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Abstract. In this paper we prove a theorem more general than the
following. Suppose that X is a Baire space and Y is the product of
hereditarily Baire metric spaces then X × Y is a Baire space.
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1. Introduction

A topological space X is said to be a Baire space if for each sequence
(On : n ∈ N) of dense open subsets of X,

⋂
n∈N On is dense in X and a Baire

space Y is called barely Baire if there exists a Baire space Z such that Y ×Z
is not Baire. It is well known that there exist metrizable barely Baire spaces,
(see [5]). On the other hand it has recently been shown that the product of
a Baire space X with a hereditarily Baire metric space Y is Baire, [7]. In
that same paper the author claims in a “Remark” that the hypothesis on Y
can be reduced to: “Y is the product of hereditarily Baire metric spaces”.
In this paper we substantiate this claim.

The main result of this paper relies upon two notions. The first, which
is that of a W -space [6], is recalled in Section 2. The second, which is that
of a “rich family” is considered in Section 3. In Section 4, we shall prove
our main theorem which states that the product of a Baire space with a
W -space that possesses a rich family of Baire subspaces is Baire.

2. W -spaces

In this paper all topological spaces are assumed to be Hausdorff and
nonempty. Furthermore, if X is a topological space and a ∈ X then we shall
always denote by N (a) the set of all neighbourhoods of a.

For any point a in a topological space X we can consider the following
two player topological game, called the G(a)-game. This game is played
between the players α and β and although it may seem unfair, β will always
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be granted the priviledge of the first move. To define this game we must
first specify the rules and then also specify the definition of a win.

The moves of the player α are simple. He/she must always select a neigh-
bourhood of the point a. However, the moves of the player β depend upon
the previous move of α. Specifically, for his/her first move β may select
any point x1 ∈ X. For α’s first move, as mentioned earlier, α must select
a neighbourhood O1 of a. Now, for β’s second move he/she must select a
point x2 ∈ O1. For α’s second move he/she is entitled to select any neigh-
bourhood O2 of a. In general, if α has chosen On ∈ N (a) as his/her nth

move of the G(a)-game then β is obliged to choose a point xn+1 ∈ On. The
response of α is then simply to choose any neighbourhood On+1 of a. Con-
tinuing in this fashion indefinitely, the players α and β produce a sequence
((xn, On) : n ∈ N) of ordered pairs with xn+1 ∈ On ∈ N (a) for all n ∈ N,
called a play of the G(a)-game. A partial play ((xk, Ok) : 1 ≤ k ≤ n) of
the G(a)-game consists of the first n moves of a play of the G(a)-game. We
shall declare α the winner of a play ((xn, On) : n ∈ N) of the G(a)-game
if a ∈ {xn : n ∈ N}, otherwise, β is the winner. That is, β is declared the
winner of the play ((xn, On) : n ∈ N) if, and only if, a 6∈ {xn : n ∈ N}.

A strategy for the player α is a rule that specifies his/her moves in every
possible situation that can occur. More precisely, a strategy for α is an
inductively defined sequence of functions t := (tn : n ∈ N). The domain
of t1 is X1 and for each (x1) ∈ X1, t1(x1) ∈ N (a), i.e., ((x1, t1(x1))) is a
partial play. Inductively, if t1, t2, . . . , tn have been defined then the domain
of tn+1 is defined to be,

{(x1, x2, . . . , xn+1) ∈ Xn+1 : (x1, x2, . . . , xn) ∈ Dom(tn)

and xn+1 ∈ tn(x1, x2, . . . , xn)}.
For each (x1, x2, . . . , xn+1) ∈ Dom(tn+1), tn+1(x1, x2, . . . , xn+1) ∈ N (a).
Equivalently, for each (x1, x2, . . . , xn+1) ∈ Dom(tn+1), ((xk, tk(x1, . . . , xk)) :
1 ≤ k ≤ n + 1) is a partial play.

A partial t-play is a finite sequence (x1, x2, . . . , xn) ∈ Xn such that
(x1, x2, . . . , xn) ∈ Dom(tn) or, eqivalently, if xk+1 ∈ tk(x1, x2, . . . , xk) for
all 1 ≤ k < n. A t-play is an infinite sequence (xn : n ∈ N) such that for
each n ∈ N, (x1, x2, . . . xn) is a partial t-play.

A strategy t := (tn : n ∈ N) for the player α is said to be a winning
strategy if each play of the form ((xn, tn(x1, x2, . . . , xn)) : n ∈ N) is won by
α, or equivalently, if a ∈ {xn : n ∈ N} for each t-play (xn : n ∈ N).

A topological space X is called a W -space if α has a winning strategy in
the G(a)-game for each a ∈ X, [6].

In the remainder of this section we shall recall some relevant fact con-
cerning W -spaces.

Theorem 2.1. [6, Theorem 3.3] Every first countable space is a W -space.
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There are of course many W -spaces that are not first countable, see Ex-
ample 2.7.

A topological space X is said to have countable tightness if for each
nonempty subset A of X and each p ∈ A, there exists a countable sub-
set C ⊆ A such that p ∈ C.

Proposition 2.2. [6, Corollary 3.4] Every W -space has countable tightness.

Proposition 2.3. [6, Theorem 3.1] If X is a W -space and ∅ 6= A ⊆ X
then A is a W -space.

Lemma 2.4. [6, Theorem 3.9] Suppose that X is a W -space and a ∈ X,
then the player α possesses a strategy s := (sn : n ∈ N) in the G(a)-game
such that every s-play converges to a.

For the remainder of this paper whenever we shall consider a W -space X
with a ∈ X we shall assume that the player α is employing a strategy t, in
the G(a)-game, in which every t-play converges to a.

Let {Xs : s ∈ S} be a nonempty family of topological spaces and let
a ∈ Πs∈SXs. The Σ-product of this family with base point a, denoted by
Σs∈SXs(a), is the set of all x ∈ Πs∈SXs such that x(s) 6= a(s) for at most
countably many s ∈ S. For each x ∈ Σs∈SXs(a), the support of x is defined
by supp(x) := {s ∈ S : x(s) 6= a(s)}.

Theorem 2.5. [6, Theorem 4.6] Suppose that {Xs : s ∈ S} is a nonempty
family of W -spaces. If a ∈ Πs∈SXs then Σs∈SXs(a) is a W -space.

Corollary 2.6. [6, Theorem 4.1] If {Xn : n ∈ N} are W -spaces, then so is
Πn∈NXn.

Example 2.7. Suppose that S is a nonempty set. For each s ∈ S, let
Xs := [0, 1] and define a : S → [0, 1] by, a(s) := 0 for all s ∈ S. Then
by Theorem 2.5, X := Σs∈SXs(a) is a W -space. However, X is not first
countable whenever S is uncountable.

3. Rich familes

Let X be a topological space, and let F be a family of nonempty, closed
and separable subsets of X. Then F is rich if the following two conditions
are satisfied:

(i) for every separable subspace Y of X, there exists an F ∈ F such
that Y ⊆ F ;

(ii) for every increasing sequence (Fn : n ∈ N) in F ,
⋃

n∈N Fn ∈ F .

For any topological space X, the collection of all rich families of subsets
forms a partially ordered set, under the binary relation of set inclusion.
This partially ordered set has a greatest element, SX := {S ∈ 2X : S is a
nonempty, closed and separable subset of X}. On the other hand, if X is a
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separable space, then the partially ordered set has a least element, namely
{X}.

Next we present an important property of rich families. For a proof of
this see [2, Proposition 1.1].

Proposition 3.1. Suppose that X is a topological space. If {Fn : n ∈ N}
are rich families then so is

⋂
n∈NFn.

Suppose that X is a topological space and S is a separable subset, it can
be easily verified that the family FS := {F ∈ SX : S ⊆ F} is rich. Hence,
whenever X is an infinite set and F is a rich family of subsets of X, then we
can always assume, by possibly passing to a sub-family, that all the members
of F are infinite. Indeed, if X has a countably infinite subset A, then by
Proposition 3.1, F ∩FA ⊆ F is a rich family whose members are all infinite.

Proposition 3.2. If X is a topological space with countable tightness (e.g. if
X is a W -space) and E is a dense subset of X then

F := {F ∈ SX : E ∩ F is dense in F}

is a rich family.

Proof: Let Y be a separable subspace of X, then Y has a countable dense
subset D := {dn : n ∈ N}. Since X has countable tightness, for each n ∈ N,
there is a countable subset Cn ⊆ E such that dn ∈ Cn. Let F :=

⋃
n∈N Cn,

then Y = D ⊆ F ∈ SX and

F =
⋃

n∈N
Cn ⊆ E ∩ F ⊆ F.

Therefore, F ∈ F . Now suppose that (Fn : n ∈ N) is an increasing sequence
in F . Then F ′ :=

⋃
n∈N Fn ∈ SX and F ′ ∩ E is dense in F ′. Therefore,

F ′ ∈ F . �

Theorem 3.3. Suppose that X is a topological space with countable tightness
(in particular if X is a W -space) that possesses a rich family F of Baire
subspaces then X is also a Baire space.

Proof: Let {On : n ∈ N} be dense open subsets of X. For each n ∈ N,
let Fn := {F ∈ SX : On ∩ F is dense in F}, then Fn is a rich family by
Proposition 3.2. Let F∗ =

⋂
n∈NFn ∩ F , then F∗ is also a rich family by

Proposition 3.1. For each F ∈ F∗,
⋂

n∈N(On ∩ F ) is dense in F since F is
a Baire space. Let x ∈ X, then there is F ∈ F∗ such that x ∈ F . Then
x ∈

⋂
n∈N(On ∩ F ) ⊆

⋂
n∈N On. Therefore,

⋂
n∈N On = X. �

Suppose that {Xs : s ∈ S} is a nonempty family of topological spaces and
a ∈ Πs∈SXs. A cube E in Σs∈SXs(a) is any nonempty product Πs∈SEs ⊆
Σs∈SXs(a). The set CE := {s ∈ S : Es 6= {a(s)}} is at most countable and
E is homeomorphic to Πs∈CE

Es. If for each s ∈ S, Fs is a rich family of
subsets of Xs then the Σ-product of the rich families, with the base point



RICH FAMILIES AND W -SPACES 5

a ∈ Πs∈SXs, denoted by Σs∈SFs(a), is the set of all cubes E := Πs∈SEs in
Σs∈SXs(a) such that Es ∈ Fs for each s ∈ CE .

Lemma 3.4. Let {Xs : s ∈ S} be a nonempty family of topological spaces.
For each s ∈ S, let (Es

n : n ∈ N) be an increasing sequence of nonempty
subsets of Xs. Then

⋃
n∈N(Πs∈SEs

n) = Πs∈S(
⋃

n∈N Es
n).

Proof: It is easy to see that
⋃

n∈N(Πs∈SEs
n) ⊆ Πs∈S(

⋃
n∈N Es

n) since for all
n ∈ N, Πs∈SEs

n ⊆ Πs∈S(
⋃

n∈N Es
n).

Let x ∈ Πs∈S(
⋃

n∈N Es
n) and let U := Πs∈SUs be a basic neighbourhood

of x. Then there exists y ∈ U ∩ Πs∈S(
⋃

n∈N Es
n). Let M be the finite set

{s ∈ S : Us 6= Xs}, and let Ns := min{n ∈ N : y(s) ∈ Es
n} for all s ∈ M . Let

N := max{Ns : s ∈ M}, then y(s) ∈ Es
N for all s ∈ M . Let a ∈ Πs∈SEs

N
and let y′ ∈ U be defined by y′(s) := y(s) for all s ∈ M and y′(s) := a(s)
for all s ∈ S \M . Since y′ ∈ Πs∈SEs

N , U ∩
⋃

n∈N(Πs∈SEs
n) 6= ∅. Therefore,

x ∈
⋃

n∈N(Πs∈SEs
n). �

Theorem 3.5. Suppose that {Xs : s ∈ S} is a nonempty family of topologi-
cal spaces and a ∈ Πs∈SXs. If for each s ∈ S, Fs is a rich family of subsets
of Xs, then Σs∈SFs(a) is a rich family of subsets of Σs∈SXs(a).

Proof: Let Y be a separable subspace of Σs∈SXs(a), then it has a countable
dense subset D. Let C :=

⋃
d∈D supp(d), then C is a countable set. For

each s ∈ C, let Ps be the projection of D onto Xs, then Ps is countable and
hence there is some Es ∈ Fs such that Ps ⊆ Es. For each s ∈ S \ C, let
Es := {a(s)}. Let F := Πs∈SEs, then F ∈ Σs∈SFs(a) and Y ⊆ F .

Let (En : n ∈ N) be an increasing sequence in Σs∈SFs(a). For each cube
En ∈ Σs∈SFs(a), let En := Πs∈SEs

n. Then by Lemma 3.4⋃
n∈N

En =
⋃

n∈N
(Πs∈SEs

n) = Πs∈S(
⋃

n∈N
Es

n) = Πs∈S(
⋃
s∈S

Es
n).

It now follows that
⋃

n∈N En ∈ Σs∈SFs(a). �

4. Baire spaces and Σ-products

A subset R of a topological space X is residual in X if there exist dense
open subsets {On : n ∈ N} of X such that

⋂
n∈N On ⊆ R.

For any subset R of a topological space X we can consider the following
two player topological game, called the BM(R)-game. This game is played
between two players α and β and, as with the G(a)-game, the player β is
always granted the priviledge of the first move. To define this game we must
first specify the rules and then specify the definition of a win.

The player β’s first move is to select a nonempty open subset B1 of X.
For α’s first move he/she must also select a nonempty open subset A1 of B1.
Now, for β’s second move he/she must select a nonempty open subset B2

of A1. For α’s second move he/she must select a nonempty open subset A2
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of B2. In general, if α has chosen An as his/her nth move of the BM(R)-
game then β is obliged to select a nonempty open subset Bn+1 of An. The
response of α is then simply to select any nonempty open subset An+1 of
Bn+1. Continuing in this fashion indefinitely the players α and β produce a
sequence ((Bn, An) : n ∈ N) of ordered pairs of nonempty open subsets of X
such that Bn+1 ⊆ An ⊆ Bn for all n ∈ N, called a play of the BM(R)-game.
A partial play ((Bk, Ak) : 1 ≤ k ≤ n) of the BM(R)-game consists of the
first n moves of a play of the BM(R)-game. We shall declare α the winner of
a play ((Bn, An) : n ∈ N) of the BM(R)-game if

⋂
n∈N An =

⋂
n∈N Bn ⊆ R,

otherwise, β is declared the winner. That is, β is the winner if, and only if,⋂
n∈N Bn 6⊆ R.

A strategy for the player α is an inductively defined sequence of functions
t := (tn : n ∈ N). The domain of t1 is the family of all nonempty open
subsets of X and for each B1 ∈ Dom(t1), t1(B1) must be a nonempty open
subset of B1 or, equivalently, for each B1 ∈ Dom(t1), t1(B1) is defined so
that ((B1, t1(B1))) is a partial play of the BM(R)-game. Inductively, if
t1, t2, . . . , tn have been defined then the domain of tn+1 is defined to be:

{(B1, B2, . . . , Bn+1) : (B1, B2, . . . , Bn) ∈ Dom(tn) and

Bn+1 is a nonempty open subset of tn(B1, B2, . . . , Bn)}.
For each (B1, B2, . . . , Bn+1) ∈ Dom(tn+1), tn+1(B1, B2, . . . , Bn+1) must be
a nonempty open subset of Bn+1. Alternatively, but equivalently, for each
(B1, B2, . . . , Bn+1) ∈ Dom(tn+1), tn+1(B1, B2, . . . , Bn+1) is defined so that
((Bk, tk(B1, B2, . . . , Bk)) : 1 ≤ k ≤ n + 1) is a partial play. A partial t-play
is a finite sequence (B1, B2, . . . , Bn) such that (B1, B2, . . . , Bn) ∈ Dom(tn)
or, equivalently, Bk+1 is a nonempty open subset of tk(B1, B2, . . . , Bk) for
all 1 ≤ k < n. A t-play is an infinite sequence (Bn : n ∈ N) such that for
each n ∈ N, (B1, B2, . . . , Bn) is a partial t-play.

A strategy t := (tn : n ∈ N) for the player α is said to be a winning
strategy if each play of the form ((Bn, tn(B1, B2, . . . , Bn)) : n ∈ N) is won by
α, or equivalently, if

⋂
n∈N Bn ⊆ R for each t-play (Bn : n ∈ N). For more

information on the BM(R)-game see [3].

Our interest in the BM(R)-game is revealed in the next lemma.

Lemma 4.1 ([9]). Let R be a subset of a topological space X. Then R is
residual in X if, and only if, the player α has a winning strategy in the
BM(R)-game played on X.

The next simple result plays a key role in the proof of our main theorem
(Theorem 4.3).

Lemma 4.2. Let X and Y be topological spaces and let O be a dense open
subset of X × Y . Given nonempty open subsets V1, V2,...,Vm of Y and a
nonempty open subset U of X, there exists a nonempty open subset W ⊆ U
and elements yi ∈ Vi, 1 ≤ i ≤ m, such that W × {y1, ..., ym} ⊆ O.
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Proof: The result will be shown inductively on m.

Base Step: m = 1. Since U × V1 is nonempty and open in X × Y and O is
dense and open in X×Y , (U ×V1)∩O is a nonempty open subset of X×Y .
Therefore, there is a nonempty open subset W ⊆ U and an element y1 ∈ V1

such that W × {y1} ⊆ (U × V1) ∩O ⊆ O.

Inductive Step: Suppose that the result holds for m = k and consider the
case when m = k + 1. According to the inductive hypothesis, there exists a
nonempty open subset W ′ ⊆ U and elements yi ∈ Vi, 1 ≤ i ≤ k, such that
W ′×{y1, ..., yk} ⊆ O. By repeating the base step, there is a nonempty open
subset W ⊆ W ′ and an element yk+1 ∈ Vk+1 such that W × {yk+1} ⊆ O.
Clearly, W × {y1, ..., yk+1} ⊆ O. �

Theorem 4.3. Suppose that Y is a W -space and X is a topological space.
If Z is a separable subset of Y and {On : n ∈ N} are dense open subsets of
X × Y then for each rich family F of Y the subset

R := {x ∈ X : there exists a Fx ∈ F containing Z such that

{y ∈ Fx : (x, y) ∈ On} is dense in Fx for all n ∈ N}
is residual in X.

Proof: We are going to apply the BM(R)-game and Lemma 4.1 to show
that R is residual in X. We shall only consider the case when Y is infinite as
the case when Y is finite (and hence has the discrete topology) follows from
Lemma 4.2. Thus we can assume that all the members of F are infinite.
Moreover, without loss of generality, we can also assume that all the sets
{On : n ∈ N} are decreasing. For each a ∈ Y , let ta := (tan : n ∈ N) be a
winning strategy for the player α in the G(a)-game.

We shall inductively define a strategy s := (sn : n ∈ N) for the player α in
the BM(R)-game played on X, but first let us choose y ∈ Y , set z(i,j,0) := y

for all (i, j) ∈ N2, set Z0 := {z(1,1,0)} and let F0 be any countable subset of
Y such that Z ⊆ F0 ∈ F .

Base Step: Suppose that (B1) is a partial s-play. We shall define the follow-
ing:

(i) a countable set F1 := {f(1,n) : n ∈ N} such that Z0 ∪F0 ⊆ F1 ∈ F ;
(ii) s1(B1) and z(1,1,1) so that:

(a) s1(B1) is a nonempty open subset of B1;
(b) z(1,1,1) ∈ t

f(1,1)

1 (z(1,1,0)), i.e., (z(1,1,0), z(1,1,1)) ∈ Dom(t
f(1,1)

2 );
(c) s1(B1)× {z(1,1,1)} ⊆ O1.

Note that this is possible by Lemma 4.2.
Finally, define Z1 := {z(1,1,1)}.
Inductive Hypothesis: Suppose that (B1, ..., Bk) is a partial s-play, and for
each 1 ≤ n ≤ k, the following terms have been defined, Fn = {f(n,j) : j ∈
N}, Zn = {z(i,j,l) : (i, j, l) ∈ N3 and i + j + l ≤ n + 2} and sn so that:
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(i) (Fn−1 ∪ Zn−1) ⊆ Fn ∈ F ;
(ii) (z(i,j,0), ..., z(i,j,l)) ∈ Dom(t

f(i,j)

l+1 ) for all i + j + l = n + 2 and

sn(B1, ..., Bn)× {z(i,j,l) : i + j + l = n + 2} ⊆ On.

Inductive Step: Suppose that (B1, ..., Bk+1) is a partial s-play, that is,
(B1, ..., Bk) ∈ Dom(sk) and Bk+1 is a nonempty open subset of sk(B1, ..., Bk).
Then:

(i) Zk ∪Fk is countable, hence it is contained in some F ∈ F . Define
Fk+1 := {f(k+1,n) : n ∈ N} to be a countable dense subset of F ;

(ii) by the inductive hypothesis, (z(i,j,0), ..., z(i,j,l)) ∈ Dom(t
f(i,j)

l+1 ) for all

i+j+l = k+2. By re-indexing and noting (z(i,j,0)) ∈ Dom(t
f(i,j)

1 ) for

all i+ j = (k +1)+2, we get that (z(i,j,0), ..., z(i,j,l−1)) ∈ Dom(t
f(i,j)

l )
for all i + j + l = (k + 1) + 2.

Next, we define sk+1(B1, ..., Bk+1) and z(i,j,l) for all i + j + l =
(k + 1) + 2 so that:
(a) sk+1(B1, ..., Bk+1) is a nonempty open subset of Bk+1;
(b) z(i,j,l) ∈ t

f(i,j)

l (z(i,j,0), ..., z(i,j,l−1)) for all i + j + l = (k + 1) + 2,

i.e., (z(i,j,0), ..., z(i,j,l)) ∈ Dom(t
f(i,j)

l+1 ) for all i+j+ l = (k+1)+2;
(c) sk+1(B1, ..., Bk+1)× {z(i,j,l) : i + j + l = (k + 1) + 2} ⊆ Ok+1.

Note that this is possible by Lemma 4.2.
Finally, define Zk+1 := {z(i,j,l) : i + j + l ≤ (k + 1) + 2}. This completes the
inductive definition of s.

Consider an s-play (Bn : n ∈ N) of the BM(R)-game played on X. For
any x ∈

⋂
n∈N Bn, let Fx :=

⋃
n∈N Fn ∈ F . Clearly, Z ⊆ Fx. Let N ∈ N,

we will show that the set {y ∈ Fx : (x, y) ∈ ON} is dense in Fx. For any
open subset U of Y that intersects Fx, there is f(i,j) ∈ U ∩ (

⋃
n∈N Fn). Since

tf(i,j) is a winning strategy for the player α in the G(f(i,j))-game, there is
m > N such that z(i,j,m) ∈ U ∩ Fx. Moreover, according to the definition
of the the strategy s, (x, z(i,j,m)) ∈ Oi+j+m−2 ⊆ Om ⊆ ON . Therefore,
{y ∈ Fx : (x, y) ∈ ON} is dense in Fx. Hence

⋂
n∈N Bn ⊆ R, which means

s is a winning strategy for the player α is the BM(R)-game. Hence, by
Lemma 4.1, R is residual in X. �

Theorem 4.4. Suppose that Y is a W -space and X is a Baire space. If Y
possesses a rich family F of Baire subspaces then X × Y is a Baire space.
In fact, if Z is any topological space that contains Y as a dense subspace
then X × Z is also a Baire space.

Proof: Suppose that {On : n ∈ N} are dense open subsets of X × Y and
U × V is the product of a nonempty open subset U of X with a nonempty
open subset V of Y ; we will show that (U × V ) ∩

⋂
n∈N On 6= ∅. To this

end, choose y ∈ V and set Z := {y}. By the previous theorem there
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exists a residual subset R of X such that for each x ∈ R there exists an
Fx ∈ F such that (i) y ∈ Fx and (ii) {y′ ∈ Fx : (x, y′) ∈

⋂
n∈N On} is

dense in Fx. Choose x0 ∈ U ∩ R 6= ∅ and Fx0 ∈ F such that y ∈ Fx0 and
{y′ ∈ Fx0 : (x0, y

′) ∈
⋂

n∈N On} is dense in Fx0 . In particular, {y′ ∈ Fx0 :
(x0, y

′) ∈
⋂

n∈N On} ∩ V 6= ∅. Hence, if we choose y0 ∈ {y′ ∈ Fx0 : (x0, y
′) ∈⋂

n∈N On} ∩ V then (x0, y0) ∈ (U × V ) ∩
⋂

n∈N On. This completes the first
part of the proof. To see that X×Z is a Baire space it is sufficient to realise
that X × Y is a dense Baire subspace of X × Z. �

There are many examples of spaces that admit a rich family of Baire
spaces that are not hereditarily Baire. For example, if (i) X is a separable
Baire space that is not hereditarily Baire; in which case F := {X} is a rich
family of Baire spaces, [1] or (ii) Y is a hereditarily Baire W -space such that
Y × Y is not hereditarily Baire, [1], then the family of all nonempty closed
separable rectangles gives a rich family of Baire subspaces of Y × Y .

Corollary 4.5. Suppose that {Xs : s ∈ S} is a nonempty family of W -
spaces. If each Xs, s ∈ S, possesses a rich family of Baire subspaces Fs

then for each a ∈ Πs∈SXs, Σs∈SXs(a) is a W -space with a rich family of
Baire subspaces. In particular, Σs∈SXs(a) is a Baire space.

Proof: The fact that Σs∈SXs(a) is a W -space follows directly from Theorem
2.5. Moreover, from Theorem 3.5 we know that Σs∈SFs(a) is a rich family, so
it remains to show that all the members of Σs∈SFs(a) are Baire spaces. To
this end, suppose that E := Πs∈SEs ∈ Σs∈SFs(a). Then E is homeomorphic
to Πs∈CE

Es. However, by [6, Theorem 3.6] E is a separable first countable
space. Therefore, by [8, Theorem 3], Πs∈CE

Es is a Baire space. Finally, the
fact that Σs∈SXs(a) is a Baire space now follows from Theorem 3.3. �

Corollary 4.6. Suppose that {Xs : s ∈ S} is a nonempty family of W -
spaces. If each Xs, s ∈ S, possesses a rich family of Baire subspaces Fs

then Πs∈SXs is a Baire space.

Proof: This follows directly from Corollary 4.5 since for any a ∈ Πs∈SXs,
Σs∈SXs(a) is a dense Baire subspace. �

As a tribute to Professor I. Namioka, let us end this paper with what is
essentially a folklore result, apart from the phrasing in terms of rich families,
concerning the Namioka property.

Recall that a Baire space X has the Namioka property if for each compact
Hausdorff space K and continuous mapping f : X → Cp(K) there exists a
dense subset D of X such that f is continuous with respect to the ‖ · ‖∞-
topology on C(K) at each point of D.

Theorem 4.7. Suppose that X is a topological space with countable tightness
(in particular if X is a W -space) that possesses a rich family F of Baire
subspaces then X has the Namioka property.
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Proof: In order to obtain a contradiction let us suppose that X does not
have the Namioka property. Then there exists a compact Hausdorff space
K and a continuous mapping f : X → Cp(K) that does not have a dense
set of points of continuity with respect to the ‖ · ‖∞-topology. In particular,
since X is a Baire space (by Theorem 3.3), this implies that for some ε > 0
the open set:

Oε :=
⋃
{U ∈ 2X : U is open and ‖ · ‖∞-diam[f(U)] ≤ 2ε}

is not dense in X. That is, there exists a nonempty open subset W of X such
that W ∩Oε = ∅. For each x ∈ X, let Fx := {y ∈ X : ‖f(y)− f(x)‖∞ > ε}.
Then x ∈ Fx for each x ∈ W . Moreover, since X has countable tightness,
for each x ∈ W , there exists a countable subset Cx of Fx such that x ∈ Cx.

Next, we inductively define an increasing sequence of separable subspaces
(Fn : n ∈ N) of X such that:

(i) W ∩ F1 6= ∅;
(ii)

⋃
{Cx : x ∈ Dn ∩ W} ∪ Fn ⊆ Fn+1 ∈ F for all n ∈ N, where Dn is

any countable dense subset of Fn.

Note that since the family F is rich this construction is possible.

Let F :=
⋃

n∈N Fn and D :=
⋃

n∈N Dn. Then D = F ∈ F and ‖ · ‖∞-
diam[f(U)] ≥ ε every nonempty open subset U of F ∩ W . Therefore, f |F
has no points of continuity in F ∩ W with respect to the ‖ · ‖∞-topology.
This however, contradicts [10, Theorem 6] which states the every separable
Baire space has the Namioka property. Therefore, the space X must have
the Naimoka property. �

This theorem improves upon some results from [4].
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