
Chapter 19

Coppersmith’s Method and
Related Applications

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

An important application of lattice basis reduction is finding small solutions to poly-
nomial equations F (x) ≡ 0 (mod M) of degree d > 1. The main purpose of this chapter
is to present some results of Coppersmith [141] on this problem. We also discuss finding
small roots of bivariate integer polynomials and some other applications of these ideas.

In general, finding solutions to modular equations is easy if we know the factorisation
of the modulus, see Section 2.12. However, if the factorisation of the modulus M is not
known then finding solutions can be hard. For example, if we can find a solution to
x2 ≡ 1 (mod M) that is not x = ±1 then we can split M . Hence, we do not expect
efficient algorithms for finding all solutions to modular equations in general.

Suppose then that the polynomial equation has a “small” solution. It is not so clear
that finding the roots is necessarily a hard problem. The example x2 ≡ 1 (mod M) no
longer gives any intuition since the two non-trivial roots both have absolute value at least√
M . As we will explain in this chapter, if F (x) ≡ 0 (mod M) of degree d has a solution

x0 such that |x0| < M1/d−ǫ for small ǫ > 0 then it can be found in polynomial-time. This
result has a number of important consequences.

General references for the contents of this chapter are Coppersmith [141, 142], May [410,
411], Nguyen and Stern [463] and Nguyen [456].

397

398 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

19.1 Coppersmith’s Method for Modular Univariate

Polynomials

19.1.1 First Steps to Coppersmith’s Method

We sketch the basic idea of the method, which goes back to H̊astad. Let F (x) = xd +
ad−1x

d−1 + · · · + a1x + a0 be a monic polynomial of degree d with integer coefficients.
Suppose we know that there exist one or more integers x0 such that F (x0) ≡ 0 (mod M)
and that |x0| < M1/d. The problem is to find all such roots.

Since |xi
0| < M for all 0 ≤ i ≤ d then, if the coefficients of F (x) are small enough, one

might have F (x0) = 0 over Z. The problem of finding integer roots of integer polynomials
is easy: we can find roots over R using numerical analysis (e.g., Newton’s method) and
then round the approximations of the roots to the nearest integer and check whether they
are solutions of F (x).

The problem is therefore to deal with polynomials F (x) having a small solution but
whose coefficients are not small. Coppersmith’s idea (in the formulation of Howgrave-
Graham [296]) is to build from F (x) a polynomial G(x) that still has the same solution
x0, but which has coefficients small enough that the above logic does apply.

Example 19.1.1. Let M = 17 · 19 = 323 and let

F (x) = x2 + 33x+ 215.

We want to find the small solution to F (x) ≡ 0 (mod M) (in this case, x0 = 3 is a
solution, but note that F (3) 6= 0 over Z).

We seek a related polynomial with small coefficients. For this example,

G(x) = 9F (x)−M(x+ 6) = 9x2 − 26x− 3

satisfies G(3) = 0. This root can be found using Newton’s method over R (or even the
quadratic formula).

We introduce some notation for the rest of this section. Let M,X ∈ N and let
F (x) =

Pd
i=0 aix

i ∈ Z[x]. Suppose x0 ∈ Z is a solution to F (x) ≡ 0 (mod M) such that
|x0| < X . We associate with the polynomial F (x) the row vector

bF = (a0, a1X, a2X
2, · · · , adXd). (19.1)

Vice versa, any such row vector corresponds to a polynomial. Throughout this section we
will interpret polynomials as row vectors, and row vectors as polynomials, in this way.

Theorem 19.1.2. (Howgrave-Graham [296]) Let F (x), X,M, bF be as above (i.e., there
is some x0 such that |x0| ≤ X and F (x0) ≡ 0 (mod M)). If kbF k < M/

√
d+ 1 then

F (x0) = 0.

Proof: Recall the Cauchy-Schwarz inequality (
Pn

i=1 xiyi)
2 ≤ (

Pn
i=1 x

2
i)(

Pn
i=1 y

2
i) for

xi, yi ∈ R. Taking xi ≥ 0 and yi = 1 for 1 ≤ i ≤ n one has

nX

i=1

xi ≤

vuutn
nX

i=1

x2
i .

Now

|F (x0)| =
�����

dX

i=0

aix
i
0

����� ≤
dX

i=0

|ai||x0|i ≤
dX

i=0

|ai|X i ≤
√
d+ 1kbF k <

√
d+ 1M/

√
d+ 1 = M

19.1. MODULAR UNIVARIATE POLYNOMIALS 399

where the third inequality is Cauchy-Schwarz. so −M < F (x0) < M . But F (x0) ≡
0 (mod M) and so F (x0) = 0. �

Let F (x) =
Pd

i=0 aix
i be a monic polynomial. We assume that F (x) has at least one

solution x0 modulo M such that |x0| < X for some specified integer X . If F (x) is not
monic but gcd(ad,M) = 1 then one can multiply F (x) by a−1

d (mod M) to make it monic.
If gcd(ad,M) > 1 then one can split M and reduce the problem to two (typically easier)
problems. As explained above, to find x0 it will be sufficient to find a polynomial G(x)
with the same root x0 modulo M but with sufficiently small coefficients.

To do this, consider the d+1 polynomials Gi(x) = Mxi for 0 ≤ i < d and F (x). They
all have the solution x = x0 modulo M . Define the lattice L with basis corresponding to
these polynomials (by associating with a polynomial the row vector in equation (19.1)).
Therefore, the basis matrix for the lattice L is

B =




M 0 · · · 0 0
0 MX · · · 0 0
...

...
...

0 0 · · · MXd−1 0
a0 a1X · · · ad−1X

d−1 Xd




. (19.2)

Every element of this lattice is a row vector that can be interpreted as a polynomial F (x)
(via equation (19.1) such that F (x0) ≡ 0 (mod M).

Lemma 19.1.3. The dimension of the lattice L defined in equation (19.2) above is d+1
and the determinant is

det(L) = MdXd(d+1)/2.

Exercise 19.1.4. Prove Lemma 19.1.3.

One now runs the LLL algorithm on this (row) lattice basis. Let G(x) be the polyno-
mial corresponding to the first vector b1 of the LLL-reduced basis (since every row of B
has the form of equation (19.1) then so does b1).

Theorem 19.1.5. Let the notation be as above and let G(x) be the polynomial corre-
sponding to the first vector in the LLL-reduced basis for L. Set c1(d) = 2−1/2(d+1)−1/d.
If X < c1(d)M

2/d(d+1) then any root x0 of F (x) modulo M such that |x0| ≤ X satisfies
G(x0) = 0 in Z.

Proof: Recall that b1 satisfies

kb1k ≤ 2(n−1)/4 det(L)1/n = 2d/4Md/(d+1)Xd/2.

For b1 to satisfy the conditions of Howgrave-Graham’s theorem (i.e., kb1k < M/
√
d+ 1)

it is sufficient that
2d/4Md/(d+1)Xd/2 < M/

√
d+ 1.

This can be written as √
d+ 12d/4Xd/2 < M1/(d+1),

which is equivalent to the condition in the statement of the Theorem. �

In other words, if d = 2 then it is sufficient that X ≈ M1/3 to find the small solution
using the above method. If d = 3 then it is sufficient that X ≈ M1/6. This is the result of
H̊astad. Of course, LLL often works better than the worst-case bound, so small solutions
x0 may be found even when x0 does not satisfy the condition of the Theorem.

400 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Example 19.1.6. Let M = 10001 and consider the polynomial

F (x) = x3 + 10x2 + 5000x− 222.

One can check that F (x) is irreducible, and that F (x) has the small solution x0 = 4
modulo M . Note that |x0| < M1/6 so one expects to be able to find x0 using the above
method. Suppose X = 10 is the given bound on the size of x0. Consider the basis matrix

B =




M 0 0 0
0 MX 0 0
0 0 MX2 0

−222 5000X 10X2 X3


 .

Running LLL on this matrix gives a reduced basis, the first row of which is

(444, 10,−2000,−2000).

The polynomial corresponding to this vector is

G(x) = 444 + x− 20x2 − 2x3.

Running Newton’s root finding method on G(x) gives the solution x0 = 4.

19.1.2 The Full Coppersmith Method

The method in the previous section allows one to find small roots of modular polynomials,
but it can be improved further. Looking at the proof of Theorem 19.1.5 one sees that the
requirement for success is essentially MdXd(d+1)/2 = det(L) < Md+1 (more precisely, it
is 2d/4Md/(d+1)Xd/2 < M/

√
d+ 1). There are two strategies to extend the utility of the

method (i.e., to allow bigger values for X). The first is to increase the dimension n by
adding rows to L that contribute less thanM to the determinant. The second is to increase
the power ofM on the right hand side. One can increase the dimension without increasing
the power of M by using the so-called “x-shift” polynomials xF (x), x2F (x), . . . , xkF (x);
Example 19.1.7 gives an example of this. One can increase the power of M on the
right hand side by using powers of F (x) (since if F (x0) ≡ 0 (mod M) then F (x0)

k ≡
0 (mod Mk)).

Example 19.1.7. Consider the problem of Example 19.1.6. The lattice has dimension 4
and determinant M3X3. The condition for LLL to output a sufficiently small vector is

23/4
�
M3X6

�1/4 ≤ M√
4

which, taking M = 10001, leads to X ≈ 2.07. (Note that the method worked for a larger
value of x0; this is because the bound used on LLL only applies in the worst case.)

Consider instead the basis matrix that also includes rows corresponding to the poly-
nomials xF (x) and x2F (x)

B =




M 0 0 0 0 0
0 MX 0 0 0 0
0 0 MX2 0 0 0

−222 5000X 10X2 X3 0 0
0 −222X 5000X2 10X3 X4 0
0 0 −222X2 5000X3 10X4 X5




.

19.1. MODULAR UNIVARIATE POLYNOMIALS 401

The dimension is 6 and the determinant is M3X15. The condition for LLL to output a
sufficiently small vector is

25/4
�
M3X15

�1/6 ≤ M√
6
,

which leads to X ≈ 3.11. This indicates that some benefit can be obtained by using
x-shifts.

Exercise 19.1.8. Let G(x) be a polynomial of degree d. Show that taking d x-shifts
G(x), xG(x), . . . , xd−1G(x) gives a method that works for X ≈ M1/(2d−1).

Exercise 19.1.8 shows that when d = 3 we have improved the result from X ≈ M1/6

to X ≈ M1/5. Coppersmith [141] exploits both x-shifts and powers of F (x). We now
present the method in full generality.

Theorem 19.1.9. (Coppersmith) Let 0 < ǫ < min{0.18, 1/d}. Let F (x) be a monic
polynomial of degree d with one or more small roots x0 modulo M such that |x0| <
1
2M

1/d−ǫ. Then x0 can be found in time bounded by a polynomial in d, 1/ǫ and log(M).

Proof: Let h > 1 be an integer that depends on d and ǫ and will be determined in
equation (19.3) below. Consider the lattice L corresponding (via the construction of the
previous section) to the polynomials Gi,j(x) = Mh−1−jF (x)jxi for 0 ≤ i < d, 0 ≤ j < h.
Note that Gi,j(x0) ≡ 0 (mod Mh−1). The dimension of L is dh. One can represent L by a
lower triangular basis matrix with diagonal entriesMh−1−jXjd+i. Hence the determinant
of L is

det(L) = M (h−1)hd/2X(dh−1)dh/2.

Running LLL on this basis outputs an LLL-reduced basis with first vector b1 satisfying

kb1k < 2(dh−1)/4 det(L)1/dh = 2(dh−1)/4M (h−1)/2X(dh−1)/2.

This vector corresponds to a polynomial G(x) of degree dh − 1 such that G(x0) ≡
0 (mod Mh−1). If kb1k < Mh−1/

√
dh then Howgrave-Graham’s result applies and we

have G(x0) = 0 over Z.
Hence, it is sufficient that

√
dh2(dh−1)/4M (h−1)/2X(dh−1)/2 < Mh−1.

Rearranging gives √
dh2(dh−1)/4X(dh−1)/2 < M (h−1)/2,

which is equivalent to

c(d, h)X < M (h−1)/(dh−1)

where c(d, h) = (
√
dh2(dh−1)/4)2/(dh−1) =

√
2(dh)1/(dh−1).

Now
h− 1

dh− 1
=

1

d
− d− 1

d(dh− 1)
.

Equating (d− 1)/(d(dh− 1)) = ǫ gives

h = ((d− 1)/(dǫ) + 1)/d ≈ 1/(dǫ). (19.3)

Note that dh = 1 + (d − 1)/(dǫ) and so c(d, h) =
√
2(1 + (d − 1)/(dǫ))dǫ/(d−1), which

converges to
√
2 as ǫ → 0. Since X < 1

2M
1/d−ǫ we require 1

2 ≤ 1
c(d,h) . Writing x =

402 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

dǫ/(d− 1) this is equivalent to (1+1/x)x ≤
√
2, which holds for 0 ≤ x ≤ 0.18. Therefore,

assume ǫ ≤ (d− 1)/d.
Rounding h up to the next integer gives a lattice such that if

|x0| < 1
2M

1/d−ǫ

then the LLL algorithm and polynomial root finding leads to x0.
Since the dimension of the lattice is dh ≈ 1/ǫ and the coefficients of the polynomials

Gi,j are bounded by Mh it follows that the running time of LLL depends on d, 1/ǫ and
log(M). �

Exercise 19.1.10. Show that the precise complexity of Coppersmith’s method is O((1/ǫ)9 log(M)3)
bit operations (recall that 1/ǫ > d). Note that if one fixes d and ǫ and considers the prob-
lem as M tends to infinity then one has a polynomial-time algorithm in log(M).

We refer to Section 3 of [142] for some implementation tricks that improve the algo-
rithm. For example, one can add basis vectors to the lattice corresponding to polynomials
of the form Mh−1x(x− 1) · · · (x− i+ 1)/i!.

Example 19.1.11. Let p = 230 + 3, q = 232 +15 and M = pq. Consider the polynomial

F (x) = a0 + a1x+ a2x
2 + a3x

3

= 1942528644709637042+ 1234567890123456789x+ 987654321987654321x2+ x3,

which has a root x0 modulo M such that |x0| ≤ 214. Set X = 214. Note that X ≈ M1/4.4.
One can verify that the basic method in Section 19.1.1 does not find the small root.

Consider the basis matrix (this is of smaller dimension than the lattice in the proof
of Theorem 19.1.9 in the case d = 3 and h = 3)




M2 0 0 0 0 0 0
0 M2X 0 0 0 0 0
0 0 M2X2 0 0 0 0

Ma0 Ma1X Ma2X
2 MX3 0 0 0

0 Ma0X Ma1X
2 Ma2X

3 MX4 0 0
0 0 Ma0X

2 Ma1X
3 Ma2X

4 MX5 0
a20 2a0a1X (a21 + 2a0a2)X

2 (2a0 + 2a1a2)X
3 (a22 + 2a1)X

4 2a2X
5 X6




.

The dimension is 7 and the determinant is M9X21. The first vector of the LLL reduced
basis is

(−369928294330603367352173305173409792, 1451057442025994832259962670402797568, . . .)

This corresponds to the polynomial

−369928294330603367352173305173409792+ 88565517701781911148679362207202x

−3439987357258441728608570659x2 + 446358057645551896819258x3

+4564259979987386926x4− 1728007960413053x5− 21177681998x6

which has x0 = 16384 = 214 as a real root.

Exercise 19.1.12. Let M = (220 + 7)(221 + 17) and F (x) = x3 + (225 − 2883584)x2 +
46976195x+ 227. Use Coppersmith’s algorithm to find an integer x0 such that |x0| < 29

and F (x0) ≡ 0 (mod M).

19.2. MULTIVARIATE MODULAR POLYNOMIAL EQUATIONS 403

Remark 19.1.13. It is natural to wonder whether one can find roots right up to the
limit X = M1/d. Indeed, the −ǫ term can be eliminated by performing an exhaustive
search over the top few bits of the root x0. An alternative way to proceed is to set
ǫ = 1/ log2(M), break the range |x0| < M1/d of size 2M1/d into M2ǫ = 4 intervals of size
2M1/d−2ǫ = M1/d−ǫ, and perform Coppersmith’s algorithm for each subproblem in turn.

Another question is whether one can go beyond the boundary X = M1/d. A first
observation is that for X > M1/d one does not necessarily expect a constant number of
solutions; see Exercise 19.1.14. Coppersmith [142] gives further arguments why M1/d is
the best one can hope for.

Exercise 19.1.14. Let M = p2 and consider F (x) = x2 + px. Show that if X = M1/2+ǫ

where 0 < ǫ < 1/2 then the number of solutions |x| < X to F (x) ≡ 0 (mod M) is 2M ǫ,

Exercise 19.1.15. Let N = pq be a product of two primes of similar size and let e ∈ N
be a small integer such that gcd(e,ϕ(N)) = 1. Let 1 < a, y < N be such that there is an
integer 0 ≤ x < N1/e satisfying (a + x)e ≡ y (mod N). Show that, given N, e, a, y one
can compute x in polynomial-time.

19.2 Multivariate Modular Polynomial Equations

Suppose one is given F (x, y) ∈ Z[x, y] and integers X , Y and M and is asked to find
one or more roots (x0, y0) to F (x, y) ≡ 0 (mod M) such that |x0| < X and |y0| <
Y . One can proceed using similar ideas to the above, hoping to find two polynomials
F1(x, y), F2(x, y) ∈ Z[x, y] such that F1(x0, y0) = F2(x0, y0) = 0 over Z, and such that
the resultant Rx(F1(x, y), F2(x, y)) 6= 0 (i.e., that F1(x, y) and F2(x, y) are algebraically
independent). This yields a heuristic method in general, since it is hard to guarantee
the independence of F1(x, y) and F2(x, y).

Theorem 19.2.1. Let F (x, y) ∈ Z[x, y] be a polynomial of total degree d (i.e., every
monomial xiyj satisfies i + j ≤ d). Let X,Y,M ∈ N be such that XY < M1/d−ǫ for
some 0 < ǫ < 1/d. Then one can compute (in time polynomial in log(M) and 1/ǫ > d)
polynomials F1(x, y), F2(x, y) ∈ Z[x, y] such that, for all (x0, y0) ∈ Z2 with |x0| < X,
|y0| < Y and F (x0, y0) ≡ 0 (mod M), one has F1(x0, y0) = F2(x0, y0) = 0 over Z.

Proof: We refer to Jutla [324] and Section 6.2 of Nguyen and Stern [463] for a sketch of
the details. �

19.3 Bivariate Integer Polynomials

We now consider F (x, y) ∈ Z[x, y] and seek a root (x0, y0) ∈ Z2 such that both |x0| and
|y0| are small. Coppersmith has proved the following important result.

Theorem 19.3.1. Let F (x, y) ∈ Z[x, y] and let d ∈ N be such that degx(F (x, y)), degy(F (x, y)) ≤
d. Write

F (x, y) =
X

0≤i,j≤d

Fi,jx
iyj.

For X,Y ∈ N define
W = max

0≤i,j,≤d
|Fi,j |X iY j .

If XY < W 2/(3d) then there is an algorithm that takes as input F (x, y), X, Y , runs in
time (bit operations) bounded by a polynomial in log(W) and 2d, and outputs all pairs
(x0, y0) ∈ Z2 such that F (x0, y0) = 0, |x0| ≤ X and |y0| ≤ Y .

404 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

The condition in Theorem 19.3.1 is somewhat self-referential. If one starts with a
polynomial F (x, y) and bounds X and Y on the size of roots, then one can compute W
and determine whether or not the algorithm will succeed in solving the problem.
Proof: (Outline) There are two proofs of this theorem, both of which are rather techni-
cal. The original by Coppersmith can be found in [141]. We sketch a simpler proof by
Coron [150].

As usual we consider shifts of the polynomial F (x, y). Choose k ∈ N (sufficiently
large) and consider the k2 polynomials

sa,b(x, y) = xaybF (x, y) for 0 ≤ a, b < k

in the (d + k)2 monomials xiyj with 0 ≤ i, j < d + k. Coron chooses a certain set of k2

monomials (specifically of the form xi0+iyj0+j for 0 ≤ i, j < k and fixed 0 ≤ i0, j0 ≤ d)
and obtains a k2 × k2 matrix S with non-zero determinant M . (The most technical part
of [150] is proving that this can always be done and bounding the size of M .)

One can now consider the (d + k)2 polynomials Mxiyj for 0 ≤ i, j < d + k. Writing
each polynomial as a row vector of coefficients, we now have a k2 + (d + k)2 by (d+ k)2

matrix. One can order the rows such that the matrix is of the form



S ∗
MIk2 0
0 MIw




where w = (d+ k)2− k2, ∗ represents a k2×w matrix, and Iw denotes the w×w identity
matrix.

Now, since M = det(S) there exists an integer matrix S′ such that S′S = MIk2 .
Perform the row operations




Ik2 0 0
−S′ Ik2 0
0 0 Iw







S ∗
MIk2 0
0 MIw


 =




S ∗
0 T
0 MIw




for some k2 × w matrix T . Further row operations yield a matrix of the form



S ∗
0 T ′

0 0




for some w × w integer matrix T ′.
Coron considers a lattice L corresponding to T ′ (where the entries in a column corre-

sponding to monomial xiyj are multiplied by X iY j as in equation (19.2)) and computes
the determinant of this lattice. Lattice basis reduction yields a short vector that corre-
sponds to a polynomial G(x, y) with small coefficients such that every root of F (x, y) is
a root of G(x, y) modulo M . If (x0, y0) is a sufficiently small solution to F (x, y) then,
using an analogue of Theorem 19.1.2, one infers that G(x0, y0) = 0 over Z.

A crucial detail is that G(x, y) has no common factor with F (x, y). To show this sup-
pose G(x, y) = F (x, y)A(x, y) for some polynomial (we assume that F (x, y) is irreducible,
if not then apply the method to its factors in turn). ThenG(x, y) =

P
0≤i,j<k Ai,jx

iyjF (x, y)
and so the vector of coefficients of G(x, y) is a linear combination of the coefficient vectors
of the k2 polynomials sa,b(x, y) for 0 ≤ a, b < k. But this vector is also a linear combi-
nation of the rows of the matrix (0 T ′) in the original lattice. Considering the first k2

columns (namely the columns of S), one has a linear dependence of the rows in S. Since
det(S) 6= 0 this is a contradiction.

19.3. BIVARIATE INTEGER POLYNOMIALS 405

It follows that the resultant Rx(F,G) is a non-zero polynomial, and so one can find
all solutions by finding the integer roots of Rx(F,G)(y) and then solving for x.

To determine the complexity it is necessary to compute the determinant of T ′ and to
bound M . Coron shows that the method works if XY < W 2/(3d)−1/k2−9d. To get the
stated running time for XY < W 2/(3d) Coron proposes setting k = ⌊log(W)⌋ and per-
forming exhaustive search on the O(d) highest-order bits of x0 (i.e., running the algorithm
a polynomial in 2d times). �

Example 19.3.2. Consider F (x, y) = axy + bx+ cy + d = 127xy − 1207x− 1461y+ 21
with X = 30, Y = 20. Let M = 1274 (see below).

Consider the 13 × 9 matrix (this is taking k = 2 in the above proof and introducing
the powers X iY j from the start)

B =




aX2Y 2 bX2Y cXY 2 dXY 0 0 0 0 0
0 aX2Y 0 cXY bX2 0 dX 0 0
0 0 aXY 2 bXY 0 cY 2 0 dY 0
0 0 0 aXY 0 0 bX cY d

MX2Y 2 0 0 0 0 0 0 0 0
0 MX2Y 0 0 0 0 0 0 0
...

...
0 0 0 0 0 0 0 0 M




.

We take S to be the matrix 


a b c d
0 a 0 c
0 0 a b
0 0 0 a




corresponding to the monomials xi0+iyj0+j for 0 ≤ i, j < 2 and fixed i0 = j0 = 1. Note
that M = det(S) = a4 = 1274.

Rather than diagonalising using the method of the proof of Theorem 19.3.1 we compute
the Hermite normal form of B. This gives the matrix

B′ =




aX2Y 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
aX2Y ∗ ∗ ∗ ∗ ∗ ∗ ∗

aXY 2 ∗ ∗ ∗ ∗ ∗ ∗
aXY ∗ ∗ ∗ ∗ ∗

16129X2 16129Y 2 100125X 1064641Y 202558777
2048383Y 2 ∗ ∗ ∗

2048383X ∗ ∗
260144641Y ∗

260144641




where blanks are zeroes and ∗ denotes an entry whose value we do not bother to write
down. Let L be the 5× 5 diagonal matrix formed of columns 5 to 9 of rows 5 to 9 of B′.
Performing LLL-reduction on L gives a matrix whose first row is

(−16129X2,−16129Y 2, 1048258X, 983742Y,−28446222)

406 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

corresponding to the polynomial

G(x, y) = −16129x2 − 16129y2 + 1048258x+ 983742y− 28446222.

Clearly G(x, y) is not a multiple of F (x, y), since it has no xy term. Computing resultants
and factoring gives the solutions (x, y) = (21, 21) and (23, 19).

Exercise 19.3.3. The polynomial

F (x, y) = 131xy − 1400x+ 20y − 1286

has an integer solution with |x| < 30 and |y| < 20. Use Coron’s method as in Exam-
ple 19.3.2 to find (x, y).

The results of this section can be improved by taking into account the specific shape
of the polynomial F (x, y). We refer to Blömer and May [72] for details.

Finally, we remark that results are also known for integer polynomials having three
or more variables, but these are heuristic in the sense that the method produces a list of
polynomials having small roots in common, but there is no guarantee that the polynomials
are algebraically independent.

19.4 Some Applications of Coppersmith’s method

19.4.1 Fixed Padding Schemes in RSA

As discussed in Chapter 1, it is necessary to use padding schemes for RSA encryption (for
example, to increase the length of short messages and to prevent algebraic relationships
between the messages and ciphertexts). One simple proposal for κ-bit RSA moduli is to
take a κ′ bit message and pad it by putting (κ − κ′ − 1) ones to the left hand side of
it. This brings a short message to full length. This padding scheme is sometimes called
fixed pattern padding; we discuss it further in Section 24.4.5.

Suppose short messages (for example, 128-bit AES keys K) are being encrypted using
this padding scheme with κ = 1024. Then

m = 21024 − 2128 +K.

Suppose also that the encryption exponent is e = 3. Then the ciphertext is

c = m3 (mod N).

If such a ciphertext is intercepted then the cryptanalyst only needs to find the value
for K. In this case we know that K is a solution to the polynomial

F (x) = (21024 − 2128 + x)3 − c ≡ 0 (mod N).

This is a polynomial of degree 3 with a root modulo N of size at most N128/1024 = N1/8.
So Coppersmith’s method finds the solution K in polynomial-time.

Example 19.4.1. Let N = 8873554201598479508804632335361 (which is a 103 bit in-
teger) and suppose Bob is sending 10-bit keys K to Alice using the padding scheme
m = 2100 − 210 +K.

19.4. SOME APPLICATIONS OF COPPERSMITH’S METHOD 407

Suppose we have intercepted the ciphertext c = 8090574557775662005354455491076
and wish to find K. Let X = 210. We write F (x) = (x+ 2100 − 210)3 − c = x3 + a2x

2 +
a1x+ a0 and define

B =




N 0 0 0
0 NX 0 0
0 0 NX2 0
a0 a1X a2X

2 X3


 .

Performing lattice reduction and taking the first row vector gives the polynomial with
factorisation

(x− 987)(−920735567540915376297+ 726745175435904508x+ 277605904865853x2).

One can verify that the message is K = 987.

19.4.2 Factoring N = pq with Partial Knowledge of p

Let N = pq and suppose we are given an approximation p̃ to p such that p = p̃ + x0

where |x0| < X . For example, suppose p is a 2κ-bit prime and p̃ is an integer that
has the same κ most significant bits as p (so that |p − p̃| < 2κ). Coppersmith used his
ideas to get an algorithm for finding p given N and p̃. Note that Coppersmith originally
used a bivariate polynomial method, but we present a simpler version following work of
Howgrave-Graham, Boneh, Durfee and others.

The polynomial F (x) = (x+ p̃) has a small solution modulo p. The problem is that we
don’t know p, but we do know a multiple of p (namely, N). The idea is to form a lattice
corresponding to polynomials that have a small root modulo p and to apply Coppersmith’s
method to find this root x0. Once we have x0 then we compute p as gcd(N,F (x0)).

Theorem 19.4.2. Let N = pq with p < q < 2p. Let 0 < ǫ < 1/4, and suppose p̃ ∈ N is
such that |p− p̃| ≤ 1

2
√
2
N1/4−ǫ. Then given N and p̃ one can factor N in time polynomial

in log(N) and 1/ǫ.

Proof: Write F (x) = (x+ p̃) and note that
p
N/2 ≤ p ≤

√
N . Let X = ⌊ 1

2
√
2
N1/4−ǫ⌋.

We describe the lattice to be used. Let h ≥ 4 be an integer to be determined later
and let k = 2h. Consider the k + 1 polynomials

Nh, Nh−1F (x), Nh−2F (x)2, . . . , NF (x)h−1, F (x)h, xF (x)h, . . . , xk−hF (x)h.

Note that if p = p̃+ x0 and if G(x) is one of these polynomials then G(x0) ≡ 0 (mod ph).
Consider the lattice corresponding to the above polynomials. More precisely, a basis

for the lattice is obtained by taking each polynomial G(x) above and writing the vector
of coefficients of the polynomial G(x) as in equation (19.1). The lattice has dimension
k + 1 and determinant Nh(h+1)/2Xk(k+1)/2.

Applying LLL gives a short vector and, to apply Howgrave-Graham’s result, we
need 2k/4 det(L)1/(k+1) < ph/

√
k + 1. Hence, since p > (N/2)1/2, it is sufficient that√

k + 1 2k/4Nh(h+1)/(2(k+1))Xk/2 < (N/2)h/2. Re-arranging gives

X < Nh/k−h(h+1)/(k(k+1))2−h/k2−1/2/(k + 1)1/k.

Since k ≥ 7 we have (k + 1)1/k = 2log2(k+1)/k ≤ 21/2 and so 1/(k + 1)1/k ≥ 1/
√
2.

Now, since k = 2h we find that the result holds if

X < N1/2(1−(h+1)/(2h+1)) 1
2
√
2
.

408 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Since 1/2(1−(h+1)/(2h+1)) = 1/4−1/(4(2h+1)) the result will follow if 1/(4(2h+1)) < ǫ.
Taking h ≥ max{4, 1/(4ǫ)} is sufficient. �

One can obtain a more general version of Theorem 19.4.2. If p = Nα and |x| ≤ Nβ

where 0 < α,β < 1 then, ignoring constants, the required condition in the proof is

h(h+ 1)

2
+

βk(k + 1)

2
< αh(k + 1).

Taking h =
√
βk and simplifying gives β < α2. The case we have shown is α = 1/2 and

β < 1/4. For details see Exercise 19.4.5 or Theorems 6 and 7 of May [410].

Example 19.4.3. Let N = 16803551, p̃ = 2830 and X = 10.
Let F (x) = (x + p̃) and consider the polynomials N,F (x), xF (x) = (x2 + p̃x) and

x2F (x), which all have the same small solution x0 modulo p.
We build the lattice corresponding to these polynomials (with the usual method of

converting a polynomial into a row vector). This lattice has basis matrix




N 0 0 0
p̃ X 0 0
0 p̃X X2 0
0 0 p̃X2 X3


 .

The first row of the output of the LLL algorithm on this matrix is (105,−1200, 800, 1000),
which corresponds to the polynomial

G(x) = x3 + 8x2 − 120x+ 105.

The polynomial has the root x = 7 over Z. We can check that p = p̃ + 7 = 2837 is a
factor of N .

Exercise 19.4.4. Let N = 22461580086470571723189523 and suppose you are given the
approximation p̃ = 2736273600000 to p, which is correct up to a factor 0 ≤ x < X =
50000. Find the prime factorisation of N using Coppersmith’s method.

Exercise 19.4.5. Let ǫ > 0. Let F (x) be a polynomial of degree d such that F (x0) ≡
0 (mod M) for some M | N , M = Nα and |x0| ≤ 1

2N
α2/d−ǫ. Generalise the proof of

Theorem 19.4.2 to show that given F (x) and N one can compute x0 in time polynomial
in log(N), d and 1/ǫ.

Exercise 19.4.6. Coppersmith showed that one can factor N in time polynomial in
log(N) given p̃ such that |p− p̃| < N1/4. Prove this result.

Exercise 19.4.7. Use Coppersmith’s method to give an integer factorisation algorithm
requiring Õ(N1/4) bit operations. (A factoring algorithm with this complexity was also
given in Section 12.5.)

Exercise 19.4.8. Show that the method of this section also works if given p̃ such that
|p̃− kp| < N1/4 for some integer k such that gcd(k,N) = 1.

Exercise 19.4.9. Coppersmith also showed that one can factor N in time polynomial in
log(N) given p̃ such that p ≡ p̃ (mod M) where M > N1/4. Prove this result.

Exercise 19.4.10. Let N = pq with p ≈ q. Show that if one knows half the high order
bits of p then one also knows approximately half the high order bits of q as well.

19.4. SOME APPLICATIONS OF COPPERSMITH’S METHOD 409

19.4.3 Factoring prq

As mentioned in Section 24.1.2, moduli of the form prq, where p and q are distinct primes
and r ∈ N, can be useful for some applications. When r is large then p is relatively small
compared with N and so a natural attack is to try to factor N using the elliptic curve
method.

Boneh, Durfee and Howgrave-Graham [79] considered using Coppersmith’s method to
factor integers of the form N = prq when r is large. They observed that if one knows r
and an approximation p̃ to p then there is a small root of the polynomial equation

F (x) = (p̃+ x)r ≡ 0 (mod pr)

and that pr is a large factor of N . One can therefore apply the technique of Section 19.4.2
The algorithm is to repeat the above for all p̃ in a suitably chosen set. An analysis

of the complexity of the method is given in [79]. It is shown that if r ≥ log(p) then the
algorithm runs in polynomial-time and that if r =

p
log2(p) then the algorithm is asymp-

totically faster than using the elliptic curve method. One specific example mentioned
in [79] is that if p, q ≈ 2512 and r = 23 then N = prq should be factored more quickly by
their method than with the elliptic curve method.

Exercise 19.4.11. Let N = prq where p ≈ q, and so p ≈ N1/(r+1). Show that one
can factor N in O(N1/(r+1)2+ǫ) bit operations. In particular, one can factor integers
N = p2q in roughly Õ(N1/9) bit operations and integers N = p3q in roughly Õ(N1/16)
bit operations.

When r is small it is believed that moduli of the form N = prq are still hard to factor.
For 3076 bit moduli, taking r = 3 and p, q ≈ 2768 should be such that the best known
attack requires at least 2128 bit operations.

Exercise 19.4.12. The integer 876701170324027 is of the form p3q where |p−5000| < 10.
Use the method of this section to factor N .

19.4.4 Chinese Remaindering with Errors

Boneh [75], building on work of Goldreich, Ron and Sudan [257], used ideas very similar
to Coppersmith’s method to give an algorithm for the following problem in certain cases.

Definition 19.4.13. Let X, p1, . . . , pn, r1, . . . , rn ∈ Z≥0 be such that p1 < p2 < · · · < pn
and 0 ≤ ri < pi for all 1 ≤ i ≤ n. Let 1 ≤ e ≤ n be an integer. The Chinese
remaindering with errors problem (or CRT list decoding problem) is to compute
an integer 0 ≤ x < X (if it exists) such that

x ≡ ri (mod pi)

for all but e of the indices 1 ≤ i ≤ n.

Note that it is not assumed that the integers pi are coprime, though in many applica-
tions they will be distinct primes or prime powers. Also note that there is not necessarily
a solution to the problem (for example, if X and/or e are too small).

Exercise 19.4.14. A naive approach to this problem is to run the Chinese remainder
algorithm for all subsets S ⊆ {p1, . . . , pn} such that #S = (n − e). Determine the
complexity of this algorithm. What is the input size of a Chinese remainder with errors
instance when 0 ≤ ri < pi? Show that this algorithm is not polynomial in the input size
if e > log(n).

410 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

The basic idea of Boneh’s method is to construct a polynomial F (x) ∈ Z[x] such that
all solutions x to the Chinese remaindering with errors problem instance are roots of F (x)
over Z. This is done as follows. Define P =

Qn
i=1 pi and let 0 ≤ R < P be the solution

to the Chinese remainder instance (i.e., R ≡ ri (mod pi) for all 1 ≤ i ≤ n). For an
integer x define the amplitude amp(x) = gcd(P, x − R) so that, if the pi are coprime
and S is the set of indices 1 ≤ i ≤ n such that x ≡ ri (mod pi), then amp(x) =

Q
i∈S pi.

Write F (x) = x − R. The problem is precisely to find an integer x such that |x| < X
and F (x) ≡ 0 (mod M) for some large integer M | P . This is the problem solved by
Coppersmith’s algorithm in the variant of Exercise 19.4.5. Note that pn1 ≤ P ≤ pnn and
so n log(p1) ≤ log(P) ≤ n log(pn).

Theorem 19.4.15. Let X, e, p1, . . . , pn, r1, . . . , rn be an instance of the Chinese remain-
der with errors problem, where p1 < p2 < · · · < pn. Let P = p1 · · · pn. There is an
algorithm to compute all x ∈ Z such that |x| < X and x ≡ ri (mod pi) for all but e values
1 ≤ i ≤ n as long as

e ≤ n− n log(pn)
log(p1)

p
log(X)/ log(P).

The algorithm is polynomial-time in the input size.

Proof: Boneh [75] gives a direct proof, but we follow Section 4.7 of May [411] and derive
the result using Exercise 19.4.5.

Let 0 ≤ x < X be an integer with M = amp(x) being divisible by at least n− e of the
values pi. We have n log(p1) ≤ log(P) ≤ n log(pn) and (n − e) log(p1) ≤ M ≤ n log(pn).

Write M = P β . Then Coppersmith’s algorithm finds x if X < P β2

in polynomial-
time in n and log(pn) (note that Exercise 19.4.5 states the result for X < P β2−ǫ but
we can remove the ǫ using the same ideas as Remark 19.1.13). Hence, it is sufficient
to give a bound on e so that log(X)/ log(P) < β2 (i.e., β >

p
log(X)/ log(P)). Now,

β = log(M)/ log(P) ≥ (n− e) log(p1)/(n log(pn)). Hence, it is sufficient that

(n− e) log(p1)
log(pn)

≥ n
p
log(X)/ log(P),

which is equivalent to the equation in the Theorem. �

For convenience we briefly recall how to perform the computation. One chooses ap-
propriate integers a, a′ ∈ N and considers the lattice corresponding to the polynomials

Gi(x) = P a−i(x −R)i for 0 ≤ i < a

Hi(x) = (x−R)axi for 0 ≤ i < a′

that, by assumption, have at least one common small root x0 modulo Ma. Using lattice
basis reduction one finds a polynomial F (x) that has small coefficients and that still has
the same root x0 modulo Ma. Applying Theorem 19.1.2 one finds that F (x0) = 0 over Z
if Ma is sufficiently large compared with x0.

Exercise 19.4.16. Suppose p1, . . . , pn are the first n primes. Show that the above
algorithm works when e ≈ n −

p
n log(X) log(n). Hence verify that Boneh’s algorithm

is polynomial-time in situations where the naive algorithm of Exercise 19.4.14 would be
superpolynomial-time.

Bleichenbacher and Nguyen [70] discuss a variant of the Chinese remaindering with
errors problem (namely, solving x ≡ ri (mod pi) for small x, where each ri lies in a set of
m possible values) and a related problem in polynomial interpolation. Section 5 of [70]
gives some algorithms for this “noisy CRT” problem.

19.4. SOME APPLICATIONS OF COPPERSMITH’S METHOD 411

Smooth Integers in Short Intervals

The above methods can be used to find smooth integers in intervals. Let I = [U, V] =
{x ∈ Z : U ≤ x ≤ V } and suppose we want to find a B-smooth integer x ∈ I if one exists
(i.e., all primes dividing x are at most B). We assume that V < 2U .

Exercise 19.4.17. Show that if V ≥ 2U then one can compute a power of 2 in [U, V].

A serious problem is that only rather weak results have been proven about smooth
integers in short intervals (see Section 4 of Granville [267], Sections 6.2 and 7.2 of Naccache
and Shparlinski [450] or Section 15.3). Hence, we cannot expect to be able to prove
anything rigorous in this section. On the other hand, it is natural to conjecture that, at
least most of the time, the probability that a randomly chosen integer in an short interval
[U, V] is B-smooth is roughly equal to the probability that a randomly chosen integer
of size V is B-smooth. Multiplying this probability by the length of the interval gives a
rough guide to whether it is reasonable to expect a solution (see Remark 15.3.5). Hence,
for the remainder of this section, we assume that such an integer x exists. We now sketch
how the previous results might be used to find x.

LetW = (U+V)/2 andX = (V −U)/2 so that I = [W−X,W+X]. We seek all x ∈ Z
such that |x| ≤ X and x ≡ −W (mod peii) for certain prime powers where pi ≤ B. Then
W + x is a potentially smooth integer in the desired interval (we know that W + x has a
large smooth factor, but this may not imply that all prime factors of W + x are small if
W is very large). One therefore chooses P =

Ql
i=1 p

ei
i where p1, . . . , pl are the primes up

to B and the ei are suitably chosen exponents (e.g. ei = ⌈log(W)/(log(B) log(pi))⌉). One
then applies Boneh’s algorithm. The output is an integer with a large common divisor
with P (indeed, this is a special case of the approximate GCD problem considered in
Section 19.6). Note that this yields rather “dense” numbers, in the sense that they are
divisible by most of the first l primes.

Example 19.4.18. Let P = 24 ·32 ·5·7·11·13·17·19 = 232792560. LetW = 100000007 =
108+7 and X = 1000000 = 106. We want to find an integer x between W −X and W +X
such that x is divisible by most of the prime powers dividing P .

Taking R = −W , a = 4 and a′ = 3 in the notation of Theorem 19.4.15 gives the
lattice given by the basis matrix




P 4 0 0 0 0 0 0
−RP 3 P 3X 0 0 0 0 0
R2P 2 −2RP 2X P 2X2 0 0 0 0
−R3P 3R2PX −3RPX2 PX3 0 0 0
R4 −4R3X 6R2X2 −4RX3 X4 0 0
0 R4X −4R3X2 6R2X3 −4RX4 X5 0
0 0 R4X2 −4R3X3 6R2X4 −4RX5 X6




.

The polynomial corresponding to the first row of the LLL-reduced basis is

F (x) = −74(x+ 231767)4

giving the solution x = −231767. Indeed

W − 231767 = 24 · 33 · 5 · 11 · 13 · 17 · 19.

Note that the algorithm does not output 108 = 28 · 58, since that number does not have
a very large gcd with P .

412 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Exercise 19.4.19. Repeat the above example for W = 150000001 = 1.5 · 108 + 1 and
W = 46558000.

If this process fails one can make adjustments to the value of P (for example, by
changing the exponents ei). Analysing the probability of success of this approach is an
open problem.

19.5 Simultaneous Diophantine Approximation

Let α ∈ R. It is well-known that the continued fraction algorithm produces a sequence
of rational numbers p/q such that |α− p/q| < 1/q2. This is the subject of Diophantine
approximation; see Section 1.1 of Lovász [395] for background and discussion. We now
define a natural and important generalisation of this problem.

Definition 19.5.1. Let α1, . . . ,αn ∈ R and let ǫ > 0. Let Q ∈ N be such that Q ≥ ǫ−n.
The simultaneous Diophantine approximation problem is to find q, p1, . . . , pn ∈ Z
such that 0 < q ≤ Q and

|αi − pi/q| ≤ ǫ/q (19.4)

for all 1 ≤ i ≤ n.

A theorem of Dirichlet mentioned in Section 1.1 of [395] and Section 17.3 of [238]
shows that there is a solution satisfying the constraints in Definition 19.5.1.

Exercise 19.5.2. Let ǫ ≥ 1/2. Prove that integers p1, . . . , pn satisfying equation (19.4)
exist for any n and q.

A major application of lattice reduction is to give an algorithm to compute the integers
(q, p1, . . . , pn) in Definition 19.5.1. In practice the real numbers α1, . . . ,αn are given to
some decimal precision (and so are rational numbers with coefficients of some size). The
size of an instance of the simultaneous Diophantine approximation is the sum of the bit
lengths of the numerator and denominator of the given approximations to the αi, together
with the bit length of the representation of ǫ and Q. Let X be a bound on the absolute
value of all numerators and denominators of the αi. The computational task is to find a
solution (q, p1, . . . , pn) in time that is polynomial in n, log(X), log(1/ǫ) and log(Q).

Theorem 19.5.3. Let α1, . . . ,αn ∈ Q be given as rational numbers with numerator and
denominator bounded in absolute value by X. Let 0 < ǫ < 1. One can compute in
polynomial-time integers (q, p1, . . . , pn) such that 0 < q < 2n(n+1)/4ǫ−(n+1) and |αi −
pi/q| ≤ ǫ/q for all 1 ≤ i ≤ n.

Proof: Let Q = 2n(n+1)/4ǫ−n and consider the lattice L ⊆ Qn+1 with basis matrix




ǫ/Q α1 α2 · · · αn

0 −1 0 · · · 0
0 0 −1
...

...
. . .

...
0 0 · · · −1




. (19.5)

The dimension is n+1 and the determinant is ǫ/Q = 2−n(n+1)/4ǫn+1. Every vector in the
lattice is of the form (qǫ/Q, qα1 − p1, qα2 − p2, . . . , qαn − pn). The entries of the lattice
are ratios of integers with absolute value bounded by max{X, 2n(n+1)/4/ǫn+1}.

19.6. APPROXIMATE INTEGER GREATEST COMMON DIVISORS 413

Note that the lattice L does not have a basis with entries in Z, but rather in Q.
By Remark 17.5.5 the LLL algorithm applied to L runs in O(n6 max{n log(X), n2 +
n log(1/ǫ)}3) bit operations (which is polynomial in the input size) and outputs a non-
zero vector v = (qǫ/Q, qα1 − p1, . . . , qαn − pn) such that

kvk ≤ 2n/4 det(L)1/(n+1) = 2n/42−n/4ǫ = ǫ < 1.

If q = 0 then v = (0,−p1, . . . ,−pn) with some pi 6= 0 and so kvk ≥ 1, and so q 6= 0.
Without loss of generality, q > 0. Since kvk∞ ≤ kvk it follows that qǫ/Q ≤ ǫ < 1 and so
0 < q < Q/ǫ = 2n(n+1)/4ǫ−(n+1). Similarly, |qαi − pi| < ǫ for all 1 ≤ i ≤ n. �

Exercise 19.5.4. Let α1 = 1.555111, α2 = 0.771111 and α3 = 0.333333. Let ǫ = 0.01
and Q = 106. Use the method of this section to find a good simultaneous rational
approximation to these numbers.

See Section 17.3 of [238] for more details and references.

19.6 Approximate Integer Greatest Common Divisors

The basic problem is the following. Suppose positive integers a and b exist such that
d = gcd(a, b) is “large”. Suppose that one is not given a and b, but only approximations
ã, b̃ to them. The problem is to find d, a and b. One issue is that there can be surprisingly
many solutions to the problem (see Example 19.6.4), so it may not be feasible to compute
all solutions for certain parameters. On the other hand, in the case b̃ = b (i.e., one of the
values is known exactly, which often happens in practice) then there are relatively few
solutions.

Howgrave-Graham [297] has considered these problems and has given algorithms that
apply in various situations. We present one of the basic ideas. Let a = ã+x and b = b̃+y.
Suppose ã < b̃ and define qa = a/d and qb = b/d. Then, since qa/qb = a/b, we have

ã

b̃
− qa

qb
=

qay − qbx

b̃qb
. (19.6)

If the right hand side of equation (19.6) is small then performing Euclid’s algorithm on
ã/b̃ gives a sequence of possible values for qa/qb. For each such value one can compute

⌊b̃/qb⌉ = ⌊(dqb − y)/qb⌉ = d+ ⌊−y/qb⌉.

If |y| < 1
2qb then one has computed d exactly and can solve ã + x ≡ b̃ + y ≡ 0 (mod d).

Note that one must use the basic extended Euclidean algorithm, rather than the improved
method using negative remainders as in Algorithm 1.

Exercise 19.6.1. Show that if a < b < b̃, b2/3 < d < 2b2/3 and |x|, |y| < 1
4b

1/3 then the
above method finds d, a and b.

Exercise 19.6.2. Let the notation be as above. Suppose |x|, |y| < b̃β and d = b̃α.
Explain why it is natural to assume α > β. Show that the above method succeeds if
(ignoring constant factors) β < −1 + 2α and β < 1− α

Exercise 19.6.3. Re-formulate this method in terms of finding a short vector in a 2× 2
matrix. Derive the same conditions on α and β as in Exercise 19.6.2.

414 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

Example 19.6.4. Let ã = 617283157 and b̃ = 630864082. The first few convergents
qa/qb to ã/b̃ are 1, 45/46, 91/93, 409/418, 500/511, 1409/1440 and 1909/1951. Computing
approximations to ã/qa and b̃/qb for these values (except the first) gives the following
table.

ã/qa 13717403.5 6783331.4 1509249.8 1234566.3 438100.2 323354.2

b̃/qb 13714436.6 6783484.8 1509244.2 1234567.7 438100.1 323354.2

Any values around these numbers can be used as a guess for d. For example, taking
d = 13717403 one finds ã−22 ≡ b̃+136456 ≡ 0 (mod d), which is a not particularly good
solution.

The four values d1 = 1234566, d2 = 1234567, d3 = 438100 and d4 = 323354 lead
to the solutions ã − 157 ≡ b̃ − 856 ≡ 0 (mod d1), ã + 343 ≡ b̃ − 345 ≡ 0 (mod d2),
ã− 257 ≡ b̃− 82 ≡ 0 (mod d3) and ã− 371 ≡ b̃− 428 ≡ 0 (mod d4).

Howgrave-Graham gives a more general method for solving the problem that does not
require such a strict condition on the size of y. The result relies on heuristic assumptions
about Coppersmith’s method for bivariate integer polynomials. We state this result as
Conjecture 19.6.5.

Conjecture 19.6.5. (Algorithm 14 and Section 4 of [297]) Let 0 < α < 2/3 and β <
1−α/2−

p
1− α− α2/2. There is a polynomial-time algorithm that takes as input ã < b̃

and outputs all integers d > b̃α such that there exist integers x, y with |x|, |y| < b̃β and
d | (ã+ x) and d | (b̃+ y).

Exercise 19.6.6. Let ã, b̃, X, Y ∈ N be given with X < ã < b̃. Give a brute force
algorithm to output all d > Y such that there exist x, y ∈ Z with |x|, |y| ≤ X and
d = gcd(ã + x, b̃ + y). Show that the complexity of this algorithm is O(X2 log(b̃)2) bit
operations.

We now mention the case when b̃ = b (in other words, b is known exactly). The
natural approach is to consider the polynomial F (x) = ã+ x, which has a small solution
to the equation F (x) ≡ 0 (mod d) for some d | b. Howgrave-Graham applies the method
used in Section 19.4.2 to solve this problem.

Theorem 19.6.7. (Algorithm 12 and Section 3 of [297]) Let 0 < α < 1 and β < α2.
There is a polynomial-time algorithm that takes as input ã, b and outputs all integers
d > bα such that there exists an integer x with |x| < bβ and d | (ã+ x) and d | b.

19.7 Learning with Errors

The learning with errors problem was proposed by Regev. There is a large literature on
this problem; we refer to Micciancio and Regev [423] and Regev [496] for background and
references.

Definition 19.7.1. Let q ∈ N (typically prime), σ ∈ R>0, and n,m ∈ N with m > n.1

Let s ∈ (Z/qZ)n. The LWE distribution is the distribution on (Z/qZ)m×n × (Z/qZ)m

corresponding to choosing uniformly at random an m× n matrix A with entries in Z/qZ
and a length m vector

c ≡ As+ e (mod q)

1For theoretical applications one should not assume a fixed number m of rows for A. Instead, the
attacker is given an oracle that outputs pairs (a, c) where a is a row of A and c = a s+ e (mod q).

19.7. LEARNING WITH ERRORS 415

where the vector e has entries chosen independently from a discretised normal distribu-
tion2 on Z with mean 0 and standard deviation σ. The learning with errors problem
(LWE) is: Given (A, c) drawn from the LWE distribution, to compute the vector s. The
decision learning with errors problem (DLWE) is: Given A as above and a vector
c ∈ (Z/qZ)m, to determine whether (A, c) is drawn from the uniform distribution, or the
LWE distribution.

It is necessary to argue that LWE is well-defined since, for any choice s′, the value
c − As′ (mod q) is a possible choice for e. But, when m is sufficiently large, one value
for s is much more likely to have been used than any of the others. Hence, LWE is a
maximum likelihood problem. Similarly, DLWE is well-defined when m is sufficiently
large: if c is chosen uniformly at random and independent of A then there is not likely
to be a choice for s such that c − As (mod q) is significantly smaller than the other
values c−As′ (mod q). We do not make these arguments precise. It follows that m must
be significantly larger than n for these problems to be meaningful. It is also clear that
increasing m (but keeping n fixed) does not make the LWE problem harder.

We refer to [423] and [496] for surveys of cryptographic applications of LWE and
reductions, from computational problems in lattices that are believed to be hard, to LWE.
Note that the values m, q and σ in an LWE instance are usually determined by constraints
coming from the cryptographic application, while n is the main security parameter.

Example 19.7.2. Table 3 of Micciancio and Regev [423] suggests the parameters

(n,m, q,σ) = (233, 4536, 32749, 2.8).

Lindner and Peikert [390] suggest (using Figure 4 and the condition m ≥ 2n + ℓ with
ℓ = 128)

(n,m, q,σ) = (256, 640, 4093, 3.3).

Exercise 19.7.3. Show that if one can determine e then one can solve LWE efficiently.

Exercise 19.7.4.⋆ Show that, when q is prime, LWE ≤R DLWE. Show that DLWE ≤R

LWE.

We now briefly sketch two lattice attacks on LWE. These attacks can be avoided by
taking appropriate parameters. For other attacks on LWE see [496].

Example 19.7.5. (Lattice attack on DLWE using short vectors in kernel lattice modulo
q.) Suppose one can find a short vector w in the lattice

{w ∈ Zm : wA ≡ 0 (mod q)} .

Then w c = wAs + w e ≡ w e (mod q). If w is short enough then one might expect that
w e is a small integer. On the other hand, if c is independent of A then w c (mod q) is a
random integer modulo q. Hence, one might be able to distinguish the LWE distribution
from the uniform distribution using short enough vectors w.

Note that one is not obliged to use all the rows of A in this attack, and so one can
replace m by a much smaller value m′. For analysis of the best value for m′, and for
parameters that resist this attack, see Section 5.4.1 (especially equation (10)) of [423].

Example 19.7.6. (Reducing LWE to bounded distance decoding (BDD) or CVP.) We
now consider a natural approach to solving LWE using lattices. Since we always use row

2In other words, the probability that ei is equal to x ∈ Z is proportional to e−x2/(2σ2).

416 CHAPTER 19. COPPERSMITH’S METHOD AND RELATED APPLICATIONS

lattices, it is appropriate to take the transpose of LWE. Hence, suppose c, s and e are row
vectors (of lengths m, n and m respectively) such that c = sAT + e (mod q).

Consider the lattice

L =
�
v ∈ Zm : v ≡ uAT (mod q) for some u ∈ Zn

	
.

Then L has rank m and a basis matrix for it is computed by taking the (row) Hermite
normal form of the (n+m)×m matrix

�
AT

qIm

�

where Im is an m ×m identity matrix. One then tries to find an element v of L that is
close to c. Hopefully, v = c− e ≡ sAT (mod q). For usual LWE parameters we have that
there is a unique v ∈ L that is very close to c, and so the problem matches the bounded
distance decoding problem.

One can perform lattice basis reduction and apply the nearest plane algorithm. For
improved methods and experimental results see Lindner and Peikert [390]. As in Ex-
ample 19.7.5 one can work with a subset of m′ rows of A; see Section 5.1 of [390] for
details.

19.8 Further Applications of Lattice Reduction

There are a number of other applications of lattices in cryptography. We briefly list some
of them.

• The improvement by Boneh and Durfee of Wiener’s attack on small private exponent
RSA. This is briefly mentioned in Section 24.5.1.

• Solving the hidden number problem in finite fields and its applications to bit security
of Diffie-Hellman key exchange. See Section 21.7.1.

• The attack by Howgrave-Graham and Smart on digital signature schemes in finite
fields when there is partial information available about the random nonces. See
Section 22.3.

• The deterministic reduction by Coron and May from knowing ϕ(N) to factoring N .
This is briefly mentioned in Section 24.1.3.

