
Chapter 18

Algorithms for the Closest and
Shortest Vector Problems

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

This chapter presents several algorithms to find lattice vectors close to a given vector.
First we consider two methods due to Babai that, although not guaranteed to solve the
closest vector problem, are useful in several situations in the book. Then we present an
exponential-time algorithm to enumerate all vectors close to a given point. This algorithm
can be used to solve the closest and shortest vector problems. We then briefly mention a
lattice basis reduction algorithm that is guaranteed to yield better approximate solutions
to the shortest vector problem.

The closest vector problem (CVP) was defined in Section 16.3. First, we remark that
the shortest distance from a given vector w ∈ Rn to a lattice vector v ∈ L can be quite
large compared with the lengths of short vectors in the lattice.

Example 18.0.1. Consider the lattice in R2 with basis (1, 0) and (0, 1000). Then w =
(0, 500) has distance 500 from the closest lattice point, despite the fact that the first
successive minimum is 1.

Exercise 18.0.2. Let L = Zn and w = (1/2, . . . , 1/2). Show that kw − vk ≥ √
n/2 for

all v ∈ L. Hence, show that if n > 4 then kw − vk > λn for all v ∈ L.

18.1 Babai’s Nearest Plane Method

Let L be a full rank lattice given by an (ordered) basis {b1, . . . , bn} and let {b∗1, . . . , b∗n} be
the corresponding Gram-Schmidt basis. Let w ∈ Rn. Babai [18] presented a method to
inductively find a lattice vector close to w. The vector v ∈ L output by Babai’s method
is not guaranteed to be such that kw − vk is minimal. Theorem 18.1.6 shows that if the
lattice basis is LLL-reduced then kw − vk is within an exponential factor of the minimal
value.

383

384 CHAPTER 18. CLOSE AND SHORT VECTORS

U

bnb∗n

�

�

y

� w

U + y

U + bn

�
w′

�
w′′

Figure 18.1: Illustration of the Babai nearest plane method. The x-axis represents the
subspace U (which has dimension n− 1) and the y-axis is perpendicular to U .

We now describe the method. Define U = span{b1, . . . , bn−1} and let L′ = L ∩ U
be the sublattice spanned by {b1, . . . , bn−1}. The idea of the nearest plane method is to
find a vector y ∈ L such that the distance from w to the plane U + y is minimal. One
then sets w′ to be the orthogonal projection of w onto the plane U + y (in other words,

w′ ∈ U + y and w − w′ ∈ U⊥). Let w′′ = w′ − y ∈ U . Note that if w 6∈ L then w′′ 6∈ L.
One inductively solves the (lower dimensional) closest vector problem of w′′ in L′ to get
y′ ∈ L′. The solution to the original instance of the CVP is v = y + y′.

We now explain how to algebraically find y and w′.

Lemma 18.1.1. Let

w =

nX

j=1

ljb
∗
j (18.1)

with lj ∈ R. Define y = ⌊ln⌉bn ∈ L (where ⌊ln⌉ denotes rounding to the nearest integer)

and w′ =
Pn−1

j=1 ljb
∗
j + ⌊ln⌉b∗n. Then y is such that the distance between w and U + y is

minimal, and w′ is the orthogonal projection of w onto U + y.

Proof: We use the fact that U = span{b∗1, . . . , b∗n−1}. The distance from w to U + y is

inf
u∈U

kw − (u+ y)k.

Let w be as in equation (18.1) and let y =
Pn

j=1 l
′
jbj be any element of L for l′j ∈ Z. One

can write y =
Pn−1

j=1 l′′j b
∗
j + l′nb

∗
n for some l′′j ∈ R, 1 ≤ j ≤ n− 1.

Lemma A.10.5 shows that, for fixed w and y, kw − (u + y)k2 is minimised by u =Pn−1
j=1 (lj − l′′j)b

∗
j ∈ U . Indeed,

kw − (u+ y)k2 = (ln − l′n)
2kb∗nk2.

18.1. BABAI’S NEAREST PLANE METHOD 385

It follows that one must take l′n = ⌊ln⌉, and so the choice of y in the statement of the
Lemma is correct (note that one can add any element of L′ to y and it is still a valid
choice).

The vector w′ satisfies

w′ − y =

n−1X

j=1

ljb
∗
j + ⌊ln⌉(b∗n − bn) ∈ U,

which shows that w′ ∈ U + y. Also,

w − w′ =
nX

j=1

ljb
∗
j −

n−1X

j=1

ljb
∗
j − ⌊ln⌉b∗n = (ln − ⌊ln⌉)b∗n, (18.2)

which is orthogonal to U . Hence, w′ is the orthogonal projection of w onto U + y. �

Exercise 18.1.2. Let the notation be as above and write bn = b∗n +
Pn−1

i=1 µn,ib
∗
i . Show

that

w′′ =
n−1X

i=1

(li − ⌊ln⌉µn,i)b
∗
i .

Exercise 18.1.3. Let {b1, . . . , bn} be an ordered basis for a lattice L. Let w ∈ Rn and
suppose that there is an element v ∈ L such that kv − wk < 1

2kb
∗
i k for all 1 ≤ i ≤ n.

Prove that the nearest plane algorithm outputs v.

The following Lemma is needed to prove the main result, namely Theorem 18.1.6.

Lemma 18.1.4. Let {b1, . . . , bn} be LLL reduced (with respect to the Euclidean norm,
and with factor δ = 3/4). If v is the output of Babai’s nearest plane algorithm on input
w then

kw − vk2 ≤ 2n−1
4 kb∗nk2.

Proof: We prove the result by induction. Certainly if n = 1 then kw − vk2 ≤ 1
4kb

∗
1k2 as

required.
Now suppose n ≥ 2. Recall that the output of the method is v = y + y′ where y ∈ L

minimises the distance from w to U + y, w′ is the orthogonal projection of w onto U + y,
and y′ is the output of the algorithm on w′′ = w′ − y in L′. By the inductive hypothesis

we know that kw′′ − y′k2 ≤ 1
4 (2

n−1 − 1)kb∗n−1k2. Hence

kw − (y + y′)k2 = kw − w′ + w′ − (y + y′)k2

= kw − w′k2 + kw′′ − y′k2

≤ 1
4kb

∗
nk2 + 2n−1−1

4 kb∗n−1k2

using equation (18.2).
Finally, part 1 of Lemma 17.2.8 implies that this is

≤
�

1
4 + 2 2n−1−1

4

�
kb∗nk2

from which the result follows. �

Exercise 18.1.5. Prove that if v is the output of the nearest plane algorithm on input
w then

kv − wk2 ≤ 1
4

nX

i=1

kb∗i k2.

386 CHAPTER 18. CLOSE AND SHORT VECTORS

Theorem 18.1.6. If the basis {b1, . . . , bn} is LLL-reduced (with respect to the Euclidean
norm and with factor δ = 3/4) then the output of the Babai nearest plane algorithm on
w ∈ Rn is a vector v such that kv − wk < 2n/2ku− wk for all u ∈ L.

Proof: We prove the result by induction. For n = 1, v is a correct solution to the closest
vector problem and so the result holds.

Let n ≥ 2 and let u ∈ L be a closest vector to w. Let y be the vector chosen in the
first step of the Babai method. We consider two cases.

1. Case u ∈ U +y. Then ku−wk2 = ku−w′k2+kw′−wk2 so u is also a closest vector
to w′. Hence u − y is a closest vector to w′′ = w′ − y ∈ U . Let y′ be the output of
the Babai nearest plane algorithm on w′′. By the inductive hypothesis,

ky′ − w′′k < 2(n−1)/2ku− y − w′′k.

Substituting w′ − y for w′′ gives

ky + y′ − w′k < 2(n−1)/2ku− w′k.

Now

kv − wk2 = ky + y′ − w′k2 + kw′ − wk2 < 2n−1ku− w′k2 + kw′ − wk2.

Using ku− w′k, kw′ − wk ≤ ku− wk and 2n−1 + 1 ≤ 2n gives the result.

2. Case u 6∈ U + y. Since the distance from w to U + y is ≤ 1
2kb

∗
nk, we have kw− uk ≥

1
2kb

∗
nk. By Lemma 18.1.4 we find

1
2kb

∗
nk ≥ 1

2

r
4

2n − 1
kw − vk.

Hence, kw − vk < 2n/2kw − uk.

This completes the proof. �

One can obtain a better result by using the result of Lemma 17.2.9.

Theorem 18.1.7. If the basis {b1, . . . , bn} is LLL-reduced with respect to the Euclidean
norm and with factor δ = 1/4+1/

√
2 then the output of the Babai nearest plane algorithm

on w ∈ Rn is a vector v such that

kv − wk <
2n/4p√
2− 1

ku− wk < (1.6)2n/4ku− wk

for all u ∈ L.

Exercise 18.1.8. Prove Theorem 18.1.7.
[Hint: First prove that the analogue of Lemma 18.1.4 in this case is kw − vk2 ≤ (2n/2 −
1)/(4(

√
2 − 1))kb∗nk2. Then follow the proof of Theorem 18.1.6 using the fact that

2(n−1)/4/
p√

2− 1
�2

+ 1 ≤

2n/4/

p√
2− 1

�2
.]

Algorithm 26 is the Babai nearest plane algorithm. We use the notation y
n

= y,
wn = w, wn−1 = w′′ etc. Note that Babai’s algorithm can be performed using exact
arithmetic over Q or using floating point arithmetic.

18.1. BABAI’S NEAREST PLANE METHOD 387

Algorithm 26 Babai nearest plane algorithm

Input: {b1, . . . , bn}, w
Output: v
Compute Gram-Schmidt basis b∗1, . . . , b

∗
n

Set wn = w
for i = n downto 1 do

Compute li = hwi, b
∗
i i/hb∗i , b∗i i

Set y
i
= ⌊li⌉bi

Set wi−1 = wi − (li − ⌊li⌉)b∗i − ⌊li⌉bi
end for
return v = y

1
+ · · ·+ y

n

Exercise 18.1.9. Let {b1, . . . , bn} be a basis for a lattice in Zn. Let X ∈ R>0 be such
that kbik ≤ X for 1 ≤ i ≤ n. Show that the complexity of the Babai nearest plane
algorithm (not counting LLL) when using exact arithmetic over Q is O(n5 log(X)2) bit
operations.

Exercise 18.1.10. If {b1, . . . , bn} is an ordered LLL-reduced basis then b1 is likely to be
shorter than bn. It would therefore be more natural to start with b1 and define U to be
the orthogonal complement of b1. Why is this not possible?

Example 18.1.11. Consider the LLL-reduced basis

B =




1 2 3
3 0 −3
3 −7 3




and the vector w = (10, 6, 5) ∈ R3. We perform the nearest plane method to find a lattice
vector close to w.

First compute the Gram-Schmidt basis b∗1 = (1, 2, 3), b∗2 = (24/7, 6/7,−12/7) and
b∗3 = (10/3,−20/3, 10/3). Write

w = 37
14b

∗
1 + 2b∗2 +

3
20b

∗
3.

Since ⌊3/20⌉ = 0 we have y
3
= 0 and w′′ = w′ = 37

14b
∗
1 +2b∗2 = (19/2, 7, 9/2). The process

is continued inductively, so write w = w′′. Then one takes y
2
= 2b2 = (6, 0,−6) and

w′′ = w − y
2
= (7/2, 7, 21/2) = 7

2b
∗
1. Since ⌊7/2⌉ = 3 we return the solution

3b1 + 2b2 = (9, 6, 3).

Exercise 18.1.12. Show that the vector v output by the Babai nearest plane method
lies in the parallelepiped



w +

nX

j=1

ljb
∗
j : lj ∈ R, |lj| ≤ 1

2





centered on w. Show that this parallelepiped has volume equal to the volume of the
lattice. Hence show that if w does not lie in the lattice then there is exactly one lattice
point in this parallelepiped.

Show that if there exists a vector v ∈ L such that kv − wk ≤ 1
2 min{kb∗i k : 1 ≤ i ≤ n}

then the Babai nearest plane algorithm on input w outputs v.

388 CHAPTER 18. CLOSE AND SHORT VECTORS

Some improvements to the Babai nearest plane algorithm are listed in Section 3.4 of
[256] (where they are credited to Coppersmith). Similar methods (but using a randomised
choice of plane) were used by Klein [341] to solve the CVP when the target vector is
particularly close to a lattice point. Another variant of the nearest plane algorithm is
given by Lindner and Peikert [390]. The nearest plane algorithm is known by the name
“VBLAST” in the communications community (see [440]).

18.2 Babai’s Rounding Technique

An alternative to the nearest plane method is the rounding technique. This is simpler to
compute in practice, since it does not require the computation of a Gram-Schmidt basis,
but harder to analyse in theory. This method is also not guaranteed to solve CVP. Let
b1, . . . , bn be a basis for a full rank lattice in Rn. Given a target w ∈ Rn we can write

w =
nX

i=1

libi

with li ∈ R. One computes the coefficients li by solving the system of linear equations
(since the lattice is full rank we can also compute the vector (l1, . . . , ln) as wB

−1). The
rounding technique is simply to set

v =

nX

i=1

⌊li⌉bi

where ⌊l⌉ means take the closest integer to the real number l. This procedure can be
performed using any basis for the lattice. Babai has proved that kv − wk is within an
exponential factor of the minimal value if the basis is LLL-reduced. The method trivially
generalises to non-full-rank lattices as long as w lies in the R-span of the basis.

Theorem 18.2.1. Let b1, . . . , bn be an LLL-reduced basis (with respect to the Euclidean
norm and with factor δ = 3/4) for a lattice L ⊆ Rn. Then the output v of the Babai
rounding method on input w ∈ Rn satisfies

kw − vk ≤ (1 + 2n(9/2)n/2)kw − uk

for all u ∈ L.

Proof: See Babai [18]. �

Babai rounding gives a lattice point v such that w− v =
Pn

i=1 mibi where |mi| ≤ 1/2.
In other words, v lies in the parallelepiped, centered at w, defined by the basis vectors.
Since the volume of the parallelepiped is equal to the volume of the lattice, if w is not in
the lattice then there is exactly one lattice point in the parallelepiped. The geometry of
the parallelepiped determines whether or not an optimal solution to the CVP is found.
Hence, though the rounding method can be used with any basis for a lattice, the result
depends on the quality of the basis.

Example 18.2.2. Let b1 = (3, 2) and b2 = (2, 1) generate the lattice Z2. Let w =
(−0.4, 0.4) so that the solution to CVP is (0, 0). One can verify that (−0.4, 0.4) =
1.2b1 − 2b2 and so Babai rounding yields b1 − 2b2 = (−1, 0). Figure 18.2 shows the
parallelepiped centered at w corresponding to the basis. One can see that (−1, 0) is the
only lattice point within that parallelepiped.

18.2. BABAI’S ROUNDING TECHNIQUE 389

�

�

�

�

�

�

�

�

�

�

�

�

���� �

�

�

�

�
w

Figure 18.2: Parallelepiped centered at (−0.4, 0.4) corresponding to lattice basis (3, 2)
and (2, 1).

Exercise 18.2.3. Consider the vector w = (−0.4, 0.4) as in Example 18.2.2 again. Using
the basis {(1, 0), (0, 1)} for Z2 use the Babai rounding method to find the closest lattice
vector in Z2 to w. Draw the parallelepiped centered on w in this case.

We stress that the rounding method is not the same as the nearest plane method. The
next example shows that the two methods can give different results.

Example 18.2.4. Consider the CVP instance in Example 18.1.11. We have

w = 141
40 b1 +

241
120b2 +

3
20b3.

Hence one sets
v = 4b1 + 2b2 = (10, 8, 6) 6= (9, 6, 3).

Note that this is a different solution to the one found in Example 18.1.11, though both
solutions satisfy kw − vk =

√
5.

Exercise 18.2.5. Prove that if b1, . . . , bn are orthogonal basis vectors for a lattice L then
the Babai rounding technique produces a correct solution to the CVP with respect to the
Euclidean norm. Show also that the Babai rounding technique gives the same result as
the Babai nearest plane method in this case.

Exercise 18.2.6. Show that the nearest plane and rounding methods produce a linear
combination of the lattice basis where the vector bn has the same coefficient.

Exercise 18.2.7. Consider the lattice with basis



7 0 1
1 17 1
−3 0 10




and let
w = (100, 205, 305).

Find a lattice vector v close to w using the rounding technique. What is kv − wk?

The Babai rounding algorithm is known by the name “zero forcing” in the communi-
cations community (see [440]).

390 CHAPTER 18. CLOSE AND SHORT VECTORS

18.3 The Embedding Technique

Another way to solve CVP is the embedding technique, due to Kannan (see page 437
onwards of [330]). Let B be a basis matrix for a lattice L and suppose w ∈ Rn (in practice
we assume w ∈ Qn). A solution to the CVP corresponds to integers l1, . . . , ln such that

w ≈
nX

i=1

libi.

The crucial observation is that e = w −Pn
i=1 libi is such that kek is small.

The idea of the embedding technique is to define a lattice L′ that contains the short
vector e. Let M ∈ R>0 (for example M = 1). The lattice L′ is defined by the vectors
(which are a basis for Rn+1)

(b1, 0), · · · , (bn, 0), (w,M). (18.3)

One sees that taking the linear combination of rows with coefficients (−l1, . . . ,−ln, 1)
gives the vector

(e,M).

Hence, we might be able to find e by solving the SVP problem in the lattice L′. One can
then solve the CVP by subtracting e from w.

Example 18.3.1. Consider the basis matrix

B =




35 72 −100
−10 0 −25
−20 −279 678




for a lattice in R3. We solve the CVP instance with w = (100, 100, 100).
Apply the LLL algorithm to the basis matrix (taking M = 1)




35 72 −100 0
−10 0 −25 0
−20 −279 678 0
100 100 100 1




for the lattice L′. This gives the basis matrix




0 1 0 1
5 0 1 0
0 5 1 −4
5 5 −21 −4


 .

The first row is (0, 1, 0, 1), so we know that (0, 1, 0) is the difference between w and a
lattice point v. One verifies that v = (100, 100, 100)− (0, 1, 0) = (100, 99, 100) is a lattice
point.

The success of the embedding technique depends on the size of e compared with the
lengths of short vectors in the original lattice L. As we have seen in Exercise 18.0.2, e
can be larger than λn, in which case the embedding technique is not likely to be a good
way to solve the closest vector problem.

18.4. ENUMERATING ALL SHORT VECTORS 391

Lemma 18.3.2. Let {b1, . . . , bn} be a basis for a lattice L ⊆ Zn and denote by λ1 the
shortest Euclidean length of a non-zero element of L. Let w ∈ Rn and let v ∈ L be a
closest lattice point to w. Define e = w − v. Suppose that kek < λ1/2 and let M = kek.
Then (e,M) is a shortest non-zero vector in the lattice L′ of the embedding technique.

Proof: All vectors in the lattice L′ are of the form

ln+1(e,M) +

nX

i=1

li(bi, 0)

for some l1, . . . , ln+1 ∈ Z. Every non-zero vector with ln+1 = 0 is of length at least λ1.
Since

k(e,M)k2 = kek2 +M2 = 2M2 < 2λ2
1/4

the vector (e,±M) has length at most λ1/
√
2. Since v is a closest vector to w it follows

that kek ≤ ke+ xk for all x ∈ L and so every other vector (u,M) ∈ L′ has length at least
as large. Finally, suppose |ln+1| ≥ 2. Then

k(u, ln+1M)k2 ≥ k(0, ln+1M)k2 ≥ (2M)2

and so k(u, ln+1M)k ≥ 2k(e,M)k. �

Lemma 18.3.2 shows that the CVP can be reduced to SVP as long as the target vector
is very close to a lattice vector, and assuming one has a good guess M for the distance.
However, when using algorithms such as LLL that solve the approximate SVP it is not
possible, in general, to make rigorous statements about the success of the embedding tech-
nique. As mentioned earlier, the LLL algorithm often works better than the theoretical
analysis predicts. Hence the embedding technique can potentially be useful even when w
is not so close to a lattice point. For further discussion see Lemma 6.15 of Kannan [330].

Exercise 18.3.3. Let {b1, . . . , bn} be a basis for a lattice in Rn and let w ∈ Rn. Let
M = max1≤i≤n kbik. Show that the output (e,M) of the embedding technique (using
LLL) on the basis of equation (18.3) is the same as the output of the Babai nearest plane
algorithm when run on the LLL-reduced basis.

Exercise 18.3.4. Solve the following CVP instance using the embedding technique and
a computer algebra package.

B =




−265 287 56
−460 448 72
−50 49 8


 , w = (100, 80, 100).

18.4 Enumerating all Short Vectors

We present a method to enumerate all short vectors in a lattice, given any basis. We will
show later that the performance of this enumeration algorithm depends on the quality of
the lattice basis. Throughout this section, kvk denotes the Euclidean norm.

The first enumeration method was given by Pohst in 1981. Further variants were given
by Finke and Pohst, Kannan [329, 330], Helfrich [281] and Schnorr and Euchner [526].
These methods are all deterministic and are guaranteed to output a non-zero vector
of minimum length. The time complexity is exponential in the lattice dimension, but
the storage requirements are polynomial. This approach is known by the name “sphere
decoding” in the communications community (see [440]).

392 CHAPTER 18. CLOSE AND SHORT VECTORS

Exercise 18.4.1. Let {b1, . . . , bn} be an (ordered) basis in Rm for a lattice and let
{b∗1, . . . , b∗n} be the Gram-Schmidt orthogonalisation. Let v ∈ Rm. Show that the projec-
tion of v onto b∗i is

hv, b∗i i
kb∗i k2

b∗i .

Show that if v =
Pn

j=1 xjbj then this projection is


xi +

nX

j=i+1

xjµj,i


 b∗i .

Lemma 18.4.2. Let {b1, . . . , bn} be an (ordered) basis for a lattice and let {b∗1, . . . , b∗n}
be the Gram-Schmidt orthogonalisation. Fix A ∈ R>0 and write Bi = kb∗i k2. Let v =Pn

i=1 xibi be such that kvk2 ≤ A. For 1 ≤ i ≤ n define

zi = xi +

nX

j=i+1

µj,ixj .

Then for 1 ≤ i < n
nX

i=1

z2iBi ≤ A.

Proof: Exercise 18.4.1 gives a formula zib
∗
i for the projection of v onto each b∗i . Since

the vectors b∗i are orthogonal we have

kvk2 =

nX

i=1

kzib∗i k2 =

nX

i=1

z2iBi.

The result follows. �

Theorem 18.4.3. Let the notation be as in Lemma 18.4.2. Then one has x2
n ≤ A/kb∗nk2

and, for 1 ≤ i < n,


xi +

nX

j=i+1

µj,ixj




2

Bi ≤ A−
nX

j=i+1

z2jBj .

Proof: Note that zn = xn and Lemma 18.4.2 implies z2nBn ≤ A, which proves the first
statement. The second statement is also just a re-writing of Lemma 18.4.2. �

We now sketch the enumeration algorithm for finding all short lattice vectors v =Pn
i=1 xibi, which follows from the above results. First, without loss of generality we may

assume that xn ≥ 0. By Theorem 18.4.3 we know 0 ≤ xn ≤
p
A/Bn. For each candidate

xn one knows that
(xn−1 + µn,n−1xn)

2Bn−1 ≤ A− x2
nBn

and so
|xn−1 + µn,n−1xn| ≤

p
(A− x2

nBn)/Bn−1.

To phrase this as a bound on xn−1 one uses the fact that for any a ∈ R, b ∈ R≥0,
the solutions x ∈ R to |x + a| ≤ b satisfy −(b + a) ≤ x ≤ b − a. Hence, writing
M1 =

p
(A− x2

nBn) /Bn−1 one has

−(M1 + µn,n−1xn) ≤ xn−1 ≤ M1 − µn,n−1xn.

18.4. ENUMERATING ALL SHORT VECTORS 393

Exercise 18.4.4. Generalise the above discussion to show that for 1 ≤ i < n one has

−(M1 +M2) ≤ xi ≤ M1 −M2

where

M1 =

vuuut


A−

nX

j=i+1

x2
jBj


 /Bi

and M2 =
Pn

j=i+1 µj,ixj .

Exercise 18.4.5. Write pseudocode for the algorithm to enumerate all short vectors of
a lattice.

The algorithm to find a non-zero vector of minimal length is then straightforward. Set
A to be kb1k2, enumerate all vectors of length at most A and, for each vector, compute
the length. One is guaranteed to find a shortest vector in the lattice. Schnorr and
Euchner [526] organised the search in a manner to minimise the running time.

The running time of this algorithm depends on the quality of the basis in several ways.
First, it is evidently important to have a good bound A for the length of the shortest
vector. Taking A = kb1k2 is only sensible if b1 is already rather short; alternatively one
may choose, say, A =

p
n

2πe det(L)
1/n using the Gaussian heuristic (one can choose a

small bound for A and then, if the search fails, increase A accordingly). Second, one sees
that if b∗n is very short then the algorithm searches a huge range of values for xn, and
similarly if b∗n−1 is very short etc. Hence, the algorithm performs best if the values kb∗i k
descrease rather gently.

To solve SVP in practice using enumeration one first performs LLL and other pre-
computation to get a sufficiently nice basis. We refer to Kannan [329, 330], Schnorr
and Euchner [526] and Agrell et al [7] for details. The best complexity statement in the
literature is due to Hanrot and Stehlé.

Theorem 18.4.6. (Hanrot and Stehlé [275]) There exists a polynomial p(x, y) ∈ R[x, y]
such that, for any n-dimensional lattice L in Zm with basis consisting of vectors with
coefficients bounded by B, one can compute all the shortest non-zero vectors in L in at
most p(log(B),m)nn/2e+o(n) bit operations.

Exercise 18.4.7. Let L be a lattice in Zn that contains qZn for some integer q. Let M ∈
N be a fixed bound. Give an algorithm based on Wagner’s technique (see Section 13.8)
for finding vectors in L with all entries bounded by M . Determine the complexity of this
algorithm.

Due to lack of space we refer to the original papers for further details about enumera-
tion algorithms. Pujol and Stehlé [491] give an analysis of issues related to floating point
implementation.

In practice the most efficient enumeration methods for the SVP are heuristic “pruning”
methods. These methods are still exponential in the lattice dimension, and are not
guaranteed to output the shortest vector. The extreme pruning algorithm of Gama,
Nguyen and Regev [235] is currently the most practical method.

A quite different approach, leading to non-deterministic algorithms (in other words,
the output is a non-zero vector in the lattice that, with high probability, has minimal
length) is due to Ajtai, Kumar and Sivakumar (see [357] for a survey). The running time
and storage requirements of the algorithm are both exponential in the lattice dimension.
For some experimental results we refer to Nguyen and Vidick [465]. Micciancio and
Voulgaris [424] have given an improved algorithm, still requiring exponential time and
storage.

394 CHAPTER 18. CLOSE AND SHORT VECTORS

18.4.1 Enumeration of Closest Vectors

The above ideas can be adapted to list lattice points close to some w ∈ Rn. Let A ∈ R>0

and suppose we seek all v ∈ L such that kv−wk2 ≤ A. Write v =
Pn

i=1 xibi =
Pn

i=1 zib
∗
i

as before and write

w =

nX

i=1

yib
∗
i .

Then kv − wk2 ≤ A is equivalent to

nX

i=1

(zi − yi)
2kb∗i k2 ≤ A.

It follows that
yn −

p
A/Bn ≤ xn ≤ yn +

p
A/Bn

and so on.

Lemma 18.4.8. Let the notation be as above and define

Mi =

vuuut


A−

nX

j=i+1

(zj − yj)2Bj


 /Bi and Ni =

nX

j=i+1

µj,ixj

for 1 ≤ i ≤ n. If v =
Pn

i=1 xibi satisfies kv − wk2 ≤ A then, for 1 ≤ i ≤ n,

yi −Mi −Ni ≤ xi ≤ yi +Mi −Ni

Exercise 18.4.9. Prove Lemma 18.4.8.

The paper by Agrell, Eriksson, Vardy and Zeger [7] gives an excellent survey and
comparison of the various enumeration techniques. They conclude that the Schnorr-
Euchner variant is much more efficient than the Pohst or Kannan versions.

18.5 Korkine-Zolotarev Bases

We present a notion of reduced lattice basis that has better properties than an LLL-
reduced basis.

Definition 18.5.1. Let L be a lattice of rank n in Rm. An ordered basis {b1, . . . , bn} for
L is Korkine-Zolotarev reduced1 if

1. b1 is a non-zero vector of minimal length in L;

2. |µi,1| < 1/2 for 2 ≤ i ≤ n;

3. the basis {b2 − µ2,1b1, . . . , bn − µn,1b1} is Korkine-Zolotarev reduced (this is the
orthogonal projection of the basis of L onto the orthogonal complement of b1)

where b∗i is the Gram-Schmidt orthogonalisation and µi,j = hbi, b∗j i/hb∗j , b∗j i.

One problem is that there is no known polynomial-time algorithm to compute a
Korkine-Zolotarev basis.

1Some authors also call it Hermite-Korkine-Zolotarev (HKV) reduced.

18.5. KORKINE-ZOLOTAREV BASES 395

Theorem 18.5.2. Let {b1, . . . , bn} be a Korkine-Zolotarev reduced basis of a lattice L.
Then

1. for 1 ≤ i ≤ n,
4

i+ 3
λ2
i ≤ kbik2 ≤ i+ 3

4
λ2
i ;

2.
nY

i=1

kbik2 ≤

γn
n

nY

i=1

i+ 3

4

!
det(L)2.

Proof: See Theorem 2.1 and 2.3 of Lagarias, Lenstra and Schnorr [361]. �

As we have seen, for lattices of relatively small dimension it is practical to enumerate
all short vectors. Hence one can compute a Korkine-Zolotarev basis for lattices of small
dimension. Schnorr has developed the block Korkine-Zolotarev lattice basis reduction
algorithm, which computes a Korkine-Zolotarev basis for small dimensional projections
of the original lattice and combines this with the LLL algorithm. The output basis can
be proved to be of a better quality than an LLL-reduced basis. This is the most powerful
algorithm for finding short vectors in lattices of large dimension. Due to lack of space we
are unable to present this algorithm; we refer to Schnorr [521] for details.

