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Tori, LUC and XTR
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book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Recall from Example 5.1.5 that F∗
q satisfies our informal notion of an algebraic group.

This chapter concerns certain subgroups of the multiplicative group of finite fields of
the form Fqn with n > 1. The main goal is to find short representations for elements.
Algebraic tori give short representations of elements of certain subgroups of F∗

qn . Traces
can be used to give short representations of certain algebraic group quotients in F∗

qn , and
the most successful implementations of this are called LUC and XTR. These ideas are
sometimes called torus based cryptography or trace based cryptography, though
this is misleading: the issue is only about representation of elements and is independent
of any specific cryptosystem.

6.1 Cyclotomic Subgroups of Finite Fields

Definition 6.1.1. Let n ∈ N. A complex number z is an n-th root of unity if zn = 1,
and is a primitive n-th root of unity if zn = 1 and zd 6= 1 for any divisor d | n with
1 ≤ d < n.

The n-th cyclotomic polynomial Φn(x) is the product (x − z) over all primitive
n-th roots of unity z.

Lemma 6.1.2. Let n ∈ N. Then

1. deg(Φn(x)) = ϕ(n).

2. Φn(x) ∈ Z[x].

3.

xn − 1 =
Y

d|n,1≤d≤n

Φd(x).

4. If m ∈ N is such that m 6= n then gcd(Φn(x),Φm(x)) = 1.
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110 CHAPTER 6. TORI, LUC AND XTR

5.
Φn(x) =

Y

d|n
(xn/d − 1)µ(d)

where µ(d) is the Möbius function (Definition 4.3 of [468]).

Proof: Let z be a primitive n-th root of unity. Then every n-th root of unity is a power
of z and, for 0 ≤ i < n, zi is a primitive n-th root of unity if and only if gcd(n, i) = 1.
Therefore

Φn(x) =
Y

0≤i<n,gcd(n,i)=1

(x− zi)

and so deg(Φn(x)) = ϕ(n).
Galois theory implies Φn(x) ∈ Q[x] and, since z is an algebraic integer, it follows that

Φn(x) ∈ Z[x].1

The third fact follows since xn − 1 =
Qn−1

i=0 (x− zi) and each zi has some order d | n.
Let z be a root of gcd(Φn(x),Φm(x)). Then z has order equal to both n and m, which

is impossible if n 6= m.
Finally, writing zd for some primitive d-th root of unity, note that

Y

d|n
(xn/d − 1)µ(d) =

Y

d|n

n/dY

j=1

�
x− zjn/d

�µ(d)

=
Y

d|n

n/dY

j=1

�
x− zdjn

�µ(d)

=
nY

i=1

(x− zin)
�

d|gcd(n,i) µ(d).

Since
P

d|n µ(d) is 0 when n > 1 and is 1 when n = 1 (Theorem 4.7 of [468]) the result
follows. �

Exercise 6.1.3. Show that Φ1(x) = x − 1,Φ2(x) = x + 1, Φ6(x) = x2 − x + 1 and
Φl(x) = xl−1 + xl−2 + · · ·+ x+ 1 if l is prime.

Exercise 6.1.4. Prove that if p | n then Φpn(x) = Φn(x
p) and that if p ∤ n then

Φpn(x) = Φn(x
p)/Φn(x). Prove that if n is odd then Φ2n(x) = Φn(−x).

[Hint: Use part 5 of Lemma 6.1.2.]

It is well-known that Φn(x) is irreducible over Q; we do not need this result so we
omit the proof.

Lemma 6.1.5. Let n ∈ N. The greatest common divisor of the polynomials (xn−1)/(xd−
1) over all 1 ≤ d < n such that d | n is Φn(x).

Proof: Define I = {d ∈ N : 1 ≤ d < n, d | n}. By part 3 of Lemma 6.1.2 we have
Φn(x) = (xn − 1)/f(x) where f(x) =

Q
d∈I Φd(x) = lcm(xd − 1 : d ∈ I). Hence

Φn(x) =
xn − 1

lcm(xd − 1 : d ∈ I)
= gcd

�
xn − 1

xd − 1
: d ∈ I

�
.

�

1One can find elementary proofs of this fact in any book on polynomials.
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Definition 6.1.6. Let n ∈ N and q a prime power. Define the cyclotomic subgroup
Gq,n to be the subgroup of F∗

qn of order Φn(q).

The subgroups Gq,n are of interest as most elements of Gq,n do not lie in any subfield
of Fqn (see Corollary 6.2.3 below). In other words, Gq,n is the “hardest part” of F∗

qn from
the point of view of the DLP. Note that Gq,n is trivially an algebraic group, by virtue of
being a subgroup of the algebraic group F∗

qn = Gm(Fqn) (see Example 5.1.5). The goal of
this subject area is to develop compact representations for the groups Gq,n and efficient
methods to compute with them.

The two most important cases are Gq,2, which is the subgroup of F∗
q2 of order q+1, and

Gq,6, which is the subgroup of F∗
q6 of order q2 − q + 1. We give compact representations

of these groups in Sections 6.3 and 6.4.

6.2 Algebraic Tori

Algebraic tori are a classical object in algebraic geometry and their relevance to cryptog-
raphy was first explained by Rubin and Silverberg [503]. An excellent survey of this area
is [504].

Recall from Theorem 5.7.7 that the Weil restriction of scalars of A1 with respect to
Fqn/Fq is An. Let n > 1 and let f : An(Fq) → Fqn be a bijective Fq-linear function (e.g.,
corresponding to the fact that Fqn is a vector space of dimension n over Fq). For any d | n
define the norm NFqn/F

qd
(g) =

Qn/d−1
i=0 gq

di

. The equation NFqn/F
qd
(f(x1, . . . , xn)) = 1

defines an algebraic set in An.

Definition 6.2.1. The algebraic torus2 Tn is the algebraic set

V ({NFqn/F
qd
(f(x1, . . . , xn))− 1 : 1 ≤ d < n, d | n}) ⊂ An.

Note that there is a group operation on Tn(Fq), given by polynomials, inherited from
multiplication in F∗

qn . Hence (at least, ignoring for the moment the inverse map) Tn(Fq)
satisfies our informal definition of an algebraic group.

Lemma 6.2.2. Let the notation be as above.

1. Gq,n = {g ∈ F∗
qn : NFqn/F

qd
(g) = 1 for all 1 ≤ d < n such that d | n}.

2. Tn(Fq) is isomorphic as a group to Gq,n.

3. #Tn(Fq) = Φn(q).

Proof: For the first statement note that

NFqn/F
qd
(g) =

n/d−1Y

i=0

gq
di

= g(q
n−1)/(qd−1).

Recall that Φn(q) | (qn − 1)/(qd − 1) and, by Lemma 6.1.5, gcd((qn − 1)/(qd − 1) : 1 ≤
d < n, d | n) = Φn(q). Hence, all the norms are 1 if and only if gΦn(q) = 1, which proves
the first claim. The second and third statements follow immediately. �

Corollary 6.2.3. Let n ∈ N and q a prime power. Suppose g ∈ Gq,n has order r > n.
Then g does not lie in any proper subfield of Fqn .

2The plural of “torus” is “tori”.
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Proof: Suppose g ∈ Fqd for some 1 ≤ d < n such that d | n. Then 1 = NFqn/F
qd
(g) =

gn/d, but this contradicts the order of g being > n. �

It follows from the general theory that Tn is irreducible and of dimension ϕ(n). Hence,
Tn is a variety and one can speak of birational maps from Tn to another algebraic set.
We refer to Section 5 of [504] for details and references.

Definition 6.2.4. The torus Tn is rational if there is a birational map from Tn to Aϕ(n).

If Tn is rational then Aϕ(n)(Fq) is a compact representation for Gq,n. Performing
discrete logarithm cryptography by transmitting elements of Aϕ(n)(Fq) is called torus
based cryptography and was developed by Rubin and Silverberg [503].

If Tn is rational then there is an induced “partial” group operation on Aϕ(n), given
by rational functions. This is not an algebraic group in general since there is not usually
a one-to-one correspondence between Aϕ(n)(Fq) and Gq,n. Nevertheless, “most” of the
elements of the group Gq,n appear in Aϕ(n)(Fq) and, for many cryptographic purposes,
the partial group law is sufficient. In practice, however, working with the partial group
operation on Aϕ(n) is not usually as efficient as using other representations for the group.
The main application of tori is therefore the compact representation for elements of certain
subgroups of F∗

qn .
It is not known if Tn is rational for all n ∈ N (we refer to [504] for more details and

references about when Tn is known to be rational). The cryptographic applications of
T2 and T6 rely on the well-known fact that these tori are both rational. The details are
given in the following sections.

As mentioned in Section 4.3, sometimes it is convenient to consider quotients of alge-
braic groups by an equivalence relation. In the following sections we describe algebraic
group quotients (more commonly known by the names LUC and XTR) for Gq,2 and Gq,6,
but we construct them directly without using the theory of tori.

6.3 The Group Gq,2

Define Fq2 = Fq(θ) where
θ2 +Aθ +B = 0 (6.1)

for some A,B ∈ Fq such that x2 + Ax + B is irreducible over Fq (e.g., if q is odd then
A2 − 4B is not a square in Fq). In practice there are performance advantages from using
a simpler equation, such as θ2 = B or θ2 + θ = B where B is “small”. Every element of
Fq2 is of the form u+ vθ where u, v ∈ Fq.

The conjugate of θ is θ = θq = −A − θ. We have θ + θ = −A and θθ = B. The
conjugate of an element g = u+ vθ ∈ Fq2 is u+ vθ and g has norm

NFq2/Fq
(g) = (u + vθ)(u + vθ) = u2 −Auv +Bv2. (6.2)

The group Gq,2 is defined to be the set of elements g ∈ Fq2 such that gq+1 = 1.
Equivalently this is the set of u+ vθ such that u2 −Auv +Bv2 = 1.

Exercise 6.3.1. Show that if g = u+vθ ∈ Gq,2 then g−1 = gq = u+vθ = (u−Av)+(−v)θ.
Hence, inversion in Gq,2 is cheaper than a general group operation (especially if A = 0 or
A is “small”).

Exercise 6.3.2. Suppose q is not a power of 2. Suppose Fq2 = Fq(θ) where θ
2+Aθ+B = 0

and multiplying an element of Fq by A or B has negligible cost (e.g., A = 0 and B =
1). Show that one can compute a product (respectively: squaring; inversion) in F∗

q2
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using 3 multiplications (respectively: 3 squarings; one inversion, 3 multiplications and 2
squarings) in Fq. Ignore the cost of additions and multiplication by small constants such
as 2 (since they are significantly faster to perform than multiplications etc).

Exercise 6.3.3.⋆ Suppose q ≡ 3 (mod 4) is prime. Show that one can represent Fq2

as Fq(θ) where θ2 + 1 = 0. Show that, using this representation, one can compute
a product (respectively: squaring; inversion; square root) in F∗

q2 using 3 multiplications

(respectively: 2 multiplications; one inversion, 2 squarings and 2 multiplications; 2 square
roots, one inversion, one Legendre symbol, one multiplication and 2 squarings) in Fq.
Ignore the cost of additions.

6.3.1 The Torus T2

Recall thatGq,2 can be represented as the Fq-points of the algebraic torus T2 = V (NFq2/Fq
(f(x, y))−

1) ⊂ A2, where f : A2(Fq) → Fq2 . By equation (6.2), an affine equation for T2 is
V (x2 −Axy+By2− 1). Being a conic with a rational point, it is immediate from general
results in geometry (see Exercise 5.5.14 for a special case) that T2 is birational with A1.

The next two results give a more algebraic way to show that T2 is rational. Rather
than directly constructing a birational map from T2 to A1 we go via Gq,2. Lemma 6.3.4
provides a map from A1(Fq) to Gq,2 while Lemma 6.3.6 provides a map from Gq,2 to
A1(Fq).

Lemma 6.3.4. The set Gq,2 ⊆ F∗
q2 is equal to the set

{(a+ θ)/(a+ θ) : a ∈ Fq} ∪ {1}.

Proof: Clearly, every element g = (a+ θ)/(a+ θ) satisfies gg = 1. It is also easy to check
that (a+ θ)/(a+ θ) = (a′ + θ)/(a′ + θ) implies a = a′. Hence we have obtained q distinct
elements of Gq,2. The missing element is evidently 1 and the result follows. �

Exercise 6.3.5. Suppose q is odd. Determine the value for a such that (a+ θ)/(a+ θ) =
−1.

Lemma 6.3.6. Let g = u + vθ ∈ Gq,2, g 6= ±1. Then u + vθ = (a + θ)/(a + θ) for the
unique value a = (u+ 1)/v.

Proof: The value a must satisfy

a+ θ = (u+ vθ)(a+ θ) = ua+ uθ + avθ + vθθ = (ua−Au +Bv) + θ(av − u).

Equating coefficients of θ gives av = u + 1 and the result follows as long as v 6= 0 (i.e.,
g 6= ±1). �

The above results motivate the following definition.

Definition 6.3.7. The T2 decompression map is the function decomp2 : A1 → Gq,2

given by decomp2(a) = (a+ θ)/(a+ θ).
The T2 compression map is the function comp2 : Gq,2 − {1,−1} → A1 given by

comp2(u+ vθ) = (u+ 1)/v.

Lemma 6.3.8. The maps comp2 and decomp2 are injective. The compression map is
not defined at ±1. If g ∈ Gq,2 − {1,−1} then decomp2(comp2(g)) = g.

Exercise 6.3.9. Prove Lemma 6.3.8.
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Alert readers will notice that the maps comp2 and decomp2 are between Gq,2 and
A1, rather than between T2 and A1. For completeness we now give a map from Gq,2 to
T2 ⊂ A2. From this one can deduce birational maps between T2 and A1, which prove
that T2 is indeed rational.

Lemma 6.3.10. An element of the form (a+θ)/(a+θ) ∈ Gq,2 corresponds to the element
�

a2 −B

a2 − aA+B
,

2a−A

a2 − aA+B

�

of T2.

Proof: Let (x, y) be the image point in T2. In other words

(a+ θ)/(a+ θ) = x+ yθ

and so a+ θ = (x+ yθ)(a+ θ) = (ax+By−Ax) + θ(ay − x). Equating coefficients gives
the result. �

Exercise 6.3.11. Prove that T2 is rational.

We now present the partial group operations on A1 induced by the map from A1 to
Gq,2. We stress that A1 is not a group with respect to these operations, since the identity
element of Gq,2 is not represented as an element of A1.

Lemma 6.3.12. Let the notation be as above. For a, b ∈ A1 define a ⋆ b = (ab−B)/(a+
b−A) and a′ = A−a. Then a⋆ b is the product and a′ is the inverse for the partial group
law.

Proof: The partial group law on A1 is defined by comp2(decomp2(a)decomp2(b)). Now,

decomp2(a)decomp2(b) =

�
a+ θ

a+ θ

��
b+ θ

b+ θ

�
=

ab−B + (a+ b−A)θ

ab−B + (a+ b−A)θ
.

The formula for a ⋆ b follows.
Similarly,

decomp2(a)
−1 =

a+ θ

a+ θ
=

a+ (−A− θ)

a+ (−A− θ)
,

which gives the formula for a′. �

It follows that one can compute directly with the compressed representation of ele-
ments of T2(Fq). Note that computing the partial group law on A1 requires an inversion,
so is not very efficient. For cryptographic applications one is usually computing comp2(g

n)
from comp2(g); to do this one decompresses to obtain g ∈ Gq,2, then computes gn us-
ing any one of a number of techniques, and finally applies comp2 to obtain a compact
representation.3

6.3.2 Lucas Sequences

Lucas4 sequences can be used for efficient computation in quadratic fields. We give the
details for Gq,2 ⊂ F∗

q2 . The name LUC cryptosystem is applied to any cryptosystem using
Lucas sequences to represent elements in an algebraic group quotient of Gq,2. Recall the
trace TrFq2/Fq

(g) = g + gq for g ∈ Fq2 .

3This is analgous to using projective coordinates for efficient elliptic curve arithmetic; see Exer-
cise 9.1.5.

4They are named after Edouard Lucas (1842-1891); who apparently died due to a freak accident
involving broken crockery. Lucas sequences were used for primality testing and factorisation before their
cryptographic application was recognised.
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Definition 6.3.13. Let g ∈ F∗
q2 satisfy gq+1 = 1. For i ∈ Z define Vi = TrFq2/Fq

(gi).

Lemma 6.3.14. Let g = v1 + w1θ with v1, w1 ∈ Fq and θ as in equation (6.1). Suppose
gq+1 = 1 and let Vi be as in Definition 6.3.13. Then, for i, j ∈ Z,

1. V0 = 2 and V1 = TrFq2/Fq
(g) = 2v1 −Aw1.

2. V−i = Vi.

3. Vi+1 = V1Vi − Vi−1.

4. V2i = V 2
i − 2.

5. V2i−1 = ViVi−1 − V1.

6. V2i+1 = ViVi+1 − V1.

7. V2i+1 = V1V
2
i − ViVi−1 − V1.

8. Vi+j = ViVj − Vi−j .

Proof: Let g = gq = v1+w1θ. Then TrFq2/Fq
(g) = g+g = (v1+w1θ)+(v1+w1(−θ−A)) =

2v1 − Aw1. Similarly, g0 = 1 and the first statement is proven. The second statement
follows from g−1 = g. Statements 3 to 6 are all special cases of statement 8, which follows
from the equation

Vi+j = gi+j + gi+j = (gi + gi)(gj + gj)− gjgj(gi−j + gi−j).

(An alternative proof of Statement 3 is to use the fact that g satisfies g2 = V1g − 1.)
Statement 7 then follows from 3 and 6. �

Exercise 6.3.15. Define Ui = (gi−gi)/(g−g). Prove that Ui+1 = TrFq2/Fq
(g)Ui−Ui−1,

U2i = ViUi, Ui+j = UiUj+1 − Ui−1Uj .

Definition 6.3.16. Denote by Gq,2/hσi the set of equivalence classes of Gq,2 under the
equivalence relation g ≡ σ(g) = gq = g−1. Denote the class of g ∈ Gq,2 by [g] = {g, gq}.

The main observation is that TrFq2/Fq
(g) = TrFq2/Fq

(gq) and so a class [g] can be

identified with the value V = TrFq2/Fq
(g). This motivates Definition 6.3.18. When q is

odd, the classes [1] and [−1] correspond to V = 2 and V = −2 respectively; apart from
these cases, the other possible values for V are those for which the polynomial x2−V x+1
is irreducible over Fq.

Exercise 6.3.17. Prove that if TrFq2/Fq
(g) = TrFq2/Fq

(g′) for g, g′ ∈ Gq,2 then g′ ∈
{g, gq}. Hence, show that when q is odd there are 2 + (q − 1)/2 values for TrFq2/Fq

(g)
over g ∈ Gq,2.

The set Gq,2/hσi is not a group, however for a class [g] ∈ Gq,2/hσi and n ∈ N one can
define [g]n to be [gn].

Definition 6.3.18. Let G′
q,2 = {TrFq2/Fq

(g) : g ∈ Gq,2}. For V ∈ G′
q,2 and n ∈ N define

[n]V = TrFq2/Fq
(gn) for any g ∈ Gq,2 such that V = TrFq2/Fq

(g).

It follows that we may treat the setG′
q,2 as an algebraic group quotient. One method to

efficiently compute [n]V for n ∈ N is to take a root g ∈ Fq2 of x2−V x+1 = 0, compute gn

in Fq2 using the square-and-multiply method, and then compute TrFq2/Fq
(gn). However,

we want to be able to compute [n]V directly using an analogue of the square-and-multiply
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method.5 Lemma 6.3.14 shows that, although V2n is determined by Vn and n, Vn+1 is
not determined by Vn alone. Hence it is necessary to develop an algorithm that works on
a pair (Vn, Vn−1) of consecutive values. Such algorithms are known as ladder methods.
One starts the ladder computation with (V1, V0) = (V, 2).

Lemma 6.3.19. Given (Vi, Vi−1) and V one can compute (V2i, V2i−1) (i.e., “squaring”)
or (V2i+1, V2i) (i.e., “square-and-multiply”) in one multiplication, one squaring and two
or three additions in Fq.

Proof: One must compute V 2
i and ViVi−1 and then apply part 4 and either part 5 or 7

of Lemma 6.3.14. �

Exercise 6.3.20. Write the ladder algorithm for computing [n]V using Lucas sequences
in detail.

The storage requirement of the ladder algorithm is the same as when working in Fq2 ,
although the output value is compressed to a single element of Fq. Note however that
computing a squaring alone in Fq2 already requires more computation (at least when q is
not a power of 2) than Lemma 6.3.19.

We have shown that for V ∈ G′
q,2 one can compute [n]V using polynomial operations

starting with the pair (V, 2). Since G′
q,2 is in one-to-one correspondence with Gq,2/hσi, it

is natural to consider G′
q,2 as being an algebraic group quotient.

Performing discrete logarithm based cryptography in G′
q,2 is sometimes called the

LUC cryptosystem.6 To solve the discrete logarithm problem in G′
q,2 one usually lifts

the problem to the covering group Gq,2 ⊂ F∗
q2 by taking one of the roots in Fq2 of the

polynomial x2 − V x+ 1.

Example 6.3.21. Define F372 = F37(θ) where θ
2 − 3θ+1 = 0. The element g = −1+3θ

has order 19 and lies in G37,2. Write V = TrF372/F37
(g) = 7. To compute [6]V one uses

the addition chain (V1, V0) = (7, 2) → (V3, V2) = (26, 10) → (V6, V5) = (8, 31); this is
because 6 = (110)2 in binary so the intermediate values for i are (1)2 = 1 and (11)2 = 3.

Exercise 6.3.22. Using the same values as Example 6.3.21 compute [10]V .

Exercise 6.3.23.⋆ Compare the number of Fq multiplications and squarings to compute
a squaring or a squaring-and-multiplication in the quotient G′

q,2 using Lucas sequences
with the cost for general arithmetic in Gq,2 ⊂ Fq2 .

6.4 The Group Gq,6

The group Gq,6 is the subgroup of F∗
q6 of order Φ6(q) = q2 − q+1. The natural represen-

tation of elements of Gq,6 requires 6 elements of Fq.

Assume (without loss of generality) that Fq6 = Fq3(θ) where θ ∈ Fq2 and θ2+Aθ+B =
0 for some A,B ∈ Fq.

5In practice it is often more efficient to use other processes instead of the traditional square-and-
multiply method. We refer to Chapter 3 of [579] for more details.

6The original LUC cryptosystem due to Smith and Lennon [574] was using Lucas sequences modulo
a composite integer N ; we refer to Section 6.6 for further discussion. The finite field version is only very
briefly mentioned in [574], but is further developed in [575].
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6.4.1 The Torus T6

Recall that T6 is a two dimensional algebraic set in A6 defined by the intersection of the
kernels of the norm maps NFq6/Fq3

and NFq6/Fq2
. It is known that T6 is rational, so the

goal is to represent elements of Gq,6 using only two elements of Fq.
The kernel of the norm map NFq6/Fq3

is identified with T2(Fq3) ⊂ A2(Fq3 ). As in

Section 6.3.1, T2 is birational to A1(Fq3) (which can then be identified with A3(Fq)) via

the map decomp2(a) = (a+ θ)/(a+ θ) where Fq6 = Fq3(θ). The next step is to compute
the kernel of the norm map with respect to Fq6/Fq2 .

Lemma 6.4.1. The Weil restriction of the kernel of NFq6/Fq2
on T2(Fq3) is birational

with a quadratic hypersurface U in A3(Fq).

Proof: First, we represent an element of T2(Fq3) − {1} as a single value a ∈ Fq3 . Now
impose the norm equation on the image of decomp2(a)

NFq6/Fq2
(decomp2(a)) =

�
a+ θ

a+ θ

��
a+ θ

a+ θ

�q2 �
a+ θ

a+ θ

�q4

=

�
a+ θ

a+ θ

� 
aq

2

+ θ

aq2 + θ

! 
aq

4

+ θ

aq4 + θ

!
.

To solve NFq6/Fq2
(decomp2(a)) = 1 one clears the denominator and equates coefficients

of θ, giving

a1+q2+q4 + θ(a1+q2 + a1+q4 + aq
2+q4) + θ2(a+ aq

2

+ aq
4

) + θ3

= a1+q2+q4 + θ(a1+q2 + a1+q4 + aq
2+q4) + θ

2
(a+ aq

2

+ aq
4

) + θ
3
.

The crucial observations are that the cubic terms in a cancel and that θ2−θ
2
= −A(θ−θ)

and θ3 − θ
3
= (A2 −B)(θ − θ). Hence we obtain a single equation in a.

Now, we identify a ∈ A1(Fq3) with a 3-tuple (a0, a1, a2) ∈ A3(Fq). Using the fact that
a 7→ aq corresponds to an Fq-linear map on A3(Fq), it follows that the single equation
given above is actually a quadratic polynomial in (a0, a1, a2). In other words, the values
(a0, a1, a2) corresponding to solutions of the norm equation are points on a quadratic
hypersurface in A3(Fq), which we call U . �

The general theory (see Rubin and Silverberg [504]) implies that U is irreducible, but
we do not prove this. It remains to give a rational parameterisation pU : U → A2 of the
hypersurface. This is done using essentially the same method as Example 5.5.14.

Lemma 6.4.2. An irreducible quadratic hypersurface U ⊂ A3 over a field k is birational
over k to A2.

Proof: (Sketch) Let P = (xP , yP , zP ) be a point on U and change variables so that the
tangent plane T to U at P is x = xP . We have not discussed T in this book; the only
property we need is that T contains every line through P that is not contained in U and
that intersects U at P with multiplicity 2.

Let Q ∈ U(k) be such that Q 6= P and such that the line between P and Q is not
contained in U (this is generically the case for an irreducible quadratic hypersurface).
Then the line between P and Q does not lie in T and so is given by an equation of the
form7

(x, y, z) = P + t(1, a, b) (6.3)

for some a, b ∈ k (in other words, the equations x = xP + t, y = yP + at, etc). Such a
line hits U at precisely one point Q ∈ U(k) with Q 6= P . Writing U = V (F (x, y, z)) it

7Here, and below, P +Q denotes the usual coordinate-wise addition of 3-tuples over a field.
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follows that F (xP + t, yP + at, zP + bt) = 0 has the form t(h(a, b)t− g(a, b)) = 0 for some
quadratic polynomial h(a, b) ∈ k[a, b] and some linear polynomial g(a, b) ∈ k[a, b]. Hence
we have a rational map A2 → U given by

(a, b) 7→ P + g(a,b)
h(a,b)(1, a, b).

The inverse is the rational map

pU (xQ, yQ, zQ) = ((yQ − yP )/(xQ − xP ), (zQ − zP )/(xQ − xP ))

such that pU : U → A2. �

Recall the map comp2 : Gq3,2 → A1(Fq3) from the study of T2. We identify A1(Fq3 )
with A3(Fq). The image of comp2 is U , which is birational via pU to A2. This motivates
the following definition.

Definition 6.4.3. The T6 compression map is comp6 : Gq,6 → A2 is given by comp6 =
pUcomp2. The inverse of comp6 is the T6 decompression map decomp6 = decomp2 p−1

U .

Example 6.4.4. Let q ≡ 2, 5 (mod 9) be an odd prime power so that Fq6 = Fq(ζ9) where
ζ9 is a primitive 9-th root of unity (see Exercise 6.4.5). Let θ = ζ39 and α = ζ9 + ζ−1

9 .
Then Fq2 = Fq(θ) and Fq3 = Fq(α). Note that α3 − 3α + 1 = 0. Identify A3(Fq) with
A1(Fq3 ) by f : (x, y, z) 7→ x + yα + z(α2 − 2). As in the proof of Lemma 6.4.1 one can
verify that the equation

NFq6/Fq2
((f(x, y, z) + θ)/(f(x, y, z) + θ)) = 1

is equivalent to

F (x, y, z) = x2 − x− y2 + yz − z2 = 0.

Denote by U the hyperplane V (F (x, y, z)) in A3. Let P = (0, 0, 0). The tangent plane to
U at P is given by the equation x = 0. Note that, since −3 is not a square in Fq, the only
solution to F (0, y, z) = 0 over Fq is (y, z) = (0, 0) (but this statement is not true over Fq;
U contains, for example, the line (0,−ζ3t, t)). Given a, b ∈ Fq the line (t, at, bt) hits U at
t = 0 and

t = 1/(1− a2 + ab− b2).

One therefore defines a birational map g : A2 → A3 by

g : (a, b) 7→
�

1

1− a2 + ab− b2
,

a

1− a2 + ab− b2
,

b

1− a2 + ab− b2

�
.

Finally, the map decomp6 from A2 to Gq,6 is (f(g(a, b)) + θ)/((f(g(a, b)) + θ). It is then
straightforward to compute comp6.

Exercise 6.4.5. Let q be a prime power and ζ9 a primitive 9-th root of unity in Fq.
Show that Fq(ζ9) = Fq6 if and only if q ≡ 2, 5 (mod 9).

In principle one can write down the partial group operations on A2 induced from
Gq,6, but this is not an efficient way to compute. Instead, to compute comp6(g

n) from
comp6(g) one decompresses to obtain an element g ∈ Gq,6 (or Gq3,2), computes gn, and
then compresses again.
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6.4.2 XTR

An excellent survey of work in this area is the thesis of Stam [579].
The Galois group of Fq6/Fq2 is cyclic of order 3 and generated by the q2-power Frobe-

nius map σ. One can consider the set Gq,6/hσi = Gq,6/Gal(Fq6/Fq2) of equivalence classes
under the relation g ≡ σi(g) for 0 ≤ i ≤ 2. This gives an algebraic group quotient. which
was named XTR8 by Lenstra and Verheul. The goal is to give a compressed representa-
tion for this quotient; this is achieved by using the trace with respect to Fq6/Fq2 .

Lemma 6.4.6. Let g ∈ Gq,6. Let t = TrFq6/Fq2
(g) ∈ Fq2 . Then NFq6/Fq2

(g) = g1+q2+q4 =

1 and the characteristic polynomial of g over Fq2 is χg(x) = x3 − tx2 + tqx− 1.

Proof: The first claim follows since gq
2−q+1 = 1 and (q2−q+1)(q2+q+1) = q4+q2+1.

Now, write (x − g)(x− gq
2

)(x − gq
4

) = x3 − tx2 + sx − 1. Since this polynomial is fixed

by Gal(Fq6/Fq2) it follows that s, t ∈ Fq2 . Indeed, t = TrFq6/Fq2
(g) = g + gq

2

+ gq
4

=

g + gq−1 + g−q. Also

s = g1+q2 + g1+q4 + gq
2+q4 = gq + g1−q + g−1.

Finally, sq = gq
2

+ gq
2−q + g−q = t, from which we have s = tq. �

This result shows that one can represent an equivalence class of g ∈ Gq,6/Gal(Fq6/Fq2)
using a single element t ∈ Fq2 , as desired. It remains to explain how to perform exponen-
tiation in the quotient (as usual, the quotient structure is not a group and so it makes no
sense to try to compute a general group operation on it).

Exercise 6.4.7. Write f(x) = x3 − tx2 + tqx− 1 for t ∈ Fq2 . Prove that if f(a) = 0 for

a ∈ Fq then f(a−q) = 0. Hence prove that either f(x) is irreducible over Fq2 or splits
completely over Fq2 .

Definition 6.4.8. Fix g ∈ Gq,6. For n ∈ Z write tn = TrFq6/Fq2
(gn).

Lemma 6.4.9. Let the notation be as above. Then, for n,m ∈ Z,

1. t−n = tnq = tqn.

2. tn+m = tntm − tqmtn−m + tn−2m.

Proof: We have tn = gn + gn(q−1) + gn(−q) The first statement follows from the proof of
Lemma 6.4.6, where it is proved that tq = gq + g1−q + g−1 = TrFq6/Fq2

(g−1).

For the second statement, an elementary calculation verifies that

tntm − tn+m = (gn + gn(q−1) + g−nq)(gm + gm(q−1) + g−mq)− (gn+m + g(n+m)(q−1) + g−(n+m)q)

= gn+m(q−1) + gn−mq + gn(q−1)+m + gn(q−1)−mq + g−nq+m + g−nq+m(q−1).

This is equal to tqmtn − tn−2m. �

It remains to give a ladder algorithm to compute tn. In this case one can work with
triples (tn+1, tn, tn−1) of ‘adjacent’ values centered at tn. This is the XTR represen-
tation of Lenstra and Verheul. Note that, given t1 = TrFq6/Fq2

(g) one can compute the

triple (t1, t0, t−1) = (t1, 3, t
q
1). Given a triple (tn+1, tn, tn−1) and t1 one can compute the

triple centered at t2n or t2n+1 using the following exercise.

Exercise 6.4.10. Prove that

8XTR is an abbreviation for ECSTR, which stands for “Efficient and Compact Subgroup Trace Rep-
resentation”.
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1. t2n−1 = tn−1tn − tq1t
q
n + tqn+1;

2. t2n = t2n − 2tqn;

3. t2n+1 = tn+1tn − t1t
q
n + tqn−1.

Exercise 6.4.11. If one uses triples (tn+1, tn, tn−1) as above then what is the cost of a
square or square-and-multiply in Gq,6?

Exercise 6.4.12.⋆ Give a more efficient ladder for XTR, for which the cost of squaring
and square-and-multiply are the same.

In other words, one can compute TrFq6/Fq2
(gn) from t = TrFq6/Fq2

(g) using polynomial

arithmetic and so Gq,6/Gal(Fq6/Fq2) is an algebraic group quotient. Performing discrete
logarithm based cryptography in this setting is called the XTR cryptosystem. To solve
the discrete logarithm problem in Gq,6/Gal(Fq6/Fq2) one usually lifts the problem to the
covering group Gq,6 ⊂ F∗

q6 by taking any root of the polynomial x3 − tx2+ tqx− 1. For

further details about efficient arithmetic using XTR we refer to [579].

Exercise 6.4.13. Represent F672 as F67(i) where i
2 = −1. Given that t1 = TrF676/F672

(g) =

48 + 63i for some g ∈ G67,6 compute t7 = TrF676/F672
(g7).

Exercise 6.4.14. (The Gong-Harn cryptosystem [259]) Consider the quotient G′
q,3 =

Gq,3/hσi where σ is the q-power Frobenius in Fq3 . Fix g ∈ Gq,3 and define tn = gn +

gnq + gnq
2 ∈ Fq. Show that the characteristic polynomial for g is x3 − t1x

2 + t−1x − 1.
Hence, show that an element of G′

q,3 can be represented using two elements of Fq. Show
that

tn+m = tntm − tn−mt−m + tn−2m

Hence develop a ladder algorithm for exponentiation in G′
q,3.

Exercise 6.4.15. (Shirase, Han, Hibino, Kim and Takagi [551]) Let q = 3m with m
odd. Show that (q − √

3q + 1)(q +
√
3q + 1) = q2 − q + 1. Let g ∈ F∗

36m have order

dividing q − √
3q + 1. Show that gq+1 = g

√
3q and gq

3+1 = 1. Let t = TrFq6/Fq2
(g) and

s = TrFq6/Fq
(g). Show that the roots of x2 − sx+ s

√
3q are t and tq.

Hence, one can use s as a compressed representative for g; requiring only half the
storage of XTR. To compute TrFq6/Fq

(gn) one solves the quadratic to obtain t, computes

TrFq6/Fq2
(gn) using the XTR formulae, and then performs the further compression.

6.5 Further Remarks

Granger and Vercauteren [266] have proposed an index calculus algorithm for Tn(Fpm)
where m > 1. Kohel [351] has shown that one might map the discrete logarithm problem
in an algebraic torus Tn(Fq) to the discrete logarithm problem in the generalised Jacobian
(which is a certain type of divisor class group) of a singular hyperelliptic curve over Fq.
This latter problem might be attacked using an index calculus method such as Gaudry’s
algorithm (see Section 15.6.3). It seems this approach will not be faster than performing
index calculus methods in F∗

pn , but further investigation would be of interest.

6.6 Algebraic Tori over Rings

Applications in factoring and primality testing motivate the study of tori over Z/NZ.
As mentioned in Section 4.4, the simplest approach is to restrict to N being square-free
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and to use the Chinese remainder theorem to define the groups. First we explain how to
construct rings isomorphic to the direct product of finite fields.

Example 6.6.1. Let N =
Qk

i=1 pi be square-free. Let F (x) = x2 + Ax+ B ∈ Z[x] be a
quadratic polynomial such that F (x) is irreducible modulo pi for all 1 ≤ i ≤ k. Define
R = (Z/NZ)[x]/(F (x)). By the Chinese remainder theorem, R ∼= ⊕Fp2

i
. We will usually

write θ for the image of x in R and θ = −A− x = Bx−1.
Define GN,2 to be the subgroup of R∗ of order

Qk
i=1(pi + 1) isomorphic to the direct

sum of the groups Gpi,2. Note that GN,2 is not usually cyclic.

We would like to represent a “general” element ofGN,2 using a single element of Z/NZ.
In other words, we would like to have a map from Z/NZ to GN.2. One can immediately
apply Definition 6.3.7 to obtain the map a 7→ (a+ θ)/(a+ θ). Since the reduction modulo
pi of this map correctly maps to Gpi,2, for each prime pi, it follows that it correctly maps
to GN,2. Hence, we can identify T2(Z/NZ) with Z/NZ. The group operation ⋆ from
Lemma 6.3.12 can also be applied in Z/NZ and its correctness follows from the Chinese
remainder theorem.

Note that the image of Z/NZ in GN.2 under this map has size N =
Q

pi, whereas
GN,2 has order

Q
i(pi + 1). Hence, there are many elements of GN,2 that are missed by

the decompression map. Note that these “missed” elements are those which correspond
to the identity element of Gpi,2 for at least one prime pi. In other words, they are of the
form g = u+ vθ where gcd(v,N) > 1.

Similarly, Lucas sequences can be used modulo N when N is square-free, and their
properties follow from the properties modulo pi for all prime factors pi of N . However,
one should be careful when interpreting the Galois theory. In Section 6.3.2 the non-trivial
element of Gal(Fq2/Fq) is written as σ(g) = gq, but this formulation does not naturally

generalise to the ring R of Example 6.6.1. Instead, define σ(u + vθ) = u + vθ so that
σ : R → R is a ring homomorphism and σ(g) (mod pi) = σ(g (mod pi)). One can then
define the trace map TrR/(Z/NZ)(g) = g + σ(g). The theory of Section 6.3.2 can then
immediately be adapted to give Lucas sequences modulo N .

Exercise 6.6.2. Let N =
Qk

i=1 pi be a square-free integer and let R be as in Exam-
ple 6.6.1. Let g ∈ GN,2. Determine how many elements h ∈ GN,2, in general, satisfy
TrR/(Z/NZ)(h) = TrR/(Z/NZ)(g). Show that roughly N/2k of the values V ∈ Z/NZ corre-
spond to the trace of an element in GN,2.

Using similar methods to the above it is straightforward to adapt the torus T6 and
XTR to the ring Z/NZ when N is square-free. We leave the details to the reader.


