Chapter 20

The Diffie-Hellman Problem
and Cryptographic
Applications

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/"sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nzif you find any mistakes.

This chapter introduces some basic applications of the discrete logarithm problem in
cryptography, such as Diffie-Hellman key exchange and “textbook” Elgamal encryption.
A Dbrief security analysis of these systems is given. This motivates the computational
and decisional Diffie-Hellman problems (CDH and DDH). A thorough discussion of these
computational problems will be given in Chapter 21.

20.1 The Discrete Logarithm Assumption

The discrete logarithm problem (DLP) was defined in Definition 13.0.1. Our main interest
is the DLP in an algebraic group or algebraic group quotient over a finite field F, (for
example, elliptic curves, the multiplicative group of a finite fields, tori etc). We always
use multiplicative notation for groups in this chapter. As discussed in Section 13.2, in
practice we usually restrict to groups of prime order 7.

Recall that the difficulty of the DLP is defined with respect to an instance generator
that runs on input a security parameter x. An algorithm to solve the DLP with respect to
a given instance generator is only required to succeed with a noticeable probability. The
discrete logarithm assumption is that there exist instance generators that, on input
K, output instances of the DLP such that no algorithm A running in polynomial-time in
k can solve the DLP apart from with negligible (in) probability. The cryptosystems in
this chapter rely on the discrete logarithm assumption (and other assumptions).

435

436 CHAPTER 20. DIFFIE-HELLMAN CRYPTOGRAPHY

20.2 Key Exchange

20.2.1 Diffie-Hellman Key Exchange

The starting point of discrete logarithms (indeed, of public key cryptography) is the
seminal paper of Diffie and Hellman [179] from 1976 (more recently it became known that
this idea was also found by Williamson at GCHQ in 1974).

Suppose Alice and Bob want to agree on a random key K. Assume they both know
an algebraic group or algebraic group quotient G and some element g € G of prime order
r (everyone in the world could use the same g). They perform the following protocol:

e Alice chooses a random integer 0 < a < r and sends ¢; = g% to Bob.
e Bob chooses a random integer 0 < b < 7 and sends c; = ¢g® to Alice.

e On receiving co Alice computes K = c§.

e On receiving ¢; Bob computes K = c}.

Hence, both players share the key K = ¢g?. One can derive (see Definition 20.2.10
below) a bitstring from the group element K for use as the key of a symmetric encryption
scheme. Hence, encryption of data or other functionalities can be implemented using
traditional symmetric cryptography. The key K is called the session key and the values
c1,C2 in the protocol are called messages or ephemeral keys.

We discuss the security of key exchange protocols (in particular, person-in-the-middle
attacks and authenticated key exchange) in Section 20.5. For the remainder of this section
we consider the simplest possible attacker. A passive attacker or eavesdropper (i.e.,
an attacker who learns g,c; and cg, but does not actively interfere with the protocol)
cannot determine K unless they can solve the following computational problem.

Definition 20.2.1. The Computational Diffie-Hellman problem (CDH)! is: given
the triple (g, g%, g°) of elements of G’ to compute g?°.

An extensive discussion of the computational Diffie-Hellman problem will be given in
Chapter 21.

Exercise 20.2.2. What is the solution to the CDH instance (2,4,7) in the group Fj,?

Suppose one is an eavesdropper on a Diffie-Hellman session and tries to guess the
session key K shared by Alice and Bob. The following computational problem is precisely
the problem of determining whether the guess for K is correct. This problem arises again
later in the chapter in the context of Elgamal encryption.

Definition 20.2.3. Let G be a group and g € GG. The Decisional Diffie-Hellman
problem (DDH) is, given a quadruple (g, g% g%, g°) of elements in (g) to determine
whether or not g¢ = ¢.

Saying that a computational problem such as DDH is hard is slightly less straightfor-
ward than with problems like DLP or CDH, since if (g, g%, g°, g¢) are chosen uniformly at
random in G* then the solution to the DDH problem is “no” with overwhelming proba-
bility. Clearly, an algorithm that says “no” all the time is not solving the DDH problem,

IThis assumption comes in two flavours, depending on whether g is fixed or variable. We discuss this
issue in more detail later. But, as is the convention in this book, whenever we write “Given...compute...”
one should understand that all of the inputs are considered as variables.

20.2. KEY EXCHANGE 437

so our notion of success must capture this. The correct approach is to define a DDH
solver to be an algorithm that can distinguish two distributions on G*, namely the dis-
tribution of Diffie-Hellman tuples (i.e., the uniform distribution on tuples of the form
(9,9% g% g°) € G*) and the uniform distribution on G*.

Definition 20.2.4. Let (G, ry,) be a family of cyclic groups G, of order r,,, for n € N.
A DDH algorithm for the family G, is an algorithm A that takes as input a quadruple
in G and outputs “yes” or “no”. The advantage of the DDH algorithm A is

Adv(A) = |Pr(A (g,g“,gb,g“b) = “yes” : g < Gy, a,b< Z/r7)
— Pr (A (g,ga,gb,gc) = “yes” : g+ Gy, a,b,c+ Z/TZ)| .
A DDH algorithm is called successful if the advantage is noticeable. The DDH assump-

tion for the family of groups is that all polynomial-time (i.e., running time O(log(ry,)¢)
for some constant ¢) DDH algorithms have negligible advantage.

Lemma 20.2.5. DDH <p CDH <pr DLP.
Exercise 20.2.6. Prove Lemma 20.2.5.

Exercise 20.2.7. Definition 20.2.3 states that r is prime. Show that if (g, g%, g°, ¢¢) is
a quadruple of elements such that the order of g is n for some integer n where n has
some small factors (e.g., factors I | n such that I < logy(n)) then one can eliminate
some quadruples (g, g%, g%, g) € G* that are not valid DDH tuples by reducing to DDH
instances in subgroups of prime order. Show that this is enough to obtain a successful
DDH algorithm according to Definition 20.2.4.

20.2.2 Burmester-Desmedt Key Exchange

In the case of n > 2 participants there is a generalisation of Diffie-Hellman key exchange
due to Burmester and Desmedt [114] that requires two rounds of broadcast. Let the
participants in the protocol be numbered as player 0 to player n — 1. In the first round,
player i (for 0 < i < n) chooses a random 1 < a; < r and sends ¢; = g* to the other
players (or, at least, to player ¢ — 1 (mod n) and i + 1 (mod n)). In the second round
player ¢ computes

a;
B 1
t;, = <C1'+1 (mod n)C; 1 (mod n))

and sends it to all other players. Finally, player ¢ computes

_ _na; n—1 n—2 Lt
K= Ci+1 (mod n)ti+1 (mod n)ti+2 (mod n) titn-1 (mod n)-

Lemma 20.2.8. Fach participant in the Burmester-Desmedt protocol computes

K = gaoal+a1a2+”'an72an71+an71a0.
Exercise 20.2.9. Prove Lemma 20.2.8.

20.2.3 Key Derivation Functions

The result of Diffie-Hellman key exchange is a group element g®®. Typically this should
be transformed into an I-bit string for use as a symmetric key (where I < log,(r)).

438 CHAPTER 20. DIFFIE-HELLMAN CRYPTOGRAPHY

Definition 20.2.10. Let G be an algebraic group (or algebraic group quotient) and let {
be an integer. A key derivation function is a function kdf : G — {0,1}'. The output
distribution of a key derivation function is the probability distribution on {0, 1} induced
by kdf(g) over uniformly distributed g € G. A key derivation function is preimage-
resistant if there is no polynomial-time algorithm known that, on input = € {0, 1},
computes g € G such that kdf(g) = .

In general, a key derivation function should have output distribution statistically very
close to the uniform distribution on {0,1}!. For many applications it is also necessary
that kdf be preimage-resistant.

A typical instantiation for kdf is to take a binary representation of K € G, apply
a cryptographic hash function (see Chapter 3) to obtain a bit string, and concate-
nate/truncate as required. See the IEEE P1363 or ANSI X9.42 standards, Section 8
of Cramer and Shoup [161] or Section 6.1 of Raymond and Stiglic [495] for more details;
also see Section 3 of [46] for a specific key derivation function for elliptic curves.

20.3 Textbook Elgamal Encryption

In this section we present textbook Elgamal public key encryption.? This is histor-
ically the first public key encryption scheme based on the discrete logarithm problem. As
we will see, the scheme has a number of security weaknesses and so is not recommended
for practical use. In Chapter 23 we will present secure methods for public key encryption
based on computational problems in cyclic groups.

We actually present two “textbook” versions of Elgamal. The first we call “classic
textbook Elgamal” as it is essentially the version that appears in [192]. It requires G to
be a group (i.e., we cannot use algebraic group quotients) and requires the message m
to be encoded as an element of G. Encoding messages as group elements is not difficult,
but it is un-natural and inconvenient. The second version, which we call “semi-textbook
Elgamal”, is more practical as it treats messages as bitstrings. As we will see, the security
properties of the two versions are slightly different.

For both schemes, x denotes a security parameter (so that all attacks should require
at least 2" bit operations). Figure 20.1 gives classic textbook Elgamal and Figure 20.2
gives semi-textbook Elgamal. We call the sender Bob and the recipient Alice. Messages in
the former scheme are group elements and in the latter are I-bit strings, where [depends
on the security parameter. Semi-textbook Elgamal also requires a cryptographic hash
function H : G — {0, 1} where G is the group.

Remarks

1. Both versions of textbook Elgamal encryption are best understood as a static
Diffie-Hellman key exchange followed by symmetric encryption. By this we
mean that the sender (Bob) is essentially doing a Diffie-Hellman key exchange with
the recipient (Alice): he sends ¢g* and Alice’s component is her fixed (i.e., static)
public key ¢g®. Hence the shared key is ¢%*, which can then be used as a key
for any symmetric encryption scheme (this general approach is known as hybrid
encryption). The two variants of textbook Elgamal vary in the choice of symmetric
encryption scheme: the first uses the map m — mg® from G to itself while the
second uses the map m +— m @ H(g%) from {0, 1} to itself.

2Some authors write “ElGamal” and others write “El Gamal”. Reference [192] uses “ElGamal”, but
we follow the format apparently used nowadays by Elgamal himself.

20.4. SECURITY OF TEXTBOOK ELGAMAL ENCRYPTION 439

KeyGen(k): Run a parameter generation algorithm on security parameter x that out-
puts an algebraic group G over a finite field I, such that #G(F,) has a prime divisor r
and all known algorithms for the discrete logarithm problem in a subgroup of G(F,) of
order r require at least 2" bit operations.

Compute g € G of prime order r.
Choose a random integer 0 < a < r and set h = g®. The public key is (G, g, h) and the
private key is a.

The message space is M, = G.
The ciphertext space is C, = G x G.

Encrypt(m): (where m € G).
e Obtain the public key h of the recipient, Alice.
e Choose a random 0 < k < r and set c; = g*.
o Set cog = mh*.

e Transmit the ciphertext (c1,c2).

Decrypt(cy,c2): Check that c1,co € G. If so, compute and output

m = cacy ©.

Figure 20.1: Classic Textbook Elgamal Encryption.

2. Elgamal encryption requires two exponentiations in G and decryption requires one.
Hence encryption and decryption are polynomial-time and efficient.

3. Elgamal encryption is randomised, so encrypting the same message with the same
public key twice will yield two different ciphertexts in general.

4. Unlike RSA, all users in a system can share the same group G. So typically G and
g are fixed for all users, and only the value h = g® changes. Values that are shared
by all users are usually called system parameters.

20.4 Security of Textbook Elgamal Encryption

We now briefly review the security properties for the textbook Elgamal cryptosystem.
First, note that the encryption algorithm should use a good pseudorandom number gen-
erator to compute the values for k. A simple attack when this is not the case is given in
Exercise 20.4.1.

Exercise 20.4.1. Suppose the random values k used by a signer are generated using the
linear congruential generator k;11 = Ak; + B (mod r) for some 1 < A, B < r. Suppose
an adversary knows A and B and sees two classic textbook Elgamal ciphertexts (c1,c2)
and (c},c)), for the same public key, generated using consecutive outputs k; and k; 1 of
the generator. If both ciphertexts are encryptions of the same message then show how
the adversary can compute the message. If both ciphertexts are encryptions of different
messages then show how to decrypt both ciphertexts using one query to a decryption
oracle.

440 CHAPTER 20. DIFFIE-HELLMAN CRYPTOGRAPHY

KeyGen(k): Generate an algebraic group or algebraic group quotient G as in Fig-
ure 20.1. Choose a random g € G of prime order 7.

Choose a message size | and a cryptographic hash function H : G — {0, 1}

Choose a random integer 0 < a < r and set h = g®. The public key is (G, H, g, h) and
the private key is a.

The message space is M,, = {0,1}\.
The ciphertext space is C, = G x {0, 1},

Encrypt(m): (where m € {0,1}}).
e Obtain the public key of the recipient, Alice.
e Choose a random 0 < k < r and set ¢; = g*.
e Set co = m® H(h").

e Transmit the ciphertext (c1,c2).

Decrypt(cy, ca): Check that ¢; € G and ¢y € {0, 1}, If so, compute and output

m = co ® H(c}).

Figure 20.2: Semi-Textbook Elgamal Encryption.

20.4.1 OWE Against Passive Attacks

Theorem 20.4.2. The computational problem of breaking OWE security of classic text-
book Elgamal under passive attack is equivalent to CDH in (g).

Proof: We prove the result only for perfect oracles. To prove OWE-CPA <pr CDH, let
A be a perfect oracle that solves CDH in the subgroup of order r in G. Call A(g,ha,c2)
to get u and set m = cou™!.

To prove CDH <p OWE-CPA let A be a perfect adversary that takes an Elgamal
public key (g, ha) and an Elgamal ciphertext (c1,c2) and returns the corresponding mes-
sage m. We will use this to solve CDH. Let the CDH instance be (g, g1, g2). Then choose
a random element c3 € (g) and call A(g, g1, g2, c2) to get m. Return cam™! as the solution
to the CDH instance. O

One can also consider a non-perfect adversary (for example, maybe an adversary
can only decrypt some proportion of the possible ciphertexts). It might be possible to
develop methods to “self-correct” the adversary using random self-reductions, but this is
considered to be the adversary’s job. Instead, it is traditional to simply give a formula
for the success probability of the algorithm that breaks the computational assumption in
terms of the success probability of the adversary. In the context of Theorem 20.4.2, if
the adversary can decrypt with noticeable probability € then we obtain a CDH algorithm
that is correct with probability e.

Exercise 20.4.3. Prove OWE-CPA <p CDH for semi-textbook Elgamal. Explain why
the proof CDH <p OWE-CPA cannot be applied in this case.

20.4.2 OWE Security Under CCA Attacks

We now show that both variants of textbook Elgamal do not have OWE security against
an adaptive (CCA) attacker (and hence not IND-CCA security either). Recall that such

20.4. SECURITY OF TEXTBOOK ELGAMAL ENCRYPTION 441

an attacker has access to a decryption oracle that will decrypt every ciphertext except
the challenge.

Lemma 20.4.4. Let (c1,c2) be a ciphertext for classic textbook Elgamal with respect to
the public key (G, g,h). Suppose A is a decryption oracle. Then under a CCA attack one
can compute the message corresponding to (c1,cz).

Proof: Assume that A is perfect. Call A on the ciphertext (c1,cag) # (c1,¢2) to obtain

a message m’. Then the message corresponding to the original ciphertext is m = m’g~?!.
More generally if A succeeds only with noticeable probability e then we have a CCA2

attack that succeeds with noticeable probability e. O
Another version of this attack follows from Exercises 23.3.3 and 23.3.2.

Exercise 20.4.5. Show that semi-textbook Elgamal encryption does not have the OWE
security property under a CCA attack.

We have seen how a CCA attack can lead to an adversary learning the contents of
a message. Exercise 20.4.6 gives an example of a general class of attacks called small
subgroup attacks or invalid parameter attacks that can allow a CCA (even a CCA1)
adversary to obtain the private key of a user. Such attacks can be performed in many
scenarios. One example is when working in a prime order subgroup of F* where p — 1 has
many small factors. Another example is when using elliptic curves F : yf = 23+ a4z +ag;
since the addition formula does not feature the value ag one can pass an honest user a
point of small order on some curve E’'(F,). A related example is when using z-coordinate
only arithmetic on elliptic curves one can choose an x-coordinate corresponding to a point
that lies on the quadratic twist. For further discussion is given in Section 4.3 of [274] and a
summary of the history of these results is given in Section 4.7 of [274]. We stress that such
attacks do not only arise in encryption, but also in authenticated key exchange protocols,
undeniable signatures, etc. The general way to avoid such attacks is for all parties to test
membership of group elements in every step of the protocol (see Section 11.6).

Exercise 20.4.6. Show how a CCA1 attacker on classic textbook Elgamal can compute
u® for a group element u of their choice where a is the private key of a user. Show that if
this attack can be repeated for sufficiently many elements u of coprime small orders then
the private key a can be computed.

20.4.3 Semantic Security Under Passive Attacks

A serious problem with the classic textbook Elgamal cryptosystem is that, even though
encryption is randomised, it does not necessarily provide semantic security under passive
attacks.

Example 20.4.7. Consider the case G = F,;, M = G. Let g € G have prime order r.
Then the Legendre symbol of g is (%) = 1. Hence, the Legendre symbol of the message
m satisfies

m _ C

(2) = (2)

and so can be computed in polynomial-time from the public key and the ciphertext.

To prevent the attack in Example 20.4.7 one can restrict the message space to elements
of I, with Legendre symbol 1. However, this attack is just a special case of a more general
phenomenon. The Legendre symbol is a homomorphism F; — G1 where G = {-1,1} C
[F} is the subgroup of order 2. The attack can be performed for any homomorphism onto
a subgroup of order coprime to r (this is a slightly different application of the ideas of
Section 13.2).

442 CHAPTER 20. DIFFIE-HELLMAN CRYPTOGRAPHY

Example 20.4.8. (Boneh, Joux and Nguyen [82]) Let p be a 3072-bit prime and let
7| (p — 1) be a 256-bit prime. Let g € F, have order r. Suppose, in violation of the
description of classic textbook Elgamal in Section 20.3, one chooses the message space to
be

M={1,2,...,23% -1}

interpreted as a subset of 5. We identify M with {0,1}?* —{0}. Let (c; = g*,co = mhF)
be a challenge ciphertext for classic textbook Elgamal encryption, where m € M. Then

C2:m.

One expects that, with overwhelming probability, the 232 values m" are distinct, and
hence one can obtain m with at most 232 exponentiations in Fy.

Exercise 20.4.9. (Boneh, Joux and Nguyen [82]) Let p and r | (p — 1) be prime and let
g € F, have order r. Suppose one uses classic textbook Elgamal with restricted message
space M = {0,1}™ — {0} as in Example 20.4.8 where #M = 2™ — 1 < p/r. Extend
the attack of Example 20.4.8 using the baby-step-giant-step method, so that it requires
O(2™/2%€) exponentiations in G to find m with noticeable probability, for € > 0.

One way to avoid these attacks is to restrict the message space to (g). It is then
intuitively clear that IND security under passive attacks depends on the decisional Diffie-
Hellman problem.

Theorem 20.4.10. Classic textbook Elgamal with M = (g) has IND-CPA security if and
only if the DDH problem is hard.

Proof: (For perfect oracles.) First we show IND-CPA <p DDH: Let A be an oracle to
solve DDH. Let (c1,c2) be a ciphertext that is an encryption of either mg or my. Call
A(g,c1,ha, czmal) and if the answer is ‘yes’ then the message is mg and if the answer is
‘no’ then the message is mj.

For the converse (i.e., DDH <p IND-CPA of Elgamal): Let A be an oracle that
breaks indistinguishability of Elgamal. Then A takes as input a public key (g, k), a pair
of messages mg, m; and a ciphertext (¢, ca) and outputs either 0 or 1. (We assume that A
outputs either 0 or 1 even if the ciphertext corresponds to neither message.) Given a DDH
instance (g, 91, g2, 93) we repeatedly do the following: choose two random messages mg
and my in (g), choose a random ¢ € {0,1}, and call A on the input (g, g1, mg, M1, g2, M;gs3).
If A outputs 7 every time then we return ‘yes’ as the answer to the DDH. If A only outputs
the correct answer ¢ about half of the time, then we return ‘no’. To be sure the decryption
oracle is not just being lucky one should repeat the experiment Q(log(r)) times. O

If the hash function is sufficiently good then one does not have to make as strong an
assumption as DDH to show that semi-textbook Elgamal encryption has IND security.
Instead, the IND security intuitively only depends on CDH. Theorem 20.4.11 is a basic
example of a security proof in the random oracle model (see Section 3.7 for background
on this model). We give the proof as it illustrates one of the ways the random oracle
model is used in theoretical cryptography.

Theorem 20.4.11. In the random oracle model, semi-textbook Elgamal encryption has
IND-CPA security if CDH is hard.

Proof: (Sketch) Let A be an adversary for the IND-CPA game on semi-textbook Elgamal
encryption. Let g, g% ¢” be a CDH instance. We will describe a simulator S that will
solve the CDH problem using A as a subroutine.

First S runs the adversary A with public key (g, g%).

20.5. SECURITY OF DIFFIE-HELLMAN KEY EXCHANGE 443

The simulator must handle the queries made by A to the random oracle. To do this it
stores a list of hash values, initially empty. Let g; be the input for the i—th hash query.
If g; = g; for some 1 < j < i then we respond with the same value as used earlier. If not
then the simulator chooses uniformly at random an element H; € {0, 1} stores (g;, H;)
in the list, and answers the query H(g;) with H;. This is a perfect simulation of a random
oracle, at least until the challenge ciphertext is issued below.

At some time A outputs a pair of messages mg and m;. The simulator sets ¢; = g°,
chooses ¢y uniformly at random in {0,1}! and responds with the challenge ciphertext
(c1,¢2). The adversary A may make further hash function queries (which are answered
using the algorithm above) and eventually A outputs b € {0,1} (of course A may crash,
or run for longer than its specified running time, in which case S treats this as the output
0).

The logic of the proof is as follows: If A never queries the random oracle H on ¢g®
then A has no information on H(g®) and so cannot determine whether the answer should
be 0 or 1. Hence, for A to succeed then one of the queries on H must have been on g®.
Once this query is made then the simulator is seen to be fake as the adversary can check
that cy is not equal to m, ® H(g?) for b € {0,1}. However, the simulator is not concerned
with this issue since it knows that ¢%® occurs somewhere in the list of hash queries.

The simulator therefore chooses a random index i and responds with g; as its solution
to the CDH instance. O

Exercise 20.4.12. Fill the gaps in the proof of Theorem 20.4.11 and determine the exact
probability of success in terms of the success of the adversary and the number of queries
to the random oracle.

The power of the random oracle model is clear: we have been able to “look inside”
the adversary’s computation.

Exercise 20.4.13. Prove the converse to Theorem 20.4.11.
Indeed, the same technique leads to a much stronger result.

Theorem 20.4.14. In the Random Oracle Model, semi-textbook Elgamal encryption has
OWE-CPA security if CDH is hard.

Exercise 20.4.15. Prove Theorem 20.4.14.

20.5 Security of Diffie-Hellman Key Exchange

A discussion of security models for key exchange is beyond the scope of this book. We
refer to Bellare and Rogway [39], Bellare, Pointcheval and Rogaway [37], Bellare, Canetti
and Krawczyk [32], Canetti and Krawczyk [116], Shoup [554], Boyd and Mathuria [94] and
Menezes, van Oorschot and Vanstone [418] for details. However, as a rough approximation
we can consider three types of adversary:

e Passive adversary (also called “benign” in [39]). This attacker obtains all messages
sent during executions of the key exchange protocol but does not modify or delete
any messages. This attacker is also called an eavesdropper.

e Weak? active adversary. This attacker obtains all messages sent during executions
of the key exchange protocol and can modify or delete messages. This attacker can
also initiate protocol executions with any player.

3This use of the word “weak” is non-standard.

444 CHAPTER 20. DIFFIE-HELLMAN CRYPTOGRAPHY

e Active adversary. This is as above, but the attacker is allowed to corrupt any honest
player who has completed an execution of the protocol and thus obtain the agreed
key.

There are two possible goals of an adversary:

e To obtain the shared session key.

e To distinguish the session key from a random key. To make this notion more precise
consider a game between an adversary and a challenger. The challenger performs
one or more executions of the key exchange protocol and obtains a key K. The
challenger also chooses uniformly at random a key K’ from the space of possible
session keys. The challenger gives the adversary either K or K’ (with probability
1/2). The adversary has to decide whether the received key is K or not. This is
called real or random security.

The Diffie-Hellman key exchange protocol is vulnerable to a person-in-the-middle at-
tack. Unlike similar attacks on public key encryption, the attacker in this case does not
need to replace any users’ public keys.

Imagine that an adversary Eve can intercept all communication between Alice and
Bob. When Alice sends ¢; = g% to Bob, Eve stores ¢; and sends ¢g¢ to Bob, for some
random integer e known to Eve. Similarly, when Bob sends c; = ¢° to Alice, Eve stores
co and sends ¢¢ to Alice. Alice computes the key ¢*¢ and Bob computes the key g*¢. Eve
can compute both keys. If Alice later sends an encrypted message to Bob using the key
g% then Eve can decrypt it, read it, re-encrypt using the key ¢°¢, and forward to Bob.
Hence Alice and Bob might never learn that their security has been compromised.

One way to overcome person-in-the-middle attacks is for Alice to send a digital sig-
nature on her value g% (and similarly for Bob). As long as Alice and Bob each hold
authentic copies of the other’s public keys then this attack fails. Note that this solution
does not prevent all attacks on the Diffie-Hellman key exchange protocol.

Another solution is given by authenticated key exchange protocols such as STS, KEA,
MTI, MQV, etc (see Chapter 11 of Stinson [592] and the references listed earlier).

We illustrate the basic idea behind most protocols of this type using the MTI/AQ
protocol: Alice and Bob have public keys hq = g* and hp = g*. We assume that Alice
and Bob have authentic copies of each others public keys. They perform Diffie-Hellman
key exchange in the usual way (Alice sends g* and Bob sends g¥). Then the value agreed
by both players is

ay-+bx
g

Exercise 20.5.1. Explain why the person-in-the-middle attack fails for this protocol
(assuming the public key authentication process is robust).

Exercise 20.5.2. Consider a key exchange protocol where Alice and Bob have public
keys ha = g% and hp = g%, where Alice sends g” and Bob sends g¥ and where the shared
key is g®*®¥. Show that if corrupt queries are allowed then this key exchange protocol
does not provide authentication.

Exercise 20.5.3. Give a person-in-the-middle attack on the Burmester-Desmedt proto-
col.

20.6. EFFICIENCY OF DISCRETE LOGARITHM CRYPTOGRAPHY 445

20.6 Efficiency Considerations for Discrete Logarithm
Cryptography

All cryptographic protocols whose security is related to the DLP involve computations
of the form ¢® at some stage, and this is usually the most demanding computation in
terms of time and computing resources. To make the cryptosystem fast it is natural to
try to speed up exponentiation. One could try working in a smaller group, however it is
important to ensure that the security of the system is maintained. Indeed, many of the
main topics in this book (e.g., tori, elliptic curves and hyperelliptic curves) are attempts
to get the “most efficient” group for a given security level.

A number of methods to speed up exponentiation in certain groups have already been
presented. Section 11.1 discussed signed expansions, which are suitable for groups (such
as elliptic and hyperelliptic curves or tori) where inversion is very efficient. Section 11.3
presented Frobenius expansions and the GLV method, which are suitable for elliptic
curves. Those methods all assume that the exponent a takes any value.

One can also consider methods that do not correspond to values a chosen uniformly at
random. Such methods can be much faster than the general methods already mentioned,
but understanding the security implications can be more complicated. We do not have
space to describe any of these methods in detail, but we briefly mention some of them.

1. Choose a to have low Hamming weight. This is mentioned by Agnew, Mullin,
Onyszchuk and Vanstone [5] and Schnorr [523].

2. Choose a to be a random Frobenius expansion of low Hamming weight. This is
credited to H. W. Lenstra Jr. in Section 6 of Koblitz [347].

3. Choose a to be given by a random addition chain (or addition-subtraction chain).
This is proposed in Section 3.3 of Schroeppel, Orman, O’Malley and Spatscheck [532].

4. Choose a to be a product of integers of low Hamming weight. This was proposed
and analysed by Hoffstein and Silverman [290].

5. Choosing a to be a random element in GLV representation, possibly with smaller
than typical coefficients.

6. Generate random elements using large amounts of precomputation. A solution that
can be used in any group is given by Boyko, Peinado and Venkatesan [96]. The
method requires precomputing and storing random powers g; = g*. One generates
a random pair (a, g*) by taking the product of a random subset of the g% and setting
a =Y a; (modr). This method is presented as the “simple solution” in [152].

A more sophisticated method for Koblitz curves is given by Coron, M’Rathi and
Tymen [152]. They use repeated application of sparse Frobenius expansions on
elements of the precomputed table. They also give a security analysis.

