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This chapter gives a thorough discussion of the computational Diffie-Hellman problem
(CDH) and related computational problems. We give a number of reductions between
computational problems, most significantly reductions from DLP to CDH. We explain
self-correction of CDH oracles, study the static Diffie-Hellman problem, and study hard
bits of the DLP and CDH. We always use multiplicative notation for groups in this chapter
(except for in the Maurer reduction where some operations are specific to elliptic curves).

21.1 Variants of the Diffie-Hellman Problem

We present some computational problems related to CDH, and prove reductions among
them. The main result is to prove that CDH and Fixed-CDH are equivalent. Most of the
results in this section apply to both algebraic groups (AG) and algebraic group quotients
(AGQ) of prime order r (some exceptions are Lemma 21.1.9, Lemma 21.1.16 and, later,
Lemma 21.3.1). For the algebraic group quotients G considered in this book then one can
obtain all the results by lifting from the quotient to the covering group G′ and applying
the results there.

A subtle distinction is whether the base element g ∈ G is considered fixed or variable
in a CDH instance. To a cryptographer it is most natural to assume the generator is
fixed, since that corresponds to the usage of cryptosystems in the real world (the group
G and element g ∈ G are fixed for all users). Hence, an adversary against a cryptosystem
leads to an oracle for a fixed generator problem. To a computational number theorist it
is most natural to assume the generator is variable, since algorithms in computational
number theory usually apply to all problem instances. Hence both problems are studied
in the literature and when an author writes CDH it is sometimes not explicit which of
the variants is meant. Definition 20.2.1 was for the case when g varies. Definition 21.1.1
below is the case when g is fixed. This issue is discussed in Section 5 of Shoup [554] and
in Sadeghi and Steiner [508] (where it is called “granularity”).
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448 CHAPTER 21. THE DIFFIE-HELLMAN PROBLEM

Definition 21.1.1. Let G be an algebraic group (AG) or algebraic group quotient (AGQ)
and let g ∈ G. The Fixed-base computational Diffie-Hellman problem (Fixed-
CDH) with respect to g is: Given (ga, gb) to compute gab.

In this book the acronym CDH will always refer to the case where g is allowed to
vary. Hence, an algorithm for CDH will always take three inputs (formally we should
also include a description of the underlying group G, but we assume this is implicit in
the specification of g) while an algorithm for Fixed-CDH will always take two inputs.

It is trivial that Fixed-CDH ≤R CDH, but the reverse implication is less obvious; see
Corollary 21.1.18 below.

Analogously, given g ∈ G one can define Fixed-DLP (namely, given h to find a such
that h = ga) and Fixed-DDH (given (ga, gb, gc) determine whether gc = gab). Though
Fixed-DLP is equivalent to DLP (see Exercise 21.1.2) it is not expected that DDH is
equivalent to Fixed-DDH (see Section 5.3.4 of [554]).

Exercise 21.1.2. Prove that Fixed-DLP is equivalent to DLP.

Exercise 21.1.3. Let G be a cyclic group of prime order r. Let h1, h2, h3 ∈ G such
that hj 6= 1 for j = 1, 2, 3. Show there exists some g ∈ G such that (g, h1, h2, h3) is a
Diffie-Hellman tuple.

We now introduce some other variants of CDH. These are interesting in their own
right, but are also discussed as they play a role in the proof of equivalence between CDH
and Fixed-CDH.

Definition 21.1.4. Let G be a group or algebraic group quotient of prime order r. The
computational problem Inverse-DH is: given a pair g, ga ∈ G−{1} of elements of prime

order r in G to compute ga
−1 (mod r). (Clearly, we must exclude the case a = 0 from the

set of instances.)

Lemma 21.1.5. Inverse-DH ≤R CDH.

Proof: Suppose O is a perfect oracle for solving CDH. Let (g, g1 = ga) be the given
Inverse-DH instance. Then

g = ga
−1

1 .

Calling O(g1, g, g) = O(g1, g
a−1

1 , ga
−1

1 ) gives ga
−2

1 . Finally,

ga
−2

1 = (ga)a
−2

= ga
−1

as required. �

Definition 21.1.6. Let G be an AG or AGQ. The computational problem Square-DH
is: given (g, ga) where g ∈ G has prime order r to compute ga

2

.

Exercise 21.1.7. Show that Square-DH ≤R CDH.

Lemma 21.1.8. Square-DH ≤R Inverse-DH.

Proof: Let O be a perfect oracle that solves Inverse-DH and let (g, g1 = ga) be given. If
g1 = 1 then return 1. Otherwise, we have

O(g1, g) = O(g1, g
a−1

1 ) = ga1 = (ga)a = ga
2

.

�

Hence Square-DH ≤R Inverse-DH ≤R CDH. Finally we show CDH ≤R Square-DH
and so all these problems are equivalent.
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Lemma 21.1.9. Let G be a group of odd order. Then CDH ≤R Square-DH.

Proof: Let (g, ga, gb) be a CDH instance. Let O be a perfect oracle for Square-DH. Call

O(g, ga) to get g1 = ga
2

, O(g, gb) to get g2 = gb
2

and O(g, gagb) to get g3 = ga
2+2ab+b2 .

Now compute

(g3/(g1g2))
2−1 (mod r),

which is gab as required. �

Exercise 21.1.10. Let G be a group of prime order r. Show that Inverse-DH and Square-
DH are random self-reducible. Hence give a self-corrector for Square-DH. Finally, show
that Lemma 21.1.9 holds for non-perfect oracles. (Note that it seems to be hard to give
a self-corrector for Inverse-DH directly, though one can do this via Lemma 21.1.8.)

Note that the proofs of Lemmas 21.1.5 and 21.1.8 require oracle queries where the
first group element in the input is not g. Hence, these proofs do not apply to variants of
these problems where g is fixed. We now define the analogous problems for fixed g and
give reductions between them.

Definition 21.1.11. Let g have prime order r and let G = hgi. The computational

problem Fixed-Inverse-DH is: given ga 6= 1 to compute ga
−1 (mod r). Similarly, the

computational problem Fixed-Square-DH is: given ga to compute ga
2

.

Exercise 21.1.12. Show that Fixed-Inverse-DH and Fixed-Square-DH are random self-
reducible.

Lemma 21.1.13. Let g ∈ G. Let A be a perfect Fixed-CDH oracle. Let h = ga and let
n ∈ N. Then one can compute ga

n (mod r) using ≤ 2 log2(n) queries to A.

Proof: Assume A is a perfect Fixed-CDH oracle. Define hi = ga
i (mod r) so that h1 = h.

One has h2i = A(hi, hi) and hi+1 = A(hi, h). Hence one can compute hn by performing
the standard square-and-multiply algorithm for efficient exponentiation. �

Note that the number of oracle queries in Lemma 21.1.13 can be reduced by using
window methods or addition chains.

Exercise 21.1.14. Show that if the conjecture of Stolarsky (see Section 2.8) is true then
one can compute ga

n

in log2(n) + log2(log2(n)) Fixed-CDH oracle queries.

Lemma 21.1.15. Fixed-Inverse-DH ≤R Fixed-CDH.

Proof: Fix g ∈ G. Let O be a perfect Fixed-CDH oracle. Let ga be the given Fixed-
Inverse-DH instance. Our task is to compute ga

−1

. The trick is to note that a−1 =
ar−2 (mod r). Hence, one computes ga

r−2

using Lemma 21.1.13. The case of non-perfect
oracles requires some care, although at least one can check the result using O since one
should have O(ga, ga

−1

) = g. �

Lemma 21.1.16. Fixed-Square-DH ≤R Fixed-Inverse-DH.

Proof: Let h = ga be the input Fixed-Square-DH instance and let A be a perfect oracle
for the Fixed-Inverse-DH problem. Call A(gh) to get g(1+a)−1

and call A(gh−1) to get

g(1−a)−1

.
Multiplying these outputs gives

w = g(1+a)−1

g(1−a)−1

= g2(1−a2)−1

.

Calling A(w2−1 (mod r)) gives g1−a2

from which we compute ga
2

as required. �

We can now solve a non-fixed problem using an oracle for a fixed problem.
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Lemma 21.1.17. Square-DH ≤R Fixed-CDH.

Proof: Let g ∈ G be fixed of prime order r and let A be a perfect Fixed-CDH oracle.
Let g1, g

b
1 be the input Square-DH problem. Write g1 = ga. We are required to compute

gb
2

1 = gab
2

.

CallA(gb1, g
b
1) to compute ga

2b2 . Use the perfect Fixed-CDH oracle as in Lemma 21.1.15

to compute ga
−1

. Then compute A(ga
2b2 , ga

−1

) to get gab
2

. �

Since CDH ≤R Square-DH we finally obtain the main result of this section.

Corollary 21.1.18. Fixed-CDH and CDH are equivalent.

Proof: We already showed Fixed-CDH ≤R CDH. Now, let A be a perfect Fixed-CDH
oracle. Lemma 21.1.17 together with Lemma 21.1.9 gives CDH ≤R Square-DH ≤R Fixed-
CDH as required.

Now suppose A only succeeds with noticeable probability ǫ > 1/ log(r)c for some fixed
c. The reductions CDH ≤R Square-DH ≤R Fixed-CDH require O(log(r)) oracle queries.
We perform self-correction (see Section 21.3) to obtain an oracle A for Fixed-CDH that
is correct with probability 1 − 1/(log(r)c

′

) for some constant c′; by Theorem 21.3.8 this
requires O(log(r)c log log(r)) oracle queries. �

Exercise 21.1.19. It was assumed throughout this section that G has prime order r.
Suppose instead that G has order r1r2 where r1 and r2 are distinct odd primes and that
g is a generator for G.

Prove that if one has a perfect CDH oracle O1 that applies in the subgroup of order
r1, and a perfect CDH oracle O2 that applies in the subgroup of order r2, then one can
solve CDH in G.

More generally in this context, which of the results in this section no longer necessarily
hold? Is Fixed-CDH in hgi equivalent to Fixed-CDH in hgr1i?

We end with a variant of the DDH problem.

Exercise 21.1.20. Let g have prime order r and let {x1, . . . , xn} ⊂ Z/rZ. For a subset
A ⊂ {1, . . . , n} define

gA = g
�

i∈A xi .

The group decision Diffie-Hellman problem (GDDH) is: Given g, gA for all proper
subsets A ( {1, . . . , n}, and h, to distinguish h = gc (where c ∈ Z/rZ is chosen uniformly
at random) from gx1x2···xn . Show that GDDH ≡ DDH.

21.2 Lower Bound on the Complexity of CDH for Generic

Algorithms

We have seen (Theorem 13.4.5) that a generic algorithm requires Ω(
√
r) group operations

to solve the DLP in a group of order r. Shoup proved an analogue of this result for CDH.
As before, fix t ∈ R>0 and assume that all group elements are represented by bitstrings
of length at most t log(r).

Theorem 21.2.1. Let G be a cyclic group of prime order r. Let A be a generic al-
gorithm for CDH in G that makes at most m oracle queries. Then the probability that
A(σ(g),σ(ga),σ(gb)) = σ(gab) over a, b ∈ Z/rZ and an encoding function σ : G → S ⊆
{0, 1}⌈t log(r)⌉ chosen uniformly at random is O(m2/r).
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Proof: The proof is almost identical to the proof of Theorem 13.4.5. Let S = {0, 1}⌈t log(r)⌉.
The simulator begins by uniformly choosing three distinct σ1,σ2,σ3 in S and running
A(σ1,σ2,σ3). The encoding function is then specifed at the two points σ1 = σ(g) and
σ2 = σ(h). From the point of view of A, g and h are independent distinct elements of G.

It is necessary to ensure that the encodings are consistent with the group operations.
This cannot be done perfectly without knowledge of a and b, but using polynomials as
previously ensures there are no “trivial” inconsistencies. The simulator maintains a list
of pairs (σi, Fi) where σi ∈ S and Fi ∈ Fr[x, y] (indeed, the Fi(x, y) will always be linear).
The initial values are (σ1, 1), (σ2, x) and (σ3, y). Whenever A makes an oracle query on
(σi,σj) the simulator computes F = Fi − Fj . If F appears as Fk in the list of pairs then
the simulator replies with σk and does not change the list. Otherwise, an element σ ∈ S,
distinct from the previously used values, is chosen uniformly at random, (σ, F ) is added
to the simulator’s list, and σ is returned to A.

After making at most m oracle queries, A outputs σ4 ∈ Z/rZ. The simulator now
chooses a and b uniformly at random in Z/rZ. Algorithm A wins if σ4 = σ(gab). Note
that if σ4 is not σ1,σ2 or one of the strings output by the oracle then the probability of
success is at most 1/(2⌈t log(r)⌉ −m− 2). Hence we assume that σ4 is on the simulator’s
list.

Let the simulator’s list contain precisely k polynomials {F1(x, y), . . . , Fk(x, y)} for
some k ≤ m+ 3. Let E be the event that Fi(a, b) = Fj(a, b) for some pair 1 ≤ i < j ≤ k
or Fi(a, b) = ab. The probability that A wins is

Pr(A wins |E) Pr(E) + Pr(A wins |¬E) Pr(¬E). (21.1)

For each pair 1 ≤ i < j ≤ k the probability that (Fi−Fj)(a, b) = 0 is 1/r by Lemma 13.4.4.
Similarly, the probability that Fi(a, b)− ab = 0 is 2/r. Hence, the probability of event E
is at most k(k + 1)/2r+ 2k/r = O(m2/r). On the other hand, if event E does not occur
then all A “knows” about (a, b) is that it lies in the set

X = {(a, b) ∈ (Z/rZ)2 : Fi(a, b) 6= Fj(a, b) for all 1 ≤ i < j ≤ k and Fi(a, b) 6= ab for all 1 ≤ i ≤ k}.

Let N = #X ≈ r2 −m2/2 Then Pr(¬E) = N/r2 and Pr(A wins |¬E) = 1/N .
Hence, the probability that A wins is O(m2/r). �

21.3 Random Self-Reducibility and Self-Correction of

CDH

We defined random self-reducibility in Section 2.1.4. Lemma 2.1.19 showed that the
DLP in a group G of prime order r is random self-reducible. Lemma 2.1.20 showed how
to obtain an algorithm with arbitrarily high success probability for the DLP from an
algorithm with noticeable success probability.

Lemma 21.3.1. Let g have order r and let G = hgi. Then CDH in G is random self-
reducible.

Proof: Let X = (G − {1})× G2 Let (g, h1, h2) = (g, ga, gb) ∈ X be the CDH instance.
Choose uniformly at random 1 ≤ u < r and 0 ≤ v, w < r and consider the triple
(gu, hu

1g
uv, hu

2g
uw) = (gu, (gu)a+v, (gu)b+w) ∈ X . Then every triple in X arises from

exactly one triple (u, v, w). Hence, the new triples are uniformly distributed in X . If
Z = (gu)(a+v)(b+w) is the solution to the new CDH instance then the solution to the
original CDH instance is

Zu−1 (mod r)h−w
1 h−v

2 g−vw.
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�

Exercise 21.3.2. Show that Fixed-CDH is random self-reducible in a group of prime
order r.

The following problem1 is another cousin of the computational Diffie-Hellman problem.
It arises in some cryptographic protocols.

Definition 21.3.3. Fix g of prime order r and h = ga for some 1 ≤ a < r. The static
Diffie-Hellman problem (Static-DH) is: Given h1 ∈ hgi to compute ha

1 .

Exercise 21.3.4. Show that the static Diffie-Hellman problem is random self-reducible.

One can also consider the decision version of static Diffie-Hellman.

Definition 21.3.5. Fix g of prime order r and h = ga for some 1 ≤ a < r. The decision
static Diffie-Hellman problem (DStatic-DH) is: Given h1, h2 ∈ hgi to determine
whether h2 = ha

1 .

We now show that DStatic-DH is random-self-reducible. This is a useful preliminary
to showing how to deal with DDH.

Lemma 21.3.6. Fix g of prime order r and h = ga for some 1 ≤ a < r. Then the
decision static Diffie-Hellman problem is random self-reducible.

Proof: Write G = hgi. Choose 1 ≤ w < r and 0 ≤ x < r uniformly at random. Given
(h1, h2) compute (Z1, Z2) = (hw

1 g
x, hw

2 h
x). We must show that if (h1, h2) is (respectively,

is not) a valid Static-DH pair then (Z1, Z2) is uniformly distributed over the set of all
valid (resp. invalid) Static-DH pairs.

First we deal with the case of valid Static-DH pairs. It is easy to check that if h2 = ha
1

then Z2 = Za
1 . Furthermore, for any pair Z1, Z2 ∈ G such that Z2 = Za

1 then one can
find exactly (r − 1) pairs (w, x) such that Z1 = hw

1 g
x.

On the other hand, if h2 6= ha
1 then write h1 = gb and h2 = gc with c 6≡ ab (mod r).

For any pair (Z1, Z2) = (gy, gz) ∈ G2 such that z 6≡ ay (mod r) we must show that
(Z1, Z2) can arise from precisely one choice (w, x) above. Indeed,

�
y
z

�
=

�
b 1
c a

��
w
x

�

and, since the matrix has determinant ab − c 6≡ 0 (mod r) one can show that there is a
unique solution for (w, x) and that w 6≡ 0 (mod r). �

We now tackle the general case of decision Diffie-Hellman.

Lemma 21.3.7. Let g have prime order r and let G = hgi. Then DDH in G is random
self-reducible.

Proof: Choose 1 ≤ u,w < r and 0 ≤ v, x < r uniformly at random. Given (g, h1, h2, h3) =
(g, ga, gb, gc) define the new tuple (gu, hu

1g
uv, huw

2 gux, huw
3 hux

1 hvw
2 guvx). One can verify

that the new tuple is a valid Diffie-Hellman tuple if and only if the original input is a
valid Diffie-Hellman tuple (i.e., c = ab). If the original tuple is a valid Diffie-Hellman tuple
then the new tuple is uniformly distributed among all Diffie-Hellman tuples. Finally, we
show that if the original tuple is not a valid Diffie-Hellman tuple then the new tuple is
uniformly distributed among the set of all invalid Diffie-Hellman tuples. To see this think

1The Static-DH problem seems to have been first studied by Brown and Gallant [111].
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of (h2, h3) as a DStatic-DH instance with respect to the pair (g, h1). Since (gu, hu
1g

uv) is
chosen uniformly at random from (G−{1})×G we have a uniformly random DStatic-DH
instance with respect to a uniformly random static pair. The result then follows from
Lemma 21.3.6. �

It is easy to turn a DLP oracle that succeeds with noticeable probability ǫ into one that
succeeds with probability arbitrarily close to 1, since one can check whether a solution
to the DLP is correct. It is less easy to amplify the success probability for a non-perfect
CDH oracle.

A natural (but flawed) approach is just to run the CDH oracle on random self-reduced
instances of CDH until the same value appears twice. We now explain why this approach
will not work in general. Consider a Fixed-CDH oracle that, on input (ga, gb), returns
gab+ξ where ξ ∈ Z is uniformly chosen between −1/ log(r) and 1/ log(r). Calling the
oracle on instances arising from the random self-reduction of Exercise 21.3.2 one gets a
sequence of values gab+ξ. Eventually the correct value gab will occur twice, but it is quite
likely that some other value will occur twice before that time.

We present Shoup’s self-corrector for CDH or Fixed-CDH from [553].2 Also see Cash,
Kiltz and Shoup [120].

Theorem 21.3.8. Fix l ∈ N. Let g have prime order r. Let A be a CDH (resp.
Fixed-CDH) oracle with success probability at least ǫ > log(r)−l. Let (g, ga, gb) be a
CDH instance. Let 1 > ǫ′ > 1/r. Then one can obtain an oracle that solves the CDH
(resp. Fixed-CDH) with probability at least 1− ǫ′− log(2r)2/(rǫ2) and that makes at most
2⌈log(2/ǫ′)/ǫ⌉ queries to A (where log is the natural logarithm).

Proof: Define c = log(2/ǫ′) ∈ R so that e−c = ǫ′/2. First call the oracle n = ⌈c/ǫ⌉ times
on random-self-reduced instances (if the oracle is a CDH oracle then use Lemma 21.3.1 and
if the oracle is a Fixed-CDH oracle then use Exercise 21.3.2) of the input problem (g, ga, gb)
and store the resulting guesses Z1, . . . , Zn for gab in a list L1. Note that n = O(log(r)l+1).
The probability that L1 contains at least one copy of gab is ≥ 1− (1− ǫ)c/ǫ ≥ 1− e−c =
1− ǫ′/2.

Now choose uniformly at random integers 1 ≤ s1, s2 < r and define X2 = gs1/(ga)s2 .
One can show that X2 is uniformly distributed in G = hgi and is independent of X1 = ga.

Call the oracle another n times on random-self-reduced versions of the CDH instance
(g,X2, g

b) and store the results Z ′
1, . . . , Z

′
n in a list L2.

Hence, with probability ≥ (1− ǫ′/2)2 ≥ 1− ǫ′ there is some Zi ∈ L1 and some Z ′
j ∈ L2

such that Zi = gab and Z ′
j = gb(s1−as2). For each 1 ≤ i, j ≤ n test whether

Zs2
i = (gb)s1/Z ′

j. (21.2)

If there is a unique solution (Zi, Z
′
j) then output Zi, otherwise output ⊥. Finding Zi can

be done efficiently by sorting L1 and then, for each Z ′
j ∈ L2, checking whether the value

of the right hand side of equation (21.2) lies in L1.
We now analyse the probability that the algorithm fails. The probability there is no

pair (Zi, Z
′
j) satisfying equation (21.2), or that there are such pairs but none of them have

Zi = gab, is at most ǫ′. Hence, we now assume that a good pair (Zi, Z
′
j) exists and we

want to bound the probability that there is a bad pair (i.e., a solution to equation (21.2)
for which Zi 6= gab). Write X1 = ga, X2 = ga

′

(where a′ = s1−as2) and Y = gb. Suppose
(Z,Z ′) is a pair such that

Zs2Z ′ = Y s1 . (21.3)

2Maurer and Wolf [405] were the first to give a self-corrector for CDH, but Shoup’s method is more
efficient.
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We claim that Z = Y a and Z ′ = Y a′

with probability at least 1 − 1/q. Note that if
equation (21.3) holds then

(Z/Y a)s1 = Y a′

/Z ′. (21.4)

If precisely one of Z = Y a or Z ′ = Y a′

holds then this equation does not hold. Hence,
Z 6= Y a and Z ′ 6= Y a′

, in which case there is precisely one value for s1 for which
equation (21.4) holds. Considering all n2 pairs (Z,Z ′) ∈ L1 × L2 it follows there are at
most n2 values for s1, which would lead to an incorrect output for the self-corrector. Since
s1 is chosen uniformly at random the probability of an incorrect output is at most n2/r.
Since n ≤ log(2r)/ǫ one gets the result. Note that log(2r)2/(rǫ2) = O(log(r)2+2l/r). �

Exercise 21.3.9. Extend Lemma 21.1.13 to the case of a non-perfect Fixed-CDH oracle.
What is the number of oracle queries required?

21.4 The den Boer and Maurer Reductions

The goal of this section is to discuss reductions from DLP to CDH or Fixed-CDH in groups
of prime order r. Despite having proved that Fixed-CDH and CDH are equivalent, we
prefer to treat them separately in this section. The first such reduction (assuming a
perfect Fixed-CDH oracle) was given by den Boer [169] in 1988. Essentially den Boer’s
method involves solving a DLP in F∗

r , and so it requires r − 1 to be sufficiently smooth.
Hence there is no hope of this approach giving an equivalence between Fixed-CDH and
DLP for all groups of prime order.

The idea was generalised by Maurer [402] in 1994, by replacing the multiplicative
group F∗

r by an elliptic curve group E(Fr). Maurer and Wolf [405, 406, 408] extended
the result to non-perfect oracles. If #E(Fr) is sufficiently smooth then the reduction is
efficient. Unfortunately, there is no known algorithm to efficiently generate such smooth
elliptic curves. Hence Maurer’s result also does not prove equivalence between Fixed-CDH
and DLP for all groups. A subexponential-time reduction that conjecturally applies to
all groups was given by Boneh and Lipton [83]. An exponential-time reduction (but
still faster than known algorithms to solve DLP) that applies to all groups was given by
Muzereau, Smart and Vercauteren [448], and Bentahar [42, 43].

21.4.1 Implicit Representations

Definition 21.4.1. Let G be a group and let g ∈ G have prime order r. For a ∈ Z/rZ
we call h = ga an implicit representation of a.

In this section we call the usual representation of a ∈ Z/rZ the explicit represen-
tation of a.

Lemma 21.4.2. There is an efficient (i.e., computable in polynomial-time) mapping from
Z/rZ to the implicit representations of Z/rZ. One can test equality of elements in Z/rZ
given in implicit representation. If h1 is an implicit representation of a and h2 is an
implicit representation of b then h1h2 is an implicit representation of a+ b and h−1

1 is an
implicit representation of −a.

In other words, we can compute in the additive group Z/rZ using implicit represen-
tations.

Lemma 21.4.3. If h is an implicit representation of a and b ∈ Z/rZ is known explicitly,
then hb is an implicit representation of ab.
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Let O be a perfect Fixed-CDH oracle with respect to g. Suppose h1 is an implicit
representation of a and h2 is an implicit representation of b. Then h = O(h1, h2) is an
implicit representation of ab.

In other words, if one can solve Fixed-CDH then one can compute multiplication
modulo r using implicit representatives.

Exercise 21.4.4. Prove Lemmas 21.4.2 and 21.4.3.

Lemma 21.4.5. Let g have order r. Let h1 be an implicit representation of a such that
h1 6= 1 (in other words, a 6≡ 0 (mod r)).

1. Given a perfect CDH oracle one can compute an implicit representation for a−1 (mod r)
using one oracle query.

2. Given a perfect Fixed-CDH oracle with respect to g one can compute an implicit
representation for a−1 (mod r) using ≤ 2 log2(r) oracle queries.

Proof: Given a perfect CDH oracle A one calls A(ga, g, g) = ga
−1 (mod r). Given a perfect

Fixed-CDH oracle one computes ga
r−2 (mod r) as was done in Lemma 21.1.15. �

To summarise, since Z/rZ ∼= Fr, given a perfect CDH or Fixed-CDH oracle then
one can perform all field operations in Fr using implicit representations. Boneh and
Lipton [83] call the set of implicit representations for Z/rZ a black box field.

21.4.2 The den Boer Reduction

We now present the den Boer reduction [169], which applies when r−1 is smooth. The
crucial idea is that the Pohlig-Hellman and baby-step-giant-step methods only require the
ability to add, multiply and compare group elements. Hence, if a perfect CDH oracle is
given then these algorithms can be performed using implicit representations.

Theorem 21.4.6. Let g ∈ G have prime order r. Suppose l is the largest prime factor of
r − 1. Let A be a perfect oracle for the Fixed-CDH problem with respect to g. Then one
can solve the DLP in hgi using O(log(r) log(log(r))) oracle queries, O(log(r)(

√
l/ log(l)+

log(r)) multiplications in Fr and O(
√
l log(r)2/ log(l)) operations in G (where the constant

implicit in the O(·) does not depend on l).

Proof: Let the challenge DLP instance be g, h = ga. If h = 1 then return a = 0.
Hence, we now assume 1 ≤ a < r. We can compute a primitive root γ ∈ F∗

r in
O(log(r) log(log(r))) operations in Fr (see Section 2.15). The (unknown) logarithm of
h satisfies

a ≡ γu (mod r) (21.5)

for some integer u. To compute a it is sufficient to compute u.3 The idea is to solve the
DLP in equation (21.5) using the implicit representation of a. Since r − 1 is assumed to
be smooth then we can use the Pohlig-Hellman (PH) method, followed by the baby-step-
giant-step (BSGS) method in each subgroup. We briefly sketch the details.

Write r − 1 =
Qn

i=1 l
ei
i where the li are prime. The PH method involves projecting a

and γ into the subgroup of F∗
r of order leii . In other words, we must compute

hi = ga
(r−1)/l

ei
i

3It may seem crazy to try to work out u without knowing a, but it works!
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for 1 ≤ i ≤ n. Using the Fixed-CDH oracle to perform computations in implicit represen-
tation, Algorithm 4 computes all the hi together in O(log(r) log log(r)) oracle queries.4 A

further O(log(r)) oracle queries are required to compute all ga
(r−1)/l

f
i where 0 ≤ f < ei.

Similarly one computes all xi = γ(r−1)/l
ei
i in O(log(r) log log(r)) multiplications in Fr.

We then have

hi = gx
u (mod l

ei
i

)

i .

Following Section 13.2 one reduces these problems to
Pn

i=1 ei instances of the DLP in
groups of prime order li. This requires O(log(r)2) group operations and field operations
overall (corresponding to the computations in line 6 of Algorithm 13).

For the baby-step-giant-step algorithm, suppose we wish to solve ga = gγ
u

(where, for
simplicity, we redefine a and γ so that they now have order l modulo r). Set m = ⌈

√
l⌉

and write u = u0 +mu1 where 0 ≤ u0, u1 < m. From

ga = gγ
u

= gγ
u0+mu1

= gγ
u0(γm)u1

(21.6)

one has

(ga)
(γ−m)u1

= gγ
u0
. (21.7)

We compute and store (in a sorted structure) the baby steps gγ
i

for i = 0, 1, 2, . . . ,m− 1

(this involves computing one exponentiation in G at each step, as gγ
i+1

= (gγ
i

)γ , which
is at most 2 log2(r) operations in G).

We then compute the giant steps (ga)γ
−mj

. This involves computing w0 = γ−m (mod r)
and then the sequence wj = γ−mj (mod r) as wj+1 = wiw0 (mod r); this requires
O(log(m) + m) multiplications in Fr. We also must compute (ga)wj , each of which re-
quires ≤ 2 log2(r) operations in G.

When we find a match then we have solved the DLP in the subgroup of order l. The
BSGS algorithm for each prime l requires O(

√
l log(r)) group operations and O(

√
l +

log(r)) operations in Fr. There are O(log(r)) primes l for which the BSGS must be run,
but a careful analysis of the cost (using the result of Exercise 13.2.7) gives an overall
running time of O(log(r)2

√
l/ log(l)) group operations and O(log(r)2 + log(r)

√
l/ log(l))

multiplications in Fr. Note that the CDH oracle is not required for the BSGS algorithm.

Once u is determined modulo all prime powers le | (r − 1) one uses the Chinese
remainder theorem to compute u ∈ Z/(r − 1)Z. Finally, one computes a = γu (mod r).
These final steps require O(log(r)) operations in Fr. �

Corollary 21.4.7. Let A(κ) be an algorithm that outputs triples (g, h, r) such that r is
a κ-bit prime, g has order r, r − 1 is O(log(r)2)-smooth, and h ∈ hgi. Then DLP ≤R

Fixed-CDH for the problem instances output by A.

Proof: Suppose one has a perfect Fixed-CDH oracle. Putting l = O(log(r)2) into Theo-
rem 21.4.6 gives a reduction with O(log(r) log log(r)) oracle queries and O(log(r)3) group
and field operations. �

The same results trivially hold if one has a perfect CDH oracle.

Exercise 21.4.8.⋆ Determine the complexity in Theorem 21.4.6 if one has a Fixed-CDH
oracle that only succeeds with probability ǫ.

4Remark 2.15.9 does not lead to a better bound, since the value n (which is m in the notation of that
remark) is not necessarily large.
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Cherepnev [135] iterates the den Boer reduction to show that if one has an efficient
CDH algorithm for arbitrary groups then one can solve DLP in a given group in subex-
ponential time. This result is of a very different flavour to the other reductions in this
chapter (which all use an oracle for a group G to solve a computational problem in the
same group G) so we do not discuss it further.

21.4.3 The Maurer Reduction

The den Boer reduction can be seen as solving the DLP in the algebraic group Gm(Fr),
performing all computations using implicit representation. Maurer’s idea was to replace
Gm(Fr) by any algebraic group G(Fr), in particular the group of points on an elliptic
curve E(Fr). As with Lenstra’s elliptic curve factoring method, even when r − 1 is not
smooth then there might be an elliptic curve E such that E(Fr) is smooth.

When one uses a general algebraic group G there are two significant issues that did
not arise in the den Boer reduction.

• The computation of the group operation in G may require inversions. This is true
for elliptic curve arithmetic using affine coordinates.

• Given h = ga one must be able to compute an element P ∈ G(Fr), in implicit
representation, such that once P has been determined in explicit representation one
can compute a. For an elliptic curve E one could hope that P = (a, b) ∈ E(Fr) for
some b ∈ Fr.

Before giving the main result we address the second of these issues. In other words,
we show how to embed a DLP instance into an elliptic curve point.

Lemma 21.4.9. Let g have prime order r and let h = ga. Let E : y2 = x3+Ax+B be an
affine elliptic curve over Fr. Given a perfect Fixed-CDH oracle there is an algorithm that
outputs an implicit representation (gX , gY ) of a point (X,Y ) ∈ E(Fr) and some extra
data, and makes an expected O(log(r)) oracle queries and performs an expected O(log(r))
group operations in hgi. Furthermore, given the explicit value of X and the extra data
one can compute a.

Proof: The idea is to choose uniformly at random 0 ≤ α < r and set X = a + α.
An implicit representation of X can be computed as h1 = hgα using O(log(r)) group
operations. If we store α then, given X , we can compute a. Hence, the extra data is α.

Given the implicit representation for X one determines an implicit representation for
β = X3+AX+B using two oracle queries. Given gβ one can compute (here (βr ) ∈ {−1, 1}
is the Legendre symbol)

h2 = g(
β
r ) = gβ

(r−1)/2

(21.8)

using O(log(r)) oracle queries. If h2 = g then β is a square and so X is an x-coordinate
of a point of E(Fr).

Since there are at least (r−2
√
r)/2 possible x-coordinates of points in E(Fr) it follows

that if one chooses X uniformly at random in Fr then the expected number of trials until
X is the x-coordinate of a point in E(Fr) is approximately two.

Once β is a square modulo r then one can compute an implicit representation for Y =√
β (mod r) using the Tonelli-Shanks algorithm with implicit representations. We use

the notation of Algorithm 3. The computation of the non-residue n is expected to require
O(log(r)) operations in Fr and can be done explicitly. The computation of the terms w and
b requires O(log(r)) oracle queries, some of which can be avoided by storing intermediate
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values from the computation in equation (21.8). The computation of i using a Pohlig-

Hellman-style algorithm is done as follows. First compute the sequence b, b2, . . . , b2
e−1

using O(log(r)) oracle queries and the sequence y, y2, . . . , y2
e−1

using O(log(r)) group
operations. With a further O(log(r)) group operations one can determine the bits of i. �

Theorem 21.4.10. Let B ∈ N. Let g ∈ G have order r. Let E be an elliptic curve over
Fr such that E(Fr) is a cyclic group. Suppose that the order of E(Fr) is known and is
B-smooth. Given a perfect Fixed-CDH oracle with respect to g one can solve the DLP in
hgi using an expected O(log(r)2 log(log(r))) oracle queries.5

Indeed, there are two variants of the reduction, one using exhaustive search and one
using the baby-step-giant-step algorithm. One can also consider the case of a perfect
CDH oracle. The following table gives the full expected complexities (where the constant
implicit in the O(·) is independent of B). We use the abbreviation l(x) = log(x), so that
l(l(r)) = log(log(r)).

Oracle Reduction Oracle queries Group operations Fr operations
Fixed-CDH PH only O(l(r)2l(l(r))) O(Bl(r)2/l(B)) O(Bl(r)2/l(B))

Fixed-CDH PH+BSGS O(
√
Bl(r)2/l(B) + l(r)2l(l(r))) O(

√
Bl(r)2/l(B)) O(

√
Bl(r)2/l(B))

CDH PH only O(l(r)l(l(r))) O(Bl(r)2/l(B)) O(Bl(r)2/l(B))

CDH PH+BSGS O(
√
Bl(r)/l(B) + l(r)l(l(r))) O(

√
Bl(r)2/l(B)) O(

√
Bl(r)2/l(B))

Proof: Let the discrete logarithm instance be (g, h = ga). WriteN = #E(Fr) =
Qk

i=1 l
ei
i .

We assume that affine coordinates are used for arithmetic in E(Fr). Let P be a generator
of E(Fr).

The reduction is conceptually the same as the den Boer reduction. One difference is
that elliptic curve arithmetic requires inversions (which are performed using the method
of Lemma 21.1.13 and Lemma 21.1.15), hence the number of Fixed-CDH oracle queries
must increase. A sketch of the reduction in the case of exhaustive search is given in
Algorithm 27.

The first step is to use Lemma 21.4.9 to associate with h the implicit representations
of a point Q ∈ E(Fr). This requires an expected O(log(r)) oracle queries and O(log(r))
group operations for all four variants. Then Q ∈ hP i where P is the generator of the
cyclic group E(Fr).

The idea is again to use Pohlig-Hellman (PH) and baby-step-giant-step (BSGS) to
solve the discrete logarithm of Q with respect to P in E(Fr). If we can compute an
integer u such that Q = [u]P (with computations done in implicit representation) then
computing [u]P and using Lemma 21.4.9 gives the value a explicitly.

First we consider the PH algorithm. As with the den Boer reduction, one needs to
compute explicit representations (i.e., standard affine coordinates) for [N/leii ]P and im-
plicit representations for [N/leii ]Q. It is possible that [N/leii ]Q = OE so this case must be
handled. As in Section 2.15.1, computing these points requires O(log(r) log log(r)) elliptic
curve operations. Hence, for the multiples of P we need O(log(r) log log(r)) operations in
Fr while for the multiples ofQ we need O(log(r)2 log log(r)) Fixed-CDH oracle queries and
O(log(r) log log(r)) group operations. (If a CDH oracle is available then this stage only
requires O(log(r) log log(r)) oracle queries, as an inversion in implicit representation can

be done with a single CDH oracle query.) Computing the points [N/lfi ]P for 1 ≤ f < ei
and all i requires at most a further 2

Pk
i=1 ei log2(li) = 2 log2(N) = O(log(r)) group

operations. Similarly, computing the implicit representations of the remaining [N/lfi ]Q
requires O(log(r)2) Fixed-CDH oracle queries and O(log(r)) group operations.

5This is improved to O(log(r) log log(r)) in Remark 21.4.11.
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The computation of uiP0 in line 8 of Algorithm 27 requires O(log(r)) operations in
Fr followed by O(1) operations in G and oracle queries.

The exhaustive search algorithm for the solution to the DLP in a subgroup of prime
order li is given in lines 9 to 16 of Algorithm 27. The point P0 in line 8 has already been
computed, and computing Q0 requries only one elliptic curve addition (i.e., O(log(r))
Fixed-CDH oracle queries). The while loop in line 12 runs for ≤ B iterations, each
iteration involves a constant number of field operations to compute T + P0 followed by
two exponentiations in the group to compute gxT and gyT (an obvious improvement is to
use gxT only). The complexity of lines 9 to 16 is therefore O(B log(r)) group operations,
and O(B) field operations.

If one uses BSGS the results are similar. Suppose Q and P are points of order l,
where P is known explicitly while we only have an implicit representation (gxQ , gyQ) for
Q. Let m = ⌈

√
l⌉ and P1 = [m]P so that Q = [u0]P + [u1]P1 for 0 ≤ u0, u1 < m.

One computes a list of baby steps [u0]P in implicit representation using O(
√
B) field

operations and O(
√
B log(r)) group operations as above. For the giant steps Q − [u1]P1

one is required to perform elliptic curve arithmetic with the implicit point Q and the
explicit point [u1]P1, which requires an inversion of an implicit element. Hence the giant
steps require O(

√
B) field operations, O(

√
B log(r)) group operations and O(

√
B log(r))

Fixed-CDH oracle queries.
Since

Pk
i=1 ei ≤ log2(N) the exhaustive search or BSGS subroutine is performed

O(log(r)) times. A more careful analysis using Exercise 13.2.7 means the complexity
is multiplied by log(r)/ log(B). The Chinese remainder theorem and later stages are
negligible. The result follows. �

Algorithm 27 Maurer reduction

Input: g, h = ga, E(Fr)
Output: a
1: Associate to h an implicit representation for a point Q = (X,Y ) ∈ E(Fr) using

Lemma 21.4.9
2: Compute a point P ∈ E(Fr) that generates E(Fr). Let N = #E(Fr) =

Qk
i=1 l

ei
i

3: Compute explicit representations of {[N/lji ]P : 1 ≤ i ≤ k, 1 ≤ j ≤ ei}
4: Compute implicit representations of {[N/lji ]Q : 1 ≤ i ≤ k, 1 ≤ j ≤ ei}
5: for i = 1 to k do
6: ui = 0
7: for j = 1 to ei do ⊲ Reducing DLP of order leii to cyclic groups

8: Let P0 = [N/lji ]P and Q0 = [N/lji ]Q− uiP0

9: if Q0 6= OE then
10: Let (h0,x, h0,y) be the implicit representation of Q0

11: P0 = [N/li]P0, n = 1, T = P0 = (xT , yT )
12: while h0,x 6= gxT or h0,y 6= gyT do ⊲ Exhaustive search
13: n = n+ 1, T = T + P0

14: end while
15: ui = ui + nlj−1

16: end if
17: end for
18: end for
19: Use Chinese remainder theorem to compute u ≡ ui (mod leii ) for 1 ≤ i ≤ k
20: Compute (X,Y ) = [u]P and hence compute a
21: return a
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Remark 21.4.11. We have seen that reductions involving a Fixed-CDH oracle are less
efficient (i.e., require more oracle queries) than reductions using a CDH oracle. A solution6

to this is to work with projective coordinates for elliptic curves. Line 12 of Algorithm 27
tests whether the point Q0 given in implicit representation is equal to the point (xT , yT )
given in affine representation. When Q0 = (x0 : y0 : z0) then the test h0,x = gxT in line
12 is replaced with the comparison

gx0 = (gz0)
xT .

Hence the number of oracle queries in the first line of the table in Theorem 21.4.10 can
be reduced to O(log(r) log log(r)). As mentioned in Remark 13.3.2, one cannot use the
BSGS algorithm with projective coordinates, as the non-uniqueness of the representation
means one can’t efficiently detect a match between two lists.

Exercise 21.4.12.⋆ Generalise the Maurer algorithm to the case where the group of
points on the elliptic curve is not necessarily cyclic. Determine the complexity if l1 is the
largest prime for which E(Fr)[l1] is not cyclic and l2 is the largest prime dividing #E(Fr)
for which E(Fr)[l2] is cyclic.

Exercise 21.4.13. If r+1 is smooth then one can use the algebraic group G2,r
∼= T2(Fr)

(see Section 6.3) instead of Gm(Fr) or E(Fr). There are two approaches: the first is to
use the usual representation {a+ bθ ∈ Fr2 : NFr2/Fr

(a+ bθ) = 1} for G2,r and the second

is to use the representation A1(Fr) for T2(Fr) − {1} corresponding to the map decomp2
from Definition 6.3.7. Determine the number of (perfect) oracle queries in the reductions
from Fixed-CDH to DLP for these two representations. Which is better? Repeat the
exercise when one has a CDH oracle.

Corollary 21.4.14. Let c ∈ R>1. Let (Gn, gn, rn) be a family of groups for n ∈ N
where gn ∈ Gn has order rn and rn is an n-bit prime. Suppose we are given auxiliary

elliptic curves (En, Nn) for the family, where En is an elliptic curve over Frn such that
#En(Frn) = Nn and Nn is O(log(rn)

c)-smooth. Then the DLP in hgni is equivalent to
the Fixed-CDH problem in hgni.

Exercise 21.4.15. Prove Corollary 21.4.14.

We now state the conjecture of Maurer and Wolf that all Hasse intervals contain
a polynomially smooth integer. Define ν(r) to be the minimum, over all integers n ∈
[r + 1− 2

√
r, r + 1 + 2

√
r], of the largest prime divisor of n. Conjecture 1 of [407] states

that

ν(r) = log(r)O(1). (21.9)

See Remark 15.3.5 for discussion of this. Muzereau, Smart and Vercauteren [448] note
that if r is a pseudo-Mersenne prime (as is often used in elliptic curve cryptography) then
the Hasse interval usually contains a power of 2. Similarly, as noted by Maurer and Wolf
in [405], one can first choose a random smooth integer n and then search for a prime r
close to n and work with a group G of order r.

Exercise 21.4.16.⋆ Show how to use the algorithm of Section 19.4.4 to construct a
smooth integer in the Hasse interval. Construct a 240-smooth integer (not equal to 2255)
close to p = 2255 − 19 using this method.

6This idea is briefly mentioned in Section 3 of [402], but was explored in detail by Bentahar [42].
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Remark 21.4.17. There are two possible interpretations of Corollary 21.4.14. The first
interpretation is: if there exists an efficient algorithm for CDH or Fixed-CDH in a group
G = hgi of prime order r and if there exists an auxiliary elliptic curve over Fr with
sufficiently smooth order then there exists an efficient algorithm to solve the DLP in
G. Maurer and Wolf [408] (also see Section 3.5 of [409]) claim this gives a non-uniform
reduction from DLP to CDH, however the validity of this claim depends on the DLP
instance generator.7

In other words, if one believes that there does not exist a non-uniform polynomial-time
algorithm for DLP in G (for certain instance generators) and if one believes the conjecture
that the Hasse interval around r contains a polynomially smooth integer, then one must
believe there is no polynomial-time algorithm for CDH or Fixed-CDH in G. Hence, one
can use the results to justify the assumption that CDH is hard. We stress that this is
purely a statement of existence of algorithms; it is independent of the issue of whether or
not it is feasible to write the algorithms down.

A second interpretation is that CDH might be easy and that this reduction yields
the best algorithm for solving the DLP. If this were the case (or if one wants a uniform
reduction) then, in order to solve a DLP instance, the issue of how to implement the DLP
algorithm becomes important. The problem is that there is no known polynomial-time
algorithm to construct auxiliary elliptic curves E(Fr) of smooth order. An algorithm to
construct smooth curves (based on the CM method) is given in Section 4 of [405] but it
has exponential complexity. Hence, if one can write down an efficient algorithm for CDH
then the above ideas alone do not allow one to write down an efficient algorithm for DLP.

Boneh and Lipton [83] handle the issue of auxiliary elliptic curves by giving a subexponential-
time reduction between Fixed-CDH and DLP. They make the natural assumption (es-
sentially Conjecture 15.3.1; as used to show that the elliptic curve factoring method is
subexponential-time) that, for sufficiently large primes, the probability that a randomly
chosen integer in the Hasse interval [r + 1 − 2

√
r, r + 1 + 2

√
r] is Lr(1/2, c)-smooth is

1/Lr(1/2, c
′) for some constants c, c′ > 0 (see Section 15.3 for further discussion of these

issues). By randomly choosing Lr(1/2, c
′) elliptic curves over Fr one therefore expects

to find one that has Lr(1/2, c)-smooth order. One can then perform Algorithm 27 to
solve an instance of the DLP in subexponential-time and using polynomially many oracle
queries. We refer to [83] for the details.

Maurer and Wolf extend the Boneh-Lipton idea to genus 2 curves and use results of
Lenstra, Pila and Pomerance (Theorem 1.3 of [380]) to obtain a reduction with proven
complexity Lr(2/3, c) for some constant c (see Section 3.6 of [409]). This is the only reduc-
tion from DLP to CDH that does not rely on any conjectures or heuristics. Unfortunately
it is currently impractical to construct suitable genus 2 curves in practice (despite being
theoretically polynomial-time).

Muzereau, Smart and Vercauteren [448] go even further than Boneh and Lipton. They
allow an exponential-time reduction, with the aim of minimising the number of CDH or
Fixed-CDH oracle queries. The motivation for this approach is to give tight reductions
between CDH and DLP (i.e., to give a lower bound on the running time for an algorithm

7An instance generator for the DLP (see Example 2.1.9) outputs a quadruple (G, r, g, h) where G is
a description of a group, g ∈ G has order r, h ∈ hgi and r is prime. The size of the instance depends
on the representation of G and g, but is at least 2 log2(r) bits since one must represent r and h. If one
considers the DLP with respect to an instance generator for which r is constant over all instances of a
given size n, then a single auxiliary curve is needed for all DLP instances of size n and so Corollary 21.4.14
gives a non-uniform reduction. On the other hand, if there are superpolynomially many r among the
outputs of size n of the instance generator (this would be conjecturally true for the instance generator of
Example 2.1.9) then the amount of auxiliary data is not polynomially bounded and hence the reduction
is not non-uniform.
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for CDH in terms of conjectured lower bounds for the running time of an algorithm for
DLP). Their results were improved by Bentahar [42, 43]. It turns out to be desirable
to have an auxiliary elliptic curve such that #E(Fr) is a product of three coprime inte-
gers of roughly equal size r1/3. The reduction then requires O(log(r)) oracle queries but
O(r1/3 log(r)) field operations. Islam [306] has proved that such an elliptic curve exists
for each prime r. One can construct auxiliary curves by choosing random curves, count-
ing points and factoring; one expects only polynomially many trials, but the factoring
computation is subexponential. We refer to [448, 42, 43] for further details.

Exercise 21.4.18. Write down the algorithm for the Muzereau-Smart-Vercauteren re-
duction using projective coordinates. Prove that the algorithm has the claimed complex-
ity.

Exercise 21.4.19. Show how to generate in heuristic expected polynomial-time primes
r, p ≡ 2 (mod 3) such that r | (p+1), r+1 is κ-smooth, and 2κ−1 ≤ r < p ≤ 2κ+3. Hence,
by Exercise 9.10.4, taking E : y2 = x3 + 1 then E(Fp) is a group of order divisible by r
and E(Fr) has κ-smooth order and is a suitable auxiliary elliptic curve for the Maurer
reduction.

Finally, we remark that the den Boer and Maurer reductions cannot be applied to
relate CDH and DLP in groups of unknown order. For example, let N be composite and
g ∈ (Z/NZ)∗ of unknown order M . Given a perfect Fixed-CDH oracle with respect to
g one can still compute with the algebraic group Gm(Z/MZ) in implicit representation
(or projective equations for E(Z/MZ)), but if M is not known then the order of G =
Gm(Z/MZ) (respectively, G = E(Z/MZ)) is also not known and so one cannot perform
the Pohlig-Hellman algorithm in G. Later we will mention how a CDH oracle in (Z/NZ)∗

can be used to factor N (see Exercise 24.2.23) and hence avoid this problem in that group.

21.5 Algorithms for Static Diffie-Hellman

Brown and Gallant [111] studied the relationship between Static-DH and DLP. Their main
result is an algorithm to solve an instance of the DLP using a perfect Static-DH oracle.
Cheon [131] independently discovered this algorithm in a different context, showing that

a variant of the DLP (namely, the problem of computing a given g, ga and ga
d

; we call
this Cheon’s variant of the DLP) can be significantly easier than the DLP. We now
present the algorithm of Brown-Gallant and Cheon, and discuss some of its applications.

Theorem 21.5.1. Let g have prime order r and let d | (r − 1). Given h1 = ga and

hd = ga
d

then one can compute a in O((
p

(r − 1)/d +
√
d) log(r)) group operations,

O(
p

(r − 1)/d+
√
d) group elements of storage and O(

p
(r − 1)/d+

√
d) multiplications

in Fr.
8

Proof: First, the case a ≡ 0 (mod r) is easy, so we assume a 6≡ 0 (mod r). The idea
is essentially the same as the den Boer reduction. Let γ be a primitive root modulo r.
Then a = γu (mod r) for some 0 ≤ u < r− 1 and it suffices to compute u. The den Boer
reduction works by projecting the unknown a into prime order subgroups of F∗

r using a
Diffie-Hellman oracle. In our setting, we already have an implicit representation of the
projection ad into the subgroup of F∗

r of order (r − 1)/d.

8As usual, we are being careless with the O(·)-notation. What we mean is that there is a constant c

independent of r, d, g and a such that the algorithm requires≤ c(
�

(r − 1)/d+
√
d) log(r) group operations.
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The first step is to solve hd = ga
d

= gγ
du

for some 0 ≤ u ≤ (r − 1)/d. Let m =
⌈
p
(r − 1)/d⌉ and write u = u0 +mu1 with 0 ≤ u0, u1 < m. This is exactly the setting

of equations (21.6) and (21.7) and hence one can compute (u0, u1) using a baby-step-
giant-step algorithm. This requires ≤ m multiplications in Fr and ≤ 2m exponentiations
in the group. Thus the total complexity is O(

p
(r − 1)/d log(r)) group operations and

O(
p

(r − 1)/d) field operations.
We now have ad = γdu and so a = γu+v(r−1)/d for some 0 ≤ v < d. It remains to

compute v. Let

h = hγ−u

1 = gaγ
−u

= gγ
v(r−1)/d

.

Set m = ⌈
√
d⌉ and write v = v0 + mv1 where 0 ≤ v0, v1 < m. Using the same ideas as

above (since γ is known explicitly the powers are computed efficiently) one can compute
(v0, v1) using a baby-step-giant-step algorithm in O(

√
d log(r)) group operations. Finally,

we compute a = γu+v(r−1)/d (mod r). �

Kozaki, Kutsuma and Matsuo [353] show how to reduce the complexity in the above
result to O(

p
(r − 1)/d +

√
d) group operations by using precomputation to speed up

the exponentiations to constant time. Note that this trick requires exponential storage
and is not applicable when low-storage discrete logarithm algorithms are used (as in
Exercise 21.5.5).

The first observation is that if r − 1 has a suitable factorisation then Cheon’s variant
of the DLP can be much easier than the DLP.

Corollary 21.5.2. Let g have prime order r and suppose r − 1 has a factor d such that

d ≈ r1/2. Given h1 = ga and hd = ga
d

then one can compute a in O(r1/4 log(r)) group
operations.

Corollary 21.5.3. Let g have prime order r and suppose r − 1 =
Qn

i=1 di where the di

are coprime. Given h1 = ga and hdi = ga
di

for 1 ≤ i ≤ n then one can compute a in
O((

Pn
i=1

√
di) log(r)) group operations.

Exercise 21.5.4. Prove Corollaries 21.5.2 and 21.5.3.

As noted in [111] and [131] one can replace the baby-step-giant-step algorithms by
Pollard methods. Brown and Gallant9 suggest a variant of the Pollard rho method, but
with several non-standard features: one needs to find the precise location of the collision
(i.e., steps xi 6= xj in the walk such that xi+1 = xj+1) and there is only a (heuristic) 0.5
probability that a collision leads to a solution of the DLP. Cheon [131] suggests using the
Kangaroo method, which is a more natural choice for this application.

Exercise 21.5.5. Design a pseudorandom walk for the Pollard kangaroo method to solve
the DLP in implicit representation arising in the proof of Theorem 21.5.1.

Brown and Gallant use Theorem 21.5.1 to obtain the following result.

Theorem 21.5.6. Let g have prime order r and let d | (r − 1). Let h = ga and suppose
A is a perfect oracle for the static Diffie-Hellman problem with respect to (g, h) (i.e.,
A(h1) = ha

1). Then one can compute a using d oracle queries, O((
p

(r − 1)/d+
√
d) log(r))

group operations and O((
p

(r − 1)/d+
√
d) log(r)) multiplications in Fr.

Proof: Write h1 = h = ga and compute the sequence hi+1 = O(hi) = ga
i

until ga
d

is
computed. Then apply Theorem 21.5.1. �

9See Appendix B.2 of the first version of [111]. This does not appear in the June 2005 version.
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Note that the reduction uses a Static-DH oracle with respect to ga to compute a. The
reduction does not solve a general instance of the DLP using a specific Static-DH oracle,
hence it is not a reduction from DLP to Static-DH. Also recall that Exercise 20.4.6 showed
how one can potentially compute a efficiently given access to a Static-DH oracle (with
respect to a) that does not check that the inputs are group elements of the correct order.
Hence, the Brown-Gallant result is primarily interesting in the case where the Static-DH
oracle does perform these checks.

Corollary 21.5.7. Let g have prime order r and suppose r − 1 has a factor d such that
d ≈ r1/3. Given h = ga and a perfect Static-DH oracle with respect to (g, h) then one can
compute a in O(r1/3) oracle queries and O(r1/3 log(r)) group operations.

Exercise 21.5.8. Prove Corollary 21.5.7.

Brown and Gallant use Theorem 21.5.6 to give a lower bound on the difficulty of
Static-DH under the assumption that the DLP is hard.

Exercise 21.5.9. Let g have order r. Assume that the best algorithm to compute a,
given h = ga, requires

√
r group operations. Suppose that r−1 has a factor d = c1 log(r)

2

for some constant c1. Prove that the best algorithm to solve Static-DH with respect to
(g, h) requires at least c2

√
r/ log(r)2 group operations for some constant c2.

All the above results are predicated on the existence of a suitable factor d of r− 1. Of
course, r − 1 may not have a factor of the correct size; for example if r − 1 = 2l where l
is prime then we have shown that given (g, ga, ga

2

) one can compute a in O(
p

r/2 log(r))
group operations, which is no better than general methods for the DLP. To increase the
applicability of these ideas, Cheon also gives a method for when there is a suitable factor
d of r+1. The method in this case is not as efficient as the r− 1 case, and requires more
auxiliary data.

Theorem 21.5.10. Let g have prime order r and let d | (r + 1). Given hi = ga
i

for
1 ≤ i ≤ 2d then one can compute a in O((

p
(r + 1)/d + d) log(r)) group operations,

O(
p

(r + 1)/d +
√
d) group elements storage and O((

p
(r + 1)/d +

√
d) log(r)) multipli-

cations in Fr.

Proof: As in Exercise 21.4.13 the idea is to work in the algebraic group G2,r, which
has order r + 1. Write Fr2 = Fr(θ) where θ2 = t ∈ Fr. By Lemma 6.3.10 each element
α ∈ G2,r − {1} ⊆ F∗

r2 is of the form α0 + α1θ where

α0 =
a2 − t

a2 + t
, α1 =

2a

a2 + t

for some a ∈ Fr. For each d ∈ N there exist polynomials fd,0(x), fd,1(x) ∈ Fr[x] of degree
2d such that, for α as above, one has

αd =
fd,0(a) + θfd,1(a)

(a2 + t)d
.

The idea is to encode the DLP instance ga into the element β ∈ G2,r as

β =
a2 − t

a2 + t
+ θ

2a

a2 + t
.

We do not know β, but we can compute (a2− t), (a2+ t) and 2a in implicit representation.
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Let γ be a generator for G2,r, known explicitly. Then β = γu for some 0 ≤ u < r+ 1.
It suffices to compute u.

The first step is to project into the subgroup of order (r+1)/d. We have βd = γdu for
some 0 ≤ u < (r+1)/d. Let m = ⌈

p
(r + 1)/d⌉ so that u = u0+mu1 for 0 ≤ u0, u1 < m.

Write γi = γi,0+θγi,1. Then βdγ−u0 = γdu1 and so (fd,0(a)+θfd,1(a))(γ−u0,0+θγ−u0,1) =
(a2 + t)d(γdu1,0 + θγdu1,1). Hence

�
gfd,0(a)

�γ−u0,0
�
gfd,1(a)

�γ−u0,1

=
�
g(a

2+t)d
�γdu1,0

and similarly for the implicit representation of the coefficient of θ. It follows that one
can perform the baby-step-giant-step algorithm in this setting to compute (u0, u1) and

hence u (mod (r + 1)/d). Note that computing gfd,0(a), gfd,1(a) and g(a
2+t)d requires 6d

exponentiations. The stated complexity follows.
For the second stage, we have β = γu+v(r+1)/d where 0 ≤ v < d. Giving a baby-

step-giant-step algorithm here is straightforward and we leave the details as an exercise.
�

One derives the following result. Note that it is not usually practical to consider a
computational problem whose input is a O(r1/3)-tuple of group elements, hence this result
is mainly of theoretical interest.

Corollary 21.5.11. Let g have prime order r and suppose r+1 has a factor d such that
d ≈ r1/3. Given hi = ga

i

for 1 ≤ i ≤ 2d then one can compute a in O(r1/3 log(r)) group
operations.

Corollary 21.5.12. Let g have prime order r and suppose r+1 has a factor d such that
d ≈ r1/3. Given h = ga and a perfect Static-DH oracle with respect to (g, h) then one can
compute a in O(r1/3) oracle queries and O(r1/3 log(r)) group operations.

Exercise 21.5.13. Fill in the missing details in the proof of Theorem 21.5.10 and prove
Corollaries 21.5.11 and 21.5.12.

Satoh [511] extends Cheon’s algorithm to algebraic groups of order ϕn(r) (essentially,
to the groups Gn,r). He also improves Theorem 21.5.10 in the case of d | (r + 1) to only

require hi = ga
i

for 1 ≤ i ≤ d.
A natural problem is to generalise Theorem 21.5.10 to other algebraic groups, such as

elliptic curves. The obvious approach does not seem to work (see Remark 1 of [131]), so
it seems a new idea is needed to achieve this. Finally, Section 5.2 of [132] shows that, at
least asymptotically, most primes r are such that r − 1 or r + 1 has a useful divisor.

Both [111] and [131] remark that a decryption oracle for classic textbook Elgamal
leads to an Static-DH oracle: Given an Elgamal public key (g, ga) and any h1 ∈ hgi one
can ask for the decryption of the ciphertext (c1, c2) = (h1, 1) (one can also make this
less obvious using random self-reducibility of Elgamal ciphertexts) to get c2c

−a
1 = h−a

1 .
From this one computes ha

1 . By performing this repeatedly one can compute a sequence

hi = ga
i

as required. The papers [111, 131] contain further examples of cryptosystems
that provide Static-DH oracles, or computational assumptions that contain values of the
form hi = ga

i

.

21.6 Hard Bits of Discrete Logarithms

Saying that a computational problem is hard is the same as saying that it is hard to
write down a binary representation of the answer. Some bits of a representation of the
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answer may be easy to compute (at least, up to a small probability of error) but if a
computational problem is hard then there must be at least one bit of any representation
of the answer that is hard to compute. In some cryptographic applications (such as key
derivation or designing secure pseudorandom generators) it is important to be able to
locate some of these “hard bits”. Hence, the main challenge is to prove that a specific bit
is hard. A potentially easier problem is to determine a small set of bits, at least one of
which is hard. A harder problem is to prove that some set of bits are all simultaneously
hard (for this concept see Definition 21.6.14).

The aim of this section is to give a rigorous definition for the concept of “hard bits”
and to give some easy examples (hard bits of the solution to the DLP). In Section 21.7 we
will consider related problems for the CDH problem. We first show that certain individual
bits of the DLP, for any group, are as hard to compute as the whole solution.

Definition 21.6.1. Let g ∈ G have prime order r. The computational problem DL-LSB
is: given (g, ga) where 0 ≤ a < r to compute the least significant bit of a.

Exercise 21.6.2. Show that DL-LSB ≤R DLP.

Theorem 21.6.3. Let G be a group of prime order r. Then DLP ≤R DL-LSB.

Proof: Let A be a perfect oracle that, on input (g, ga) outputs the least significant bit
of 0 ≤ a < r. In other words, if the binary expansion of a is

Pm
i=0 ai2

i then A outputs
a0. We will use A to compute a.

The first step is to call A(g, h) to get a0. Once this has been obtained we set h′ =
hg−a0 . Then h′ = g2a1+4a2+···. Let u = 2−1 = (r + 1)/2 (mod r) and define

h1 = (h′)u.

Then h1 = ga1+2a2+··· so calling A(g, h1) gives a1. For i = 2, 3, . . . compute hi =
(hi−1g

−ai−1)u and ai = A(g, hi), which computes the binary expansion of a. This re-
duction runs in polynomial-time and requires polynomially many calls to the oracle A.
�

Exercise 21.6.4. Give an alternative proof of Theorem 21.6.3 based on bounding the
unknown a in the range

(l − 1)r/2j ≤ a < lr/2j .

Initially one sets l = 1 and j = 0. At step j, if one has (l − 1)r/2j ≤ a < lr/2j and if
a is even then (l − 1)r/2j+1 ≤ a/2 < lr/2j+1 and if a is odd then (2j + l − 1)r/2j+1 ≤
(a+ r)/2 < (2j + l)r/2j+1. Show that when j = ⌈log2(r)⌉ one can compute 2−ja (mod r)
exactly and hence deduce a.

Exercise 21.6.5. Since one can correctly guess the least significant bit of the DLP with
probability 1/2, why does Theorem 21.6.3 not prove that DLP is easy?

One should also consider the case of a DL-LSB oracle that only works with some
noticeable probability ǫ. It is then necessary to randomise the calls to the oracle, but the
problem is to determine the LSB of a given the LSBs of some algebraically related values.
The trick is to guess some u = O(log(1/ǫ)) = O(log(log(r))) most significant bits of a
and set them to zero (i.e., replace h by h′ = ga

′

where the u most significant bits of a′

are zero). One can then call the oracle on h′gy for random 0 ≤ y ≤ r − r/2u and take a
majority vote to get the result. For details of the argument see Blum and Micali [73].

We conclude that computing the LSB of the DLP is as hard as computing the whole
DLP. Such bits are called hardcore bits since if DLP is hard then computing the LSB
of the DLP is hard.
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Definition 21.6.6. Let f : {0, 1}∗ → {0, 1}∗ be a function computable in polynomial-
time (i.e., there is some polynomial p(n) such that for x ∈ {0, 1}n one can compute f(x)
in at most p(n) bit operations). A function b : {0, 1}∗ → {0, 1} is a hardcore bit or
hardcore predicate for f if, for all probabilistic polynomial-time algorithms A, the
advantage

Advx∈{0,1}n


A(f(x)) = b(x)

�

is negligible as a function of n.

We now give some candidate hardcore predicates for the DLP. We also restate the
meaning of hardcore bit for functions defined on {0, 1, . . . , r − 1} rather than {0, 1}∗.
Definition 21.6.7. For all n ∈ N let (Gn, gn, rn) be such that Gn is a group and gn ∈ Gn

is an element of order rn where rn is an n-bit prime. We call this a family of groups.
For n ∈ N define the function fn : {0, 1, . . . , rn − 1} → Gn by fn(a) = gan. For n ∈ N
define i(n) ∈ {0, 1, . . . , n− 1}. The predicate bi(n) : {0, 1, . . . , rn − 1} → {0, 1} is defined
so that bi(n)(a) is bit i(n) of a, when a is represented as an n-bit string. Then bi(n) is a
hardcore predicate for the DLP (alternatively, bit i(n) is a hardcore bit for the
DLP) if, for all probabilistic polynomial-time algorithms A, the advantage

Adva∈{0,1,...,rn−1}

A(fn(a)) = bi(n)(a)

�

is negligible as a function of n.

The least significant bit (LSB) is the case i(n) = 0 in the above definition. If the DLP
is hard then Theorem 21.6.3 shows that the LSB is a hardcore bit.

Example 21.6.8. Fix m ∈ N. Let g have prime order r > 2m. Suppose A is a perfect
oracle such that, for x ∈ {0, 1, . . . , r − 1}, A(gx) is the predicate bm(x) (i.e., bit m of
x). One can use A to solve the DLP by guessing the m − 1 LSBs of x and then using
essentially the same argument as Theorem 21.6.3. Hence, if m is fixed and g varies in a
family of groups as in Example 21.6.7 then bm(x) is a hardcore predicate for the DLP. A
similar result holds if m is allowed to grow, but is bounded as m = O(log(log(r))).

We now give an example of a hardcore predicate that is not just a bit of the DLP.

Exercise 21.6.9. Let g have prime order r. Let f : {0, 1, . . . , r − 1} → G be f(x) = gx.
Define the predicate b : {0, 1, . . . , r − 1} → {0, 1} by b(x) = x1 ⊕ x0 where x0 and x1 are
the two least significant bits of x. Show that b is a hardcore predicate for f .

It is not true that any bit of the DLP is necessarily hardcore. For example, one can
consider the most significant bit of a, which is bn−1(x) in Definition 21.6.7.

Example 21.6.10. Let r = 2l + u be a prime where 0 < u < 2l−κ. Let 0 ≤ a < r
be chosen uniformly at random and interpreted as an (l + 1)-bit string. Then the most
significant bit of a is equal to 1 with probability u/r < u/2l < 1/2κ and is equal to 0 with
probability at least 1 − 1/2κ. Hence, when κ ≤ 1 then the most significant bit is not a
hardcore bit for the DLP. Note that the function ga is not used here; the result merely
follows from the distribution of integers modulo r.

Exercise 21.6.11. Let r = 2l+2l−1+u where 0 < u < 2l/2. Let 0 ≤ a < r be uniformly
chosen and represented as an (l + 1)-bit string. Show that neither the most significant
bit (i.e., bit l) nor bit l − 1 of a are hardcore for the DLP.

The above examples show that for some primes the most significant bit is easy to
predict. For other primes the most significant bit can be hard.
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Exercise 21.6.12. Suppose r = 2l − 1 is a Mersenne prime and let g have order r. Fix
0 ≤ i ≤ l. Show that if O(g, h) is a perfect oracle that returns the i-th bit of the DLP of
h with respect to g then one can compute the whole DLP.

To summarise, low order bits of the DLP are always as hard as the DLP, while high
order bits may or may not be hard. However, our examples of cases where the high
order bits are easy are due not to any weakness of the DLP, but rather to statistical
properties of residues modulo r. One way to deal with this issue is to define a bit as being
“hard” if it cannot be predicted better than the natural statistical bias (see, for example,
Definition 6.1 of H̊astad and Näslund [279]). However this approach is less satisfactory for
cryptographic applications if one wants to use the DLP as a source of unpredictable bits.
Hence, it is natural to introduce a more statistically balanced predicate to use in place of
high order bits. In practice, it is often more efficient to compute the least significant bit
than to evaluate this predicate.

Exercise 21.6.13. Let g have order r. Let f : {0, 1, . . . , r − 1} → G be f(x) = gx.
Define b(x) = 0 if 0 ≤ x < r/2 and b(x) = 1 if r/2 ≤ x < r. Show, using the method of
Exercise 21.6.4, that b(x) is a hardcore bit for f .

We do not cover all results on hard bits for the DLP. See Section 9 of H̊astad and
Näslund [279] for a general result and further references.

So far we only discussed showing that single bits of the DLP are hard. There are
several approaches to defining the notion of a set of k bits being simultaneously hard. One
definition states that the bits are hard if, for every non-constant function B : {0, 1}k →
{0, 1}, given an oracle that takes as input gx and computes B on the k bits of x in
question one can use the oracle to solve the DLP. Another definition, which seems to be
more useful in practice, is in terms of distinguishing the bits from random.

Definition 21.6.14. Let f : {0, 1}n → {0, 1}m be a one way function and let S ⊂
{1, . . . , n}. We say the bits labelled by S are simultaneously hard if there is no
polynomial-time algorithm that given f(x) can distinguish the sequence (xi : i ∈ S)
from a random #S-bit string.

Peralta [480] (using next-bit-predictability instead of hardcore predicates or Defi-
nition 21.6.14) proves that O(log(log(r))) least significant bits of the DLP are hard.
Schnorr [524] (using Definition 21.6.14) proves that essentially any O(log(log(r))) bits
of the DLP are simultaneously hard (using the “bits” of Exercise 21.6.13 for the most
significant bits).

Patel and Sundaram [478] showed, under a stronger assumption, that many more
bits are simultaneously hard. Let g be an element of prime order r, let l ∈ N and set
k = ⌈log2(r)⌉ − l. The ideas of Patel and Sundaram lead to the following result. If,
given gx, the k least significant bits of x are not simultaneously hard then there is an
efficient algorithm to solve the DLP in an interval of length 2l (see Exercise 13.3.6 for
the definition of this problem). Hence, under the assumption that the DLP in an interval
of length 2l is hard, then one can output many bits. Taking l = log(log(p))1+ǫ gives an
essentially optimal asymptotic bit security result for the DLP.

21.6.1 Hard Bits for DLP in Algebraic Group Quotients

One can consider hard bits for the DLP in algebraic group quotients. In other words, let
Oi be a perfect oracle that on input the equivalence class of an element [ga] outputs bit
i of a. The first problem is that there is more than one value a for each class [ga] and so
the bit is not necessarily well-defined.
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Section 7 of Li, Näslund and Shparlinski [387] considers this problem for LUC. To
make the problem well-defined they consider an element g ∈ Fp2 of prime order r and an
oracle A such that A(t) = ai where ai is the i-th bit of a for the unique 0 ≤ a < r/2
such that t = TrFp2/Fp

(ga). The idea of their method is, given t, to compute the two

roots h1 = ga and h2 = gr−a of X2 − tX + 1 in Fp2 then use previous methods (e.g.,
Theorem 21.6.3 or Exercise 21.6.4) on each of them to compute either a or r−a (whichever
is smaller).

Exercise 21.6.15. Work out the details of the Li, Näslund and Shparlinski result for the
case of the least significant bit of the DLP in LUC.

Exercise 21.6.16. Consider the algebraic group quotient corresponding to elliptic curve
arithmetic using x-coordinates only. Fix P ∈ E(Fq) of prime order r. Let A be an oracle
that on input u ∈ Fq outputs a0 where a0 is the 0-th bit of a such that 0 ≤ a < r/2 and
x([a]P ) = u. Show that the method of Li, Näslund and Shparlinski can be applied to
show that this bit is a hard bit for the DLP.

Li, Näslund and Shparlinski remark that it seems to be hard to obtain a similar result
for XTR. Theorem 3 of Jiang, Xu and Wang [315] claims to be such a result, but it does
not seem to be proved their paper.

21.7 Bit Security of Diffie-Hellman

We now consider which bits of the CDH problem are hard. Since the solution to a CDH
instance is a group element it is natural to expect, in contrast with our discussion of the
DLP, that the hardcore bits and the proof techniques will depend on which group is being
studied.

We first consider the case g ∈ F∗
p where p is a large prime and g is a primitive root.

Our presentation follows Boneh and Venkatesan [85]. We assume every element x ∈ F∗
p

is represented as an element of the set {1, 2, . . . , p − 1} and we interpret x (mod p) as
returning a value in this set.

Definition 21.7.1. Let p be odd. Let x ∈ {1, 2, . . . , p− 1}. Define

MSB1(x) =

�
0 if 1 ≤ x < p/2
1 otherwise.

For k ∈ N let 0 ≤ t < 2k be the integer such that

tp/2k ≤ x < (t+ 1)p/2k

and define MSBk(x) = t.
An alternative definition, which is commonly used in the literature and sometimes used

in this book, is MSBk(x) = u ∈ Z such that |x−u| ≤ p/2k+1 (e.g., u = ⌊tp/2k+p/2k+1⌋).
For this definition it is unnecessary to assume k ∈ N and so one can allow k ∈ R>0.

Note that these are not bits of the binary representation of x. Instead, as in Exer-
cise 21.6.13, they correspond to membership of x in a certain partition of {1, 2, . . . , p−1}.

Ideally we would like to show that, say, MSB1 is a hardcore bit for CDH. This seems to
be out of reach for F∗

p. Instead, we will show that, for k ≈
p
log2(r), if one can compute

MSBk(g
ab (mod p)) then one can compute gab (mod p). A consequence of this result is

that there exists some predicate defined on MSBk(g
ab (mod p)) whose value is a hardcore

bit for CDH.
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The central idea of most results on the bit security of CDH is the following. Let p be
an odd prime and let g ∈ F∗

p be a primitive root. Let h1 = ga, h2 = gb be a CDH instance
where b is coprime to p− 1. For k ∈ N let Ak be a perfect oracle such that

Ak(g, g
a, gb) = MSBk(g

ab).

Choose a random element 1 ≤ x < p and set u = Ak(g, h1g
x, h2). One has

u = MSBk(g
(a+x)b) = MSBk(g

abt) where t = hx
2 .

In other words, the oracle Ak gives the most significant bits of multiples of the unknown
gab by uniformly random elements t ∈ F∗

p. The problem of using this information to

compute gab is (a special case of) the hidden number problem.

21.7.1 The Hidden Number Problem

Definition 21.7.2. Let p be an odd prime and k ∈ R>1. Let α ∈ F∗
p and let t1, . . . , tn ∈

F∗
p be chosen uniformly at random. The hidden number problem (HNP) is, given

(ti, ui = MSBk(αti (mod p))) for 1 ≤ i ≤ n to compute α.

Throughout this section we will allow any k ∈ R>1 and define MSBk(x) to be any
integer u such that |x− u| < p/2k+1.

Before giving the main results we discuss two easy variants of Definition 21.7.2 where
the values ti can be chosen adaptively.

Lemma 21.7.3. Let p be an odd prime and 1 ≤ α < p. Suppose one has a perfect oracle
A1 such that A1(t) = MSB1(αt (mod p)). Then one can compute α using O(log(p)) oracle
queries.

Exercise 21.7.4. Prove Lemma 21.7.3.

Lemma 21.7.5. Let p be an odd prime and 1 ≤ α < p. Suppose one has a perfect oracle
A such that A(t) = LSB1(αt (mod p)), where LSB1(x) is the least significant bit of the
binary representation of 0 ≤ x < p. Then one can compute α using O(log2(p)) oracle
queries.

Exercise 21.7.6. Prove Lemma 21.7.5.

Lemmas 21.7.3 and 21.7.5 show that the hidden number problem can be easy if the
values ti in Definition 21.7.2 are chosen adaptively. However, it intuitively seems harder
to solve the hidden number problem when the ti are randomly chosen. On the other
hand, as k grows the HNP becomes easier; the case k = log2(p) being trivial. Hence, one
could hope to be able to solve the HNP as long as k is sufficiently large. We now explain
the method of Boneh and Venkatesan [85] to solve the HNP using lattices.

Definition 21.7.7. Let (ti, ui = MSBk(αti)) for 1 ≤ i ≤ n. Define a lattice L ⊆ Rn+1

by the rows of the basis matrix

B =




p 0 0 · · · 0 0
0 p 0 0 0
...

...
...

...
0 0 0 · · · p 0
t1 t2 t3 · · · tn 1/2k+1




.

Define the vector u = (u1, u2, . . . , un, 0) ∈ Rn+1 where |ui − (αti (mod p))| < p/2k+1.
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Lemma 21.7.8. Let L, u and n be as in Definition 21.7.7. Then det(L) = pn/2k+1 and
there exists a vector v ∈ L such that ku− vk <

√
n+ 1p/2k+1.

Proof: The first statement is trivial. For the second, note that ui = MSBk(αti (mod p))
is the same as saying αti = ui + ǫi + lip for some ǫi, li ∈ Z such that |ǫi| ≤ p/2k+1, for
1 ≤ i ≤ n. Now define v ∈ L by

v = (−l1,−l2, . . . ,−ln,α)B = (αt1 − l1p, . . . ,αtn − lnp,α/2
k+1)

= (u1 + ǫ1, . . . , un + ǫn,α/2
k+1).

The result follows since α/2k+1 < p/2k+1. �

We now show that, for certain parameters, it is reasonable to expect that any vector
in the lattice L that is close to u gives the solution α.

Theorem 21.7.9. Let p > 28 be prime and let α ∈ F∗
p. Let n = 2⌈

p
log2(p)⌉ ∈ N

and let k ∈ R be such that log2(p) − 1 ≥ k > µ = 1
2

p
log2(p) + 3. Suppose t1, . . . , tn

are chosen uniformly and independently at random in F∗
p and set ui = MSBk(αti) for

1 ≤ i ≤ n. Construct the lattice L as above. Let u = (u1, . . . , un, 0). Then, with
probability at least 1− 1/2n ≥ 63/64 over all choices for t1, . . . , tn, any vector v ∈ L such
that kv − uk < p/2µ+1 is of the form

v = (βt1 (mod p), . . . ,βtn (mod p),β/2k+1)

where β ≡ α (mod p).

Proof: In the first half of the proof we consider t1, . . . , tn as fixed values. Later in the
proof we compute a probability over all choices for the ti.

First, note that every vector in the lattice is of the form

v = (βt1 − l1p,βt2 − l2p, . . . ,βtn − lnp,β/2
k+1)

for some β, l1, . . . , ln ∈ Z. If β ≡ α (mod p) then we are done, so suppose now that
β 6≡ α (mod p). Suppose also that kv−uk < p/2µ+1, which implies |(βti (mod p))−ui| <
p/2µ+1 for all 1 ≤ i ≤ n. Note that

|(β − α)ti (mod p)| = |(βti (mod p))− ui + ui − (αti (mod p))|
≤ |(βti (mod p))− ui|+ |(αti (mod p))− ui|
< p/2µ+1 + p/2µ+1 = p/2µ.

We now consider γ = (β − α) as a fixed non-zero element of Fp and denote by A the
probability, over all t ∈ F∗

p, that γt ≡ u (mod p) for some u ∈ Z such that |u| < p/2µ and
u 6= 0. Since γt is uniformly distributed over F∗

p it follows that

A ≤ 2(p/2µ)

p− 1
≤ 1

p− 1

�
2(p− 1) + 2

2µ

�
<

2

2µ
+

2

p− 1
<

4

2µ
.

Since there are n uniformly and independently chosen t1, . . . , tn ∈ F∗
p the probability

that |γti (mod p)| < p/2µ for all 1 ≤ i ≤ n is An. Finally, there are p − 1 choices for
β ∈ {0, 1, . . . , p− 1} such that β 6≡ α (mod p). Hence, the probability over all such β and
all t1, . . . , tn that kv − uk < p/2µ+1 is at most

(p− 1)An <
(p− 1)4n

2µn
<

2log2(p)+2n

2µn
.

Now, µn = (12
p
log2(p) + 3)2⌈

p
log2(p)⌉ ≥ log2(p) + 3n so (p− 1)An < 2−n. Since n ≥ 6

the result follows. �
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Corollary 21.7.10. Let p > 232 be prime, let n = 2⌈
p
log2(p)⌉ and let k = ⌈

p
log2(p)⌉+

⌈log2(log2(p))⌉. Given (ti, ui = MSBk(αti)) for 1 ≤ i ≤ n as in Definition 21.7.2 one can
compute α in polynomial-time.

Proof: One constructs the basis matrix B for the lattice L in polynomial-time. Note
that n = O(

p
log(p)) so that the matrix requires O(log(p)2) bits storage.

Running the LLL algorithm with factor δ = 1/4 + 1/
√
2 is a polynomial-time com-

putation (the lattice is not a subset of Zn+1 so Remark 17.5.5 should be applied, not-
ing that only one column has non-integer entries) which returns an LLL-reduced basis.
Let u be as above. The Babai nearest plane algorithm finds v such that kv − uk <
(1.6)2(n+1)/4

√
n+ 1p/2k+1 by Theorem 18.1.7 and Lemma 21.7.8. This computation

requires O(log(p)4.5) bit operations by Exercise 18.1.9. To apply Theorem 21.7.9 we
need the vector v output from the Babai algorithm to be within p/2µ+1 of u where
µ = 1

2

p
log2(p) + 3. Hence, we need

(1.6)2(n+1)/4
√
n+ 1

2k+1
<

1

2µ+1
,

which is µ + log2(1.6) + (n + 1)/4 + log2(
√
n+ 1) < k = ⌈

p
log2(p)⌉ + ⌈log2(log2(p))⌉.

Since

µ+ log2(1.6) + (n+ 1)/4 + log2(
√
n+ 1) =

p
log2(p)/2 + 3.95 + ⌈

p
log2(p)⌉/2 + 1

2 log2(n+ 1)

≤ ⌈
p
log2(p)⌉+ 3.95 + 1

2 log2(n+ 1)

the result follows whenever p is sufficiently large (the reader can check that p > 232 is
sufficient).

It follows from Theorem 21.7.9 that, with probability at least 63/64 the vector v =
(v1, . . . , vn+1) ∈ Rn+1 output by the Babai algorithm is such that vn+12

k+1 ≡ α (mod p).
It follows that the hidden number α can be efficiently computed. �

Note that if p ≈ 2160 then µ ≈ 9.32. In practice, the algorithm works well for primes
of this size. For example, Howgrave-Graham and Smart [299] present results of practical
experiments where 8 of the most significant bits are provided by an oracle. We stress that
these results do not show that all of the k = ⌈

p
log2(p)⌉+⌈log2(log2(p))⌉ most significant

bits are hard. Instead, one can only deduce that there is a predicate defined on these k
bits that is a hardcore predicate for CDH.

Nguyen and Shparlinski [459] also remark that one could use other methods than
LLL and the Babai nearest plane algorithm. They show that if one uses the Ajtai,
Kumar and Sivakumar algorithm for CVP then one only needs k = ⌊log(log(p))⌋ bits to
obtain an algorithm for the hidden number problem with complexity of pO(1/ log(log(p)))

bit operations. They further show that if one has a perfect oracle for CVP (with respect
to the ℓ∞ norm) then one can solve the hidden number problem in polynomial time given
only k = 1 + ǫ bits for any ǫ > 0.

One final remark, the methods in this section assume a perfect oracle that outputs
MSB1(αt (mod p)). Since there seems to be no way to determine whether the output of
the oracle is correct, it is an open problem to get results in the presence of an oracle that
sometimes makes mistakes (though, as we mention in the next section, when applying the
hidden number problem to the bit security of CDH then there is a solution in the case
of oracles with a relatively low probability of giving an incorrect answer). For further
discussion and applications of the hidden number problem see Shparlinski [559].

21.7.2 Hard Bits for CDH Modulo a Prime

We can finally state a result about hard bits for CDH.
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Theorem 21.7.11. Let p > 232 be prime, let g be a primitive root modulo p and let
k = ⌈

p
log2(p)⌉ + ⌈log2(log2(p))⌉. Suppose there is no polynomial-time algorithm to

solve10 CDH in F∗
p. Then there is no polynomial-time algorithm to compute the k most

significant bits of gab when given g, ga and gb.

Proof: Let (g, ga, gb) be an instance of the CDH problem in hgi and write α = gab for
the solution. We assume that gcd(b, p− 1) = 1 (this requirement is removed by González
Vasco and Shparlinski [261]; other work mentioned below allows g to have prime order,
in which case this restriction disappears).

Given a polynomial-time algorithm A such that A(g, gx, gy) = MSBk(g
xy (mod p))

then one can call A(g, gagr, gb) polynomially many times for uniformly random r ∈
{1, 2, . . . , p − 2} to get MSBk(αt) where t = gbr (mod p). Applying Corollary 21.7.10
gives a polynomial time algorithm to compute α. �

A number of significant open problems remain:

1. Theorem 21.7.11 shows it is hard to compute all of MSBk(g
ab) but that does not

imply that, say, MSB1(g
ab) is hard. A stronger result would be to determine specific

hardcore bits for CDH, or at least to extend the results to MSBk for smaller values
of k. Boneh and Venkatesan [86] give a method that works for k = ⌈2 log(log(p))⌉
bits (where g is a primitive root in F∗

p) but which needs a hint depending on p and
g; they claim this is a non-uniform result but this depends on the instance generator
(see the footnote of Section 21.4.3). For k = ⌊log(log(p))⌋ one can also consider the
approach of Nguyen and Shparlinski [459] mentioned above.

Akavia [8] uses a totally different approach to prove that MSB1 is hard for CDH,
but the method is again at best non-uniform (i.e., needs polynomial-sized auxiliary
information depending on p and gb).

2. We assumed perfect oracles for computing MSBk(αt) in the above results. For non-
perfect oracles one can use the above methods to generate a list of candidate values
for gab and then apply the CDH self-corrector of Section 21.3. We refer to González
Vasco, Näslund and Shparlinski [260] for details.

The method of Akavia [8] also works when the oracle for MSB1 is unreliable.

3. The above results assumed that g is a primitive root modulo p, whereas in prac-
tice one chooses g to lie in a small subgroup of F∗

p of prime order. The proof of
Theorem 21.7.11 generates values t that lie in hgi and so they are not uniformly at
random in F∗

p. González Vasco and Shparlinski have given results that apply when
the order of g is less than p− 1 (see Chapter 14 of [558] for details and references).
Shparlinski and Winterhof [560, 561], building on work of Bourgain and Konyagin,
have obtained results when the order of g is at least log(p)/ log(log(p))1−ǫ.

Exercise 21.7.12. This exercise concerns a static Diffie-Hellman key exchange protocol
due to Boneh and Venkatesan [85] for which one can prove that the most significant bit
is a hardcore bit. Suppose Alice chooses a prime p, an integer 1 ≤ a < p − 1 such that
gcd(a, p − 1) = 1 and sets g = 2a

−1 (mod p−1) (mod p). Alice makes p and g public and
keeps a private. When Bob wants to communicate with Alice he sends gx for random
1 ≤ x < p−1 so that Alice and Bob share the key 2x. Prove that MSB1(2

x) is a hardcore
bit.

10As we have seen, to make such a statement precise one needs an instance generator that outputs
groups from a family.
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[Hint: Suppose one has a perfect oracle A that on input gy outputs MSB1(2
y). Then one

can store Bob’s tranmission gx and call A(gxgy) to get α2y, where α = 2x is the desired
hidden number. Then apply Lemma 21.7.3.]

Exercise 21.7.13. Let g ∈ F∗
p be a primitive root and let ǫ > 0. Show that if one has a

perfect oracle for MSB1+ǫ(g
ab) then one can solve DDH in F∗

p.

21.7.3 Hard Bits for CDH in Other Groups

So far we have only considered CDH in (subgroups of) F∗
p where p is prime. It is natural

to consider CDH in subgroups of F∗
pm , in algebraic tori, in trace systems such as LUC and

XTR, and in elliptic curves. The first issue is what is meant by “bits” of such a value.
In practice, elements in such a group are represented as an n-tuple of elements in Fp and
so it is natural to consider one component in Fp and take bits of it as done previously.
When p is small one can consider a sequence of bits, each from different components. An
early reference for bit security of CDH in this setting is Verheul [619].

It is possible to extend the results to traces relatively easily. The idea is that if
{θ1, . . . , θm} is a basis for Fpm over Fp, if α =

Pm
j=1 αjθj is hidden and if ti =

Pm
j=1 ti,jθj

are known then Tr(αti) is a linear equation in the unknown αi. Li, Näslund and Shpar-
linski [387] have studied the bit security of CDH in LUC and XTR. We refer to Chapters
6 and 19 of Shparlinski [558] for further details and references.

Exercise 21.7.14. Let F2m be represented using a normal basis and let g ∈ F∗
2m . Suppose

one has a perfect oracle A such that A(g, ga, gb) returns the first coefficient of the normal
basis representation of gab. Show how to use A to compute gab. Hence, conclude that the
first coefficient is a hardcore bit for CDH in F∗

2m .

Exercise 21.7.15. Let F2m = F2[x]/(F (x)) and let g ∈ F∗
2m have prime order r > m.

Suppose one has a perfect oracle A such that A(g, ga, gb) returns the constant coefficient
of the polynomial basis representation of gab. Show how to use A to compute gab. Hence,
conclude that the constant coefficient is a hardcore bit for CDH in F∗

2m .

Hard Bits for Elliptic Curve Diffie-Hellman

We now consider the case of elliptic curves E over Fq. A typical way to extract bits from
an elliptic curve point P is to consider the x-coordinate x(P ) as an element of Fq and
then extract bits of this. It seems hard to give results for the bit security of CDH using
an oracle A(P, [a]P, [b]P ) = MSBk(x([ab]P )); the natural generalisation of the previous
approach is to call A(P, [a]P + [z]P, [b]P ) = MSBk(x([ab]P + [zb]P )) but the problem is
that it is difficult to infer anything useful about x([ab]P ) from x([ab]P + [zb]P ) (similarly
for least significant bits); see Jao, Jetchev and Venkatesan [309] for some results. However,
Boneh and Shparlinski [84] had the insight to consider a more general oracle.

Definition 21.7.16. Let p be an odd prime and k ∈ N. Let Ax,k(A,B, P, [a]P, [b]P )
be an oracle that returns LSBk(x([ab]P )) where P ∈ E(Fp) for the elliptic curve E :
y2 = x3 + Ax + B. Similarly, let Ay,k(A,B, P, [a]P, [b]P ) be an oracle that returns
LSBk(y([ab]P )).

The crucial idea is that, given a point P = (xP , yP ) ∈ E(Fp) where E : y2 = x3 +
Ax+B, one can consider an isomorphism φ(x, y) = (u2x, u3y) and φ(P ) ∈ E′(Fp) where
E′ : Y 2 = X3 + u4AX + u6B. Hence, instead of randomising instances of CDH in a way
analogous to that done earlier, one calls the oracle Ax,k(u

4A, u6B,φ(P ),φ([a]P ),φ([b]P ))
to get LSBk(x(φ([ab]P ))) = LSBk(u

2x([ab]P ) (mod p)) where u is controlled by the
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attacker. This is very similar to the easy case of the hidden number problem in F∗
p from

Lemma 21.7.5.

Lemma 21.7.17. Suppose p ≡ 2 (mod 3). Then LSB1(y([ab]P )) is a hardcore bit for
CDH on elliptic curves over Fp.

Proof: We suppose Ay,1 is a perfect oracle for LSB1(y([ab]P )) as above. Calling

Ay,1(u
4A, u6B,φ(P ),φ([a]P ),φ([b]P ))

gives LSB1(u
3y([ab]P )). Since gcd(3, p − 1) = 1 it follows that cubing is a permutation

of F∗
p and one can perform the method of Lemma 21.7.5 to compute y([ab]P ). Given

y([ab]P ) there are at most 3 choices for x([ab]P ) and so CDH is solved with noticeable
probability. �

In the general case (i.e., when p 6≡ 2 (mod 3)) Boneh and Shparlinski have to work
harder. They use the method of Alexi, Chor, Goldreich and Schnorr [9] or the simplified
version by Fischlin and Schnorr [203] to extend the idea to non-perfect oracles.11 Once
this is done, the following trick can be applied to determine LSB1(tx([ab]P )): when t is
a square one calls the oracle for LSB1(u

2x([ab]P )) on u =
√
t (mod p), and when t is not

a square one flips a coin. The resulting non-perfect oracle for LSB1 therefore solves the
problem. We refer to [84] for the details.

We make some remarks.

1. A nice feature of the elliptic curve results is that they are independent of the order
of the point P and so work for subgroups of any size.

2. The literature does not seem to contain bit security results for CDH on elliptic
curves over non-prime fields. This would be a good student project.

3. Jetchev and Venkatesan [314] use isogenies to extend the applicability of the Boneh-
Shparlinski method. Their motivation is that if one has an LSB1(x([ab]P )) oracle
that works with only small (but noticeable) probability then it is possible to have
a CDH instance on an elliptic curve E for which the oracle does not work for any
twist of E. By moving around the isogeny class they claim that the probability of
success increases. However, it is still possible to have a CDH instance on an elliptic
curve E for which the oracle does not work for any elliptic curve in the isogeny class
of E.

21.8 Further Topics

There are a number of other results related to the Diffie-Hellman problem that we do
not have to space to cover. For example, Coppersmith and Shparlinski considered the
existence of polynomial relations between gx, gy and gxy. Canetti, Friedlander and Sh-
parlinski considered the distribution of Diffie-Hellman triples (gx, gy, gxy) in G3. We refer
to [558] for a survey of these topics and references.

11This is why Boneh and Shparlinski consider least significant bits rather than most significant bits for
their result. The technique of Alexi et al is to randomise the query LSB1(tα) as LSB1(sα)⊕LSB1((t+s)α)
for suitable values s. A good student project would be to obtain an analogous result for other bits (e.g.,
most significant bits).


