Chapter 3

Hash Functions and MACs

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/"sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Hash functions are important tools in cryptography. In public key cryptography,
they are used in key derivation functions, digital signatures and message authentication
codes. We are unable to give a thorough presentation of hash functions. Instead, we
refer to Chapter 4 of Katz and Lindell [334], Chapter 9 of Menezes, van Oorschot and
Vanstone [418], Chapter 4 of Stinson [592] or Chapter 3 of Vaudenay [616].

3.1 Security Properties of Hash Functions

Definition 3.1.1. A cryptographic hash function is a deterministic algorithm H
that maps bitstrings of arbitrary finite length (we denote the set of arbitrary finite length
bitstrings by {0,1}*) to bitstrings of a fixed length I (e.g., I = 160 or | = 256). A
cryptographic hash family is a set of functions {Hj, : k € K}, for some finite set K,
such that each function in the family is of the form Hy, : {0,1}* — {0,1}%.

The value k that specifies a hash function Hy from a hash family is called a key, but
in many applications the key is not kept secret (an exception is message authentication
codes). We now give an informal description of the typical security properties for hash
functions.

1. Preimage-resistance: Given an [-bit string y it should be computationally infea-
sible to compute a bitstring x such that H(x) = y.

2. Second-preimage-resistance: Given a bitstring z and a bitstring y = H(z)
it should be computationally infeasible to compute a bitstring 2’ # z such that
H(z')=y.

3. Collision-resistance: It should be computationally infeasible to compute bit-
strings « # 2’ such that H(x) = H(a2').

75

76 CHAPTER 3. HASH FUNCTIONS AND MACS

In general one expects that for any y € {0, 1} there are infinitely many bitstrings
such that H(x) = y. Hence, all the above problems will have many solutions.

To obtain a meaningful definition for collision-resistance it is necessary to consider
hash families rather than hash functions. The problem is that an efficient adversary for
collision-resistance against a fixed hash function H is only required to output a pair {z, z’}
of messages. As long as such a collision exists then there exists an efficient algorithm that
outputs one (namely, an algorithm that has the values x and z’ hard-coded into it). Note
that there is an important distinction here between the running time of the algorithm
and the running time of the programmer (who is obliged to compute the collision as part
of their task). A full discussion of this issue is given by Rogaway [500]; also see Section
4.6.1 of Katz and Lindell [334].

Intuitively, if one can compute preimages then one can compute second-preimages
(though some care is needed here to be certain that the value a2’ output by a pre-image
oracle is not just again; Note 9.20 of Menezes, van Oorschot and Vanstone [418] gives
an artificial hash function that is second-preimage-resistant but not preimage-resistant).
Similarly, if one can compute second-preimages then one can find collisions. Hence, in
practice we prefer to study hash families that offer collision-resistance. For more details
about these relations see Section 4.6.2 of [334], Section 4.2 of [592] or Section 10.3 of [572].

Another requirement of hash families is that they be entropy smoothing: If G is
a “sufficiently large” finite set (i.e., #G > 2') with a “sufficiently nice” distribution
on it (but not necessarily uniform) then the distribution on {0,1}! given by Pr(y) =
Y reGiH(z)=y PT(@) is “close” to uniform. We do not make this notion precise, but refer
to Section 6.9 of Shoup [556].

In Section 23.2 we will need the following security notion for hash families (which is
just a re-statement of second-preimage resistance).

Definition 3.1.2. Let X and Y be finite sets. A hash family {Hy : X =Y : k € K} is
called target-collision-resistant if there is no polynomial-time adversary A with non-
negligible advantage in the following game: A receives x € X and a key k& € K, both chosen
uniformly at random, then outputs an 2’ € X such that 2’ # x and Hy(z') = Hy(x).

For more details about target-collision-resistant hash families we refer to Section 5 of
Cramer and Shoup [161].

3.2 Birthday Attack

Computing pre-images for a general hash function with [-bit output is expected to take
approximately 2 computations of the hash algorithm, but one can find collisions much
more efficiently. Indeed, one can find collisions in roughly v #2!=1 applications of the
hash function using a randomised algorithm as follows: Choose a subset D C {0,1}!
of distinguished points (e.g., those whose k least significant bits are all zero, for some
0 < k < 1/4). Choose random starting values xo € {0, 1} (Joux [317] suggests that these
should be distinguished points) and compute the sequence z,, = H(z,—1) forn =1,2,...
until z,, € D. Store (xq,z,) (i.e., the starting point and the ending distinguished point)
and repeat. When the same distinguished point x is found twice then, assuming the
starting points z¢ and xf, are distinct, one can find a collision in the hash function by
computing the full sequences z; and x’; and determining the smallest integers ¢ and j such
that x; = x; and hence the collision is H (z;—1) = H(z}_,).

If we assume that values z; are close to uniformly distributed in {0,1}' then, by
the birthday paradox, one expects to have a collision after \/72!/2 strings have been

3.3. MESSAGE AUTHENTICATION CODES 7

encountered (i.e., that many evaluations of the hash function). The storage required is
expected to be

JrT#D
2

pairs (zo,x,). For the choice of D as above, this would be about 2/2=% bitstrings of
storage. For many more details on this topic see Section 7.5 of Joux [317], Section 9.7.1
of Menezes, van Oorschot and Vanstone [418] or Section 3.2 of Vaudenay [616].

This approach also works if one wants to find collisions under some constraint on the
messages (for example, all messages have a fixed prefix or suffix).

3.3 Message Authentication Codes

Message authentication codes are a form of symmetric cryptography. The main purpose is
for a sender and receiver who share a secret key k to determine whether a communication
between them has been tampered with.

A message authentication code (MAC) is a set of functions {MACy(z) : k € K}
such that MACy, : {0,1}* — {0, 1}!. Note that this is exactly the same definition as a hash
family. The difference between MACs and hash families lies in the security requirement;
in particular the security model for MACs assumes the adversary does not know the key
k. Informally, a MAC is secure against forgery if there is no efficient adversary that, given
pairs (x;,y;) € {0,1}* x {0, 1} such that y; = MACy(z;) (for some fixed, but secret, key
k) for 1 < i < n, can output a pair (z,y) € {0,1}* x {0,1}! such that y = MACy(z)
but (x,y) # (z;,y;) for all 1 < i < n. For precise definitions and further details of
MACs see Section 4.3 of Katz and Lindell [334], Section 9.5 of Menezes, van Oorschot
and Vanstone [418], Section 6.7.2 of Shoup [556], Section 4.4 of Stinson [592] or Section
3.4 of Vaudenay [616].

There are well-known constructions of MACs from hash functions (such as HMAC,
see Section 4.7 of [334], Section 4.4.1 of [592] or Section 3.4.6 of [616]) and from block
ciphers (such as CBC-MAC, see Section 4.5 of [334], Section 4.4.2 of [592] or Section 3.4.4
of [616]).

3.4 Constructions of Hash Functions

There is a large literature on constructions of hash functions and it is beyond the scope of
this book to give the details. The basic process is to first define a compression function
(namely a function that takes bitstrings of a fixed length to bitstrings of some shorter
fixed length) and then to build a hash function on arbitrary length bitstrings by iterating
the compression function (e.g., using the Merkle-Damgard construction). We refer to
Chapter 4 of Katz and Lindell [334], Sections 9.3 and 9.4 of Menezes, van Oorschot and
Vanstone [418], Chapter 10 of Smart [572], Chapter 4 of Stinson [592] or Chapter 3 of
Vaudenay [616] for the details.

3.5 Number-Theoretic Hash Functions

We briefly mention some compression functions and hash functions that are based on
algebraic groups and number theory. These schemes are not usually used in practice as
the computational overhead is usually much too high.

78 CHAPTER 3. HASH FUNCTIONS AND MACS

An early proposal for hashing based on number theory, due to Davies and Price, was to
use the function H(z) = 22 (mod N) where N is an RSA modulus whose factorisation is
not known. Inverting such a function or finding collisions (apart from the trivial collisions
H(x) = H(tx 4+ yN) for y € Z) is as hard as factoring N. There are a number of papers
that build on this idea.

Another approach to hash functions based on factoring is to let N be an RSA mod-
ulus whose factorisation is unknown and let g € (Z/NZ)* be fixed. One can define the
compression function H : N — (Z/NZ)* by

H(z) = ¢” (mod N).

Finding a collision H(x) = H(z') is equivalent to finding a multiple of the order of g.
This is hard if factoring is hard, by Exercise 24.1.20. Finding pre-images is the discrete
logarithm problem modulo N, which is also as hard as factoring. Hence, we have a
collision-resistant compression function. More generally, fix g, h € (Z/NZ)* and consider
the compression function H : N x N — (Z/NZ)* defined by H(z,y) = ¢g*h?Y (mod N).
A collision leads to either finding the order of g or h, or essentially finding the discrete
logarithm of h with respect to g, and all these problems are as hard as factoring.

One can also base hash functions on the discrete logarithm problem in any group
G. Let g,h € G have order r. One can now consider the compression function H :
{0,...,7r —1}?> = G by H(z,y) = g”hY (mod p). It is necessary to fix the domain of
the function since H(z,y) = H(z + r,y) = H(x,y + r). If one can find collisions in this
function then one can compute the discrete logarithm of & to the base g. A reference for
this scheme is Chaum, van Heijst and Pfitzmann [130].

3.6 Full Domain Hash

Hash functions usually output binary strings of some fixed length [. Some cryptosystems,
such as full domain hash RSA signatures, require hashing uniformly (or, at least, very
close to uniformly) to Z/NZ, where N is large.

Bellare and Rogaway gave two methods to do this (one in Section 6 of [38] and another
in Appendix A of [41]). We briefly recall the latter. The idea is to take some hash function
H with fixed length output and define a new function h(z) using a constant bitstring c
and a counter ¢ as

h(x) = H(c[ollz) [| H(cl[L2) | -~ || H(cllil|z).

For the RSA application one can construct a bitstring that is a small amount larger than
N and then reduce the resulting integer modulo N (as in Example 11.4.2).

These approaches have been critically analysed by Leurent and Nguyen [385]. They
give a number of results that demonstrate that care is needed in assessing the security
level of a hash function with “full domain” output.

3.7 Random Oracle Model

The random oracle model is a tool for the security analysis of cryptographic systems. It is
a computational model that includes the standard model (i.e., the computational model
mentioned in Section 2.1) together with an oracle that computes a “random” function from
the set {0,1}* (i.e., binary strings of arbitrary finite length) to {0,1}°° (i.e., bitstrings of
countably infinite length). Since the number of such functions is uncountable, care must

3.7 RANDOM ORACLE MODEL 79

be taken when defining the word “random”. In any given application, one has a fixed
bit-length [in mind for the output, and one also can bound the length of the inputs.
Hence, one is considering functions H : {0,1}" — {0,1}! and, since there are /2" such
functions we can define “random” to mean uniformly chosen from the set of all possible
functions. We stress that a random oracle is a function: if it is queried twice on the same
input then the output is the same.

A cryptosystem in the random oracle model is a cryptosystem where one or more
hash functions are replaced by oracle queries to the random function. A cryptosystem is
secure in the random oracle model if the cryptosystem in the random oracle model
is secure. This does not imply that the cryptosystem in the standard model is secure,
since there may be an attack that exploits some feature of the hash function. Indeed,
there are “artificial” cryptosystems that are proven secure in the random oracle model,
but that are insecure for any instantiation of the hash function (see Canetti, Goldreich
and Halevi [115]).

The random oracle model enables security proofs in several ways. We list three of
these ways, in increasing order of power.

1. Tt ensures that the output of H is truly random (rather than merely pseudorandom).

2. It allows the security proof to “look inside” the working of the adversary by learning
the values that are inputs to the hash function.

3. It allows the security proof to “programme” the hash function so that it outputs a
specific value at a crucial stage in the security game.

A classic example of a proof in the random oracle model is Theorem 20.4.11. An extensive
discussion of the random oracle model is given in Section 13.1 of Katz and Lindell [334].

Since a general function from {0,1}" to {0, 1}' cannot be represented more compactly
than by a table of values, a random oracle requires [2" bits to describe. It follows that
a random oracle cannot be implemented in polynomial space. However, the crucial ob-
servation that is used in security proofs is that a random oracle can be simulated in
polynomial-time and space (assuming only polynomially many queries to the oracle are
made) by creating, on-the-fly, a table giving the pairs (z,y) such that H(z) = y.

