.13 of
[301] or Section V.6 of [367]).

Theorem A.6.7. (Primitive element theorem) Let k be a perfect field. If k′/k is a
finite, separable extension then there is some α ∈ k′ such that k′ = k(α).

Proof: Theorem V.6.15 of [301], Theorem 27 of [14], Theorem V.4.6 of [367]. �

A.7 Galois Theory

For an introduction to Galois theory see Chapter V of Hungerford [301], Chapter 6 of
Lang [367] or Stewart [585]. An algebraic extension k′/k is Galois if it is normal (i.e.,
every irreducible polynomial F (x) ∈ k[x] with a root in k′ splits completely over k′) and
separable. The Galois group of k′/k is

Gal(k′/k) = {σ : k′ → k′ : σ is a field automorphism, and σ(x) = x for all x ∈ k}.

Theorem A.7.1. Let k′/k be a finite Galois extension. Then there is a one-to-one
correspondence between the set of subfields {k′′ : k ⊆ k′′ ⊆ k′} and the set of normal
subgroups H of Gal(k′/k), via

k′′ = {x ∈ k′ : σ(x) = x for all σ ∈ H}.

Proof: See Theorem V.2.5 of [301]. �

If k is a perfect field then k is a separable extension and hence a Galois extension of
k. If k′ is any algebraic extension of k (not necessarily Galois) then k/k′ is Galois. The
Galois group Gal(k/k) can be defined using the notion of an inverse limit (see Chapter 5
of [124]). Topological aspects of Gal(k/k) are important, but we do not discuss them.

A.7.1 Galois Cohomology

One finds brief summaries of Galois cohomology in Appendix B of Silverman [564] and
Chapter 19 of Cassels [122]. More detailed references are Serre [542] and Cassels and
Frölich [124].

A.8. FINITE FIELDS 595

Let K/k be Galois (we include K = k). Let G = Gal(K/k). Unlike most references
we write our Galois groups acting on the left (i.e., as σ(f) rather than fσ). A 1-cocyle in
the additive group K is a function1 ξ : G → K such that ξ(στ) = σ(ξ(τ)) + ξ(σ). A 1-
coboundary in K is the function ξ(σ) = σ(γ)−γ for some γ ∈ K. The group of 1-cocycles
modulo 1-coboundaries (the group operation is addition (ξ1 + ξ2)(τ) = ξ1(τ) + ξ2(τ)) is
denoted H1(G,K). Similarly, for the multiplicative group K∗, a 1-cocyle satisfies ξ(στ) =
σ(ξ(τ))ξ(σ), a 1-coboundary is σ(γ)/γ and the quotient group is denoted H1(G,K∗).

Theorem A.7.2. Let K/k be Galois. Then H1(Gal(K/k),K) = {0} and (Hilbert 90)
H1(Gal(K/k),K∗) = {1} (i.e., both groups are trivial).

Proof: The case of finite extensions K/k is given in Exercise 20.5 of Cassels [122] or
Propositions 1 and 2 of Chapter 10 of [542]. For a proof in the infinite case see Propositions
2 and 3 (Sections 2.6 and 2.7) of Chapter 5 of [124]. �

A.8 Finite Fields

Let p be a prime. Denote by Fp = Z/pZ the finite field of p elements. The multiplicative
group of non-zero elements is F∗

p. Recall that F∗
p is a cyclic group. A generator for F∗

q is
called a primitive root. The number of primitive roots in F∗

q is ϕ(q − 1).

Theorem A.8.1. Let p be a prime and m ∈ N. Then there exists a field Fpm having
pm elements. All such fields are isomorphic. Every finite field can be represented as
Fp[x]/(F (x)) where F (x) ∈ Fp[x] is a monic irreducible polynomial of degree m; the cor-
responding vector space basis {1, x, . . . , xm−1} for Fpm/Fp is called a polynomial basis.

Proof: See Corollary V.5.7 of [301] or Section 20.2 of [556]. �

If p is a prime and q = pm then Fpnm may be viewed as a degree n algebraic extension
of Fq.

Theorem A.8.2. Every finite field Fpm has a vector space basis over Fp of the form

{θ, θp, . . . , θpm−1}; this is called a normal basis.

Proof: See Theorem 2.35 or Theorem 3.73 of [388, 389] or Exercise 20.14 of [556] (the
latter proof works for extensions of Fp, but not for all fields). �

We discuss methods to construct a normal basis in Section 2.14.1.

Theorem A.8.3. Let q be a prime power and m ∈ N. Then Fqm is an algebraic extension
of Fq that is Galois. The Galois group is cyclic of order m and generated by the q-power
Frobenius automorphism π : x 7→ xq.

Let α ∈ Fqm . The trace and norm with respect to Fqm/Fq are

TrFqm/Fq(α) =
m−1∑

i=0

αq
i

and NFqm/Fq (α) =
m−1∏

i=0

αq
i

.

The characteristic polynomial over Fq of α ∈ Fqm is F (x) =
∏m−1
i=0 (x − αqi) ∈ Fq[x].

The trace and norm of α ∈ Fqm are (up to sign) the coefficients of xm−1 and x0 in the
characteristic polynomial.

An element α ∈ Fq is a square or quadratic residue if the equation x2 = α has a
solution x ∈ Fq. If g is a primitive root for Fq then ga is a square if and only if a is even.
Hence α is a square in F∗

q if and only if α(q−1)/2 = 1.

1It is also necessary that ξ satisfy some topological requirements, but we do not explain these here.

596 APPENDIX A. BACKGROUND MATHEMATICS

Lemma A.8.4. Let g ∈ Fqm , where m > 1, be chosen uniformly at random. The
probability that g lies in a proper subfield K ⊂ Fqm such that Fq ⊆ K is at most 1/q.

Proof: If m = 2 then the probability is q/q2 = 1/q so the result is tight in this case.
When m = li is a power of a prime l ≥ 2 then all proper subfields of Fqm that contain Fq
are contained in Fqli−1 so the probability is ql

i−1

/ql
i

= 1/ql
i−1(l−1) ≤ 1/q. Finally, write

m = nli where l ≥ 2 is prime, i ≥ 1, n ≥ 2 and gcd(n, l) = 1. Then every proper subfield
containing Fq lies in Fqli or Fqnli−1 . The probability that a random element lies in either
of these fields is

≤ qli/qnli + qnl
i−1

/qnl
i

= 1/ql
i(n−1) + 1/qnl

i−1(l−1) ≤ 1/q2 + 1/q2 ≤ 1/q.

�

A.9 Ideals

If R is a commutative ring then an R-ideal is a subset I ⊂ R that is an additive group
and is such that for all a ∈ I and r ∈ R then ar ∈ I. An R-ideal I is proper if I 6= R
and is non-trivial if I 6= {0}. A principal ideal is (a) = {ar : r ∈ R} for some a ∈ R. If
S ⊂ R then (S) is the R-ideal {∑n

i=1 siri : n ∈ N, si ∈ S, ri ∈ R}. An ideal I is finitely
generated if I = (S) for a finite subset S ⊂ R. The radical of an ideal I in a ring R is
radR(I) = {r ∈ R : rn ∈ I for some n ∈ N} (see Definition VIII.2.5 and Theorem VIII.2.6
of Hungerford [301]). If I1 and I2 are ideals of R then

I1I2 =

{
n∑

i=1

aibi : n ∈ N, ai ∈ I1, bi ∈ I2
}
.

Note that I1I2 ⊆ I1 ∩ I2. For a, b ∈ R one has (ab) = (a)(b).
Let I1, . . . , In be ideals in a ring R such that the ideal (Ii∪Ij) = R for all 1 ≤ i < j ≤ n

(we call such ideals pairwise-coprime). If a1, . . . , an ∈ R then there exists an element
a ∈ R such that a ≡ ai (mod Ii) (in other words, a − ai ∈ Ii) for all 1 ≤ i ≤ n. This is
the Chinese remainder theorem for rings; see Theorem III.2.25 of [301] or Theorem
II.2.1 of [367].

The following result gives three equivalent conditions for an ideal to be prime.

Lemma A.9.1. Let I be an ideal of R. The following conditions are equivalent and, if
they hold, I is called a prime ideal.

1. If a, b ∈ R are such that ab ∈ I then a ∈ I or b ∈ I.
2. R/I is an integral domain (i.e., has no zero divisors).

3. If I1 and I2 are ideals of R such that I1I2 ⊆ I then I1 ⊆ I or I2 ⊆ I.

If F (x) ∈ k[x] is irreducible then the k[x]-ideal (F (x)) = {F (x)G(x) : G(x) ∈ k[x]} is
a prime ideal.

An R-ideal I is maximal if every R-ideal J such that I ⊆ J ⊆ R is such that either
J = I or J = R.

Lemma A.9.2. An R-ideal I is maximal if and only if R/I is a field (hence, a maximal
R-ideal is prime). If I is a maximal R-ideal and S ⊂ R is a subring then I ∩S is a prime
S-ideal.

A.10. VECTOR SPACES AND LINEAR ALGEBRA 597

Proof: For the first statement see Theorem III.2.20 of [301] or Section II.2 of [367].
The second statement is proved as follows: Let I be maximal and consider the injection
S → R inducing S → R/I with kernel J = S ∩ I. Then S/J → R/I is is an injective ring
homomorphism into a field, so J is a prime S-ideal. �

Let R be a commutative ring. A sequence I1 ⊂ I2 ⊂ · · · of R-ideals is called an
ascending chain. A commutative ring R is Noetherian if every ascending chain of
R-ideals is finite. Equivalently, a ring is Noetherian if every ideal is finitely generated.
For more details see Section VIII.1 of [301] or Section X.1 of [367].

Theorem A.9.3. (Hilbert basis theorem) If R is a Noetherian ring then R[x] is a Noethe-
rian ring.

Proof: See Theorem 1 page 13 of [216], Theorem VIII.4.9 of [301] Section IV.4 of [367],
or Theorem 7.5 of [15]. �

Corollary A.9.4. k[x1, . . . , xn] is Noetherian.

A multiplicative subset of a ring R is a set S such that 1 ∈ S, s1, s2 ∈ S ⇒ s1s2 ∈ S.
The localisation of a ring R with respect to a multiplicative subset S is the set

S−1R = {r/s : r ∈ R, s ∈ S}

with the equivalence relation r1/s1 ≡ r2/s2 if r1s2 − r2s1 = 0. For more details see
Chapter 3 of [15], Section 1.3 of [542], Section I.1 of [365], Section II.4 of [367] or Section
III.4 of [301]. In the case S = R∗ we call S−1R the field of fractions of R. If p is a
prime ideal of R then S = R − p is a multiplicative subset and the localisation S−1R is
denote Rp.

Lemma A.9.5. If R is Noetherian and S is a multiplicative subset of R then the locali-
sation S−1R is Noetherian.

Proof: See Proposition 7.3 of [15] or Proposition 1.6 of Section X.1 of [367]. �

A ring R is local if it has a unique maximal ideal. If m is a maximal idea of a ring R
then the localisation Rm is a local ring. It follows that Rm is Noetherian.

A.10 Vector Spaces and Linear Algebra

The results of this section are mainly used when we discuss lattices in Chapter 16. A
good basic reference is Curtis [163].

Let k be a field. We write vectors in kn as row vectors. We interchangeably use the
words points and vectors for elements of kn. The zero vector is 0 = (0, . . . , 0). For
1 ≤ i ≤ n the i-th unit vector is ei = (ei,1, . . . , ei,n) such that ei,i = 1 and ei,j = 0 for
1 ≤ j ≤ n and j 6= i.

A linear map is a function A : kn → km such that A(λx + µy) = λA(x) + µA(y)
for all λ, µ ∈ k and x, y ∈ kn. Given a basis for kn any linear map can be represented
as an n × m matrix A, such that A(x) = xA. We denote the entries of A by Ai,j for
1 ≤ i ≤ n, 1 ≤ j ≤ m. Denote by In the n× n identity matrix. We denote by AT the
transpose, which is an m×n matrix such that (AT)i,j = Aj,i. We have (AB)T = BTAT .

A fundamental computational problem is to solve the linear system of equations xA =
y and it is well known that this can be done using Gaussian elimination (see Section 6 of
Curtis [163] or Chapter 3 of Schrijver [531]).

The rank of an m × n matrix A (denoted rank(A)) is the maximum number of lin-
early independent rows of A (equivalently, the maximum number of linearly independent

598 APPENDIX A. BACKGROUND MATHEMATICS

columns). If A is an n× n matrix then the inverse of A, if it exists, is the matrix such
that AA−1 = A−1A = In. If A and B are invertible then (AB)−1 = B−1A−1. One can
compute A−1 using Gaussian elimination.

A.10.1 Inner Products and Norms

Definition A.10.1. The inner product of two vectors v = (v1, . . . , vn) and w =
(w1, . . . , wn) ∈ kn is

〈v, w〉 =

n∑

i=1

viwi.

The Euclidean norm or ℓ2-norm of a vector v ∈ Rn is

‖v‖ =
√
〈v, v〉.

More generally for Rn one can define the ℓa-norm of a vector v for any a ∈ N as

‖v‖a = (
∑n

i=1 |vi|a)
1/a

. Important special cases are the ℓ1-norm ‖vi‖ =
∑n

i=1 |vi| and
the ℓ∞-norm ‖v‖∞ = max{|v1|, . . . , |vn|}. (The reader should not confuse the notion of
norm in Galois theory with the notion of norm on vector spaces.)

Lemma A.10.2. Let v ∈ Rn. Then

‖v‖∞ ≤ ‖v‖2 ≤
√
n‖v‖∞ and ‖v‖∞ ≤ ‖v‖1 ≤ n‖v‖∞.

Lemma A.10.3. Let v, w ∈ Rn and let ‖v‖ be the Euclidean norm.

1. ‖v + w‖ ≤ ‖v‖+ ‖w‖.

2. 〈v, w〉 = 〈w, v〉.

3. ‖v‖ = 0 implies v = 0.

4. |〈v, w〉| ≤ ‖v‖‖w‖.

5. Let A be an n× n matrix over R. The following are equivalent:

(a) ‖xA‖ = ‖x‖ for all x ∈ Rn;

(b) 〈xA, yA〉 = 〈x, y〉 for all x, y ∈ Rn;

(c) AAT = In (which implies det(A)2 = 1).

Such a matrix is called an orthogonal matrix.

Definition A.10.4. A basis {v1, . . . , vn} for a vector space is orthogonal if

〈vi, vj〉 = 0

for all 1 ≤ i < j ≤ n. If we also have the condition 〈vi, vi〉 = 1 then the basis is called
orthonormal.

Lemma A.10.5. Let {v1, . . . , vn} be an orthogonal basis for Rn. If v =
∑n
j=1 λjvj then

‖v‖2 =
∑n

j=1 λ
2
j‖vj‖2.

A.10. VECTOR SPACES AND LINEAR ALGEBRA 599

If one has an orthogonal basis {v1, . . . , vn} then it is extremely easy to decompose an
arbitrary vector w over the basis. The representation is

w =

n∑

i=1

〈w, vi〉
〈vi, vi〉

vi.

This is simpler and faster than solving the linear system using Gaussian elimination.
If V ⊆ Rn is a subspace then the orthogonal complement is V ⊥ = {w ∈ Rn :

〈w, v〉 = 0 for all v ∈ V }. The dimension of V ⊥ is n−dim(V). Given a basis {v1, . . . , vm}
for V (where m = dim(V) < n) one can compute a basis {vm+1, . . . , vn} for V ⊥. The
orthogonal projection of Rn to a subspace V is a linear map P : Rn → V that is
the identity on V and is such that P (V ⊥) = {0}. In other words, if v ∈ Rn then
v − P (v) ∈ V ⊥.

A.10.2 Gram-Schmidt Orthogonalisation

Given a basis v1, . . . , vn for a vector space, the Gram-Schmidt algorithm iteratively com-
putes an orthogonal basis v∗1, . . . , v

∗
n (called the Gram-Schmidt orthogonalisation or

GSO). The idea is to set v∗1 = v1 and then, for 2 ≤ i ≤ n, to compute

v∗i = vi −
i−1∑

j=1

µi,jv
∗
j where µi,j =

〈vi, v∗j 〉
〈v∗j , v∗j 〉

.

We discuss this algorithm further in Section 17.3.

A.10.3 Determinants

Let b1, . . . , bn be n vectors in kn. One can define the determinant of the sequence
b1, . . . , bn (or of the matrix B whose rows are b1, . . . , bn) in the usual way (see Chapter 5
of Curtis [163] or Section VII.3 of Hungerford [301]).

Lemma A.10.6. Let b1, . . . , bn ∈ kn.

1. Let B be the matrix whose rows are b1, . . . , bn. Then B is invertible if and only if
det(b1, . . . , bn) 6= 0.

2. For λ ∈ k, det(b1, . . . , bi−1, λbi, bi+1, . . . , bn) = λdet(b1, . . . , bn).

3. det(b1, . . . , bi−1, bi + bj , bi+1, . . . , bn) = det(b1, . . . , bn) for i 6= j.

4. If {e1, . . . , en} are the standard unit vectors in kn then det(e1, . . . , en) = 1.

5. If B1, B2 are square matrices then det(B1B2) = det(B1) det(B2).

6. det(B) = det(BT).

7. (Hadamard inequality) | det(b1, . . . , bn)| ≤ ∏n
i=1 ‖bi‖ (where ‖b‖ is the Euclidean

norm).

Proof: See Theorems 16.6, 17.6, 17.15, 18.3 and 19.13 of Curtis [163]. �

Definition A.10.7. Let b1, . . . , bn be a set of vectors in Rn. The fundamental paral-
lelepiped of the set is {

n∑

i=0

λibi : 0 ≤ λi < 1

}
.

600 APPENDIX A. BACKGROUND MATHEMATICS

Lemma A.10.8. Let the notation be as above.

1. The volume of the fundamental parallelepiped of {b1, . . . , bn} is | det(b1, . . . , bn)|.
2. | det(b1, . . . , bn)| = ∏n

i=1 ‖b∗i ‖ where b∗i are the Gram-Schmidt vectors.

Proof: The first claim is Theorem 19.12 of Curtis [163]. The second claim is Exercise
19.11 (also see Theorem 19.13) of [163]. �

There are two methods to compute the determinant for vectors in Rn. The first is to
perform Gaussian elimination to diagonalise and then take the product of the diagonal
elements. The second is to apply Gram-Schmidt (using floating point arithmetic) and then
the determinant is just the product of the norms. Over R both methods only give an
approximation to the determinant. To compute the determinant for vectors with entries
in Z or Q one can use Gaussian elimination or Gram-Schmidt with exact arithmetic in
Q (this gives an exact solution but suffers from coefficient explosion). Alternatively, one
can compute the determinant modulo pi for many small or medium sized primes pi and
use the Chinese remainder theorem.

A.11 Hermite Normal Form

Definition A.11.1. An n×m integer matrix A = (Ai,j) is in (row) Hermite normal
form (HNF) if there is some integer 1 ≤ r ≤ n and a strictly increasing map f :
{1, . . . , n− r} → {1, . . . ,m} (i.e., f(i+ 1) > f(i)) such that

1. the last r rows of A are zero

2. 0 ≤ Aj,f(i) < Ai,f(i) for 1 ≤ j < i and Aj,f(i) = 0 for i < j ≤ n.

In particular, an n×n matrix that is upper triangular and that satisfies the condition
0 ≤ Aj,i < Ai,i for 1 ≤ j < i ≤ n is in Hermite normal form. The reader is warned that
there are many variations on the definition of the Hermite normal form.

The HNF A′ of an integer matrix A is unique and there is an n × n unimodular
matrix U (i.e., U is a matrix with integer entries and determinant±1) such thatA′ = UA.
For more details of the Hermite normal form see Section 2.4.2 of Cohen [136] or Section
4.1 of Schrijver [531] (though note that both books use columns rather than rows).

A.12 Orders in Quadratic Fields

A quadratic field is Q(
√
d) where d 6= 0, 1 is a square-free integer. If d < 0 then the field

is called an imaginary quadratic field. The discriminant of K = Q(
√
d) is D = d

if d ≡ 1 (mod 4) or D = 4d otherwise. The ring of integers of a quadratic field of
discriminant D is is OK = Z[(D +

√
D)/2].

An order in a field k containing Q is a subring R of k that is finitely generated as
a Z-module and is such that R ⊗Z Q = k. Every order in a quadratic field is of the
form Z[c(D +

√
D)/2] for some c ∈ N. The integer c is called the conductor and the

discriminant of the order is c2D.

A.13 Binary Strings

The binary representation of an integer a =
∑l−1
i=0 ai2

i is written as

(al−1 . . . a1a0)2 or al−1 . . . a1a0 (A.1)

A.14. PROBABILITY AND COMBINATORICS 601

where ai ∈ {0, 1} and al−1 = 1. We say that the bit-length of a is l. An integer a ∈ N is
represented by a binary string of bit-length ⌊log2(a)⌋+ 1. The least significant bit of a
is LSB(a) = a0 = a (mod 2). We call ai the i-th bit or bit i of a. The “most significant
bit” is trivially always one, but in certain contexts one uses different notions of MSB; for
example see Definition 21.7.1.

Binary strings of length l are sequences a1a2 . . . al with ai ∈ {0, 1}. Such a sequence
is also called an l-bit string. The i-th bit is ai. There is an ambiguity when one wants
to interpret a binary string as an integer; our convention is that al is the least significant
bit.2

We denote by {0, 1}l the set of all length l binary strings and {0, 1}∗ the set of all
binary strings of arbitrary finite length. If a and b are binary strings then the exclusive-or
(i.e., XOR) a⊕ b is the binary string whose i-th bit is ai + bi (mod 2) for 1 ≤ i ≤ l.

A.14 Probability and Combinatorics

We briefly recall some ideas from probability. Good references are Ross [502], Woodroofe [636]
and Chapter 6 of Shoup [556].

The number of ways to choose t items from n without replacement, and where the
ordering matters, is n(n− 1)(n− 2) · · · (n− t+ 1) = n!/(n− t)!. The number of ways to
choose t items from n without replacement, and where the ordering does not matter, is(
n
t

)
= n!/(t!(n− t)!). The number of ways to choose t items from n with replacement and

where the ordering doesn’t matter is
(
n+t−1
t−1

)
. We have

(n
m

)m
≤
(
n

m

)
≤
(ne
m

)m

Stirling’s approximation to the factorial is n! ≈
√

2πne−nnn or log(n!) ≈
n(log(n) − 1) (where log denotes the natural logarithm). For proof see Section 5.4.1
of [636].

Let [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}. A distribution on a set S is a function Pr mapping
“nice”3 subsets of S to [0, 1], with the properties that Pr(∅) = 0, Pr(S) = 1 and if
A,B ⊆ S are disjoint and “nice” then Pr(A ∪ B) = Pr(A) + Pr(B). For s ∈ S we define
Pr(s) = Pr({s}) if {s} is “nice”. The uniform distribution on a finite set S is given by
Pr(s) = 1/#S.

An event is a “nice” subset E ⊆ S, and Pr(E) is called the probability of the event.
We define ¬E to be S−E, so that Pr(¬E) = 1−Pr(E). We have Pr(E1) ≤ Pr(E1∪E2) ≤
Pr(E1) + Pr(E2). We define Pr(E1 and E2) = Pr(E1 ∩ E2).

Let S be a finite set with an implicit distribution on it (usually the uniform distribu-
tion). In an algorithm we write s ← S to mean that s ∈ S is randomly selected from S
according to the distribution, i.e., s is chosen with probability Pr(s).

If A,E ⊆ S and Pr(E) > 0 then the conditional probability is

Pr(A | E) =
Pr(A ∩ E)

Pr(E)
.

If Pr(A ∩ E) = Pr(A) Pr(E) then A and E are independent events (equivalently, if
Pr(E) > 0 then Pr(A | E) = Pr(A)). If S is the disjoint union E1 ∪ E2 ∪ · · · ∪ En then
Pr(A) =

∑n
i=1 Pr(A | Ei) Pr(Ei).

2This means that the i-th bit of a binary string is not the i-th bit of the corresponding integer. This
inconsistency will not cause confusion in the book.

3Technically, S must be a set with a measure and the “nice” subsets are the measurable ones. When
S is finite or countable then every subset is “nice”.

602 APPENDIX A. BACKGROUND MATHEMATICS

Let S be a set. A random variable is a function4 X : S → R. Write X ⊆ R for the
image of X (our applications will always have X either finite or N). Then X induces a
distribution on X , defined for x ∈ X by Pr(X = x) is the measure of X−1({x}) (in the
case where S is finite or countable, Pr(X = x) =

∑
s∈X−1(x) Pr(s)). Random variables X1

and X2 are independent random variables if Pr(X1 = x1 and X2 = x2) = Pr(X1 =
x1) Pr(X2 = x2) for all x1 ∈ X1 and x2 ∈ X2.

The expectation of a random variable X taking values in a finite or countable set
X ⊆ R is

E(X) =
∑

x∈X
xPr(X = x).

If X = N then E(X) =
∑∞
n=0 Pr(X > n) (this is shown in the proof of Theorem 14.1.1).

Note that if X is finite then E(X) exists, but for X countable then the expectation only
exists if the sum is convergent. IfX1 andX2 are random variables on S then E(X1+X2) =
E(X1) + E(X2). If X1 and X2 are independent then E(X1X2) = E(X1)E(X2).

Example A.14.1. Consider flipping a coin, with probability p of “heads” and probability
1 − p of “tails” (where 0 < p < 1). Assume the coin flips are independent events. What
is the expected number of trials until the coin lands “heads”?

Let X be the random variable with values in N where Pr(X = n) is the probability
that the first head is on the n-th throw. Then Pr(X > n) = (1 − p)n and Pr(X =
n) = (1 − p)n−1p. This gives the geometric distribution on N. One can check that∑∞

n=1 Pr(X = n) = 1.
The expectation of X is E(X) =

∑∞
n=1 nPr(X = n) (the ratio test shows that this

sum is absolutely convergent). Write T =
∑∞
n=1 n(1 − p)n−1. Then

E(X) = pT = T−(1−p)T =

∞∑

n=1

n(1−p)n−1−
∞∑

n=1

(n−1)(1−p)n−1 = 1+

∞∑

n=2

(1−p)n−1 =
1

p
.

To define this problem formally, one should define the geometric random variable
X : S → N, where S is the (uncountable) set of countable length sequences of bits, such
that X(s1s2 . . .) > n if and only if s1 = · · · sn = “tails”. This leads to measure-theoretic
technicalities that are beyond the scope of this book, but which are well understood in
probability theory.

Example A.14.2. Suppose one has a set S of N items and one chooses elements of S
(with replacement) uniformly and independently at random. Let X be a random variable
taking values in N such that Pr(X = n) is the probability that, after sampling n elements
from S, the first n − 1 elements are distinct and the n-th element is equal to one of the
previously sampled elements. In other words, X is the number of samples from S until
some element is sampled twice. A version of the birthday paradox states that the
expected value of X is approximately

√
πN/2. We discuss this in detail in Section 14.1.

Example A.14.3. A version of the coupon collector problem is the following: Suppose
S is a set of N items and one chooses elements of S (with replacement) uniformly at
random.

Let X be a random variable taking values in N such that Pr(X ≥ n) is the probability
that after choosing n − 1 elements (sampled uniformly and independently at random
from S) one has not yet chosen some element of S. In other words, X is the number of
“coupons” to be collected until one has a full set of all N types. The expected value of
X is N(1 + 1/2 + · · ·+ 1/(N − 1) + 1/N) ≈ N log(N) (see Example 7.2j of Ross [502]).

4Technically, a random variable is defined on a probability space, not an arbitrary set, and is a
measurable function; we refer to Woodroofe [636] for the details.

A.14. PROBABILITY AND COMBINATORICS 603

The statistical distance (also called the total variation) of two distributions Pr1
and Pr2 on a finite or countable set S is ∆(Pr1,Pr2) = 1

2

∑
x∈S |Pr1(s) − Pr2(s)|. It

is easy to see that ∆(Pr1,Pr1) = 0 and 0 ≤ ∆(Pr1,Pr2) ≤ 1 (see Theorem 6.14 of
Shoup [556]). Two distributions are statistically close if their statistical distance is
“negligible” in some appropriate sense (typically, in cryptographic applications, this will
mean “negligible in terms of the security parameter”).

We end with a result that is often used in the analysis of algorithms.

Theorem A.14.4. The probability that two uniformly and independently chosen integers
1 ≤ n1, n2 < N satisfy gcd(n1, n2) = 1 tends to 1/ζ(2) = 6/π2 ≈ 0.608 as N tends to
infinity.

Proof: See Theorem 332 of [276]. �

604 APPENDIX A. BACKGROUND MATHEMATICS

Appendix B

Hints and Solutions to
Exercises

Chapter 1: Introduction

1.3.3: Encryption is deterministic so one can compare the challenge ciphertext c with
me

0 (mod N).

1.3.4: Given c, submit c′ = c2e (mod N) to the decryption oracle to get 2m (mod N)
and hence compute m.

1.3.5: If it does not have semantic security there is some function f : Mκ → {0, 1}
which can be computed given a ciphertext, so choose messages m0,m1 such that f(mi) = i
and then one can break IND security.

1.3.7: A UF-CMA adversary is a randomised polynomial-time algorithm which takes
as input a public key pk for a signature scheme, is allowed to query a signing oracle on
messages of its choice, and outputs a message m and a signature s. The adversary wins
if the signature s satisfies the verification algorithm on message m and key pk and if
m was not one of the queries to the signing oracle. A scheme has UF-CMA security if
every adversary succeeds with only negligible probability (in the security parameter). See
Definition 12.2 of Katz and Lindell [334].

1.3.8: Yes, if the RSA problem is hard.

1.3.9: Choose random s and set m = se (mod N).

1.3.10: Given m call signing oracle on 2em (mod N) to get s′. Output s = s′2−1 (mod N).

Chapter 2: Basic Algorithms

2.2.3: See Section 9.5.1 of Crandall and Pomerance [162], Section 3.5 of Shoup [556] or
Section 8.1 of von zur Gathen and Gerhard [238].

2.2.8: See Section 9.2.2 of [162], Sections 1.5.1 and 1.5.2 of Brent and Zimmer-
mann [100] or Section 1.7.1 of Cohen [136]. The complexity is O(M(log(a))),

2.2.9: Since e ≤ log2(N) the idea is to compute N1/e for e = 1, 2, . . . , ⌊log2(N)⌋ to
find the largest e such that N1/e ∈ N.

2.4.4: See Section 5.9 of Bach and Shallit [22] or Algorithm 2.3.5 of Crandall and
Pomerance [162].

2.4.5: Show the algorithm is faster than computing gcd(m,n) using Euclid; the fun-
damental step is computing m mod n but the numbers are always at most as large as
those in Euclid’s algorithm.

605

606 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

2.4.6: Choose random 1 < a < p and compute (ap) until the Legendre symbol is −1.
Since the probability of success is at least 0.5 for each trial, the expected number of trials
is 2. This is a Las Vegas algorithm (it may never terminate, but the answer is always
correct). See the proof of Lemma 2.9.5 for further details.

2.4.9: This goes back to A. Cobham. See Shoup [557] or Bach and Sorensen [23] for
the analysis.

2.4.10: Computing Legendre symbols using quadratic reciprocity requires O(log(p)2)
bit operations while computing a(p−1)/2 (mod p) needs O(log(p)M(log(p))) bit operations
(see Corollary 2.8.4). So using quadratic reciprocity is (theoretically) always better.

2.5.5: First compute and store b2, . . . , bm where bi =
∏i
j=1 aj , then b−1

m , then, for

i = m downto 2 compute a−1
i = bi−1b

−1
i , b−1

i−1 = aib
−1
i . See Algorithm 11.15 of [16],

Section 2.4.1 of [100] or Section 2.2.5 of [274].
2.6.4:
2.8.6: For pseudocode of the algorithm see Algorithm IV.4 of [64] or Algorithm 9.10

of [16].
2.8.7: Consider a window of length w representing an odd integer. If the bits of m are

uniformly distributed then the probability the next most significant bit after the window
is 0 is 0.5. Hence the expected number of zeroes before the first 1 is 0.5 · 0 + 0.25 · 1 +
0.125 · 2 + · · · = ∑∞

i=1 i/2
i+1 = 1.

2.8.10: For pseudocode see Section 2.2 of Möller [432]. The problem is that there is
no fixed precomputation of powers of g.

2.8.11: The values mi in addition chain satisfy mi ≤ 2i.
2.9.8: See Adleman, Manders and Miller [3].
2.10.2: See Chapters 2 and 3 of von zur Gathen and Gerhard [238].
2.10.4: Assume that F (0) 6= 0 so that x is coprime to F (x). Replace R = 2k in the

description of Montgomery reduction in Section 2.5 by R = xd (mod F (x)). See Koç and
Acar [349] for details and discussion.

2.10.5: See Section 9.6.3 of [162].
2.12.1: Compute F ′(x). If F ′(x) = 0 then, by Lemma A.5.2, F (x) = G(x)p where

p = charFq, and F (x) is not square-free. Otherwise, compute gcd(F (x), F ′(x)) and if
this is not 1 then F (x) is not square-free. The computation requires O(deg(F)2) field
operations.

2.12.2: Given F (x) ∈ Fq[x] compute F ′(x). If F ′(x) = 0 then F (x) = G(x)p and
repeat process on G(x). Otherwise, compute F1(x) = F (x)/ gcd(F (x), F ′(x)) and factor
F1(x). Once the factors of F1(x) are known then one can factor F (x)/F1(x) efficiently by
testing divisibility by the known factors of F1(x).

2.12.3: One computes xq (mod F (x)) in O(log(q)d2) field operations and a further
O(d2) operations are needed for the gcd computation. The answer to the decision problem
is “yes” if and only if deg(R1(x)) > 0.

2.12.5: One is essentially doing “divide and conquer” to separate the deg(R1(x)) ≤ d
roots. Each trial is expected to split R1(x) into two polynomials of degree≈ deg(R1(x))/2.
Hence, an expected O(log2(deg(R1(x)))) = O(log2(d)) trials are required to factor R1(x).
Since each trial involves computing u(x)(q−1)/2 (mod R1(x)) (which has complexity
O(log(q)M(d)) operations in Fq) and then computing the gcd of polynomials of degree≤ d
(which requires O(d2) operations in Fq) the total expected cost is O(log(q) log(d)d2) field
operations. For a detailed analysis of the probabilities see Section 21.3.2 of Shoup [556].

2.12.10: If F (x) is not irreducible then it has a factor of degree ≤ deg(F (x))/2.

Hence it is sufficient that gcd(F (x), xq
i − x) = 1 for 1 ≤ i ≤ d/2. To compute all these

polynomials efficiently one computes s1(x) ≡ xq (mod F (x)) and then gcd(F (x), s1(x)−
x). For the next step compute s2(x) = s1(x)q (mod F (x)) and gcd(F (x), s2(x) − x),

607

and so on. There are d/2 steps, each taking O(log(q)d2) field operations, so the overall
complexity is O(d3 log(q)). See Algorithm IPT of Section 21.1 of [556] or Section 3 of
[370].

2.12.11: One first computes gcd(xq
b −x, F (x)) in time O(b log(q)) operations on poly-

nomials of degree at most d. The rest of the algorithm is the same as the root finding
algorithm of Exercise 2.12.5 where we raise polynomials to at most the power qb.

2.14.1: Construct {θ, θq, . . . , θqm−1} in O(m3) operations in Fq (using the fact that
q-th powering is linear) and then O(m3) operations in Fq for the Gaussian elimination.
Hence the complexity is an expected O(m3 logq(m)) bit operations.

2.14.4: Suppose θ2 = d. Given g = g0 + g1θ we must solve for x, y ∈ Fq such that
(x+ θy)2 = g0 + g1θ. Expanding gives x2 + dy2 = g0 and 2xy = g1 and one can eliminate
y to get 4x4 − 4g0x

2 + dg21 = 0 which can be solved using two square roots in Fq.
2.14.5: See Fong-Hankerson-López-Menezes [207].

2.14.10: Computing Sm requires O(m3) operations in Fq. Computing a linear depen-
dence among m vectors can be done using Gaussian elimination in O(m3) field operations.

2.14.11: Since 1 − 1/q ≥ 1/2 the number of trials is at most 2. The complexity is
therefore an expected O(m3) operations in Fq.

2.14.12: Expected O(m3) operations in Fqm .

2.14.13: The cost of finding a root of the polynomial F1(x) of degree m is an expected
O(log(m) log(q)m2) operations in Fq and this dominates the cost of the isomorphism
algorithm in the forwards direction. The cost of the linear algebra to compute the inverse
to this isomorphism is O(m3). (If one repeats the algorithm with the roles of F1 and F2

swapped then one gets a field isomorphism from Fq[y]/(F2(y)) to Fq[x]/(F1(x)) but it is
not necessarily the inverse of the function computed in the first step.

2.15.1: Writing q− 1 =
∏m
i=1 l

ei
i we have m = O(log(q)) and then computing g(q−1)/li

requires O(log(q)3) bit operations.

2.15.8: The naive solution requires ≈ 2/3 log2(N) group operations in the precom-
putation, followed by ≈ 3 1

2 log2(N2/3) = log2(N) group operations. The same trick can
be used in the first stage of Algorithm 4, giving ≈ 2

3 log2(N) group operations. But the
three exponentiations in the second stage are all to different bases and so the total work is
≈ 3

2 log2(N) group operations. The naive solution is therefore better. The naive method
becomes even faster compared with Algorithm 4 if one uses window methods.

Chapter 5: Varieties

5.1.3: V (y − x2), V (y2 − x), V ((x − 1)3 − y2).

5.1.4: If f(x, y) has no monomials featuring y then it is a polynomial in x only; take
any root a ∈ k and then {(a, b) : b ∈ k} ⊆ V (f). For the remaining case, for each a ∈ k
then f(a, y) is a polynomial in y and so has at least one root b ∈ k.

5.1.7: Let z = x + iy ∈ Fp2 . Then zp = x − iy. Hence zp+1 = 1 if and only if
1 = (x+ iy)(x− iy) = x2 + y2. If follows that the map x+ iy 7→ (x, y) is a bijection from
G to X(Fp). Showing that this is a group isomorphism is straightforward.

5.1.10: In X = A1(Fp) we have X = V (xp − x).

5.2.8: V (x2 + y2 − z2)(R) is the same as the circle V (x2 + y2 − 1)(R) ⊆ A2(R). Over
C it would also contain the points (1 : ±i : 0).

V (yz − x2) is the parabola y = x2 in A2 together with the single point (0 : 1 : 0)
at infinity. Note that this algebraic set is exactly the same as the one in Example 5.2.7
under a change of coordinates.

5.2.21: (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1).

608 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

5.2.35: We have X = V (f(x0, x1, x2)) = V (f). A point in X −X has x2 = 0 and at
least one of x0, x1 6= 0. Hence, the points at infinity are in the union of (X∩U0)∩V (x2) =
{(1 : y : 0) : f(1, y, 0) = 0} and (X ∩U1)∩V (x2) = {(x : 1 : 0) : f(x, 1, 0) = 0}. Both sets
are finite.

5.3.3: It decomposes as V (x, z) ∪ V (w − x, x2 − yz) and one can see that neither of
these sets is equal to X .

5.3.5: k[x, y]/(y − x2) ∼= k[x] is an integral domain, so (y − x2) is prime.

5.3.6: If gh ∈ Ik(X) then g(f1(t), . . . , fn(t))h(f1(t), . . . , fn(t)) is a polynomial in t
which is identically zero on k. The result follows. See Proposition 5 of Section 4.5 of Cox,
Little and O’Shea [158] for details and a generalisation.

5.3.14: If U1 ∩U2 = ∅ then X = (X −U1)∪ (X −U2) is a union of proper closed sets.

5.4.6: We show that (f1/f2)(P) − (f3/f4)(P) = 0. By assumption f2(P), f4(P) 6= 0
and so it suffices to show (f1f4 − f2f3)(P) = 0. This follows since (f1f4 − f2f3) ∈ Ik(X).

5.5.7: Recall from Exercise 5.3.14 that U1 ∩U2 6= ∅. Then apply the same arguments
as in the proof of Theorem 5.4.8.

5.5.9: The solution is not unique. An example of maps φ : X → Y and ψ : Y → X is
φ(x, y) = (x : 1 : 1) and ψ(x0 : x1 : x2) = (x0/x1, x1/x0). One can check that φ ◦ ψ and
ψ ◦ φ are the identity when they are defined.

5.5.14: The line of slope t through (−1, 0) has equation y = t(x + 1) and hits X and
(−1, 0) and a point φ(t) = (x(t), y(t)) = ((1 − t2)/(1 + t2), 2t/(1 + t2)). Hence, define
φ : P1 → X by f([t : u]) = ((u2 − t2)/(u2 + t2), 2ut/(u2 + t2)). The inverse morphism
ψ : X → P1 is ψ(x, y) = (y : x + 1) = (x − 1 : y); note that these two descriptions of ψ
are equivalent (multiply the former through by y/(x+ 1)) and that the former is regular
away from (−1 : 0) and the latter regular away from (1 : 0). Since the slope of the line
between (−1.0) and (x, y) is y/(x+ 1) it follows that ψ ◦ φ and φ ◦ ψ are the identity.

5.5.19: Write Z for the Zariski closure of φ(X) in Y . If Z = Z1 ∪ Z2 is a union of
closed sets then X = φ−1(Z1) ∪ φ−1(Z2) is also a union of closed sets so, without loss of
generality, φ−1(Z1) = X and so Z1 contains the Zariski closure of φ(X).

5.5.26: Suppose θ(f) = 0 for some f ∈ K∗
1 . Then ff−1 = 1 and so 1 = θ(1) =

θ(f)θ(f−1) = 0 which is a contradiction.

5.6.5: A proof is given in Proposition 1.13 of Hartshorne [278]. We also give a proof
here: Let f ∈ k[x1, . . . , xn]. Without loss of generality suppose f contains at least
one monomial featuring xn. Then write f = frx

r
n + fr−1x

r−1
n + · · · + f0 with fi ∈

k[x1, . . . , xn−1] or k[x0, . . . , xn−1]. One can check that the field k(X) contains a subfield
isomorphic to k(x1, . . . , xn−1). Finally, k(X) is an algebraic extension of k(x1, . . . , xn).

5.6.6: k(X) = k[X] = k and so Ik(X) is a maximal ideal and so by the Nullstellensatz
X = {P}.

5.6.10: Let X be a variety of dimension 1 and let Y be a proper closed subset. Let
Y = ∪ni=1Yi be the decomposition of Y into irreducible components. By Corollary 5.6.9
we have dim(Yi) = 0. Exercise 5.6.6 implies #Yi(k) = 1 and so #Y (k) = n.

5.7.5: V (y21 − y22 , y1y2 − 1).

5.7.6: V (y21,1 − y21,2 + y22,1 − y22,2 − 1, y1,1y1,2 + y2,1y2,2 − 1).

Chapter 6: Tori, LUC and XTR

6.1.4: If p ∤ n then

Φnp(x) =
∏

d|n

(
(xnp/d − 1)µ(d)(xn/d − 1)µ(dp)

)

609

and use µ(dp) = −µ(d). If p | n then

Φnp(x) =

∏

d|n
(xnp/d − 1)µ(d)

 ∏

d|np,d∤n
(xnp/d − 1)µ(d)

 .

and note that if d | np but d ∤ n then p2 | d and so µ(d) = 0. The final statement follows
since, when n is odd, zn = 1 if and only if (−z)2n = 1.

6.3.2: To compute (u+ vθ)(u′ + v′θ) compute uu′, vv′ and (u+ v)(u′ + v′). To square
(u+ vθ) compute u2, v2 and (u+ v)2. One inverts (u+ vθ) by computing (u+ vθ)/(u2 −
Auv +Bv2).

6.3.3: The first two parts are similar to Exercise 6.3.2. For inversion, note that
(u+ vθ)−1 = (u− vθ)/(u2 + v2). For square roots, note that (u+ vθ)2 = (u2− v2) + 2uvθ
so to compute the square root of a+ bθ requires solving these equations. We assume here

that a+ bθ is a square, and so (a
2+b2

q) = 1. One finds that u4 − au2 − b2/4 = 0 and so

u2 = (a ±
√
a2 + b2)2−1. Only one of the two choices is a square, so one must compute

the Legendre symbol (a+
√
a2+b2

q) to determine the answer (taking into account that (2q)

is known from q (mod 8)). One then multiplies the appropriate (a ±
√
a2 + b2) by 2−1,

which is easy (either shift right or add q and shift right). Taking the square root gives u.
An inversion and multiplication gives v.

6.3.15: See Williams [634].
6.3.17: The characteristic polynomial of g is (x − g)(x − gq) = x2 − TrFq2/Fq (g)x+ 1

so TrFq2/Fq(g) = TrFq2/Fq(g
′) implies g′ is a root of the same polynomial as g.

6.3.22: 34.

6.3.23: Exercises 6.3.2 and 6.3.3 give costs of 3 squarings in Fq for computing a
squaring in Fq2 and 3 squarings plus 3 multiplications in Fq for a square-and-multiply.
Lucas sequences give just one multiplication and squaring for each operation; only one
third the number of operations in the worst case.

6.4.5: Need q ≡ 2 (mod 3) or else ζ3 ∈ Fq. Also need q2 6≡ 1 (mod 9) or else ζ9 ∈ Fq2 .

6.4.7: Consider 0 = f(a)q = a3q−tqa2q+tq
2

aq−1 = (−1+tqa−q−ta−2q+a−3q)(−a3q).
This shows that f(a−q) = 0. Now, suppose f(x) is neither irreducible nor split completely.
Then f(x) = (x−u)g(x) where u ∈ Fq2 and g(x) is an irreducible quadratic over Fq2 . Let

a ∈ Fq4 − Fq2 be a root of g(x). Then a−q is the other root, but then (a−q)−q = aq
2

= a
and we have a ∈ Fq2 .

6.4.10: See Lenstra and Verheul [375].

6.4.11: Squaring requires computing (t2n+1, t2n, t2n−1) which is one iteration of each
formula in the previous exercise. Square-and-multiply requires computing (t2n+2, t2n+1, t2n)
which is twice formula 2 and once formula 3 above. Let M (respectively S, P) be the
costs of a multiplication (respectively, squaring, q-th powering) in Fq2 . Then a squaring
(i.e., going from tn to t2n) requires 4M + S + 5P while a square-and-multiply requires
2M+2S+4P . The reader is warned that in practice it is often more efficient to use other
ladder algorithms than traditional square-and-multiply, see Chapter 3 of Stam [579].

6.4.12: The trick is to represent tn using the triple (tn+1, tn, tn−1) as above when n is
odd, but (tn+2, tn+1, tn) when n is even. One then must use formula 1 of Exercise 6.4.10.
For example, if n is even and one is computing (t2n+2, t2n+1, t2n) then the middle term
is computed as t2(n+1)−1. See Lenstra and Verheul [375] for details.

6.4.13: t6 = 7 + 48i, t7 = 35 + 65i, t8 = 6 + 8i.

6.4.14: One can represent the equivalence class of gn by (tn, t−n). For the ladder one
can store the 6-tuple (tn+1, tn, tn−1, t−n−1, t−n, t−n+1) and compute an analogous 6-tuple

610 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

centered at (t2n, t−2n) or (t2n+1, t−2n−1). See Gong and Harn [259] and also Stam [579]
for further details.

6.4.15: See Shirase et al [551].

6.6.2: Modulo each prime pi there are usually two values h such that TrF
p2
i
/Fpi

(h) =

TrF
p2
i
/Fpi

(g). Hence, by the Chinese remainder theorem, there are 2k values for h in

general.

The second claim follows immediately, or one can prove it using the same argument
as the first part: modulo each prime pi, 2 + (pi − 1)/2 ≈ pi/2 values arise as the trace of
an element in Gpi,2.

Chapter 7: Curves and Divisor Class Groups

7.1.7: The first claim is immediate, since f ∈ OP implies f(P) ∈ k is defined, and
(f − f(P)) ∈ mP . For the second claim, note that mP /m

2
P is an OP /mP -module, i.e.,

a k-vector space. Without loss of generality, P = (0, . . . , 0). and mP is the OP -ideal
(x1, . . . , xn). Then every monomial xixj for 1 ≤ i, j ≤ n lies in m2

P . Therefore every
element of mP is of the form a1x1 + · · · anxn + g where ai ∈ k for 1 ≤ i ≤ n and g ∈ m2

P .
Hence there is a map d : mP → kn given by

d(a1x1 + · · ·+ anxn + g) = (a1, . . . , an).

7.1.9: x = y2 − yx − x4 ∈ m2
P so {y} is a basis. For the second example there is no

linear relation between x and y and so {x, y} is a basis.

7.1.15: Corollary 7.1.14: By Exercise 5.6.5 the dimension of X is d = n − 1, so
n − d = 1. Now, the Jacobian matrix is a single row vector and so the rank is 1 unless
the vector is the zero vector. Corollary 7.1.14 is just a restatement of this.

7.2.4: Putting z = 0 gives the equation x3 = 0 and so x = 0. Hence, (0 : 1 : 0) is the
only point at infinity. Taking the affine part by setting y = 1 gives the equation E(x, z) =
z+a1xz+a3z

2−(x3+a2x
2z+a4xz

2+a6z
3) and one can check that (∂E/∂z)(0, 0) = 1 6= 0.

7.3.7: Write φ(P) = (φ0(P) : · · · : φn(P)) and let n = max{vP (φi) : 0 ≤ i ≤ n}. Let
tP be a uniformizer at P . Then (t−nP φ0 : · · · : t−nP φn) is regular at P . See Proposition
II.2.1 of Silverman [564] for further details.

7.4.3: The first 3 statements are straightforward. The definitions also directly imply
that mv is an Rv-ideal. The proof that mv is maximal and that Rv is a local ring is
essentially the same as the proof of Lemma 7.1.2. Statement 5 follows from Statement 2.

7.4.6: The result follows since mP,k(C)m = k(C) ∩mP,k′(C)m for any m ∈ Z≥0.

7.4.8: mmP = (tmP) so f ∈ mmP and f 6∈ mm+1
P is equivalent to f = tmP u where u ∈

OP −mP and hence u ∈ O∗
P .

7.4.9: Write f = taPu and h = tbP v where u, v ∈ O∗
P and note that fh = ta+bP uv.

7.4.12: Let f = f1/f2 with f1, f2 ∈ OP,k(C). By Lemma 7.4.7 we have f1 = t
vP (f1)
P u1

and f2 = t
vP (f2)
P u2 for some u1, u2 ∈ OP,k(C)∗. If vP (f) = vP (f1) − vP (f2) > 0 then

f = t
vP (f1)−vP (f2)
P u1/u2 ∈ OP,k(C) and so P is not a pole of f . On the other hand, if P

is a pole of f then 1/f = t
vP (f2)−vP (f1)
P u2/u1 ∈ mP,k(C).

7.7.3: If f ∈ k
∗

then div(f) = 0 and the result follows.

7.7.5: (5) follows immediately from part 4 of Lemma 7.4.14.

7.7.7: First, Prink(C) ⊆ Divk(C) since functions only have finitely many poles and
zeros. Second, if f is defined over k and σ ∈ Gal(k/k) then f = σ(f) and so σ(div(f)) =
div(f) and so Prink(C) ⊆ Divk(C). Finally, Prink(C) is closed under addition by Lemma 7.7.4.

611

7.7.9: Write f as a ratio of homogeneous polynomials of the same degree and then
factor them as in equation (7.8).

7.7.15: f/h ∈ k(C) has div(f/h) = 0 and so f/h ∈ k∗.
7.9.6: See Cassels [122], Reid [497] or Silverman and Tate [567].

Chapter 8: Rational Maps on Curves and Divisors

8.1.2: Any non-constant morphism φ has a representative of the form (φ1 : φ2) where
φ2 is not identically zero, and so define f = φ1/φ2. That φ is a morphism follows from
Lemma 7.3.6.

8.1.10: k(x, y/x) = k(x, y).
8.1.11: k(x, y) = k(x2, y)(x) = φ∗(k(C2))(x), which is a quadratic extension.
8.2.3: See Proposition III.1.4 of Stichtenoth [589].
8.2.10: By Lemma 7.4.7, t is a uniformizer at Q if and only if vQ(t) = 1. The problem

is therefore equivalent to Lemma 8.2.9.
8.2.11: Since φ∗(k(C2)) = k(C1) it follows directly from the definition in terms of OP

and mP that if φ(P) = Q and f ∈ k(C2) then vQ(f) = vP (f ◦ φ).
8.2.16: Follows from Lemma 8.2.9.
8.3.12: The function can also be written φ((x : z)) = (1 : z2/x2). One has φ∗(D) =

(1 : 1) + (1 : 0)− (0 : 1), φ∗(D) = (i : 1) + (−i : 1) + 2(1 : 0)− 2(0 : 1), φ∗φ∗(D) = 2(−1 :
1) + 2(1 : 0)− 2(0 : 1) = 2D and φ∗φ∗(D) = (1 : 1) + (−1 : 1) + 2(1 : 0)− 2(0 : 1).

8.3.15: Follows from Exercise 8.2.17.
8.4.3: See Section 8.2 of Fulton [216] or I.4.5 to I.4.9 of Stichtenoth [589].
8.4.6: By Corollary 7.7.13 all non-constant functions have a pole. Hence Lk(0) = k.

Since div(f) ≡ 0 the second result follows from part 6 of Lemma 8.4.2.
8.4.10: The dimensions are 1, 1, 2, 3, 4, 5, 6.
8.5.15: δ(xp) = pxp−1δ(x) = 0.
8.5.27: If ω1 = f1dtP and ω2 ≡ ω1 then ω2 = f2dtP with f1 ≡ f2 in k(C), so there

isn’t anything to show here.
For the second point suppose t and u are two uniformizers at P . Write ω = f1dt =

f2du, so that f1/f2 = ∂u/∂t. We must show that vP (f1) = vP (f2). Since u ∈ mP,k(C) =
(t) we have u = ht for some h ∈ k(C) such that h(P) 6= 0. Then ∂u/∂t = ∂(ht)/∂t =
h+ t(∂h/∂t). It follows that vP (∂u/∂t) = 0 and so vP (f1) = vP (f2).

8.5.29: If ω′ = fω then div(ω′) = div(ω) + div(f).
8.6.3: An elliptic curve with only one point, e.g., y2 + y = x3 + x+ 1 over F2.

Chapter 9: Elliptic Curves

9.1.1: It is clear that the formula gives the doubling formula when x1 = x2, y1 = y2. For
the other case it is sufficient to compute

(
y1 − y2
x1 − x2

)(
y1 + y2 + (a1x2 + a3)

y1 + y2 + (a1x2 + a3)

)

and simplify to the above formula.
9.1.4: (These ideas originate in the work of Seroussi and Knudsen.) Dividing the

equation by x2P gives (yP /xP)2 + (yP /xP) = xP + a2 + a6/x
2
P and the result follows by

Exercise 2.14.7.
The formula for λQ is immediate from equation (9.2) and the formulae for xP and

yP also follow immediately. If P = [2]Q then xP = λ2Q + λQ + a2 for some λQ ∈ F2m

and so TrF2m/F2
(xP + a2) = 0. Since TrF2m/F2

(xP + a2 + a6/x
2
P) = 0 it follows that

TrF2m/F2
(a6/x

2
P) = 0.

612 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

Conversely, if TrF2m/F2
(a6/x

2
P) = 0 then one can solve for xQ ∈ F2m the equation

x2Q+xP+a6/x
2
Q = 0. Further, TrF2m/F2

(xQ+a2+a6/x
2
Q) = TrF2m/F2

(xQ+x2Q+a2+xP) =
0 so there is an element yQ ∈ F2m such that Q = (xQ, yQ) ∈ E(F2m). It then follows that
P = [2]Q.

Finally, the formulae for point halving follow from substituting yQ = xQ(λQ + xQ)
into the formula yP = (xP + xQ)λQ + xQ + yQ.

9.1.5: We have λ = (y1/z1 − y2/z2)/(x1/z1 − x2/z2) = (y1z2 − y2z1)/(x1z2 − x2z1).
Similarly, putting x1/z1, x2/z2 and y1/z1 in the addition formulae in place of x1, x2 and
y1 gives the above formulae.

9.3.2: There is an inverse morphism which is a group homomorphism, also defined
over k by definition, such that the composition is the identity.

9.3.8: From E1 to E2 is just φ(x, y) = (x + 1, y + x). From E1 to E3 is φ(x, y) =
(x+s2, y+sx+t) where s ∈ F24 satisfies s4+s+1 = 0 and t ∈ F28 satisfies t2+t = s6+s2.

9.4.5: For t ∈ F24 show that TrF24/F2
(s6 + s2) = 1 +u(s4 + s+ 1)2 = 0. Theorem 9.3.4

implies every element of Aut(E) is of this form. Since there are 24 choices for (u, s, t),
each giving a different function on E(F2), one has #Aut(E) = 24. The fact that Aut(E) is
non-Abelian follows can be shown as follows. Let φi(x, y) = (u2ix+s2i , u

3
i y+u2isix+ti) for

i = 1, 2. One can check that the x-coordinates of φ1 ◦φ2 and φ2 ◦φ1 are u21u
2
2x+u21s

2
2 +s21

and u21u
2
2x + u22s

2
1 + s22 respectively. These are not equal when, for example, u1 = 1,

s1 = ζ3, u2 = ζ3 and s2 is arbitrary.
9.5.5: The first part of the exercise follows from Theorem 9.3.4. Points P = (xP , yP)

either satisfy a1xP + a3 = 0 and so P = −P or a1xP + a3 6= 0 and so yP is a solution to

y2 + y = F (x)/(a1x+ a3)2.

By Exercise 2.14.7 this is soluble if and only if TrF2n/F2
(F (xP)/(a1xP +a3)2) = 0. Hence,

every xP ∈ F2n is such that either a1xP + a3 = 0 (in which case both E and Ẽ have a
single point each with x-coordinate xP) or precisely one of y2 + y = F (xP)/(a1xP + a3)2

and y2 + y = F (xP)/(a1xP + a3)2 + α has a solution. The result follows.
9.5.6: If σ(φ−1) ◦ φ = 1 = φ−1 ◦ φ for all σ then σ(φ−1) = φ−1 for all σ and φ−1 is

defined over k.
9.5.8: Follow the method of Lemma 9.5.7; also see Proposition 1 of Hess, Smart and

Vercauteren [284].

9.5.9: We have j(E) = 0 and the only elliptic curves Ẽ/F2 with j(Ẽ) = 0 in short
Weierstrass form are y2 + y = x3 + a4x + a6 with (a4, a6) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
One can verify by direct calculation that for any pair E1, E2 of distinct curves in this
form, the isomorphism between them is not defined over F2.

9.6.2: Let E2 : y2 +H(x)y = F (x). If φ(x, y) = (φ1(x, y), φ2(x, y)) is a morphism then
so is −φ(x, y) = (φ1(x, y),−φ2(x, y)−H(φ1(x, y)).

9.6.7: We know that [0] and [1] are isogenies and that the inverse of an isogeny is an
isogeny, so we may assume that n ≥ 2. Lemma 9.6.6 shows that the sum of two isogenies
is an isogeny. It follows by induction that [n] = [n− 1] + [1] is an isogeny.

9.6.10: Use the fact that [2]P = OE if and only if P = −P = ι(P). Everything is
direct calculation except for the claim that the quartic has distinct roots, which follows
by observing that if x1 is a repeated root then the corresponding point (x1, y1) would be
singular.

9.6.16: There are many proofs: using differentials; showing that ker(πq) = {OE};
determining k(E)/π∗

q (k(E)). The statement of the degree follows by Lemma 9.6.13.
9.6.20: This is an immediate consequence of Theorem 9.6.18 (the fact that λ is an iso-

morphism comes from considering degrees). The details are also given in Proposition 12.12
of Washington [626].

613

9.6.22: We have (ψ− φ̂)◦φ = [0] and so the result follows by the same argument using
degrees as in the proof of Lemma 9.6.11. One can also use Theorem 9.6.18.

9.6.25: This follows since ρ∗ is essentially ρ−1(x, y) = (ζ−1
3 x, y) = (ζ23x, y).

9.6.29: A point of order 3 means [2]P = −P and the subgroup being rational means
either P is defined over k or P is defined over k′/k and σ(P) = −P for all non-trivial
σ ∈ Gal(k′/k). It follows that k′/k is quadratic. Translating x to 0 gives a point (0, v).
Since char(k) 6= 2 we assume E : y2 = x3 + a2x

2 + a4x + a6 and clearly v2 = a6. The
condition [2](0, v) = (0,−v) implies a2 = (a4/2v)2 = a24/(4a6) and re-arranging gives the
first equation. For the twist write w = a4/2a6, X = wx, Y = w3/2y and A = a6w

3. Then

X3+A(X+1)2 = w3x3+(A/a26)(a6wx+a6)2 = w3(x3+(A/(w3a26))((a4/2)x+a6)
2 = w3y2 = Y 2.

It is easy to check that this final equation is singular if and only if A = 0 or 27/4.
9.6.30: See Doche, Icart and Kohel [183].

9.7.6: Let φ(x, y) = (φ1(x), cyφ1(x)′ +φ3(x)) be an isogeny from E to Ẽ over a field k
of characteristic 2. By definition, X = φ1(x) and Y = cyφ1(x)′ + φ3(x) satisfy the curve
equation Y 2 + (ã1X + ã3)Y = X3 + ã2X

2 + ã4X + ã6. Now

Y 2 + (ã1X + ã3)Y = (cyφ1(x)′ + φ3(x))2 + (ã1φ1(x) + ã3)(cyφ1(x)′ + φ3(x))

and ã1φ1(x) + ã3 = c(a1x+ a3)φ1(x)′. Hence

Y 2 + (ã1X + ã3)Y = (cφ1(x)′)2(y2 + (a1x+ a3)y) + φ3(x)2 + (ã1φ1(x) + ã3)φ3(x).

It follows that φ3(x) must satisfy the following quadratic equation over k(x)

φ3(x)2+c(ã1φ1(x)+ã3)φ1(x)′φ3(x)+(cφ1(x)′)2(x3+a2x
2+a4x+a6)+φ1(x)3+ã2φ1(x)2+ã4φ1(x)+ã6 = 0.

Since k(x) is a field there are at most two possible values for φ3(x).
9.8.3: [3]P = OE if and only if [2]P = −P . Hence, if P = (x, y) is such that [3]P = OE

then λ2 = 3x = 0 where λ = (3x2 + 2a2x+ a4)/(2y) = (2a2x+ a4)/(2y). The statements
all follow from this.

9.9.5: Use the fact that the dual isogeny of φ2− [t]φ+[d] is φ̂2− [t]φ̂+[d] since [̂t] = [t]
etc.

9.10.4: For each y ∈ Fp there is a unique solution to x3 = y2 − a6 and so there are p
solutions to the affine equation. Counting the point at infinity gives the result.

9.10.5: Write the curve as y2 = x(x2 + a4). Since −1 is not a square, for any x ∈ Fp
we have either x(x2 + a4) = 0 or exactly one of x(x2 + a4) and −x(x2 + a4) is a square.
Hence there are p solutions to the affine equation.

9.10.10: Maintain a pair of the form (ti, ti+1). So start with (t1 = t, t2 = t2 − 2q).
Given (ti, ti+1) we can compute (t2i, t2i+1) by first computing t2i and then t2i+1 using the
above formulae. To go from (ti, ti+1) to (t2i+1, t2i+2) one computes t2i+1 = titi+1 − qit
and t2i+2 = t2i+1− 2qi+1. One can then perform a ladder algorithm (working through the
binary expansion of n) as in Lemma 6.3.19.

9.10.11: The first statement is easy to verify by counting points. The second statement
follows since ifm | n then Ea(F2m) is a subgroup of Ea(F2n) and so #Ea(F2m) | #Ea(F2n).
Also, if m ≥ 3 then #Ea(F2m) > 4. Hence, it suffices to restrict attention to prime values
for n in the third part. The values for E1 are 5, 7, 11, 17, 19, 23, 101, 107, 109, 113, 163
and the values for E0 are 5, 7, 9, 13, 19, 23, 41, 83, 97, 103, 107, 131.

9.10.21: The possibilities are p+ 1± 46 and p+ 1± 60. One can test which arises by
choosing a random point P ∈ E(Fp) and computing [p+ 1− t]P for each choice of t. One
finds that the orders are p+ 1 + 46, p+ 1− 60, p+ 1− 46, p+ 1− 46 respectively.

614 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

9.10.22: The equation p = a2 + ab + b2 implies p = (a − bζ3)(a − bζ23) and the
corresponding value for π+ π as in Theorem 9.10.18 is (2a− b(ζ3 + ζ23)) = 2a+ b. To get
the other solutions one notes that the solutions to x2 + xy + y2 = p are obtained from
(a, b) via the symmetries (a, b) 7→ (−a,−b); (a, b) 7→ (b, a) and (a, b) 7→ (b, a + b) which
corresponds to (a− bζ3) 7→ ζ3(a− bζ3). One finds 12 pairs (a, b) and these give rise to the
6 values for t claimed.

9.11.1: The first claim is proved by induction, starting with t ≡ 0 (mod p). For the
second claim, recall that points in E[p] correspond to roots of the p-th division polynomial
and hence must be defined over some finite extension of Fq. But if E(Fqn) has a point of
order p then #E(Fqn) ≡ 0 (mod p).

9.11.10: We have (ignoring for the moment the easy case P (T) = (T±√q)2) 1
qP (T

√
q) |

Φm(T 2) | T 2m− 1 = (Tm− 1)(Tm+ 1) in R[x] for some m ∈ {1, 2, 3, 4, 6}. It follows (this
requires some work) that P (T) | (Tm − qm/2)(Tm + qm/2) in Z[x]. Hence, if α is a root
of P (T) then αm = ±qm/2 ∈ Z. Similarly, #E(Fq) = P (1) | (qm − 1).

9.11.14: Take any supersingular elliptic curve E1 over Fp with #E(Fp) = p + 1 and
let E2 be a non-trivial quadratic twist.

9.12.6: The statements about (X1, Z1) and (X2, Z2) are immediate. For the others,
substitute Xn/Zn, Xm/Zm and Xm−n/Zm−n for x1, x2 and x4 in Lemma 9.12.5.

9.12.7: The idea is to store (Xn, Zn, Xn+1, Zn+1) (takingm = n+1 we have (Xm−n, Zm−n) =
(xP : 1) and so the above formulae may be used). The exponentiation is done using
a “ladder algorithm” (analogous to Lemma 6.3.19) which computes either (X2n, Z2n,
X2n+1, Z2n+1) or (X2n+1, Z2n+1, X2n+2, Z2n+2). Every step is therefore a doubling and
an addition. See Algorithm 13.35 of [16]. For the improved formulae see [436] or Section
13.2.3.a of [16].

9.12.8: One has

[2](x, y) = (Bλ2 − 2x− a2, ⋆)

where λ = (3x2 + 2a2x + a4)/(2By) and where the formula for the y-coordinate is not
relevant here. Solving [2](x, y) = (0, 0) is solving Bλ2 = 2x+a2 and so 0 = (3x2 +2a2x+
a4)2 − 4(x3 + a2x

2 + a4x)(2x+ a2) = (x2 − a4)2. Hence, x = ±√a4 and the y-values are

±
√
x(x2 + a2x+ a4)/B as stated.

9.12.10: The point (1, 1) on (A+ 2)y2 = x(x2 +Ax+ 1) has order 4.

9.12.17: Homogenising gives the equation (ax2 +y2)z2 = z4 +dx2y2 and setting z = 0
leads to the equation dx2y2 = 0 and hence the two points (1 : 0 : 0) and (0 : 1 : 0). To
show that (1 : 0 : 0) is singular it suffices to set x = 1 and show that the point (0, 0) on
(a+ y2)z2 = z4 + dy2 is singular, which is easy. The other case is similar.

9.12.23: Writing the curve equation as x2 = (1 − y2/(a − dy2) the quadratic twist is
ux2 = (1− y2)/(a− dy2) which gives the result.

9.12.24: Follows directly from Theorem 9.12.12.

9.12.27: Irreducibility follows since y2− g(x) must factor as (y+ g1(x))(y+ g2(x)) and
it follows that g2(x) = −g1(x) (which is prohibited by a2 6= d). The point (0 : 1 : 0) on
y2z2 = x4 + 2ax2z2 + z4 is singular. An affine singular point on C must satisfy y = 0,
4x(dx2 + a) = 0 and dx4 + 2ax2 + 1 = 0, which again is impossible if a2 6= d.

The birational map is easy to verify: 2Y 2 = X(2X/x2) and X(X2−2aX+(a2−d)) =
X(a2 + 2a(y + 1)/x2 + (y + 1)2/x4 − 2a2 − 2a(y + 1)/x2 + a2 − d) and the result follows
by substituting for y2. Finally, the discriminant of X2 − 2aX + (a2 − d) is 4d so when d
is a square in k then there are three points (0, 0), (a±

√
d, 0) of order 2.

9.12.29: Let P be a point of order 2 and move P to (0, 0) so that the curve is Y 2 =
X(X2 +Ax+B). Write a = −A/2 and d = a2 −B so that a twist of the curve is in the
form of equation (9.16). The result follows from Exercise 9.12.27.

615

Chapter 10: Hyperelliptic Curves

10.1.3: When we substitute z = 0 we get the equation HD−1x
D−1y = FDx

D where HD−1

(respectively, FD) is the coefficient of the monomial xD−1 (resp., xD) in H(x) (resp.,
F (x)). The possible solutions are x = 0, giving the point (x : y : z) = (0 : 1 : 0), or
HD−1y = FDx giving the point (HD−1 : FD : 0).

For the second part, we have HD = 0 and so the only point at infinity is (0 : 1 : 0).
Making the curve affine by setting y = 1 yields zD−2 + zD−1H(x/z) = zDF (x/z) and
when D > 3 every monomial has degree at least 2. Hence the two partial derivatives
vanish.

10.1.5: Make the change of variable y = Y + x3 + 1. Then

y2 + (1− 2x3)y = Y 2 + 3Y − x6 + x3 + 2

and so the affine curve is isomorphic to Y 2 + 3Y = x − 1. This curve is birational to
P1 (taking the map (x, Y) 7→ Y) and hence, by Theorem 8.6.1 and Definition 8.6.2, the
curve has genus 0.

10.1.13: If H0 = F1 = F0 = 0 then (0, 0) ∈ C(k) is singular. (This also follows since
C† is birational to C and the genus is a birational invariant.)

10.1.20: 1. One way is (x, y) 7→ (y : xd : xd−1 : · · · : x : 1). The other way is
(Y : Xd : Xd−1 : · · · : X1 : X0) 7→ (Y,Xd/Xd−1).

2. The statement about ι is clear.
3. Identifying Xi = xizd−i it follows that points at infinity (i.e., with z = 0) have

Xi = 0 when 0 ≤ i < d.
4. Set Xd = 1 to give the point (Y,Xd−1, . . . , X0) = (α, 0, . . . , 0) on the affine curve

Y 2 +H(Xd−1, . . . , X0)y = F (Xd−1, . . . , X0)

together with various other equations, including Xi = X⌈(d+i)/2⌉X⌊(d+i)/2⌋ for 0 ≤ i ≤ d−
2. One must determine the Jacobian matrix (see Theorem 7.1.12 and Corollary 7.1.13) at
the point (α, 0, . . . , 0). The number of variables is d+1 and the dimension is 1, so we need
to show that the rank is d. Note that each of the d−1 equations Xi = X⌈(d+i)/2⌉X⌊(d+i)/2⌋
yields a row (0, 0, . . . , 0, 1, 0, . . . , 0) in the Jacobian matrix (with the 1 corresponding to
variable Xi). Hence, the rank is at least d− 1. The curve equation yields the row

(2α+Hd, Hd−1α− F2d−1, 0, . . . , 0)

in the Jacobian matrix, so to complete the proof we must show that either 2α+ Hd 6= 0
or Hd−1α+ F2d−1 6= 0. Note that at least one of {F2d, F2d−1, Hd} is non-zero, otherwise
we would replace d by d− 1.

If char(k) 6= 2 and both terms are zero then α = −Hd/2 which implies that F2d =
−(Hd/2)2 and F2d−1 = −HdHd−1/2 which violates the condition of Lemma 10.1.8. If
char(k) = 2 then we must consider the three cases in Lemma 10.1.6. The first case is
α = 0 and F2d−1 6= 0 and so Hd−1α+F2d−1 6= 0. The second and third cases have Hd 6= 0
and so 2α+Hd = Hd 6= 0.

10.1.23: The statement v∞(x) = −2 follows from the fact that vρ(∞)(Z) = 2 as in

Lemma 10.1.21. The second claim follows since ∞ = (1 : 0 : 0) and 1/x = c(y/xd)2 for
some constant c, in which case c(y/xd) = xd−1/y. The third claim is immediate from
Lemma 10.1.22.

10.1.25: Write d = g + 1. Note that

v∞(y) = v∞((y/xd)xd) = v∞(y/xd) + dv∞(x).

616 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

Hence, if C is in ramified model then v∞(y) = 1− 2d = −(2d− 1) = −(2g+ 1). Similarly,
if C is in split model then v∞+(y) = 0− d = −(g + 1).

10.1.26: vP (A− yB) + vP (A− (−y−H)B) = vP (A2 +HAB−FB2) which is 2e when
P = ι(P) and is e otherwise.

10.1.27: A uniformizer at ∞+ is Xd−1/Xd if ι(∞+) 6= ι(∞+) and Y/Xd − α+ other-
wise.

10.1.28: The choice of the leading coefficient already implies deg(G+(x)2+H(x)G+(x)−
F (x)) ≤ 2d − 1. Write G+(x) = α+xd + Gd−1x

d−1 + · · · + G0. One can solve a linear
equation in Gd−1 so that the degree of G+(x)2 + H(x)G+(x) − F (x) is at most 2d − 2.
Continuing this way one solves a linear equation for each variable Gi to lower the degree
to at most d+ i− 1. The result for G−(x) follows by starting with α− instead of α+.

10.1.29: First note that (y − G+(x))/xd = (y/xd − α+) + (1/x)G(1/x) for some
G(x) ∈ k[x] and so is zero at ∞+. Since α+ 6= α− it follows that (y − G+(x))/xd is
not zero at ∞−. Also, v∞−(y −G+(x)) ≥ max{v∞−(y), v∞−(G+(x))} = −d = −(g + 1)
Now, deg(G+(x)2 + H(x)G+(x) − F (x)) ≤ d − 1 = g so the affine effective divisor
div(y−G+(x)) ∩A2 has degree at most g. Since div(y−G+(x)) must have degree 0 and
v∞−(y −G+(x)) = −(g + 1) it follows that v∞+(y −G+(x)) ≥ 1.

One can also complete the proof directly from the equation

(y −G+(x))(−y −H(x)−G+(x)) = G+(x)2 +H(x)G+(x)− F (x),

the right hand side of which is a polynomial of degree at most g. It follows that the
negative integer v∞+(y −G+(x)) + v∞+(−y −H(x)−G+(x)) is at least −g.

10.2.4: This is similar to Exercise 9.5.5.
10.2.5: First take a root α of F (x) and move it to ∞. Then perform a change of

variable on the remaining roots so that one is 0, another is 1 and change y so that the
polynomial is monic.

10.2.7: Follows immediately from Theorem 10.2.1.
10.3.8: If P = (xP , yP) 6= ι(P) and (x − xP)eP ‖u(x) then the claim is immediate

from vP (u(x)) = eP and vP (y − v(x)) = vP ((y − v(x))(−y −H(x) − v(x)) = vP (v(x)2 +
H(x)v(x) − F (x)) ≥ vP (u(x)). If P = ι(P) = (xP , yP) then y − yP is a uniformizer at
P . We have vP (u(x)) = vP (x − xP) = 2 and since v(x) = yP + (x − xP)G(x) for some
polynomial G(x) ∈ k[x] we have vP (y − v(x)) = vP ((y − yP)− (x − xP)G(x)) = 1.

10.3.11: The first statement follows from the following two facts: (1) if D is effective
then so is σ(D); (2) σ(ι(P)) = ι(σ(P)). The second follows since σ(D) =

∑
P nP (σ(P))

and if u(x) =
∏
P (x − xP)nP then σ(u(x)) =

∏
P (x − σ(xP))nP =

∏
P (x − xσ(P))

nP

etc. The third statement follows from the second and the uniqueness of the Mumford
representation.

10.3.12: Since the ui(x) are co-prime the composition does not have any special cases
and the equality of divisors is clear. This can also be seen by considering points over k.

10.3.15: Note that ι(6, 4) = (6, 4) and so 2D1 ≡ 2(0, 4). The answers are (x2 +
5x, 4), (x2 − x,−3x+ 4), (x2, 10x+ 4), (x4 + 4x3 + 6x2, 4 + 10x+ 6x2 + 3x3).

10.3.16: All polynomials are of degree O(m) and multiplication, computing the ex-
tended gcd, and division can be performed in O(m2) field multiplications.

10.4.2: The inverse of D =
∑

P nP (P) is ι∗(D) =
∑

P nP (ι(P)). Hence, since the
points P in the divisor class represented by (u(x), v(x)) are of the form (xi, v(xi)) where
u(xi) = 0 the corresponding points for the inverse of D are (xi,−v(xi) − H(xi)). The
result follows.

10.4.5: Just re-arrange the equation D3 − d3(∞) ≡ D1 − d1(∞) +D2 − d2(∞).
10.4.8: One has v∞−(y−v‡(x)) = v∞−(y−G+(x)) = −d. The affine part of the second

claim is already proved in the proof of Lemma 10.4.6. Since deg(div(y − v‡(x))) = 0 it

617

follows that v∞+(y− v‡(x)) = −(du + du† − d). (There is also a direct proof of this fact.)
10.4.15: This is very similar to the proofs of Lemma 10.4.6 and Lemma 10.4.11.
Let du = deg(u(x)). The leading d − (du − 1) coefficients of v‡(x) agree with G+(x)

and hence deg(v‡(x)2 +H(x)v‡(x)− F (x)) ≤ 2d− (d− (du − 1)) = d+ du − 1. It follows
that deg(u†(x)) ≤ d− 1. Since v∞−(y − v‡(x)) = −d and since div(y − v‡(x)) has degree
0 one has v∞+(y − v‡(x)) = −(deg(u(x) + deg(u†(x)) − d). The result follows from the
analogue of equation (10.17).

10.4.17: Clearly,

ι∗(D + n(∞+) + (g − du − n)(∞−)−D∞)

= ι∗(D) + n(∞−) + (g − du − n)(∞+)− ι∗(D∞))

When g is even then ι∗(D∞) = D∞ and the result is immediate by Exercise 10.4.2. When
g is odd note that ι∗(D∞) = D∞ + (∞−)− (∞+) and so

ι∗ (D + n(∞+) + (g − deg(u(x))− n)(∞−)−D∞)

= ι∗(D) + (n− 1)(∞−) + (g − deg(u(x)) − n+ 1)(∞+)−D∞.

If n = 0 then this divisor is not effective and so it is necessary to perform composition
and reduction at infinity.

10.4.20: This is the special case D1 = D2 = 0, n1 = 0, n2 = ⌈g/2⌉ + 1 of Theo-
rem 10.4.19, since D = (1, 0, 0) is principal.

10.4.21: This follows from Theorem 10.4.19.
10.4.22: Let ρP (x, y) = (1/(x− xP), y/(x− xP)g+1) map P to ∞+. If div(f(x, y)) =

n((P)− (ι(P)) then div(f ◦ ρ−1
P) = n((∞+)− (∞−)).

10.5.2: By Lemma 8.1.3 and Theorem 8.2.7 we know φ is surjective. Hence, for any
P ∈ E(k) choose any point P ′ ∈ C(k) such that φ(P ′) = P and let P ′′ ∈ C(k) be such
that φ(P ′′) = OE . Then φ∗((P ′)−(P ′′)) = (P)−(OE) as required. The second statement
follows since the kernel of φ∗ is contained in the kernel of φ∗φ∗ = [deg(φ)].

10.6.3: See Mumford [445] pages 3.31-3.32.
10.7.7: An elegant proof using power series is given in Exercises 17.19 and 17.20 of

Shoup [556].
10.7.8: One has t1 = 0, t2 = −42, t3 = 0. Hence a1 = 0, a2 = 21 and a3 = 0. It follows

that #Pic0F7
(C) = 512.

10.7.14: First, one needs to count various types of points in C(Fq) and C(Fq2). Note
that there is a single point at infinity∞ on C(Fqn) for all n ∈ N. Write m for the number
of roots of F (x) in Fq. Let u = 1

2 (N1 − 1−m) = 1
2 (q − t1 −m). Then there are u values

for xP ∈ Fq such that there are points P = (xP , yP) ∈ C(Fq) with P 6= ι(P). Hence
#C(Fq) = 1 + m + 2u. There are q possible values for xP ∈ Fq. We have shown that
m+u of them arise as x-coordinates of points in C(Fq) (i.e., F (xP) is a quadratic residue
for those values). For the remaining q −m − u values xP it follows that F (xP) is not a
square in Fq. But F (xP) is a square in Fq2 so xP must arise as the x-coordinate of a point
in C(Fq2). Hence there are q −m− u = 1

2 (q + t1 −m) such values for xP . Hence, there
are 1

2 (q −m+ t1) points P = (xP , yp) ∈ C(Fq2) with xP ∈ Fq, yP 6∈ Fq and P 6= ι(P).
Exercise 10.4.4 classifies divisor classes so it is sufficient to count the number of rep-

resentatives for each case. Case 1 gives N1 divisor classes.
For case 2, let m be the number of roots of F (x) in Fq. Therefore, there are m + 1

points P ∈ C(Fq) such that P = ι(P). Hence, case 2 gives N1 − 1−m divisor classes.
For case 3, we first count the set of pairs (P,Q) such that P,Q 6=∞, andQ 6∈ {P, ι(P)}.

There are N1 − 1 choices for P , and for each there are either N1 − 2 or N1 − 3 choices
for Q (depending on whether P = ι(P) or not). Finally, since in this case we always have

618 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

P 6= Q, the number of choices for {P,Q} is half the number of pairs (P,Q). Hence the
total number of divisor classes in case 3 is

1
2 ((N1 −m− 1)(N1 − 3) +m(N1 − 2)).

We finally consider case 4 of Exercise 10.4.4. Note that K = Fq2 is the unique quadratic
extension of Fq. We have P = σ(P) if and only if P ∈ C(Fq). Hence, the number of
choices for {P, σ(P)} is 1

2 (N2 − N1). From these choices we must subtract the number
of pairs {P, σ(P)} such that σ(P) = ι(P). This happens when xP ∈ Fq but yP 6∈ Fq and
by the above argument there are 1

2 (q −m+ t1) such points. Hence, the total number of
divisor classes in case 4 is

1
2 (q2 + 1− t2 − (q + 1− t1)− (q −m+ t1)) = 1

2 (q2 − 2q − t2 +m).

Adding up all the cases gives

(q + 1− t1) + (q − t1 −m) + 1
2 (q2 − q(2t1 + 2) + t21 + 2t1 +m) + 1

2 (q2 − 2q − t2 +m)

which simplifies to

q2 − t1q + (t21 − t2)/2− t1 + 1

as required.
10.9.4: This proof follows the same layout as Lemma 9.11.8 and Corollary 9.11.9. The

details are given in [218].
10.9.6: We have p | a1 and p | a2, which is equivalent to the conditions for supersin-

gularity.
10.9.7: First, simply show that #C(F2nk) is always odd and so t1 and t2 (notation

as in Lemma 10.7.6) are even. Hence a1, a2 are even (for the details of this calculation
see Lemma 2 of [218]). The result then follows from part 1 of Theorem 10.9.5 and
Exercise 10.9.6.

Chapter 11: Basic Algorithms for Algebraic Groups

11.1.2: If a is odd at any stage then the new value (a− ai) ≡ 0 (mod 4) so the non-zero
coefficient ai is followed by ai+1 = 0.

11.1.6: 100 = 10100100 etc.
11.1.9: The largest possible NAF of length l + 1 is 2l + 2l−2 + 2l−4 + · · · and taking

dl = 2l−2 + 2l−4 + · · · + 1 when l is even and dl = 2l−2 + 2l−4 + · · · + 2 when l is odd
gives the formula for dl. If al = −1 then a = −2l + dl < 0, which is a contradiction. The
minimal value for a is therefore 2l − dl. One can check that 2l + dl + 1 = 2l+1 − dl+1.
Finally, 2l+1/3 < 2l − dL ≤ a so l ≤ log2(a) − log2(2/3) ≈ log2(a) + 0.585. Since the
binary expansion of a requires ⌊log2(a)⌋+ 1 bits the result follows.

11.1.15: Write Nk for the number of NAFs of length k (so k = l + 1 in the above
notation). We have N1 = 3 and N2 = 5. Also Nk+1 = Nk + 2Nk−1 from which the
formula follows.

11.1.21: Essentially the same proof as Lemma 11.1.8. See Proposition 2.1 or Muir and
Stinson [442].

11.1.23: Proposition 2.4 of Muir and Stinson [442].
11.1.26: 300070007 and 10010001001.
11.2.2: There are 2n values ub1,...,bn to compute: n + 1 of them come for free (corre-

sponding to the vectors (b1, . . . , bn) that are all zero or have only one non-zero entry) and,
if the computation is organised appropriately, each of the others can be obtained from

619

an earlier value using one additional multiplication. The second claim of the exercise is
clear.

11.2.3: For windows of length w one must precompute all ub1,...,bn =
∏n
i=1 g

bi
i for

0 ≤ bi < 2w under the constraint that at least one of the bi is odd. The number of such
values is 2nw − 2n(w−1) of which n come for free. Hence the precomputation requires
2nw−2n(w−1)−n multiplications (actually, when w > 1 the computation can be arranged
so that some of these are squarings). See Yen, Laih and Lenstra [638] for details.

11.2.4: See Algorithm 3.51 of [274].
11.3.1: Given P = (xP , yP) compute a solution to λ2Q + λQ = xP + a2, determine

whether the corresponding value of x2Q satisfies the trace condition (and if not, replace
λQ by λQ + 1), compute a square root (which is easy in finite fields of characteristic two),
and solve for yQ. See Knudsen [342] for details.

11.3.4: The cost depends on the number of non-zero values for ai, which is the weight.
The number of elliptic curve additions is one less than the weight. We ignore the cost of
computing the Frobenius maps.

11.3.10: Let n0 = 107 and n1 = 126 so a0 = −1 and the new values for (n0, n1) are
(180,−54). The Frobenius expansion is

−1− π5 − π7 − π9 + π11 + π13 + π16.

11.3.13: P ∈ E(Fpm) if and only if (πm − 1)P = OE .
11.3.16: It is clear that P is in the kernel of the endomorphism corresponding to this

polynomial. Now, note that (x19 − 1)/(x− 1) ≡ −457 + 314x (mod x2 − x+ 2) and that
−457 + 314π has norm r. Rounding n(−457 + 314π̄)/r gives −67− 148π from which we
get

n− (−67− 148π)(−457 + 314π) = −107− 126π

as was found using the GLV method.
11.3.19: One first precomputes all

∑w−1
j=0 [aj]π

j(P). To do this one computes all [aj]P ,
which needs one doubling and (when q is odd) (q − 5)/2 additions or (when q is even)
q/2 − 2 additions. One computes [aj]π

j(P) as πj([aj]P) and we ignore the cost of this.
To compute all the terms requires at most qw−1 additions. Hence, the total cost of
precomputation is at most q/2 + qw−1 group operations.

The exponentiation itself then requires at most (l + 1)/w additions.
11.3.20: First compute integers a′0, a

′
1 such that a′0 + a′1π ≡ a(π) (mod π2 − tπ + q)

(this can be done efficiently using Lucas sequences). Then find the eigenvalue λ for π by
computing gcd(x2− tx+ q, xm−1). Finally, compute a ≡ a′0 +a′1λ (mod r). See Brumley
and Järvinen [112].

11.3.23: Analogous to the method at the end of Section 11.3.2.
11.3.24: The first claims are immediate since #E(Fp2) = (p + 1 − t)(p + 1 + t). The

map ψ is an endomorphism since ψ, π and φ−1 are endomorphisms (alternatively, because
ψ is a morphism fixing OE′). One can directly compute that ψ2 = [−1]. The formula
ψ2 − [t]ψ + [p] = 0 follows since π satisfies this formula and ψ is just a conjugation of π.
Since r2 ∤ #E′(Fp2) it follows that ψ(P) ∈ 〈P 〉 and so λ exists. The formula for λ follows
from solving the simultaneous equations λ2 ≡ −1 (mod r) and λ2 − tλ+ p ≡ 0 (mod r).

11.4.7: Let S be the set of integer k-tuples (a1, . . . , ak) with 0 ≤ ai < mi for 1 ≤ i ≤ k.
Let T be the set of (a1, . . . , ak) ∈ S in such that the value of equation (11.2) is 1. Then∏
i g
ai
i =

∏
i g
bi
i if and only if the vector with entries ai − bi (mod mi) for 1 ≤ i ≤ k lies

in T . It follows that #G = #S/#T and that the method samples uniformly from the
group G.

11.4.9: A simple solution is to choose a, b ∈ Fq uniformly at random and reject if
a2 − ab + b2 = 1. This happens with probability roughly 1/q. One can then use the

620 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

decompress map to obtain an element of G6,q. This process misses several points in G6,q,
such as the element 1 and the element θ2 of order 3 (which corresponds to the point
(0, 0, 0) not appearing in the image of the map g in Example 6.4.4).

11.4.10: The expected number of trials to get a soluble quadratic equation is roughly
2 (precisely, there are at least (q−2

√
q)/2 values for x0 such that y2+H(x0)y−F (x0) is a

square in Fq and so the probability to be successful is at least (q−2
√
q)/(2q) ≈ 1/2). One

solves the quadratic equation either by computing square roots using Exercise 2.14.3 (ex-
pected complexity of O(log(q)2M(log(q))) bit operations) or, in the case of characteristic
2, by Lemma 2.14.8 (complexity O(log(q)3) bit operations). The goto statement in line
14 occurs with probability at most 1

2
3
q <

1
2 and so the expected number of repeats is less

than 2. Hence, the algorithm for finding random points on elliptic curves has expected
complexity O(log(q)4) bit operations.

11.4.12: See Section 5 of Shallue and van de Woestijne [545].
11.4.13: The first claim is checked by an elementary calculation. For the second claim

equate y − ux = v = (3A − u4)/(6u) and compute the roots in Fq of the polynomial
6u(y − ux)− (3A− u4).

11.4.17: Set l′ = l/n and use the method of Example 11.4.2 n times with l′-bit strings.
11.5.2: When the algorithm ends, the points P and Q generate the subgroup of E(Fq)

of order N0. One simply adds to P a point R of order N1 (found using an analogue of
Algorithm 5).

11.5.3: If the group is cyclic then the probability that a random element is a generator
is ϕ(le)/le = 1 − 1/l. Hence, the probability that among two elements at least one of
them is a generator is 1− (1− (1− 1/l))2 = 1− 1/l2.

If the group is not cyclic, suppose its structure is (Z/lfZ) × (Z/le−fZ) where 1 ≤
f ≤ e− f . Consider the projection of points {P,Q} to elements {(p1, p2), (q1, q2)} of this
group. The points generate E(Fq)[le] if and only if the vectors {(p1, p2), (q1, q2)} are a
basis for the vector space (Z/lZ)2. Hence, one needs the first vector to be non-zero (this
occurs with probability 1−1/l2) and the second vector to not lie on the line corresponding
to the first vector (this occurs with probability 1− 1/l).

The probability of success overall is therefore the product for all primes li, which gives
the stated formula. Finally, ϕ(N0)/N0 > 1/(3 log(log(N0))) = O(1/ log(log(q))) and

∏

l|N0

(
1− 1

l2

)
>
∏

l

(
1− 1

l2

)
= ζ(2)−1 = 6/π2 = O(1)

where the second product is over all primes l. Hence one expects O(log(log(q))) iterations
overall.

For generalisations and more detail see Section 6.1 of Miller [429].
11.6.2: Use point halving to attempt r− 1 halvings and then check whether the point

can be halved further over Fq (this is only possible if the original point has odd order).
11.7.2: First, we know that Tr(xP) = Tr(a2) = 0. We may assume that xP 6= 0 and

so

(yP /xP)2 + (yP /xP) = xP + a2 + a6/x
2
P .

Hence, Tr(a6/x
2
P) = 0 and so Tr(

√
a6/xP) = 0. It is immediate that (0,

√
a6) has order

2, and since Tr(0) = 0 it follows that it can be halved in E(F2n). The statement about
(xP , yP) + (0,

√
a6) follows from the formulae for the group law. Since (xP , yP) and

(0,
√
a6) can both be halved, their sum can also be halved; this also follows directly since

Tr(
√
a6/xP) = 0.

The receiver gets an n− 1 bit string representing either xP or
√
a6/xP . The receiver

then computes the corresponding value z ∈ {xP ,
√
a6/xP }. One can verify that, in both

621

cases, Tr(z + a2 + a6/z
2) = 0. Hence, one can solve u2 + u = z + a2 + a6/z

2 for u ∈ F2n

such that Tr(u) = 0. If z = xP then u is yP /xP . If z =
√
a6/xP then u is

yP
xP

+

√
a6

xP
+ xP + 1,

which does satisfy Tr(u) = 0. In both cases, one determines the corresponding value y as
y = uz.

It remains to determine the two cases. Suppose 2i‖#E(F2n). Then P can be halved
at least i times while (0,

√
a6) can only be halved i− 1 times. It follows that P + (0,

√
a6)

can only be halved i − 1 times. Hence, if one can repeatedly halve (z, y) at least i times
then set xP = z and yP = xPu. Otherwise, set xP =

√
a6/z and solve for yP subject to

Tr(yP /xP) = 1. For further discussion see King [339].
11.7.3: Use action of 2-power Frobenius on xP (represented using a normal basis) so

that the least significant bits are a predictable bit pattern (for example, the longest run
of ones followed by a zero). Since the expected length of the longest run of ones is roughly
log2(n) one can expect to save this many bits. One can also combine this method with
the Seroussi trick of Example 11.7.1. For details see Eagle, Galbraith and Ong [188].

Chapter 12: Primality Testing and Integer Factorisation using Algebraic
Groups

12.1.4: See Section 3.6 of Crandall and Pomerance [162].
12.1.5: (Gordon [262]) Let E : y2 = x3 + x which has N + 1 points over Z/NZ when

N is prime. So choose a random point P ∈ E(Z/NZ) (by choosing a random x and
computing y =

√
x3 + x using the Tonelli-Shanks algorithm) and compute [N + 1]P and

see if it is OE . If anything goes wrong then N is not prime.
12.1.6: If N is prime then the elliptic curve E : y2 = x3 + a4x has N + 1 ± 2a

points for some integer a such that p = a2 + b2 (there are four possible group orders); see
Example 9.10.20. Hence, given N one can run the Cornacchia algorithm to compute a
and b, choose a random point P ∈ E(Z/NN), and test whether [N + 1 ± 2a]P = OE ; if
anything goes wrong then one deduces that N is composite.

12.1.8: Since N − 1 = 24 · 35 the Miller-Rabin sequence for the base 2 is

263, 166, 67, 1, 1.

The fact that 67 6≡ −1 (mod 561) implies that 561 is composite.
Indeed, the non-trivial solution to x2 ≡ 1 (mod N) leads to a partial factorisation

of N via x2 − 1 = (x + 1)(x − 1) ≡ 0 (mod N). In this case, gcd(67 − 1, 561) = 33.
Unfortunately the Miller-Rabin test is not a good factoring algorithm since the condition
aN−1 6≡ 1 (mod N) is usually not satisfied.

12.2.4: Choose q, then find x0 such that Φk(x0) ≡ 0 (mod q), then choose p = x0 + lq
for suitable l. See Section 3.1 of Lenstra and Verheul [375].

12.2.5: A solution is Gordon’s algorithm; see Algorithm 4.53 of [418].
12.2.7: Theorem 4.1.1 of [162].
12.2.9: Theorem 4.1.3 of [162].
12.2.10: Generate a random prime q together with certificate (using, for example,

Maurer’s algorithm [403]) and determine if p = 2q + 1 is prime. It is easy to form a
certificate for p.

12.3.6: Since there are B/ log(B) primes we can save a log(B) term as long as one can
find the next prime in O(log(B)M(log(N))) bit operations; in practice this is easily done
(e.g., using a sieve or Miller-Rabin).

622 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

12.3.7: List the primes B < Q1 < Q2 < · · · < Qk ≤ B and use the fact that
bQi+1 ≡ bQibQi+1−Qi (mod N). One precomputes all the increments bQi+1−Qi (mod N).

12.3.8: Apply Theorem 2.16.1.
12.3.9: See Williams [634] (note that he credits Guy and Conway for the suggestion).

12.5.1: Exercise 2.2.9 showed that one can determine if N is a prime power (and factor
it) in polynomial time. So suppose N has at least two distinct prime factors. If p2 | N
then either p < N1/3 or N/p2 < N1/3. Use the Pollard-Strassen method with B = ⌈N1/6⌉
to find all prime factors of N that are less than N1/3 in Õ(N1/6) bit operations. Then
test whether the remaining unfactored part of N is a perfect power.

Chapter 13: Basic Discrete Logarithm Algorithms

13.0.3: Split N using Miller-Rabin style idea once know order of random g modulo N .

13.2.7: First show, using calculus, that f(x) = x/ log2(x) is monotonically increasing
for x ≥ 2.7183. Hence deduce that if B ≥ 4 and 2 ≤ x ≤ B then x ≤ B log2(x)/ log2(B).
Finally, prove the result using induction on n.

13.3.3: Set m = ⌈
√
r/2⌉ and loop giant steps up to ⌈

√
2r⌉.

13.3.4: Let X be the random variable max{x, y} over (x, y) ∈ [0, r]2. If 0 ≤ t ≤ r then
Pr(X ≤ t) is the area of the box [0, t]2 divided by the area of [0, r]2, i.e., t2/r2. Hence,
Pr(X > t) = 1−t2/r2 and the expected value of X is

∑r
t=0 Pr(X > t) ≈

∫ r
0 (1−t2/r2)dt =

2r/3. Hence, choosing both tables to have size
√
r gives an algorithm with average-case

running time 2 2
3

√
r group operations and which requires storing the same number of

group elements. See Section 3 of Pollard [488].

13.3.6: It is convenient to replace h by hg−b so that h = ga with 0 ≤ a < w. Then set
m = ⌈

√
w/2⌉ and run Algorithm 14 with trivial modifications (the while loop now runs

to 2m).

13.3.7: Let m = ⌈√w/2⌉. If h = ga then write a = a0 + 2ma1 where −m ≤ a0 ≤ m
and 0 ≤ a1 ≤ 2m. Then one needs m group operations to produce the list of baby steps
ga0 and, on average, 1

22m = m group operations for the giant steps.

13.3.8: We have a = b + ma1 for some integer a1 in the range 0 ≤ a1 < w/m. Let
h1 = hg−b and g1 = gm. Then h1 = ga11 . The BSGS algorithm can be used to solve this

problem in O(
√
w/m) group operations.

13.3.9: See van Oorshot and Wiener [472].

13.3.10: One can just run BSGS twice, but a better solution is to set m = ⌈
√

2w⌉,
h1 = hg−b1 and h2 = hg−b2 . One computes m baby steps as usual and then computes
m/2 giant steps starting from h1 and another m/2 giant steps starting from h2.

13.3.11: Solve the DLP instance 1 = ga.
13.3.13: Blackburn and Teske [60].

13.3.14: By Exercise 11.1.15 the number of NAFS is ≈ 2n+2/3. If a is a NAF then
a = a0 + 2⌈n/2⌉a1 where a0 and a1 are NAFs of length l = ⌈n/2⌉. There is an efficient
procedure to list all NAFs a0 of length l (see Exercise 11.1.16) so one can compute and
store all ga0 in a sorted list. This gives a BSGS algorithm requiring O(2⌈n/2⌉+2/3) time
and space.

13.4.6: See Maurer [404].

13.5.4: Let m = ⌊l/2⌋. Use the equation

ga11 · · · gamm = hg
−am+1

m+1 · · · g−all .

Let N1 = #S1 · · ·#Sm and N2 = #Sm+1 · · ·#Sl. Compute and store the left hand side
of the equation in time and space O(N1) then compute the right hand side and check for

623

a match. The running time is O(N1 + N2) group operations and the storage is O(N1)
group elements.

13.5.5: Define S ′1 = {a1 · · · a⌊l/2⌋ : aj ∈ Sj for 1 ≤ j ≤ l/2} and S ′2 = {a⌊l/2⌋+1 · · · al :
aj ∈ Sj}. We assume #S ′1 ≤ #S ′2. Compute and store (ga1 , a1), sorted according to

the first component, for all a1 ∈ S ′1 then compute each ha
−1
2 for a2 ∈ S ′2 and check for a

match with the earlier list. The running time is O(#S ′1 + #S ′2) group operations and the
storage is O(#S ′1) group elements.

13.6.10: Find the largest α ∈ R such that α ≤ 1/2 and M ≥
(⌈αn⌋
⌊αw⌋

)
. Compute M

“baby steps” and then
(n−⌈αn⌋
w−⌊αw⌋

)
“giant steps”.

13.8.2: A solution is to sort L1 and then, for each x2 ∈ L2 to check whether x2 ∈ L1.
For the “hash-join” solution see Wagner [625].

13.8.5: See Wagner [625].

13.8.7: D = {x ∈ {0, 1}n : LSBm(x) = 0}.
13.8.9: See Wagner [625].

Chapter 14: Factoring and Discrete Logarithms using Pseudorandom Walks

14.1.3: By solving e−l
2/2N < p) for l, for probability 0.99 the number of trials needed is

≈ 3.035
√
N and for probability 0.999 the number of trials is ≈ 3.717

√
N .

14.2.4: lt = 20, lh = 10, so x20 ≡ x40 (mod p). The walk in this example is mostly
squarings, which is “not very random” and which justifies why lt + lh is so much larger
than

√
πr/2.

14.2.5: lt = 7, lh = 6, so first collision is x12 = x24.

14.3.3: Solving e−α = 1/r (the probability to simply guess the correct solution to the
DLP) gives α = log(r).

14.2.18: On can store some bits of H(xn), where H is a hash function. A further
variant is for the clients not to compute or store the values ai and bi. Instead, the
algorithm is structured so that the values (a0, b0) of the initial point x0 = ga0hb0 are a
function of a short random “seed”; the client then sends the end-point of the walk and the
seed to the server. The server then re-calculates the walk, this time including the values
ai and bi, once a collision has been detected. We refer to Bailey et al. [25] for details.

14.2.21: Each step of the algorithm requires computing ga0hb0 for random 0 < a0, b0 <
r, which (naively) requires 3 log2(r) group operations. The cost can be reduced to around
log2(r) (and even further) with modest precomputation and storage. In any case the
total cost of the algorithm would be around 1.25

√
r log2(r) group operations on average,

compared with 1.41
√
r for baby-step-giant-step. The storage requirements are similar.

14.4.9: xi+2 = (xig)−1g = x−1
i . To have the cycle we need S(x̂i+1) = S(x̂i) which

occurs with probability 1/nS and we need x̂i+1 = x−1
i+1 which occurs with probability

1/NC .

14.5.6: The worst case is when h = ga with a = 0 or a = w − 1. The expected cost is
then w/(2m) +m. To minimise this take m =

√
w/2. The worst-case complexity is then

(2
√

2 + o(1))
√
w group operations.

14.5.7: Mean jump size is m ≈ 5.38. Expected length of walk is l ≈ 8.7. Probability
of success is 1− (1− 1/m)l ≈ 0.83 ≈ 5/6. See Pollard [488].

14.5.9: The algorithm doesn’t really change. Let d be the expected distance of the wild
kangaroo from the center of the interval (for the uniform distribution on {0, 1, . . . , w− 1}
we had d = w/4. Then the expected running time is d/m + 4(1 + ǫ)m/N2

P + 1/θ group

operations. The optimal value for m is NP
√
d/2, giving an average-case expected running

time 4(1 + ǫ)
√
d/NP + 1/θ group operations.

624 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

14.5.10: If w ≥ πr/8 ≈ 0.4r then one should use the rho algorithm. If w is significantly
smaller than 0.4r then one would use the kangaroo method. Determining the exact
crossover would require careful experimentation.

14.5.12: See Galbraith, Pollard and Ruprai [226].
14.6.3: The heuristic cost is w/(2m) + 4m/N2

P , which is minimised by m = NP
√
w/8.

14.7.6: We always have #(T ∩W) = r where r = #G. The heuristic complexity is
therefore (1 + o(1))

√
πr ≈ (1.77 + o(1))

√
r group operations, which is slower than Pollard

rho.
14.7.7: See Galbraith and Ruprai [227].
14.8.1 See van Oorchot and Wiener [473].
14.9.5: x2 + 1 is fast to compute and does not have any trivial fixed points or short

cycles. The other suggestions have fixed points independent of p | N .
14.9.6: The idea is that f(x) is now m-to-1, so the expected length of the rho is

shorter (this is the same as the reason why taking nS > 3 is a good idea; see the end of
Section 14.2.5). For more discussion of this specific case see Brent and Pollard [99].

14.9.7: One cannot “see” a match modulo p without computing a gcd.

Chapter 15: Factoring and Discrete Logarithms in Subexponential Time

15.1.4: We have the error term like exp(−u(log(u)+ c log(log(u)))) for a suitable function
c ≥ 1. This splits as u−u log(u)−cu. If the second term is u−f(u) for some function then
taking logs gives f(u) log(u) = cu log(log(u)) and so f(u) = cu log(log(u))/ log(u) = o(u).

15.1.7: The first 4 properties are straightforward to verify. Property 5 follows since
log(log(N)m) = m log(log(N)) < c log(N)a log(log(N))1−a = log(LN (a, c)) for suffi-
ciently large N . Property 6 follows from property 5 and property 2. To prove property 7
let f(N) = m(log(log(N))/ log(N))a and note that Ln(a, f(N)) = exp(m log(log(N))) =
log(N)m. It is easy to check that limN→∞ f(N) = 0 and so f(N) = o(1). Properties 8
and 9 are easily checked.

15.1.9: Let B = LN (1/2, c) and

u = log(N)/ log(B) = log(N)/(c
√

log(N) log(log(N))) = 1
c

√
log(N)/ log(log(N)).

The probability of being B-smooth is therefore Ψ(N,B)/N = u−u(1+o(1)) as N → ∞.
Now log(u) = log(1/c) + 1

2 (log(N) log(N)− log(log(log(N)))) = (1/2 + o(1)) log(log(N)).
The result follows.

15.2.1: For each prime p | N (necessarily odd) the equation x2 ≡ 1 (mod p) has
exactly two distinct solutions modulo p. If pe | N for e > 1 then by Hensel lifting the
equation x2 ≡ 1 (mod pe) also has exactly 2 solutions. The result follows by the Chinese
remainder theorem.

15.2.3: Some random relations are

17172 ≡ 22 · 33 · 5 · 7 (mod N)

23652 ≡ 23 · 32 · 5 · 7 (mod N)

17572 ≡ 27 · 33 (mod N)

5192 ≡ 25 · 3 · 52 (mod N)

and so the relation matrix is

2 3 1 1
3 2 1 1
7 3 0 0
5 1 2 0

 .

625

Adding the first three rows modulo 2 gives the all zero vector (again, we are lucky that
5 relations are not required) and let X = 1717 · 2365 · 1757 (mod N) and Y = 26 · 34 · 5 ·
7 (mod N). Then gcd(X − Y,N) = 73. One has N = 53 · 73.

15.2.5: See Exercise 16.5 of Shoup [556].
15.2.8: First note that (#B)2 = LN (1/2, 1 + o(1)) as required. For the second part,

write u = log(N1/2+o(1))/ log(B) and note that one expects TB ≈ uu. Now,

u = (12 + o(1)) log(u)/(12

√
log(N) log(log(N))) = (1 + o(1))

√
ln(N)/ ln(ln(N)).

Hence,

log(uu) = u log(u) = (12 + o(1))
√

log(N) log log(N).

Hence #BTB = O(LN (1/2, 1 + o(1))) = LN (1/2, 1 + o(1)). See Section 6.1 of [162] or
Section 16.4.2 of [556] for further details.

15.2.10: If x =
√
kN+ǫ then either x2−kN or kN−x2 is a positive integer ≤ 2

√
kNǫ.

The algorithm then proceeds the same way.
15.3.4: One expects to make LN(1/3, 1/(2c)+o(1)) trials until the value x is LN(2/3, c)-

smooth. One can use ECM to factor the numbers (if they are smooth) in Lp(1/2,
√

2+o(1))
operations. Inserting p = LN (2/3, c) gives the result.

15.5.1: Let u ∈ 〈g〉 ∩ G′ = {1}. The order of u divides r and (p − 1)/r. Since
gcd(r, (p− 1)/r) = 1 it follows that the order of u is 1.

15.5.2: If r < (p − 1)/r is large then one can efficiently generate a random element
δ ∈ G′ by choosing a random element w ∈ F∗

p and computing δ = wr (mod p). If
r ≥ (p− 1)/r then it is better to precompute an element g1 ∈ F∗

p of order (p− 1)/r and

then compute δ = gi1 (mod p) for a random value of i (one can speed this up further using
a Pollard-style pseudo-random walk, which is also a good solution when r is small).

15.5.3: See Algorithm 16.1 and Lemma 16.2 of Shoup [556].
15.5.7: Let B = Lp(1/2, c). By Corollary 15.1.8, TB = Lp(1/2, 1/(2c) + o(1)). Hence

the running time of the relation collection is O(Lp(1/2, 2c+ 1/(2c) + o(1))) bit operations
and the running time of the linear algebra is O(Lp(1/2, 2c+ o(1))) bit operations. The
optimal value of c is 1/2 and the complexity is as stated.

15.5.8: Let re‖(p− 1) and let γ ∈ F ∗
p have order re. Let G′ be the subgroup of order

(p − 1)/re. Generate relations of the form γzδ (mod p) with 1 < z < re and δ ∈ G′.
One needs a relation featuring g and a relation featuring h. The linear algebra is now
modulo re (see Exercise 15.4 of [556]). One finds γZ1gZ2 = 1 from which it follows that

re−1 | A and so γ
Z′

1
1 gZ2 = 1 with γ1 = γr

e−1

and Z ′
1 = Z1/r

e−1. One therefore compute
the logarithm of g to the base γ1 and similarly for h.

15.5.9: Once the first s relations are found only one relation is needed for each hi, and
this takes O(uu#BM(log(p))) = O(Lp(1/2, c + 1/(2c) + o(1))) = O(Lp(1/2, 3/2 + o(1))
bit operations (using trial division for the relations). With our current formulation the
full linear algebra has to be repeated each time (actually, this can be avoided by using a
different approach), but this only costs O(Lp(1/2, 1 + o(1))) bit operations.

15.5.10: We are testing numbers of size
√
p for B-smoothness so the number of

trials before getting a B-smooth value for w1 is (u′)u
′

where u′ = log(
√
p)/ log(B) =

1
2 log(p)/ log(B). However, since we need both w1 and w2 to be smooth the number of

trials is (u′)2u
′

= (u/2)u. For B = Lp(1/2, c) it follows that log((u/2)u) = u log(u/2) ≈
u log(u) and so one gets the same complexity as before (but a smaller o(1) term).

15.5.14: Suppose b is even. One can write the sum as pb/b + pb−1/(b − 1) + · · · +
pb/2/(b/2) plus fewer than 2b terms which are allO(pb/2). Since pb−i/(b−i) ≤ pb−i/(b/2) =
2pb−i/b for 0 ≤ i ≤ b/2 the first result follows.

626 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

For the approximation just note that pb/b+pb−1/(b− 1) + · · · ≈ pb/b(1 + 1/p+ 1/p2+
· · ·) = pb/b(1− 1/p).

15.5.16: Following the discussion earlier in this section, let b = c
√
n log(n)/ log(p) and

u = n/b = 1
c

√
n log(p)/ log(n). Then #B < pb and so #B = O(Lpn(1/2, c)). Now

log(uu) = u log(u) = 1
c

√
n log(p)/ log(n)

(
log(1/c) + 1

2 (log(n) + log(log(p))− log(log(n))
)

=
(

1
2c + o(1)

)√
n log(n) log(p).

Hence uu = O(Lpn(1/2, 1/(2c) + o(1))) as usual. The total running time is therefore
O(Lpn(1/2, c + 1/(2c) + o(1)) + Lpn(1/2, 2c + o(1))) bit operations. This is minimised
when 2c2 = 1, i.e., c = 1/

√
2, which gives the stated complexity. We refer to Section

4 of Odlyzko [469] for more details, but note that Odlyzko writes the complexity as
O(exp(c

√
n log(n)) = O(Lpn/ log(n)(1/2, c)).

15.5.18: Note that F2d = F2[x]/(A(x)) where d = deg(A(x)). Let α ∈ F2d be a root
of A(x). If the equation x2 + x = α has no solutions then A(x2 + x) is irreducible. If the
equation x2 + x = α has two solutions (namely, α and α+ 1) in F2d then A(x2 + x) is the
product of their minimal polynomials.

15.5.22: For example F1(t) = t4 + t2 + t+ 1 and F2(t) = t4 + t2.
15.5.23: Note that φ1(ψ1(x)) = t, φ1(ψ1(y)) = φ1(F1(x)) = F1(t), φ2(ψ2(x)) =

φ2(F1(y)) = F2(F1(t)) ≡ t (mod F (t)) and φ2(ψ2(y)) = φ2(y) = F1(t).
15.6.2: Set b = ⌈logq(Lqg (1/2, c))⌉. Construct the factor base B as above, generate

random group elements using the algorithm of Section 15.5.1 and use Theorem 15.6.1 to
determine the expected number of trials to get a smooth relation. The group operations
and polynomial factorisation are all polynomial-time and can be ignored. The algo-
rithm therefore has the usual complexity #BLqg(1/2, 1/(2c) + o(1)) + (#B)2+o(1) which
is Lqg(1/2, c + 1/(2c) + o(1)) + Lqg(1/2, 2c + o(1)) when g is sufficiently large. This is
optimised by taking c = 1/

√
2, giving the stated running time. For the technical details

see Enge and Gaudry [195] or Section VII.6.1 of [65].
15.6.3: See page 36 of Adleman, DeMarrais and Huang [4] for the case of one point at

infinity.
15.6.4: Clearly degree 1 prime divisors are points and #C(Fq) = q+ 1 + t where |t| ≤

2g
√
q = o(q). As we know, there are approximately qg divisor classes and

(
#C(Fq)+g−1

g

)
=(

q(1+o(1))+g−1
g

)
= qg(1 + o(1))/g! divisors formed by taking sums of prime divisors of

degree 1 (and subtracting a suitable divisor at infinity to get a degree 0 divisor).
For hyperelliptic curves with a single point at infinity, Lemma 10.3.24 shows the

Mumford representation is unique and the above argument therefore proves the result.
However, for general hyperelliptic curves uniqueness does not necessarily hold and so this
argument needs some care. To deal with this one uses the fact that there are #Pic0Fq(C) =
qg(1 + o(1)) divisor classes and hence only o(qg) divisor classes contain more than one
reduced divisor. It follows that only o(qg) sums of g points in C(Fq) can yield divisor
classes containing more that one reduced divisor, and so the above arguments do prove
what is required.

15.6.5: See [242] or Section VII.6.2 of [65].
15.8.3: One can easily check all three properties for n = 2. The case n = 3 follows

directly from the group law: if x1 6= x2, then x1 +x2 +x3 = λ2 where λ = (y2−y1)/(x2−
x1). Expanding gives 2y1y2 = y21 + y22 + (x2 − x1)(x1 + x2 + x3); squaring both sides and
substituting x3i + a4xi + a6 for y2i gives (x1 − x2)2 times the stated equation. The case
x1 = x2 follows by using λ = (3x21 + a4)/(2y1).

The general case follows since P1 + · · ·+Pn = OE if and only if P1 + · · ·+Pn−2 = −R
and Pn−1 +Pn = R for some point R on the curve. In other words, P1 + · · ·+Pn−2 +R =

627

Pn−1 + Pn + (−R)) = OE . The symmetry is obvious, and the statement about degrees
follows by induction and using the fact that the resultant of a quadratic and a degree
2n−2 polynomial is a degree 2n−1 polynomial.

Chapter 16: Lattices

16.1.4: A hint for last part is that the lattice contains the sublattice with basis Mei
16.1.13: b1 = (1, 1) has volume

√
2.

16.2.5: (You need to have studied the proof of Theorem 16.2.3.) A radius r = λ1 + ǫ
hypercube around the origin has volume (2r)n. Taking ǫ > 0 arbitrarily small gives the
result. For the second claim, consider the convex region {v ∈ Rn : ‖v‖1 ≤ r}, which is a
hyper-tetrahedron of volume 2nrn/n!. The approximation is using Stirling’s formula.

16.2.6: Consider the lattice basis {(1, a), (0, b)} of rank n = 2 and determinant b.
Every element of the lattice is of the form (s, as + bt) for some s, t ∈ Z. By Minkowski,

the disk of radius u =
√
b
√

2 has volume πu2 > 4b and so contains a non-zero lattice
point. Hence, 0 < s2 + r2 < u2 =

√
2b.

16.3.1: Problem 1 is achieved by solving xB = v over Q (or with sufficiently accurate
floating point arithmetic, rounding to the nearest integer solution and then checking).

To solve problem 2, compute the HNF of the matrix B whose rows are b1, . . . , bn and
discard the zero rows. For problem 3, write A′ = UA be the HNF of A. If the first r rows
of A′ are zero then the first r rows of U are a basis for ker(A) (since if x is any vector
with last m− r entries zero then 0 = xA′ = (xU)A).

To solve problem 4, concatenate the n rows of the n × n matrix MIn to the matrix
A to apply an extended matrix A′. Then use the method used to solve problem 3 on the
matrix A′. To see this is correct note that (x1, . . . , xm)A ≡ 0 (mod M) if and only if
there are n integers xn+1, . . . , xn+m such that then (x1, . . . , xn+m)A′ = 0.

Chapter 17: Lattice Basis Reduction

17.1.6: Clearly each change of basis is invertible and so the output is a basis of the lattice.
Since B1 ∈ N is strictly decreasing the algorithm must terminate after a finite number of
steps.

17.1.8: {(−1, 0), (0, 2)}.
17.2.5: Yes, no, yes, no, yes.
17.2.7: An example is b1 = (1, 0) and b2 = (0.49, 0.8).
17.2.10: The proof closely follows the proof of Lemma 17.2.8. For part 2 one should

find ‖bi‖2 ≤ (1 + 1
4

∑i−1
k=1

√
2
k
)Bi ≈ (0.146 +

√
2
i
/1.46)Bi and one gets the result. Since

1/6 ≤ (
√

2− 1)2(i−1)/2 for i ≥ 1 one has ‖bj‖2 ≤ 2j/2Bj and part 3 follows.
17.2.16: An example of the situation ‖v1‖ 6= ‖b1‖ was seen in Exercise 17.2.5. For the

second part, we have 2n(n−1)/4 det(L) ≥∏n
j=1 ‖vj‖ ≥ ‖vi‖n+1−i.

17.4.4: See [373] or Section 2.6.1 of [136].
17.5.2: Let L be any lattice of dimension n. We have proved than an LLL-reduced

basis for L exists. Hence, by part 5 of Theorem 17.2.12 λ1 ≤ 2(n−1)/4 det(L)1/n. Also see
Section 12.2 of Cassels [121].

Chapter 18: Algorithms for the Closest and Shortest Vector Problem:

18.1.9: The complexity of computing the Gram-Schmidt basis is given by Theorem 17.3.4.
Using the same techniques, one can show that wi can be represented using exact Q-
arithmetic with denominators bounded by Xn−1 and numerator bounded by Xn.

628 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

18.1.10: The inductive process uses the fact that the orthogonal complement of bn is
the span of {b∗1, . . . , b∗n−1}. If one starts at b1 instead of bn then one needs an analogue
of Lemma 18.1.1.

18.2.5: If w =
∑n

i=1 libi and u =
∑n

i=1 l
′
ibi then ‖w − u‖2 =

∑n
i=1(li − l′i)2‖bi‖2. The

result follows.
18.2.7: w ≈ 24.09b1+12.06b2+26.89b3 so v = (99, 204, 306) and ‖v−w‖ = ‖(1, 1,−1)‖ =√

3.
18.3.4: (100, 77, 104).
18.4.5: See Figure 1 of Hanrot and Stehlé [275] or Algorithm 10.6 of Joux [317].
18.4.7: See Section 3 (under “Combinatorial methods”) of Micciancio and Regev [423].

Chapter 19: Coppersmith’s Method and Related Applications

19.1.8: The dimension is 2d, the determinant is MdX2d(2d−1)/2, the condition (ignoring
the constants) (MdX2d(2d−1)/2)1/2d ≤ M leads to X ≈ M1/(2d−1). See Section 2 of
Coppersmith [142].

19.1.14: Set x0 = px for x ∈ Z. There is a similar example in Section 3 of Copper-
smith [142].

19.4.5: See Section 3.2 of May [410] (pages 34-36).
19.4.6: Set ǫ = 1/ log2(N) and apply Theorem 19.4.2 a constant number of times,

each with a different guess for the most-significant 2 bits of p− p̃.
19.4.7: Guess all N1/4 values for p̃ and try Coppersmith’s algorithm (in polynomial-

time) on each of them.
19.4.8: Just use F (x) = (p̃+ x) as before and note that the proof of Theorem 19.4.2

does not change. This is mentioned on page 52 of Howgrave-Graham [297].
19.4.9: Assume that 0 ≤ p̃ < M . It follows that Mx + p̃ has a small root modulo p.

Hence apply the same methods using the polynomial F (x) = Mx+ p̃, which can be made
monic as F (x) = x+ (p̃M−1) (mod N).

19.4.10: Let p = p̃+ x0 with 0 ≤ x0 < X then setting

q̃ = ⌊N/(p̃+X)⌋

means q̃ ≤ q ≤ N/p̃, which is an interval of width NX/(p̃(p̃ + X)) < qX/p̃. Hence
q = q̃ + y0 with 0 ≤ y0 ≤ q(X/p̃).

19.4.12: Let p̃ = 5000 and X = 10. We seek a small root of F (x) = (p̃+ x)3 modulo
a large factor of N . Reducing the matrix

N 0 0 0 0
0 NX 0 0 0
0 0 NX2 0 0
p̃3 3p̃2X 3p̃X2 X3 0
0 p̃3X 3p̃2X2 3p̃X3 X4

yields the row (1980391527,−16046759730, 20944500000, 35123963000, 35110000). This
corresponds to the polynomial 3511x4 + 35123963x3 + 209445000x2 − 1604675973x +
1980391527, which has the root x = 3, giving p = 5003.

19.4.14: The algorithm requires O(
(
n
e

)
log(P)3) bit operations, and at least

(
n
e

)
>

(n/e)e bit operations. The input size is O(n log(pn)) bits (assuming all 0 ≤ ri < pi). The
algorithm is not polynomial-time: a polynomial-time algorithm would need ≤ (n log(pn))c

bit operations for some constant c, and so the logarithm of the running time would be

629

≤ c(log(n) + log log(pn)); whereas if e > log(n) then the logarithm of the running time of
the algorithm is ≥ log((n/e)e) > log(n)2 − log(n) log log(n).

19.4.16: pn ≈ n log(n) so P > n! > (n/e)n (warning: the e here is 2.71828... from
Stirling’s formula) and so log(P) > n(log(n) − 1). Then

√
log(X)/ log(P) log(pn) ≈√

log(X)/(n log(n)) log(n) =
√

log(X) log(n)/n. The claimed value for e follows. This is
obviously > log(n) for large n and sufficiently small X .

19.4.17: Let m = ⌈log2(U)⌉. Then 2m ≤ U < 2m+1 and 2m+1 ≤ 2U ≤ V .

19.4.19: For the first case we get x = −347641 and for the second x = 512.
19.5.2: Given q let pi = ⌊qαi⌉ so that |qαi − pi| ≤ 1/2.

19.5.4: The first row output by LLL on the matrix is approximately (−0.0000225, 0.0002499, 0.0002499, 0.0007500).
Now compute q = 0.0000225Q/ǫ= 2250. One finds p1 = 3499, p2 = 1735, p3 = 750.

19.6.1: Note that 1
2b

1/3 < qb < b1/3 and so |y| < 1
2qb as required. Also, note that

the continued fraction method finds qa/qb as long as |(ã/b̃) − (qa/qb)| < 1/(2q2b). First

note that b−1/3 < 1/qb < 2b−1/3 so 1
2b

−2/3 < 1/(2q2b). Now, the difference (ã/b̃)− (qa/qb)

is given by equation (19.6), whose numerator is bounded by 2 1
2b

1/3 1
4b

1/3. Since 1/qb <

2b−1/3 we have the difference bounded by 1
2b

1/3/b̃. It follows that the difference is less
than 1/(2q2b) as required and so Euclid solves the problem.

19.6.2: If α < β then the target gcd is smaller than the errors – one therefore expects
very many solutions.

The first condition comes from the Diophantine approximation step: Namely that the
right hand side of equation (19.6) (which is 1/b̃1−β) is at most 1/(2q2b) ≈ 1/b̃2(1−α). The
second condition comes from the requirement that |y| < 1

2qb.
19.6.3: The process is the same as the generalisation of Diophantine approximation

in Section 19.5. The lattice is
(
b̃β b̃
0 ã

)
which has determinant roughly b̃1+β and a short

vector (qab̃
β, qbx− qay) of length roughly b̃1+β−α. The result follows.

19.7.4: See [496] for the first reduction. The second is almost immediate, but needs
some care.

Chapter 19a: Cryptosystems Based on Lattices

19.9.1: Given a ciphertext c one can check if it is an encryption of m by testing whether
c−mG′ (respectively, c−mB′) is a valid error vector for the system.

19.9.2: Check if c is an encryption of m by testing if c−m lies in the code (respectively,
lattice) corresponding to the public key.

19.9.3: Given c add m′G′ (respectively, m′B′) to get a ciphertext c′ 6= c which is an
encryption of m+m′. Alternatively, add an extremely small error vector e′ to get c′ and
call the decryption oracle; hopefully this will return the message m.

19.9.8: (2, 3).
19.9.9: Set w = v and, for i = n downto 1 do w = w − ⌊〈w, b∗i 〉/〈b∗i , b∗i 〉⌋.
19.10.3: m = (1, 2, 0), e = (1, 1, 1); m = (−1, 0, 1), e = (1,−1, 1).
19.13.2: There is a solution s =

∑n
i=1 xibi if and only if s′ = s− xnbn is a subset sum

of {b1, . . . , bn−1}.
19.13.3: Assume n even. Compute all 2n/2 integers

∑n/2
i=1 xibi for xi ∈ {0, 1} and store

in a sorted list, binary tree or hash table. Then compute all 2n/2 values s−∑n
i=n/2+1 xibi

and determine whether or not it appears in the list. For details see Algorithm 3.94 of
[418].

19.13.4: Just divide everything by the gcd.
19.13.7: Given s = 112 we just subtract the largest possible element, in this case 80,

which leaves 112 − 80 = 32. We then subtract the largest element less than 32 to get

630 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

32−20 = 12. We then take 12−7 = 5. Hence, we have computed that 112 = 5+7+20+80,
which is the solution vector (0, 1, 1, 1, 0, 1, 0).

19.13.10: n/(n− 1) = 1 + 1/(n− 1).

19.13.11: 8/ log2(430) ≈ 0.9145.

19.13.12: By Exercise 19.13.8 bn ≥ 2n−1 and so the density is at most n/(n − 1) =
1 + 1/(n− 1).

19.13.15: 0110010.

19.13.16: 0.782

19.13.17: (154, 184, 43, 69, 125, 62), c = 384.

19.13.18: Encryption is deterministic.

19.13.19: Given a ciphertext c one can call c+ a1 and c− a1 to the decryption oracle.
One of them is a valid ciphertext and corresponds to the original message with the first
bit flipped.

19.13.21: Since 0 < ai < M we expect an average ciphertext to be a sum of around
n/2 integers of size M/2. Hence c ≈ nM/4 on average (and, in all cases, 0 ≤ c < nM).
Since M ≥ 2n we expect c to require at least log2(nM/4) > log2(n) + n− 2 bits.

19.13.22: Take bi = 2i−1 for 1 ≤ i ≤ n, M = 2n + 1 and any W such that Wbi 6≡
2n (mod M) for all i. Then the density is > 1. Of course, it is easy to compute the
private key corresponding to such a public key.

19.13.24: Since the integers ai,j are like random integers modulo Mi we expect∑n
j=1 ai,j ≈ nMi/2 and so Mi+1 > nMi/2. Hence, Mt > (n/2)tM1 ≥ (n/2)t2n. The

ciphertext is expected to be a sum of around n/2 integers of size Mt/2 and so around
nMt/4. Therefore, on average,

log2(c) = log2(n(n/2)tM1/4) > log2(n) + t(log2(n)− 1) + n− 2.

Since the at,i are somewhat like randomly chosen integers modulo Mt we expect to have
max{at,i} ≈ Mt. We conservately assume in what follows that, on average, max{at,i} >
Mt/2. Hence the density is at most n/ log2(Mt/2) < n/(t(log2(n) − 1) + n − 1). For
example, n = 200 and t = 5 gives expected density less than 0.87; in any case, the density
of an iterated Merkle-Hellman knapsack is always significantly less than 1.

19.13.25: From Exercise 19.13.8 we have bn > 2n−2b1 and so M > (2n−2 + · · · + 2 +
1 + 1)b1 = 2n−1b1. So b1b2 > M > 2n−1b1 implies b2 > 2n−1. Exercise 19.13.8 also shows
M > 2n−3b2 and so M > 22n−4. Then log2(nM/4) > log2(n) + (2n− 4)− 2.

19.13.26: See if W−1ai (mod M) are small and allow efficient solution to the subset
sum problem using a greedy algorithm.

19.13.28: a1b2 − a2b1 = 7 · 233 · 37589 · 143197. The only factor of size ≈ a3 is
M = 233 · 37589 = 8758237. This gives W = a1b

−1
1 (mod M) = 5236910. One verifies

that W−1ai (mod M) is a superincreasing sequence.

19.13.30: Suppose W is known and assume no permutation is used. Note that there
are integers ki for 1 ≤ i ≤ n such that

ai = biW + kiM

and ki < bi. So a1 ≡ k1M (mod W) and a2 ≡ k2M (mod W). Hence, writing c =
a2a

−1
1 (mod W), we have k1c ≡ k2 (mod W). If k1k2 < M (which is plausible since

k1k2 < b1b2 < M and W is usually about the same size as M) one can apply the same
methods as used in Example 19.13.29 to find (k1, k2) and hence M .

19.13.32: 11100001.

19.13.33: 10111100.

631

Chapter 20: The Diffie-Hellman Problem and Cryptographic Applications

20.2.7: Suppose l | n is prime and write g1 = gn/l. Then gc = gab implies gcn/l = gabn/l

and so (g1, g
a
1 , g

b
1, g

c
1) = (gn/l, (ga)n/l, (gb)n/l, (gc)n/l) is a valid Diffie-Hellman tuple. If

l = O(log(n)) then one can solve the DLP in 〈g1〉 (this is just Pohlig-Hellman) and hence
test DDH in 〈g1〉. If (g, ga, gb, gc) is a random tuple in G4 then with probability 1/l the
resulting tuple in 〈g1〉 is not a valid Diffie-Hellman tuple. The algorithm therefore has a
noticeable advantage in Definition 20.2.4.

20.4.1: In the first case, c2 = mhk and c′2 = mhAk+B . Hence, cA2 h
B/c′2 = mA−1 and

so one can compute m assuming that (A− 1) is coprime to the order of the group G. In
the second case, query the decryption oracle on (c1, c2) to get m and hence hk. One can
then compute (hk)AhB and decrypt c2.

20.4.3: As above we can self-correct the CDH oracle to make it reliable. Once one
knows gax then one can decrypt to get M . For the second part: The problem is that
given the message M corresponding to the public key (g, h) and ciphertext (c1, c2) one
can compute M ⊕ c2 = H(gax) but if H is hard to invert then one cannot compute gax.

20.4.6: Given (c1, c2) the user returns m = c2c
−a
1 so set c1 = h−1 and c2 arbitrary and

get ha = mc−1
2 . If the group contains an element h with relatively small order l then one

can easily solve the DLP to get a (mod l). If this can be repeated for sufficiently many
coprime values l then a can be determined using the Chinese remainder theorem.

20.4.9: See Boneh, Joux and Nguyen [82] for the full details of this attack. The basic
idea is as follows: For suitable constant c one has m = m1m2 where 1 ≤ mi ≤ c2m/2+ǫ

with a certain noticeable probability (for c = 1 [82] states the probability is at least
log(1 + 2ǫ)).

20.5.2: Eve, pretending to be Bob, sends gy (where y is known to Eve). She makes
a corrupt query to Alice and, knowing gxy, can compute gab. Eve can now compute a
shared key with Alice, whereas Alice believes she is sharing with Bob.

Chapter 21: The Diffie-Hellman Problem

21.1.10: For both problems let the space of instances be (G−{1})2. Given an Inverse-DH

oracle A and instance (g, ga) one has ga
−1

= A(gx, (ga)xy)yx
−1

for 1 ≤ x, y < r. Given a

Square-DH oracle A and instance (g, ga) one has ga
2

= (A(gx, (ga)xy)(xy
2)−1

.
For the self-correction: Run the non-perfect Square-DH oracle repeatedly to produce

a list L which is expected to contain ga
2

. Then choose 0 ≤ u < r and repeat the process
on (g, gagu). This givies a list L′ which is expected to contain g(a+u)

2

. Finally, determine

whether there is a unique pair (Z,Z ′) in L × L′ such that Z(ga)2ugu
2

= Z ′, and if so
return Z. The precise details are similar to Theorem 21.3.8.

21.3.9: Suppose A is correct with noticeable probability ǫ. Since the reduction makes
at least log2(r) oracle queries, the probability that the result is correct is at most ǫlog2(r)

which is negligible. Instead, one should self-correct the oracle A to obtain an oracle A′

with success probability greater than 1 − 1/(4 log2(r)). By Theorem 21.3.8 this requires
O(log(log(r))/ǫ) oracle queries. One can then perform the reduction of Lemma 21.1.13
using A′, with success probability ≥ 1/2.

21.1.19: For the first part, given (g1, g2, g3) = (g, ga, gb), call O1(gr2 , gr22 , g
r2
3) to get

gabr2 and call O2(gr1 , gr12 , g
r1
3) to get gabr1 . Finally compute s, t ∈ Z such that r1s+r2t = 1

and then (gabr1)s(gabr2)t = gab as required.
For the next part: The problem Inverse-DH is only defined when a is coprime to the

group order. If a = r1, as would be required in several places, then we cannot make
a meaningful query to an Inverse-DH oracle. Also, in the proof of Lemma 21.1.5 then
g 6∈ 〈g1〉 so a CDH oracle can’t work. Indeed, Shoup has shown (Theorem 5 of [553])

632 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

that a generic algorithm for Fixed-CDH with respect to gr1 , even when given a perfect
Fixed-CDH oracle with respect to g, takes Ω(

√
r2) group operations.

21.1.20: For the proof, historical references and a major generalisation of such prob-
lems see [102].

21.4.12: For example, with a perfect Fixed-CDH oracle, Pohlig-Hellman only and
using projective coordinates the number of oracle queries is O(log(r) log log(r)) oracle
queries and O((l21 + l2) log(r)2/ log(max{l1, l2})) group operations.

21.4.13: We give the results only for the case of Pohlig-Hellman combined with ex-
haustive search. Note that not every a ∈ Fr corresponds to an element a + bθ of G2,r,
whereas every a ∈ A1(Fr) corresponds to an element of T2(Fr). Hence, embedding the
DLP instance into the algebraic group G2,r requires an expected O(log(r)) oracle queries
(computing Legendre symbols and taking square roots).

The group operation using the first representation requires no inversions but the group
operation for the second representation requires inversions. The number of Fixed-CDH
oracle queries respectively is O(log(r) log log(r)) and O(log(r)2 log log(r)). Hence, the
first representation is better. If one has a CDH oracle then inversions are a single oracle
query and so the number of oracle queries is O(log(r) log log(r)) in both cases.

21.5.5: See Cheon [131].
21.5.9: See Brown and Gallant [111].
21.6.4: See Kaliski [327] or Fischlin and Schnorr [203].
21.6.9: Let A be a perfect oracle which, given h = gx for x ∈ {0, 1, . . . , r− 1} outputs

b(x). It suffices to show how to use A to determine the least significant bit of x. We may
assume that h 6= g−1, since if h = g−1 then we know x. If A(h) = 1 then (x1, x0) = (0, 1)
or (1, 0), so A(gh) determines the LSB. Similarly, if A(h) = 0 then (x1, x0) = (0, 0) or
(1, 1) and so A(gh) determines the LSB (since h 6= g−1 there is no carry when computing
gh).

21.6.11: The integer r in binary begins as 11000 · · · so the highest order 2 bits of a
random integer modulo r are essentially 00, 01 or 10 with probability close to 1/3 each.
Hence, both predicates are 0 with probability close to 2/3.

21.6.13: Let A be an oracle such that A(gx) = b(x). Let h = ga. Set j = 1 and if
A(h) = 0 then set l = 1, and if A(h) = 1 then set l = 2. Given, at step j, (l − 1)r/2j ≤
a < lr/2j one calls A(h2

j

). If A(h2
j

) = 0 then (2l − 2)r/2j+1 ≤ a < (2l − 1)r/2j+1,
otherwise, (2l − 1)r/2j+1 ≤ a < 2lr/2j+1.

We remark that Blum and Micali [73](generalised by Long and Wigderson [393]) use
Legendre symbols and square roots modulo p to show this predicate is hardcore in the
group F∗

p when g is a primitive element (their method does not work in a prime order
cyclic subgroup).

21.6.15: See Section 7 of Li, Näslund and Shparlinski [387].
21.7.4: This is the same argument as Exercise 21.6.13. One bounds α as (l− 1)p/2j ≤

α < lp/2j and refines (l, j) by computing A1(2j (mod p)) = MSB1(α2j (mod p)).
21.7.6: Use the same argument as Exercise 21.6.4. See Fischlin and Schnorr [203] for

details.
21.7.13: Given a DDH instance (g, ga, gb, gc) one can compute MSB1+ǫ(g

c) and com-
pare with the result of the oracle. If gc = gab then the results will agree. Repeating
for random self-reduced versions of the original DDH instance gives the result. We refer
to Blake and Garefelakis [62]and Blake, Garefelakis and Shparlinski [63]for details and
generalisation to small subgroups of F∗

p and to elliptic curve groups.

21.7.14: Just call A(g, (ga)2
i

, gb) to get the i-th bit of the representation of gab.
21.7.15: Call A(g, gagz, gb) about m times for uniformly random z. Each output

yields a linear equation over F2 in the unknown bits of gab. Solving the system of linear

633

equations over F2 gives gab.

Chapter 22: Digital Signatures Based on Discrete Logarithms

22.1.2: The second and fourth are valid transcripts (i.e., the equation (22.1) is satisfied).
In the third case one even has s0 6∈ 〈g〉.

22.1.3: As2 +B − s′2 ≡ a(As1 − s′1) (mod r) which can be solved for a.
22.1.6: If s1 can be guessed then choose any 0 ≤ s2 < r and set s0 = gs2h−s1 . Send s0

in the first stage of the protocol and respond to the challenge s1 with s2.
22.1.8: We need a multi-exponentiation (in equation (22.1)) and this is not well-defined

in algebraic group quotients.
22.1.11: If m is a message and (s1, s2) is a signature which is valid for two distinct

public keys hA and hB then we have

s1 = H(m‖gs2h−s1

A) = H(m‖gs2h−s1

B).

If s1 = 0 then the signature is valid for all public keys. If s1 6= 0 then h−s1

A 6= gs2h−s1

B and
so we have a hash collision of a very special form: namely H(m‖R1) = H(m‖R2) where
R1 and R2 are distinct elements of 〈g〉. If the bit-length of the hash output is l such that
2l < r then, by the pigeonhole principle, there must be distinct R1, R2 ∈ 〈g〉 such that
H(m‖R1) = H(m‖R2). Indeed, one expects many such pairs if 2l is significantly smaller
than r.

Even when 2l is significantly larger than r then, by the birthday paradox, one expects
there to be a collision of the form H(m‖R1) = H(m‖R2). However, if 2l is larger than r2

then the probability of such a collision is rather low.
As for security, the existence of two keys for which the same signature is valid on

the same message is not considered to lead to any practical attack in any real-world
application. In any case, it appears to be impossible to construct the actual signatures,
given the hash collision H(m‖R1) = H(m‖R2), without solving at least two instances of
the discrete logarithm problem.

22.1.12: Change s2 to k − as1 (mod r). All the security arguments are unchanged by
this.

22.2.2: Write the verification equation as

hF (s1)ss21 g
r−H(m) = 1.

If gcd(s2,#G) = 1, and h is known to lie in 〈g〉 then this equation (together with the
possibly simpler check that s1 ∈ G) implies s1 ∈ 〈g〉.

One sees that Verify is computing a 3-dimensional multi-exponentiation with expo-
nents all general elements of Z/rZ and only one base fixed. Using basic methods (i.e.,
not windows or signed expansions) this computation will require roughly twice the cost
of the computation in Example 22.1.13. Even when using more advanced methods such
as windows, the fact that s1 is a variable base in the multi-exponentiation is always a
disadvantage. An additional cost in Elgamal signature verification (also for signing) is
computing a hash function whose image is Z/rZ rather than {0, 1}l.

22.2.3: Hint: Set s1 = guh for random 0 ≤ u < r.
Set s1 = guh for random 0 ≤ u < r. and s2 = −F (s1) (mod r). One checks that

hF (s1)ss21 = hF (s1)g−uF (s1)h−F (s1) = g−uF (s1).

Hence, taking m = −uF (s1) (mod r) gives the existential forgery, More elaborate versions
of this attack are given in Section 4.2.3 of Elgamal [192].

634 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

22.2.4: Hint: Use the Chinese remainder theorem.
Given the public key h and a message with hash H(m) the adversary chooses a random

1 ≤ s′1, s2 < r and computes s′′1 = (gH(m)h−s
′
1)s

−1
2 (mod p). Now, compute an integer s1

using the Chinese remainder theorem so that

s1 ≡ s′′1 (mod p) and s1 ≡ s′1 (mod r).

Note that, under our assumptions, F (s1) = s′1 and that sr1 ≡ 1 (mod p). Then hF (s1)ss21 =

hs
′
1gH(m)h−s

′
1 ≡ gH(m) (mod p) as required.

22.2.6: Hint: If s1 = ur for any u ∈ N then hF (s1) = 1.
Set s1 = ur where u ∈ N is such that r divides the order of s1 modulo p (this is easy).

The trick is to set
g = s

(p−1)/r
1 (mod p)

which is a generator for the subgroup of order r. Use g as part of the system parameters
of the scheme. The signature forgeries will all use the same value for s1 (actually, s1 can
be varied by multiplying s1 by any integer of order dividing (p− 1)/r modulo p, as long
as one always treats s1 as an integer and does not reduce modulo p). Note that, for any
public key h, we have hF (s1) = 1. Finally, set s2 = H(m)(p− 1)/r ∈ N so that

hF (s1)ss21 ≡ ss21 ≡ gH(m) (mod p).

A nice extension of the attack, which works even when the checks on s1 and s2 are
performed, is to choose s1 = ur so that 1 < s1 < p and so that the order of s1 modulo p
is equal to r. One can then take g = s1. Though it is easy to arrange that the order of
s1 equals r, it does not seem to be easy to do this while still keeping the integer ur less
than p.

More details of these attacks, and variants in the case where g is a primitive root, are
given in Bleichenbacher [66].

22.2.7: Try random m1,m2 until r = |H(m1)−H(m2)| is prime. See Vaudenay [615].
22.2.8: The signatures are all valid with probability at most 1/r. So suppose signature

j is not valid. Choose all wi for i 6= j randomly. Then there is at most a 1/(r− 1) chance
that wj is chosen so that the equation is satisfied.

When all hi = h just replace
∏t
i=1 h

wiF (s1,i)
i by h

∑t
i=1 wiF (s1,i). One can now break

the equation into t/3 3-dimensional multi-exponentiations, so the total cost is about 1/3
of the naive case.

For the third part see Yen and Laih [637].
It seems to be impossible to do something similar for Schnorr signatures since each

gs2h−s1 needs to be computed separately.
22.2.12: First, precompute and store g1 = g⌈

√
r⌉. Then, for each signature (s0, s2)

to be verified run Euclid’s algorithm on inputs u2 = F (s0)s−1
2 (mod r) and r until the

current remainder is approximately
√
r. Write v for the resulting coefficient of u2 (in

the notation of Section 2.3 this is v = si which clashes horribly with the notation of this
chapter). By part 6 of Lemma 2.3.3 it follows that v, vu2 (mod r) ≈ √r. Also, write
u1v ≡ w0 + w1⌈

√
r⌉ (mod r) with 0 ≤ w0, w1 <

√
r. Equation 22.6 can therefore be

written as
gw0gw1

1 hu2vs−v0 = 1

All exponents in this 4-dimensional multi-exponentiation are of size roughly
√
r. For

further details see Antipa et al [11]. A further improvement in [11] (assuming the public
key also contains a suitable power of h) leads to a 6-dimensional multi-exponentiation
with exponents of size r1/3.

635

22.2.13: There is no algorithm to generate signatures!

22.2.18: For example, to check that ga
2

is correct one can test whether e(g1, g
a2

2) =

e(ψ(ga2), ga2). The other elements are tested similarly. For the second part, e
(
g
(m+a)−1

1 , ga2 , g
m
2

)

should equal z.

Chapter 23: Public Key Encryption Based on Discrete Logarithms

23.1.5: The proof proceeds almost identically to the previous case, except that when a
decryption query is made then only one call to the oracle is required. This variant is
studied in Section 10.4 of Cramer and Shoup [161].

23.1.7: Given a Hash-DH instance (g, ga, gb), if one can compute gab then one can
compute kdf(gab). Given a DDH instance (g, ga, gb, gc) one can compute K = kdf(gc)
and, using an oracle for Hash-DH, distinguish it from kdf(gab).

23.2.2: For the first statement note that for each 0 ≤ z1 < r there is a unique choice
for z2. The second statement is straightforward. For the final statement write g2 = gw1 ,
h = gv1 and u2 = gk

′

with 0 ≤ k′ < r and k′ 6= k. The fact that (z1, z2) ∈ Xg1,g2,h imposes
the linear equation z1 + wz2 ≡ v (mod r). To prove the result we need to show that one
can simultaneously solve kz1 + k′wz2 ≡ x (mod r) for any 0 ≤ x < r. The result follows
since the determinant of the matrix

(
1 w
k k′w

)
is not zero modulo r.

23.2.7: First has v 6∈ G, second does not satisfy equation (23.1), third has message
m = 1.

23.2.11: The adversary returns eu−z11 u−z22 just as the Decrypt algorithm does.

23.2.12: Given a challenge ciphertext (u1, u2, e, v) compute u′1 = u1g1, u
′
2 = u2g2 and

e′ = eh (these are gk+1
1 , gk+1

2 and mhk+1 respectively). Then compute α′ = H(u′1, u
′
2, e

′)

and set v = (u′1)x1+y1α
′

(u′2)x2+y2α
′

. Calling the decryption oracle on (u′1, u
′
2, e

′, v′) gives
m.

23.2.13: Let u1 be a random element of F∗
p of order l. Set u2 = ua1 and v = ub1 for

random 1 ≤ a, b < l and choose any e ∈ F∗
p. Call the decryption oracle on (u1, u2, e, v).

With probability 1/l the decryption oracle does not return ⊥, and indeed returns some
message m. One therefore has

u
r−z1+a(r−z2)
1 = me−1.

Since it is easy to compute the discrete logarithm of me−1 to the base u1 when l is small
one obtains a linear equation in z1 and z2 modulo l. Repeating the attack and solving
gives z1 (mod l) and z2 (mod l).

If p−1 has distinct small prime factors l1, . . . , lt so that
∏t
i=1 li > r then, by repeating

the above attack, one can determine the private key uniquely using the Chinese remainder
theorem.

23.3.7: Just set c′2 = c2 ⊕ s for some non-zero string s ∈ {0, 1}l and query the
decryption oracle on (c1, c

′
2) to get m⊕ s.

23.3.8: Given Qid = H1(id) set R = ψ(g)Qid. Invert the hash function to find an
identity id′ such that H1(id′) = R. Then request the private key for identity id′ to receive
R′ = Rs = (ψ(g)Qid)

s. One can obtain Q′
id

= Qs
id

as R′ψ(g′)−1.

23.3.10: If one can solve CDH in GT then compute z = e(Q, g), z1 = e(Q, ga) = za

and z2 = e(Q, gb) = zb. Then the solution to the CDH instance (z, z1, z2) is the required
value. The case of CDH in G2 is similar.

636 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

Chapter 24: The RSA and Rabin Cryptosystems

24.1.1: Repeatedly choose random primes p such that 2κ/2−1 < p < 2κ/2 and let q =
⌈u2κ−l/p⌉+ ǫ (where ǫ ∈ Z≥0 is small, possibly just always zero) until q is prime and the
top l bits of pq are equal to u.

24.1.3: Generate random primes r2 and r3 of the required size. Generate a random
prime r1 of the form 2r3x + 1 for suitably sized x ∈ N. Solve p0 ≡ 1 (mod r1) and
p0 ≡ −1 (mod r2) using the Chinese remainder theorem. Try random y ∈ N of the
appropriate size until p = p0 + r1r2y is prime. This algorithm is due to Gordon [264].

24.1.5: See Galbraith, Heneghan and McKee [220]. For parameter restrictions see
[220] and [69].

24.1.7: One finds that m ≡ 385699 (mod p) and m ≡ 344504 (mod q). Solving
(385699 + px)3 ≡ c (mod p2) gives x = 1177 and m ≡ 1234567890 (mod p2). Performing
another iteration of Hensel lifting gives the same value for m, as does the CRT. Hence,
m = 1234567890.

24.1.10: Instead of computing cdp (mod p) and cdq (mod q) for two primes p, q ≈ 22500

we compute one exponentiation where p and dp are 1/5 the size. Hence the cost is about
1
2 (15)2.58 ≈ 0.008 the time.

For the attack, choose an integer m > p (e.g., m = 2600), compute c = me (mod N)
and then ask for c to be decrypted. On receipt of the message 1 < m′ < p one knows
me ≡ (m′)e (mod p) and so m′ ≡ m (mod p). Hence, gcd(N,m−m′) yields p.

24.1.11: An adversary can choose messages m0 and m1 such that (m0

N) = −1 and
(m1

N) = 1 and then compute the Jacobi symbol of the challenge ciphertext to decide
which message was encrypted.

24.1.18: Suppose A is a perfect algorithm that, on input an RSA public key (N, e),
outputs the private key d. Let N = pq be an integer to be factored. Choose 1 < e < N
uniformly at random. If A(N, e) =⊥ then repeat for another choice of e (in this case one
knows that gcd(e, ϕ(N)) 6= 1; this information is potentially useful, but we ignore it in
our proof). Let d = A(N, e). It follows that ed− 1 is a multiple of λ(N) and so the result
follows from Lemma 24.1.17.

The expected number of trials to find e coprime to ϕ(N) is bounded by O(log(N))
(since that is the number of trials to choose a prime value e >

√
N). The reduction there-

fore requires at most polynomially many queries to the oracle A and at most polynomially
many bit operations.

24.1.19: The idea is to note that ϕ(N) = N − (p + q) + 1 so one can compute p and
q by taking the roots of the quadratic x2 + (ϕ(N) − N − 1)x + N (which can be done
deterministically using numerical analysis).

24.1.20: Let N = pq where p and q are odd. We use the same ideas as Lemma 24.1.17.
One chooses a random 1 < g < N and computes gcd(g,N) (if this is not equal to 1 then
we have factored N). Use A to determine the order M of g modulo N . With probability
at least 3/4 one has M even (so if M is odd then repeat for a different choice of g). Now,
with probability at least 1/2, gcd((gM/2 (mod N))− 1, N) factors N (this final argument
uses careful analysis of the 2-adic valuations of p− 1 and q − 1).

24.1.24: Given a small number of message-signature pairs (mi, si) one expects to
find two messages mi,mj such that gcd(H(mi), H(mj)) = 1 (by Theorem A.14.4, the
probabilty for each pair is at least 0.6). Euclid gives integers s, t such that sH(mi) +
tH(mj) = 1. If si and sj are the corresponding signatures then

(ssi s
t
j)
e ≡ a (mod N)

and so an e-th root of a has been computed. One can then forge signatures for any
message.

637

24.2.5: m = 1234567890 in all three cases.

24.2.6: One determines b2 by computing (c

N). One then computes c′ = cu−b22 and

determines b1 by computing (c
′

p).

24.2.7: The advantage is that one speeds up the square roots modulo p, q and r since
the primes are smaller (see Example 24.1.4). The main disadvantage is that there are
now 8 square roots, in general, to choose from.

24.2.8: There are still only four square roots (two square roots modulo p, which
correspond via Hensel lifting to two square roots modulo pr, and similarly for q). Hence,
one can use exactly the same type of redundancy schemes as standard Rabin. One speeds
up computing square roots by using the Chinese remainder theorem and Hensel lifting as
in Example 24.1.6. Hence, there is a significant advantage of using Rabin in this way.

24.2.17: Choose random 1 < x < N , call oracle on (x2 (mod N),−(xN), 0) to get x′

and compute gcd(x′ − x,N).

24.2.21: Now there are nine possible roots to choose from. Redundancy in the message
can be used in this case (the other two redundancy schemes are more directly related to
square roots and cannot be used in this case).

For the security, choose a random integer 1 < x < N that does not satisfy the
redundancy scheme and compute c = x3 (mod N). Suppose a decryption oracle outputs
a solution x′ to (x′)3 ≡ c (mod N) so that x′ satisfies the redundancy scheme. (This
happens with probability at least (1− 1/2l)71/2l.)

Now (x′)3 − x3 = (x′ − x)((x′)2 + x′x+ x2) ≡ 0 (mod N). If, say, x′ ≡ x (mod p) and
x′ 6≡ x (mod q) then one can split N . This situation occurs with probability 2/9. The
idea of cubing is mentioned in Rabin [494].

24.2.23: Choose random x such that (xN) = −1 and set y = A(x4, x2, x2). Then
gcd(x− y,N) splits N with probability 1/2. This argument is due to Shmuely [552]. For
precise details see Biham, Boneh and Reingold [57].

24.2.24: Compute ϕ(N) = 2(N + 2)−M and then solve a quadratic equation to get
p and q.

24.2.26: Use the same method as Exercise 24.2.23.

24.2.27: Since it is hard to choose random points in E(Z/NZ) one cannot apply the
method of Shmuely with the first oracle. For the second oracle one can choose P and
then fit the curve through it. Shmuely’s method then applies.

24.3.1: Obviously, (m1m2)2 ≡ m2
1m

2
2 (mod N). But we need to ensure that decryption

of the product of the ciphertexts really does return the product of the messages. Since
there is no guarantee that m1m2 (mod N) has the correct bit pattern in the l least
significant bits, redundancy in the message is not suitable for homomorphic encryption.

The “extra bits” redundancy does not work either, since the least significant bit of
m1m2 (mod N) may not be the product (or any other easily computable function) of the
least significant bits of m1 and m2.

Finally, the Williams redundancy scheme is also not compatible with homomorphic
encryption, since P (m1)P (m2) (mod N) is almost always not equal to P (m1m2) (mod N).

24.3.5: See Paillier [474].

24.3.7: One computes cp−1 (mod p2) to get 1 + pq(p − 1)m ≡ 1 + p(−qm) (mod p2)
and hence m (mod p). Similarly one computes m (mod q) and hence m (mod N). As with
standard RSA decryption using the CRT, we replace one modular exponentiation with
two modular exponentiations where the exponents and moduli are half the size. Hence,
the new method is about 3 times faster than the old one.

24.3.8: The security depends on the decisional problem: Given y, is y ≡ hx (mod N2)
for some integer 0 ≤ x < 2k. This problem is a variant of composite residuosity, and

638 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

also similar to the discrete logarithm problem in an interval; see Exercise 13.3.6 and
Section 14.5 for algorithms to solve this problem in O(2k/2) multiplications.

Suppose a user’s public key consists of elements hi = uNi (mod N2) for 1 ≤ i ≤ l

(where the ui are all random, or perhaps ui = u⌊N
(i−1)/l⌋ (mod N2) for a randomly chosen

1 < u < N). To encrypt to the user one could compute c = (1+Nm)ha11 · · ·hall (mod N2)
using a sliding window multi-exponentiation method, where 0 ≤ a1, . . . , al < 2k for some
value k (one possibility would be 2k ≈ N1/l).

24.3.11: One encrypts 0 ≤ m < Nk as

c = (1 + mN)uN
k

(mod Nk+1)

where 1 < u < Nk is chosen randomly. Decryption requires some care since

cλ(N) ≡ 1 + λ(N)mN +

(
λ(N)

2

)
m2N2 + · · · (mod Nk+1).

Hence, one first determines m (mod N) from the coefficient λ(N)mN , and then m (mod N2)
from the coefficients of N and N2, and so on. This variant is not used in practice, since
messages are usually small for public key encryption.

24.3.12: Since (uN)p−1 ≡ 1 (mod p2) for any u ∈ (Z/NZ)∗ we have

gp−1 ≡ (1 − p)p−1 ≡ 1− (p− 1)p ≡ 1 + p (mod p2).

It follows that cp−1 ≡ (1 + p)m ≡ 1 + pm (mod p2). The homomorphic property follows
since gm1uN1 g

m2uN2 = gm1+m2(u1u2)N .
Let G be the subgroup of (Z/NZ)∗ of order (p− 1)(q − 1) containing all p-th powers

in (Z/NZ)∗. In other words, g 6∈ G. This subgroup is unique. Determining whether a
ciphertext c encrypts a message m is precisely determining whether cg−m ∈ G. Okamoto
and Uchiyama call this the p-subgroup problem.

Finally, suppose one has a decryption oracle for this scheme. Choose an integer x >
N1/3, compute c = gx (mod N), and let m be the message returned by the decryption
oracle. Then m ≡ x (mod p) and so p = gcd(x−m, N).

24.4.4: One uses the formula c(m−1
1)e ≡ me

2 (mod N) to obtain a time/memory
tradeoff. We refer to [82] for discussion of the success probability of this attack.

24.4.5: 535573983004, 7873538602921, 8149260569118, 3195403782370.
24.4.6: Either set F1(x) = xe − c1 and F2(x) = (ax+ b)e − c2 as before, or reduce to

the previous case by multiplying c2 by a−e (mod N).
24.4.7: To find m we construct the polynomials F1(x) = x3 − c1 and F2(x) = (x +

210)3 − c2 and compute their gcd as polynomials in the ring ZN [x]. The result is

G(x) = x− 1234567890

from which we deduce that m = 1234567890.
24.4.8: Write F1(x) = xe − c1 and F2(y) = ye − c2. Take the resultant of F1(x) and

P (x, y) with respect to x to obtain a polynomial F (y) of degree de in y. Then compute the
gcd of F (y) and F2(y). The complexity is dominated by the computation of the resultant,
which is the determinant of a (d + e) × (d + e) matrix whose entries are polynomials of
degree at most d. Using naive Gaussian elimination gives the result. For further details
see Coppersmith et al [144].

24.4.11: Let m be the message to forge and try to find x, y ≈
√
N such that

(P + x) ≡ (P + m)(P + y) (mod N).

639

Then x and y satisfy x− y(P + m) ≡ P 2 − P + Pm (mod N). In other words, we seek a
small solution to x−Ay ≡ B (mod N) for fixed A,B and N . We have seen how to solve
such a problem in Section 11.3.2 under the name “Gallant-Lambert-Vanstone method”.

24.4.12: Take P = A−1B (mod N).

24.5.1: One checks a guess for d by testing whether yd ≡ x (mod N) for some pre-
computed pair 1 < x < N and y = xe (mod N). If one precomputes y2 (mod N) then
one can compute the next value yd+2 (mod N) using a single modular multiplication as
ydy2 (mod N). The total complexity is therefore O(dM(log(N))) bit operations.

24.5.5: Write λ(N) = ϕ(N)/r where r = gcd(p − 1, q − 1) so that the equation
ed = 1 + kλ(N) corresponds to the equation −edr + krN ≈ kru (with u ≈

√
N). The

Wiener method computes dr, as long as the condition drkru < N holds or, in other words,
if d < N1/4/(

√
3 r). One can determine r as gcd(dr,N − 1) and hence determine d.

24.5.6: One finds gcd(p− 1, q − 1) = 10 and d = 97.

24.5.7: If (e, k) satisfy ed = 1+kϕ(N) then so do (e′, k′) = (e+ lϕ(N), k+ ld). Taking
l large enough one can ensure that duk′ > N and so the attack does not apply.

24.5.8: Choose random 1 < x < N , set y = xe (mod N) and, for each odd integer
1 < dp in turn, compute gcd(x− ydp (mod N), N).

24.5.10: Since 0 ≤ p + q < 3
√
N we have 0 ≤ x + y ≤ (p + q − 2)/r <

√
3N1/4 and

so v and u give x + y and xy exactly. One can therefore solve the quadratic equation
x2 − vx + u to find x and hence p.

24.5.11: The first calculations are straightforward. The exhaustive search is performed
by trying each value for c and testing whether r2c2 + (2rv + 4)c + v2 − 4u is a perfect
square (for example, using the method of Exercise 2.4.9).

24.5.12: The exponent is lcm(p−1, q−1) = lcm(xr, yr). Choose random 1 < z < N , let
g = zr (mod N) and h = zur (mod N) we have h ≡ gc (mod N) where 0 ≤ c <

√
N/r2.

One therefore applies standard algorithms for the discrete logarithm problem, such as in
Exercise 13.3.6 or Section 14.5. This gives c modulo the order of g. With overwhelming
probability the order of g is much larger than

√
N and so c is found.

24.5.13: Since we may assume one can factor N − 1 in under 2128 bit operations, it
follows that a list of possible values for r is known. Assuming this list is short, one can
apply the attack in Exercise 24.5.12 for each possible value for r, to compute p. The
cost of the attack for a given guess for r is O(N1/4/r) modular multiplications. To have
N1/4/r > 2128 means r < 23072/4−128 = 2640.

24.5.14: Small r can be found by factoring N − 1. Large r make N vulnerable to
Pollard rho. with the map

x 7→ xN−1 + 1 (mod N).

If r is known then one can determine p+ q modulo r, and hence perform a similar attack
to Exercise 24.5.12 that will split N in O(N1/4/r) ring operations if p and q are of similar
size.

24.6.2: See Appendix A of Coron [149].

24.6.3: If (hN) = −1 then set f = 2, otherwise f = 1. Then (fhN) = 1. Now, if

(fhp) = −1 then set e = −1, otherwise e = 1. It follows that (efhp) = 1 and (efhq) = 1.

24.6.5: Use the fact that, for any 1 ≤ a < p, (a(p+1)/4)2 ≡ (ap)a (mod p).

24.6.13: If e | H2(m‖s1) then one can compute the e-th root of H1(id), which is the
private key of the user.

24.6.14: Generating a signature is the same as the original Shamir scheme. For the
selective forgery, suppose (s1, s2) is a valid signature for identity id on a message m where
gcd(e,H2(m)) = 1. Let m′ be the message to forge. There are integers a, b ∈ Z such that

640 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

ae− bH2(m′) = −H2(m). Set s′1 = sb1 and s′2 = s2s
a
1 so that (s′1, s

′
2) is a valid signature on

m′.
24.6.15: The signature is s = s

H2(m)
id

(mod N).
For the attack, suppose s1 and s2 are valid signatures for identity id on messages m1 and

m2 such that gcd(H2(m1), H2(m2)) = 1. Let a, b ∈ Z be such that aH2(m1)+bH2(m2) = 1.
Then (

sa1s
b
2

)e ≡ H1(id) (mod N)

and the user’s private key is obtained.
24.7.2: In the case where both top and bottom bits are 1 then let c′ = c2e (mod N).

Depending on the precise sizes of N and r, the decryption oracle on c′ returns either
m′ = 2 + 4m + 2258r + 23072 or m′ − N . Since N is odd it is easy to determine which
case has arisen and, in the latter case, one simply adds N back again. Solving for m is
immediate.

24.7.6: For the proof to go through it is necessary that κ1 > 2(κ + 2)/3 and n =
κ− κ0 − κ1 < κ/9. For full details see Boneh [74].

Chapter 25: Isogenies of Elliptic Curves

25.1.1: Since λ(P) = OẼ if and only if P = OẼ it follows that ker(λ ◦ φ) = ker(φ). On
the other hand, ker(φ ◦ λ) = λ−1(ker(φ)). So if λ does not fix ker(φ) then the isogenies
are not equivalent.

25.1.3: Just add composition with a power of Frobenius.
25.1.4: The existence of ψ1 and ψ2 follows from applying Theorem 9.6.18 to φ2 ◦ φ1 :

E → E2.
25.1.9: The kernel of φ is a group of order G. Apply Vélu’s formula and write the

function X as a rational function in x. Once the result for φ1(x) is proved the result for
φ2(x, y) follows from Theorem 9.7.5.

25.1.11: The calculation is essentially the same as a calculation in the proof of Theo-
rem 9.7.5.

25.1.14: One performs d steps, each step being some arithmetic operations in Fqn .
The x-coordinates of points in G are all roots of a polynomial of degree (d − 1)/2 when
d is odd or roots of yF (x) where deg(F (x)) < d/2. The y-coordinates are defined over
quadratic extensions.

It is not quite true that n < d in general. Indeed, Fqn is a compositum of fields of
degrees corresponding to the degrees of irreducible factors. Hence n can be bigger than d
(e.g., d = 5 where the polynomial splits as quadratic times cubic). When d is prime then
there are no such problems as the kernel subgroup is generated by a single x-coordinate
and a quadratic extension for y.

25.1.17: Note that t(Q) = 2Fx(Q)−a1Fy(Q) = 2(3x2Q+2a2xQ+a4−a1yQ)−a1(−2yQ−
a1xQ−a3), and re-arranging gives the result. Similarly, u(Q) = Fy(Q)2 = (2yQ+a1xQ +
a3)2 = 4(y2Q + yQ(a1xQ + a3)) + (a1xQ + a3)2, and one can replace y2Q + yQ(a1xQ + a3)

by x3Q + a2x
2
Q + a4xQ + a6.

25.1.18: The first statement is using xQ = x− (x− xQ) the rest are equally easy. For
example, the final statement follows from x3Q = x3 − 3x2xQ + 3xx2Q − (x− xQ)3 together
with some of the earlier cases.

25.1.20: Combine Theorem 25.1.6 with Exercise 25.1.17. Then simplify the formulae
using Exercises 25.1.18 and 25.1.19. For details see pages 80-81 of [383].

25.2.2: One computes the powers of j(E) in Fq in O(ℓM(log(q))) bit operations. In
the polynomial Φℓ(x, y) there are O(ℓ2) terms to consider and the coefficients are of size
O(ℓ log(ℓ)) and so reducing each coefficient to an element of Fq requires (the hardest

641

case being when q is prime and large) O(ℓ log(ℓ) log(q)) or O(M(ℓ log(ℓ))) bit operations.
We also need to multiply each coefficient by a suitable power of j(E). The total cost
is therefore O(ℓ2(ℓ log(ℓ) log(q) + M(log(q))) bit operations. The resulting polynomial
requires O(ℓ log(q)) bits. The claim about root finding is immediate from Exercise 2.12.5.

25.2.3: The first statement follows since j(E) = j(E′) and the Fq-rational ℓ-isogenies
are given by the roots of Φℓ(j(E), y). For the second statement, let φ : E → E′ be the
isomorphism and consider the map EndFq

(E) → EndFq
(E′) given by ψ 7→ φ ◦ ψ ◦ φ−1.

One can check that this is a ring homomorphism and, since φ is an isomorphism, it is
surjective.

25.3.15: The eigenvalues are 3,
√

2, 1, 0,−
√

2,−2. We have λ(X) = 2 < 2
√

3− 1 so
the graph is Ramanujan. We have δv({1}) = {2, 4}, δv({1, 2}) = {3, 4, 5} and δv({1, 3}) =
{2, 4, 6}. The expander property is easy to verify. It also follows from equation (25.5)
and λ1(X) =

√
2; giving #δv(A) ≥ (3−

√
2)/6#A > 0.26#A.

25.3.16: Let n > 2/c be even and let X be the 2-regular “line” on n vertices (vertex
1 < i < n connected to vertex i− 1 and i+ 1, and vertices 1 and n having single loops).
Let A = {1, . . . , n/2} so that #A = n/2 and c#A > 1 . But δv(A) = {n/2 + 1}.

25.3.18: We have h(−p) = 5 and ⌊p/12⌋+1 = 9, so there are nine isomorphism classes
of supersingular elliptic curves over Fp2 , five of which are defined over Fp.

Label the vertices of the graph as 24, 80, 23, 69, 34, α, α, β and β. The values α and
α are the roots of t2 + 84t+ 73, while β and β are roots of t2 + 63t + 69. The graph is
3-regular. Vertices 24 and 80 have two loops, and an edge to 23. Vertex 23 has an edge
to 69. Vertex 69 has a loop and an edge to 34. Vertex 34 has edges to α and α. Vertex
α has edges to α and β. Vertex α has edges to α and β. Finally, vertex β has two edges
to β.

25.3.19: The graph has ⌊p/12⌋ + 1 = 2 vertices. So the vertices are j = 0 and
j = 1728 ≡ 1 (mod 11). Using the modular polynomial Φ2(x, y) one finds there are three
edges from 0 to 1 and two edges from 1 to 0 (and a loop from 1 to itself). Hence, at least
two of the three isogenies from 0 to 1 have the same dual isogeny.

25.3.20: Take p = 131. There are 10 supersingular j-invariants in Fp. Taking 2-
isogenies gives two components: one containing the j-invariants {25, 82} and the other
with {0, 10, 28, 31, 50, 62, 94, 113}.

25.4.9: The graph has two components. Both are trees with a root and 4 leaves. One
component has root 42 and leaves 33, 51, 35, 57. The other component has root 14 and
leaves 44, 4, 18, 32. The diameter of XE,Fq,{2,3} is 2.

25.4.10: Clearly, j = 11 and j = 31 are on the floor. It follows that End(E) is the
order of index 2 in Z[(1 +

√
−7)/2]. Hence, End(E) ∼= Z[

√
−7].

Since the isogenies from j = 10 to 11 and 31 are descending it follows that the
ascending isogeny is to j = 29 and so this curve is on the surface.

25.5.2: The solution to the isogeny problem is a chain of length O(log(q)) of prime-
degree isogenies. Assuming that the chain is represented as a sequence of j-invariants, the
cost of the Elkies and Vélu steps is O(ℓ2+ǫ log(q)1+ǫ) bit operations. Since ℓ = O(log(q)m)
the cost for each isogeny is bounded by O(ℓ2m+1+ǫ) bit operations. The total cost is
therefore O(ℓ2m+2+ǫ) bit operations.

25.5.3: Dijsktra’s algorithm has complexity linear in the number of vertices, so it needs
more than

√
q operations to find the chain. The advantage is that the isogeny itself can

be computed faster, but probably only by a constant factor.

642 APPENDIX B. HINTS AND SOLUTIONS TO EXERCISES

Chapter 26: Pairings on Elliptic Curves

26.1.1: A function f such that div(f) = D1 is defined up to multiplication by an element

of k
∗
. So let f be such a function and write f(D2) =

∏
P f(P)nP . Then (uf)(D2) =

u
∑
P nP f(D2). The term u

∑
P nP is 1 for all u ∈ k

∗
if and only if deg(D2) = 0.

26.3.5: The fact that the divisors of the functions are correct is immediate. To show
the functions are normalised at infinity it is necessary to show that the functions y and
x are normalised at infinity. To see this note that t−3

∞ = (y/x)3 = y3/x3 = y(x3 + a2x
2 +

a4x + a6 − a1xy − a3y)/x3 = y(1 + u) where u is zero at OE . Hence, y is normalised at
infinity. Similarly, t−2

∞ = (y/x)2 = (x3 + a2x
2 + a4x+ a6− a1xy− a3y)/x2 = x+ u where

u(OE) = a2 and so x is normalised at infinity too. It follows that l(x, y) = y−λx + c and
v(x, y) = x− c are normalised at infinity.

26.3.8: This follows since if div(fn,P) = n(P) − n(OE) then div(fmn,P) = mn(P) −
mn(OE). So take m = N/n.

26.3.10: Let Q1, Q2 ∈ E[r] be such that Q1 6= Q2. Suppose Q1 and Q2 were in the
same class in E(Fqk)/rE(Fqk). Then Q1 − Q2 = [r]R for some R ∈ E(Fqk). It would
follow that R has order r2, but the conditions imply that no such group element exists.

26.3.12: If v(x) = (x−a) is a vertical line function over Fq then v(Q) = xQ−a ∈ Fqk/2 .

It follows that v(Q)(q
k−1)/r = 1.

26.3.17: The first statement follows directly from the definition. To show part 2, first
note that div(fs,x−s,Q) = ([s]Q) − s(Q) + (s − 1)(OE) = div(f−1

s,Q). Now, s ≡ qm ≡
Tm (mod r) and so, by Exercise 26.3.14, we have a power of the ate pairing. Part 3
follows from

div(fs,h(x)x,Q) =

d∑

i=0

hi(([s
i+1]Q)− (OE)) =

d∑

i=0

hi(([s
i][s]Q)− (OE)) = div(fs,h(x),[s]Q)

and the facts that

as,h(x)([s]Q,P) = as,h(x)(π
m
q (Q), P) = as,h(x)(Q,P)q

m

= as,h(x)(Q,P)s

(this is essentially the same argument as in equation (26.5)). The additive property follows
from the fact that the divisor of a product is the sum of the divisors. The multiplicative
property follows from the additive property and from part 3.

26.5.3: Given P, [a]P, [b]P choose a point Q such that e(P,Q) 6= 1 and one can invert
pairings with respect to that point Q. Compute z = e(P,Q)ab as in Lemma 26.5.2, then
call the pairing inversion oracle on (Q, z) to get [ab]P .

Bibliography

[1] M. Abdalla, M. Bellare, and P. Rogaway, DHIES: An encryption scheme based on
the Diffie-Hellman problem, Preprint, 2001.

[2] L. M. Adleman and J. DeMarrais, A subexponential algorithm for discrete logarithms
over all finite fields, Math. Comp. 61 (1993), no. 203, 1–15.

[3] L. M. Adleman, K. L. Manders, and G. L. Miller, On taking roots in finite fields,
Foundations of Computer Science (FOCS), IEEE, 1977, pp. 175–178.

[4] L.M. Adleman, J. DeMarrais, and M.-D. Huang, A subexponential algorithm for
discrete logarithms over the rational subgroup of the Jacobians of large genus hyper-
elliptic curves over finite fields, ANTS I (L. M. Adleman and M.-D. Huang, eds.),
LNCS, vol. 877, Springer, 1994, pp. 28–40.

[5] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone, An implementa-
tion for a fast public-key cryptosystem, J. Crypt. 3 (1991), no. 2, 63–79.

[6] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math 160 (2004),
no. 2, 781–793.

[7] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, Closest point search in lattices,
IEEE Trans. Inf. Theory 48 (2002), no. 8, 2201–2214.

[8] A. Akavia, Solving hidden number problem with one bit oracle and advice, CRYPTO
2009 (S. Halevi, ed.), LNCS, vol. 5677, Springer, 2009, pp. 337–354.

[9] W. Alexi, B. Chor, O. Goldreich, and C.-P. Schnorr, RSA and Rabin functions:
Certain parts are as hard as the whole, SIAM J. Comput. 17 (1988), no. 2, 194–
209.

[10] W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many
Carmichael numbers, Ann. of Math. 139 (1994), no. 3, 703–722.

[11] A. Antipa, D. R. L. Brown, R. P. Gallant, R. J. Lambert, R. Struik, and S. A.
Vanstone, Accelerated verification of ECDSA signatures, SAC 2005 (B. Preneel and
S. E. Tavares, eds.), LNCS, vol. 3897, Springer, 2006, pp. 307–318.

[12] C. Arène, T. Lange, M. Naehrig, and C. Ritzenthaler, Faster computation of the
Tate pairing, J. Number Theory 131 (2011), no. 5, 842–857.

[13] J. Arney and E. D. Bender, Random mappings with constraints on coalescence and
number of origins, Pacific J. Math. 103 (1982), 269–294.

[14] E. Artin, Galois theory, 2nd ed., Notre Dame, 1959.

643

644 BIBLIOGRAPHY

[15] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-
Wesley, 1969.

[16] R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren,
Handbook of elliptic and hyperelliptic cryptography, Chapman and Hall/CRC, 2006.

[17] R. M. Avanzi, A note on the signed sliding window integer recoding and a left-to-
right analogue, SAC 2004 (H. Handschuh and M. A. Hasan, eds.), LNCS, vol. 3357,
Springer, 2004, pp. 130–143.

[18] L. Babai, On Lovász lattice reduction and the nearest lattice point problem, Combi-
natorica 6 (1986), no. 1, 1–13.

[19] L. Babai and E. Szemerédi, On the complexity of matrix group problems I, Founda-
tions of Computer Science (FOCS) (1996), 229–240.

[20] E. Bach, Bounds for primality testing and related problems, Math. Comp. 55 (1990),
no. 191, 355–380.

[21] , Toward a theory of Pollard’s rho method, Inf. Comput. 90 (1991), no. 2,
139–155.

[22] E. Bach and J. Shallit, Algorithmic number theory, MIT press, 1996.

[23] E. Bach and J. Sorenson, Sieve algorithms for perfect power testing, Algorithmica
9 (1993), 313–328.

[24] S. Bai and R. P. Brent, On the efficiency of Pollard’s rho method for discrete
logarithms, CATS 2008 (J. Harland and P. Manyem, eds.), Australian Computer
Society, 2008, pp. 125–131.

[25] D. V. Bailey, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, H.-C. Chen, C.-
M. Cheng, G. van Damme, G. de Meulenaer, L. Julian Dominguez Perez, J. Fan,
T. Güneysu, F. Gurkaynak, T. Kleinjung, T. Lange, N. Mentens, R. Niederhagen,
C. Paar, F. Regazzoni, P. Schwabe, L. Uhsadel, A. Van Herrewege, and B.-Y. Yang,
Breaking ECC2K-130, Cryptology ePrint Archive, Report 2009/541, 2009.

[26] R. Balasubramanian and N. Koblitz, The improbability that an elliptic curve has
sub-exponential discrete log problem under the Menezes-Okamoto-Vanstone algo-
rithm, J. Crypt. 11 (1998), no. 2, 141–145.

[27] W. D. Banks and I. E. Shparlinski, Sato-Tate, cyclicity, and divisibility statistics
on average for elliptic curves of small height, Israel J. Math. 173 (2009), 253–277.

[28] P. S. L. M. Barreto, S. D. Galbraith, C. Ó hÉigeartaigh, and M. Scott, Efficient pair-
ing computation on supersingular abelian varieties, Des. Codes Crypt. 42 (2007),
no. 3, 239–271.

[29] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, Efficient algorithms
for pairing-based cryptosystems, CRYPTO 2002 (M. Yung, ed.), LNCS, vol. 2442,
Springer, 2002, pp. 354–369.

[30] P. S. L. M. Barreto and M. Naehrig, Pairing-friendly elliptic curves of prime order,
SAC 2005 (B. Preneel and S. E. Tavares, eds.), LNCS, vol. 3897, Springer, 2006,
pp. 319–331.

BIBLIOGRAPHY 645

[31] A. Bauer, Vers une généralisation rigoureuse des méthodes de Coppersmith pour
la recherche de petites racines de polynômes, Ph.D. thesis, Université de Versailles
Saint-Quentin-en-Yvelines, 2008.

[32] M. Bellare, R. Canetti, and H. Krawczyk, A modular approach to the design and
analysis of authentication and key exchange protocols, Symposium on the Theory
of Computing (STOC), ACM, 1998, pp. 419–428.

[33] M. Bellare, J. A. Garay, and T. Rabin, Fast batch verification for modular expo-
nentiation and digital signatures, EUROCRYPT 1998 (K. Nyberg, ed.), LNCS, vol.
1403, Springer, 1998, pp. 236–250.

[34] M. Bellare, S. Goldwasser, and D. Micciancio, “Pseudo-Random” number generation
within cryptographic algorithms: The DSS case, CRYPTO 1997 (B. S. Kaliski Jr.,
ed.), LNCS, vol. 1294, Springer, 1997, pp. 277–291.

[35] M. Bellare, C. Namprempre, and G. Neven, Security proofs for identity-based iden-
tification and signature schemes, J. Crypt. 22 (2009), no. 1, 1–61.

[36] M. Bellare and G. Neven, Multi-signatures in the plain public-key model and a
general forking lemma, CCS 2006 (A. Juels, R. N. Wright, and S. De Capitani
di Vimercati, eds.), ACM, 2006, pp. 390–399.

[37] M. Bellare, D. Pointcheval, and P. Rogaway, Authenticated key exchange secure
against dictionary attacks, EUROCRYPT 2000 (B. Preneel, ed.), LNCS, vol. 1807,
Springer, 2000, pp. 139–155.

[38] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing
efficient protocols, CCS 1993, ACM, 1993, pp. 62–73.

[39] , Entity authentication and key distribution, CRYPTO 1993 (D. R. Stinson,
ed.), LNCS, vol. 773, Springer, 1994, pp. 232–249.

[40] , Optimal asymmetric encryption - How to encrypt with RSA, EUROCRYPT
1994 (A. De Santis, ed.), LNCS, vol. 950, Springer, 1995, pp. 92–111.

[41] , The exact security of digital signatures – how to sign with RSA and Rabin,
EUROCRYPT 1996 (U. M. Maurer, ed.), LNCS, vol. 1070, Springer, 1996, pp. 399–
416.

[42] K. Bentahar, The equivalence between the DHP and DLP for elliptic curves used in
practical applications, revisited, IMA Cryptography and Coding (N. P. Smart, ed.),
LNCS, vol. 3796, Springer, 2005, pp. 376–391.

[43] , Theoretical and practical efficiency aspects in cryptography, Ph.D. thesis,
University of Bristol, 2008.

[44] D. J. Bernstein, Faster square roots in annoying finite fields, Preprint, 2001.

[45] , Pippenger’s exponentiation algorithm, Preprint, 2002.

[46] , Curve 25519: New Diffie-Hellman speed records, PKC 2006 (M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, eds.), LNCS, vol. 3958, Springer, 2006,
pp. 207–228.

646 BIBLIOGRAPHY

[47] , Proving tight security for Rabin-Williams signatures, EUROCRYPT 2008
(N. P. Smart, ed.), LNCS, vol. 4965, Springer, 2008, pp. 70–87.

[48] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, Twisted Edwards
curves, Africacrypt 2008 (S. Vaudenay, ed.), LNCS, vol. 5023, Springer, 2008,
pp. 389–405.

[49] D. J. Bernstein, P. Birkner, T. Lange, and C. Peters, ECM using Edwards curves,
Cryptology ePrint Archive, Report 2008/016, 2008.

[50] D. J. Bernstein, J. Buchmann, and E. Dahmen, Post quantum cryptography,
Springer, 2008.

[51] D. J. Bernstein and T. Lange, Explicit formulas database, 2007.

[52] , Faster addition and doubling on elliptic curves, ASIACRYPT 2007
(K. Kurosawa, ed.), LNCS, vol. 4833, Springer, 2007, pp. 29–50.

[53] , Analysis and optimization of elliptic-curve single-scalar multiplication,
Contemporary Mathematics 461 (2008), 1–19.

[54] , Type-II optimal polynomial bases, WAIFI 2010 (M. A. Hasan and T. Helle-
seth, eds.), LNCS, vol. 6087, Springer, 2010, pp. 41–61.

[55] D. J. Bernstein, T. Lange, and R. R. Farashahi, Binary Edwards curves, CHES 2008,
(E. Oswald and P. Rohatgi, eds.), LNCS, vol. 5154, Springer, 2008, pp. 244–265.

[56] D. J. Bernstein, T. Lange, and P. Schwabe, On the correct use of the negation map
in the Pollard rho method, PKC 2011 (D. Catalano, N. Fazio, R. Gennaro, and
A. Nicolosi, eds.), LNCS, vol. 6571, Springer, 2011, pp. 128–146.

[57] E. Biham, D. Boneh, and O. Reingold, Breaking generalized Diffie-Hellman modulo
a composite is no easier than factoring, Inf. Process. Lett. 70 (1999), no. 2, 83–87.

[58] G. Bisson and A. V. Sutherland, Computing the endomorphism ring of an ordinary
elliptic curve over a finite field, J. Number Theory 131 (2011), no. 5, 815–831.

[59] S. R. Blackburn and S. Murphy, The number of partitions in Pollard rho, unpub-
lished manuscript, 1998.

[60] S. R. Blackburn and E. Teske, Baby-step giant-step algorithms for non-uniform
distributions, ANTS IV (W. Bosma, ed.), LNCS, vol. 1838, Springer, 2000, pp. 153–
168.

[61] I. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A. Vanstone, Computing logarithms
in finite fields of characteristic two, SIAM J. Algebraic and Discrete Methods 5
(1984), no. 2, 272–285.

[62] I. F. Blake and T. Garefalakis, On the complexity of the discrete logarithm and
Diffie-Hellman problems, J. Complexity 20 (2004), no. 2-3, 148–170.

[63] I. F. Blake, T. Garefalakis, and I. E. Shparlinski, On the bit security of the Diffie-
Hellman key, Appl. Algebra Eng. Commun. Comput. 16 (2006), no. 6, 397–404.

[64] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic curves in cryptography, Cam-
bridge, 1999.

BIBLIOGRAPHY 647

[65] , Advances in elliptic curve cryptography, Cambridge, 2005.

[66] D. Bleichenbacher, Generating ElGamal signatures without knowing the secret key,
EUROCRYPT 1996 (U. M. Maurer, ed.), LNCS, vol. 1070, Springer, 1996, pp. 10–
18.

[67] , Chosen ciphertext attacks against protocols based on the RSA encryption
standard PKCS#1, CRYPTO 1998 (H. Krawczyk, ed.), LNCS, vol. 1462, Springer,
1998, pp. 1–12.

[68] , Compressing Rabin signatures, CT-RSA 2004 (T. Okamoto, ed.), LNCS,
vol. 2964, Springer, 2004, pp. 126–128.

[69] D. Bleichenbacher and A. May, New attacks on RSA with small secret CRT-
exponents, PKC 2006 (M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, eds.), LNCS,
vol. 3958, Springer, 2006, pp. 1–13.

[70] D. Bleichenbacher and P. Q. Nguyen, Noisy polynomial interpolation and noisy
Chinese remaindering, EUROCRYPT 2000 (B. Preneel, ed.), LNCS, vol. 1807,
Springer, 2000, pp. 53–69.

[71] J. Blömer and A. May, Low secret exponent RSA revisited, Cryptography and Lat-
tices (CaLC) (J. H. Silverman, ed.), LNCS, vol. 2146, Springer, 2001, pp. 4–19.

[72] J. Blömer and A. May, A tool kit for finding small roots of bivariate polynomials
over the integers, EUROCRYPT 2005 (R. Cramer, ed.), LNCS, vol. 3494, Springer,
2005, pp. 251–267.

[73] M. Blum and S. Micali, How to generate cryptographically strong sequences of
pseudo-random bits, SIAM J. Comput. 13 (1984), no. 4, 850–864.

[74] D. Boneh, Simplified OAEP for the RSA and Rabin functions, CRYPTO 2001
(J. Kilian, ed.), LNCS, vol. 2139, Springer, 2001, pp. 275–291.

[75] , Finding smooth integers in short intervals using CRT decoding, J. Comput.
Syst. Sci. 64 (2002), no. 4, 768–784.

[76] D. Boneh and X. Boyen, Short signatures without random oracles, EUROCRYPT
2004 (C. Cachin and J. Camenisch, eds.), LNCS, vol. 3027, Springer, 2004, pp. 56–
73.

[77] , Short signatures without random oracles and the SDH assumption in bilin-
ear groups, J. Crypt. 21 (2008), no. 2, 149–177.

[78] D. Boneh and G. Durfee, Cryptanalysis of RSA with private key d less than N0.292,
IEEE Trans. Inf. Theory 46 (2000), no. 4, 1339–1349.

[79] D. Boneh, G. Durfee, and N. Howgrave-Graham, Factoring N = prq for large r,
CRYPTO 1999 (M. J. Wiener, ed.), LNCS, vol. 1666, Springer, 1999, pp. 326–337.

[80] D. Boneh and M. K. Franklin, Identity based encryption from the Weil pairing,
CRYPTO 2001 (J. Kilian, ed.), LNCS, vol. 2139, Springer, 2001, pp. 213–229.

[81] , Identity based encryption from the Weil pairing, SIAM J. Comput. 32
(2003), no. 3, 586–615.

648 BIBLIOGRAPHY

[82] D. Boneh, A. Joux, and P. Nguyen, Why textbook ElGamal and RSA encryption are
insecure, ASIACRYPT 2000 (T. Okamoto, ed.), LNCS, vol. 1976, Springer, 2000,
pp. 30–43.

[83] D. Boneh and R. J. Lipton, Algorithms for black-box fields and their application to
cryptography, CRYPTO 1996 (N. Koblitz, ed.), LNCS, vol. 1109, Springer, 1996,
pp. 283–297.

[84] D. Boneh and I. E. Shparlinski, On the unpredictability of bits of the elliptic curve
Diffie-Hellman scheme, CRYPTO 2001 (J. Kilian, ed.), LNCS, vol. 2139, Springer,
2001, pp. 201–212.

[85] D. Boneh and R. Venkatesan, Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes, CRYPTO 1996 (N. Koblitz, ed.),
LNCS, vol. 1109, Springer, 1996, pp. 129–142.

[86] , Rounding in lattices and its cryptographic applications, Symposium on Dis-
crete Algorithms (SODA), ACM/SIAM, 1997, pp. 675–681.

[87] , Breaking RSA may not be equivalent to factoring, EUROCRYPT 1998
(K. Nyberg, ed.), LNCS, vol. 1403, Springer, 1998, pp. 59–71.

[88] A. Borodin and I. Munro, The computational complexity of algebraic and numeric
problems, Elsevier, 1975.

[89] J. W. Bos, M. E. Kaihara, and T. Kleinjung, Pollard rho on elliptic curves, Preprint,
2009.

[90] J. W. Bos, M. E. Kaihara, and P. L. Montgomery, Pollard rho on the playstation
3, Handouts of SHARCS 2009, 2009, pp. 35–50.

[91] J. W. Bos, T. Kleinjung, and A. K. Lenstra, On the use of the negation map in
the Pollard Rho method, ANTS IX (G. Hanrot, F. Morain, and E. Thomé, eds.),
LNCS, vol. 6197, Springer, 2010, pp. 66–82.

[92] W. Bosma and H. W. Lenstra Jr., Complete systems of two addition laws for elliptic
curves, J. Number Theory 53 (1995), 229–240.

[93] A. Bostan, F. Morain, B. Salvy, and E. Schost, Fast algorithms for computing
isogenies between elliptic curves, Math. Comp. 77 (2008), no. 263, 1755–1778.

[94] C. Boyd and A. Mathuria, Protocols for authentication and key establishment, In-
formation Security and Cryptography, Springer, 2003.

[95] X. Boyen, The uber-assumption family, Pairing 2008 (S. D. Galbraith and K. G.
Paterson, eds.), LNCS, vol. 5209, Springer, 2008, pp. 39–56.

[96] V. Boyko, M. Peinado, and R. Venkatesan, Speeding up discrete log and factoring
based schemes via precomputations, EUROCRYPT 1998 (K. Nyberg, ed.), LNCS,
vol. 1403, Springer, 1998, pp. 221–235.

[97] S. Brands, An efficient off-line electronic cash system based on the representation
problem, Tech. report, CWI Amsterdam, 1993, CS-R9323.

[98] R. P. Brent, An improved Monte Carlo factorization algorithm, BIT (1980), 176–
184.

BIBLIOGRAPHY 649

[99] R. P. Brent and J. M. Pollard, Factorization of the eighth Fermat number, Math.
Comp. 36 (1981), no. 154, 627–630.

[100] R. P. Brent and P. Zimmermann, Modern computer arithmetic, Cambridge, 2010.

[101] , An O(M(n)logn) algorithm for the Jacobi symbol, ANTS IX (G. Hanrot,
F. Morain, and E. Thomé, eds.), LNCS, vol. 6197, Springer, 2010, pp. 83–95.

[102] E. Bresson, Y. Lakhnech, L. Mazaré, and B. Warinschi, A generalization of DDH
with applications to protocol analysis and computational soundness, CRYPTO 2007
(A. J. Menezes, ed.), LNCS, vol. 4622, Springer, 2007, pp. 482–499.

[103] E. F. Brickell, Breaking iterated knapsacks, CRYPTO 1984 (G. R. Blakley and
D. Chaum, eds.), LNCS, vol. 196, Springer, 1985, pp. 342–358.

[104] E. F. Brickell and A. M. Odlyzko, Cryptanalysis: A survey of recent results, Con-
temporary Cryptology (G. J. Simmons, ed.), IEEE, 1991, pp. 501–540.

[105] E. F. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung, Design validations for
discrete logarithm based signature schemes, PKC 2000 (H. Imai and Y. Zheng, eds.),
LNCS, vol. 1751, Springer, 2000, pp. 276–292.

[106] E. Brier, C. Clavier, and D. Naccache, Cryptanalysis of RSA signatures with fixed-
pattern padding, CRYPTO 2001 (J. Kilian, ed.), LNCS, vol. 2139, Springer, 2001,
pp. 433–439.

[107] R. Bröker, Constructing supersingular elliptic curves, J. Comb. Number Theory 1
(2009), no. 3, 269–273.

[108] R. Bröker, D. X. Charles, and K. Lauter, Evaluating large degree isogenies and
applications to pairing based cryptography, Pairing 2008 (S. D. Galbraith and K. G.
Paterson, eds.), LNCS, vol. 5209, Springer, 2008, pp. 100–112.

[109] R. Bröker, K. Lauter, and A. V. Sutherland, Modular polynomials via isogeny vol-
canoes, Math. Comp. 81 (2012), no. 278, 1201–1231.

[110] R. Bröker and A. V. Sutherland, An explicit height bound for the classical modular
polynomial, The Ramanujan Journal 22 (2010), no. 3, 293–313.

[111] D. R. L. Brown and R. P. Gallant, The static Diffie-Hellman problem, Cryptology
ePrint Archive, Report 2004/306, 2004.

[112] B. B. Brumley and K. U. Järvinen, Koblitz curves and integer equivalents of Frobe-
nius expansions, SAC 2007 (C. M. Adams, A. Miri, and M. J. Wiener, eds.), LNCS,
vol. 4876, Springer, 2007, pp. 126–137.

[113] J. P. Buhler and P. Stevenhagen, Algorithmic number theory, MSRI publications,
Cambridge, 2008.

[114] M. Burmester and Y. Desmedt, A secure and efficient conference key distribution
system, EUROCRYPT 1994 (A. De Santis, ed.), LNCS, vol. 950, Springer, 1995,
pp. 267–275.

[115] R. Canetti, O. Goldreich, and S. Halevi, The random oracle model, revisited, Sym-
posium on the Theory of Computing (STOC), ACM, 1998, pp. 209–218.

650 BIBLIOGRAPHY

[116] R. Canetti and H. Krawczyk, Analysis of key-exchange protocols and their use for
building secure channels, EUROCRYPT 2001 (B. Pfitzmann, ed.), LNCS, vol. 2045,
Springer, 2001, pp. 453–474.

[117] E. R. Canfield, P. Erdös, and C. Pomerance, On a problem of Oppenheim concerning
“factorisatio numerorum”, J. Number Theory 17 (1983), no. 1, 1–28.

[118] D. G. Cantor, Computing in the Jacobian of an hyperelliptic curve, Math. Comp.
48 (1987), no. 177, 95–101.

[119] , On the analogue of the division polynomials for hyperelliptic curves, J.
Reine Angew. Math. 447 (1994), 91–145.

[120] D. Cash, E. Kiltz, and V. Shoup, The twin Diffie-Hellman problem and applications,
EUROCRYPT 2008 (N. P. Smart, ed.), LNCS, vol. 4965, Springer, 2008, pp. 127–
145.

[121] J. W. S. Cassels, An introduction to the geometry of numbers, Springer, 1959.

[122] , Lectures on elliptic curves, Cambridge, 1991.

[123] J. W. S. Cassels and E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves
of genus 2, Cambridge, 1996.

[124] J. W. S. Cassels and A. Frölich, Algebraic number theory, Academic Press, 1967.

[125] D. Catalano, R. Gennaro, N. Howgrave-Graham, and P. Q. Nguyen, Paillier’s cryp-
tosystem revisited, CCS 2001, ACM, 2001, pp. 206–214.

[126] L. S. Charlap and R. Coley, An elementary introduction to elliptic curves II, CCR
Expository Report 34, Institute for Defense Analysis, 1990.

[127] L. S. Charlap and D. P. Robbins, An elementary introduction to elliptic curves,
CRD Expository Report 31, 1988.

[128] D. X. Charles, K. E. Lauter, and E. Z. Goren, Cryptographic hash functions from
expander graphs, J. Crypt. 22 (2009), no. 1, 93–113.

[129] M. Chateauneuf, A. C. H. Ling, and D. R. Stinson, Slope packings and coverings,
and generic algorithms for the discrete logarithm problem, Journal of Combinatorial
Designs 11 (2003), no. 1, 36–50.

[130] D. Chaum, E. van Heijst, and B. Pfitzmann, Cryptographically strong undeniable
signatures, unconditionally secure for the signer, CRYPTO 1991 (J. Feigenbaum,
ed.), LNCS, vol. 576, Springer, 1992, pp. 470–484.

[131] J.-H. Cheon, Security analysis of the strong Diffie-Hellman problem, EUROCRYPT
2006 (S. Vaudenay, ed.), LNCS, vol. 4004, Springer, 2006, pp. 1–11.

[132] , Discrete logarithm problem with auxiliary inputs, J. Crypt. 23 (2010), no. 3,
457–476.

[133] J. H. Cheon, J. Hong, and M. Kim, Speeding up the Pollard rho method on prime
fields, ASIACRYPT 2008 (J. Pieprzyk, ed.), LNCS, vol. 5350, Springer, 2008,
pp. 471–488.

BIBLIOGRAPHY 651

[134] J. H. Cheon and H.-T. Kim, Analysis of low Hamming weight products, Discrete
Applied Mathematics 156 (2008), no. 12, 2264–2269.

[135] M. A. Cherepnev, On the connection between the discrete logarithms and the Diffie-
Hellman problem, Discr. Math. Appl. 6 (1996), no. 4, 341–349.

[136] H. Cohen, A course in computational algebraic number theory, GTM 138, Springer,
1993.

[137] , Analysis of the sliding window powering algorithm, J. Crypt. 18 (2005),
no. 1, 63–76.

[138] P. Cohen, On the coefficients of the transformation polynomials for the elliptic mod-
ular function, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 3, 389–402.

[139] S. A. Cook, An overview of computational complexity, Commun. ACM 26 (1983),
no. 6, 400–408.

[140] D. Coppersmith, Fast evaluation of logarithms in fields of characteristic 2, IEEE
Trans. Inf. Theory 30 (1984), no. 4, 587–594.

[141] , Small solutions to polynomial equations, and low exponent RSA vulnera-
bilities, J. Crypt. 10 (1997), no. 4, 233–260.

[142] , Finding small solutions to small degree polynomials, Cryptography and
Lattices (CaLC) (J. H. Silverman, ed.), LNCS, vol. 2146, Springer, 2001, pp. 20–31.

[143] D. Coppersmith, J.-S. Coron, F. Grieu, S. Halevi, C. Jutla, D. Naccache, and J. P.
Stern, Cryptanalysis of ISO/IEC 9796-1, J. Crypt. 21 (2008), no. 1, 27–51.

[144] D. Coppersmith, M. K. Franklin, J. Patarin, and M. K. Reiter, Low-exponent RSA
with related messages, EUROCRYPT 1996 (U. M. Maurer, ed.), LNCS, vol. 1070,
Springer, 1996, pp. 1–9.

[145] D. Coppersmith, A. M. Odlzyko, and R. Schroeppel, Discrete logarithms in GF(p),
Algorithmica 1 (1986), no. 1-4, 1–15.

[146] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algo-
rithms, 2nd ed., MIT press, 2001.

[147] G. Cornelissen, Two-torsion in the Jacobian of hyperelliptic curves over finite fields,
Arch. Math. 77 (2001), no. 3, 241–246.

[148] J.-S. Coron, On the exact security of full domain hash, CRYPTO 2000 (M. Bellare,
ed.), LNCS, vol. 1880, Springer, 2000, pp. 229–235.

[149] , Optimal security proofs for PSS and other signature schemes, EURO-
CRYPT 2002 (L. R. Knudsen, ed.), LNCS, vol. 2332, Springer, 2002, pp. 272–287.

[150] , Finding small roots of bivariate integer polynomial equations: A direct ap-
proach, CRYPTO 2007 (A. Menezes, ed.), LNCS, vol. 4622, Springer, 2007, pp. 379–
394.

[151] J.-S. Coron and A. May, Deterministic polynomial-time equivalence of computing
the RSA secret key and factoring, J. Crypt. 20 (2007), no. 1, 39–50.

652 BIBLIOGRAPHY

[152] J.-S. Coron, D. M’Räıhi, and C. Tymen, Fast generation of pairs (k, [k]P) for Koblitz
elliptic curves, SAC 2001 (S. Vaudenay and A. M. Youssef, eds.), LNCS, vol. 2259,
Springer, 2001, pp. 151–164.

[153] J.-S. Coron, D. Naccache, M. Tibouchi, and R.-P. Weinmann, Practical cryptanaly-
sis of ISO/IEC 9796-2 and EMV signatures, CRYPTO 2009 (S. Halevi, ed.), LNCS,
vol. 5677, Springer, 2009, pp. 428–444.

[154] M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C.-P. Schnorr, and J. Stern,
Improved low-density subset sum algorithms, Computational Complexity 2 (1992),
111–128.

[155] J.-M. Couveignes, Computing l-isogenies with the p-torsion, ANTS II (H. Cohen,
ed.), LNCS, vol. 1122, Springer, 1996, pp. 59–65.

[156] J.-M. Couveignes, L. Dewaghe, and F. Morain, Isogeny cycles and the Schoof-Elkies-
Atkin algorithm, Research Report LIX/RR/96/03, 1996.

[157] D. A. Cox, Primes of the form x2 + ny2, Wiley, 1989.

[158] D. A. Cox, J. Little, and D. O’Shea, Ideals, varieties and algorithms: An intro-
duction to computational algebraic geometry and commutative algebra, 2nd ed.,
Springer, 1997.

[159] R. Cramer and V. Shoup, A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack, CRYPTO 1998 (H. Krawczyk, ed.),
LNCS, vol. 1462, Springer, 1998, pp. 13–25.

[160] , Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption, EUROCRYPT 2002 (L. R. Knudsen, ed.), LNCS, vol. 2332,
Springer, 2002, pp. 45–64.

[161] , Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack, SIAM J. Comput. 33 (2003), no. 1, 167–
226.

[162] R. Crandall and C. Pomerance, Prime numbers: A computational perspective, 2nd
ed., Springer, 2005.

[163] C. W. Curtis, Linear algebra: An introductory approach, Undergraduate Texts in
Mathematics, Springer, 1984.

[164] I. Damg̊ard, On the randomness of Legendre and Jacobi sequences, CRYPTO 1988
(S. Goldwasser, ed.), LNCS, vol. 403, Springer, 1990, pp. 163–172.

[165] I. Damg̊ard and M. Jurik, A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system, PKC 2001 (K. Kim, ed.), LNCS, vol.
1992, Springer, 2001, pp. 119–136.

[166] G. Davidoff, P. Sarnak, and A. Valette, Elementary number theory, group theory,
and Ramanujan graphs, Cambridge, 2003.

[167] M. Davis and E. J. Weyuker, Computability, complexity and languages, Academic
Press, 1983.

BIBLIOGRAPHY 653

[168] P. de Rooij, On Schnorr’s preprocessing for digital signature schemes, J. Crypt. 10
(1997), no. 1, 1–16.

[169] B. den Boer, Diffie-Hellman is as strong as discrete log for certain primes, CRYPTO
1988 (S. Goldwasser, ed.), LNCS, vol. 403, Springer, 1990, pp. 530–539.

[170] Y. Desmedt and A. M. Odlyzko, A chosen text attack on the RSA cryptosystem and
some discrete logarithm schemes, CRYPTO 1985 (H. C. Williams, ed.), LNCS, vol.
218, Springer, 1986, pp. 516–522.

[171] L. Dewaghe, Un corollaire aux formules de Vélu, Preprint, 1995.

[172] C. Diem, The GHS-attack in odd characteristic, J. Ramanujan Math. Soc. 18 (2003),
no. 1, 1–32.

[173] , On the discrete logarithm problem in elliptic curves over non-prime finite
fields, Lecture at ECC 2004, 2004.

[174] , An index calculus algorithm for non-singular plane curves of high genus,
Talk at ECC 2006, 2006.

[175] , An index calculus algorithm for plane curves of small degree, ANTS VII
(F. Hess, S. Pauli, and M. E. Pohst, eds.), LNCS, vol. 4076, Springer, 2006, pp. 543–
557.

[176] , On the discrete logarithm problem in class groups of curves, Math. Comp.
80 (2011), no. 273, 443–475.

[177] , On the discrete logarithm problem in elliptic curves, Compositio Math. 147
(2011), 75–104.

[178] C. Diem and E. Thomé, Index calculus in class groups of non-hyperelliptic curves
of genus three, J. Crypt. 21 (2008), no. 4, 593–611.

[179] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inf.
Theory 22 (1976), 644–654.

[180] V. S. Dimitrov, K. U. Järvinen, M. J. Jacobson, W. F. Chan, and Z. Huang, Provably
sublinear point multiplication on Koblitz curves and its hardware implementation,
IEEE Trans. Computers 57 (2008), no. 11, 1469–1481.

[181] V. S. Dimitrov, G. A. Jullien, and W. C. Miller, Theory and applications of the
double-base number system, IEEE Trans. Computers 48 (1999), no. 10, 1098–1106.

[182] S. A. DiPippo and E. W. Howe, Real polynomials with all roots on the unit circle
and abelian varieties over finite fields, J. Number Theory 73 (1998), no. 2, 426–450.

[183] C. Doche, T. Icart, and D. R. Kohel, Efficient scalar multiplication by isogeny
decompositions, PKC 2006 (M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, eds.),
LNCS, vol. 3958, Springer, 2006, pp. 191–206.

[184] A. Dujella, A variant of Wiener’s attack on RSA, Computing 85 (2009), no. 1-2,
77–83.

[185] I. M. Duursma, Class numbers for some hyperelliptic curves, Arithmetic, Geome-
try and Coding Theory (R. Pellikaan, M. Perret, and S.G. Vladut, eds.), Walter
de Gruyter, 1996, pp. 45–52.

654 BIBLIOGRAPHY

[186] I. M. Duursma, P. Gaudry, and F. Morain, Speeding up the discrete log computation
on curves with automorphisms, ASIACRYPT 1999 (K.Y. Lam, E. Okamoto, and
C. Xing, eds.), LNCS, vol. 1716, Springer, 1999, pp. 103–121.

[187] I. M. Duursma and H.-S. Lee, Tate pairing implementation for hyperelliptic curves
y2 = xp − x + d, ASIACRYPT 2003 (C.-S. Laih, ed.), LNCS, vol. 2894, Springer,
2003, pp. 111–123.

[188] P. N. J. Eagle, S. D. Galbraith, and J. Ong, Point compression for Koblitz elliptic
curves, Advances in Mathematics of Communication 5 (2011), no. 1, 1–10.

[189] S. Edixhoven, Le couplage Weil: de la géométrie à l’arithmétique, Notes from a
seminar in Rennes, 2002.

[190] H. M. Edwards, A normal form for elliptic curves, Bulletin of the AMS 44 (2007),
393–422.

[191] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, GTM,
vol. 150, Springer, 1999.

[192] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, CRYPTO 1984 (G. R. Blakley and D. Chaum, eds.), LNCS, vol. 196,
Springer, 1985, pp. 10–18.

[193] N. D. Elkies, Elliptic and modular curves over finite fields and related computational
issues, Computational Perspectives on Number Theory (D. A. Buell and J. T. Teit-
elbaum, eds.), Studies in Advanced Mathematics, AMS, 1998, pp. 21–76.

[194] A. Enge, Computing modular polynomials in quasi-linear time, Math. Comp. 78
(2009), no. 267, 1809–1824.

[195] A. Enge and P. Gaudry, A general framework for subexponential discrete logarithm
algorithms, Acta Arith. 102 (2002), 83–103.

[196] , An L(1/3 + ǫ) algorithm for the discrete logarithm problem for low de-
gree curves, EUROCRYPT 2007 (M. Naor, ed.), LNCS, vol. 4515, Springer, 2007,
pp. 379–393.

[197] A. Enge, P. Gaudry, and E. Thomé, An L(1/3) discrete logarithm algorithm for low
degree curves, J. Crypt. 24 (2011), no. 1, 24–41.

[198] A. Enge and A. Stein, Smooth ideals in hyperelliptic function fields, Math. Comp.
71 (2002), no. 239, 1219–1230.

[199] S. Erickson, M. J. Jacobson Jr., N. Shang, S. Shen, and A. Stein, Explicit formu-
las for real hyperelliptic curves of genus 2 in affine representation, WAIFI 2007
(C. Carlet and B. Sunar, eds.), LNCS, vol. 4547, Springer, 2007, pp. 202–218.

[200] H. M. Farkas and I. Kra, Riemann surfaces, GTM, vol. 71, Springer, 1980.

[201] U. Feige, A. Fiat, and A. Shamir, Zero-knowledge proofs of identity, J. Crypt. 1
(1988), no. 2, 77–94.

[202] L. De Feo, Fast algorithms for towers of finite fields and isogenies, Ph.D. thesis,
L’École Polytechnique, 2010.

BIBLIOGRAPHY 655

[203] R. Fischlin and C.-P. Schnorr, Stronger security proofs for RSA and Rabin bits, J.
Crypt. 13 (2000), no. 2, 221–244.

[204] P. Flajolet and A. M. Odlyzko, Random mapping statistics, EUROCRYPT 1989
(J.-J.Quisquater and J. Vandewalle, eds.), LNCS, vol. 434, Springer, 1990, pp. 329–
354.

[205] P. Flajolet and R. Sedgewick, Analytic combinatorics, Cambridge, 2009.

[206] R. Flassenberg and S. Paulus, Sieving in function fields, Experiment. Math. 8
(1999), no. 4, 339–349.

[207] K. Fong, D. Hankerson, J. López, and A. J. Menezes, Field inversion and point
halving revisited, IEEE Trans. Computers 53 (2004), no. 8, 1047–1059.

[208] C. Fontaine and F. Galand, A survey of homomorphic encryption for nonspecialists,
EURASIP Journal on Information Security 2007 (2007), no. 15, 1–10.

[209] M. Fouquet and F. Morain, Isogeny volcanoes and the SEA algorithm, ANTS V
(C. Fieker and D. R. Kohel, eds.), LNCS, vol. 2369, Springer, 2002, pp. 276–291.

[210] D. Freeman, M. Scott, and E. Teske, A taxonomy of pairing-friendly elliptic curves,
J. Crypt. 23 (2010), no. 2, 224–280.

[211] D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev, More constructions
of lossy and correlation-secure trapdoor functions, PKC 2010 (P. Q. Nguyen and
D. Pointcheval, eds.), LNCS, vol. 6056, Springer, 2010, pp. 279–295.

[212] G. Frey, How to disguise an elliptic curve, Talk at ECC 1998, Waterloo, 1998.

[213] G. Frey and H.-G. Rück, A remark concerning m-divisibility and the discrete loga-
rithm problem in the divisor class group of curves, Math. Comp. 62 (1994), no. 206,
865–874.

[214] M. D. Fried and M. Jarden, Field arithmetic, 3rd ed., Springer, 2008.

[215] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, RSA-OAEP is secure under
the RSA assumption, J. Crypt. 17 (2004), no. 2, 81–104.

[216] W. Fulton, Algebraic curves, Addison-Wesley, 1989, Out of print, but freely available
here: http://www.math.lsa.umich.edu/~wfulton/.

[217] S. D. Galbraith, Constructing isogenies between elliptic curves over finite fields,
LMS J. Comput. Math. 2 (1999), 118–138.

[218] , Supersingular curves in cryptography, ASIACRYPT 2001 (C. Boyd, ed.),
LNCS, vol. 2248, Springer, 2001, pp. 495–513.

[219] S. D. Galbraith, M. Harrison, and D. J. Mireles Morales, Efficient hyperelliptic
arithmetic using balanced representation for divisors, ANTS VIII (A. J. van der
Poorten and A. Stein, eds.), LNCS, vol. 5011, Springer, 2008, pp. 342–356.

[220] S. D. Galbraith, C. Heneghan, and J. F. McKee, Tunable balancing of RSA, ACISP
2005 (C. Boyd and J. M. González Nieto, eds.), LNCS, vol. 3574, Springer, 2005,
pp. 280–292.

656 BIBLIOGRAPHY

[221] S. D. Galbraith, F. Hess, and N. P. Smart, Extending the GHS Weil descent attack,
EUROCRYPT 2002 (L. R. Knudsen, ed.), LNCS, vol. 2332, Springer, 2002, pp. 29–
44.

[222] S. D. Galbraith, F. Hess, and F. Vercauteren, Aspects of pairing inversion, IEEE
Trans. Inf. Theory 54 (2008), no. 12, 5719–5728.

[223] S. D. Galbraith and M. Holmes, A non-uniform birthday problem with applications
to discrete logarithms, Cryptology ePrint Archive, Report 2010/616, 2010.

[224] S. D. Galbraith, X. Lin, and M. Scott, Endomorphisms for faster elliptic curve
cryptography on a large class of curves, EUROCRYPT 2009 (A. Joux, ed.), LNCS,
vol. 5479, Springer, 2009, pp. 518–535.

[225] S. D. Galbraith and J. F. McKee, The probability that the number of points on an
elliptic curve over a finite field is prime, Journal of the Lond. Math. Soc. 62 (2000),
no. 3, 671–684.

[226] S. D. Galbraith, J. M. Pollard, and R. S. Ruprai, Computing discrete logarithms in
an interval, 2013, pp. 1181–1195.

[227] S. D. Galbraith and R. S. Ruprai, An improvement to the Gaudry-Schost algorithm
for multidimensional discrete logarithm problems, IMA Cryptography and Coding
(M. G. Parker, ed.), LNCS, vol. 5921, Springer, 2009, pp. 368–382.

[228] , Using equivalence classes to accelerate solving the discrete logarithm prob-
lem in a short interval, PKC 2010 (P. Q. Nguyen and D. Pointcheval, eds.), LNCS,
vol. 6056, Springer, 2010, pp. 368–383.

[229] S. D. Galbraith and N. P. Smart, A cryptographic application of Weil descent,
IMA Cryptography and Coding (M. Walker, ed.), LNCS, vol. 1746, Springer, 1999,
pp. 191–200.

[230] S. D. Galbraith and A. Stolbunov, Improved algorithm for the isogeny problem for
ordinary elliptic curves, Applicable Algebra in Engineering, Communication and
Computing 24 (2013), no. 2, 107–131.

[231] S. D. Galbraith and E. R. Verheul, An analysis of the vector decomposition problem,
PKC 2008 (R. Cramer, ed.), LNCS, vol. 4939, Springer, 2008, pp. 308–327.

[232] R. P. Gallant, R. J. Lambert, and S. A. Vanstone, Improving the parallelized Pollard
lambda search on binary anomalous curves, Math. Comp. 69 (2000), no. 232, 1699–
1705.

[233] , Faster point multiplication on elliptic curves with efficient endomorphisms,
CRYPTO 2001 (J. Kilian, ed.), LNCS, vol. 2139, Springer, 2001, pp. 190–200.

[234] N. Gama, N. Howgrave-Graham, and P. Q. Nguyen, Symplectic lattice reduction
and NTRU, EUROCRYPT 2006 (S. Vaudenay, ed.), LNCS, vol. 4004, Springer,
2006, pp. 233–253.

[235] N. Gama, P. Q. Nguyen, and O. Regev, Lattice enumeration using extreme pruning,
EUROCRYPT 2010 (H. Gilbert, ed.), LNCS, vol. 6110, Springer, 2010, pp. 257–278.

[236] S. Gao, Normal bases over finite fields, Ph.D. thesis, Waterloo, 1993.

BIBLIOGRAPHY 657

[237] T. Garefalakis, The generalised Weil pairing and the discrete logarithm problem on
elliptic curves, Theor. Comput. Sci. 321 (2004), no. 1, 59–72.

[238] J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge, 1999.

[239] J. von zur Gathen and M. Giesbrecht, Constructing normal bases in finite fields, J.
Symb. Comput. 10 (1990), no. 6, 547–570.

[240] J. von zur Gathen, I. E. Shparlinski, and A. Sinclair, Finding points on curves over
finite fields, SIAM J. Comput. 32 (2003), no. 6, 1436–1448.

[241] P. Gaudry, Courbes hyperelliptiques et cryptologie, MSc thesis, L’École Polytech-
nique, 1995.

[242] , An algorithm for solving the discrete log problem on hyperelliptic curves,
EUROCRYPT 2000 (B. Preneel, ed.), LNCS, vol. 1807, Springer, 2000, pp. 19–34.

[243] , Algorithmique des courbes hyperelliptiques et applications à la cryptologie,
Ph.D. thesis, L’École Polytechnique, 2000.

[244] , Fast genus 2 arithmetic based on theta functions, J. Math. Crypt. 1 (2007),
no. 3, 243–265.

[245] , Index calculus for abelian varieties of small dimension and the elliptic curve
discrete logarithm problem, Journal of Symbolic Computation 44 (2009), no. 12,
1690–1702.

[246] P. Gaudry, F. Hess, and N. P. Smart, Constructive and destructive facets of Weil
descent on elliptic curves, J. Crypt. 15 (2002), no. 1, 19–46.

[247] P. Gaudry and D. Lubicz, The arithmetic of characteristic 2 Kummer surfaces and
of elliptic Kummer lines, Finite Fields Appl. 15 (2009), no. 2, 246–260.

[248] P. Gaudry and É. Schost, Construction of secure random curves of genus 2 over
prime fields, EUROCRYPT 2004 (C. Cachin and J. Camenisch, eds.), LNCS, vol.
3027, Springer, 2004, pp. 239–256.

[249] , A low-memory parallel version of Matsuo, Chao, and Tsujii’s algorithm,
ANTS VI (D. A. Buell, ed.), LNCS, vol. 3076, Springer, 2004, pp. 208–222.

[250] P. Gaudry, E. Thomé, N. Thériault, and C. Diem, A double large prime variation for
small genus hyperelliptic index calculus, Math. Comp. 76 (2007), no. 257, 475–492.

[251] C. Gentry, Key recovery and message attacks on NTRU-composite, EUROCRYPT
2001 (B. Pfitzmann, ed.), LNCS, vol. 2045, Springer, 2001, pp. 182–194.

[252] , The geometry of provable security: Some proofs of security in which lattices
make a surprise appearance, The LLL Algorithm (P. Q. Nguyen and B. Vallée, eds.),
Springer, 2010, pp. 391–426.

[253] C. Gentry, C. Peikert, and V. Vaikuntanathan, Trapdoors for hard lattices and
new cryptographic constructions, Symposium on the Theory of Computing (STOC)
(R. E. Ladner and C. Dwork, eds.), ACM, 2008, pp. 197–206.

[254] M. Girault, An identity-based identification scheme based on discrete logarithms
modulo a composite number, EUROCRYPT 1990 (I. Damg̊ard, ed.), LNCS, vol.
473, Springer, 1991, pp. 481–486.

658 BIBLIOGRAPHY

[255] M. Girault, G. Poupard, and J. Stern, On the fly authentication and signature
schemes based on groups of unknown order, J. Crypt. 19 (2006), no. 4, 463–487.

[256] O. Goldreich, S. Goldwasser, and S. Halevi, Public-key cryptosystems from lattice re-
duction problems, CRYPTO 1997 (B. S. Kaliski Jr., ed.), LNCS, vol. 1294, Springer,
1997, pp. 112–131.

[257] O. Goldreich, D. Ron, and M. Sudan, Chinese remaindering with errors, IEEE
Trans. Inf. Theory 46 (2000), no. 4, 1330–1338.

[258] S. Goldwasser, S. Micali, and R. L. Rivest, A digital signature scheme secure against
adaptive chosen-message attacks, SIAM J. Comput. 17 (1988), no. 2, 281–308.

[259] G. Gong and L. Harn, Public-key cryptosystems based on cubic finite field extensions,
IEEE Trans. Inf. Theory 45 (1999), no. 7, 2601–2605.

[260] M. I. González Vasco, M. Näslund, and I. E. Shparlinski, New results on the hardness
of Diffie-Hellman bits, PKC 2004 (F. Bao, R. H. Deng, and J. Zhou, eds.), LNCS,
vol. 2947, Springer, 2004, pp. 159–172.

[261] M. I. González Vasco and I. E. Shparlinski, On the security of Diffie-Hellman bits,
Cryptography and Computational Number Theory (H. Wang K. Y. Lam, I. E. Sh-
parlinski and C. Xing, eds.), Progress in Computer Science and Applied Logic,
Birkhäuser, 2001, pp. 257–268.

[262] D. M. Gordon, On the number of elliptic pseudoprimes, Math. Comp. 52 (1989),
no. 185, 231–245.

[263] D. M. Gordon and K. S. McCurley, Massively parallel computation of discrete loga-
rithms, CRYPTO 1992 (E. F. Brickell, ed.), LNCS, vol. 740, Springer, 1993, pp. 312–
323.

[264] J. Gordon, Strong primes are easy to find, EUROCRYPT 1984 (T. Beth, N. Cot,
and I. Ingemarsson, eds.), LNCS, vol. 209, Springer, 1985, pp. 216–223.

[265] R. Granger, F. Hess, R. Oyono, N. Thériault, and F. Vercauteren, Ate pairing on
hyperelliptic curves, EUROCRYPT 2007 (M. Naor, ed.), LNCS, vol. 4515, Springer,
2007, pp. 430–447.

[266] R. Granger and F. Vercauteren, On the discrete logarithm problem on algebraic tori,
CRYPTO 2005 (V. Shoup, ed.), LNCS, vol. 3621, Springer, 2005, pp. 66–85.

[267] A. Granville, Smooth numbers: Computational number theory and beyond, Algo-
rithmic number theory (J. P. Buhler and P. Stevenhagen, eds.), MSRI Proceedings,
vol. 44, Cambridge, 2008, pp. 267–323.

[268] B. H. Gross, Heights and the special values of L-series, Number theory, CMS Conf.
Proc., vol. 7, AMS, 1987, pp. 115–187.

[269] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial
optimization, Springer, 1993.

[270] J. Guarjardo and C. Paar, Itoh-Tsujii inversion in standard basis and its application
in cryptography and codes, Des. Codes Crypt. 25 (2002), no. 2, 207–216.

BIBLIOGRAPHY 659

[271] L. C. Guillou and J.-J. Quisquater, A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory, EUROCRYPT
1988 (C. G. Günther, ed.), LNCS, vol. 330, Springer, 1988, pp. 123–128.

[272] R. K. Guy, Unsolved problems in number theory, 2nd ed., Springer, 1994.

[273] J. L. Hafner and K. S. McCurley, Asymptotically fast triangularization of matrices
over rings, SIAM J. Comput. 20 (1991), no. 6, 1068–1083.

[274] D. Hankerson, A. Menezes, and S. Vanstone, Guide to elliptic curve cryptography,
Springer, 2004.

[275] G. Hanrot and D. Stehlé, Improved analysis of Kannan’s shortest lattice vector
algorithm, CRYPTO 2007 (A. Menezes, ed.), LNCS, vol. 4622, Springer, 2007,
pp. 170–186.

[276] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed.,
Oxford, 1980.

[277] R. Harley, Fast arithmetic on genus two curves, Preprint, 2000.

[278] R. Hartshorne, Algebraic geometry, GTM, vol. 52, Springer, 1977.

[279] J. H̊astad and M. Näslund, The security of all RSA and discrete log bits, J. ACM
51 (2004), no. 2, 187–230.

[280] G. Havas, B. S. Majewski, and K. R. Matthews, Extended GCD and Hermite normal
form algorithms via lattice basis reduction, Experimental Math. 7 (1998), no. 2,
125–136.

[281] B. Helfrich, Algorithms to construct Minkowski reduced and Hermite reduced lattice
bases, Theor. Comput. Sci. 41 (1985), 125–139.

[282] F. Hess, A note on the Tate pairing of curves over finite fields, Arch. Math. 82
(2004), 28–32.

[283] , Pairing lattices, Pairing 2008 (S. D. Galbraith and K. G. Paterson, eds.),
LNCS, vol. 5209, Springer, 2008, pp. 18–38.

[284] F. Hess, N. Smart, and F. Vercauteren, The eta pairing revisited, IEEE Trans. Inf.
Theory 52 (2006), no. 10, 4595–4602.

[285] N. J. Higham, Accuracy and stability of numerical algorithms, 2nd ed., SIAM, 2002.

[286] H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson, Jacobi quartic curves revisited,
ACISP 2009 (C. Boyd and J. M. González Nieto, eds.), LNCS, vol. 5594, Springer,
2009, pp. 452–468.

[287] Y. Hitchcock, P. Montague, G. Carter, and E. Dawson, The efficiency of solving
multiple discrete logarithm problems and the implications for the security of fixed
elliptic curves, Int. J. Inf. Secur. 3 (2004), 86–98.

[288] J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: A ring-based public key cryp-
tosystem, ANTS III (J. Buhler, ed.), LNCS, vol. 1423, Springer, 1998, pp. 267–288.

[289] , An introduction to mathematical cryptography, Springer, 2008.

660 BIBLIOGRAPHY

[290] J. Hoffstein and J. H. Silverman, Random small Hamming weight products with
applications to cryptography, Discrete Applied Mathematics 130 (2003), no. 1, 37–
49.

[291] D. Hofheinz and E. Kiltz, The group of signed quadratic residues and applications,
CRYPTO 2009 (S. Halevi, ed.), LNCS, vol. 5677, Springer, 2009, pp. 637–653.

[292] S. Hohenberger and B. Waters, Short and stateless signatures from the RSA assump-
tion, CRYPTO 2009 (S. Halevi, ed.), LNCS, vol. 5677, Springer, 2009, pp. 654–670.

[293] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages and
computation, Addison-Wesley, 1979.

[294] J. Horwitz and R. Venkatesan, Random Cayley digraphs and the discrete logarithm,
ANTS V (C. Fieker and D. R. Kohel, eds.), LNCS, vol. 2369, Springer, 2002,
pp. 416–430.

[295] E. W. Howe, On the group orders of elliptic curves over finite fields, Compositio
Mathematica 85 (1993), 229–247.

[296] N. Howgrave-Graham,Finding small roots of univariate modular equations revisited,
IMA Cryptography and Coding (M. Darnell, ed.), LNCS, vol. 1355, Springer, 1997,
pp. 131–142.

[297] , Approximate integer common divisors, Cryptography and Lattices (CaLC)
(J. H. Silverman, ed.), LNCS, vol. 2146, Springer, 2001, pp. 51–66.

[298] N. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, J. Proos, J. H. Silverman,
A. Singer, and W. Whyte, The impact of decryption failures on the security of
NTRU encryption, CRYPTO 2003 (D. Boneh, ed.), LNCS, vol. 2729, Springer,
2003, pp. 226–246.

[299] N. Howgrave-Graham and N. P. Smart, Lattice attacks on digital signature schemes,
Des. Codes Crypt. 23 (2001), 283–290.

[300] N. A. Howgrave-Graham and A. Joux, New generic algorithms for hard knapsacks,
Eurocrypt 2010 (H. Gilbert, ed.), LNCS, vol. 6110, Springer, 2010, pp. 235–256.

[301] T. W. Hungerford, Algebra, GTM 73, Springer, 1974.

[302] D. Husemöller, Elliptic curves, 2nd ed., GTM, vol. 111, Springer, 2004.

[303] T. Icart, How to hash into elliptic curves, CRYPTO 2009 (S. Halevi, ed.), LNCS,
vol. 5677, Springer, 2009, pp. 303–316.

[304] J.-I. Igusa, Arithmetic variety of moduli for genus two, Ann. of Math. 72 (1960),
no. 3, 612–649.

[305] T. Iijima, K. Matsuo, J. Chao, and S. Tsujii, Construction of Frobenius maps of twist
elliptic curves and its application to elliptic scalar multiplication, Symposium on
Cryptography and Information Security (SCIS) 2002, IEICE Japan, 2002, pp. 699–
702.

[306] A. Islam, Products of three pairwise coprime integers in short intervals, LMS J.
Comput. Math. 15 (2012), 59–70.

BIBLIOGRAPHY 661

[307] T. Itoh and S. Tsujii, A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases, Information and Computation 78 (1988), no. 3, 171–
177.

[308] T. Jager and J. Schwenk, On the equivalence of generic group models, ProvSec
2008 (K. Chen J. Baek, F. Bao and X. Lai, eds.), LNCS, vol. 5324, Springer, 2008,
pp. 200–209.

[309] D. Jao, D. Jetchev, and R. Venkatesan, On the bits of elliptic curve Diffie-Hellman
keys, INDOCRYPT 2007 (K. Srinathan, C. Pandu Rangan, and M. Yung, eds.),
LNCS, vol. 4859, Springer, 2007, pp. 33–47.

[310] D. Jao, S. D. Miller, and R. Venkatesan, Do all elliptic curves of the same order
have the same difficulty of discrete log?, ASIACRYPT 2005 (B. K. Roy, ed.), LNCS,
vol. 3788, Springer, 2005, pp. 21–40.

[311] , Expander graphs based on GRH with an application to elliptic curve cryp-
tography, J. Number Theory 129 (2009), no. 6, 1491–1504.

[312] D. Jao and V. Soukharev, A subexponential algorithm for evaluating large degree
isogenies, ANTS IX (G. Hanrot, F. Morain, and E. Thomé, eds.), LNCS, vol. 6197,
Springer, 2010, pp. 219–233.

[313] D. Jao and K. Yoshida, Boneh-Boyen signatures and the strong Diffie-Hellman
problem, Pairing 2009 (H. Shacham and B. Waters, eds.), LNCS, vol. 5671, Springer,
2009, pp. 1–16.

[314] D. Jetchev and R. Venkatesan, Bits security of the elliptic curve Diffie-Hellman
secret keys, CRYPTO 2008 (D. Wagner, ed.), LNCS, vol. 5157, Springer, 2008,
pp. 75–92.

[315] Z.-T. Jiang, W.-L. Xu, and Y.-M. Wang, Polynomial analysis of DH secrete key
and bit security, Wuhan University Journal of Natural Sciences 10 (2005), no. 1,
239–242.

[316] A. Joux, A one round protocol for tripartite Diffie-Hellman, ANTS IV (W. Bosma,
ed.), LNCS, vol. 1838, Springer, 2000, pp. 385–393.

[317] , Algorithmic cryptanalysis, Chapman & Hall/CRC, 2009.

[318] A. Joux and R. Lercier, The function field sieve in the medium prime case, EURO-
CRYPT 2006 (S. Vaudenay, ed.), LNCS, vol. 4004, Springer, 2006, pp. 254–270.

[319] A. Joux, R. Lercier, N. P. Smart, and F. Vercauteren, The number field sieve in the
medium prime case, CRYPTO 2006 (C. Dwork, ed.), LNCS, vol. 4117, Springer,
2006, pp. 326–344.

[320] M. Joye and G. Neven, Identity-based cryptography, Cryptology and Information
Security, vol. 2, IOS Press, 2008.

[321] M. Joye and S.-M. Yen, Optimal left-to-right binary signed-digit recoding, IEEE
Trans. Computers 49 (2000), no. 7, 740–748.

[322] M. J. Jacobson Jr., N. Koblitz, J. H. Silverman, A. Stein, and E. Teske, Analysis
of the Xedni calculus attack, Des. Codes Crypt. 20 (2000), no. 1, 41–64.

662 BIBLIOGRAPHY

[323] M. J. Jacobson Jr. and A. J. van der Poorten, Computational aspects of NUCOMP,
ANTS V (C. Fieker and D. R. Kohel, eds.), LNCS, vol. 2369, Springer, 2002,
pp. 120–133.

[324] C. S. Jutla, On finding small solutions of modular multivariate polynomial equations,
EUROCRYPT 1998 (K. Nyberg, ed.), LNCS, vol. 1403, Springer, 1998, pp. 158–170.

[325] M. Kaib and H. Ritter, Block reduction for arbitrary norms, Technical Report,
Universität Frankfurt am Main, 1994.

[326] M. Kaib and C.-P. Schnorr, The generalized Gauss reduction algorithm, Journal of
Algorithms 21 (1996), no. 3, 565–578.

[327] B. S. Kaliski Jr., Elliptic curves and cryptography: A pseudorandom bit generator
and other tools, Ph.D. thesis, MIT, 1988.

[328] W. van der Kallen, Complexity of the Havas, Majewski, Matthews LLL Hermite
normal form algorithm, Journal of Symbolic Computation 30 (2000), no. 3, 329–
337.

[329] R. Kannan, Improved algorithms for integer programming and related lattice prob-
lems, Symposium on the Theory of Computing (STOC), ACM, 1983, pp. 193–206.

[330] , Minkowski’s convex body theorem and integer programming, Mathematics
of Operations Research 12 (1987), no. 3, 415–440.

[331] R. Kannan and A. Bachem, Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979), 499–507.

[332] M. Katagi, T. Akishita, I. Kitamura, and T. Takagi, Some improved algorithms for
hyperelliptic curve cryptosystems using degenerate divisors, ICISC 2004 (C. Park
and S. Chee, eds.), LNCS, vol. 3506, Springer, 2004, pp. 296–312.

[333] M. Katagi, I. Kitamura, T. Akishita, and T. Takagi, Novel efficient implementations
of hyperelliptic curve cryptosystems using degenerate divisors, WISA 2004 (C.-H.
Lim and M. Yung, eds.), LNCS, vol. 3325, Springer, 2004, pp. 345–359.

[334] J. Katz and Y. Lindell, Introduction to modern cryptography, Chapman &
Hall/CRC, 2008.

[335] E. Kiltz and G. Neven, Identity-based signatures, Identity-Based Cryptography
(M. Joye and G. Neven, eds.), Cryptology and Information Security Series, vol. 2,
IOS Press, 2008, pp. 31–44.

[336] J. H. Kim, R. Montenegro, Y. Peres, and P. Tetali, A birthday paradox for Markov
chains, with an optimal bound for collision in the Pollard rho algorithm for discrete
logarithm, ANTS VIII (A. J. van der Poorten and A. Stein, eds.), LNCS, vol. 5011,
Springer, 2008, pp. 402–415.

[337] J. H. Kim, R. Montenegro, and P. Tetali, Near optimal bounds for collision in
Pollard rho for discrete log, Foundations of Computer Science (FOCS), IEEE, 2007,
pp. 215–223.

[338] S. Kim and J.-H. Cheon, A parameterized splitting system and its application to the
discrete logarithm problem with low Hamming weight product exponents, PKC 2008
(R. Cramer, ed.), LNCS, vol. 4939, Springer, 2008, pp. 328–343.

BIBLIOGRAPHY 663

[339] B. King, A point compression method for elliptic curves defined over GF(2n), PKC
2004 (F. Bao, R. H. Deng, and J. Zhou, eds.), LNCS, vol. 2947, Springer, 2004,
pp. 333–345.

[340] J. F. C. Kingman and S. J. Taylor, Introduction to measure theory and probability,
Cambridge, 1966.

[341] P. N. Klein, Finding the closest lattice vector when it’s unusually close, Symposium
on Discrete Algorithms (SODA), ACM/SIAM, 2000, pp. 937–941.

[342] E. W. Knudsen, Elliptic scalar multiplication using point halving, ASIACRYPT
1999 (K.-Y. Lam, E. Okamoto, and C. Xing, eds.), LNCS, vol. 1716, Springer,
1999, pp. 135–149.

[343] D. E. Knuth, Art of computer programming, Volume 2: semi-numerical algorithms,
3rd ed., Addison-Wesley, 1997.

[344] N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), no. 177, 203–209.

[345] , Primality of the number of points on an elliptic curve over a finite field,
Pacific J. Math. 131 (1988), no. 1, 157–165.

[346] , Hyperelliptic cryptosystems, J. Crypt. 1 (1989), 139–150.

[347] , CM curves with good cryptographic properties, CRYPTO 1991 (J. Feigen-
baum, ed.), LNCS, vol. 576, Springer, 1992, pp. 279–287.

[348] , A course in number theory and cryptography, 2nd ed., GTM 114, Springer,
1994.

[349] C. K. Koç and T. Acar, Montgomery multplication in GF(2k), Des. Codes Crypt.
14 (1998), no. 1, 57–69.

[350] D. R. Kohel, Endomorphism rings of elliptic curves over finite fields, Ph.D. thesis,
University of California, Berkeley, 1996.

[351] , Constructive and destructive facets of torus-based cryptography, Preprint,
2004.

[352] D. R. Kohel and I. E. Shparlinski, On exponential sums and group generators for el-
liptic curves over finite fields, ANTS IV (W. Bosma, ed.), LNCS, vol. 1838, Springer,
2000, pp. 395–404.

[353] S. Kozaki, T. Kutsuma, and K. Matsuo, Remarks on Cheon’s algorithms for
pairing-related problems, Pairing 2007 (T. Takagi, T. Okamoto, E. Okamoto, and
T. Okamoto, eds.), LNCS, vol. 4575, Springer, 2007, pp. 302–316.

[354] M. Kraitchik, Théorie des nombres, Vol. 1, Gauthier-Villars, Paris, 1922.

[355] F. Kuhn and R. Struik, Random walks revisited: Extensions of Pollard’s rho al-
gorithm for computing multiple discrete logarithms, SAC 2001 (S. Vaudenay and
A. M. Youssef, eds.), LNCS, vol. 2259, Springer, 2001, pp. 212–229.

[356] R. M. Kuhn, Curves of genus 2 with split Jacobian, Trans. Amer. Math. Soc. 307
(1988), no. 1, 41–49.

664 BIBLIOGRAPHY

[357] R. Kumar and D. Sivakumar, Complexity of SVP – a reader’s digest, SIGACT News
Complexity Theory Column 32 (2001), 13.

[358] N. Kunihiro and K. Koyama, Equivalence of counting the number of points on
elliptic curve over the ring Zn and factoring n, EUROCRYPT 1998 (K. Nyberg,
ed.), LNCS, vol. 1403, Springer, 1998, pp. 47–58.

[359] K. Kurosawa and Y. Desmedt, A new paradigm of hybrid encryption scheme,
CRYPTO 2004 (M. K. Franklin, ed.), LNCS, vol. 3152, Springer, 2004, pp. 426–442.

[360] J. C. Lagarias, Knapsack public key cryptosystems and diophantine approximation,
CRYPTO 1983 (D. Chaum, ed.), Plenum Press, 1984, pp. 3–23.

[361] J. C. Lagarias, H. W. Lenstra Jr., and C.-P. Schnorr, Korkin-Zolotarev bases and
successive minima of a lattice and its reciprocal lattice, Combinatorica 10 (1990),
no. 4, 333–348.

[362] J. C. Lagarias and A. M. Odlyzko, Solving low-density subset sum problems, J. ACM
32 (1985), no. 1, 229–246.

[363] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res.
Nat. Bureau of Standards 49 (1952), 33–53.

[364] S. Lang, Introduction to algebraic geometry, Wiley, 1964.

[365] , Algebraic number theory, GTM, vol. 110, Springer, 1986.

[366] , Elliptic functions, 2nd ed., GTM, vol. 112, Springer, 1987.

[367] , Algebra, 3rd ed., Addison-Wesley, 1993.

[368] T. Lange, Koblitz curve cryptosystems, Finite Fields Appl. 11 (2005), no. 2, 200–
229.

[369] E. Lee, H.-S. Lee, and C.-M. Park, Efficient and generalized pairing computation
on abelian varieties, IEEE Trans. Information Theory 55 (2009), no. 4, 1793–1803.

[370] A. K. Lenstra, Factorization of polynomials, Computational methods in number
theory (H. W. Lenstra Jr. and R. Tijdeman, eds.), Mathematical Center Tracts
154, Mathematisch Centrum Amsterdam, 1984, pp. 169–198.

[371] , Integer factoring, Des. Codes Crypt. 19 (2000), no. 2/3, 101–128.

[372] A. K. Lenstra and H. W. Lenstra Jr., The development of the number field sieve,
LNM, vol. 1554, Springer, 1993.

[373] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational
coefficients, Math. Ann. 261 (1982), 515–534.

[374] A. K. Lenstra and I. E. Shparlinski, Selective forgery of RSA signatures with fixed-
pattern padding, PKC 2002 (D. Naccache and P. Paillier, eds.), LNCS, vol. 2274,
Springer, 2002, pp. 228–236.

[375] A. K. Lenstra and E. R. Verheul, The XTR public key system, CRYPTO 2000
(M. Bellare, ed.), LNCS, vol. 1880, Springer, 2000, pp. 1–19.

BIBLIOGRAPHY 665

[376] , Fast irreducibility and subgroup membership testing in XTR, PKC 2001
(K. Kim, ed.), LNCS, vol. 1992, Springer, 2001, pp. 73–86.

[377] H. W. Lenstra Jr., Factoring integers with elliptic curves, Annals of Mathematics
126 (1987), no. 3, 649–673.

[378] , Elliptic curves and number theoretic algorithms, Proc. International Congr.
Math., Berkeley 1986, AMS, 1988, pp. 99–120.

[379] , Finding isomorphisms between finite fields, Math. Comp. 56 (1991),
no. 193, 329–347.

[380] H. W. Lenstra Jr., J. Pila, and C. Pomerance, A hyperelliptic smoothness test I,
Phil. Trans. R. Soc. Lond. A 345 (1993), 397–408.

[381] H. W. Lenstra Jr. and C. Pomerance, A rigorous time bound for factoring integers,
J. Amer. Math. Soc. 5 (1992), no. 3, 483–516.

[382] R. Lercier, Computing isogenies in F2n , ANTS II (H. Cohen, ed.), LNCS, vol. 1122,
Springer, 1996, pp. 197–212.

[383] R. Lercier and F. Morain, Algorithms for computing isogenies between elliptic
curves, Computational Perspectives on Number Theory (D. A. Buell and J. T.
Teitelbaum, eds.), Studies in Advanced Mathematics, vol. 7, AMS, 1998, pp. 77–96.

[384] R. Lercier and T. Sirvent, On Elkies subgroups of ℓ-torsion points in elliptic curves
defined over a finite field, J. Théor. Nombres Bordeaux 20 (2008), no. 3, 783–797.

[385] G. Leurent and P. Q. Nguyen, How risky is the random oracle model?, CRYPTO
2009 (S. Halevi, ed.), LNCS, vol. 5677, Springer, 2009, pp. 445–464.

[386] K.-Z. Li and F. Oort, Moduli of supersingular abelian varieties, LNM, vol. 1680,
Springer, 1998.

[387] W.-C. Li, M. Näslund, and I. E. Shparlinski, Hidden number problem with the trace
and bit security of XTR and LUC, CRYPTO 2002 (M. Yung, ed.), LNCS, vol. 2442,
Springer, 2002, pp. 433–448.

[388] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cam-
bridge, 1994.

[389] , Finite fields, Cambridge, 1997.

[390] R. Lindner and C. Peikert, Better key sizes (and attacks) for LWE-based encryption,
CT-RSA 2011 (A. Kiayias, ed.), LNCS, vol. 6558, Springer, 2011, pp. 1–23.

[391] J. H. van Lint, Introduction to coding theory, 3rd ed., GTM, vol. 86, Springer, 1999.

[392] P. Lockhart, On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc.
342 (1994), no. 2, 729–752.

[393] D. L. Long and A. Wigderson, The discrete logarithm hides O(log n) bits, SIAM J.
Comput. 17 (1988), no. 2, 363–372.

[394] D. Lorenzini, An invitation to arithmetic geometry, Graduate Studies in Mathemat-
ics, vol. 106, AMS, 1993.

666 BIBLIOGRAPHY

[395] L. Lovász, An algorithmic theory of numbers, graphs and convexity, SIAM, 1986.

[396] L. Lovász and H. E. Scarf, The generalized basis reduction algorithm, Mathematics
of Operations Research 17 (1992), no. 3, 751–764.

[397] R. Lovorn Bender and C. Pomerance, Rigorous discrete logarithm computations in
finite fields via smooth polynomials, Computational Perspectives on Number Theory
(D. A. Buell and J. T. Teitelbaum, eds.), Studies in Advanced Mathematics, vol. 7,
AMS, 1998, pp. 221–232.

[398] M. Luby, Pseudorandomness and cryptographic applications, Princeton, 1996.

[399] H. Lüneburg, On a little but useful algorithm, AAECC-3, 1985 (J. Calmet, ed.),
LNCS, vol. 229, Springer, 1986, pp. 296–301.

[400] S. Mart́ın Mollev́ı, P. Morillo, and J. L. Villar, Computing the order of points on an
elliptic curve modulo N is as difficult as factoring N, Appl. Math. Lett. 14 (2001),
no. 3, 341–346.

[401] C. Mauduit and A. Sárközy, On finite pseudorandom binary sequences I: Measure
of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365–377.

[402] U. M. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete logarithms, CRYPTO 1994 (Y. Desmedt, ed.), LNCS, vol. 839,
Springer, 1994, pp. 271–281.

[403] , Fast generation of prime numbers and secure public-key cryptographic pa-
rameters, J. Crypt. 8 (1995), no. 3, 123–155.

[404] , Abstract models of computation in cryptography, IMA Int. Conf. (N. P.
Smart, ed.), LNCS, vol. 3796, Springer, 2005, pp. 1–12.

[405] U. M. Maurer and S. Wolf, Diffie-Hellman oracles, CRYPTO 1996 (N. Koblitz, ed.),
LNCS, vol. 1109, Springer, 1996, pp. 268–282.

[406] , On the complexity of breaking the Diffie-Hellman protocol, Technical Report
244, Institute for Theoretical Computer Science, ETH Zurich, 1996.

[407] , Lower bounds on generic algorithms in groups, EUROCRYPT 1998 (K. Ny-
berg, ed.), LNCS, vol. 1403, Springer, 1998, pp. 72–84.

[408] , The relationship between breaking the Diffie-Hellman protocol and comput-
ing discrete logarithms, SIAM J. Comput. 28 (1999), no. 5, 1689–1721.

[409] , The Diffie-Hellman protocol, Des. Codes Crypt. 19 (2000), no. 2/3, 147–
171.

[410] A. May, New RSA vulnerabilities using lattice reduction methods, Ph.D. thesis,
Paderborn, 2003.

[411] , Using LLL-reduction for solving RSA and factorization problems: A survey,
The LLL Algorithm (P. Q. Nguyen and B. Vallée, eds.), Springer, 2010, pp. 315–348.

[412] A. May and J. H. Silverman, Dimension reduction methods for convolution modular
lattices, Cryptography and Lattices (CaLC) (J. H. Silverman, ed.), LNCS, Springer,
2001, pp. 110–125.

BIBLIOGRAPHY 667

[413] J. F. McKee, Subtleties in the distribution of the numbers of points on elliptic curves
over a finite prime field, J. London Math. Soc. 59 (1999), no. 2, 448–460.

[414] J. F. McKee and R. G. E. Pinch, Further attacks on server-aided RSA cryptosys-
tems, unpublished manuscript, 1998.

[415] W. Meier and O. Staffelbach, Efficient multiplication on certain non-supersingular
elliptic curves, CRYPTO 1992 (E. F. Brickell, ed.), LNCS, vol. 740, Springer, 1993,
pp. 333–344.

[416] A. Menezes and S. A. Vanstone, The implementation of elliptic curve cryptosystems,
AUSCRYPT 1990 (J. Seberry and J. Pieprzyk, eds.), LNCS, vol. 453, Springer,
1990, pp. 2–13.

[417] A. J. Menezes, T. Okamoto, and S. A. Vanstone, Reducing elliptic curve logarithms
to a finite field, IEEE Trans. Inf. Theory 39 (1993), no. 5, 1639–1646.

[418] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of applied cryptog-
raphy, CRC Press, 1996.

[419] J.-F. Mestre, La méthode des graphes. exemples et applications, Proceedings of the
international conference on class numbers and fundamental units of algebraic num-
ber fields (Katata, 1986), Nagoya Univ., 1986, pp. 217–242.

[420] J.-F. Mestre, Construction de courbes de genre 2 à partir de leurs modules, Effec-
tive methods in algebraic geometry (T. Mora and C. Traverso, eds.), Progress in
Mathematics, Birkhäuser, 1991, pp. 313–334.

[421] D. Micciancio, Improving lattice based cryptosystems using the Hermite normal
form, Cryptography and Lattices (CaLC) (J. H. Silverman, ed.), LNCS, vol. 2146,
Springer, 2001, pp. 126–145.

[422] D. Micciancio and S. Goldwasser, Complexity of lattice problems: A cryptographic
perspective, Kluwer, 2002.

[423] D. Micciancio and O. Regev, Lattice-based cryptography, Post Quantum Cryptogra-
phy (D. J. Bernstein, J. Buchmann, and E. Dahmen, eds.), Springer, 2009, pp. 147–
191.

[424] D. Micciancio and P. Voulgaris, Faster exponential time algorithms for the shortest
vector problem, SODA (M. Charikar, ed.), SIAM, 2010, pp. 1468–1480.

[425] D. Micciancio and B. Warinschi, A linear space algorithm for computing the Hermite
normal form, ISSAC, 2001, pp. 231–236.

[426] S. D. Miller and R. Venkatesan, Spectral analysis of Pollard rho collisions, ANTS
VII (F. Hess, S. Pauli, and M. E. Pohst, eds.), LNCS, vol. 4076, Springer, 2006,
pp. 573–581.

[427] V. S. Miller, Short programs for functions on curves, Unpublished manuscript, 1986.

[428] , Use of elliptic curves in cryptography, CRYPTO 1985 (H. C. Williams,
ed.), LNCS, vol. 218, Springer, 1986, pp. 417–426.

[429] , The Weil pairing, and its efficient calculation, J. Crypt. 17 (2004), no. 4,
235–261.

668 BIBLIOGRAPHY

[430] A. Miyaji, T. Ono, and H. Cohen, Efficient elliptic curve exponentiation, ICICS
1997 (Y. Han, T. Okamoto, and S. Qing, eds.), LNCS, vol. 1334, Springer, 1997,
pp. 282–291.

[431] B. Möller, Algorithms for multi-exponentiation, SAC 2001 (S. Vaudenay and A. M.
Youssef, eds.), LNCS, vol. 2259, Springer, 2001, pp. 165–180.

[432] , Improved techniques for fast exponentiation, ICISC 2002 (P.-J. Lee and
C.-H. Lim, eds.), LNCS, vol. 2587, Springer, 2003, pp. 298–312.

[433] , Fractional windows revisited: Improved signed-digit representations for ef-
ficient exponentiation, ICISC 2004 (C. Park and S. Chee, eds.), LNCS, vol. 3506,
Springer, 2005, pp. 137–153.

[434] R. Montenegro and P. Tetali, How long does it take to catch a wild kangaroo?,
Symposium on Theory of Computing (STOC), 2009, pp. 553–559.

[435] P. L. Montgomery, Modular multiplication without trial division, Math. Comp. 44
(1985), no. 170, 519–521.

[436] , Speeding the Pollard and elliptic curve methods of factorization, Math.
Comp. 48 (1987), no. 177, 243–264.

[437] F. Morain and J.-L. Nicolas, On Cornacchia’s algorithm for solving the Diophantine
equation u2 + dv2 = m, Preprint, 1990.

[438] F. Morain and J. Olivos, Speeding up the computations on an elliptic curve using
addition-subtraction chains, Theoretical Informatics and Applications, vol. 24, 1990,
pp. 531–543.

[439] C. J. Moreno, Algebraic curves over finite fields, Cambridge, 1991.

[440] W. H. Mow, Universal lattice decoding: principle and recent advances, Wireless
Communications and Mobile Computing 3 (2003), no. 5, 553–569.

[441] J. A. Muir and D. R. Stinson, New minimal weight representations for left-to-right
window methods, CT-RSA 2005 (A. Menezes, ed.), LNCS, vol. 3376, Springer, 2005,
pp. 366–383.

[442] , Minimality and other properties of the width-w nonadjacent form, Math.
Comp. 75 (2006), no. 253, 369–384.

[443] V. Müller, Fast multiplication on elliptic curves over small fields of characteristic
two, J. Crypt. 11 (1998), no. 4, 219–234.

[444] D. Mumford, Abelian varieties, Oxford, 1970.

[445] , Tata lectures on theta II, Progess in Mathematics, vol. 43, Birkhäuser,
1984.

[446] M. R. Murty, Ramanujan graphs, J. Ramanujan Math. Soc. 18 (2003), no. 1, 1–20.

[447] R. Murty and I. E. Shparlinski, Group structure of elliptic curves over finite fields
and applications, Topics in Geometry, Coding Theory and Cryptography (A. Garcia
and H. Stichtenoth, eds.), Springer-Verlag, 2006, pp. 167–194.

BIBLIOGRAPHY 669

[448] A. Muzereau, N. P. Smart, and F. Vercauteren, The equivalence between the DHP
and DLP for elliptic curves used in practical applications, LMS J. Comput. Math.
7 (2004), 50–72.

[449] D. Naccache, D. M’Räıhi, S. Vaudenay, and D. Raphaeli, Can D.S.A. be im-
proved? Complexity trade-offs with the digital signature standard, EUROCRYPT
1994 (A. De Santis, ed.), LNCS, vol. 950, Springer, 1995, pp. 77–85.

[450] D. Naccache and I. E. Shparlinski, Divisibility, smoothness and cryptographic ap-
plications, Algebraic Aspects of Digital Communications (T. Shaska and E. Hasi-
maj, eds.), NATO Science for Peace and Security Series, vol. 24, IOS Press, 2009,
pp. 115–173.

[451] N.Courtois, M. Finiasz, and N. Sendrier, How to achieve a McEliece-based digital
signature scheme, ASIACRYPT 2001 (C. Boyd, ed.), LNCS, vol. 2248, Springer,
2001, pp. 157–174.

[452] V. I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm,
Mathematical Notes 55 (1994), no. 2, 165–172.

[453] G. Neven, N. P. Smart, and B. Warinschi, Hash function requirements for Schnorr
signatures, J. Math. Crypt. 3 (2009), no. 1, 69–87.

[454] P. Nguyen and D. Stehlé, Floating-point LLL revisited, EUROCRYPT 2005
(R. Cramer, ed.), LNCS, vol. 3494, Springer, 2005, pp. 215–233.

[455] , Low-dimensional lattice basis reduction revisited, ACM Transactions on
Algorithms 5 (2009), no. 4:46, 1–48.

[456] P. Q. Nguyen, Public key cryptanalysis, Recent Trends in Cryptography (I. Luengo,
ed.), AMS, 2009, pp. 67–119.

[457] P. Q. Nguyen and O. Regev, Learning a parallelepiped: Cryptanalysis of GGH
and NTRU signatures, EUROCRYPT 2006 (S. Vaudenay, ed.), LNCS, vol. 4004,
Springer, 2006, pp. 271–288.

[458] , Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures, J.
Crypt. 22 (2009), no. 2, 139–160.

[459] P. Q. Nguyen and I. E. Shparlinski, The insecurity of the digital signature algorithm
with partially known nonces, J. Crypt. 15 (2002), no. 3, 151–176.

[460] , The insecurity of the elliptic curve digital signature algorithm with partially
known nonces, Des. Codes Crypt. 30 (2003), no. 2, 201–217.

[461] P. Q. Nguyen and D. Stehlé, Low-dimensional lattice basis reduction revisited, ANTS
VI (D. A. Buell, ed.), LNCS, vol. 3076, Springer, 2004, pp. 338–357.

[462] P. Q. Nguyen and J. Stern, Lattice reduction in cryptology: An update, ANTS IV
(W. Bosma, ed.), LNCS, vol. 1838, Springer, 2000, pp. 85–112.

[463] , The two faces of lattices in cryptology, Cryptography and Lattices (CaLC)
(J. H. Silverman, ed.), LNCS, vol. 2146, Springer, 2001, pp. 146–180.

[464] P. Q. Nguyen and B. Vallée, The LLL algorithm: Survey and applications, Infor-
mation Security and Cryptography, Springer, 2010.

670 BIBLIOGRAPHY

[465] P. Q. Nguyen and T. Vidick, Sieve algorithms for the shortest vector problem are
practical, J. Math. Crypt. 2 (2008), no. 2, 181–207.

[466] H. Niederreiter, A new efficient factorization algorithm for polynomials over small
finite fields, Applicable Algebra in Engineering, Communication and Computing 4
(1993), no. 2, 81–87.

[467] G. Nivasch, Cycle detection using a stack, Inf. Process. Lett. 90 (2004), no. 3,
135–140.

[468] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An introduction to the theory of
numbers, 5th ed., Wiley, 1991.

[469] A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic signifi-
cance, EUROCRYPT 1984 (T. Beth, N. Cot, and I. Ingemarsson, eds.), LNCS, vol.
209, Springer, 1985, pp. 224–314.

[470] , The rise and fall of knapsack cryptosystems, Cryptology and Computa-
tional Number Theory (C. Pomerance, ed.), Proc. Symp. Appl. Math., vol. 42, Am.
Math. Soc., 1990, pp. 75–88.

[471] T. Okamoto and S. Uchiyama, A new public-key cryptosystem as secure as factoring,
EUROCRYPT 1998 (K. Nyberg, ed.), LNCS, vol. 1403, Springer, 1998, pp. 308–318.

[472] P. C. van Oorschot and M. J. Wiener, On Diffie-Hellman key agreement with short
exponents, EUROCRYPT 1996 (U. M. Maurer, ed.), LNCS, vol. 1070, Springer,
1996, pp. 332–343.

[473] , Parallel collision search with cryptanalytic applications, J. Crypt. 12
(1999), no. 1, 1–28.

[474] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes,
EUROCRYPT 1999 (J. Stern, ed.), LNCS, vol. 1592, Springer, 1999, pp. 223–238.

[475] , Impossibility proofs for RSA signatures in the standard model, CT-RSA
2007 (M. Abe, ed.), LNCS, vol. 4377, Springer, 2007, pp. 31–48.

[476] P. Paillier and D. Vergnaud, Discrete-log-based signatures may not be equivalent to
discrete log, ASIACRYPT 2005 (B. K. Roy, ed.), LNCS, vol. 3788, Springer, 2005,
pp. 1–20.

[477] P. Paillier and J. L. Villar, Trading one-wayness against chosen-ciphertext security
in factoring-based encryption, ASIACRYPT 2006 (X. Lai and K. Chen, eds.), LNCS,
vol. 4284, Springer, 2006, pp. 252–266.

[478] S. Patel and G. S. Sundaram, An efficient discrete log pseudo random generator,
CRYPTO 1998 (H. Krawczyk, ed.), LNCS, vol. 1462, Springer, 1998, pp. 304–317.

[479] S. Paulus and H.-G. Rück, Real and imaginary quadratic representations of hyper-
elliptic function fields, Math. Comp. 68 (1999), no. 227, 1233–1241.

[480] R. Peralta, Simultaneous security of bits in the discrete log, EUROCRYPT 1985
(F. Pichler, ed.), LNCS, vol. 219, Springer, 1986, pp. 62–72.

[481] A. K. Pizer, Ramanujan graphs, Computational Perspectives on Number Theory
(D. A. Buell and J. T. Teitelbaum, eds.), Studies in Advanced Mathematics, vol. 7,
AMS, 1998, pp. 159–178.

BIBLIOGRAPHY 671

[482] S. Pohlig and M. Hellman, An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance, IEEE Trans. Inf. Theory 24 (1978), 106–
110.

[483] D. Pointcheval and J. Stern, Security arguments for digital signatures and blind
signatures, J. Crypt. 13 (2000), no. 3, 361–396.

[484] D. Pointcheval and S. Vaudenay, On provable security for digital signature algo-
rithms, Technical report LIENS 96-17, École Normale Supérieure, 1996.

[485] J. M. Pollard, Theorems on factorisation and primality testing, Proc. Camb. Phil.
Soc. 76 (1974), 521–528.

[486] , A Monte Carlo method for factorization, BIT 15 (1975), 331–334.

[487] , Monte Carlo methods for index computation (mod p), Math. Comp. 32
(1978), no. 143, 918–924.

[488] , Kangaroos, Monopoly and discrete logarithms, J. Crypt. 13 (2000), no. 4,
437–447.

[489] C. Pomerance, A tale of two sieves, Notices of the Amer. Math. Soc. 43 (1996),
1473–1485.

[490] V. R. Pratt, Every prime has a succinct certificate, SIAM J. Comput. 4 (1974),
no. 3, 214–220.

[491] X. Pujol and D. Stehlé, Rigorous and efficient short lattice vectors enumeration,
ASIACRYPT 2008 (J. Pieprzyk, ed.), LNCS, vol. 5350, Springer, 2008, pp. 390–
405.

[492] G. Qiao and K.-Y. Lam, RSA signature algorithm for microcontroller implemen-
tation, CARDIS 1998 (J.-J. Quisquater and B. Schneier, eds.), LNCS, vol. 1820,
Springer, 2000, pp. 353–356.

[493] J. J. Quisquater and C. Couvreur, Fast decipherment algorithm for RSA public-key
cryptosystem, Electronics Letters (1982), no. 21, 905–907.

[494] M.O. Rabin, Digitalized signatures and public-key functions as intractable as factor-
ization, Tech. Report MIT/LCS/TR-212, MIT Laboratory for Computer Science,
1979.

[495] J.-F. Raymond and A. Stiglic, Security issues in the Diffie-Hellman key agreement
protocol, Preprint, 2000.

[496] O. Regev, The learning with errors problem (Invited survey), 25th Annual IEEE
Conference on Computational Complexity, IEEE, 2010, pp. 191–204.

[497] M. Reid, Undergraduate algebraic geometry, Cambridge, 1988.

[498] , Graded rings and varieties in weighted projective space, Chapter of unfin-
ished book, 2002.

[499] G. Reitwiesner, Binary arithmetic, Advances in Computers 1 (1960), 231–308.

[500] P. Rogaway, Formalizing human ignorance, VIETCRYPT 2006 (P. Q. Nguyen, ed.),
LNCS, vol. 4341, Springer, 2006, pp. 211–228.

672 BIBLIOGRAPHY

[501] P. Roquette, Abschätzung der Automorphismenanzahl von Funktionenkörpern bei
Primzahlcharakteristik, Math. Zeit. 117 (1970), 157–163.

[502] S. Ross, A first course in probability (6th ed.), Prentice Hall, 2001.

[503] K. Rubin and A. Silverberg, Torus-based cryptography, CRYPTO 2003 (D. Boneh,
ed.), LNCS, vol. 2729, Springer, 2003, pp. 349–365.

[504] , Compression in finite fields and torus-based cryptography, SIAM J. Com-
put. 37 (2008), no. 5, 1401–1428.

[505] H.-G. Rück, A note on elliptic curves over finite fields, Math. Comp. 49 (1987),
no. 179, 301–304.

[506] , On the discrete logarithm in the divisor class group of curves, Math. Comp.
68 (1999), no. 226, 805–806.

[507] A. Rupp, G. Leander, E. Bangerter, A. W. Dent, and A.-R. Sadeghi, Sufficient
conditions for intractability over black-box groups: Generic lower bounds for gen-
eralized DL and DH problems, ASIACRYPT 2008 (J. Pieprzyk, ed.), LNCS, vol.
5350, Springer, 2008, pp. 489–505.

[508] A.-R. Sadeghi and M. Steiner, Assumptions related to discrete logarithms: Why
subtleties make a real difference, EUROCRYPT 2001 (B. Pfitzmann, ed.), LNCS,
vol. 2045, Springer, 2001, pp. 244–261.

[509] R. Sakai, K. Ohgishi, and M. Kasahara, Cryptosystems based on pairing, Symposium
on Cryptography and Information Security (SCIS), Okinawa, Japan, 2000.

[510] A. Sárközy and C. L. Stewart, On pseudorandomness in families of sequences de-
rived from the Legendre symbol, Periodica Math. Hung. 54 (2007), no. 2, 163–173.

[511] T. Satoh, On generalization of Cheon’s algorithm, Cryptology ePrint Archive, Re-
port 2009/058, 2009.

[512] T. Satoh and K. Araki, Fermat quotients and the polynomial time discrete log al-
gorithm for anomalous elliptic curves, Comment. Math. Univ. St. Paul. 47 (1998),
no. 1, 81–92.

[513] J. Sattler and C.-P. Schnorr, Generating random walks in groups, Ann. Univ. Sci.
Budapest. Sect. Comput. 6 (1985), 65–79.

[514] A. Schinzel and M. Ska lba, On equations y2 = xn + k in a finite field, Bull. Polish
Acad. Sci. Math. 52 (2004), no. 3, 223–226.

[515] O. Schirokauer, Using number fields to compute logarithms in finite fields, Math.
Comp. 69 (2000), no. 231, 1267–1283.

[516] , The special function field sieve, SIAM J. Discrete Math 16 (2002), no. 1,
81–98.

[517] , The impact of the number field sieve on the discrete logarithm problem
in finite fields, Algorithmic Number Theory (J. Buhler and P. Stevenhagen, eds.),
MSRI publications, vol. 44, Cambridge, 2008, pp. 397–420.

[518] , The number field sieve for integers of low weight, Math. Comp. 79 (2010),
no. 269, 583–602.

BIBLIOGRAPHY 673

[519] O. Schirokauer, D. Weber, and T. F. Denny, Discrete logarithms: The effectiveness
of the index calculus method, ANTS II (H. Cohen, ed.), LNCS, vol. 1122, Springer,
1996, pp. 337–361.

[520] K. Schmidt-Samoa, O. Semay, and T. Takagi, Analysis of fractional window re-
coding methods and their application to elliptic curve cryptosystems, IEEE Trans.
Computers 55 (2006), no. 1, 48–57.

[521] C.-P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms,
Theor. Comput. Sci. 53 (1987), 201–224.

[522] , Efficient identification and signatures for smart cards, CRYPTO 1989
(G. Brassard, ed.), LNCS, vol. 435, Springer, 1990, pp. 239–252.

[523] , Efficient signature generation by smart cards, J. Crypt. 4 (1991), no. 3,
161–174.

[524] , Security of almost all discrete log bits, Electronic Colloquium on Compu-
tational Complexity (ECCC) 5 (1998), no. 33, 1–13.

[525] , Progress on LLL and lattice reduction, The LLL Algorithm (P. Q. Nguyen
and B. Vallée, eds.), Springer, 2010, pp. 145–178.

[526] C.-P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems, Math. Program. 66 (1994), 181–199.

[527] C.-P. Schnorr and H. W. Lenstra Jr., A Monte Carlo factoring algorithm with linear
storage, Math. Comp. 43 (1984), no. 167, 289–311.

[528] R. Schoof, Elliptic curves over finite fields and the computation of square roots
(mod) p, Math. Comp. 44 (1985), no. 170, 483–494.

[529] , Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser.
A 46 (1987), 183–211.

[530] , Counting points on elliptic curves over finite fields, J. Théor. Nombres
Bordeaux 7 (1995), 219–254.

[531] A. Schrijver, Theory of linear and integer programming, Wiley, 1986.

[532] R. Schroeppel, H. K. Orman, S. W. O’Malley, and O. Spatscheck, Fast key exchange
with elliptic curve systems, CRYPTO 1995 (D. Coppersmith, ed.), LNCS, vol. 963,
Springer, 1995, pp. 43–56.

[533] E. Schulte-Geers, Collision search in a random mapping: Some asymptotic results,
Presentation at ECC 2000, Essen, Germany, 2000.

[534] M. Scott, Faster pairings using an elliptic curve with an efficient endomorphism,
INDOCRYPT 2005 (S. Maitra, C. E. V. Madhavan, and R. Venkatesan, eds.),
LNCS, vol. 3797, Springer, 2005, pp. 258–269.

[535] R. Sedgewick, T. G. Szymanski, and A. C.-C. Yao, The complexity of finding cycles
in periodic functions, SIAM J. Comput. 11 (1982), no. 2, 376–390.

[536] B. I. Selivanov, On waiting time in the scheme of random allocation of coloured
particles, Discrete Math. Appl. 5 (1995), no. 1, 73–82.

674 BIBLIOGRAPHY

[537] I. A. Semaev, Evaluation of discrete logarithms in a group of p-torsion points of an
elliptic curve in characteristic p, Math. Comp. 67 (1998), no. 221, 353–356.

[538] , A 3-dimensional lattice reduction algorithm, Cryptography and Lattices
(CaLC) (J. H. Silverman, ed.), LNCS, vol. 2146, Springer, 2001, pp. 181–193.

[539] , Summation polynomials and the discrete logarithm problem on elliptic
curves, Cryptology ePrint Archive, Report 2004/031, 2004.

[540] G. Seroussi, Compact representation of elliptic curve points over F2n , Hewlett-
Packard Labs technical report HPL-98-94, 1998.

[541] J.-P. Serre, Sur la topologie des variétés algébriques en charactéristique p, Symp.
Int. Top. Alg., Mexico, 1958, pp. 24–53.

[542] , Local fields, GTM, vol. 67, Springer, 1979.

[543] I. R. Shafarevich, Basic algebraic geometry, 2nd ed., Springer, 1995.

[544] J. O. Shallit, A primer on balanced binary representations, Preprint, 1992.

[545] A. Shallue and C. E. van de Woestijne, Construction of rational points on elliptic
curves over finite fields, ANTS VII (F. Hess, S. Pauli, and M. E. Pohst, eds.),
LNCS, vol. 4076, Springer, 2006, pp. 510–524.

[546] A. Shamir, A polynomial-time algorithm for breaking the basic Merkle-Hellman cryp-
tosystem, IEEE Trans. Inf. Theory 30 (1984), no. 5, 699–704.

[547] , Identity based cryptosystems and signature schemes, CRYTO 1984 (G. R.
Blakley and D. Chaum, eds.), LNCS, vol. 196, Springer, 1985, pp. 47–53.

[548] , RSA for paranoids, Cryptobytes 1 (1995), no. 3, 1–4.

[549] D. Shanks, Five number-theoretic algorithms, Proceedings of the Second Manitoba
Conference on Numerical Mathematics, Congressus Numerantium, No. VII, Utilitas
Math., Winnipeg, Man., 1973, pp. 51–70.

[550] T. Shioda, On the graded ring of invariants of binary octavics, Am. J. Math. 89
(1967), no. 4, 1022–1046.

[551] M. Shirase, D.-G. Han, Y. Hibino, H.-W. Kim, and T. Takagi, Compressed XTR,
ACNS 2007 (J. Katz and M. Yung, eds.), LNCS, vol. 4521, Springer, 2007, pp. 420–
431.

[552] Z. Shmuely, Composite Diffie-Hellman public-key generating systems are hard to
break, Technical report No. 356, Computer Science Department, Technion, 1985.

[553] V. Shoup, Lower bounds for discrete logarithms and related problems, EUROCRYPT
1997 (W. Fumy, ed.), LNCS, vol. 1233, Springer, 1997, pp. 256–266.

[554] , On formal models for secure key exchange (version 4), November 15, 1999,
Tech. report, IBM, 1999, Revision of Report RZ 3120.

[555] , OAEP reconsidered, CRYPTO 2001 (J. Kilian, ed.), LNCS, vol. 2139,
Springer, 2001, pp. 239–259.

BIBLIOGRAPHY 675

[556] , A computational introduction to number theory and algebra, Cambridge,
2005.

[557] I. E. Shparlinski, Computing Jacobi symbols modulo sparse integers and polynomials
and some applications, J. Algorithms 36 (2000), 241–252.

[558] , Cryptographic applications of analytic number theory, Birkhauser, 2003.

[559] , Playing “hide-and-seek” with numbers: The hidden number problem, lat-
tices and exponential sums, Public-Key Cryptography (P. Garrett and D. Lie-
man, eds.), Proceedings of Symposia in Applied Mathematics, vol. 62, AMS, 2005,
pp. 153–177.

[560] I. E. Shparlinski and A. Winterhof, A nonuniform algorithm for the hidden number
problem in subgroups, PKC 2004 (F. Bao, R. H. Deng, and J. Zhou, eds.), LNCS,
vol. 2947, Springer, 2004, pp. 416–424.

[561] , A hidden number problem in small subgroups, Math. Comp. 74 (2005),
no. 252, 2073–2080.

[562] A. Sidorenko, Design and analysis of provably secure pseudorandom generators,
Ph.D. thesis, Eindhoven, 2007.

[563] C. L. Siegel, Lectures on the geometry of numbers, Springer, 1989.

[564] J. H. Silverman, The arithmetic of elliptic curves, GTM, vol. 106, Springer, 1986.

[565] , Advanced topics in the arithmetic of elliptic curves, GTM, vol. 151,
Springer, 1994.

[566] J. H. Silverman and J. Suzuki, Elliptic curve discrete logarithms and the index
calculus, ASIACRYPT 1998 (K. Ohta and D. Pei, eds.), LNCS, vol. 1514, Springer,
1998, pp. 110–125.

[567] J. H. Silverman and J. Tate, Rational points on elliptic curves, Springer, 1994.

[568] M. Sipser, Introduction to the theory of computation, Course Technology, 2005.

[569] M. Ska lba, Points on elliptic curves over finite fields, Acta Arith. 117 (2005), no. 3,
293–301.

[570] N. P. Smart, The discrete logarithm problem on elliptic curves of trace one, J.
Cryptology 12 (1999), no. 3, 193–196.

[571] , Elliptic curve cryptosystems over small fields of odd characteristic, J.
Crypt. 12 (1999), no. 2, 141–151.

[572] , Cryptography: An introduction, McGraw-Hill, 2004.

[573] B. A. Smith, Isogenies and the discrete logarithm problem in Jacobians of genus 3
hyperelliptic curves, J. Crypt. 22 (2009), no. 4, 505–529.

[574] P. J. Smith and M. J. J. Lennon, LUC: A new public key system, International
Conference on Information Security (E. Graham Dougall, ed.), IFIP Transactions,
vol. A-37, North-Holland, 1993, pp. 103–117.

676 BIBLIOGRAPHY

[575] P. J. Smith and C. Skinner, A public-key cryptosystem and a digital signature system
based on the Lucas function analogue to discrete logarithms, ASIACRYPT 1994
(J. Pieprzyk and R. Safavi-Naini, eds.), LNCS, vol. 917, Springer, 1994, pp. 357–
364.

[576] J. A. Solinas, Efficient arithmetic on Koblitz curves, Des. Codes Crypt. 19 (2000),
195–249.

[577] , Low-weight binary representations for pairs of integers, Technical Report
CORR 2001-41, 2001.

[578] M. Stam, On Montgomery-like representations of elliptic curves over GF(2k), PKC
2003 (Y. G. Desmedt, ed.), LNCS, vol. 2567, Springer, 2003, pp. 240–253.

[579] , Speeding up subgroup cryptosystems, Ph.D. thesis, Eindhoven, 2003.

[580] M. Stam and A. K. Lenstra, Speeding up XTR, ASIACRYPT 2001 (C. Boyd, ed.),
LNCS, vol. 2248, Springer, 2001, pp. 125–143.

[581] H. M. Stark, Class-numbers of complex quadratic fields, Modular Functions of One
Variable I (W. Kuyk, ed.), LNM, vol. 320, Springer, 1972, pp. 153–174.

[582] D. Stehlé, Floating point LLL: Theoretical and practical aspects, The LLL Algorithm
(P. Q. Nguyen and B. Vallée, eds.), Springer, 2010, pp. 179–213.

[583] D. Stehlé and P. Zimmermann, A binary recursive GCD algorithm, ANTS VI (D. A.
Buell, ed.), LNCS, vol. 3076, Springer, 2004, pp. 411–425.

[584] P. Stevenhagen, The number field sieve, Algorithmic number theory (J. Buhler and
P. Stevenhagen, eds.), MSRI publications, Cambridge, 2008, pp. 83–99.

[585] I. Stewart, Galois theory, 3rd ed., Chapman & Hall, 2003.

[586] I. Stewart and D. Tall, Algebraic number theory and Fermat’s last theorem, 3rd ed.,
AK Peters, 2002.

[587] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktio-
nenkörpers von Primzahlcharakteristik. II. Ein Abschätzung der Ordnung der Au-
tomorphismengruppe, Arch. Math. 24 (1973), 527–544.

[588] , Die Hasse-Witt Invariante eines Kongruenzfunktionenkörpers, Arch. Math.
33 (1979), 357–360.

[589] , Algebraic function fields and codes, Springer, 1993.

[590] H. Stichtenoth and C. Xing, On the structure of the divisor class group of a class
of curves over finite fields, Arch. Math, 65 (1995), 141–150.

[591] D. R. Stinson, Some baby-step giant-step algorithms for the low Hamming weight
discrete logarithm problem, Math. Comp. 71 (2001), no. 237, 379–391.

[592] , Cryptography: Theory and practice, 3rd ed., Chapman & Hall/CRC, 2005.

[593] A. Storjohann and G. Labahn, Asymptotically fast computation of Hermite normal
forms of integer matrices, ISSAC 1996, ACM Press, 1996, pp. 259–266.

BIBLIOGRAPHY 677

[594] E. G. Straus, Addition chains of vectors, American Mathematical Monthly 71
(1964), no. 7, 806–808.

[595] A. H. Suk, Cryptanalysis of RSA with lattice attacks, MSc thesis, University of
Illinois at Urbana-Champaign, 2003.

[596] A. V. Sutherland, Order computations in generic groups, Ph.D. thesis, MIT, 2007.

[597] , Computing Hilbert class polynomials with the Chinese remainder theorem,
Math. Comp. 80 (2011), no. 273, 501–538.

[598] , Structure computation and discrete logarithms in finite abelian p-groups,
Math. Comp. 80 (2011), no. 273, 477–500.

[599] T. Takagi, Fast RSA-type cryptosystem modulo pkq, CRYPTO 1998 (H. Krawczyk,
ed.), LNCS, vol. 1462, Springer, 1998, pp. 318–326.

[600] J. Talbot and D. Welsh, Complexity and cryptography: An introduction, Cambridge,
2006.

[601] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2
(1966), 134–144.

[602] , Classes d’isogénie des variétés abéliennes sur un corps fini (d’après T.
Honda), Séminarie Bourbaki 1968/69, LNM, vol. 179, Springer, 1971, pp. 95–109.

[603] E. Teske, A space efficient algorithm for group structure computation, Math. Comp.
67 (1998), no. 224, 1637–1663.

[604] , Speeding up Pollard’s rho method for computing discrete logarithms, ANTS
III (J. P. Buhler, ed.), LNCS, vol. 1423, Springer, 1998, pp. 541–554.

[605] , On random walks for Pollard’s rho method, Math. Comp. 70 (2001),
no. 234, 809–825.

[606] , Computing discrete logarithms with the parallelized kangaroo method, Dis-
crete Applied Mathematics 130 (2003), 61–82.

[607] N. Thériault, Index calculus attack for hyperelliptic curves of small genus, ASI-
ACRYPT 2003 (C.-S. Laih, ed.), LNCS, vol. 2894, Springer, 2003, pp. 75–92.

[608] E. Thomé, Algorithmes de calcul de logarithmes discrets dans les corps finis, Ph.D.
thesis, L’École Polytechnique, 2003.

[609] W. Trappe and L. C. Washington, Introduction to cryptography with coding theory,
2nd ed., Pearson, 2005.

[610] M. A. Tsfasman, Group of points of an elliptic curve over a finite field, Theory of
numbers and its applications,. Tbilisi, 1985, pp. 286–287.

[611] J. W. M. Turk, Fast arithmetic operations on numbers and polynomials, Compu-
tational methods in number theory, Part 1 (H. W. Lenstra Jr. and R. Tijdeman,
eds.), Mathematical Centre Tracts 154, Amsterdam, 1984.

[612] M. Ulas, Rational points on certain hyperelliptic curves over finite fields, Bull. Pol.
Acad. Sci. Math. 55 (2007), no. 2, 97–104.

678 BIBLIOGRAPHY

[613] B. Vallée, Une approche géométrique de la réduction de réseaux en petite dimension,
Ph.D. thesis, Université de Caen, 1986.

[614] , Gauss’ algorithm revisited, J. Algorithms 12 (1991), no. 4, 556–572.

[615] S. Vaudenay, Hidden collisions on DSS, CRYPTO 1996 (N. Koblitz, ed.), LNCS,
vol. 1109, Springer, 1996, pp. 83–88.

[616] , A classical introduction to cryptography, Springer, 2006.

[617] J. Vélu, Isogénies entre courbes elliptiques, C.R. Acad. Sc. Paris 273 (1971), 238–
241.

[618] F. Vercauteren, Optimal pairings, IEEE Trans. Inf. Theory 56 (2010), no. 1, 455–
461.

[619] E. R. Verheul, Certificates of recoverability with scale recovery agent security, PKC
2000 (H. Imai and Y. Zheng, eds.), LNCS, vol. 1751, Springer, 2000, pp. 258–275.

[620] , Evidence that XTR is more secure than supersingular elliptic curve cryp-
tosystems, J. Crypt. 17 (2004), no. 4, 277–296.

[621] E. R. Verheul and H. C. A. van Tilborg, Cryptanalysis of ‘less short’ RSA secret
exponents, Applicable Algebra in Engineering, Communication and Computing 8
(1997), no. 5, 425–435.

[622] M.-F. Vignéras, Arithmétique des algèbres de quaternions, LNM, vol. 800, Springer,
1980.

[623] J. F. Voloch, A note on elliptic curves over finite fields, Bulletin de la Société
Mathématique de France 116 (1988), no. 4, 455–458.

[624] , Jacobians of curves over finite fields, Rocky Mountain Journal of Math. 30
(2000), no. 2, 755–759.

[625] D. Wagner, A generalized birthday problem, CRYPTO 2002 (M. Yung, ed.), LNCS,
vol. 2442, Springer, 2002, pp. 288–303.

[626] L. C. Washington, Elliptic curves: Number theory and cryptography, 2nd ed., CRC
Press, 2008.

[627] E. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. 2
(1969), 521–560.

[628] A. Weng, Constructing hyperelliptic curves of genus 2 suitable for cryptography,
Math. Comp. 72 (2003), no. 241, 435–458.

[629] D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans.
Inf. Theory 32 (1986), 54–62.

[630] M. J. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Trans. Inf. Theory
36 (1990), no. 3, 553–558.

[631] , Bounds on birthday attack times, Cryptology ePrint Archive, Report
2005/318, 2005.

BIBLIOGRAPHY 679

[632] M. J. Wiener and R. J. Zuccherato, Faster attacks on elliptic curve cryptosystems,
SAC 1998 (S. E. Tavares and H. Meijer, eds.), LNCS, vol. 1556, Springer, 1998,
pp. 190–200.

[633] H. C. Williams, A modification of the RSA public key encryption procedure, IEEE
Trans. Inf. Theory 26 (1980), no. 6, 726–729.

[634] , A p+ 1 method of factoring, Math. Comp. 39 (1982), no. 159, 225–234.

[635] D. J. Winter, The structure of fields, GTM 16, Springer, 1974.

[636] M. Woodroofe, Probability with applications, McGraw-Hill, 1975.

[637] S.-M. Yen and C.-S. Laih, Improved digital signature suitable for batch verification,
IEEE Trans. Computers 44 (1995), no. 7, 957–959.

[638] S.-M. Yen, C.-S. Laih, and A. K. Lenstra, Multi-exponentiation, IEEE Proceedings
Computers and Digital Techniques 141 (1994), no. 6, 325–326.

[639] N. Yui, On the Jacobian varieties of hyperelliptic curves over fields of characteristic
p > 2, J. Algebra 52 (1978), 378–410.

[640] O. Zariski and P. Samuel, Commutative algebra (Vol. I and II), Van Nostrand,
Princeton, 1960.

[641] N. Zierler, A conversion algorithm for logarithms on GF (2n), Journal of Pure and
Applied Algebra 4 (1974), 353–356.

[642] P. Zimmermann, Private communication, March 10, 2009.

Author Index

Abdalla, M., 494, 497
Adleman, L. M., 28, 341, 343–345
Agnew, G. B., 445
Agrawal, M., 263
Agrell, E., 394
Ajtai, M., 393
Akavia, A., 473
Akishita, T., 220
Alexi, W., 475, 513
Alon, N., 561
Ankeny, N. C., 51
Antipa, A., 486
Araki, K., 584
Arney, J., 297
Arène, C., 196
Atkin, A. O. L., 59, 186, 188
Avanzi, R. M., 241

Babai, L., 275, 383, 388
Bach, E., 51, 52, 321, 560
Bachem, A., 55
Balasubramanian, R., 584
Banks, W. D., 170
Barreto, P. S. L. M., 579, 580, 587
Bauer, A., 529
Bellare, M., 78, 443, 479, 480, 485, 494, 497,

531, 532, 534, 537
Bellman, R., 243
Bender, E. A., 297
Bentahar, K., 46, 454
Berlekamp, R., 63
Bernstein, D. J., 59, 62, 196, 237, 263, 302,

517, 532, 534
Birkner, P., 196
Bisson, G., 567
Blackburn, S. R., 297
Blake, I. F., 241, 336, 338
Bleichenbacher, D., 410, 485, 490, 516, 526,

530
Blichfeldt, H. F., 361
Block, H., 270
Blum, M., 466, 514

Blömer, J., 406, 529
Boneh, D., 254, 409, 442, 454, 461, 469, 470,

473, 474, 487, 502, 504, 511, 523,
529, 538, 541, 640

Boppana, R. B., 561
Bos, J. W., 295, 302, 303
Bosma, W., 167
Bostan, A., 556
Bourgain, J., 473
Boyen, X., 487
Boyko, V., 445
Brands, S., 278
Brauer, A., 237
Brent, R. P., 52, 293, 297, 320, 321
Brickell, E. F., 238, 427, 430
Brier, E., 525, 526
Brown, D. R. L., 452, 462, 464, 486, 487
Brumley, B. B., 250
Bröker, R., 190, 553, 570
Burgess, D. A., 51
Burmester, M., 437

Camion, P., 282
Canetti, R., 79, 443, 475
Canfield, E. R., 324, 331
Cantor, D. G., 64, 214, 217, 220, 229
Carter, G., 199, 295
Cash, D., 453, 497
Cassels, J. W. S., 202, 226, 228
Catalano, D., 522
Chan, W. F, 251
Chao, J., 252
Charlap, L. S., 137, 574
Charles, D. X., 563, 570
Chaum, D., 78, 525
Cheon, J.-H., 295, 462, 464
Cherepnev, M. A., 457
Chor, B., 475, 513
Clavier, C., 525, 526
Cobham, A., 606
Cocks, C., 28
Cohen, H., 187, 241

680

AUTHOR INDEX 681

Cohen, P., 553
Coley, R., 574
Collins, T., 509
Conway, J. H., 622
Cook, S., 45
Coppersmith, D., 280, 337, 339, 388, 397,

398, 401, 404, 475, 511, 524, 526
Cornelissen, G., 229
Coron, J.-S., 404, 445, 512, 517, 524–526,

531, 532
Coster, M. J., 431
Courtois, N., 422
Couveignes, J.-M., 557, 560
Couvreur, C., 509
Cox, D. A., 187, 192, 553, 559
Cramer, R., 438, 495, 498, 501, 541
Crandall, R. E., 319

Damg̊ard, I. B., 51, 77
Damg̊ard, I. B., 522
Davenport, H., 234
Davidoff, G., 561
Davies, D., 78
Dawson, E., 199, 295
De Feo, L., 557
De Jonge, W., 525
de Rooij, P., 483
Deligne, P., 184
DeMarrais, J., 343–345
den Boer, B., 454, 455
Denny, T. F., 337
Desmedt, Y., 437, 501, 523
Deuring, M., 187
Dewaghe, L., 551, 560
Diem, C., 346, 347, 349, 350
Diffie, W., 28, 436
Dimitrov, V. S., 244, 251
Dipippo, S. A., 232
Dixon, J., 325
Doche, C., 245
Dujella, A., 50, 529
Durfee, G., 409, 529
Duursma, I. M., 234, 302, 580

Eagle, P. N. J., 260
Edwards, H. M., 196
Elgamal, T., 438, 483
Elkies, N. D., 188, 554
Ellis, J., 28
Enge, A., 344, 350, 553
Erdös, P., 324, 331

Erickson, S., 225
Eriksson, T., 394
Euchner, M., 381, 391

Farashahi, R. R., 196
Feige, U., 535
Fiat, A., 535
Finiasz, M., 422
Finke, U., 391
Fischlin, R., 475, 513
Flajolet, P., 287, 289
Flassenberg, R., 345
Floyd, 289
Flynn, E. V., 202, 226, 228
Fong, K., 62
Fontaine, C., 501
Fouquet, M., 565
Franklin, M. K., 254, 502, 504, 524
Freeman, D., 516, 587
Frey, G., 346, 573, 576, 577, 584
Friedlander, J., 475
Fuji-Hara, R., 336, 338
Fujisaki, E., 537
Fürer, M., 45

Galand, F., 501
Galbraith, S. D., 200, 221, 222, 252, 260,

308, 317, 318, 530, 560, 567–569,
580, 586

Gallant, R. P., 243, 248, 251, 300, 302, 452,
462, 464, 486

Gama, N., 393, 423
Gao, S., 66
Garay, J. A., 485
Garefalakis, T., 576
von zur Gathen, J., 66, 254
Gaudry, P., 194, 202, 220, 229, 302, 315,

345, 346, 348, 350
Gauss, C. F., 365, 366
Gel’fond, A. O., 273
Gennaro, R., 522
Gentry, C., 422, 423, 516, 538
Giesbrecht, M., 66
Girault, M., 491, 525
Goldreich, O., 79, 409, 417, 418, 475, 513,

516
Goldwasser, S., 33, 417, 418, 479, 487
Gong, G., 120
González Vasco, M. I., 473
Gordon, D. M., 341, 621
Gordon, J., 636

682 AUTHOR INDEX

Goren, E. Z., 563
Granger, R., 120, 579
Granville, A., 411
Grieu, F., 526
Gross, B. H., 192, 563
Guillou, L. C., 535
Guy, R. K., 622

Hafner, J. L., 55, 343
Halevi, S., 79, 417, 418, 526
Hankerson, D., 62
Hanrot, G., 393
Harley, R., 219, 302, 346
Harn, L., 120
Harrison, M., 221, 222
Hasse, H., 234
H̊astad, J., 398, 399, 468, 522
H̊astad, J., 513
Havas, G., 55
van Heijst, E., 78
Helfrich, B., 391
Hellman, M. E., 28, 270, 337, 423, 436
Heneghan, C., 530
Hess, F., 346, 347, 560, 567, 569, 576, 577,

579–583, 586
Hilbert, D., 90
Hildebrand, A., 331
Hildebrand, M. V., 297
Hisil, H., 199
Hitchcock, Y., 295
Hoffstein, J., 423, 445
Hofheinz, D., 541
Hohenberger, S., 531
Holmes, M., 318
Honda, T., 232
Hong, J., 295
Hopkins, D., 509
Horwitz, J., 296
Howe, E. W., 200, 232
Howgrave-Graham, N. A., 398, 409, 413,

414, 423, 424, 472, 489, 522
Huang, M.-D., 344, 345
Huang, Z., 251
Hurwitz, A., 211

Icart, T., 245, 256
Igusa, J.-I., 210
Iijima, T., 252
Itoh, T., 62

Jacobson Jr., M. J., 220, 225

Jacobson, M. J., 251
Jager, T., 277
Jao, D., 474, 489, 562, 570
Järvinen, K. U., 250
Järvinen, K. U., 251
Jetchev, D., 474, 475
Jiang, Z.-T., 469
Joux, A., 341, 343, 424, 431, 442, 523, 573
Joye, M., 196, 241, 573
Jullien, G. A., 244
Jurik, M. J., 522
Jutla, C. S., 403, 526

Kaib, M., 368, 381
Kaihara, M. E., 295, 303
van der Kallen, W., 55
Kampkötter, W., 229
Kannan, R., 55, 390, 391
Karatsuba, A. A., 45
Kasahara, M., 573
Katagi, M., 220
Katz, J., 31, 253
Kayal, N., 263
Kiltz, E., 453, 497, 516, 541
Kim, H. Y., 579
Kim, J. H., 296
Kim, M., 295
King, B., 259, 260, 621
Kitamura, I., 220
Klein, P. N., 388
Kleinjung, T., 295, 302
Knudsen, E. W., 244, 611
Knuth, D. E., 287
Koblitz, N., 200, 201, 232, 245, 445, 584
Kohel, D. R., 120, 245, 258, 551, 562–564,

566, 567
Konyagin, S.-V., 473
Koyama, K., 520
Kozaki, S., 463
Kraitchik, M., 325, 334
Krawczyk, H., 443
Kuhn, F., 287, 295
Kuhn, R. M., 228
Kumar, R., 393
Kunihiro, N., 520
Kurosawa, K., 501
Kutsuma, T., 463

Labahn, G., 55
Lagarias, J. C., 395, 428, 430
Lagrange, J.-L., 365, 366

AUTHOR INDEX 683

Laih, C.-S., 243, 485
LaMacchia, B. A., 431
Lambert, R. J., 243, 248, 251, 300, 302, 486
Lanczos, C., 55, 329, 336
Lang, S., 187, 553, 559
Lange, T., 62, 196, 237, 302
Langford, S., 509
Lauter, K. E., 553, 563, 570
Lee, E., 581
Lee, H.-S., 580, 581
Lehmer, D. H., 265
Lehmer, D. N, 265
Lennon, M. J. J., 116
Lenstra Jr., H. W., 66, 167, 187, 199, 200,

250, 266, 293, 330, 332, 365, 375,
395, 445, 461

Lenstra, A. K., 119, 243, 251, 259, 302, 365,
375, 526

Lercier, R., 341, 343, 556, 557
Leurent, G., 78
Li, W.-C., 469, 474
Lichtenbaum, S., 576
Lin, X., 252
Lindell, Y., 31, 253
Lindner, R., 388, 416
Lipton, R. J., 454, 461
Lockhart, P., 210
Lovorn Bender, R., 337, 338
Lovász, L., 365, 375, 381, 412
Lubicz, D., 194, 202
Lucas, E., 114
Lynn, B., 579
Lyubashevsky, V., 424
Lüneburg, H., 66
López, J., 62

M’Räıhi, D., 445, 485
Majewski, B. S., 55
Mart́ın Mollev́ı, S., 520
Matsuo, K., 252, 463
Matthews, K. R., 55
Mauduit, C., 51
Maurer, U. M., 332, 454, 457
May, A., 406, 423, 512, 529, 530
McCurley, K. S., 55, 341, 343
McEliece, R., 417
McKee, J. F., 187, 199, 200, 530
Meier, W., 247, 248
Menezes, A. J., 31, 62, 245, 573, 584
Merkle, R., 28, 77, 423

Mestre, J.-F., 188, 210, 562, 563
Micali, S., 33, 466, 487
Micciancio, D., 55, 393, 414, 419, 479
Miller, G. L., 512
Miller, S. D., 296, 562, 570
Miller, V. S., 258, 351, 575, 579, 620
Miller, W. C., 244
Minkowski, 362
Mireles, D. J., 221, 222
Misarsky, J.-F., 525
Miyaji, A., 241
Monico, C., 303
Montague, P., 295
Montenegro, R., 296, 307, 309
Montgomery, P. L., 52–54, 192, 266, 293,

303
Morain, F., 60, 238, 302, 556, 557, 560, 565
Morillo, P., 520
Muir, J., 241
Mullin, R. C., 336, 338, 445
Mumford, D., 213, 214
Murphy, S., 297
Murty, M. R., 561
Murty, R., 200
Muzereau, A., 454, 461
Möller, B., 242, 243
Müller, V., 250

Naccache, D., 411, 485, 517, 524–526
Naehrig, M., 196, 587
Namprempre, C., 534
Nechaev, V. I., 270, 273, 275
Neven, G., 480, 482, 534, 573
Nguyen, P. Q., 78, 355, 365, 368, 381, 393,

410, 421–423, 431, 442, 472, 473,
489, 522, 523

Nicolas, J.-L., 60
Niederreiter, H., 63
Nivasch, G., 293
Näslund, M., 468, 469, 473, 474, 513

Odlyzko, A. M., 289, 337, 430, 431, 523
Oesterlé, J., 563
Ó hÉigeartaigh, C., 580
Ohgishi, K., 573
Okamoto, T., 522, 537, 573, 584, 638
Olivos, J., 238
O’Malley, S. W., 445
Ono, T., 241
Onyszchuk, I. M., 445

684 AUTHOR INDEX

van Oorschot, P. C., 31, 293, 304, 307, 311,
318, 319

Orman, H. K., 445
Oyono, R., 579

Paillier, P., 482, 487, 519, 521, 532
Park, C.-M., 581
Patarin, J., 282, 524
Patel, S., 468
Paulus, S., 221, 222, 225, 345
Peikert, C., 388, 416, 422
Peinado, M., 445
Peres, Y., 296
Peters, C., 196
Pfitzmann, B., 78
Pila, J., 229, 332, 461
Pinch, R. G. E., 529, 530
Pipher, J., 423
Pizer, A. K., 561, 563
Pohst, M., 391
Pointcheval, D., 443, 479, 480, 482, 484,

487, 537
Pollard, J. M., 265, 267, 285, 297, 304, 308,

309, 311, 313, 319, 320, 332
Pomerance, C., 319, 324, 329–332, 337, 338,

461
van der Poorten, A. J., 220
Poupard, G., 491
Price, W. L., 78
Pujol, X., 393

Quisquater, J.-J., 509, 535

Rabin, M. O., 509, 513, 637
Rabin, T., 485
Rackoff, C., 328
Raphaeli, D., 485
Regev, O., 393, 414, 422, 489
Reiter, M. K., 524
Reiter, R., 246
Reitwiesner, G., 238
Reyneri, J. M., 337
Ritter, H., 381
Ritzenthaler, C., 196
Rivest, R. L., 28, 33, 293
Robbins, D. P., 137
Rogaway, P., 76, 78, 443, 494, 497, 531, 532,

537
Ron, D., 409
Roquette, P., 211
Rosen, A., 516

Rubin, K., 111, 112, 117
Ruprai, R. S., 308, 317, 318
Rück, H.-G., 186, 221, 222, 225, 573, 576,

577, 584, 585

Sabin, M., 509
Sakai, R., 573
Salvy, B., 556
Sarnak, P., 561
Satoh, T., 465, 584
Sattler, J., 296
Saxena, N., 263
Scarf, H. E., 381
Schinzel, A., 255
Schirokauer, O., 337, 342
Schmidt-Samoa, K., 242
Schnorr, C.-P., 293, 296, 368, 380, 381, 391,

395, 431, 445, 475, 477, 480, 490,
513

Schoof, R., 60, 186–188, 554
Schost, E., 229, 315, 556
Schroeppel, R. C., 244, 270, 329, 337, 424,

445
Schulte-Geers, E., 299
Schwabe, P., 302
Schwarz, J. T., 277
Schwenk, J., 277
Schönhage, A., 45
Scott, M., 252, 579, 580, 582, 587
Sedgewick, R., 287, 293
Segev, G., 516
Semaev, I. A., 347, 584
Semay, O., 242
Sendrier, N., 422
Seroussi, G., 241, 260, 611
Serre, J.-P., 562, 584
Shallit, J. O., 51, 52, 238
Shallue, A., 255, 424
Shamir, A., 28, 243, 424, 428, 430, 491, 510,

534, 535
Shang, N., 225
Shanks, D., 220, 273
Shen, S., 225
Shioda, T., 210
Shoup, V., 253, 272, 275, 328, 438, 450, 453,

495, 497, 498, 501, 537, 541, 625
Shparlinski, I. E., 170, 200, 254, 258, 411,

469, 472–475, 489, 526
Sidorenko, A., 252
Silver, R. I., 270

AUTHOR INDEX 685

Silverberg, A., 111, 112, 117
Silverman, J. H., 351, 423, 445
Silverman, R. D., 54, 295
Sinclair, A., 254
Sirvent, T., 556
Sivakumar, D., 393
Ska lba, M., 255
Skinner, C., 116
Smart, N. P., 27, 241, 343, 346, 454, 461,

472, 482, 489, 560, 567, 569, 580,
584

Smith, B. A., 350
Smith, P. J., 116
Solinas, J. A., 241, 244, 246, 248
Soukharev, V., 570
Soundararajan, K., 337
Spatscheck, O., 445
Staffelbach, O., 247, 248
Stam, M., 119, 192, 244, 251
Stapleton, J., 295
Stark, H. M., 556
Stehlé, D., 368, 380, 381, 393
Stein, A., 225, 344
Stein, J., 48
Stern, J., 355, 431, 479, 480, 482, 484, 491,

537
Stern, J. P., 526
Stewart, C., 51
Stichtenoth, H., 211, 230, 231, 234
Stinson, D. R., 27, 241, 280, 319
Stolarsky, K. B., 57
Stolbunov, A., 569
Storjohann, A., 55
Strassen, V., 45, 267
Straus, E. G., 243
Struik, R., 287, 295, 486
Sudan, M., 409
Suk, A. H., 529
Sundaram, G. S., 468
Sutherland, A. V., 54, 71, 272, 553, 567
Suyama, H., 194
Szemerédi, E., 275
Szymanski, T. G., 293
Sárközy, A., 51

Takagi, T., 220, 242, 510, 522
Tate, J., 232, 576
Tenenbaum, G., 331
Teske, E., 288, 293, 296, 311, 313, 587
Tetali, P., 296, 307, 309

Thomé, E., 339, 341, 346, 350
Thurber, E. G., 237
Thériault, N., 346, 579
Tibouchi, M., 524
van Tilborg, H. C. A., 529
Toom, A., 45
Tsujii, S., 62, 252
Tymen, C., 445

Uchiyama, S., 522, 638
Ulas, M., 256

Vaikuntanathan, V., 422
Valette, A., 561
Vallée, B., 365, 368
Vanstone, S. A., 31, 243, 245, 248, 251, 300,

302, 336, 338, 445, 486, 573, 584
Vardy, A., 394
Vaudenay, S., 27, 485, 487
Venkatesan, R., 296, 445, 469, 470, 473–475,

511, 562, 570
Vercauteren, F., 120, 343, 454, 461, 579–

582, 586
Vergnaud, D., 482, 487
Verheul, E. R., 119, 259, 529, 588
Vidick, T., 393
Villar, J. L., 519, 520
Voloch, J. F., 186, 343
Voulgaris, P., 393
Vélu, J., 547

Wagner, D., 282, 393, 424
Wang, Y.-M., 469
Warinschi, B., 55, 482
Washington, L. C., 188
Waters, B., 531
Weber, D., 337
Weinmann, R.-P., 524
Weng, A., 210
Wiedemann, D. H., 55, 329, 336
Wiener, M. J., 293, 300, 304, 307, 311, 318,

319, 527, 528
Williams, H. C., 515, 519
Williamson, M. J., 436
Winterhof, A., 473
van de Woestijne, C. E., 255
Wolf, S., 332, 454
Wong, K. K.-H., 199

Xing, C., 234
Xu, W.-L., 469

686 AUTHOR INDEX

Yao, A. C.-C., 293
Yen, S.-M., 241, 243, 485
Yoshida, K., 489

Zassenhaus, H., 64
Zeger, K., 394
Zierler, N., 68
Zimmermann, P., 46, 52
Zuccherato, R. J., 300

Subject Index

Abel-Jacobi map, 142, 227
Abelian variety, 226
absolutely simple, 226
adaptive chosen message attack, 34
adaptive chosen-ciphertext attack, 32
addition chain, 57
additive group, 85
additive rho walk, 288
adjacency matrix, 561
advantage, 42, 437, 467, 495
adversary against an identification protocol,

479
affine n-space over k, 87
affine algebraic set, 88
affine coordinate ring, 89
affine line, 87
affine plane, 87
affine variety, 96
affine Weierstrass equation, 127
AKS primality test, 263
algebraic, 593
algebraic closure, 593
algebraic group, 83
algebraic group quotient, 85
algebraic torus, 111
algebraically independent, 403
algorithm, 37
amplifying, 44
amplitude, 410
anomalous binary curves, 185
anomalous elliptic curves, 584
approximate CVP problem, 363
approximate SVP problem, 363
ascending chain, 597
ascending isogeny, 563
asymmetric cryptography, 28
ate pairing, 580
attack goals for public key encryption, 31
attack goals for signatures, 33
attack model, 31
automorphism, 170

auxiliary elliptic curves, 460
average-case complexity, 40

B-power smooth, 265
B-smooth, 265
Babai nearest plane algorithm, 386
Babai rounding, 248
Babai’s rounding technique, 388
baby step, 222
Barret reduction, 53
base-a probable prime, 263
base-a pseudoprime, 263
basic Boneh-Franklin scheme, 502
basis matrix, 357
batch verification of Elgamal signatures, 485
BDH, 503
Big O notation, 38
big Omega, 39
big Theta, 39
bilinear Diffie-Hellman problem, 503
binary Euclidean algorithm, 48
birational equivalence, 101
birthday bound, 275
birthday paradox, 285, 602
bit i, 601
bit-length, 601
black box field, 455
Blichfeldt Theorem, 361
block Korkine-Zolotarev, 395
Blum integer, 514
Boneh-Joux-Nguyen attack, 442
bounded distance decoding problem (BDD),

363
Brandt matrix, 563
Burmester-Desmedt key exchange, 437

canonical divisor class, 160
Cantor reduction step, 217
Cantor’s addition algorithm, 215
Cantor’s algorithm, 214
Cantor’s composition algorithm, 215

687

688 SUBJECT INDEX

Cantor-Zassenhaus algorithm, 64
Carmichael lambda function, 262, 508
Cayley graph, 561
CCA, CCA1, CCA2, 32
CDH, 436
c-expander, 561
chains of isogenies, 546
characteristic, 590
characteristic polynomial, 182, 595
characteristic polynomial of Frobenius, 183,

231
Cheon’s variant of the DLP, 462
Chinese remainder theorem, 596
Chinese remaindering with errors problem,

409
chord-and-tangent rule, 140
chosen plaintext attack, 32
ciphertext, 29
circle group, 88
circulant matrix, 423
classic textbook Elgamal encryption, 438
clients, 297
closest vector problem (CVP), 363
CM method, 188
co-DDH problem, 586
coefficient explosion, 373
cofactor, 259
collapsing the cycle, 302
collision, 286, 320
Collision-resistance, 75
complement, 228
complete group law, 196, 197
complete system of addition laws, 167
Complex multiplication, 185, 187, 199, 558
complex multiplication method, 188
Complexity, 38
composite residuosity problem, 521
compositeness witness, 262
composition and reduction at infinity, 222
composition of functions, 589
compositum, 593
compression function, 77
compression map, 113, 118
computational problem, 38
COMPUTE-LAMBDA, 512
COMPUTE-PHI, 512
conditional probability, 601
conductor, 563, 600
conjugate, 112
connected graph, 558

conorm, 150, 153
constant function, 98
continuation, 266
continued fraction expansion, 48
convergents, 48
Coppersmith’s theorem, 401
Cornacchia algorithm, 60
coupon collector, 602
covering attack, 347
covering group, 85, 116, 120
CPA, 32
Cramer-Shoup encryption scheme, 498
crater, 566
CRT list decoding problem, 409
CRT private exponents, 509
cryptographic hash family, 75
curve, 127
cycle, 289
cyclotomic polynomial, 109
cyclotomic subgroup, 111

data encapsulation mechanism, 495
DDH, 437
de-homogenisation, 94
decision closest vector problem (DCVP), 363
decision learning with errors, 415
decision problem, 38
decision shortest vector problem, 363
decision static Diffie-Hellman problem, 452
Decisional Diffie-Hellman problem (DDH),

436
decompression map, 113, 118
decrypt, 29
decryption algorithm, 31
decryption oracle, 465
Dedekind domain, 148
defined, 99
defined over k, 89, 91, 93, 135
degree, 134, 146, 172, 343, 593
DEM, 495
den Boer reduction, 455
dense, 98, 102
density, 240
derivation, 155
derivative, 591
descending isogeny, 563
Desmedt-Odlyzko attack, 523
determinant, 358, 599
deterministic algorithm, 38
deterministic pseudorandom walk, 287

SUBJECT INDEX 689

DHIES, 494
diameter, 558
Dickman-de Bruijn function, 324
Diem’s algorithm, 350
differentials, 158
Diffie-Hellman tuples, 437
digit set, 245
dimension, 105
Diophantine approximation, 48, 412
discrete, 357
discrete logarithm assumption, 435
discrete logarithm in an interval, 274
discrete logarithm problem, 38, 269
discrete valuation, 131
discriminant, 128, 600
d-isogeny, 172
distinguished point, 293
Distinguished points, 293
distortion map, 586, 588
distributed computing, 297
Distributed rho algorithm, 297
distribution, 601
division polynomials, 181
divisor, 134
divisor class, 138
divisor class group, 138
divisor of a differential, 159
divisor of a function, 136
divisor-norm map, 151
Dixon’s random squares, 325
DL-LSB, 466
DLP, 38, 269
DLP in an interval, 274
DLWE, 415
dominant, 102
DSA, 486
DStatic-DH, 452
DStatic-DH oracle, 496
dual isogeny, 176, 177
dual lattice, 360

eavesdropper, 436
ECDSA, 486
ECIES, 494
ECM, 267
edge boundary, 561
effective, 134
effective affine divisor, 212
eigenvalues of a finite graph, 561
Eisenstein’s criteria, 591

Elgamal encryption, 465
Elgamal public key signatures, 484
elliptic curve, 128
elliptic curve method, 267
embedding degree, 578
embedding technique, 390
encapsulates, 495
encoding, 276
encrypt, 28
encryption algorithm, 30
encryption scheme, 30
endomorphism ring, 172
entropy smoothing, 76
epact, 290
ephemeral keys, 436
equation for a curve, 127
equivalence class in AGQ, 85
equivalence classes in Pollard rho, 300
equivalence of functions, 98
equivalent, 171, 212, 248
equivalent computational problems, 43
equivalent isogenies, 546
e-th roots problem, 511
Euclidean norm, 598
Euler phi function, 590
Euler’s criterion, 50
Euler-Mascheroni constant, 590
event, 601
existential forgery, 33
expander graph, 561
expectation, 602
expected exponential-time, 40
expected polynomial-time, 40
expected subexponential-time, 40
expected value, 287
explicit Chinese remainder theorem, 54
explicit representation, 454
exponent, 590
exponent representation, 83
exponential-time, 39
exponential-time reduction, 43
extended Euclidean algorithm, 47
extension, 148, 593
Extra bits for Rabin, 515

FACTOR, 512
factor base, 325, 326
family of groups, 467
FDH-RSA, 531
Feige-Fiat-Shamir protocol, 535

690 SUBJECT INDEX

Fermat test, 262
Fiat-Shamir transform, 481
field of fractions, 597
final exponentiation, 579
finitely generated, 590, 593, 596
fixed base, 237, 243
fixed pattern padding, 406, 524
Fixed-CDH, 448
Fixed-Inverse-DH, 449
Fixed-Square-DH, 449
floating-point LLL, 380
floor, 564
Floyd’s cycle finding, 289
forking lemma, 480
four-kangaroo algorithm, 309
free module, 591
Frobenius expansion, 245
Frobenius map, 146, 175, 231
full domain hash, 531
full rank lattice, 357
fully homomorphic, 501
function, 589
function field, 98
function field sieve, 341
fundamental domain, 422
fundamental parallelepiped, 599

Galbraith’s algorithm, 568
Galbraith-Hess-Smart algorithm, 569
Galois, 594
Galois cohomology, 594
Galois group, 594
game, 32
gap Diffie-Hellman problem, 496
Garner’s algorithm, 54
Gaudry’s algorithm, 345
Gaussian heuristic, 362
generic algorithm, 276
generic chosen-message attack, 487
genus, 155, 206
genus 0 curve, 162
geometric distribution, 602
geometrically irreducible, 96
GGH, 417
GGH encryption, 417
GGH signatures, 422
GIMPS, 297
GLV lattice, 249, 251
GLV method, l-dimensional, 251
Goldreich-Goldwasser-Halevi cryptosystem,

417

Gong-Harn cryptosystem, 120
Gordon’s algorithm, 264, 621
Gram matrix, 359
Gram-Schmidt algorithm, 599
Gram-Schmidt orthogonalisation, 599
greatest common divisor, 214
Greedy algorithm, 424
Group automorphism, 85
group decision Diffie-Hellman problem, 450
group defined over k, 176
GSO, 599
Guillou-Quisquater protocol, 535

Hafner-McCurley algorithm, 343
half trace, 67
Hamming weight, 57, 279
hardcore bit or predicate, 466
hash Diffie-Hellman (Hash-DH), 497
Hasse interval, 184
H̊astad attack, 522
head, 289
Hensel lifting, 65
Hermite constant, 361
Hermite normal form, 600
hidden number problem, 470, 490
Hilbert 90, 92, 105, 595
Hilbert Nullstellensatz, 90
HNF, 600
HNP, 470
homogeneous coordinates, 91
homogeneous decomposition, 592
homogeneous ideal, 92
homogeneous polynomial, 592
homogenisation, 94, 95
homogenous coordinate ring, 93
homomorphic, 502
homomorphic encryption, 502
Honda-Tate theory, 232
horizontal isogeny, 563
Horner’s rule, 61
Hurwitz class number, 187, 191, 199, 558
Hurwitz genus formula, 162
Hurwitz-Roquette theorem, 211
hybrid encryption, 438, 495
hyperelliptic curve, 206
hyperelliptic equation, 201
hyperelliptic involution, 201
hyperplane, 88
hypersurface, 88

ideal, 89, 596

SUBJECT INDEX 691

identity matrix, 597
identity-based cryptography, 491, 502
Igusa invariants, 210
imaginary hyperelliptic curve, 206
imaginary quadratic field, 600
implicit representation, 454
IND, 32
IND-CCA security, 32
independent events, 601
independent random variables, 602
independent torstion points, 258
index calculus, 334
indistinguishability, 32
indistinguishability adversary, 32
inert model of a hyperelliptic curve, 206
inert place, 206
inner product, 598
input size, 38
inseparable, 146
inseparable degree, 146
instance, 38
instance generator, 41
interleaving, 243
invalid parameter attacks, 441
invariant differential, 178
inverse limit, 182
Inverse-DH, 448
irreducible, 96, 590, 591
isogenous, 172
isogeny, 172, 226, 231
isogeny class, 557
isogeny problem for elliptic curves, 567
isomorphic, 102
isomorphism of elliptic curves, 168
isomorphism of pointed curves, 168
iterated Merkle-Hellman, 426
i-th bit, 601
Itoh-Tsujii inversion algorithm, 62

Jacobi quartic model, 199
Jacobi symbol, 50
Jacobian matrix, 126
Jacobian variety, 140, 226
j-invariant, 169
joint sparse form, 244

k-algebraic set, 88
kangaroo method, 305
kangaroo, tame, 305
kangaroo, wild, 305
Karatsuba multiplication, 45, 509

KEM, 495
kernel, 172
kernel lattice, 362
kernel lattice modulo M , 362
key derivation function, 438
key encapsulation, 28
key encapsulation mechanism, 495
key only attack, 33
key transport, 28, 495
keyed hash function, 75
KeyGen, 30
known message attack, 33
Koblitz curves, 185
Korkine-Zolotarev reduced, 394
k-regular, 558
Kronecker substitution, 61
Kronecker symbol, 50, 559
Krull dimension, 105
Kruskal’s principle, 307
Kummer surface, 202

L-polynomial, 230
l-sum problem, 282
ℓ2-norm, 598
ℓa-norm, 598
ladder methods, 116
Lagrange-Gauss reduced, 366
large prime variation, 330
Las Vegas algorithm, 40
lattice, 357
lattice basis, 357, 362
lattice dimension, 357
lattice membership, 362
lattice rank, 357
l-bit string, 601
learning with errors, 415
least significant bit, 601
Legendre symbol, 50
length, 44, 238
Length of a Frobenius expansion, 245
linear change of variables, 93
linear congruential generator, 439, 479
linear map, 597
linearly equivalent, 138
Little O notation, 39
LLL algorithm, 375
LLL reduced, 370
local, 597
local properties of varieties, 123
local ring, 123

692 SUBJECT INDEX

localisation, 123, 597
loop shortening, 580
Lovász condition, 370
low Hamming weight DLP, 279
low-exponent RSA, 509
LSB, 601
LUC, 114, 116, 474
lunchtime attack, 32, 523
LWE, 415
LWE distribution, 414

MAC, 77
map, 589
match, 286
Maurer’s algorithm, 621
maximal ideal, 131, 596
McEliece cryptosystem, 417
McEliece encryption, 417
mean step size, 304
meet-in-the-middle attack, 318
Merkle-Damg̊ard construction, 77
Mersenne prime, 468
message authentication code, 77
message digest, 29
messages, 436
Mestre’s algorithm, 210
Miller function, 577
Miller-Rabin test, 262
Minkowski convex body theorem, 361
Minkowski theorem, 362
mixing time, 296
M(n), 46
mod, 589
model, 104
model for a curve, 127
modular curve, 553
modular exponentiation, 55
modular polynomial, 553
modular subset sum problem, 424
module, 590
monic, 591
Monte Carlo algorithm, 40
Montgomery model, 192
Montgomery multiplication, 52, 55
Montgomery reduction, 52
Montgomery representation, 52
morphism, 102
most significant bit, 467, 469
MOV/FR attack, 584
MSB, 469

MTI/A0 protocol, 444
multi-base representations, 244
multi-exponentiation, 242
multidimensional discrete logarithm prob-

lem, 278, 315
multiplicative group, 85
multiplicative subset, 597
Multiprime-RSA, 509
Mumford representation, 213, 214
Mumford theta divisor, 229

NAF, 238
naive Schnorr signatures, 481
nearly Ramanujan graph, 562
negligible, 41
Newton identities, 231
Newton iteration, 46, 47, 65
Newton root finding, 46
NFS, 332, 337
NIST primes, 53
Noetherian, 597
non-adjacent form, 238, 246
non-singular, 125, 126
non-uniform complexity, 39
norm, 111, 112, 153, 593, 595
norm map, 246
normal basis, 595
normalised isogeny, 550
noticeable, 41
n-torsion subgroup, 166
NTRU cryptosystem, 423
NTRU decryption failures, 423
NUCOMP, 220
Nullstellensatz, 133
number field sieve, 332, 337

OAEP, 537
Okamoto-Uchiyama scheme, 522
O(n), 38
Õ(n), 39
o(n), 39
one way encryption, 31
one-way function, 29, 424
one-way permutation, 29
optimal extension fields, 62
optimal normal basis, 62
optimal pairing, 581
oracle, 31, 42
oracle replay attack, 479
orbit, 85
order, 131, 159, 590, 600

SUBJECT INDEX 693

ordinary, 189, 233
original rho walk, 288
orthogonal, 598
orthogonal complement, 599
orthogonal matrix, 598
orthogonal projection, 384, 599
orthogonality defect, 360
orthogonalized parallelepiped, 420
orthonormal, 598
output distribution, 41, 438
output size, 38
overwhelming, 42
OWE, 31

p-subgroup problem, 638
padding scheme, 30
Paillier encryption, 521
pairing, 487
Pairing groups, 487
pairing inversion problem, 586
pairing-friendly curves, 587
parallel collision search, 318
parallel computing, 297
parameterised assumption, 488
parasitic solutions, 431
passive attack, 32, 33, 436
path, 558
path in a graph, 558
Pell’s equation, 50
perfect adversary, 32
perfect algorithm, 40
perfect field, 594
perfect oracle, 42
π-adic expansions, 245
π-NAF, 246
place of a function field, 146
plane curve, 127
Pohlig-Hellman, 270
Poincaré reducibility theorem, 226
point at infinity, 128
pointed curve, 168
points at infinity, 206
pole, 132
Pollard kangaroo method, discrete logarithms,

303
Pollard rho algorithm, factoring, 320
Pollard rho pseudorandom walk, factoring,

320
Pollard’s FFT continuation, 266
polynomial basis, 595

polynomial-time, 39
polynomial-time equivalent, 43
polynomial-time reduction, 43
p-rank, 233
preimage-resistance, 75, 438
primality certificate, 264
primality test, 261
prime, 590
prime divisor, 214, 343
prime number theorem, 263
primitive, 109
primitive element theorem, 594
principal divisor, 136
principal ideal, 596
private key, 28
probable prime, 263
processors, 297
product discrete logarithm problem, 278
product tree, 69
projective algebraic set, 92
projective closure, 95
projective hyperelliptic equation, 207
projective line, 91
projective plane, 91
projective space, 91
projective variety, 96
pseudoprime, 261
pseudorandom, 288
PSS, 532
public key cryptography, 28
public key identification scheme, 477
pullback, 103, 150
purely inseparable, 593
pushforward, 151

q-SDH, 488
q-strong Diffie-Hellman problem, 488
quadratic non-residue, 50
Quadratic reciprocity, 51
quadratic residue, 50, 595
quadratic sieve, 329
quadratic twist, 171, 194, 210
quotient, 85

Rabin cryptosystem, 513
Rabin-Williams cryptosystem, 516
radical, 596
Ramanujan graph, 561, 563
ramification index, 149
ramified model of a hyperelliptic curve, 206
ramified place, 206

694 SUBJECT INDEX

random oracle model, 78
random self-reducible, 43
random variable, 602
randomised, 39
randomised algorithm, 39
randomised encryption, 30
randomised padding scheme, 507
randomness extraction, 257
rank, 591, 597
rational, 112
rational functions, 98
rational map, 100, 101
Rational parameterisation, 117
rational points, 88
real hyperelliptic curve, 206
real or random security, 444
reduced, 218, 222
reduced divisor, 220
reduced Tate-Lichtenbaum pairing, 578
reducible, 96
reduction, 43
redundancy in message for Rabin, 514
regular, 99, 100
regulator, 225
relation, 325
reliable, 42
reliable oracle, 44
repeat, 286
representation problem, 278
residue degree, 148
Residue number arithmetic, 46
restriction, 148
resultant, 592
rewinding attack, 479
rho algorithm, discrete logarithms, 287
rho graph, 296
rho walks, 288
Riemann hypothesis for elliptic curves, 184
Riemann zeta function, 291
Riemann-Roch space, 154
ring class field, 187
ring of integers, 600
Rivest, R. L., 487
Robin Hood, 318
root of unity, 109
RSA, 507
RSA for paranoids, 510
RSA problem, 511
RSA-PRIVATE-KEY, 512

SAEP, 538

safe prime, 259, 264, 508
Sakurai, K., 522
Sato-Tate distribution, 200
Schnorr identification scheme, 478
Schnorr signature scheme, 480
Schönhage-Strassen multiplication, 45
second stage, 266
second-preimage-resistance, 75
security parameter, 30, 41
security properties, 31
selective forgery, 33
self-corrector, 44
Selfridge-Miller-Rabin test, 262
semantic security, 31
semi-reduced divisor, 212
semi-textbook Elgamal encryption, 438
separable, 146, 172, 593
separable degree, 146
separating element, 156
separating variable, 156
Serial computing, 297
server, 297
session key, 436
set of RSA moduli, 511
SETI, 297
short Weierstrass form, 128
shortest vector problem (SVP), 362
sieving, 329
signature forgery, 34
signature scheme, 33
simple, 226
simple zero, 131
simultaneous Diophantine approximation, 428
simultaneous Diophantine approximation prob-

lem, 412
simultaneous modular inversion, 53
simultaneous multiple exponentiation, 242
simultaneously hard bits, 468
singular, 125
singular point, 126
sliding window methods, 56
small private exponent RSA, 527
small public RSA exponent, 509
small subgroup attacks, 441
smooth, 125, 330, 344
smooth divisor, 343
Smooth integers, 265
smooth polynomial, 337
SNFS, 342
snowball algorithm, 71

SUBJECT INDEX 695

Soft O notation, 39
Solinas, J. A., 247
Sophie-Germain prime, 259, 264, 508
sparse matrix, 55, 329
special q-descent, 339
special function field sieve, 342
special number field sieve, 332, 342
split an integer, 63
split Jacobian, 227
split model of a hyperelliptic curve, 206
split place, 206
splits, 261
splitting system, 280
SQRT-MOD-N, 517
square, 595
square-and-multiply, 55
Square-DH, 448
square-free, 63
SSL, 28
Standard continuation, 266
standard model, 78
Stark’s algorithm, 556
static Diffie-Hellman key exchange, 438
static Diffie-Hellman problem, 452
Static-DH oracle, 465
statistical distance, 603
statistically close, 603
Stirling’s approximation to the factorial, 601
Stolarsky conjecture, 57
strong Diffie-Hellman (Strong-DH), 496
strong forgery, 34
strong prime, 264, 508
strong prime test, 262
STRONG-RSA, 513
strongly B-smooth, 265
subexponential, 324
subexponential function, 324
subexponential-time, 39
subexponential-time reduction, 43
subgroup generated by g, 590
sublattice, 357
subvariety, 96
succeeds, 42
success probability, 42
successful adversary, 32, 437
successive minima, 360
summation polynomials, 347
superpolynomial-time, 39
supersingular, 185, 189, 233
support, 134

surface, 564
system parameters, 439, 477

tail, 289
Takagi-RSA, 510
target message forgery, 33
target-collision-resistant, 76
Tate isogeny theorem, 179, 557, 560
Tate module, 182
Tate’s isogeny theorem, 232
Tate-Lichtenbaum pairing, 576
tau-adic expansions, 245
tensor product, 591
textbook Elgamal public key encryption, 438
textbook RSA, 28
three-kangaroo algorithm, 308
tight security reduction, 532
TLS, 28
Tonelli-Shanks algorithm, 58
Toom-Cook multiplication, 45
tori, 474
torsion-free module, 174
torus based cryptography, 109, 112
total break, 31, 33
total degree, 591
total variation, 603
trace, 85, 114, 183, 593, 595
trace based cryptography, 109
trace of Frobenius, 183
trace polynomial, 64
transcendence basis, 593
transcendence degree, 593
transcendental, 593
translation, 124
transpose, 597
trapdoor, 29
trapdoor one-way permutation, 29
trial division, 261
trivial twist, 171
tunable balancing of RSA, 510
twist, 171
twisted Edwards model, 196

UF, 33
UF-CMA, 34
Unified elliptic curve addition, 166
uniform complexity, 39
uniform distribution, 601
uniformizer, 129
uniformizing parameter, 129
unimodular matrix, 358, 600

696 SUBJECT INDEX

unique factorisation domain, 590
unramified, 149, 173
unreliable, 42
unreliable oracle, 44
useless cycles, 302

valuation ring, 131
value, 99
value of a function, 99
variable base, 237, 243
Verschiebung, 177
vertex boundary, 561
volcano, 565
volume, 358
Vélu’s formulae, 547

Wagner algorithm, 393
weak chosen-message attack, 487
Weierstrass equation, 127
weight, 240
Weight of a Frobenius expansion, 245
weighted projective hyperelliptic equation,

204
weighted projective space, 96, 204
weights, 424
Weil bounds, 231
Weil descent, 346
Weil pairing, 258, 574
Weil reciprocity, 573
Weil restriction of scalars, 106, 111
width-w non-adjacent form, 241
Wiener attack, 527
Williams, 515
Williams integer, 515, 532
window length, 56
window methods, 56
worst-case complexity, 39, 40

Xedni calculus, 351
XOR, 601
XTR, 119, 474
XTR cryptosystem, 120
XTR representation, 119

Zariski topology, 93
zero, 92, 99
zero isogeny, 172
zeta function, 230

