Chapter 23

Public Key Encryption Based
on Discrete Logarithms

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

Historically, encryption has been considered the most important part of cryptography.
So it is not surprising that there is a vast literature about public key encryption. It is
important to note that, in practice, public key encryption is not usually used to encrypt
documents. Instead, one uses public key encryption to securely send keys, and the data
is encrypted using symmetric encryption.

It is beyond the scope of this book to discuss all known results on public key encryption,
or even to sketch all known approaches to designing public key encryption schemes. The
goal of this chapter is very modest. We simply aim to give some definitions and to provide
two efficient encryption schemes (one secure in the random oracle model and one secure
in the standard model). The encryption schemes in this chapter are all based on Elgamal
encryption, the “textbook” version of which has already been discussed in Sections 20.3
and 20.4.

Finally, we emphasise that this Chapter only discusses confidentiality and not simul-
taneous confidentiality and authentication. The reader is warned that naively combining
signatures and encryption does not necessarily provide the expected security (see, for
example, the discussion in Section 1.2.3 of Joux [317]).

23.1 CCA Secure Elgamal Encryption

Recall that security notions for public key encryption were given in Section 1.3.1. As we
have seen, the textbook Elgamal encryption scheme does not have OWE-CCA security,
since one can easily construct a related ciphertext whose decryption yields the original
message. A standard way to prevent such attacks is to add a message authentication code
(MAC); see Section 3.3.
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494 CHAPTER 23. ENCRYPTION FROM DISCRETE LOGARITHMS

We have also seen (see Section 20.3) that Elgamal can be viewed as static Diffie-
Hellman key exchange followed by a specific symmetric encryption. Hence, it is natural
to generalise Elgamal encryption so that it works with any symmetric encryption scheme.
The scheme we present in this section is known as DHIES and, when implemented with
elliptic curves, is called ECIES. We refer to Abdalla, Bellare and Rogaway [1] or Chapter
IIT of [65] for background and discussion.

Let k be a security parameter. The scheme requires a symmetric encryption scheme,
a MAC scheme and a key derivation function. The symmetric encryption functions Enc
and Dec take an [1-bit key and encrypt messages of arbitrary length. The MAC function
MAC takes an l»-bit key and a message of arbitrary length and outputs an I3-bit binary
string. The key derivation function is a function kdf : G — {0,1}1%2. The values Iy,
I and I3 depend on the security parameter. Note that it is important that the MAC is
evaluated on the ciphertext not the message, since a MAC is not required to have any
confidentiality properties. The DHIES encryption scheme is given in Figure 23.1.

KeyGen(k): Generate an algebraic group or algebraic group quotient G whose order
is divisible by a large prime r (so that the discrete logarithm problem in the subgroup
of prime order r requires at least 2" bit operations).

Choose a random g € G of exact order r. Choose a random integer 0 < a < r and set
h=g®.

The public key is (G, g,h) and the private key is a. Alternatively, (G, g) are system
parameters that are fixed for all users and only A is the public key.

The message space is M, = {0, 1}*.
The ciphertext space is C, = G x {0,1}* x {0, 1}!.

Encrypt(m,h): (m € {0,1}* and h is the authentic public key of the receiver)
e Choose a random 0 < k < r and set ¢; = g*.

e Set K = kdf(h*) and parse K as K|/ K> where K; and K, are [; and [y bit binary
strings respectively.

e Set ca = Enck, (m) and cg = MACk, (c2).

e Transmit the ciphertext (c1, ca,c3).

Decrypt(cy,ca,c3,a):
e Check that ¢; € G and that c3 is an [3-bit string (if not then return | and halt).
e Compute K = kdf(c}) and parse it as K| Ks.
e Check whether c3 = MACk, (ca) (if not then return L and halt).

e Return m = Decg, (c2).

Figure 23.1: DHIES Public Key Encryption.

Exercise 23.1.1. Show that decryption does return the message when given a ciphertext
produced by the DHIES encryption algorithm.

A variant of DHIES is to compute the key derivation function on the pair of group (or
algebraic group quotient) elements (g*, h*) rather than just h*. This case is presented in
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Section 10 of Cramer and Shoup [161]. As explained in Section 10.7 of [161], this variant
can yield a tighter security reduction.

23.1.1 The KEM/DEM Paradigm

Shoup introduced a formalism for public key encryption that has proved to be useful.
The idea is to separate the “public key” part of the system (i.e., the value ¢; in Fig-
ure 23.1) from the “symmetric” part (i.e., (c2,cs3) in Figure 23.1). A key encapsulation
mechanism (or KEM) outputs a public key encryption of a random symmetric key (this
functionality is very similar to key transport; the difference being that a KEM gener-
ates a fresh random key as part of the algorithm). A data encapsulation mechanism
(or DEM) is the symmetric part. The name hybrid encryption is used to describe an
encryption scheme obtained by combining a KEM with a DEM.

More formally, a KEM is a triple of three algorithms (KeyGen, Encrypt and Decrypt)*
that depend on a security parameter . Instead of a message space, there is space Iy
of possible keys to be encapsulated. The randomised algorithm Encrypt takes as input
a public key and outputs a ciphertext ¢ and a symmetric key K € K,; (where & is the
security parameter). One says that ¢ encapsulates K. The Decrypt algorithm for a
KEM takes as input a ciphertext ¢ and the private key and outputs a symmetric key K
(or L if the decryption fails). The Encrypt algorithm for a DEM takes as input a message
and a symmetric key K and outputs a ciphertext. The Decrypt algorithm of a DEM takes
a ciphertext and a symmetric key K and outputs either | or a message.

The simplest way to obtain a KEM from Elgamal is given in Figure 23.2. The DEM
corresponding to the hybrid encryption scheme in Section 23.1 takes as input m and K,
parses K as K| K2, computes cag = EnCg, (m) and c3 = MACg, (c2) and outputs (cg, c3).

KeyGen(k): This is the same as standard Elgamal; see Figure 23.1.

Encrypt(h): Choose random 0 < k < r and set ¢ = ¢g¥ and K = kdf(h¥). Return the
ciphertext ¢ and the key K.

Decrypt(c,a): Return L if ¢ € (g). Otherwise return kdf(c®).

Figure 23.2: Elgamal KEM.

Shoup has defined an analogue of IND-CCA security for a KEM. We refer to Section
7 of Cramer and Shoup [161] for precise definitions for KEMs, DEMs and their security
properties, but give an informal statement now.

Definition 23.1.2. An IND-CCA adversary for a KEM is an algorithm A that plays
the following game: The input to A is a public key. The algorithm A can also query
a decryption oracle that will provide decryptions of any ciphertext of its choosing. At
some point the adversary requests a challenge, which is a KEM ciphertext ¢* together
with a key K* € K. The challenger chooses K* to be either the key corresponding to
the ciphertext c¢* or an independently chosen random element of K, (both cases with
probability 1/2). The game continues with the adversary able to query the decryption
oracle with any ciphertext ¢ # c*. Finally, the adversary outputs a guess for whether
K* is the key corresponding to c¢*, or a random key (this is the same as the “real or
random” security notion for key exchange in Section 20.5). Denote by Pr(A) the success
probability of A in this game and define the advantage Adv(A) = |Pr(A4) — 1/2|. The
KEM is IND-CCA secure if every polynomial-time adversary has negligible advantage.

1Sometimes the names Encap and Decap are used instead of Encrypt and Decrypt.
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Theorem 5 of Section 7.3 of [161] shows that, if a KEM satisfies IND-CCA security
and if a DEM satisfies an analogous security property, then the corresponding hybrid
encryption scheme has IND-CCA security. Due to lack of space we do not present the
details.

23.1.2 Proof of Security in the Random Oracle Model

We now sketch a proof that the Elgamal KEM of Figure 23.2 has IND-CCA security. The
proof is in the random oracle model. The result requires a strong assumption (namely, the
Strong-Diffie-Hellman or gap-Diffie-Hellman assumption). Do not be misled by the use
of the word “strong”! This computational problem is not harder than the Diffie-Hellman
problem. Instead, the assumption that this problem is hard is a stronger (i.e., less likely
to be true) assumption than the assumption that the Diffie-Hellman problem is hard.

Definition 23.1.3. Let G be a group of prime order r. The strong Diffie-Hellman
problem (Strong-DH) is: Given g, g%, ¢ € G (where 1 < a,b < r), together with a deci-
sion static Diffie-Hellman oracle (DStatic-DH oracle) A, o (h1, ha) (i-e., Ag ga (h1, h2) =
1 if and only if hy = h¢), to compute g*°.

An instance generator for Strong-DH takes as input a security parameter s, outputs
a group G and an element g of prime order r (with r > 22%) and elements g%, ¢* € G
where 1 < a,b < r are chosen uniformly at random. As usual, we say that Strong-DH
is hard for the instance generator if all polynomial-time algorithms to solve the problem
have negligible success probability. The strong Diffie-Hellman assumption is that
there is an instance generator for which the Strong-DH problem is hard.

It may seem artificial to include access to a decision oracle as part of the assumption.
Indeed, it is a significant drawback of the encryption scheme that such an assumption is
needed for the security. Nevertheless, the problem is well-defined and seems to be hard
in groups for which the DLP is hard. A related problem is the gap Diffie-Hellman
problem: again the goal is to compute ¢g*° given (g, g%, g*), but this time one is given
a full DDH oracle. In some situations (for example, when using supersingular elliptic
or hyperelliptic curves) one can use pairings to provide a DDH oracle and the artificial
nature of the assumption disappears. The proof of Theorem 23.1.4 does not require a full
DDH oracle and so it is traditional to only make the Strong-DH assumption.

Theorem 23.1.4. The Elgamal KEM of Figure 23.2, with the key derivation function
replaced by a random oracle, is IND-CCA secure if the strong Diffie-Hellman problem is
hard.

Proof: (Sketch) Let (g, g%, g°) be the Strong-DH instance and let Ay 4o be the DStatic-
DH oracle. Let B be an IND-CCA adversary against the KEM. We want to use B to
solve our Strong-DH instance. To do this we will simulate the game that B is designed to
play. The simulation starts B by giving it the public key (g, g%). Note that the simulator
does not know the corresponding private key.

Since the key derivation function is now a random oracle, it is necessary for B to
query the simulator whenever it wants to compute kdf; this fact is crucial for the proof.
Indeed, the whole idea of the proof is that when B requests the challenge ciphertext we
reply with ¢* = ¢g® and with a randomly chosen K* € K. Since kdf is a random oracle,
the adversary can have no information about whether or not c* encapsulates K* unless
the query kdf((c*)?) is made. Finally, note that (c*)* = g% is precisely the value the
simulator wants to find.

More precisely, let E be the event (on the probability space of Strong-DH instances
and random choices made by B) that B queries kdf on (c*)® = ¢g®. The advantage of B is
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Adv(B) = |Pr(B) — %| where Pr(B) is the probability that B wins the IND-CCA security
game. Note that Pr(B) = Pr(B|E)Pr(E) + Pr(B|-FE)Pr(—E). When kdf is a random
oracle we have Pr(B|-FE) = 1/2. Writing Pr(B|E) = 1/2 + u for some —1/2 < u < 1/2
we have Pr(B) = 1/2 4+ uPr(E) and so Adv(B) = |u|Pr(E). Since Adv(B) is assumed
to be non-negligible it follows that Pr(E) is non-negligible. In other words, a successful
adversary makes an oracle query on the value ¢g%® with non-negligible probability.

To complete the proof it is necessary to explain how to simulate kdf and Decrypt
queries, and to analyse the probabilities. The simulator maintains a list of all queries
to kdf. The list is initially empty. Every time that kdf(u) is queried the simulator first
checks whether u € G and returns L if not. Then the simulator checks whether an entry
(u, K) appears in the list of queries and, if so, returns K. If no entry appears in the list
then use the oracle A, 4o to determine whether u = g% (i.e., if Ay 4o(g®, u) = 1). If this
is the case then ¢%° has been computed and the simulation outputs that value and halts.
In all other cases, a value K is chosen uniformly and independently at random from fC,,
(u, K) is added to the list of kdf queries, and K is returned to B.

Similarly, when a decryption query on ciphertext c is made then one checks, for each
pair (u, K) in the list of kdf values, whether Ay ja (c,w) = 1. If this is the case then return
K. If there is no such triple then return a random K’ € K.

One can check that the simulation is sound (in the sense that Decrypt does perform
the reverse of Encrypt) and that the outputs of kdf are indistinguishable from random.
Determining the advantage of the simulator in solving the strong-DH problem is then
straightforward. We refer to Section 10.4 of Cramer and Shoup [161] for a careful proof
using the “game hopping” methodology (actually, that proof applies to the variant in
Exercise 23.1.5, but it is easily adapted to the general case). O

Exercise 23.1.5. A variant of the scheme has the key derivation function applied to
the pair (¢g*, h*) in Encrypt instead of just h* (respectively, (ci,c$) in Decrypt). Adapt
the security proof to this case. What impact does this have on the running time of the
simulator?

The IND-CPA security of the Elgamal KEM can be proved in the standard model
(the proof is analogous to the proof of Theorem 20.4.10) under the assumption of Defini-
tion 23.1.6. The IND-CCA security can also be proved in the standard model under an
interactive assumption called the oracle Diffie-Hellman assumption. We refer to Abdalla,
Bellare and Rogaway [1] for the details of both these results.

Definition 23.1.6. Let G be a group and kdf : G — K a key derivation function.
The hash Diffie-Hellman problem (Hash-DH) is to distinguish the distributions
(9,9% g° kdf(g?®)) and (g, 9%, ¢ K) where K is chosen uniformly from K. The hash
Diffie-Hellman assumption is that there exist instance generators such that all polynomial-
time algorithms for Hash-DH have negligible advantage.

Exercise 23.1.7. Let G be a group of prime order r and let kdf : G — {0,1} be
a key derivation function such that log,(r)/2 < I < logy(r) and such that the output
distribution is statistically close to uniform. Show that DDH <y Hash-DH <y CDH.

An elegant variant of Elgamal, with IND-CCA security in the random oracle model
depending only on CDH rather than strong Diffie-Hellman, is given by Cash, Kiltz and
Shoup [120].
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23.2 Cramer-Shoup Encryption

In their landmark paper [159], Cramer and Shoup gave an encryption scheme with a proof
of CCA security in the standard model. Due to lack of space we will only be able to give
a sketch of the security analysis of the scheme.

To motivate how they achieve their result, consider the proof of security for the El-
gamal KEM (Theorem 23.1.4). The simulator uses the adversary to solve an instance of
the CDH problem. To do this one puts part of the CDH instance in the public key (and
hence, one does not know the private key) and part in the challenge ciphertext. To prove
CCA security we must be able to answer decryption queries without knowing the private
key. In the proof of Theorem 23.1.4 this requires a DDH oracle (to determine correct
ciphertexts from incorrect ones) and also the use of the random oracle model (to be able
to “see” some internal operations of the adversary).

In the random oracle model one generally expects to be able to prove security under an
assumption of similar flavour to CDH (see Theorem 20.4.11 and Theorem 23.1.4). On the
other hand, in the standard model one only expects? to be able to prove security under
a decisional assumption like DDH (see Theorem 20.4.10). The insight of Cramer and
Shoup is to design a scheme whose security depends on DDH and is such that the entire
DDH instance can be incorporated into the challenge ciphertext. The crucial consequence
is that the simulator can now generate public and private keys for the scheme, run the
adversary, and be able to handle decryption queries.

The proof of security hinges (among other things) on the following result.

Lemma 23.2.1. Let G be a group of prime order r. Let g1,92,u1,us,h € G with
(91,92) # (1,1). Consider the set

Xy gah = {(21,22) € (Z/7Z)? = h = g7 g5}
Then #Xg, gon = 1. Let 0 < k < 1 be such that u1 = g§. If ug = g% then ui'u3* = h*
for all (21,22) € Xy, go.n- If ua # g5 then

{u?u;z : (217 ZQ) € Xgth,h} =G.
Exercise 23.2.2. Prove Lemma 23.2.1.

Figure 23.3 presents the basic Cramer-Shoup encryption scheme. The scheme
requires a group G of prime order r and the message m is assumed to be an element of G.
Of course, it is not necessary to “encode” data into group elements, in practice one would
use the Cramer-Shoup scheme as a KEM; we briefly describe a Cramer-Shoup KEM at
the end of this section. The scheme requires a target-collision-resistant hash function
H : G® — Z/rZ (see Definition 3.1.2) chosen at random from a hash family.

Exercise 23.2.3. Show that the value v = c*d*® computed in the Encrypt algorithm
does satisfy equation (23.1).

Exercise 23.2.4. Show that the tests ui,us € G and equation (23.1) imply that v € G.

Exercise 23.2.5. Show that the final stage of Decrypt in the Cramer-Shoup scheme can
be efficiently performed using multiexponentiation as

r—z1

m = eu] 5 2,

Uy

2Unless performing “bit by bit” encryption, which is a design approach not considered in this book.
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KeyGen(k): Generate a group G of prime order r as in Figure 23.1. Choose random
91,92 € G — {1}. Choose integers 0 < 1, T2, Y1, Y2, 21, 22 < r uniformly at random and
set

c=gi'gy*, d=g{"g5", h=g7'95"
Choose a target-collision-resistant hash function H.  The public key is pk =
(G,H,g1,92,¢,d, h). The private key is sk = (x1, x2,y1, Y2, 21, 22).

Encrypt(m, pk): Choose 0 < k < 7 uniformly at random, compute u; = g¥, us =
gk, e =h*m, o = H(uy,us,e) and v = FdF™ (med ) The ciphertext is ¢ = (uy, uz, e, v).

Decrypt(u, us, e,v,sk): First check that ui,us,e € G and output L if this is not the
case. Next, compute o = H (u1,u2, e) and check whether

V= unlclerla (mod r)u;2+y2a (mod r). (231)

Return L if this condition does not hold. Otherwise output

22

m = euj “u,

Figure 23.3: Basic Cramer-Shoup Encryption Scheme.

Example 23.2.6. Let p = 311, r = 31 and denote by G the subgroup of order r in F.
Take g1 = 169 and go = 121. Suppose (z1,x2, Y1, Y2, 21, 22) = (1,2,3,4,5,6) so that the
public key is

(1,92, ¢,d, h) = (169,121, 13,260, 224).

To encrypt m = 265 € G choose, say, k = 15 and set u; = g¥ = 24, uy = g§ = 113 and
e = mh* = 126. Finally, we must compute a. Since we don’t want to get into the details
of H, suppose a = H(uy,us,e) = 20 and so set v = cFdk> (modr) — (15421 — 89, The
ciphertext is (u1,usg,e,v) = (24,113,126, 89).

To decrypt one first checks that u] = u} = e¢” = 1. Then one recomputes o and checks
equation (23.1). Since

ufﬁ_yla (mod r)u§2+y2a (mod ) _ u;;,ougo — 89

the ciphertext passes this test. One then computes eu} ™ *'u}~** = 126-2426.113% = 265.

Exercise 23.2.7. Using the same private keys as Example 23.2.6, which of the following
ciphertexts are valid, and for those that are, what is the corresponding message? Assume
that H(243,83,13) = 2.

(243,83,13,97), (243,83,13,89), (243,83, 13,49).

We now turn to the security analysis. Note that the condition of equation (23.1) does
not imply that the ciphertext (ui,us,e,v) was actually produced by the Encrypt algo-
rithm. However, we now show that, if u; and us are not of the correct form, then the
probability that a randomly chosen v satisfies this condition is 1/r. Indeed, Lemma 23.2.8
shows that an adversary who can solve the discrete logarithm problem cannot even con-
struct an invalid ciphertext that satisfies this equation with probability better than 1/r.

Lemma 23.2.8. Let G be a cyclic group of prime order r. Let ¢1,92,¢c,d,v € G and
o € Z/r7 be fized. Suppose uy = g¥ and ug = gh™ where k' # 0 (mod 7). Then

zy T2 Y1 Y2

the probability, over all choices (x1,x2,y1,y2) such that ¢ = g7'g5? and d = ¢ 93>, that

_ o ritayr, xotayz
V= Ug is 1/r.
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w1

Proof: Write g2 = ¢, c = ¢ and d = ¢7 for some 0 < w,wy,wy < r with w # 0. The

values ¢ and d imply that x; +wzs = w; and y; +wys = wy. Now uflJraylungrayQ equals
g1 to the power
k(zi+ayr) + (k+ kK )w(ez +ayz) = k(21 +wz2) + alys +wy2)) + Kw(zz + ays)

= k(wi + aws) + k'w(za + ays).

The values w, w1, wa, k, k', a are all uniquely determined but, by Lemma 23.2.1, 2 and
Y2 can take any values between 0 and r — 1. Hence, u}'"*¥ 43>T*¥? equals any fixed value

v for exactly r of the 72 choices for (2,Y2). O

Theorem 23.2.9. The basic Cramer-Shoup encryption scheme is IND-CCA secure if
DDH is hard and if the function H is target-collision-resistant.

Proof: (Sketch) Let A be an adversary against the Cramer-Shoup scheme. Given a
DDH instance (g1,92,u1,u2) the simulator performs the KeyGen algorithm using the
given values g1, g2. Hence, the simulator knows the private key (x1, z2, y1, Y2, 21, 22). The
simulator runs A with this public key.

The algorithm A makes decryption queries and these can be answered correctly by the
simulator since it knows the private key. Eventually, A outputs two messages (mg, my)
and asks for a challenge ciphertext. The simulator chooses a random b € {0, 1}, computes
e = ui'uPmy, o = H(uj,ug,e) and v = uf' T3> 2% Here, and throughout this
proof, u; and uy denote the values in the DDH instance that was given to the simulator.
The simulator returns

c* = (u1,u2,e,0).

to A. The adversary A continues to make decryption queries, which are answered as
above. Eventually, A outputs a bit ¥'. The simulator returns “valid” as the answer to the
DDH instance if b = b’ and “invalid” otherwise.

The central idea is that if the input is a valid DDH tuple then c* is a valid encryption
of mp and so A ought to be able to guess b correctly with non-negligible probability. On
the other hand, if the input is not a valid DDH tuple then, by Lemma 23.2.1, uj'u3?
could be any element in G (with equal probability) and so ¢* could be an encryption of
any message m € GG. Hence, given ¢*, both messages my and m; are equally likely and so
the adversary can do no better than output a random bit. (Of course, A may actually
output a fixed bit in this case, such as 0, but this is not a problem since b was randomly
chosen.)

There are several subtleties remaining in the proof. First, by Lemma 23.2.8, before the
challenge ciphertext has been received there is a negligible probability that a ciphertext
that was not produced by the Encrypt algorithm satisfies equation (23.1). Hence, the
simulation is correct with overwhelming probability. However, the challenge ciphertext is
potentially an example of a ciphertext that satisfies equation (23.1) and yet is not a valid
output of the algorithm Encrypt. It is necessary to analyse the probability that A can
somehow produce another ciphertext that satisfies equation (23.1) without just running
the Encrypt algorithm. The target-collision-resistance of the hash function enters at this
point (since a ciphertext of the form (uy,us,€’,v) such that H(u1,us,e’) = H(ui,us,e)
would pass the test). Due to lack of space we refer to Section 4 of [159] (for a direct
proof) or Section 6.2 of [161] (for a proof using “game hopping”). O

A number of variants of the basic scheme are given by Cramer and Shoup [161] and
other authors. In particular, one can design a KEM based on the Cramer-Shoup scheme
(see Section 9 of [161]): just remove the component e of the ciphertext and set the encap-
sulated key to be K = kdf(g¥, h¥). An alternative KEM (with even shorter ciphertext)



23.3. OTHER ENCRYPTION FUNCTIONALITIES 501

was proposed by Kurosawa and Desmedt [359]. Their idea was to set K = kdf(v) where
v = c*d** for a = H(uy,us). The KEM ciphertext is therefore just (u1,u2) = (g%, g5).
The security again follows from Lemma 23.2.8: informally, querying the decryption oracle
on badly formed (u1,us2) gives no information about the key K.

Exercise 23.2.10. Write down a formal description of the Cramer-Shoup KEM.

Exercise 23.2.11. Show that an adversary against the Cramer-Shoup scheme who knows
zZ1 22

any pair (z1, z2) such that h = g g5 can decrypt valid ciphertexts.
Exercise 23.2.12. Suppose an adversary against the Cramer-Shoup scheme knows x1, x2, y1, ¥2.
Show how the adversary can win the OWE-CCA security game.

Exercise 23.2.13. Suppose the checks that uq,us € G are omitted in the Cramer-Shoup
cryptosystem. Suppose G C [y, where [ | (p — 1) is a small prime (say [ < 210). Suppose
the Decrypt algorithm uses the method of Exercise 23.2.5. Show how to determine, using
a decryption oracle, z; (mod ) and 22 (mod !). Show that if p — 1 has many such small
factors [ then one could recover the values z; and z3 in the private key of the Cramer-
Shoup scheme.

Cramer and Shoup [160] have shown how the above cryptosystem fits into a gen-
eral framework for constructing secure encryption schemes using “universal hash proof
systems”. We do not have space to present this topic.

23.3 Other Encryption Functionalities

There are many variants of public key encryption (such as threshold decryption, server-
aided decryption, etc). In this section we briefly sketch two important variants: homo-
morphic encryption and identity-based encryption.

23.3.1 Homomorphic Encryption

Let cq1,...,c; be ciphertexts that are encryptions under some public key of messages
m1,...,mg . The goal of homomorphic encryption is for any user to be able to efficiently
compute a ciphertext that encrypts F(my,...,mg) for any function F', given only a de-
scription of the function F' and the ciphertexts cy,...,ck. An encryption scheme that has
this property is called fully homomorphic.

Homomorphic encryption schemes allow third parties to perform computations on en-
crypted data. A common additional security requirement is that the resulting ciphertexts
do not reveal to a user with the private key what computation was performed (except its
result). A typical application of homomorphic encryption is voting: If users encrypt either
0 or 1 under a certain public key® then a trusted third party can compute a ciphertext
that is an encryption of the sum of all the users’ votes, and then this ciphertext can be
decrypted to give the total number of votes. If the user with the private key never sees
the individual votes then they cannot determine how an individual user voted. A general
survey on homomorphic encryption that gives some references for applications is Fontaine
and Galand [208].

For many applications it is sufficient to consider encryption schemes that only allow
a user to compute F'(mq,..., my) for certain specific functions (for example, addition in
the voting application). In this section we focus on the case where F(m, ms) is a group
operation.

3Tt is necessary for users to prove that their vote lies in {0, 1}.
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Definition 23.3.1. Let GG be a group (written multiplicatively). A public key encryption
scheme with message space G and ciphertext space C is said to be homomorphic for the
group G if there is some efficiently computable binary operation x on C such that, for all
m1,mg € G, if ¢; is an encryption of m; and ¢ is an encryption of my (both with respect
to the same public key) then ¢; x c2 is an encryption of myms.

Exercise 23.3.2 shows that one cannot have CCA security when using homomorphic
encryption. Hence, the usual security requirement of a homomorphic encryption scheme
is that it should have IND-CPA security.

Exercise 23.3.2. Show that a homomorphic encryption scheme does not have IND-CCA
security.

Exercise 23.3.3. Let G = (g) where g is an element of order 7 in a group. Let ¢; =
(c1.1,¢1,2) = (g%, m1A*) and co = (c2.1,c2,2) = (g*2, mah*2) be classic textbook Elgamal
encryptions of my, mg € G. Define ¢y * ca = (c1,1€2,1,€1,2C2.2). Show that ¢ x ¢y is an
encryption of m;my and hence that classic textbook Elgamal encryption is homomorphic
for the group G.

Exercise 23.3.4. Let G = F, = {0,1}!. Note that G is a group under addition modulo 2
(equivalently, under exclusive-or ®). For 1 <i < 2let ¢; = (c;1,¢i2) = (g%, m;® H(h*))
be semi-textbook Elgamal encryptions of messages m; € G. Consider the operation
c1 xcy = (c1,1C2,1,C1,2 @ C2.2). Show that semi-textbook Elgamal is not homomorphic
with respect to this operation.

Exercise 23.3.5. A variant of Elgamal encryption that is homomorphic with respect to
addition is to encrypt m as (c; = g¥,co = g™h*). Prove that if (c;1,c;2) are ciphertexts
encrypting messages m; for ¢ = 1,2 then (cj1c21,C1,2C22) encrypts my + mo.  Give
a decryption algorithm for this system and explain why it is only practical when the
messages m are small integers. Hence show that this scheme does not strictly satisfy
Definition 23.3.1 when the order of g is large.*

23.3.2 Identity-Based Encryption

Section 22.4 briefly mentioned identity-based signatures. Recall that in identity-based
cryptography a user’s public key is defined to be a function of their “identity” (for exam-
ple, their email address). There is a master public key. Each user obtains their private
key from a key generation center (which possesses the master secret).

In this section we sketch the basic Boneh-Franklin scheme [80] (the word “basic”
refers to the fact that this scheme only has security against a chosen plaintext attack).
The scheme uses pairing groups (see Definition 22.2.14 and Chapter 26). Hence, let Gy,
G5 and G7 be groups of prime order r and let e : G; X Go — G be a non-degenerate
bilinear pairing.

The first task is to determine the master keys, which are created by the key generation
center. Let g € G5 have order r. The key generation center chooses 1 < s < r and
computes g’ = g°*. The master public key is (g,¢’) and the master private key is s. The
scheme also requires hash functions Hi : {0,1}* — G; and Hs : G — {0,1}! (where [
depends on the security parameter). The message space will be {0, 1}! and the ciphertext
space will be G x {0, 1}

The public key of a user with identity id € {0,1}* is Q4 = Hi(id) € G;. With
overwhelming probability Q4 # 1, in which case e(Qi4,g) # 1. The user obtains the

4The order of g must be large for the scheme to have IND-CPA security.
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private key
Qig = H1(id)”
from the key generation center.

To Encrypt a message m € {0, 1}! to the user with identity id one obtains the master
key (g,g'), computes Qiq = H;(id), chooses a random 1 < k < r and computes ¢; =
g¥,co = m @ Hao(e(Qig, ¢')*). The ciphertext is (c1,cz).

To Decrypt the ciphertext (cq,c2) the user with private key Qf; computes

m = c2 @ Hz(e(Qig, 1))
This completes the description of the basic Boneh-Franklin scheme.

Exercise 23.3.6. Show that the Decrypt algorithm does compute the correct message
when (c1,co) are the outputs of the Encrypt algorithm.

Exercise 23.3.7. Show that the basic Boneh-Franklin scheme does not have IND-CCA
security.

The security model for identity-based encryption takes into account that an adversary
can ask for private keys on various identities. Hence, the IND security game allows an
adversary to output a challenge identity id* and two challenge messages mg,m;. The
adversary is not permitted to know the private key for identity id* (though it can receive
private keys for any other identities of its choice). The adversary then receives an encryp-
tion with respect to identity id* of m, for randomly chosen b € {0,1} and must output a
guess for b.

Exercise 23.3.8. Suppose there is an efficiently computable group homomorphism ) :
G2 — (1. Show that if an adversary knows ¢ and can compute preimages of the hash
function H; then it can determine the private key for any identity by making a private
key query on a different identity.

If the output of H, is indistinguishable from random [-bit strings then it is natural
to believe that obtaining the message from a ciphertext under a passive attack requires
computing

e(Qly,c1) = e(Qiy. g%) = e(Qia, 9)°F.

Hence, it is natural that the security (at least, in the random oracle model) depends on
the following computational problem.

Definition 23.3.9. Let G1, G2 and Gr be groups of prime order r and let e : G X
G2 — G be a non-degenerate bilinear pairing. The bilinear Diffie-Hellman problem
(BDH) is: Given Q € Gy, g € Go, g% and g°, where 1 < a,b < r, to compute

e(Q,9)™.

Exercise 23.3.10. Show that if one can solve CDH in G5 or in Gt then one can solve
BDH.

As seen in Exercise 23.3.7, the basic Boneh-Franklin scheme does not have IND-CCA
security. To fix this one needs to provide some extra components in the ciphertext.
Alternatively, one can consider the basic Boneh-Franklin scheme as an identity-based
KEM: The ciphertext is c; = g* and the encapsulated key is K = kdf(e(Qid, ¢')*). In the
random oracle model (treating both H; and kdf as random oracles) one can show that
the Boneh-Franklin identity-based KEM has IND-CCA security (in the security model for
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identity-based encryption as briefly mentioned above) assuming that the BDH problem
is hard. We refer to Boneh and Franklin [80, 81] for full details and security proofs.

There is a large literature on identity-based encryption and its extensions, including
schemes that are secure in the standard model. We do not discuss these topics further in
this book.



