
Chapter 11

Basic Algorithms for Algebraic
Groups

This is a chapter from version 2.0 of the book “Mathematics of Public Key Cryptography”
by Steven Galbraith, available from http://www.math.auckland.ac.nz/̃ sgal018/crypto-
book/crypto-book.html The copyright for this chapter is held by Steven Galbraith.

This book was published by Cambridge University Press in early 2012. This is the
extended and corrected version. Some of the Theorem/Lemma/Exercise numbers may be
different in the published version.

Please send an email to S.Galbraith@math.auckland.ac.nz if you find any mistakes.

In Section 4.1 a number of basic computational tasks for an algebraic group G were
listed. Some of these topics have been discussed already, especially providing efficient
group operations and compact representations for group elements. But some other topics
(such as efficient exponentiation, generating random elements in G and hashing from or
into G) require further attention. The goal of this chapter is to briefly give some details
about these tasks for the algebraic groups of most interest in the book.

The main goal of the chapter is to discuss exponentiation and multi-exponentiation.
These operations are crucial for efficient discrete logarithm cryptography and there are a
number of techniques available for specific groups that give performance improvements.

It is beyond the scope of this book to present a recipe for the best possible expo-
nentiation algorithm in a specific application. Instead, our focus is on explaining the
mathematical ideas that are used. For an “implementors guide” in the case of elliptic
curves we refer to Bernstein and Lange [53].

Let G be a group (written in multiplicative notation). Given g ∈ G and a ∈ N we
wish to compute ga. We assume in this chapter that a is a randomly chosen integer of
size approximately the same as the order of g, and so a varies between executions of the
exponentiation algorithm. If g does not change between executions of the algorithm then
we call it a fixed base and otherwise it is a variable base.

As mentioned in Section 2.8, there is a significant difference between the cases where
g is fixed (and one is computing ga repeatedly for different values of a) and the case
where both g and a vary. Section 2.8 already briefly mentioned addition chains and
sliding window methods. The literature on addition chains is enormous and we do not
delve further into this topic. Window methods date back to Brauer in 1939 and sliding
windows to Thurber; we refer to Bernstein’s excellent survey [45] for historical details.
Other references for fast exponentiation are Chapters 9 and 15 of [16], Chapter 3 of [274]

237

238 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

and Sections 14.6 and 14.7 of [418].

11.1 Efficient Exponentiation Using Signed Exponents

In certain algebraic groups, computing the inverse of a group element is much more effi-
cient than a general group operation. For example, Exercise 6.3.1 and Lemma 6.3.12 show
that inversion in Gq,2 and T2(Fq) is easy. Similarly, inversion in elliptic and hyperelliptic
curve groups is easy (see Section 9.1 and Exercises 10.4.2 and 10.4.17). Hence, one can
exploit inversion when computing exponentiation and it is desirable to consider signed
expansions for exponents.

Signed expansions and addition-subtraction chains have a long history.1 Morain and
Olivos [438] realised that, since inversion is easy for elliptic curve groups, signed expan-
sions are natural in this context.

11.1.1 Non-Adjacent Form

We now discuss the non-adjacent form (NAF) of an integer a. This is the best signed
expansion in the sense that it has the minimal number of non-zero coefficients and can be
computed efficiently. The non-adjacent form was discussed by Reitwiesner [499] (where it
is called “property M”). Reitwiesner proved that the NAF is unique, has minimal weight
among binary expansions with coefficients in {−1, 0, 1}, and he gave an algorithm to
compute the NAF of an integer. These results have been re-discovered and simplified
numerous times (we refer to Section IV.2.4 of [64] and Section 5 of [544] for references).

Definition 11.1.1. Let a ∈ N. A representation a =
Pl

i=0 ai2
i is a non-adjacent form

or NAF if ai ∈ {−1, 0, 1} for all 0 ≤ i ≤ l and aiai+1 = 0 for all 0 ≤ i < l. If al 6= 0 then
the length of the NAF is l + 1.

One can transform an integer a into NAF representation using Algorithm 6. This is
a “right-to-left” algorithm in the sense that it processes the least significant bits first.
We define the operator a (mods 2m) to be reduction of a modulo 2m to the range
{−m + 1, . . . ,−1, 0, 1, . . . ,m}. In particular, if a is odd then a (mods 4) ∈ {−1, 1}. An
alternative right-to-left algorithm is given in the proof of Theorem 11.1.12.

Exercise 11.1.2. Prove that Algorithm 6 outputs a NAF.

Example 11.1.3. We compute the NAF representation of a = 91. Since 91 ≡ 3 (mod 4)
the first digit is −1, which we denote as 1. Note that 22k92 so the next digit is 0. Now,
92/4 = 23 ≡ 3 (mod 4) and the next digit is 1. Since 23k24 the next 2 digits are 0.
Continuing one finds the expansion to be 10100101.

Lemma 11.1.4 shows that a simple way to compute a NAF of an integer a is to compute
the binary representation of 3a, subtract the binary representation of a (writing the result
in signed binary expansion, in other words, performing the subtraction without carries),
and discard the least significant bit. We write this as ((3a) − a)/2.

Lemma 11.1.4. Let a ∈ N. Then the signed binary expansion ((3a) − (a))/2 is in
non-adjacent form.

1Reitwiesner’s long paper [499] suggests signed expansions as a way to achieve faster arithmetic (e.g.,
multiplication and division) but does not discuss exponentiation. Brickell, in 1982, seems to have been
the first to suggest using negative powers of g to speed up the computation of ga; this was in the context
of computing me (mod N) in RSA and required the precomputation of m−1 (mod N).

11.1. EFFICIENT EXPONENTIATION USING SIGNED EXPONENTS 239

Algorithm 6 Convert an integer to non-adjacent form

Input: a ∈ N
Output: (al . . . a0)
1: i = 0
2: while a 6= 0 do
3: if a even then
4: ai = 0
5: else
6: ai = a (mods 4)
7: end if
8: a = (a− ai)/2
9: i = i + 1

10: end while
11: return al . . . a0

Proof: Write a in binary as (al . . . a0)2 and write 3a in binary as (bl+2 . . . b0)2. Set
a−1 = al+1 = al+2 = 0 and c−1 = 0. Then bi = ai + ai−1 + ci−1 − 2ci where ci =
⌊(ai + ai−1 + ci−1)/2⌋ ∈ {0, 1} is the carry from the i-th addition.

Now consider the signed expansion si = bi − ai ∈ {−1, 0, 1}. In other words, si =
ai−1+ci−1−2ci. Clearly b0 = a0 and so s0 = 0. We show that sisi+1 = 0 for 1 ≤ i ≤ l+1.
Suppose i is such that si 6= 0. Since ai−1 + ci−1 ∈ {0, 1, 2} and ai−1 + ci−1 ≡ si (mod 2)
it follows that ai−1 + ci−1 = 1. This then implies that ci = ⌊(1 + ai)/2⌋ = ai. Hence,
ci+1 = ai and si+1 = ai + ci − 2ci+1 = 0. �

Example 11.1.5. Taking a = 91 again, we have 3 ·91 = 273 = (100010001)2. Computing
(3a) − a is

100010001 − 1011011 = 101001010.

Exercise 11.1.6. Compute NAFs for a = 100, 201, 302 and 403.

We now state and prove some properties of NAFs.

Exercise 11.1.7. Show that if al . . . a0 is a NAF of a then (−al) . . . (−a0) is a NAF of
−a.

Lemma 11.1.8. The NAF representation of a ∈ Z is unique.

Proof: Without loss of generality we may assume a > 1. Note that a = 1 has a unique
representation as a NAF, so assume a > 1. Let a ∈ N be the smallest positive integer
such that a has two (or more) distinct representations as a NAF, call them

Pl
i=0 ai2

i andPl′

i=0 a
′
i2

i. If a is even then a0 = a′0 = 0 and so we have two distinct NAF representations
of a/2, which contradicts the minimality of a. If a is odd then a ≡ ±1 (mod 4) and
so a0 = a′0 and a1 = a′1 = 0. Hence, we obtain two distinct NAF representations of
(a− a0)/4 < a, which again contradicts the minimality of a. �

Exercise 11.1.9.⋆ Let a ∈ N. Show that a has a length l+ 1 NAF representation if and
only if 2l − dl ≤ a ≤ 2l + dl where

dl =

�
(2l − 2)/3 if l is odd
(2l − 1)/3 if l is even.

Also show that if a > 0 then al = 1 and prove that the length of a NAF is at most one
more than the length of the binary expansion of a.

240 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

Definition 11.1.10. Let D ⊂ Z be such that 0 ∈ D. The weight of a representation
a =

Pl
i=0 ai2

i where ai ∈ D is the number of values 0 ≤ i ≤ l such that ai 6= 0. The
weight of a is denoted weight(a). The density of the representation is weight(a)/(l + 1).

Exercise 11.1.11. Show that if a ∈ N is uniformly chosen in 2l ≤ a < 2l+1 and rep-
resented using the standard binary expansion then the expected value of the weight is
(l + 1)/2 and therefore the expected value of the density is 1/2.

Theorem 11.1.12. The NAF of an integer a ∈ N has minimal weight among all signed
expansions a =

Pl
i=0 ai2

i where ai ∈ {−1, 0, 1}.
Proof: Let a =

Pl
i=0 ai2

i where ai ∈ {−1, 0, 1} be any signed expansion of a. Perform
the following string re-writing process from right to left (i.e., starting with a0). If ai = 0
or ai+1 = 0 then do nothing. Otherwise (i.e., ai 6= 0 and ai+1 6= 0) there exists an integer
k ≥ 1 such that the sequence ai+kai+k−1 . . . aiai−1 is of the form

01 . . . 10, 11 . . . 10, 11 . . . 10, 01 . . . 10.

In each case replace the pattern with the following

10 . . .010, 0 . . . 010, 0 . . . 010, 10 . . . 010.

In each case, the resulting substring has weight less than or equal to the weight of the
previous substring and is in non-adjacent form (at least up to ai+k−1ai+k = 0). Continu-
ing the process therefore yields a NAF expansion of a of weight less than or equal to the
weight of the original signed expansion. �

Example 11.1.13. We re-compute the NAF representation of a = 91, using the method
in the proof of Theorem 11.1.12. First note that the binary expansion of 91 is 1011011.
One replaces the initial 011 by 101 to get 1011101 One then replaces 0111 by 1001.
Continuing one determines the NAF of 91 to be 10100101.

We have established that the NAF of an integer a is unique, has minimal weight, and
has length at most one bit more than the binary expansion of a. Finally, we sketch a
probabilistic argument that shows that the density of a NAF is expected to be 1/3.

Lemma 11.1.14. Let l ∈ N. Define dl to be the expected value of the density of the NAF
representation of uniformly chosen integers 2l+1/3 < a < 2l+2/3. Then dl tends to 1/3
as l goes to infinity.

Proof: (Sketch) Write a =
Pl

i=0 ai2
l for the NAF representation of a ∈ N. Note that

Algorithm 6 has the property that, if ai 6= 0, then ai+1 = 0 but the value of ai+2 is
independent of the previous operations of the algorithm. Hence, if the bits of a are
considered to be chosen uniformly at random then the probability that ai+2 6= 0 is 1/2.
Similarly, the probability that ai+2 = 0 but ai+3 6= 0 is 1/4, and so on. Hence, the
expected number of zeroes after the non-zero ai is (at least approximately, since the
expansion is not infinite)

E = 1 · 1
2 + 2 · 1

4 + 3 · 1
8 + · · · =

∞X

i=1

i
2i .

Now,

E = 2E − E =

∞X

i=1

i
2i−1 −

∞X

i=1

i
2i = 1 +

∞X

j=1

1
2j = 2.

Hence, on average, there are two zeros between adjacent non-zero coefficients and the
density tends to 1/3. �

11.1. EFFICIENT EXPONENTIATION USING SIGNED EXPONENTS 241

Exercise 11.1.15. Prove that the number of distinct NAFs of length k is (2k+2 −
(−1)k)/3.

Exercise 11.1.16.⋆ Write down an algorithm to list all NAFs of length k.

For some applications it is desired to compute a low-density signed expansion from
left to right; Joye and Yen [321] give an algorithm to do this.

11.1.2 Width-w Non-Adjacent Form

Definition 11.1.17. Let w ∈ N≥2 and m = 2w−1 − 1. Define D = {0} ∪ {a ∈ Z : a

odd, |a| ≤ m} = {0,±1,±3, . . . ,±(2w−1 − 1)}. A representation
Pl

i=0 ai2
i is a width-w

non-adjacent form (also written w-NAF or NAFw) if ai ∈ D and if ai 6= 0 implies
ai+1 = · · · = ai+w−1 = 0. When writing such expansions we write n for the digit −n. If
al 6= 0 then the length of the w-NAF is l + 1.

This notion was first proposed in Miyaji, Ono and Cohen [430] and rediscovered in
Section IV.2.5 of Blake, Seroussi and Smart [64] and Section 3.2 of Solinas [576] (the
latter paper gives us the terminology).

Example 11.1.18. The NAF of an integer a ∈ N is a width-2 NAF.

All the results and proofs given above regarding NAFs generalise immediately to the
case of w-NAFs.

Exercise 11.1.19. Change line 7 of Algorithm 6 to read ai = a (mods 2w). Show that
this algorithm computes a w-NAF of the integer a.

Example 11.1.20. We compute the 3-NAF of 151. Since 151 ≡ 7 (mods 8) we have
a0 = −1. One then finds a1 = a2 = 0. Now (151 + 1)/8 = 19 ≡ 3 (mods 8) so a3 = 3.
Finally a4 = a5 = a6 = 0 and a7 = 1. The 3-NAF of 151 is therefore 10003001, having
weight 3. In comparison, the NAF of 151 is 10101001, which has weight 4.

Exercise 11.1.21. Prove that the w-NAF is unique.

Exercise 11.1.22. Write pseudocode for an efficient left-to-right exponentiation algo-
rithm using the w-NAF representation of the exponent a. Show that the precomputation
requires one squaring and 2w−2 − 1 multiplications.

Exercise 11.1.23. Prove that the length of a w-NAF of an integer a ∈ N is at most one
more than the bit-length of a.

Exercise 11.1.24. Modify the proof of Lemma 11.1.14 to show that the expected density
of the width-w NAF of a randomly chosen l-bit integer tends to 1/(w + 1) as l goes to
infinity.

The length of a w-NAF expansion of a can be less than log2(a), since the most sig-
nificant coefficient can be as big as 2w−1 − 1. Intuitively, one might expect the length on
average to be approximately log2(a)− (w−1)/2. Further discussion of this issue together
with a precise analysis of the density of w-NAFs is given by Cohen [137].

It is shown in Theorem 2.3 of Avanzi [17] and Theorem 3.3 of Muir and Stinson [442]
that the w-NAF has minimal weight among all signed expansions with that digit set.
Analogues of the w-NAF that can be computed from left-to-right have been studied in a
number of papers, starting in Section 3 of [17] and [441].

242 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

11.1.3 Further Methods

There are two other ways to exploit these ideas, namely fractional window NAFs (pro-
posed by Möller [432, 433]) and (fractional) sliding windows over NAFs.2 The sliding
window algorithms are natural analogues of the ones mention in Example 2.8.5 and Ex-
ercise 2.8.6.

The point of these methods is to allow fine-tuning of the precomputation cost so that
one can minimise the expected overall computation for exponents of a given bit-length.
The basic idea is to precompute fewer group elements than the standard version of the
width-w exponentiation algorithm and then to find an expansion of the exponent a of low
weight that has coefficients only corresponding to the precomputed powers of g.

Example 11.1.25. Let w = 4. The standard sliding window exponentiation algorithm
would require precomputing g3, g5, g7, g9, g11, g13 and g15. Using w-NAFs requires pre-
computing g3, g5 and g7 (as well as g−1, g−3, g−5 and g−7, which is assumed to be easy).
One could also consider a fractional w-NAF method whereby only g3 and g5 are computed.

Consider the exponent a = 311. This has the 4-NAF expansion

100030007

of weight 3. So one can compute g311 (ignoring the precomputation) using 8 squarings
and 2 multiplications. This expansion cannot be used with the fractional 4-NAF, since
we have not precomputed g7. Instead, one finds the expansion

5001001,

which is not a 4-NAF (since each non-zero coefficient is not followed by 3 zero coefficients).
However, it still has weight 3 and one computes g311 with 6 squarings and 2 multiplications
(as well as faster precomputation).

Exercise 11.1.26. Compute a 4-NAF and a fractional 4-NAF as in Example 11.1.25
(i.e., again using only coefficients {0,±1,±3}) for a = 887.

An important issue for these methods is to determine the expected density of the
resulting expansions. In Section 5.1 of Möller [432] the formula

1

w + (1 + m)/2w−1

(where the computed powers of g are g±1, g±3, . . . , g±m and w = ⌊log2(m)⌋ + 1) for the
density of a fractional window NAF is derived. This formula is verified using Markov
chain methods in Theorem 1 of Schmidt-Samoa, Semay and Takagi [520]. Section 2.1
of [433] proves minimality of the weight among all expansions with that digit set.

All the above algorithms compute the signed expansion in a right-to-left manner. For
some applications it may be desirable to compute expansions from left-to-right. There
are a number of papers on this issue.

11.2 Multi-exponentiation

An n-dimensional multi-exponentiation (also called simultaneous multiple expo-
nentiation) is the problem of computing a product ga1

1 · · · gan
n . The question of how

2Sliding windows over NAFs were considered in Section IV.2.3 of [64]. Fractional sliding windows over
NAFs seem to have been first used in [224].

11.2. MULTI-EXPONENTIATION 243

efficiently this can be done was asked by Richard Bellman as problem 5125 of volume 70,
number 6 of the American Mathematical Monthly in 1963. A solution was given by E.
G. Straus3 in [594]; the idea was re-discovered by Shamir and is often attributed to him.
We only give a brief discussion of this topic and refer to Section 9.1.5 of [16] and Section
3.3.3 of [274] for further details.

Algorithm 7 computes an n-dimensional multi-exponentiation. We write ai,j for the
j-th bit of ai (where, as usual in this book, the least significant bit is ai,0); if j > log2(ai)
then ai,j = 0. The main idea is to use a single accumulating variable (in this case called
h) and to perform only one squaring. If a value gi does not change between executions
of the algorithm then we call it a fixed base and otherwise it is a variable base (the
precomputation can be improved when some of the gi are fixed). We assume that the
integers ai all vary.

Algorithm 7 Basic Multi-exponentiation

Input: g1, . . . , gn ∈ G, a1, . . . , an ∈ N
Output:

Qn
i=1 g

ai

i

1: Precompute all ub1,...,bn =
Qn

i=1 g
bi
i for bi ∈ {0, 1}

2: Set l = max1≤i≤n{⌊log2(ai)⌋}
3: h = ua1,l,...,an,l

4: j = l − 1
5: while j ≥ 0 do
6: h = h2

7: h = hua1,j ,...,an,j

8: j = j − 1
9: end while

10: return h

Example 11.2.1. One can compute g71g
5
2 by setting h = u1,1 = g1g2, then computing

h = h2 = g21g
2
2 , h = hu1,0 = g31g

2
2 , h = h2 = g61g

4
2 , h = hu1,1 = g71g

5
2 .

Exercise 11.2.2. Show that one can perform the precomputation in Algorithm 7 in
2n − n− 1 multiplications. Show that the main loop of Algorithm 7 performs l squarings
and l multiplications.

Exercise 11.2.3. (Yen, Laih, and Lenstra [638]) Show that by performing further pre-
computation one can obtain a sliding window multi-exponentiation algorithm that still
requires l squarings in the main loop, but fewer multiplications. Determine the precom-
putation cost.

An alternative approach4 to multi-exponentiation is called interleaving. The basic
idea is to replace line 7 in Algorithm 7 by

for i = 1 to n do h = hg
ai,j

i end for

and to omit the precomputation. This version is usually less efficient than Algorithm 7
unless n is rather large. However the benefit of interleaving comes when using sliding
windows: since the precomputation cost and storage requirements for the method in
Exercise 11.2.3 are so high, it is often much more practical to use a sliding window
version in the setting of interleaving. We refer to [431] and Section 3.3.3 of [274] for
further discussion of this method.

3Straus had the remarkable ability to solve crossword puzzles in English (his third language) using
only the horizontal clues; see his commemorative issue of the Pacific Journal of Mathematics.

4Independently discovered by Möller [431] and Gallant, Lambert and Vanstone [233].

244 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

Exercise 11.2.4. Write pseudocode for multi-exponentiation using interleaving and slid-
ing windows.

Exercise 11.2.5. Write pseusocode for multi-exponentiation using interleaving and slid-
ing windows over NAF expansions.

Another approach, when signed expansions are being used, is to find a representation
for the exponents a1, . . . , an so that the j-th component of the representations of all ai is
simultaneously zero relatively often. Such a method was developed by Solinas [577] and
is called a joint sparse form. We refer to Section 9.1.5 of [16] and Section 3.3.3 of [274].

Multi-exponentiation for Algebraic Group Quotients

In algebraic group quotients, multiplication is not well-defined and so extra information
is needed to be able to compute

Qn
i=1 g

ai

i . A large survey of exponentiation algorithms
and multi-exponentiation algorithms for algebraic group quotients is give in Chapter 3 of
Stam’s thesis [579]. In particular, he gives the Montgomery Euclidean ladder in Section
3.3 (also see Section 4.3 of [578]). Due to lack of space we do not discuss this topic further.

11.3 Efficient Exponentiation in Specific Algebraic Groups

We now discuss some exponentiation methods that exploit specific features of algebraic
groups.

11.3.1 Alternative Basic Operations

So far, all exponentiation algorithms have been based on squaring (and hence have used
representations of integers to the base 2). We now briefly mention some alternatives
to squaring as the basic operation. First we discuss halving and tripling. Frobenius
expansions will be discussed in Section 11.3.2.

When one has several possible basic operations then one can consider multi-base
representations of integers for exponentiation. These ideas were first proposed by Dim-
itrov, Jullien and Miller [181] but we do not consider them further in this book.

Point Halving on Elliptic Curves

This idea, independently discovered by Knudsen [342] and Schroeppel, applies to sub-
groups of odd order in ordinary elliptic curves over finite fields of characteristic two. The
formulae for point halving were given in Exercise 9.1.4: Given P = (xP , yP) ∈ E(F2n) one
finds Q = (xQ, yQ) ∈ E(F2n) such that [2]Q = P by solving λ2

Q+λQ = xP +a2. For either

solution let xQ =
p
xP (λQ + 1) + yP =

p
xP (λP + λQ + xP + 1) and yQ = xQ(λQ+xQ).

One must ensure that the resulting point Q has odd order. When 2k#E(Fqn) this is easy
as, by Exercise 9.1.4, it is sufficient to check that TrF2n/F2

(xQ) = TrF2n/F2
(a2). In practice

it is more convenient to check whether TrF2n/F2
(x2

Q) = TrF2n/F2
(a2).

Exercise 11.3.1. Write down the point halving algorithm.

Knudsen suggests representing points using the pair (xP ,λP) instead of (xP , yP). In
any case, this can be done internally in the exponentiation algorithm. When F2n is
represented using a normal basis over F2 then halving can be more efficient than doubling
on such an elliptic curve. One can therefore use expansions of integers to the “base 2−1”
for efficient exponentiation. We refer to Section 13.3.5 of [16] and [342] for the details.

11.3. EFFICIENT EXPONENTIATION IN SPECIFIC ALGEBRAIC GROUPS 245

Tripling

Doche, Icart and Kohel [183] suggested to speed up the computation of [m]P on E for

small m by splitting it as φ̂ ◦ φ where φ : E → E′ is an isogeny of degree m. We refer to
Exercise 9.6.30 for an example of this in the case m = 3, and to [183] for the details in
general.

11.3.2 Frobenius Expansions

Koblitz (in Section 5 of [344]) presented a very efficient doubling formula for E : y2+y = x3

over F2 (see Exercise 9.1.3). Defining π(x, y) = (x2, y2) one can write this as [2]P =
−π2(P) for all P ∈ E(F2m) for any integer m. We assume throughout this section that
finite fields Fpm are represented using a normal basis so that raising to the power p is very
fast. Menezes and Vanstone [416] and Koblitz [346, 347] explored further how to speed
up arithmetic on curves over small fields. However, the curves used in [344, 416, 346] are
supersingular and so are less commonly used for cryptography.

The Frobenius map can be used to speed up elliptic curve exponentiation on more
general curves. For cryptographic applications we assume that E is an elliptic curve over
Fq such that #E(Fqm) has a large prime divisor r for some m > 1.5 Let π be the q-power
Frobenius map on E. The trick is to replace an integer a with a sequence a0, . . . , al of
“small” integers such that

[a]P =

lX

i=0

[ai]π
i(P)

for the point P ∈ E(Fqm) of interest.

Definition 11.3.2. Let E be an elliptic curve over Fq and let π be the q-power Frobenius
map. Let S ⊂ Z be a finite set such that 0 ∈ S (the set S is usually obvious from the
context). A Frobenius expansion with digit set S is an endomorphism of the form

lX

i=0

[ai]π
i

where ai ∈ S and al 6= 0. The length of a Frobenius expansion is l + 1. The weight of
a Frobenius expansion is the number of non-zero ai.

Many papers write τ for the Frobenius map and speak of τ -adic expansions, but we
will call them π-adic expansions in this book.

Example 11.3.3. Let E : y2 + xy = x3 + ax2 + 1 over F2 where a ∈ {0, 1}. Consider
the group E(F2m) and write π(x, y) = (x2, y2). From Exercise 9.10.11 we know that π2 +
(−1)aπ+2 = 0. Hence, one can replace the computation [2]P by −π(π(P))− (−1)aπ(P).
At first sight, there is no improvement here (we have replaced a doubling with an elliptic
curve addition). However, the idea is to represent an integer by a polynomial in π. For
example, one can verify that

−T 5 + T 3 + 1 ≡ 9 (mod T 2 + T + 2)

and so one can compute [9]P (normally taking 3 doublings and an addition) as −π5(P) +
π3(P) + P using only two elliptic curve additions.

5Note that, for any fixed elliptic curve E over Fq and any fixed c ∈ R>0, it is not known if there are
infinitely many m ∈ N such that #E(Fqm) has a prime factor r such that r > cqm. However, in practice
one finds a sufficient quantity of suitable examples.

246 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

This idea can be extended to any algebraic group G (in particular, an elliptic curve,
the divisor class group of a hyperelliptic curve, or an algebraic torus) that is defined over
a field Fq but for which one works in the group G(Fqm).

Exercise 11.3.4. Give an algorithm to compute [a]P when a =
Pl

i=0 aiπ
i(P) is a Frobe-

nius expansion. What is the cost of the algorithm?

Definition 11.3.5. Let S ⊆ Z such that 0 ∈ S and if a ∈ S then −a ∈ S. Let
a =

Pl
i=0 aiπ

i be a Frobenius expansion with ai ∈ S. Then a is in non-adjacent form
if aiai+1 = 0 for all 0 ≤ i < l. Such an expansion is also called a π-NAF.

An important task is to convert an integer n into a Frobenius expansion in non-
adjacent form. In fact, to get short expansions we will need to convert a general element
n0 + n1π to a π-NAF, so we study the more general problem. The crucial result is the
following.

Lemma 11.3.6. Let π satisfy π2 − tπ + q = 0. An element n0 + n1π in Z[π] is divisible
by π if and only if q | n0. In this case

(n0 + n1π)/π = (n1 + tn0/q) + π(−n0/q). (11.1)

Similarly, it is divisible by π2 if and only if q | n0 and qn1 ≡ −tn0 (mod q2).

Proof: Note that π2 = tπ − q. Since

π(m0 + m1π) = −qm1 + π(m0 + tm1)

it follows that n0 + n1π = π(m0 + m1π) if and only if

n0 = −qm1, and n1 = m0 + tm1.

Writing m1 = −n0/q and m0 = n1 − tm1 yields equation (11.1).
Repeating the argument, one can divide the element in equation (11.1) by π if and

only if q | (n1 + tn0/q). The result follows. �

The idea of the algorithm for computing a π-NAF, given n0 +n1π, is to add a suitable
integer so that the result is divisible by π2, divide by π2, then repeat. This approach is
only really practical when q = 2, so we restrict to this case.

Lemma 11.3.7. Let π2 − tπ + 2 = 0 where t = ±1. Then n0 + n1π is either divisible by
π or else there is some ǫ = ±1 such that

(n0 + ǫ) + n1π ≡ 0 (mod π2).

Indeed, ǫ = (n0 + 2n1 (mod 4)) − 2, if one defines n0 + 2n1 (mod 4) ∈ {1, 3}.

Proof: If π ∤ (n0 + n1π) then n0 is odd and so n0 ± 1 is even. One can choose the sign
such that 2n1 ≡ −(n0 ± 1) (mod 4) in which case the result follows. �

The right-to-left algorithm6 to generate a π-NAF is then immediate (see Algorithm 8;
this algorithm computes u = −ǫ in the notation of Lemma 11.3.7). To show that the
algorithm terminates we introduce the norm map: for any a, b ∈ R define N(a + bπ) =
(a+bπ)(a+bπ̄) = a2+tab+qb2 where π, π̄ ∈ C are the roots of the polynomial x2−tx+q =
0. This map agrees with the norm map with respect to the quadratic field extension
Q(π)/Q and so is multiplicative. Note also that N(a+ bπ) ≥ 0 and equals zero only when

6Solinas states that this algorithm was joint work with R. Reiter.

11.3. EFFICIENT EXPONENTIATION IN SPECIFIC ALGEBRAIC GROUPS 247

a = b = 0. Meier and Staffelbach [415] note that, if n0 + n1π is divisible by π, then
N((n0 + n1π)/π) = 1

2N(n0 + n1π). This suggests that the length of the π-NAF will grow
like log2(N(n0 + n1π)). The case N((n0 ± 1 + n1π)/π) needs more care. Lemma 3 of
Meier and Staffelbach [415] states that if N(n0 +n1π) < 2n then there is a corresponding
Frobenius expansion7 of length at most n. Theorem 2 of Solinas gives a formula for the
norm in terms of the length k = l+1 of the corresponding π-NAF, from which he deduces
(equation (53) of [576])

log2(N(n0 + n1π)) − 0.55 < k < log2(N(n0 + n1π)) + 3.52

when k ≥ 30.

Algorithm 8 Convert n0 + n1π to non-adjacent form

Input: n0, n1 ∈ Z
Output: a0, . . . , al ∈ {−1, 0, 1}
1: while n0 6= 0 and n1 6= 0 do
2: if n0 odd then
3: u = 2 − (n0 + 2n1 (mod 4))
4: n0 = n0 − u
5: else
6: u = 0
7: end if
8: Output u
9: (n0, n1) = (n1 + tn0/2,−n0/2)

10: end while

Example 11.3.8. Suppose π2 + π + 2 = 0. To convert −1 + π to a π-NAF one writes
n0 = −1 and n1 = 1. Let u = 2 − (n0 + 2n1 (mod 4)) = 2 − (1) = 1. Output 1 and set
n0 = n0− 1 to get −2 +π. Dividing by π yields 2 +π. One can divide by π again (output
0 first) to get −π, output 0 and divide by π again to get −1. The π-NAF is therefore
1 − π3.

To see this directly using the equation π2 + π + 2 = 0 write

−1 + π + (π2 + π + 2)(1 − π) = 1 − π3.

Exercise 11.3.9. Verify that Algorithm 8 does output a π-NAF.

Exercise 11.3.10. Let π2 − π + 2 = 0. Use Algorithm 8 to convert 107 + 126π into
non-adjacent form.

Exercise 11.3.11. Show, using the same methods as Lemma 11.1.14, that the average
density of a π-NAF tends to 1/3 when q = 2.

Reducing the Length of Frobenius Expansions

As we have seen, N(n + 0π) = n2, while the norm only decreases by a factor of roughly
2 each time we divide by π. Hence, the Frobenius expansions output by Algorithm 8
on input n have length roughly 2 log2(n). Since the density is 1/3 it follows that the
weight of the Frobenius expansions is roughly 2

3 log2(n). Exponentiation using Frobenius
expansions is therefore faster than using the square-and-multiply algorithm, even with

7Meier and Staffelbach do not consider Frobenius expansions in non-adjacent form.

248 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

sliding windows (since the latter method always needs log2(n) doublings and also some
additions).

However, it is a pity that the expansions are so long. It is natural to seek shorter
expansions that still have the same density. The crucial observation, due to Meier and
Staffelbach, is that Algorithm 8 outputs a Frobenius expansion

P
i[ai]π

i that acts the
same as [n] on all points in E(Fq) whereas, for a given application, one only needs a
Frobenius expansion that acts the same as [n] on the specific subgroup hP i of prime order
r.

Definition 11.3.12. Let E be an elliptic curve over Fp, P ∈ E(Fpm), and let π be the
p-power Frobenius map on E. We say that two Frobenius expansions a(π), b(π) ∈ Z[π]
are equivalent with respect to P if

a(π)(P) = b(π)(P).

Exercise 11.3.13. Let the notation be as in Definition 11.3.12. Show that if a(π) ≡
b(π) (mod πm − 1) then a(π) and b(π) are equivalent with respect to P .

Show that if Q ∈ hP i and a(π) and b(π) are equivalent with respect to P then a(π)
and b(π) are equivalent with respect to Q.

A simple idea is to replace all powers πi by πi (mod m). This will reduce the length
of a Frobenius expansion but it does not significantly change the weight (and hence, the
cost of exponentiation does not change).

The goal is therefore to find an element n0 + n1π of “small” norm that is equivalent
to [n] with respect to P . Then one applies Algorithm 8 to the pair (n0, n1), not to (n, 0).
There are two simple ways to find an element of small norm, both of which apply the
Babai rounding method (see Section 18.2) in a suitable lattice. They differ in how one
expresses the fact that (n0 + n1π)P = [n]P for the point P of interest.

• Division with remainder in Z[π].

This method was proposed by Meier and Staffelbach [415] and is also used by Solinas
(Section 5.1 of [576]). Since (πm − 1)(P) = OE when P ∈ E(Fqm) one wants to
determine the remainder of dividing n by (πm − 1). The method is to consider
the element γ = n/(πm − 1) ∈ R[π]/(π2 − tπ + q) and find a close vector to it
(using Babai rounding) in the lattice Z[π]. In other words, write γ = γ0 + γ1π
with γ0, γ1 ∈ R and round them to the nearest integers g0, g1 (in the special case of
π2 ± π+ 2 = 0 there is an exact description of a fundamental domain for the lattice
that can be used to “correct” the Babai rounding method if it does not reach the
closest lattice element). Lemma 3 of [415] and Proposition 57 of [576] state that
N(γ − (g0 + g1π)) ≤ 4/7. One can then define

n0 + n1π = n− (g0 + g1π)(πm − 1) (mod π2 − tπ + q).

• The Gallant-Lambert-Vanstone method [233].

This method appears in a different context (see Section 11.3.3), but it is also suitable
for the present application. We assume that P ∈ E(Fqm) has prime order r where
rk#E(Fqm). Since π(P) ∈ E(Fqm) has order r it follows that π(P) = [λ]P for some
λ ∈ Z/rZ. The problem is therefore to find small integers n0 and n1 such that

n0 + n1λ ≡ n (mod r).

11.3. EFFICIENT EXPONENTIATION IN SPECIFIC ALGEBRAIC GROUPS 249

One defines the GLV lattice

L = {(x0, x1) ∈ Z2 : x0 + x1λ ≡ 0 (mod r)}.

A basis for L is given in Exercise 11.3.22. The idea is to find a lattice vector
(n′

0, n
′
1) ∈ L close to (n, 0). Then |n′

1| is “small” and |n − n′
0| is “small”. Define

n0 = n− n′
0 and n1 = −n′

1 so that

n0 + n1λ ≡ n (mod r)

as required.

We can compute a reduced basis for the lattice and then use Babai rounding to solve
the closest vector problem (CVP). Note that the reduced basis can be precomputed.
Since the dimension is two, one can use the Lagrange-Gauss lattice reduction algo-
rithm (see Section 17.1). Alternatively, one can use Euclid’s algorithm to compute
(n0, n1) directly (as discussed in Section 17.1.1, Euclid’s algorithm is closely related
to the Lagrange-Gauss algorithm).

Example 11.3.14. The elliptic curve E : y2 + xy = x3 + x2 + 1 over F219 has 2r points
where r = 262543 is prime. Let π(x, y) = (x2, y2). Then π2 − π + 2 = 0. Let n = 123456.
We want to write n as n0 + n1π on the subgroup of E(F219) of order r.

For the “division with remainder in Z[π]” method we first use Lucas sequences (as in
Exercise 9.10.10) to determine that

π19 − 1 = −(171 + 457π)

(one can think of this as equality of complex numbers where π is a root of x2 − x + 2,
or as congruence of polynomials modulo π2 − π + 2). It is convenient to change the sign
(the method works in both cases). The norm of 171 + 457π is #E(F219) = 2r = 525086.
and so

n

−π19 + 1
=

n(171 + 457π̄)

525086
≈ 147.653 − 107.448π.

(since π̄ = 1 − π). Rounding gives 148 − 107π and

n− (148 − 107π)(171 + 457π) ≡ 350 − 440π (mod π2 − π + 2).

This is a short representative for n, but its norm is larger than 8r/7, which is not optimal.
Section 5.1 of Solinas [576] shows how to choose a related element of smaller norm. In
this case the correct choice of rounding is 147 − 107π giving

n− (147 − 107π)(171 + 457π) ≡ 521 + 17π (mod π2 − π + 2),

which has norm less than 8r/7.
Now for the Gallant-Lambert-Vanstone method. We compute gcd(x19−1, x2−x+2) =

(x− λ) in Fr[x], where λ = 84450. The lattice with (row) basis

�
r 0
−λ 1

�

has LLL (or Lagrange-Gauss) reduced basis

B =

�
171 457
457 −314

�
.

250 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

Writing b1, b2 for the rows of the reduced matrix one finds (n, 0) ≈ 147.65b1 + 214.90b2.
One computes

(n, 0) − (148, 215)B = (−107,−126) .

One can verify that −107 − 126λ ≡ n (mod r). (Exercise 11.3.16 shows how to get
this element using remainders in Z[π].) The corresponding Frobenius expansion can be
obtained from the solution to Exercise 11.3.10.

Exercise 11.3.15. Prove that both the above methods yield an element n0 +n1π ∈ Z[π]
that is equivalent to n.

Exercise 11.3.16. Show that if P ∈ E(Fqm) but P 6∈ E(Fq) then instead of computing
the remainder in Z[π] modulo the polynomial (πm − 1) one can use (πm − 1)/(π − 1).
Repeat Example 11.3.14 using this polynomial.

In practice it is unnecessary to determine the minimal solution (n0, n1) as long as n0

and n1 have bit-length roughly 1
2 log2(r) (where the point P has order r). We also stress

that computing the q-power Frobenius map π is assumed to be very fast, so the main
task is to minimise the weight of the representation, not its length.

Remark 11.3.17. In cryptographic protocols one is often computing [a]P , where a is a
randomly chosen integer modulo r. Rather than choosing a random integer a and then
converting to a Frobenius expansion, one could choose a random Frobenius expansion of
given weight and length (this trick appears in Section 6 of [347] where it is attributed to
H. W. Lenstra Jr.).

We have analysed π-NAFs in the case q = 2. Müller [443] gives an algorithm to
compute Frobenius expansions for elliptic curves over F2e with e > 1 (but still small).
The coefficients of the expansion lie in {−2e−1, . . . , 2e−1}. Smart [571] gives an algorithm
for odd q, with a similar coefficient set; see Exercise 11.3.18. Lange [368] generalises to
hyperelliptic curves. In all cases, the output is not necessarily in non-adjacent form; to
obtain a π-NAF in these cases seems to require much larger digit sets. In any case, the
asymptotic density of π-NAFs with large digit set is not significantly smaller than 1/2
and this can easily be bettered using window methods (see Exercise 11.3.19).

Exercise 11.3.18. Let q > 2. Show that Algorithm 8 can be generalised (not to compute
a π-NAF, but just a π-adic expansion) by taking digit set {−⌊q/2⌋, . . . ,−1, 0, 1, . . . , ⌊q/2⌋}
(or this set with −⌊q/2⌋ removed when q > 2 is even).

Exercise 11.3.19. Let E be an elliptic curve over a field Fq, let π be the q-power
Frobenius map, and let P ∈ E(Fqm). Let S = {−(q − 1)/2, . . . ,−1, 0, 1 . . . , (q − 1)/2} if
q is odd and S = {−(q − 2)/2, . . . ,−1, 0, 1, . . . , q/2} if q is even.

Suppose one has a Frobenius expansion

a(π) =

lX

j=0

[aj]π
j

with aj ∈ S. Let w ∈ N. Give a sliding window method to compute [a(π)]P using
windows of length w. Give an upper bound on the cost of this algorithm (including
pre-computation) ignoring the cost of evaluating π.

Exercise 11.3.20. (Brumley and Järvinen [112]) Let E be an elliptic curve over Fq, π
be the q-power Frobenius, and P ∈ E(Fqm) have prime order r where rk#E(Fqm). Given
a Frobenius expansion a(π) =

P
i[ai]π

i show how to efficiently compute a ∈ Z such that
a(π)(P) = [a]P .

11.3. EFFICIENT EXPONENTIATION IN SPECIFIC ALGEBRAIC GROUPS 251

Dimitrov, Järvinen, Jacobson, Chan and Huang [180] use Frobenius expansions on
Koblitz curves to obtain a method for computing [k]P which is provably sub-linear (i.e.,
using o(log(k)) field operations). For a complete presentation of Frobenius expansions,
and further references, we refer to Section 15.1 of [16]. For multi-exponentiation using
Frobenius expansions there is also a π-adic joint sparse form; see Section 15.1.1.e of [16]
for details.

11.3.3 GLV Method

This method is due to Gallant, Lambert and Vanstone [233] for elliptic curves and Stam
and Lenstra (see Section 4.4 of [580]) for tori.8 The idea is to use an “efficiently com-
putable” (see below for a clarification of this term) group homomorphism ψ and replace
the computation ga in a group of order r by the multi-exponentiation ga0ψ(g)a1 for
suitable integers a0 and a1 such that |a0|, |a1| ≈

√
r. Typical choices for ψ are an auto-

morphism of an elliptic curve or the Frobenius map on an elliptic curve or torus over an
extension field.

More precisely, let g ∈ G(Fq) be an element of prime order r in an algebraic group and
let ψ be a group homomorphism such that ψ(g) ∈ hgi (this is automatic if ψ : G(Fq) →
G(Fq) and rk#G(Fq)). Then ψ(g) = gλ for some λ ∈ Z/rZ. The meaning of “efficiently
computable” is essentially that computing ψ(g) is much faster than computing gλ using
exponentiation algorithms. Hence, we require that λ and r−λ are not small; in particular,
the map ψ(P) = −P on an elliptic curve is not interesting for this application.

Example 11.3.21. Consider T2(Fp2), with elements represented as in Definition 6.3.7 so

that u ∈ Fp2 corresponds to g = (u+θ)/(u+θ) ∈ Fp4 . It follows by Lemma 6.3.12 that A−
up (where θ2+Aθ+B = 0) corresponds to gp = (up +θ)/(up+θ) =

�
(up + θ)(up + θ)

�−1
.

Since computing up for u ∈ Fp2 is easy, the map ψ(u) = A − up is a useful efficiently
computable group homomorphism with respect to the torus group operation.

One can also perform exponentiation in Gq2,2 ⊆ F∗
p4 using Frobenius. Given an

exponent a such that 1 ≤ a < p2 one lets a0 and a1 be the coefficients in the base-p
representation of a and computes ga as ga0 (gp)

a1 . Note that gp is efficient to compute as
it is a linear map on the 4-dimensional vector space Fp4 over Fp.

Other examples include the automorphism ζ3 on y2 = x3 + B in Example 9.4.2 and
the automorphisms in Exercises 9.4.5 and 10.2.12. Computing the eigenvalue λ for ψ is
usually easy in practice: for elliptic curves λ is a root of the characteristic polynomial of
ψ modulo r.

In some applications (for example, T2(Fp3) or some automorphisms on genus 2 curves
such as the one in Exercise 10.2.12) one can replace ga by ga0ψ(g)a1 · · ·ψl−1(g)al−1 for
some l > 2. We call this the l-dimensional GLV method. We stress that l cannot be
chosen arbitrarily; in Example 11.3.21 the map ψ2 is the identity map and so is not
useful.

In the previous section we sketched, for elliptic curves, the GLV method to represent
an integer as a short Frobenius expansion with relatively small coefficients. One can do
the same for any endomorphism ψ as long as ψ(P) = [λ]P (or ψ(g) = gλ in multiplicative
notation). The GLV lattice is

L = {(x0, . . . , xl) ∈ Zl+1 : x0 + x1λ + · · · + xlλ
l ≡ 0 (mod r)}.

8A patent on the method was filed by Gallant, Lambert and Vanstone in 1999.

252 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

A basis for L is given in Exercise 11.3.22. As explained earlier, to convert an integer a
into GLV representation one finds a lattice vector (a′0, a

′
1, . . . , a

′
l) ∈ L close to (a, 0, . . . , 0)

(using Babai rounding) then sets a0 = a− a′0 and ai = −a′i for 1 ≤ i ≤ l.

Exercise 11.3.22. Show that



r 0 0 · · · 0
−λ 1 0 · · · 0
−λ2 0 1 · · · 0

...
...

−λl 0 0 · · · 1




is a basis for the GLV lattice L.

Exercise 11.3.23. Show how to compute the coefficients a0, . . . , al for the GLV method
using Babai rounding.

Exercise 11.3.24 gives a construction of homomorphisms for the GLV method that
apply to a large class of curves. We refer to Galbraith, Lin and Scott [224] for implemen-
tation results that show the benefit of using this construction.

Exercise 11.3.24. (Iijima, Matsuo, Chao and Tsujii [305]) Let p > 3 be a prime and let
E : y2 = x3 + a4x + a6 be an ordinary elliptic curve over Fp with p + 1 − t points (note
that t 6= 0). Let u ∈ F∗

p2 be a non-square and define E′ : Y 2 = X3 + u2a4X + u3a6 over

Fp2 . Show that E′ is the quadratic twist of E(Fp2) and that #E′(Fp2) = (p − 1)2 + t2.

Let φ : E → E′ be the isomorphism φ(x, y) = (ux, u3/2y) defined over Fp4 .
Let π(x, y) = (xp, yp) and define

ψ = φ ◦ π ◦ φ−1.

Show that ψ : E′ → E′ is an endomorphism of E′ that is defined over Fp2 . Show that
ψ2 = [−1].

Let r | #E′(Fp2) be a prime such that r > 2p and r2 ∤ #E′(Fp2). Let P ∈ E′(Fp2)
have order r. Show that ψ2(P) − [t]ψ(P) + [p]P = OE′ . Hence deduce that ψ(P) = [λ]P
where λ = t−1(p − 1) (mod r). Note that it is possible for #E′(Fp2) to be prime, since
E′ is not defined over Fp.

As in Remark 11.3.17, for some applications one might be able to choose a random
GLV expansion directly, rather than choosing a random integer and converting it to GLV
representation.

There is a large literature on the GLV method, including several different algorithms
to compute the integers a0, . . . , al. As noted earlier, reducing the bit-length of the ai by
one or two bits makes very little effect on the overall running time. Instead, the weight
of the entries a0, . . . , al is more critical. We refer to Sections 15.2.1 and 15.2.2 of [16]
for further details and examples of the GLV method. Section 15.2.3 of [16] discusses
combining the GLV method with Frobenius expansions.

11.4 Sampling from Algebraic Groups

A natural problem, given an algebraic group G over a finite field Fq, is to generate a
“random” element of G. By “random” we usually mean uniformly at random from G(Fq)
although sometimes it may be appropriate to weaken this condition. The first problem
is to generate a random integer in [0, p− 1] or [1, p− 1]. Examples 11.4.1 and 11.4.2 give
two simple approaches. Chapter 7 of Sidorenko [562] is a convenient survey.

11.4. SAMPLING FROM ALGEBRAIC GROUPS 253

Example 11.4.1. One way to generate a random integer in [0, p − 1] is to generate
random binary strings x of length k (where 2k−1 < p ≤ 2k) and only output those
satisfying 0 ≤ x ≤ p− 1.

Example 11.4.2. Another method is to generate a binary string that is longer than p
and then return this value reduced modulo p. We refer to Section 7.4 of Shoup [556] for
a detailed analysis of this method (briefly, if 2k−1 < p ≤ 2k and one generates a k + l bit
string then the statistical difference of the output from uniform is 1/2l). Section 7.5 of
[556] discusses how to generate a random k-bit prime and Section 7.7 of [556] discusses
how to generate a random integer of known factorisation.

Exercise 11.4.3. Show that the expected number of trials of the algorithm in Exam-
ple 11.4.1 is less than 2.

Exercise 11.4.4. Give an algorithm to generate an element of F∗
pn uniformly at random,

assuming that generating random integers modulo p is easy.

Appendix B.2.4 of Katz and Lindell [334] gives a thorough discussion of sampling
randomly in (Z/NZ)∗ and F∗

p.
Algorithm 5 shows how to compute a generator for F∗

p, when the factorisation of p− 1
is known. Generalising this algorithm to F∗

pn , when the factorisation of pn − 1 is known,
is straightforward. In practice one often works in a subgroup G ⊆ F∗

q of prime order r.
To sample uniformly from G one can generate a uniform element in F∗

q and then raise to
the power (q − 1)/r. This exponentiation can be accelerated using any of the techniques
discussed earlier in this chapter.

Exercise 11.4.5. Let q be a prime power such that the factorisation of q − 1 is known.
Give an algorithm to determine the order of an element g ∈ F∗

q .

Exercise 11.4.6. Let q be a prime power. Let G be a subgroup of F∗
q such that the

factorisation of the order of G is known. Give an algorithm to compute a generator of G.

An alternative approach to the sampling problem for a finite Abelian group G is given
in Exercise 11.4.7 (these ideas will also be used in Exercise 15.5.2). However, this method
is often not secure for applications in discrete logarithm cryptography. The reason is
that one usually wants to sample group elements at random such that no information
about their discrete logarithm is known, whereas the construction in Exercise 11.4.7
(especially when used to define a hash function) may give an attacker a way to break the
cryptosystem.

Exercise 11.4.7. Let G be a finite Abelian group. Let g1, . . . , gk be fixed elements
that generate G. Let m1, . . . ,mk be the orders of g1, . . . , gk respectively. Then one can
generate an element of G at random by choosing integers a1, . . . , ak uniformly at random
such that 0 ≤ ai < mi for 1 ≤ i ≤ k and computing

kY

i=1

gai

i . (11.2)

Show that this process does sample from G with uniform distribution.

11.4.1 Sampling from Tori

We now mention further techniques to speed up sampling from subgroups of F∗
q .

254 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

Example 11.4.8. Lemma 6.3.4 shows that T2(Fq) and G2,q ⊆ F∗
q2 are in one-to-one

corrrespondence with the set

{1} ∪ {(a + θ)/(a + θ) : a ∈ Fq}.

Hence, one can sample from T2(Fq) or G2,q as follows: Choose uniformly 0 ≤ a ≤ p and,
if a = p, output 1, otherwise output (a + θ)/(a + θ).

Generating elements of T6(Fq) or G6,q uniformly at random is less simple, since the
compression map does not map to the whole of A2(Fq). Indeed, the group G6,q has
q2− q+1 < q2 elements. Example 6.4.4 showed, in the case q ≡ 2, 5 (mod 9), how to map

A = {(a, b) ∈ A2(Fq) : a2 − ab + b2 6= 1} (11.3)

to a subset of T6(Fq).

Exercise 11.4.9. Let q ≡ 2, 5 (mod 9). Give an algorithm to generate points in the set
A of equation (11.3) uniformly at random. Hence, show how to efficiently choose random
elements of a large subset of T6(Fq) or G6,q uniformly at random.

11.4.2 Sampling from Elliptic Curves

Let E : y2 = x3 + a4x + a6 be an elliptic curve over Fq where q is not a power of 2. To
generate points in E(Fq) one can proceed as follows: choose a random x ∈ Fq; test whether
x3 +a4x+a6 is a square in Fq; if not then repeat, otherwise take square roots to get y and
output (uniformly) one of ±y. It is not surprising that an algorithm to generate random
points is randomised, but something that did not arise previously is that this algorithm
uses a randomised subroutine (i.e., to compute square roots efficiently) and may need to
be repeated several times before it succeeds (i.e., it is a Las Vegas algorithm). Hence,
only an expected run time for the algorithm can be determined.

A more serious problem is that the output is not uniform. For example, OE is never
output, and points (x, 0) occur with probability twice the probability of (x, y) with y 6= 0.
A solution for all elliptic curves (and also hyperelliptic curves with imaginary model) is
given in Algorithm 9. For a detailed analysis and generalisation of this algorithm see von
zur Gathen, Shparlinski and Sinclair [240].

Exercise 11.4.10. Determine expected number of iterations of Algorithm 9 in the case
of elliptic curves and hence the expected running time.

Deterministic Sampling of Elliptic Curve Points

The above methods are randomised, not just due to the randomness that naturally arises
when sampling, but also because of the use of randomised algorithms for solving quadratic
equations, and because not every x in the field is an x-cordinate of an elliptic curve point.
It is of interest to minimise the reliance on randomness, especially when using the above
ideas to construct a hash function (otherwise, there may be timing attacks). We first give
an easy example.

Exercise 11.4.11. (Boneh and Franklin [80]) Let p ≡ 2 (mod 3) be prime. Consider the
supersingular elliptic curve E : y2 = x3 +a6 over Fp. One can sample points uniformly in
E(Fp) − {OE} by uniformly choosing y ∈ Fp and setting x = (y2 − a6)1/3 (mod p). The
cube root is computed efficiently by exponentiation to the power (2p−1)/3 ≡ 3−1 (mod p−
1).

11.4. SAMPLING FROM ALGEBRAIC GROUPS 255

Algorithm 9 Near-uniform sampling of points on curves

Input: H(x), F (x) ∈ Fq[x] such that C : y2 +H(x)y = F (x) has one Fq point at infinity
Output: P ∈ C(Fq)
1: Choose uniformly 0 ≤ x0 ≤ q
2: if x0 = q then
3: S = { point at infinity }
4: else
5: Compute S = {(x0, y0) : y0 ∈ Fq and y20 + H(x0)y0 − F (x0) = 0}
6: end if
7: if #S = 0 then
8: goto line 1
9: end if

10: if #S = 1 then
11: Choose uniformly b ∈ {0, 1}
12: if b = 0 then
13: Let P ∈ S
14: else
15: goto line 1
16: end if
17: end if
18: if #S = 2 then
19: Let P be chosen randomly from S
20: end if
21: return P

The first general results on deterministic methods to find points on curves over finite
fields k are due to Schinzel and Ska lba [514]. Given a6 ∈ k (the case char(k) = 2 is not
interesting since the curve is singular, and the case char(k) = 3 is easy since taking cube
roots is easy, so assume char(k) 6= 2, 3) they give a formula, in terms of a6, for four values
y1, . . . , y4 such that the equation x3 + a6 = y2i has a solution x ∈ k for some 1 ≤ i ≤ 4.
This method therefore produces at most 12 points on any given curve.

Ska lba [569] gave results for general curves y2 = F (x) where F (x) = x3 + a4x + a6.
This method can give more than a fixed number of points for any given curve. More
precisely, Ska lba gives explicit rational functions Xi(t) ∈ Q(t) for 1 ≤ i ≤ 3 such that
there is a rational function U(t) ∈ Q(t) such that

F (X1(t2))F (X2(t2))F (X3(t2)) = U(t)2.

In other words, Ska lba gives a rational map from A1 to the variety F (x1)F (x2)F (x3) = u2.
Evaluating at t ∈ Fp, where p > 3 is prime, it follows that at least one of the F (Xi(t

2))
is a square in F∗

p. One can therefore find a point on E by taking square roots. Note
that efficient algorithms for computing square roots modulo p are randomised in general.
Ska lba suggests avoiding this problem by assuming that the required quadratic non-
residue has been precomputed (as in Exercise 2.9.6).

Shallue and van de Woestijne [545] improve upon Ska lba’s algorithm in several ways.
First, and most significantly, they show that a deterministic sampling algorithm does not
require a quadratic non-residue modulo p. They achieve this by cleverly using all three
values F (X1(t2)), F (X2(t2)) and F (X3(t2)). In addition, they give a simpler rational
map (see Exercise 11.4.12) from A1 to the variety F (x1)F (x2)F (x3) = u2, and handle
the characteristic 2 and 3 cases.

256 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

Exercise 11.4.12. (Shallue and van de Woestijne [545]) Let F (x) = x3 + Ax + B and
H(u, v) = u2 + uv + v2 + A(u + v) + B. Let V : F (x1)F (x2)F (x3) = u2 and let S :
y2H(u, v) = −F (u). Show that the map ψ(u, v, y) → (v,−A − u − v, u + y2, F (u +
y2)H(u, v)/y) is a rational map from S to V . Let p > 3 be prime. Fix u ∈ Fp such that
F (u) 6= 0 and 3u2 + 2Au + 4B −A2 6= 0. Show that the surface S for this fixed value of
u is

[y(v + u/2 + A/2)]2 + [3u2/4 + Au/2 + B −A2/4]y2 = −F (u).

Hence, show there is a rational map from A1 to S and hence a rational map from A1 to
V .

It is worth noting that there can be no rational map φ : P1 → C when C is a curve
of genus at least 1. This follows from the Hurwitz genus formula: if the map has degree
d then we have −2 = 2g(P1) − 2 = d(2g(C) − 2) + R ≥ 0 where R is a positive integer
counting the ramification, which is a contradiction. The above maps do not contradict
this fact. They are not rational maps from P1 (or A1) to an elliptic curve; there is always
one part of the function (such as computing a square-root or cube-root) that is not a
rational map.

Icart [303] has given a simpler map for elliptic curves y2 = x3 +Ax+B over Fq when
q ≡ 2 (mod 3). Let u ∈ Fq. Define

v = (3A− u4)/(6u) , x =
�
v2 −B − u6/27

�1/3
+ u2/3 and y = ux + v (11.4)

where the cube root is computed by exponentiating to the power (2q−1)/3 ≡ 3−1 (mod (q−
1)).

Exercise 11.4.13. Verify that the point (x, y) of equation (11.4) is a point on E : y2 =
x3+Ax+B over Fq. Show that, given a point (x, y) on an elliptic curve E over Fq as above,
one can efficiently compute u ∈ Fq, if it exists, such that the process of equation (11.4)
gives the point (x, y).

For elliptic or hyperelliptic curves of the form y2 = F (x) where F (x) = xn + Ax + B
or F (x) = xn + Ax2 + B, Ulas [612] gives a rational map from A1 to the variety
F (x1)F (x2)F (x3) = u2. Hence, it is possible to deterministically find points on hy-
perelliptic curves of this form.

Exercise 11.4.14. (Ulas) Let F (x) = x3 + Ax + B and define

X1(t, u) = u, X2(t, u) = −B/A(t6F (u)3 − 1)/(t6F (u)3 − t2F (u)),
X3(t, u) = t2F (u)X2(t, u), U(t, u) = t3F (u)2F (X2(t, u)).

Show that U(t, u)2 = F (X1(t, u))F (X2(t, u))F (X3(t, u)).
[Hint: Use a computer algebra package.]

Note that, for curves of genus 2 or more, a related computational problem is to de-
terministically find rational degree 0 divisor classes. A simple solution is to generate two
points P,Q ∈ C(Fq) using the above methods and let D = (P)−(Q). More care is needed
to ensure that the divisor classes are distributed uniformly. We finish with an exercise
that shows that a natural method to generate rational divisor classes is not useful for this
application.

Exercise 11.4.15. Let y2 = F (x) be a hyperelliptic curve of genus g ≥ 2 over Fp with
p > 2 in imaginary model. Denote by P0 the point at infinity. Let x ∈ Fp and suppose

one has computed y =
p
F (x0) ∈ Fp2 . Let P = (x, y). Show that if y 6∈ Fp then

D = (P) + (σ(P))− 2(P0) is principal, where σ is the non-trivial element of Gal(Fp2/Fp).

11.5. DETERMINING ELLIPTIC CURVE GROUP STRUCTURE 257

In most cryptographic applications we are interested in sampling from subgroups of
E(Fq) of prime order r. As mentioned earlier, the simplest way to transform elements
sampled randomly in E(Fq) into random elements of the subgroup is to exponentiate to
the power #E(Fq)/r (assuming that rk#E(Fq)).

11.4.3 Hashing to Algebraic Groups

Recall that sampling from algebraic groups is the task of selecting group elements uni-
formly at random. On the other hand, a hash function H : {0, 1}l → G(Fq) is a deter-
ministic algorithm that takes an input m ∈ {0, 1}l and outputs a group element. It is
required that the output distribution of H , corresponding to the uniform distribution of
the message space, is close to uniform in the group G(Fq). The basic idea is to use m as
the randomness required by the sampling algorithm.

Recall that a hash function is also usually required to satisfy some security require-
ments, such as collision-resistance. This is usually achieved by first applying a collision-
resistant hash function H ′ : {0, 1}l → {0, 1}l and setting m′ = H ′(m). In this section we
are only concerned with the problem of using m′ as input to a sampling algorithm.

The first case to consider is hashing to F∗
p. If p > 2l + 1 then we are in trouble, since

one cannot get uniform coverage of a set of size p − 1 using fewer than p − 1 elements.
This shows that we always need l > log2(#G(Fq)) (though, in some applications, it might
be possible to still have a useful cryptographic system even when the image of the hash
function is a subset of the group).

Example 11.4.16. Suppose 2l > p and m ∈ {0, 1}l. The method of Example 11.4.2
gives output close to uniform (at least, if l − log2(p) is reasonably large).

Exercise 11.4.17. Let q = pn < 2l. Give a hash function H : {0, 1}l → Fq.

It is relatively straightforward to turn the algorithms of Example 11.4.8 and Exer-
cise 11.4.9 into hash functions. In the elliptic curve case there is a growing literature on
transforming a sampling algorithm into a hash function. We do not give the details.

11.4.4 Hashing from Algebraic Groups

In some applications it is also necessary to have a hash function H : G(Fq) → {0, 1}l
where G is an algebraic group. Motivation for this problem is given in the discussion
of key derivation functions in Section 20.2.3. A framework for problems of this type is
randomness extraction. It is beyond the scope of this book to give a presentation of
this topic, but some related results are given in Sections 21.7 and 21.6.

11.5 Determining Group Structure and Computing Gen-

erators for Elliptic Curves

Since F∗
q is cyclic, it follows that all subgroups of finite fields and tori are cyclic. How-

ever, elliptic curves and divisor class groups of hyperelliptic curves can be non-cyclic.
Determining the group structure and a set of generators for an algebraic group G(Fq)
can be necessary for some applications. It is important to remark that solutions to these
problems are not expected to exist if the order N = #G(Fq) is not known, or if the
factorisation of N is not known.

Let E be an elliptic curve over Fq and let N = #E(Fq). If N has no square factors
then E(Fq) is isomorphic as a group to Z/NZ. If r2kN then there could be a point of

258 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

order r2 or two “independent” points of order r (i.e., E(Fq) has a non-cyclic subgroup of
order r2 but exponent r).

The Weil pairing (see Section 26.2) can be used to determine the group structure of
an elliptic curve. Let r be a prime and P,Q ∈ E(Fq) of order r. The key fact is that the
Weil pairing is alternating and so er(P, P) = 1. It follows from the non-degeneracy of the
pairing that er(P,Q) = 1 if and only if Q ∈ hP i. The Weil pairing also shows that one
can only have two independent points when r divides (q − 1).

Given the factorisation of gcd(q− 1,#E(Fq)), the group structure can be determined
using a randomised algorithm due to Miller [427, 429]. We present this algorithm in
Figure 10. Note that the algorithm of Theorem 2.15.10 is used in lines 7 and 10. The
expected running time is polynomial, but we refer to Miller [429] for the details.

Algorithm 10 Miller’s algorithm for group structure

Input: E/Fq, N0, N1 ∈ N and the factorisation of N0, where #E(Fq) = N0N1,
gcd(N1, q − 1) = 1 and all primes dividing N0 divide q − 1

Output: Integers m and n such that E(Fq) ∼= (Z/mZ) × (Z/nZ) as a group

1: Write N0 =
Qk

i=1 l
ei
i where l1, . . . , lk are distinct primes

2: For all 1 ≤ i ≤ k such that ei = 1 set N0 = N0/li, N1 = N1li
3: m = 1, n = 1
4: while mn 6= N0 do
5: Choose random points P ′, Q′ ∈ E(Fq)
6: P = [N1]P ′, Q = [N1]Q′

7: Find the exact orders m′ and n′ of P and Q
8: n = lcm(m′, n′)
9: α = en(P,Q)

10: Let m be the exact order of α in µn = {z ∈ F∗
q : zn = 1}

11: end while
12: return m and nN1

Exercise 11.5.1. Show that Algorithm 10 is correct.

Exercise 11.5.2. Modify Algorithm 10 so that it outputs generators for E(Fq).

Exercise 11.5.3. This exercise will determine the expected number of iterations of Al-
gorithm 10. Let N0 =

Qk
i=1 l

ei
i with ei > 1 for all 1 ≤ i ≤ k where l1, . . . , lk are distinct

primes.
Let (l, e) = (li, ei) for some 1 ≤ i ≤ k. Write E(Fq)[le] for the subgroup of E(Fq)

consisting of elements of order dividing le. This group may or may not be cyclic. Show
that the probability that a pair of randomly chosen group elements generate E(Fq)[le] is
at least �

1 − 1
l

� �
1 − 1

l2

�
.

Now, show that the probability of success overall in one iteration is at least

ϕ(N0)

N0

Y

l|N0

�
1 − 1

l2

�

where ϕ(n) is the Euler phi function. Finally, apply Theorem A.3.1 and the fact that
ζ(2) = π2/6 (this is the Riemann zeta function) to show that the algorithm requires
O(log(log(q))) iterations.

Kohel and Shparlinski [352] give a deterministic algorithm to compute the group struc-
ture and to find generators for E(Fq). Their algorithm requires O(q1/2+ǫ) bit operations.

11.6. TESTING SUBGROUP MEMBERSHIP 259

11.6 Testing Subgroup Membership

In many cryptographic protocols it is necessary to verify that the elements received really
do correspond to group elements with the right properties. There are a variety of attacks
that can be performed otherwise, some of which are briefly mentioned in Section 20.4.2.

The first issue is whether a binary string corresponds to an element of the “parent
group” G(Fq). This is usually easy to check when G(Fq) = F∗

q . In the case of elliptic
curves one must parse the bitstring as a point (x, y) and determine that (x, y) does satisfy
the curve equation.

The more difficult problem is testing whether a group element g lies in the desired
subgroup. For example, if rk#G(Fq) and we are given a group element g, to ensure that
g lies in the unique subgroup of order r one can compute gr and check if this is the
identity. Efficient exponentiation algorithms can be used, but the computational cost is
still significant. In some situations one can more efficiently test subgroup membership.
One notable case is when #G(Fq) is prime, this is one reason why elliptic curves of prime
order are so convenient for cryptography.

Example 11.6.1. Let p = 2r + 1 be a safe prime or Sophie-Germain prime (i.e.,
r and p are primes). Then an element g ∈ F∗

p lies in the subgroup of order r if and
only if (gp) = 1. Note that one can compute (gp) = 1 in O(log(p)2) bit operations,

whereas computing gr in this case requires O(log(p)M(log(p))) bit operations. However,
in practice computing the Legendre symbol may not be significantly faster than computing
gr. Also, there are other performance problems from using very large subgroups of F ∗

p

(for example, signature size).

Exercise 11.6.2. (King [339]) Let E be an elliptic curve over Fq such that #E(Fq) = 2mr
where m is small and r is prime. Show how to use point halving (see Exercise 9.1.4) to
efficiently determine whether a point P ∈ E(Fq) has order dividing r.

An alternative way to prevent attacks due to elements of incorrect group order is
to “force” all group elements to lie in the required subgroup by exponentiating to a
cofactor (such as #G(Fq)/r). When the cofactor is small this can be a more efficient
way to deal with the problem than testing subgroup membership, though one must ensure
the cryptographic system can function correctly in this setting.

With algebraic group quotients represented using traces (i.e., LUC and XTR) one
represents a finite field element using a trace. This value corresponds to a valid element
of the extension field only if certain conditions hold. In the case of LUC we represent
g ∈ G2,p, where p is prime, by the trace V = Tr(g). A value V corresponds to an element
of G2,q if and only if the quadratic polynomial (x−g)(x−gp) = x2−V x+ 1 is irreducible

(in other words, if (V
2−4
p) = −1). Similarly, in XTR one needs to check whether the

polynomial x3− tx2 + tpx−1 is irreducible; Lenstra and Verheul [376] have given efficient
algorithms to do this. Section 4 of [376] also discusses subgroup attacks in the context of
XTR and countermeasures in this context.

11.7 Elliptic Curve Point Compression

When elements of an algebraic group are transmitted one often wants to minimise the
number of bits sent. Indeed, one of the main motivations for torus/trace cryptography
is compression of elements. With elliptic curves it is obvious that, given a point (x, y),
one only needs to send x together with a single bit to specify the choice of y. To obtain
the point the receiver then has to solve a quadratic equation over the finite field. An

260 CHAPTER 11. BASIC ALGORITHMS FOR ALGEBRAIC GROUPS

alternative, suitable only for some applications, is to work in the algebraic group quotient
corresponding to elliptic curve arithmetic using x-coordinates only. We briefly mention
further tricks in the elliptic curve setting.

Example 11.7.1. (Seroussi [540]) Let E : y2+xy = x3+a2x
2+a6 be an ordinary elliptic

curve over F2n , so that #E(F2n) is even. Let P ∈ E(F2n) be a point of odd order, so
that P = [2]Q for some point Q ∈ E(F2n).

Recall from Exercise 9.1.4 that P = (xP , yP) ∈ E(F2n) is of the form P = [2]Q for
some Q ∈ E(F2n) if and only if TrF2n/F2

(xP) = TrF2n/F2
(a2). Hence, the trace of xP is

public knowledge.
Suppose F2n is represented using a normal basis, so that TrF2n/F2

(xP) is congruent
modulo 2 to the Hamming weight of the representation of xP . Then one can compress
(xP , yP) by discarding yP , removing the least significant bit of the representation of xP

and adding a bit to determine the choice of yP . Hence, one needs n bits to send (xP , yP).

Exercise 11.7.2.⋆ (King [339]) Let the notation be as in Example 11.7.1 and suppose
further that Tr(a2) = 0, where Tr denotes TrF2n/F2

. Let (xP , yP) ∈ E(F2n) be a point of
odd order. Show that Tr(a6/x

2
P) = 0 and so Tr(

√
a6/xP) = 0. Show that (0,

√
a6) has

order 2 and that this point can be halved (in other words, there is a point R ∈ E(F2n)
such that (0,

√
a6) = [2]R). Show that (xP , yP)+(0,

√
a6) = (

√
a6/xP , (yP

√
a6+a6)/x

2
P +√

a6(1 + 1/xP)) and hence deduce that this point can also be halved.
Hence, show that one can send (xP , yP) ∈ E(F2n) using only n − 1 bits by sending

xP with one bit omitted when Tr(yP /xP) = 0 or
√
a6/xP with one bit omitted when

Tr(yP /xP) = 1.

Exercise 11.7.3.⋆ (Galbraith and Eagle) Let E be an elliptic curve over F2 and let
P = (xP , yP) ∈ E(F2n). Explain how one might compress P to roughly n− log2(n) bits
on average.

We refer to Section 14.2 of [16] for the details of divisor compression for hyperelliptic
curves.

