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ABSTRACT. In this paper we prove a theorem more general than the
following. Suppose that X is a Baire space and Y is the product of
hereditarily Baire metric spaces then X X Y is a Baire space.
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1. INTRODUCTION

A topological space X is said to be a Baire space if for each sequence
(Op : n € N) of dense open subsets of X, (,,cy On, is dense in X and a Baire
space Y is called barely Baire if there exists a Baire space Z such that Y x Z
is not Baire. It is well known that there exist metrizable barely Baire spaces,
(see [5]). On the other hand it has recently been shown that the product of
a Baire space X with a hereditarily Baire metric space Y is Baire, [7]. In
that same paper the author claims in a “Remark” that the hypothesis on Y
can be reduced to: “Y is the product of hereditarily Baire metric spaces”.
In this paper we substantiate this claim.

The main result of this paper relies upon two notions. The first, which
is that of a W-space [6], is recalled in Section 2. The second, which is that
of a “rich family” is considered in Section 3. In Section 4, we shall prove
our main theorem which states that the product of a Baire space with a
W-space that possesses a rich family of Baire subspaces is Baire.

2. W-SPACES

In this paper all topological spaces are assumed to be Hausdorff and
nonempty. Furthermore, if X is a topological space and a € X then we shall
always denote by A (a) the set of all neighbourhoods of a.

For any point a in a topological space X we can consider the following
two player topological game, called the G(a)-game. This game is played
between the players o and § and although it may seem unfair, 3 will always
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be granted the priviledge of the first move. To define this game we must
first specify the rules and then also specify the definition of a win.

The moves of the player « are simple. He/she must always select a neigh-
bourhood of the point a. However, the moves of the player § depend upon
the previous move of a. Specifically, for his/her first move 5 may select
any point 1 € X. For a’s first move, as mentioned earlier, & must select
a neighbourhood O; of a. Now, for ’s second move he/she must select a
point x3 € O;1. For a’s second move he/she is entitled to select any neigh-
bourhood Os of a. In general, if a has chosen O,, € N(a) as his/her n®
move of the G(a)-game then f3 is obliged to choose a point x,,+1 € O,. The
response of « is then simply to choose any neighbourhood O, of a. Con-
tinuing in this fashion indefinitely, the players a and § produce a sequence
((xn, Oyp) : n € N) of ordered pairs with z,11 € O, € N(a) for all n € N,
called a play of the G(a)-game. A partial play ((zx,Ok) : 1 < k < n) of
the G(a)-game consists of the first n moves of a play of the G(a)-game. We
shall declare o the winner of a play ((zn,0r) : n € N) of the G(a)-game
if a € {,, : n € N}, otherwise, (3 is the winner. That is, 3 is declared the
winner of the play ((zn,O,) : n € N) if, and only if, a & {x,, : n € N}.

A strategy for the player « is a rule that specifies his/her moves in every
possible situation that can occur. More precisely, a strategy for a is an
inductively defined sequence of functions ¢ := (¢, : n € N). The domain
of t; is X! and for each (x1) € X!, t1(x1) € N(a), ie., ((z1,t1(21))) is a
partial play. Inductively, if 1, to,...,t, have been defined then the domain
of t,11 is defined to be,

{(z1,22,...,Zpnt1) € X+l (r1,22,...,2,) € Dom(t,)
and Tp41 € tn(z1,22,...,20)}.
For each (x1,x2,...,2p41) € Dom(tnt1), tnt1(z1,22,...,2041) € N(a).
Equivalently, for each (x1,z2,...,2n+1) € Dom(tn+1), ((xk, te(z1,. .., 2%)) :
1 <k <n+1)is a partial play.
A partial t-play is a finite sequence (x1,z2,...,2,) € X" such that
(x1,x9,...,2,) € Dom(t,) or, eqgivalently, if xxy1 € tr(x1,zo,...,21) for

all 1 < k < n. A t-play is an infinite sequence (z, : n € N) such that for
each n € N, (z1,x9,...2,) is a partial ¢-play.

A strategy t := (t, : n € N) for the player « is said to be a winning
strategy if each play of the form ((xy,t, (21,22, ...,2,)) : n € N) is won by
a, or equivalently, if a € {x,, : n € N} for each t-play (z,, : n € N).

A topological space X is called a W -space if « has a winning strategy in
the G(a)-game for each a € X, [6].

In the remainder of this section we shall recall some relevant fact con-
cerning W-spaces.

Theorem 2.1. [6, Theorem 3.3] Every first countable space is a W -space.



RICH FAMILIES AND W-SPACES 3

There are of course many W-spaces that are not first countable, see Ex-
ample 2.7.

A topological space X is said to have countable tightness if for each
nonempty subset A of X and each p € A, there exists a countable sub-
set C C A such that p € C.

Proposition 2.2. [6, Corollary 3.4] Fvery W -space has countable tightness.

Proposition 2.3. [6, Theorem 3.1] If X is a W-space and @ # A C X
then A is a W-space.

Lemma 2.4. [6, Theorem 3.9] Suppose that X is a W-space and a € X,
then the player o possesses a strateqy s := (s, : n € N) in the G(a)-game
such that every s-play converges to a.

For the remainder of this paper whenever we shall consider a W-space X
with a € X we shall assume that the player « is employing a strategy ¢, in
the G(a)-game, in which every t-play converges to a.

Let {Xs : s € S} be a nonempty family of topological spaces and let
a € llyesXs. The X-product of this family with base point a, denoted by
YsesXs(a), is the set of all z € TI4cgXs such that z(s) # a(s) for at most
countably many s € S. For each x € ¥;c5Xs(a), the support of x is defined

by supp(z) :={s € S : x(s) # a(s)}.

Theorem 2.5. [6, Theorem 4.6] Suppose that {Xs : s € S} is a nonempty
family of W-spaces. If a € llses X then YgesXs(a) is a W-space.

Corollary 2.6. [6, Theorem 4.1 If {X,, : n € N} are W-spaces, then so is
HnGNXn-

Example 2.7. Suppose that S is a nonempty set. For each s € 5, let
X, = [0,1] and define a : S — [0,1] by, a(s) := 0 for all s € S. Then
by Theorem 2.5, X := ¥sc5Xs(a) is a W-space. However, X is not first
countable whenever S is uncountable.

3. RICH FAMILES

Let X be a topological space, and let F be a family of nonempty, closed
and separable subsets of X. Then F is rich if the following two conditions
are satisfied:

(i) for every separable subspace Y of X, there exists an F' € F such
that Y C F
(ii) for every increasing sequence (Fj, : n € N) in F, U,y Fn € F.

For any topological space X, the collection of all rich families of subsets
forms a partially ordered set, under the binary relation of set inclusion.
This partially ordered set has a greatest element, Sy := {S € 2¥ : S is a
nonempty, closed and separable subset of X}. On the other hand, if X is a
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separable space, then the partially ordered set has a least element, namely
{X}.

Next we present an important property of rich families. For a proof of
this see [2, Proposition 1.1].

Proposition 3.1. Suppose that X is a topological space. If {F, : n € N}
are rich families then so is (,en Fn-

Suppose that X is a topological space and S is a separable subset, it can
be easily verified that the family Fg := {F € Sx : § C F'} is rich. Hence,
whenever X is an infinite set and F is a rich family of subsets of X, then we
can always assume, by possibly passing to a sub-family, that all the members
of F are infinite. Indeed, if X has a countably infinite subset A, then by
Proposition 3.1, FNF4 C F is a rich family whose members are all infinite.

Proposition 3.2. If X is a topological space with countable tightness (e.g. if
X is a W-space) and E is a dense subset of X then

F:={Fe€Sx: ENF is dense in F}
is a rich family.

Proof: Let Y be a separable subspace of X, then Y has a countable dense
subset D := {d,, : n € N}. Since X has countable tightness, for each n € N,
there is a countable subset C,, C F such that d,, € C,,. Let F := Unen Chn.s
then Y = D C F € Sy and

F=|JC,CENFCFE
neN

Therefore, F' € F. Now suppose that (£, : n € N) is an increasing sequence
in F. Then F' := U,en Fn € Sx and F' N E is dense in F’. Therefore,
Frer. O

Theorem 3.3. Suppose that X is a topological space with countable tightness
(in particular if X is a W-space) that possesses a rich family F of Baire
subspaces then X is also a Baire space.

Proof: Let {O, : n € N} be dense open subsets of X. For each n € N,
let F,, := {F € Sx : O, N F is dense in F'}, then F, is a rich family by
Proposition 3.2. Let F* = ,en Fn N F, then F* is also a rich family by
Proposition 3.1. For each F' € F*, N, cn(On N F') is dense in F' since F is
a Baire space. Let x € X, then there is F' € F* such that x € F. Then
Z € Npen(On N F) € N,en On- Therefore, N, ey On = X. O

Suppose that { X, : s € S} is a nonempty family of topological spaces and
a € llgesXs. A cube E in Y4ecsXs(a) is any nonempty product gesEs C
YsesXs(a). The set Cp :={s € S: Es # {a(s)}} is at most countable and
E is homeomorphic to Il;cc, Es. If for each s € S, F; is a rich family of
subsets of X then the X-product of the rich families, with the base point
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a € I4ec5Xs, denoted by YgegFs(a), is the set of all cubes F := IlcgEs in
YsesXs(a) such that Es € Fy for each s € Cp.

Lemma 3.4. Let {X,:s € S} be a nonempty family of topological spaces.
For each s € S, let (E2 : n € N) be an increasing sequence of nonempty
subsets of Xs. Then | J,en(IlsesES) = ses(Unpen E3)-

Proof: It is easy to see that U, eny(HsesES) € Ilses(Unen £3) since for all
n €N, Hyes By C Ises(Unen E3)-

Let z € Ises(Uyen Fy) and let U := I,csUs be a basic neighbourhood
of z. Then there exists y € U N Ilses(U,en E;). Let M be the finite set
{s €S :Us # Xs}, and let Ny := min{n € N: y(s) € E3} forall s € M. Let
N := max{N; : s € M}, then y(s) € E} for all s € M. Let a € I;csEY
and let y' € U be defined by y/(s) := y(s) for all s € M and y/(s) := a(s)
for all s € S\ M. Since y € IIiesE, UNUpen(IlsesES) # @. Therefore,
z € Upen(sesEs). O
Theorem 3.5. Suppose that { X : s € S} is a nonempty family of topologi-

cal spaces and a € lgycgXs. If for each s € S, Fs is a rich family of subsets
of Xs, then YsesFs(a) is a rich family of subsets of YsesXs(a).

Proof: Let Y be a separable subspace of ¥3c5X(a), then it has a countable
dense subset D. Let C := Jzepsupp(d), then C is a countable set. For
each s € C, let P; be the projection of D onto X, then P is countable and
hence there is some E; € F, such that P; C Es. For each s € S\ C, let
Es:={a(s)}. Let F :=1lsesEs, then F' € YsesFs(a) and Y C F.

Let (E, : n € N) be an increasing sequence in ¥,c9Fs(a). For each cube
E, € YsesFs(a), let E, :=1l4cgFE2. Then by Lemma 3.4

U En= | sesEy) =ses( | E3) = aes(|J E3).

neN neN neN seS
It now follows that |,y En € YsesFs(a). O

4. BAIRE SPACES AND YX-PRODUCTS

A subset R of a topological space X is residual in X if there exist dense
open subsets {O), : n € N} of X such that ,,cy On € R.

For any subset R of a topological space X we can consider the following
two player topological game, called the BM (R)-game. This game is played
between two players o and [ and, as with the G(a)-game, the player (3 is
always granted the priviledge of the first move. To define this game we must
first specify the rules and then specify the definition of a win.

The player (’s first move is to select a nonempty open subset By of X.
For o’s first move he/she must also select a nonempty open subset A; of Bj.
Now, for f3’s second move he/she must select a nonempty open subset Bj
of A;. For a’s second move he/she must select a nonempty open subset Ag
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of By. In general, if o has chosen A, as his/her n'® move of the BM(R)-
game then 3 is obliged to select a nonempty open subset B, y1 of A,,. The
response of « is then simply to select any nonempty open subset A,; of
By +1. Continuing in this fashion indefinitely the players a and 3 produce a
sequence ((By, Ay,) : n € N) of ordered pairs of nonempty open subsets of X
such that B, C A, C B, for all n € N, called a play of the BM (R)-game.
A partial play ((Bk, Ax) : 1 < k < n) of the BM(R)-game consists of the
first n moves of a play of the BM (R)-game. We shall declare a the winner of
a play ((Bn,Ay,) : n € N) of the BM(R)-game if (,,cy An = pen Bn C R,
otherwise, ( is declared the winner. That is, § is the winner if, and only if,
ﬂneN Bn /@ R.

A strategy for the player « is an inductively defined sequence of functions
t := (t, : n € N). The domain of ¢; is the family of all nonempty open
subsets of X and for each B; € Dom(t1), ¢1(B1) must be a nonempty open
subset of Bj or, equivalently, for each By € Dom(t;), t1(B1) is defined so
that ((Bi,t1(B1))) is a partial play of the BM(R)-game. Inductively, if
t1,to,...,t, have been defined then the domain of ¢, is defined to be:

{(Bl, Bs, ..., Bn+1) : (Bl, Bs, ..., Bn) S DOm(tn) and
By+1 is a nonempty open subset of t,(B1, Ba,...,Bp)}.

For each (By, Ba,...,Bpt+1) € Dom(tn41), tnt1(B1, Be, ..., Byy1) must be
a nonempty open subset of B, 1. Alternatively, but equivalently, for each
(B1,Ba,...,Bnt+1) € Dom(tpn41), tnt1(B1, Be, ..., Bpy1) is defined so that
((Bg,tx(B1,B2,...,Bg)) : 1 <k <n+1) is a partial play. A partial t-play
is a finite sequence (B, Ba, ..., By) such that (By, Be,...,B,) € Dom(t,)
or, equivalently, By, is a nonempty open subset of t;(B, Ba, ..., By) for
all 1 < k < n. A t-play is an infinite sequence (B, : n € N) such that for
each n € N, (By, Ba, ..., By) is a partial ¢t-play.

A strategy t := (t, : n € N) for the player « is said to be a winning
strategy if each play of the form ((By,t,(B1, B2,...,By)) : n € N) is won by
a, or equivalently, if N, ey Bn € R for each t-play (B, : n € N). For more
information on the BM (R)-game see [3].

Our interest in the BM (R)-game is revealed in the next lemma.

Lemma 4.1 ([9]). Let R be a subset of a topological space X. Then R is
residual in X if, and only if, the player o has a winning strategy in the

BM (R)-game played on X.

The next simple result plays a key role in the proof of our main theorem
(Theorem 4.3).

Lemma 4.2. Let X and Y be topological spaces and let O be a dense open
subset of X x Y. Given nonempty open subsets Vi, Va,....Vy, of Y and a
nonempty open subset U of X, there exists a nonempty open subset W C U
and elements y; € Vi, 1 <1 < m, such that W x {y1,....,ym} C O.



RICH FAMILIES AND W-SPACES 7

Proof: The result will be shown inductively on m.

Base Step: m = 1. Since U x V1 is nonempty and open in X x Y and O is
dense and open in X x Y, (U x V;1)NO is a nonempty open subset of X x Y.
Therefore, there is a nonempty open subset W C U and an element y; € V;
such that W x {y1} C (U x V4)NO C O.

Inductive Step: Suppose that the result holds for m = k and consider the
case when m = k 4+ 1. According to the inductive hypothesis, there exists a
nonempty open subset W’ C U and elements y; € V;, 1 < i < k, such that
W' x{y1,...,yx} C O. By repeating the base step, there is a nonempty open
subset W C W’ and an element ygi1 € Viy1 such that W x {yg11} C O.
Clearly, W x {y1,...,yp+1} CO. O

Theorem 4.3. Suppose that Y is a W-space and X is a topological space.
If Z is a separable subset of Y and {O,, : n € N} are dense open subsets of
X XY then for each rich family F of Y the subset

R:={x € X : there exists a Fy € F containing Z such that
{y € F, : (z,y) € Oy} is dense in F, for alln € N}

1s residual in X.

Proof: We are going to apply the BM(R)-game and Lemma 4.1 to show
that R is residual in X. We shall only consider the case when Y is infinite as
the case when Y is finite (and hence has the discrete topology) follows from
Lemma 4.2. Thus we can assume that all the members of F are infinite.
Moreover, without loss of generality, we can also assume that all the sets
{0y, : n € N} are decreasing. For each a € Y, let t* := (t2 : n € N) be a
winning strategy for the player « in the G(a)-game.

We shall inductively define a strategy s := (s, : n € N) for the player « in
the BM (R)-game played on X, but first let us choose y € Y, set 2(; j 0) := y
for all (i,7) € N2, set Zg := {2(1,1,0)} and let Fy be any countable subset of
Y such that Z C %, € F.

Base Step: Suppose that (Bj) is a partial s-play. We shall define the follow-
ing:
(i) a countable set .F := {f(1,,) : n € N} such that ZyU.% C .71 € F;
(ii) s1(B1) and 21,1y so that:
(a) s1(Bi1) is a nonempty open subset of By;
f . f
(b) 2(17171) S tl(l’l)(Z(LLo)), l1.e., (2(17170),2(17171)) S Dom(t2<1’1));
(c) s1(B1) x {za,1,1)} € O1.
Note that this is possible by Lemma 4.2.
Finally, define Z1 := {z(1,1,1)}-
Inductive Hypothesis: Suppose that (B, ..., By) is a partial s-play, and for
each 1 < n < k, the following terms have been defined, .7, = {f(,,;) : J €
N}, Zn = {2z ¢ (i,4,1) € N* and i + j + 1 < n+ 2} and s, so that:
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(1) (54‘”,1 U anl) - JTn e F;
(1) (2(i,5,0 -+ 2(i,5,0)) € Dom(t{j:f)) foralli+j+4+1=mn+2and

Sn(Bl,...,Bn) X {Z(i,j,l) i+ j+l=n+ 2} C O,.

Inductive Step: Suppose that (Bji,..., Bxy1) is a partial s-play, that is,
(B1, ..., Bx) € Dom(sy) and By is a nonempty open subset of si (B, ..., By).
Then:
(i) Zy Uy, is countable, hence it is contained in some F' € F. Define
Fk11 = {fk41,n) : 7 € N} to be a countable dense subset of F;

(ii) by the inductive hypothesis, (2(; j0), - 2(i,j1)) € Dom(t{j:f)) for all

i+j+1 = k+2. By re-indexing and noting (z(; j0)) € Dom(t{”’j)) for

all i+j = (k+1)+2, we get that (2(,0 - 2(ij1-1)) € Dom(t{(i‘j))
foralli+j+1=(k+1)+2.

Next, we define siy1(B1, ..., Bry1) and z ;) for all i +j +1 =
(k+1) 4 2 so that:
(a) sg+1(B1, ..., Bp+1) is a nonempty open subset of Bjy1;

(b) Z(i,j,l) c t{(i’j) (Z(i,j,0)7 ceny Z(i,j,l—l)) fOl" all 7 +] + l = (k‘ =+ 1) + 2,

Le., (2(i,5,0)) -+ 2(i,j,0) € Dom(t{f’lj)) foralli+j+1=(k+1)+2;
(¢) sk1(Bu, -y Brg1) x {zq gy i+ +1=(k+1)+ 2} C Opp1.
Note that this is possible by Lemma 4.2.
Finally, define Zy 1 := {2(; j;) : i +Jj+1 < (k+1)+2}. This completes the
inductive definition of s.

Consider an s-play (B, : n € N) of the BM (R)-game played on X. For
any = € (pen Bn, let Fy := Upen Fn € F. Clearly, Z C F,. Let N € N,
we will show that the set {y € F, : (z,y) € On} is dense in F,. For any
open subset U of Y that intersects Fy, there is f(; ;) € UN(Upen Fn)- Since
/6.9 is a winning strategy for the player « in the G(f(,j))-game, there is
m > N such that z(; ;,,) € U N Fy. Moreover, according to the definition
of the the strategy s, (7,23 jm)) € Oirjrm—2 S Om S On. Therefore,
{y € Fy : (z,y) € On} is dense in F,. Hence (,cny Bn € R, which means
s is a winning strategy for the player « is the BM(R)-game. Hence, by
Lemma 4.1, R is residual in X. [

Theorem 4.4. Suppose that Y is a W-space and X is a Baire space. If Y
possesses a rich family F of Baire subspaces then X X Y is a Baire space.
In fact, if Z is any topological space that contains Y as a dense subspace
then X x Z 1is also a Baire space.

Proof: Suppose that {O,, : n € N} are dense open subsets of X x Y and
U x V is the product of a nonempty open subset U of X with a nonempty
open subset V' of Y; we will show that (U x V) N (,enyOn # @. To this
end, choose y € V and set Z := {y}. By the previous theorem there
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exists a residual subset R of X such that for each x € R there exists an
F, € F such that (i) y € F, and (ii) {¢/ € Fp : (2,9) € NuenOn} is
dense in F,. Choose g € UN R # @ and F,, € F such that y € F,, and
{y € Fyy : (20,Y") € NypenOn} is dense in Fy . In particular, {y € Fy, :
(20,Y") € Npen On} NV # @. Hence, if we choose yo € {y' € Fy, : (20,y') €
Mnen On} NV then (zo,y0) € (U x V) N),,en On. This completes the first
part of the proof. To see that X x Z is a Baire space it is sufficient to realise
that X x Y is a dense Baire subspace of X x Z. [0

There are many examples of spaces that admit a rich family of Baire
spaces that are not hereditarily Baire. For example, if (i) X is a separable
Baire space that is not hereditarily Baire; in which case F := {X} is a rich
family of Baire spaces, [1] or (ii) Y is a hereditarily Baire W-space such that
Y x Y is not hereditarily Baire, [1], then the family of all nonempty closed
separable rectangles gives a rich family of Baire subspaces of Y x Y.

Corollary 4.5. Suppose that {Xs : s € S} is a nonempty family of W -
spaces. If each Xg, s € S, possesses a rich family of Baire subspaces Fg
then for each a € llgegXs, YscsXs(a) is a W-space with a rich family of
Baire subspaces. In particular, ¥scsXs(a) is a Baire space.

Proof: The fact that X;c5Xs(a) is a W-space follows directly from Theorem
2.5. Moreover, from Theorem 3.5 we know that XscgFs(a) is a rich family, so
it remains to show that all the members of ¥scgFs(a) are Baire spaces. To
this end, suppose that E := [IgcgFs € YscsFs(a). Then E is homeomorphic
to IIsec, Es. However, by [6, Theorem 3.6] E is a separable first countable
space. Therefore, by [8, Theorem 3], IIscc, Es is a Baire space. Finally, the
fact that ¥;c5Xs(a) is a Baire space now follows from Theorem 3.3. [

Corollary 4.6. Suppose that {Xs : s € S} is a nonempty family of W-
spaces. If each Xs, s € S, possesses a rich family of Baire subspaces Fg
then IlgcsXs is a Baire space.

Proof: This follows directly from Corollary 4.5 since for any a € 35X,
YsesXs(a) is a dense Baire subspace. [

As a tribute to Professor I. Namioka, let us end this paper with what is
essentially a folklore result, apart from the phrasing in terms of rich families,
concerning the Namioka property.

Recall that a Baire space X has the Namioka property if for each compact
Hausdorff space K and continuous mapping f : X — C,(K) there exists a
dense subset D of X such that f is continuous with respect to the || - ||oo-
topology on C(K) at each point of D.

Theorem 4.7. Suppose that X is a topological space with countable tightness
(in particular if X is a W-space) that possesses a rich family F of Baire
subspaces then X has the Namioka property.
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Proof: In order to obtain a contradiction let us suppose that X does not
have the Namioka property. Then there exists a compact Hausdorff space
K and a continuous mapping f : X — C,(K) that does not have a dense
set of points of continuity with respect to the || - ||co-topology. In particular,
since X is a Baire space (by Theorem 3.3), this implies that for some £ > 0
the open set:

O; := U{U € 2% : U is open and || - ||so-diam[f(U)] < 2¢}

is not dense in X. That is, there exists a nonempty open subset W of X such
that WNO. = @. Foreachx € X, let F,, :={y € X : || f(y) — f(z)]|cc > €}
Then x € F, for each € W. Moreover, since X has countable tightness,
for each x € W, there exists a countable subset C,, of F, such that =z € C.

Next, we inductively define an increasing sequence of separable subspaces
(Fy :n € N) of X such that:

(i) WnE #;
(i) {Cr :x € D,NW}UF, C F,4q € F for all n € N, where D,, is
any countable dense subset of F,.

Note that since the family F is rich this construction is possible.

Let F := UpenFn and D := U,eyDn. Then D = F € F and || - ||o-
diam[f(U)] > € every nonempty open subset U of F' N W. Therefore, f|p
has no points of continuity in F' N W with respect to the || - ||oo-topology.
This however, contradicts [10, Theorem 6] which states the every separable
Baire space has the Namioka property. Therefore, the space X must have
the Naimoka property. [

This theorem improves upon some results from [4].
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