
Chapter 17

Lattice Basis Reduction

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

The goal of lattice basis reduction is to transform a given lattice basis into a “nice”
lattice basis consisting of vectors that are short and close to orthogonal. To achieve
this one needs both a suitable mathematical definition of “nice basis” and an efficient
algorithm to compute a basis satisfying this definition.

Reduction of lattice bases of rank 2 in R2 was given by Lagrange1 and Gauss. The
algorithm is closely related to Euclid’s algorithm and we briefly present it in Section 17.1.
The main goal of this section is to present the lattice basis reduction algorithm of
Lenstra, Lenstra and Lovász, known as the LLL or L3 algorithm.2 This is a very im-
portant algorithm for practical applications. Some basic references for the LLL algorithm
are Section 14.3 of Smart [572], Section 2.6 of Cohen [136] and Chapter 17 of Trappe
and Washington [609]. More detailed treatments are given in von zur Gathen and Ger-
hard [238], Grötschel, Lovász and Schrijver [269], Section 1.2 of Lovász [395], and Nguyen
and Vallée [464]. I also highly recommend the original paper [373].

The LLL algorithm generalises the Lagrange-Gauss algorithm and exploits the Gram-
Schmidt orthogonalisation. Note that the Gram-Schmidt process is not useful, in general,
for lattices since the coefficients µi,j do not usually lie in Z and so the resulting vectors are
not usually elements of the lattice. The LLL algorithm uses the Gram-Schmidt vectors to
determine the quality of the lattice basis, but ensures that the linear combinations used
to update the lattice vectors are all over Z.

17.1 Lattice Basis Reduction in Two Dimensions

Let b1, b2 ∈ R2 be linear independent vectors and denote by L the lattice for which they
are a basis. The goal is to output a basis for the lattice such that the lengths of the basis

1The algorithm was first written down by Lagrange and later by Gauss, but is usually called the
“Gauss algorithm”. We refer to [455] or Chapter 2 of [464] for the original references.

2Chapter 1 of [464] gives an excellent survey of the historical development of the algorithm.

365

366 CHAPTER 17. LATTICE BASIS REDUCTION

vectors are as short as possible (in this case, successive minima). Lagrange and Gauss
gave the following criteria for a basis to be reduced and then developed Algorithm 23 to
compute such a basis.

Definition 17.1.1. An ordered basis b1, b2 for R
2 is Lagrange-Gauss reduced if kb1k ≤

kb2k ≤ kb2 + qb1k for all q ∈ Z.

The following theorem shows that the vectors in a Lagrange-Gauss reduced basis are
as short as possible. This result holds for any norm, though the algorithm presented
below is only for the Euclidean norm.

Theorem 17.1.2. Let λ1,λ2 be the successive minima of L. If L has an ordered basis
{b1, b2} that is Lagrange-Gauss reduced then kbik = λi for i = 1, 2.

Proof: By definition we have

kb2 + qb1k ≥ kb2k ≥ kb1k

for all q ∈ Z.
Let v = l1b1 + l2b2 be any non-zero point in L. If l2 = 0 then kvk ≥ kb1k. If l2 6= 0

then write l1 = ql2 + r with q, r ∈ Z such that 0 ≤ r < |l2|. Then v = rb1 + l2(b2 + qb1)
and, by the triangle inequality

kvk ≥ |l2| kb2 + qb1k− rkb1k
= (|l2|− r)kb2 + qb1k+ r(kb2 + qb1k− kb1k)
≥ kb2 + qb1k ≥ kb2k ≥ kb1k.

This completes the proof. �

Definition 17.1.3. Let b1, . . . , bn be a list of vectors in Rn. We write3 Bi = kbik2 =
hbi, bii.

A crucial ingredient for the Lagrange-Gauss algorithm is that

kb2 − µb1k2 = B2 − 2µhb1, b2i+ µ2B1 (17.1)

is minimised at µ = hb1, b2i/B1 (to see this, note that the graph as a function of µ is a
parabola and that the minimum can be found by differentiating with respect to µ). Since
we are working in a lattice we therefore replace b2 by b2 − ⌊µ⌉b1 where ⌊µ⌉ is the nearest
integer to µ. Hence lines 3 and 9 of Algorithm 23 reduce the size of b2 as much as possible
using b1. In the one-dimensional case the formula b2 − ⌊µ⌉b1 is the familiar operation
ri+1 = ri−1 − ⌊ri−1/ri⌉ri from Euclid’s algorithm.

Lemma 17.1.4. An ordered basis {b1, b2} is Lagrange-Gauss reduced if and only if

kb1k ≤ kb2k ≤ kb2 ± b1k.

Proof: The forward implication is trivial. For the converse, suppose kb2k ≤ kb2 ± b1k.
We use the fact that the graph of F (µ) = kb2 + µb1k2 is a parabola. It follows that the
miniumum of F (µ) is taken for −1 < µ < 1. Hence kb2k ≤ kb2 + qb1k for q ∈ Z such that
|q| > 1. �

Algorithm 23 gives the Lagrange-Gauss algorithm for lattices in Z2. Note that the
computation of µ is as an exact value in Q. All other arithmetic is exact integer arithmetic.

3The reader is warned that the notation Bi will have a different meaning when we are discussing the
LLL algorithm.

17.1. LATTICE BASIS REDUCTION IN TWO DIMENSIONS 367

Algorithm 23 Lagrange-Gauss lattice basis reduction

Input: Basis b1, b2 ∈ Z2 for a lattice L
Output: Basis (b1, b2) for L such that kbik = λi

1: B1 = kb1k2
2: µ = hb1, b2i/B1

3: b2 = b2 − ⌊µ⌉b1
4: B2 = kb2k2
5: while B2 < B1 do
6: Swap b1 and b2
7: B1 = B2

8: µ = hb1, b2i/B1

9: b2 = b2 − ⌊µ⌉b1
10: B2 = kb2k2
11: end while
12: return (b1, b2)

Lemma 17.1.5. Algorithm 23 terminates and outputs a Lagrange-Gauss reduced basis
for the lattice L.

Exercise 17.1.6. Prove Lemma 17.1.5.

Example 17.1.7. We run the Lagrange-Gauss algorithm on b1 = (1, 5) and b2 = (6, 21).
In the first step, µ = 111/26 ≈ 4.27 and so we update b2 = b2 − 4b1 = (2, 1). We then
swap b1 and b2 so that the values in the loop are now b1 = (2, 1) and b2 = (1, 5). This
time, µ = 7/5 = 1.4 and so we set b2 = b2−b1 = (−1, 4). Since kb2k > kb1k the algorithm
halts and outputs {(2, 1), (−1, 4)}.

Exercise 17.1.8. Run the Lagrange-Gauss reduction algorithm on the basis {(3, 8), (5, 14)}.

Lemma 17.1.9. Let b1, b2 be the initial vectors in an iteration of the Lagrange-Gauss
algorithm and suppose b′1 = b2 −mb1 and b′2 = b1 are the vectors that will be considered
in the next step of the algorithm. Then kb′1k2 < kb1k2/3, except perhaps for the last two
iterations.

Proof: Note that m = ⌊µ⌉ = ⌊hb1, b2i/hb1, b1i⌉ = hb1, b2i/hb1, b1i + ǫ where |ǫ| ≤ 1/2.
Hence,

hb1, b′1i = hb1, b2 − (hb1, b2i/hb1, b1i+ ǫ) b1i = −ǫhb1, b1i = −ǫkb1k2.

We show that kb′1k2 < kb1k2/3 unless we are in the last two iterations of the algorithm.
To do this, suppose that kb′1k2 ≥ kb1k2/3. Then

|hb′1, b′2i| = |hb′1, b1i| = |ǫ|kb1k2 ≤ 1
2kb1k2 ≤ 3

2kb
′
1k2.

It follows that, in the next iteration of the algorithm, we will be taking m = ⌊µ⌉ ∈
{−1, 0, 1} and so the next iteration would, at most, replace b′1 with b′2±b′1 = b1±(b2−mb1).
But, if this were smaller than b′1 then we would have already computed b′1 differently in
the current iteration. Hence, the next step is the final iteration. �

Theorem 17.1.10. Let X ∈ Z≥2 and let b1, b2 be vectors in Z2 such that kbik2 ≤ X.
Then the Lagrange-Gauss algorithm performs O(log(X)3) bit operations.

368 CHAPTER 17. LATTICE BASIS REDUCTION

Proof: Lemma 17.1.9 shows that there are O(log(X)) iterations in the Lagrange-Gauss
algorithm. Since the squared Euclidean lengths of all vectors in the algorithm are bounded
by X , it follows that entries of vectors are integers bounded by

√
X . Similarly, the

numerator and denominator of µ ∈ Q require O(log(X)) bits. The result follows. �

A much more precise analysis of the Lagrange-Gauss reduction algorithm is given by
Vallée [614]. Indeed, the algorithm has complexity O(log(X)2) bit operations; see Nguyen
and Stehlé [455].

The above discussion is for the Euclidean norm, but the Lagrange-Gauss reduction
algorithm can be performed for any norm (the only change is how one computes µ). We
refer to Kaib and Schnorr [326] for analysis and details.

Finally, we remark that there is a natural analogue of Definition 17.1.1 for any di-
mension. Hence, it is natural to try to generalise the Lagrange-Gauss algorithm to higher
dimensions. Generalisations to dimension three have been given by Vallée [613] and Se-
maev [538]. There are a number of problems when generalising to higher dimensions.
For example, choosing the right linear combination to size reduce bn using b1, . . . , bn−1

is solving the CVP in a sublattice (which is a hard problem). Furthermore, there is no
guarantee that the resulting basis actually has good properties in high dimension. We
refer to Nguyen and Stehlé [461] for a full discussion of these issues and an algorithm that
works in dimensions 3 and 4.

17.1.1 Connection Between Lagrange-Gauss Reduction and Eu-
clid’s Algorithm

The Lagrange-Gauss algorithm is closely related to Euclid’s algorithm. We briefly discuss
some similarities and differences. Recall that if a, b ∈ Z then Euclid’s algorithm (using
signed remainders) produces a sequence of integers ri, si, ti such that

asi + bti = ri

where |riti| < |a| and |risi| < |b|. The precise formulae are ri+1 = ri−1 − qri and
si+1 = si−1−qsi where q = ⌊ri−1/ri⌉. The sequence |ri| is strictly decreasing. The initial
values are r−1 = a, r0 = b, s−1 = 1, s0 = 0, t−1 = 0, t0 = 1. In other words the lattice
with basis matrix

B =

�
0 b
1 a

�
=

�
s0 r0
s−1 r−1

�

contains the vectors

(si, ri) = (ti, si)B.

These vectors are typically shorter than the original vectors of the lattice.
We claim that if si is sufficiently small compared with ri then one step of the Lagrange-

Gauss algorithm on B corresponds to one step of Euclid’s algorithm (with negative re-
mainders).

To see this, let b1 = (si, ri) and consider the Lagrange-Gauss algorithm with b2 =
(si−1, ri−1). First compute the value

µ =
hb1, b2i
hb1, b1i

=
sisi−1 + riri−1

s2i + r2i
.

If si is sufficiently small relative to ri (e.g., in the first step, when s0 = 0) then

⌊µ⌉ = ⌊riri−1/r
2
i ⌉ = ⌊ri−1/ri⌉ = q.

17.2. LLL-REDUCED LATTICE BASES 369

Hence the operation v = b2 − ⌊µ⌉b1 is v = (si−1 − qsi, ri−1 − qri), which agrees with
Euclid’s algorithm. Finally, the Lagrange-Gauss algorithm compares the lengths of the
vectors v and b1 to see if they should be swapped. When si+1 is small compared with ri+1

then kvk is smaller than kb1k. Hence the vectors are swapped and the matrix becomes

�
si−1 − qsi ri−1 − qri

si ri

�
.

just as in Euclid’s algorithm.
The algorithms start to deviate once si become large (this can already happen on the

second iteration, as the below example shows). Further, Euclid’s algorithm runs until
ri = 0 (in which case si ≈ b) whereas Lagrange-Gauss reduction stops when ri ≈ si.

Example 17.1.11. Let a = 19 and b = 8. The sequence of remainders in the signed
Euclidean algorithm is 3,−1 while the Lagrange-Gauss lattice basis reduction algorithm
computes remainders 3, 2.

Example 17.1.12. Consider a = 8239876 and b = 1020301, which have gcd equal to
one. Let

B =

�
0 b
1 a

�
.

Running the Lagrange-Gauss algorithm on this matrix gives
�

540 379
619 −1455

�
.

One can verify that
379 = 540a+ t4b where t4 = −4361

and
−1455 = 619a+ t5b where t5 = −4999.

17.2 LLL-Reduced Lattice Bases

This section presents the crucial definition from [373] and some of its consequences. The
main result is Theorem 17.2.12, which shows that an LLL-reduced lattice basis does have
good properties.

Recall first that if b1, . . . , bn is a set of vectors in Rm then one can define the Gram-
Schmidt orthogonalisation b∗1, . . . , b

∗
n as in Section A.10.2. We use the notation µi,j =

hbi, b∗j i/hb∗j , b∗j i throughout.
As we have noted in Example 16.3.3, computational problems in lattices can be easy

if one has a basis that is orthogonal, or “sufficiently close to orthogonal”. A simple but
important observation is that one can determine when a basis is close to orthogonal by
considering the lengths of the Gram-Schmidt vectors. More precisely, a lattice basis is
“close to orthogonal” if the lengths of the Gram-Schmidt vectors do not decrease too
rapidly.

Example 17.2.1. Two bases for Z2 are {(1, 0), (0, 1)} and {(23, 24), (24, 25)}. In the
first case, the Gram-Schmidt vectors both have length 1. In the second case the Gram-
Schmidt vectors are b∗1 = (23, 24) and b∗2 = (24/1105,−23/1105), which have lengths√
1105 ≈ 33.24 and 1/

√
1105 ≈ 0.03 respectively. The fact that the lengths of the

Gram-Schmidt vectors dramatically decrease reveals that the original basis is not of good
quality.

370 CHAPTER 17. LATTICE BASIS REDUCTION

We now list some easy properties of the Gram-Schmidt orthogonalisation.

Lemma 17.2.2. Let {b1, . . . , bn} be linearly independent in Rm and let {b∗1, . . . , b∗n} be
the Gram-Schmidt orthogonalisation.

1. kb∗i k ≤ kbik for 1 ≤ i ≤ n.

2. hbi, b∗i i = hb∗i , b∗i i for 1 ≤ i ≤ n.

3. Let j, k ∈ N be such that 1 < k ≤ n and 1 ≤ j < k. Denote the closest integer to
µk,j by ⌊µk,j⌉. If b′k = bk − ⌊µk,j⌉bj and µ′

k,j = hb′k, b∗j i/hb∗j , b∗j i then |µ′
k,j | ≤ 1/2.

Exercise 17.2.3. Prove Lemma 17.2.2.

Definition 17.2.4. Let {b1, . . . , bn} be an ordered basis for a lattice. Denote by {b∗1, . . . , b∗n}
the Gram-Schmidt orthogonalisation and write Bi = kb∗i k2 = hb∗i , b∗i i. Let

µi,j = hbi, b∗j i/hb∗j , b∗j i

for 1 ≤ j < i ≤ n be the coefficients from the Gram-Schmidt process. Fix 1/4 < δ < 1.
The (ordered) basis is LLL reduced (with factor δ) if the following conditions hold:

• (Size reduced) |µi,j | ≤ 1/2 for 1 ≤ j < i ≤ n.

• (Lovász condition)
Bi ≥

δ − µ2

i,i−1

�
Bi−1

for 2 ≤ i ≤ n.

It is traditional to choose δ = 3/4 in the Lovász condition.

Exercise 17.2.5. Which of the following basis matrices represents an LLL reduced basis
(with δ = 3/4)?

�
1 0
0 2

�
,

�
0 4
1 0

�
,

�
1 −2
3 1

�
,

�
5 0
0 4

�
,

�
10 0
0 9

�
.

Exercise 17.2.6. Prove that an equivalent formulation (more in the flavour of the
Lagrange-Gauss method) of the Lovász condition is

Bi + µ2
i,i−1Bi−1 = kb∗i + µi,i−1b

∗
i−1k2 ≥ δBi−1.

Exercise 17.2.7. Find an ordered basis {b1, b2} in R2 that is LLL-reduced, but has the
property that kb2k < kb1k and that the ordered basis {b2, b1} is not LLL-reduced.

For the moment we do not concern ourselves with the question of whether an LLL
reduced basis can exist for every lattice L. In Section 17.4 we will present the LLL
algorithm, which constructs such a basis for any lattice (hence giving a constructive
existence proof for an LLL reduced basis).

The following properties of an LLL reduced basis hold.

Lemma 17.2.8. Let {b1, . . . , bn} be an LLL reduced basis with δ = 3/4 for a lattice
L ⊂ Rm. Let the notation be as above. In particular, kbk is the Euclidean norm.

1. Bj ≤ 2i−jBi for 1 ≤ j ≤ i ≤ n.

2. Bi ≤ kbik2 ≤ (12 + 2i−2)Bi for 1 ≤ i ≤ n.

17.2. LLL-REDUCED LATTICE BASES 371

3. kbjk ≤ 2(i−1)/2kb∗i k for 1 ≤ j ≤ i ≤ n.

Proof:

1. The Lovász condition implies Bi ≥ (34 − 1
4)Bi−1 = 1

2Bi−1 and the result follows by
induction.

2. From bi = b∗i +
Pi−1

j=1 µi,jb
∗
j we have

kbik2 = hbi, bii

=

*
b∗i +

i−1X

j=1

µi,jb
∗
j , b∗i +

i−1X

j=1

µi,jb
∗
j

+

= Bi +

i−1X

j=1

µ2
i,jBj ,

which is clearly ≥ Bi. By part 1 this is at most Bi(1+
1
4

Pi−1
j=1 2

i−j) = Bi(1+
1
4 (2

i−
2)) = Bi(

1
2 + 2i−2).

3. Since j ≥ 1 we have 1
2 + 2j−2 ≤ 2j−1. Part 2 can therefore be written as kbjk2 ≤

2j−1Bj . By part 1, Bj ≤ 2i−jBi and so kbjk2 ≤ 2j−12i−jBi = 2i−1Bi. Taking
square roots gives the result.

�

We now give the same result for a slightly different value of δ.

Lemma 17.2.9. Let {b1, . . . , bn} be an LLL reduced basis with δ = 1/4 + 1/
√
2 ≈ 0.957

for a lattice L ⊂ Rm. Let the notation be as above. In particular, kbk is the Euclidean
norm.

1. Bj ≤ 2(i−j)/2Bi for 1 ≤ j ≤ i ≤ n.

2. Bi ≤ kbik2 ≤ (16 + 2(i−1)/2)Bi for 1 ≤ i ≤ n.

3. kbjk ≤ 2i/4kb∗i k for 1 ≤ j ≤ i ≤ n.

Exercise 17.2.10.⋆ Prove Lemma 17.2.9.

Lemma 17.2.11. Let {b1, . . . , bn} be an ordered basis for a lattice L ⊂ Rm and let
{b∗1, . . . , b∗n} be the Gram-Schmidt orthogonalisation. Let λ1 be the length of the shortest
non-zero vector in the lattice. Then

λ1 ≥ min
1≤i≤n

kb∗i k.

Furthermore, let w1, . . . , wi ∈ L be linearly independent lattice vectors such that
max{kw1k, . . . , kwik} = λi, as in the definition of successive minima. Write wj =Pn

k=1 zj,kbk. For 1 ≤ j ≤ i denote by k(j) the largest value for k such that 1 ≤ k ≤ n
and zj,k 6= 0. Then kwjk ≥ kb∗k(j)k.
Proof: Let x = (x1, . . . , xn) ∈ Zn be arbitrary such that x 6= 0. Let i be the largest
index such that xi 6= 0. We will show that kxBk ≥ kb∗i k, from which the result follows.

We have xB =
Pi

j=1 xjbj . Since b
∗
i is orthogonal to the span of {b1, . . . , bi−1} we have

hxB, b∗i i = xihb∗i , b∗i i = xikb∗i k2. Since xi ∈ Z and xi 6= 0 it follows that |hxB, b∗i i| ≥ kb∗i k2.
By part 4 of Lemma A.10.3 it follows that

kxBk ≥ kb∗i k,

372 CHAPTER 17. LATTICE BASIS REDUCTION

which completes the proof. �

Theorem 17.2.12 shows that an LLL reduced lattice basis has good properties. In
particular, the first vector of an LLL-reduced lattice basis has length at most 2(n−1)/2

times the length of a shortest non-zero vector.

Theorem 17.2.12. Let {b1, . . . , bn} be an LLL reduced basis with δ = 3/4 for a lattice
L ⊂ Rm. Let the notation be as above. In particular, kbk is the Euclidean norm.

1. kb1k ≤ 2(n−1)/2λ1.

2. kbjk ≤ 2(n−1)/2λi for 1 ≤ j ≤ i ≤ n. (This may look strange, but it tends to be used
for fixed i and varying j, rather than the other way around.)

3. 2(1−i)/2λi ≤ kbik ≤ 2(n−1)/2λi.

4. det(L) ≤ Qn
i=1 kbik ≤ 2n(n−1)/4 det(L).

5. kb1k ≤ 2(n−1)/4 det(L)1/n.

Proof:

1. From part 1 of Lemma 17.2.8 we have kb∗i k ≥ 2(i−1)/2kb∗1k. Hence, part 1 implies

λ1 ≥ min
1≤i≤n

kb∗i k

≥ min
1≤i≤n

2(1−i)/2kb∗1k

= 2(1−n)/2kb∗1k.

The result follows since b∗1 = b1.

2. Letw1, . . . , wi ∈ L be linearly independent lattice vectors such that max{kw1k, . . . , kwik} =
λi. Let k(j) be defined as in Lemma 17.2.11 so that kwjk ≥ kb∗k(j)k.
Renumber the vectors wj so that k(1) ≤ k(2) ≤ · · · ≤ k(i). We claim that j ≤ k(j).
If not then w1, . . . , wj would belong to the span of {b1, . . . , bj−1} and would be
linearly dependent.

Finally,
kbjk ≤ 2(k(j)−1)/2kb∗k(j)k ≤ 2(n−1)/2kwjk ≤ 2(n−1)/2λi,

which proves the result.

3. The upper bound on kbik is given by part 2.

Since {b1, . . . , bi} are linearly independent we have λi ≤ max1≤j≤i kbjk and by part

3 of Lemma 17.2.8 each kbjk ≤ 2(i−1)/2kb∗i k. Using kb∗i k ≤ kbik we obtain the lower
bound on kbik.

4. By Lemma 16.1.14 we have det(L) =
Qn

i=1 kb∗i k. The result follows from kb∗i k ≤
kbik ≤ 2(i−1)/2kb∗i k.

5. By part 3 of Lemma 17.2.8 we have kb1k ≤ 2(i−1)/2kb∗i k and so

kb1kn ≤
nY

i=1

2(i−1)/2kb∗i k = 2n(n−1)/4 det(L).

�

17.3. THE GRAM-SCHMIDT ALGORITHM 373

Exercise 17.2.13. Show that taking δ → 1 in the LLL algorithm would give kb1k ≤
(43)

(n−1)/2λ1(L) and kb1k ≤ (43)
(n−1)/4 det(L)1/n.

Corollary 17.2.14. If kb1k ≤ kb∗i k for all 1 ≤ i ≤ n then b1 is a correct solution to SVP.

Exercise 17.2.15. Prove Corollary 17.2.14.

Exercise 17.2.16. Suppose L is a lattice in Zm and let {b1, . . . , bn} be an LLL-reduced
basis. Rename these vectors as v1, . . . , vn such that 1 ≤ kv1k ≤ kv2k ≤ · · · ≤ kvnk. Show
that one does not necessarily have kv1k = kb1k. Show that, for 1 ≤ i ≤ n,

kvik ≤
�
2n(n−1)/4 det(L)

�1/(n+1−i)

.

As a final remark, the results in this section have only given upper bounds on the
sizes of kbik in an LLL-reduced lattice basis. In many practical instances, one finds that
LLL-reduced lattice vectors are much shorter than these bounds might suggest.

17.3 The Gram-Schmidt Algorithm

The LLL algorithm requires computing a Gram-Schmidt basis. For the complexity anal-
ysis of the LLL algorithm it is necessary to give a more careful description and analysis
of the Gram-Schmidt algorithm than was done in Section A.10.2. We present pseudocode
in Algorithm 24 (the “downto” in line 4 is not necessary, but we write it that way for
future reference in the LLL algorithm).

Algorithm 24 Gram-Schmidt algorithm

Input: {b1, . . . , bn} in Rm

Output: {b∗1, . . . , b∗n} in Rm

1: b∗1 = b1
2: for i = 2 to n do
3: v = bi
4: for j := i− 1 downto 1 do
5: µi,j = hbi, b∗j i/hb∗j , b∗j i
6: v = v − µi,jb

∗
j

7: end for
8: b∗i = v
9: end for

10: return {b∗1, . . . , b∗n}

When working in R the standard way to implement this algorithm is using floating-
point arithmetic. However, problems can arise (especially if the b∗i decrease quickly in
size). Such issues are beyond the scope of this book; we refer to Higham [285] for details.

If the input vectors lie in Zm then one can perform Algorithm 24 using exact arithmetic
over Q. However, the integers can become very large (this is called coefficient explo-
sion). We now analyse the size of the integers and prove the complexity of the exact
version of the Gram-Schmidt algorithm. These results are used later when determining
the complexity of LLL using exact arithmetic.

Definition 17.3.1. Let b1, . . . , bn be an ordered set of vectors in Zm. Define Bi = kb∗i k2
(as before). For 1 ≤ i ≤ n − 1 define the i × m matrix B(i) whose rows are b1, . . . , bi.
Define d0 = 1 and, for 1 ≤ i ≤ n,

di = det(B(i)B
T
(i)) = det(hbj , bki1≤j,k≤i) ∈ Z,

374 CHAPTER 17. LATTICE BASIS REDUCTION

which is the square of the volume of the sublattice generated by B(i).

Lemma 17.3.2. Let the notation be as above.

1. di =
Qi

j=1 Bj for 1 ≤ i ≤ n.

2. Bi = di/di−1 for 1 ≤ i ≤ n.

3. di−1b
∗
i ∈ L ⊆ Zn for 1 ≤ i ≤ n, where L is the lattice spanned by {b1, . . . , bn}.

4. djµi,j ∈ Z for 1 ≤ j < i ≤ n.

Proof:

1. Write L(i) for the lattice spanned by the first i vectors (i.e., L is given by the matrix

B(i)). Then di = det(L(i))
2 =

Qi
j=1 kb∗jk2 =

Qi
j=1 Bj by Lemma 16.1.14.

2. This property follows immediately from the previous one.

3. Write b∗i = bi −
Pi−1

j=1 ai,jbj for some ai,j ∈ R. Note that the sum is over vectors bj
not b∗j , so the ai,j are not the same as the µi,j . Since hbl, b∗i i = 0 for 1 ≤ l < i we
have

hbl, bii =
i−1X

j=1

ai,jhbl, bji,

which corresponds to the matrix product

(hbi, b1i, . . . , hbi, bi−1i) = (ai,1, . . . , ai,i−1)B(i−1)B
T
(i−1).

Inverting B(i−1)B
T
(i−1) to solve for the ai,j gives di−1ai,j ∈ Z. It follows that

di−1b
∗
i ∈ L ⊂ Zn as required.

4. By the previous results we have djµi,j = dj−1Bjhbi, b∗j i/Bj = hbi, dj−1b
∗
j i ∈ Z.

�

Exercise 17.3.3. Consider the vector v = bi −
Pi−1

k=j µi,kb
∗
k in line 6 of Algorithm 24

during iteration j. Show that

kvk2 = kbik2 −
i−1X

k=j

µ2
i,kkb∗kk2.

Deduce that kvk ≤ kbik and that di−1v ∈ Zm throughout the loop in line 4 of the
algorithm.

Theorem 17.3.4. Let b1, . . . , bn be vectors in Zm. Let X ∈ Z≥2 be such that kbik2 ≤
X for 1 ≤ i ≤ n. Then the Gram-Schmidt algorithm performs O(n4m log(X)2) bit
operations. The output size is O(n2m log(X)).

Proof: One runs Algorithm 24 using exact Q arithmetic for the vectors b∗i . Lemma 17.3.2

shows that the denominators in b∗i are all factors of di−1, which has size
Qi−1

j=1 Bj ≤Qi−1
j=1 kbjk2 ≤ X i−1. Also, kb∗i k ≤ kbik ≤ X , so the numerators are bounded by X i. The

size of each vector b∗i and, by Exercise 17.3.3, the intermediate steps v in the computa-
tion are therefore O(mi log(X)) bits, which gives the output size of the algorithm. The
computation hbi, b∗j i requires O(mn log(X)2) bit operations and the computation hb∗j , b∗j i
requires O(mn2 log(X)2) bit operations. As there are O(n2) vector operations to perform,
one gets the stated running time. �

17.4. THE LLL ALGORITHM 375

Corollary 17.3.5. Let the notation be as in Theorem 17.3.4 and let L be the lattice
in Zm with basis {b1, . . . , bn}. Then one can compute det(L)2 in O(n4m log(X)2) bit
operations.4

Proof: Lemma 16.1.14 implies det(L)2 =
Qn

i=1 kb∗i k2. One computes b∗i using exact
(naive) arithmetic over Q in O(n4m log(X)2) bit operations. One computes each kb∗i k2 ∈
Q in O(mn2 log(X)2) bit operations. Since kb∗i k2 ≤ X and di−1kb∗i k2 ∈ Z it follows that
kb∗i k2 is a ratio of integers bounded by Xn. One computes the product of the kb∗i k2
in O(n3 log(X)2) bit operations (since the integers in the product are bounded by Xn2

).
Finally, one can reduce the fraction using Euclid’s algorithm and division inO(n4 log(X)2)
bit operations. �

17.4 The LLL Algorithm

The Lenstra-Lenstra-Lovász (LLL) algorithm is an iterative algorithm that transforms
a given lattice basis into an LLL-reduced one. Since the definition of LLL-reduced uses
Gram-Schmidt vectors, the algorithm performs the Gram-Schmidt method as a subrou-
tine. The first condition of Definition 17.2.4 is easily met by taking suitable integer linear
combinations. If the second condition is not met then bi is not significantly longer than
bi−1. In this case we swap bi and bi−1 and backtrack. The swapping of vectors is fa-
miliar from the Lagrange-Gauss 2-dimensional lattice basis reduction algorithm and also
Euclid’s algorithm. We give the precise details in Algorithm 25.

Algorithm 25 LLL algorithm with Euclidean norm (typically, choose δ = 3/4)

Input: b1, . . . , bn ∈ Zm.
Output: LLL reduced basis b1, . . . , bn
1: Compute the Gram-Schmidt basis b∗1, . . . , b

∗
n and coefficients µi,j for 1 ≤ j < i ≤ n

2: Compute Bi = hb∗i , b∗i i = kb∗i k2 for 1 ≤ i ≤ n
3: k = 2
4: while k ≤ n do
5: for j = (k − 1) downto 1 do ⊲ Perform size reduction
6: Let qj = ⌊µk,j⌉ and set bk = bk − qjbj
7: Update the values µk,j for 1 ≤ j < k
8: end for
9: if Bk ≥ (δ − µ2

k,k−1)Bk−1 then ⊲ Check Lovász condition
10: k = k + 1
11: else
12: Swap bk with bk−1

13: Update the values b∗k, b
∗
k−1, Bk, Bk−1, µk−1,j and µk,j for 1 ≤ j < k, and

µi,k, µi,k−1 for k < i ≤ n
14: k = max{2, k − 1}
15: end if
16: end while

Lemma 17.4.1. Throughout the LLL algorithm the values b∗i and Bi for 1 ≤ i ≤ n and
µi,j for 1 ≤ j < i ≤ n are all correct Gram-Schmidt values.

4Since det(L)2 ∈ Z while det(L) may not be rational if n < m, we prefer to work with det(L)2.

376 CHAPTER 17. LATTICE BASIS REDUCTION

Exercise 17.4.2. Prove Lemma 17.4.1. In other words, show that line 6 of the LLL
algorithm does not change b∗i or Bi for 1 ≤ i ≤ n. Similarly, line 12 of the algorithm does
not change any values except those mentioned in line 13.

It is illuminating to compare the LLL algorithm with the Lagrange-Gauss reduction
algorithm. The basic concept of size reduction followed by a swap is the same, however
there are two crucial differences.

1. The size reduction operation in the Lagrange-Gauss algorithm gives the minimal
value for kb2 + qb1k over q ∈ Z. In LLL the coefficient µk,j is chosen to depend on
bk and b∗j so it does not necessarily minimise kbkk. Indeed kbkk can grow during
the algorithm. Of course, in the two-dimensional case of LLL then µ2,1 is the same
as the value used in the Lagrange-Gauss algorithm and so the size reduction step is
the same.

2. The size check in LLL (the Lovász condition) is on the lengths of the Gram-Schmidt
vectors, unlike the size check in the Lagrange-Gauss algorithm, which is on the
length of the basis vectors themselves.

These features of LLL may seem counterintuitive, but they are essential to the proof that
the algorithm runs in polynomial-time.

Lemma 17.4.3. If bk and bk−1 are swapped then the Gram-Schmidt vectors b∗i for 1 ≤
i ≤ n are changed as follows

1. For 1 ≤ i < k − 1 and k < i < n then b∗i is unchanged.

2. The new value for b∗k−1 is b∗k + µk,k−1b
∗
k−1 and the new value for Bk−1 is B′

k =
Bk + µ2

k,k−1Bk−1.

3. The new value for b∗k is (Bk/B
′
k−1)b

∗
k−1 − (µk,k−1Bk−1/B

′
k−1)b

∗
k and the new value

for Bk is Bk−1Bk/B
′
k−1.

Proof: Denote by b′i the new basis (i.e., b′k−1 = bk and b′k = bk−1), b
′
i
∗
and µ′

i,j the new

Gram-Schmidt values and B′
i the squares of the lengths of the b′i

∗
. Clearly b′i

∗
= b∗i for

1 ≤ i < k − 1 and µ′
i,j = µi,j for 1 ≤ j < i < k − 1. Now

b′ ∗k−1 = b′k−1 −
k−2X

j=1

µ′
k−1,jb

′
j
∗

= bk −
k−2X

j=1

µk,jb
∗
j

= b∗k + µk,k−1b
∗
k−1.

Hence, B′
k−1 = Bk + µ2

k,k−1Bk−1.

17.4. THE LLL ALGORITHM 377

Similarly,

b′k
∗

= b′k −
k−1X

j=1

µ′
k,jb

′
j
∗

= bk−1 −
k−2X

j=1

µk−1,jb
∗
j −

hbk−1, b

′ ∗
k−1i/B′

k−1

�
b′ ∗k−1

= b∗k−1 −

hbk−1, b

∗
k + µk,k−1b

∗
k−1i/B′

k−1

�
(b∗k + µk,k−1b

∗
k−1)

= b∗k−1 −

µk,k−1Bk−1/B

′
k−1

�
(b∗k + µk,k−1b

∗
k−1)

=

1− µ2

k,k−1Bk−1/B
′
k−1

�
b∗k−1 −

µk,k−1Bk−1/B

′
k−1

�
b∗k.

The result for b′k
∗
follows since 1− µ2

k,k−1Bk−1/B
′
k−1 = Bk/B

′
k−1. Finally,

B′
k = (B2

khb∗k−1, b
∗
k−1i/B′

k−1
2
+ µ2

k,k−1B
2
k−1hb∗k, b∗ki/B′

k−1
2
= Bk−1Bk/B

′
k−1.

�

Exercise 17.4.4. Give explicit formulae for updating the other Gram-Schmidt values in
lines 7 and 13 of Algorithm 25.

Exercise 17.4.5. Show that it is not necessary to store or update the values b∗i for
1 ≤ i ≤ n in the LLL algorithm once the values Bi have been computed.

Exercise 17.4.6. Show that the condition in line 9 of Algorithm 25 can be checked
immediately after µk,k−1 has been computed. Hence, show that the cases 1 ≤ j < k − 1
in the loop in lines 5 to 8 of Algorithm 25 can be postponed to line 10.

Lemma 17.4.7. If the LLL algorithm terminates then the output basis is LLL reduced.

Exercise 17.4.8. Prove Lemma 17.4.7. Indeed, the fact that the Lovász conditions are
satisfied is immediate. Prove the bounds on the µi,j using the three following steps. Let
1 ≤ j < k and let b′k = bk − ⌊µk,j⌉bj .

1. Prove that hbj , b∗j i = hb∗j , b∗ji and hbj , b∗i i = 0 if j < i.

2. Hence, writing µ′
k,j = hb′k, b∗ji/hb∗j , b∗j i, prove that |µ′

k,j | ≤ 1/2 for 1 ≤ j < k.

3. For j < i < k denote µ′
k,i = hb′k, b∗i i/hb∗i , b∗i i. Prove that µ′

k,i = µk,i.

In the next section we show that the LLL algorithm does terminate. Before then we
give an example and some further discussion.

Example 17.4.9. Let L be the lattice with basis matrix

B =




1 0 0
4 2 15
0 0 3


 .

We will perform the LLL algorithm to reduce this lattice basis.
We start with k = 2 and compute µ2,1 = 4/1 = 4. So q1 = 4 and we define

b2 = b2 − 4b1 = (4, 2, 15)− (4, 0, 0) = (0, 2, 15).

We now want to check the second LLL condition. To do this we need b∗2. We compute
µ2,1 = 0 and hence b∗2 = b2. Then B1 = 1 and B2 = hb∗2, b∗2i = 229. Clearly, B2 >

378 CHAPTER 17. LATTICE BASIS REDUCTION

(3/4− µ2
2,1)B1 and so we set k = 3. Now consider b3. We compute µ3,2 = 45/229 ≈ 0.19

and, since q2 = 0 there is no reduction to be performed on b3. We compute µ3,1 = 0, so
again no size reduction is required. We now compute

b∗3 = b3 − 45
229b

∗
2 = (0,−90/229, 12/229).

We have B2 = 229 and B3 = hb∗3, b∗3i = 8244/52441 ≈ 0.157. From this one can check
that B3 < (3/4− µ2

3,2)B2 ≈ 166.1. Hence we swap b2 and b3 and set k = 2.
At this point we have the vectors

b1 = (1, 0, 0) and b2 = (0, 0, 3)

and b∗1 = b1, b
∗
2 = b2. First check that µ2,1 = 0 and so no size reduction on b2 is required.

Second, B1 = 1 and B2 = 9 and one checks that B2 > (3/4− µ2
2,1)B1 = 0.75. Hence we

set k = 3. Now
b3 = (0, 2, 15)

and we compute µ3,2 = 45/9 = 5. Hence we reduce

b3 = b3 − 5b2 = (0, 2, 0).

Now compute µ3,1 = 0, so no reduction is required.
One computes µ3,2 = 0, b∗3 = b3 and B3 = 4. Hence, B3 < (3/4 − µ2

3,2)B2 =
27/4 = 6.75 and so we should swap b2 and b3 and set k = 2. One can check that the
k = 2 phase runs without making any changes. We have B1 = 1 and B2 = 4. Consider
now k = 3 again. We have µ3,2 = µ3,1 = 0 and so b3 remains unchanged. Finally,
B3 = 9 > (3/4−µ2

3,2)B2 = 3 and so we set k = 4 and halt. The output is (1, 0, 0), (0, 2, 0)
and (0, 0, 3).

Exercise 17.4.10. Perform the LLL algorithm by hand on the basis

{(−1, 5, 0), (2, 5, 0), (8, 6, 16)} .

Exercise 17.4.11. Perform the LLL algorithm by hand on the basis

{(0, 3, 4), (−1, 3, 3), (5, 4,−7)} .

Remark 17.4.12. Part 1 of Theorem 17.2.12 shows we have kb1k ≤ 2(n−1)/2λ1. In other
words, the LLL algorithm solves SVP up to an exponential factor but is not guaranteed
to output a shortest vector in the lattice. Hence, LLL does not officially solve SVP.

In practice, at least for relatively small dimensions, the vector b1 output by the LLL
algorithm is often much closer to the shortest vector than this bound would suggest, and
in many cases will be a shortest vector in the lattice. In Example 17.4.9, the theoretical
bound gives kb1k ≤ 2, so (0, 2, 0) would have been a possible value for b1 (but it wasn’t).

17.5 Complexity of LLL

We now show that the LLL algorithm terminates and runs in polynomial-time for lat-
tices in Zm. The original paper of Lenstra, Lenstra and Lovász [373] proves polynomial
termination for any lattice in Rm but only gives a precise complexity for lattices in Zm.

Theorem 17.5.1. Let L be a lattice in Zm with basis b1, . . . , bn and let X ∈ Z≥2 be such
that kbik2 ≤ X for 1 ≤ i ≤ n. Let 1/4 < δ < 1. Then the LLL algorithm with factor δ
terminates and performs O(n2 log(X)) iterations.

17.5. COMPLEXITY OF LLL 379

Proof: We need to bound the number of “backtracks” in Algorithm 25. This number
is at most n plus the number of swaps. So it suffices to bound the number of swaps by
O(n2 log(X)).

For 1 ≤ i ≤ n − 1 define the i × m matrix B(i) formed by the first i basis vectors
for the lattice. Define di = det(B(i)B

T
(i)) ∈ Z, which is the square of the volume of the

sublattice generated by the rows of B(i). Hence

di =

iY

j=1

Bj =

iY

j=1

kb∗i k2 ≤
iY

j=1

kbik2 ≤ X i.

Define

D =
n−1Y

i=1

di =
n−1Y

i=1

Bn−i
i .

It follows that D ≤ X(n−1)n/2.

Two vectors bk and bk−1 are swapped when Bk < (δ−µ2
k,k−1)Bk−1. By Lemma 17.4.3,

the new values for Bk−1 and Bk are B′
k−1 = Bk + µ2

k,k−1Bk−1 and B′
k = Bk−1Bk/B

′
k−1.

Let d′i be the new values for the di. We have d′i = di when 1 ≤ i < k − 1. By the Lovász
condition B′

k−1 ≤ δBk−1. Hence, d′k−1 ≤ δdk−1. Finally, since B′
k−1B

′
k = Bk−1Bk we

have d′i = di for k ≤ i ≤ n. Hence, swapping bk and bk−1 always strictly reduces D.

On the other hand, we always have5 di ∈ Z and so D ≥ 1. It follows that the number
of swaps in the LLL algorithm is at most6 log1/δ(X

(n−1)n/2) = O(n2 log(X)). Hence the

algorithm requires O(n2 log(X)) iterations of the main loop. �

Algorithm 25 and Theorem 17.5.1 provide a proof that an LLL-reduced basis exists
for every lattice.

Exercise 17.5.2. Let n ∈ N. Show that Hermite’s constant (see Definition 16.2.7)
satisfies γn ≤ 2(n−1)/2 (this bound can be improved to (4/3)(n−1)/2; see [373]).

It is clear that if L ⊂ Zm then LLL can be implemented using exact Q arithmetic, and
hence exact integer arithmetic. But we need to show that the size of the integers does
not explode. The analysis given already for the Gram-Schmidt algorithm (for example,
Lemma 17.3.2) provides most of the tools we need.

Theorem 17.5.3. Let L be a lattice in Zm with basis b1, . . . , bn and let X ∈ Z≥2 be such
that kbik2 ≤ X for 1 ≤ i ≤ n. Then the LLL algorithm requires arithmetic operations on
integers of size O(n log(X)).

Proof: (Sketch) The bounds on the sizes of the b∗i follow the same methods as used in
the proof of Theorem 17.3.4. Since kb∗i k is never increased during the algorithm (indeed,
the vectors are specifically permuted to reduce the kb∗i k) we have kb∗i k ≤ X1/2 at the end
of each iteration. Since di−1b

∗
i ∈ Zn and |di−1| ≤ X i−1 it follows that the entries of b∗i

can be written as n∗
i,j/di−1 where |n∗

i,j | ≤ X i.

Let us now consider the values kbik2 at the end of each iteration. These values all
start bounded by X . As the algorithm proceeds the values are either not yet changed
(and hence still bounded by X) or have been modified so that the Gram-Schmidt basis
is size reduced (and possibly swapped to an earlier position in the list of vectors). After

5To apply this argument it is necessary to use the square of the determinant. An integer lattice that
does not have full rank does not necessarily have integer determinant.

6Recall that 1/4 < δ < 1 is considered as a fixed constant.

380 CHAPTER 17. LATTICE BASIS REDUCTION

each size reduction step (and before swapping) we have

bi = b∗i +
i−1X

j=1

µi,jb
∗
j

with −1/2 ≤ µi,j ≤ 1/2 and so

kbik2 = kb∗i k2 +
i−1X

j=1

µ2
i,jkb∗jk2 ≤ nX. (17.2)

Hence, we have kbik ≤
√
nX at the end of each iteration and so the entries of bi are all

integers bounded by
√
nX.

The remaining detail is to bound the sizes of the µi,j and the sizes of intermediate
values in line 6 of Algorithm 25. We refer to the proof of Proposition 1.26 of [373] for the
bounds |µi,j | ≤ 2n−i(nXn−1)1/2 and for further details. �

Corollary 17.5.4. Let L be a lattice in Zm with basis b1, . . . , bn and let X ∈ Z≥2 be such
that kbik2 ≤ X for 1 ≤ i ≤ n. Then the LLL algorithm requires O(n3m log(X)) arithmetic
operations on integers of size O(n log(X)). Using naive arithmetic gives running time
O(n5m log(X)3) bit operations.

Proof: Theorem 17.5.1 implies that the algorithm requires O(n2 log(X)) iterations of
the main loop. Within each iteration there are n operations on vectors of length m.
Hence O(n3m log(X)) arithmetic operations. Theorem 17.5.3 implies that all arithmetic
operations are on integers of size O(n log(X)). �

Remark 17.5.5. 1. Since the input size is O(nm log(X)) and n ≤ m the running
time is cubic in the input size.

2. Note that the bounds on the sizes of integers involved in the LLL algorithm are
O(n log(X)) bits for the values µi,j and entries of b∗i while only O(log(n) + log(X))
bits are needed for the entries in the vectors bi. This is not just an artifact of the
proof, but is a genuine phenomenon; it can already be seen in Example 17.4.9 where
the bi all have very small integer coordinates and yet µ2,1 = 45/229.

This leads to the idea of representing the µi,j and b∗i using approximate (floating-
point) arithmetic and keeping exact integer arithmetic only for the bi. Variants of
LLL using floating-point arithmetic for the Gram-Schmidt vectors are much faster
than the basic LLL algorithm presented in this chapter. Indeed, the basic algorithm
is almost never used in practice.

A problem with using floating-point approximations is that comparisons now be-
come inexact, and this leads to problems with both termination and correctness of
the output. Implementing and analysing floating-point LLL algorithms is beyond
the scope of this book. We refer to Stehlé [582] and Schnorr [525] for surveys of this
topic.

3. One can show (e.g., using equation (17.2)) that the complexity statement holds also
for X = max{kb∗i k : 1 ≤ i ≤ n}, which could be smaller than max{kbik : 1 ≤ i ≤ n}.

4. Sometimes one is interested in reducing lattice bases that are in Qm and not Zm.
Suppose all rational numbers in the basis B have numerator and denominator
bounded by X . One can obtain an integer matrix by multiplying B by an inte-
ger that clears all denominators, but the resulting integers could be as big as Xmn.

17.6. VARIANTS OF THE LLL ALGORITHM 381

This gives a worst-case complexity of O(n8m4 log(X)3) bit operations for lattice
basis reduction.

Some applications such as simultaneous Diophantine approximation (see Section 19.5)
and the hidden number problem (see Section 21.7.1) have at most m non-integer
entries, giving a complexity of O(n5m4 log(X)3) bit operations.

17.6 Variants of the LLL Algorithm

There are many refinements of the LLL algorithm that are beyond the scope of the brief
summary in this book. We list some of these now.

• As mentioned earlier, it is necessary to use floating-point arithmetic to obtain a fast
version of the LLL algorithm. A variant of floating-point LLL whose running time
grows quadratically in log(X) (rather than cubicly, as usual) is the L2 algorithm of
Nguyen and Stehlé [454] (also see Stehlé [582]).

• Schnorr-Euchner “deep insertions”. The idea is that, rather than just swapping bk
and bk−1 in the LLL algorithm, one can move bk much earlier in the list of vectors
if Bk is sufficiently small. With standard LLL we have shown that swapping bk and
bk−1 changes Bk to Bk + µ2

k,k−1Bk−1. A similar argument shows that inserting bk
between bi−1 and bi for some 1 < i < k changes Bk to

B = Bk +

k−1X

j=1

µ2
k,jBj

Hence, one can let i be the smallest index such that B < 3
4Bi and insert bk between

bi−1 and bi (i.e., reorder the vectors bi, . . . , bk as bk, bi, . . . , bk−1). We refer to Schnorr
and Euchner [526] and Section 2.6.2 of Cohen [136] for more details.

• Our presentation of the LLL algorithm was for the Euclidean norm. The algorithm
has been extended to work with any norm by Lovász and Scarf [396] (also see Kaib
and Ritter [325]).

In practice, if one wants results for a norm other than the Euclidean norm, one
usually performs ordinary LLL reduction with respect to the Euclidean norm and
then uses the standard relations between norms (Lemma A.10.2) to determine the
quality of the resulting vectors.

• Another important approach to lattice basis reduction is the block Korkine-Zolotarev
algorithm due to Schnorr [521]. We mention this further in Section 18.5.

