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Asia Ivić Weiss*

York University - Canada

(With symmetry as the central theme)

* With a lot of help from my friends!
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Asia Ivić Weiss*

York University - Canada

(With symmetry as the central theme)

* With a lot of help from my friends!
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The Evolution of Polytopes:
Regular polyhedra with convex faces

FINITE:

{3, 3} {3, 5} {5, 3} {3, 4} {4, 3}
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Regular polyhedra with convex faces

INFINITE:
{6, 4|4}
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Regular polyhedra with convex faces

{4, 6|4} {6, 6|3}
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Regular polyhedra with non-convex faces or vertex-figures

FINITE

(with planar faces)
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Regular polyhedra with non-planar (finite) faces

FINITE
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Regular polyhedra with non-planar (finite) faces

INFINITE
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Regular polyhedra with infinite faces

Grünbaum-Dress polyhedron {∞, 3}[4]
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Abstract Polytopes

An abstract polytope P of rank n, or an n-polytope is a poset, whose
elements are called faces, with strictly monotone rank function with range
{−1, 0, 1, . . . , n} satisfying the following properties.

P has a unique minimal face F−1 and a unique maximal face Fn.

The maximal chains, called flags, of P contain exactly n + 2 faces.

P is strongly flag-connected.

P satisfies a homogeneity property.
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Asia Ivić Weiss (York University) Beyond Polyhedra and Polytopes Queenstown February 2016 9 / 48



Abstract Polytopes

An abstract polytope P of rank n, or an n-polytope is a poset, whose
elements are called faces, with strictly monotone rank function with range
{−1, 0, 1, . . . , n} satisfying the following properties.

P has a unique minimal face F−1 and a unique maximal face Fn.

The maximal chains, called flags, of P contain exactly n + 2 faces.

P is strongly flag-connected.

P satisfies a homogeneity property.
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Regular Abstract Polytopes

Abstract polytope P is said to be regular if its group of automorphisms
Aut(P) is transitive on the flags of P.

=⇒ Aut(P) is generated by involutions (determined by the ”base” flag).

ρn−1

ρ1

ρ0

C−diagram:
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Regular Abstract Polytopes

Given that P is a regular n−polytope and Φ one of its flags, Aut(P) is
generated by the distinguished generators ρi , i = 0, . . . , n − 1, that
interchange Φ with its i−adjecent flag Φi and satisfy the relations implicit
in the string Coxeter graph associated with the string Coxeter group
[p1, . . . , pn−1].

⇒ Regular polytopes can be assigned a Schläfli type {p1, . . . , pn−1}.

The generators of the automorphism group of an abstract polytope satisfy
an intersection property IP:

〈ρi | i ∈ I 〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉, ∀I , J ⊆ {0, . . . , n − 1}.
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Characterization of Groups of Regular Abstract Polytopes

A quotient of a string Coxeter group [p1, . . . , pn−1] with generators that
satisfy the intersection property IP is called a C−group.

Theorem (Schulte, 1982): Given a C−group one can construct a regular
polytope having this group as its automorphism group.

Example: From a quotient of the Coxeter group [4, 4] by a translation subgroup

one can construct regular polytope of rank 3 (a regular map on torus).
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Regular Honeycombs and Chirality

”I call any geometrical figure, or group of points, chiral, and say that it has
chirality, if its image in a plane mirror, ideally realized, cannot be brought to
coincide with itself.” William Thomson (Lord Kelvin), Baltimore Lectures, John
Hopkins University, 1884.

Introduced by Sommerville in 1929, a homogeneous honeycomb is a structure in
euclidean space consisting of polyhedral cells, all alike, such that each rotation
that is the symmetry operation of a cell is also a symmetry operation of the whole
configuration.

Coxeter defines regularity in maps following Sommerville’s ideas, and gives the

classification of reflexible and irreflexible maps on torus in 1948. In 1970 he

attempts to generalize the idea to higher dimensions and defines a twisted

honeycomb as a combinatorial structure derived from a 3−dimensional

honeycomb by preserving all rotations of its polyhedral cells but abandoning its

reflectional symmetries.
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Chiral Abstract Polytopes

Abstract polytope P is said to be chiral if its group of automorphisms
Aut(P) has exactly two orbits on the flags, with adjacent flags in distinct
orbits.

Example: A chiral rank 3 toroidal polytope with Schläfly type {4, 4}:
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Chirality in Chemistry

Thalidomide drug was discovered in 1953 and used to treat ”morning sickness” in pregnant
women; birth defects detected in 1960.

S- and R- isomeric forms of thalidomide molecules:

One of the isomers is an effective medication, the other caused the side effects. Both isomeric

forms have the same molecular formula and the same atom-to-atom connectivity. Where they

differ is in the arrangement in three-dimensional space about one tetrahedral, sp3-hybridized

carbon.
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Chirality in Chemistry

Ascorbic acid comes in L-and D-isomeric forms:

L-ascorbate D-ascorbate

The name vitamin C always refers to the L-enantiomer of ascorbic acid (and of its oxidized

forms). The D-enantiomer (called D-ascorbate) is not found in nature. It has equal antioxidant

power; however, when synthesized and given to animals that require vitamin C in their diets, it

has been found to have far less vitamin activity than the L-enantiomer.
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Chirality in Chemistry

Chirality of smell: The nerve-ending receptors in nose absorb molecules and send an impulse to
brain. The brain then interprets it as the smell. Molecules with different shapes fit into different
receptors (a receptor shaped in a ”right-handed” chiral form would interact only with a
”right-handed molecule”).

Limonene is the molecule producing smell in orange and lemon peel.

When oxidized the molecule of limonene produces carvone, the two versions of which give smells
to spearmint and caraway.
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Abstract Chirality - A Historical Note

Chiral polytopes are ”maximally symmetric” by rotations in the sense that
rotations of each rank 2 section of a polytope extend to a (rotational)
symmetry of the polytope.

Coxeter (1948) Classified regular and chairs maps on torus.
Sherk (1962) Constructed a family of chiral maps of genus 7.
Garbe (1969) There are no chiral maps on surfaces of genus 3, 4, 5, or 6.

... Edmonds, Wilson, Jones, Conder, Nedela, Širáň, Schulte, Monson,
Pisanski, Hubard, Pellicer, Leemans, ...

Zhang (2015) The smallest chiral 6-polytopes have 18432 flags. In fact,
there are just two of them (of types {3, 3, 4, 6, 3} and {3, 6, 4, 3, 3}).
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Characterization of Groups of Chiral Abstract Polytopes

Groups of chiral abstract polytopes can be represented by the diagram

where edges represent the generating rotations σ1, . . . , σn−1 which
cyclically permute the faces of a rank 2 sections determined by a base flag.

More precisely, σi maps the base flag Φ to (Φi )i+1.

When so oriented, the product of two or more consecutive such rotations is an

involution.

The generators satisfy an intersection property IP+

〈σi | i ∈ I 〉 ∩ 〈σi | i ∈ J〉 = 〈σi | i ∈ I ∩ J〉, ∀I , J ⊆ {1, . . . , n − 1}.
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Characterization of Groups of Chiral Abstract Polytopes

A group generated by rotations with a string diagram satisfying the
intersection condition IP+ is called C +− group.

Theorem (Schulte, Ivić Weiss 1991): Given a C +− group one can
construct a regular or a chiral polytope having this group as its
automorphism group. The polytope is chiral if and only if there is no
(involutory) automorphism which extends this group to the
”corresponding” C−group.
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Geometric Polyhedra

A geometric polyhedron is a discrete faithful realization of an abstract
rank 3 polytope in E 3.

A polyhedron in E 3 is said to be geometrically regular if its symmetry
group (the group of isometries keeping the polyhedron invariant) is
transitive on the set of its flags.

A polyhedron in E 3 is said to be geometrically chiral if its symmetry group
has two orbits on the flags with the adjacent flags always being in distinct
orbits.

Faces of both geometrically regular and chiral polyhedra must be regular
polygons.
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Geometric Polyhedra

Regular polygons in E 3:
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Geometrically Regular Polyhedra

Classification (Grünbaum-Dress 1985):

Platonic solids {3, 3} {3, 4} {4, 3} {3, 5} {5, 3} 5
Kepler-Poinsot polyhedra {3, 5/2} {5/2, 3} {5, 5/2} {5/2, 5} 4
Petrials of these · · · 9

Regular tessellations of E 2 {4, 4} {3, 6} {6, 3} 3
Blends of these with segments · · · 3
Blends of these with {∞} · · · 3
Petrials of these · · · 9

Petrie-Coxeter polyhedra {4, 6|4} {6, 4|4} {6, 6|3} 3
Grünbaum-Dress polyhedra 9

—
48

18 finite polyhedra
6 planar polyhedra
24 infinite 3-dimensional polyhedra
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Geometrically Chiral Polyhedra

A geometrically chiral polyhedron is either a chiral or a regular abstract
polyhedron (rank 3 polytope)!

=⇒

Theorem: Finite chiral (geometric) polyhedra do not exist.

Theorem (Schulte 2005): Discrete chiral polyhedra can be classified in the
following six families.

Finite faced polyhedra: {6, 6}[a,b] {4, 6}[a,b] {6, 4}[a,b]

Infinite faced polyhedra: {∞, 3}[3] {∞, 3}[4] {∞, 4}[3]

Theorem (Pellicer, Ivić Weiss (2010): Chiral polyhedra with finite faces are
abstract chiral polyhedra. The chiral polyhedra with infinite faces are
regular abstract polyhedra.
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Geometrically Chiral Polyhedra

{∞, 3}[4] {6, 6}[1,0]
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Asia Ivić Weiss (York University) Beyond Polyhedra and Polytopes Queenstown February 2016 25 / 48



Geometrically Chiral Polyhedra

{∞, 3}[4] {6, 6}[1,0]
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Geometrically Chiral 4-Polytope in E 4

Roli’s Cube (Bracho, Hubard, Pellicer 2014) is geometrically chiral, but
abstractly regular.
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Geometrically Chiral 4-Polytope in E 3

P{∞,3,4} has eight infinite facets {∞, 3}[3] arranged as images of one of
them under the group [3, 4]+ of rotations of the octahedron centred at one
of its vertices. It is abstractly and geometrically chiral (Pellicer 2015).
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Incidence Systems

We next extend the concept of a polytope to a more general structure.

An incidence system Γ := (X , ∗, t, I ) is a 4-tuple such that

X is a set whose elements are called the elements of Γ;

I is a finite set whose elements are called the types of Γ;

t : X → I is a type function, associating to each element x ∈ X of Γ
a type t(x) ∈ I ;

∗ is a binary relation on X called incidence, that is reflexive,
symmetric and such that for all x , y ∈ X , if x ∗ y and t(x) = t(y)
then x = y .

The incidence graph of Γ is the graph whose vertex set is X and where two
vertices are joined if the corresponding elements of Γ are incident.

The rank of Γ is the cardinality of I .
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Incidence Geometry

A flag is a set of pairwise incident elements of Γ.

An element of Γ is
incident to a flag F if it is incident to elements of F .

The type of a flag F is {t(x) : x ∈ F}. A chamber is a flag of type I .

An incidence system Γ is a geometry (or incidence geometry) if every flag
of Γ is contained in a chamber.
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Asia Ivić Weiss (York University) Beyond Polyhedra and Polytopes Queenstown February 2016 29 / 48



Incidence Geometry

A flag is a set of pairwise incident elements of Γ. An element of Γ is
incident to a flag F if it is incident to elements of F .

The type of a flag F is {t(x) : x ∈ F}. A chamber is a flag of type I .

An incidence system Γ is a geometry (or incidence geometry) if every flag
of Γ is contained in a chamber.
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Thin Geometries

A geometry Γ is called thin if for each i ∈ I any flag of type I \ {i} is
contained in exactly two chambers.

Equivalently, in the language of incidence geometries, geometry Γ is thin if
every residue of rank 1 of Γ contains exactly two elements.

The diamond condition in the definition of abstract polytopes guaranties
that abstract polytopes are thin geometries.
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Examples

Polytopes and non-degenerate maps and hypermaps are examples of thin
geometries.

Hypermap (3, 3, 3)(b,c) on torus has vertices, edges and faces of valency 3:
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Examples

An example of geometry that is not thin: toroidal hypermap (3, 3, 3)(1,1).

!  

This hypermap has 3 vertices, 3 edges and 3 faces and its incidence graph
is K3,3,3.

Asia Ivić Weiss (York University) Beyond Polyhedra and Polytopes Queenstown February 2016 32 / 48



Examples

An example of geometry that is not thin: toroidal hypermap (3, 3, 3)(1,1).

!  

This hypermap has 3 vertices, 3 edges and 3 faces and its incidence graph
is K3,3,3.
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Automorphisms of Thin Geometry

An automorphism of Γ := (X , ∗, t, I ) is a mapping α : X 7→ X such that
for all x , y ∈ X

α is a bijection on X (inducing a bijection on I );

x ∗ y if and only if α(x) ∗ α(y);

t(x) = t(y) if and only if t(α(x)) = t(α(y)) .

An automorphism is type preserving when for each x ∈ X , t(α(x)) = t(x).
The set of all type preserving automorphism of Γ is denoted by AutI (Γ).

Γ is chamber transitive if AutI (Γ) is transitive on the set of chambers of Γ.
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Asia Ivić Weiss (York University) Beyond Polyhedra and Polytopes Queenstown February 2016 33 / 48



Automorphisms of Thin Geometry

An automorphism of Γ := (X , ∗, t, I ) is a mapping α : X 7→ X such that
for all x , y ∈ X

α is a bijection on X (inducing a bijection on I );

x ∗ y if and only if α(x) ∗ α(y);

t(x) = t(y) if and only if t(α(x)) = t(α(y)) .

An automorphism is type preserving when for each x ∈ X , t(α(x)) = t(x).
The set of all type preserving automorphism of Γ is denoted by AutI (Γ).

Γ is chamber transitive if AutI (Γ) is transitive on the set of chambers of Γ.
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Hypertopes

A hypertope is a thin incidence geometry that is strongly chamber
connected (SCC).

(Or, residually connected as commonly used in the
terminology of incidence geometries).

A hypertope Γ is said to be

regular if AutI (Γ) has one orbit on the chambers of Γ;

chiral has two orbits on the chambers of Γ such that any two adjacent
chambers (differing in one element only) lie in distinct orbits.
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Groups of Regular Hypertopes

Let Γ be a regular hypertope and Φ one of its chambers. Then for each
i ∈ I there exists and involutory type-preserving automorphism ρi that
interchanges Φ with its i-adjacent chamber Φi .

AutI (Γ) is generated by the distinguished generators {ρ0, ρ1, . . . , ρn−1},
where n = |I |, which satisfy

the relations implicit in the C−diagram, the complete graph on n
vertices whose vertices are labeled by the generators and the edges
between vertices labelled with ρi and ρj labeled by o(ρiρj) (with the
usual convention of omitting the edges labeled by 2);

and the intersection property IP

〈ρi | i ∈ I 〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉, ∀I , J ⊆ {0, . . . , n − 1}.
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C−Groups

A pair (G ,R), where G is a group and R = {ρ0, . . . , ρn−1} its generating
set of involutions that satisfy the IP, is called a C−group.

The group 〈ρ0, ρ1, ρ2 | ρ2
0 = ρ2

1 = ρ2
2 = (ρ0ρ1ρ2ρ1)2 = 1〉 with the

triangular C−diagram is the group of automorphisms of the hypermap
(3, 3, 3)(2,0).
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Groups of Chiral Hypertopes

Let Γ be a chiral hypertope and Φ one of its chambers. For any pair
i 6= j ∈ I = {0, . . . , n − 1}, there exists a type-preserving automorphism
αij mapping the chamber Φ to (Φi )j .

The generators αij satisfy the intersection property IP+

〈αij | i , j ∈ J〉 ∩ 〈αij | i , j ∈ K 〉 = 〈αij | i , j ∈ J ∩ K 〉, ∀J,K ⊆ I .

AutI (Γ) is generated by the distinguished generators

αi := α0i for i = 1, . . . , n − 1.

(Here αij = α−1
i αj .) The set of generators R = {α1, . . . , αn−1} is

independent, meaning that αi /∈ 〈αj | j 6= i〉.
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C+−Groups and B−Diagrams

A pair (G +,R) with G + = 〈R〉 and R = {α1, . . . , αn−1} an independent
set of generators satisfying IP+ (with αij = α−1

i αj) is called a C +−group.

The B-diagram of a C +−group (G +,R) is the graph defined as follows.

The vertex set of the graph is the set R ∪ {α0 := 1G+}.
The two vertices αi and αj of the graph are connected by an edge
labeled by o(α−1

i αj) whenever o(α−1
i αj) 6= 2 (with the usual

convention of omitting label 3).

Example B−diagram for the group of a chiral

hypertope (3, 3, 3)(b,c) with bc(b − c) 6= 0 :
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Coset Geometry

Construction of an incidence geometry from a group (Tits, 1961):

Let G be a group and (Gi )i∈I a finite family of subgroups of G . With X , ∗
and t defined as

X is the set of all cosets Gig , g ∈ G , i ∈ I ;

t : X → I defined by t(Gig) = i ;

Gig1 ∗ Gjg2 if a and only if Gig1 ∩ Gjg2 6= ∅;

Γ := (X , ∗, t, I ) is an incidence system.

When Γ is a geometry, we call it a
coset geometry, denote it by Γ(G , (Gi )i∈I ) and call Gi its maximal
parabolic subgroups.

Question: When is such an incidence geometry a hypertope?
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Regular Hypertopes From Groups

Theorem (Fernandes, Leemans and Ivić Weiss, 2014) Given that
(G , {ρ0, ρ1, ρ2}) is a C−group of rank 3, the coset geometry
Γ(G , (〈ρ1, ρ2〉, 〈ρ0, ρ2〉, 〈ρ0, ρ1〉)) is thin if and only if G acts faithfully on
Γ and is transitive on chambers. Moreover, if it is thin it is strongly
chamber-connected.

The C−group with triangular C−diagram, seen above as the automorphism

group of the hypermap (3, 3, 3)(1,1), gives a coset geometry that is not thin (it is

however strongly chamber-connected).
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Regular Hypertopes From Groups

Unfortunately in higher ranks thinness need not suffice:

is a C−group, but the induced coset geometry is not thin,

it is not strongly chamber-connected, nor flag transitive.

Theorem (Fernandes, Leemans and Ivić Weiss, 2014) Given that
(G ,S = {ρ0, ρ1, . . . , ρn−1}) is a C−group of rank n, the coset geometry
Γ := Γ(G , (Gi )i∈I ) with Gi := 〈ρj | ρj ∈ S , j ∈ I \ {i}〉 for all
i ∈ I := {0, 1, . . . , n − 1}, if Γ is flag transitive, then Γ is regular incidence
geometry (it is thin, SCC and regular giving a regular hypertope).

Example: A rank 4 hypertope related to the tessellation {6, 3, 3} of the

hyperbolic space.
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Chiral Hypertopes From Groups

Similarly, starting with a group G + and a set R = {α1, . . . , αn−1} of
independent generators, we can construct a coset geometry
Γ(G +,R) := Γ(G +, (Gi )i∈{0,...,n−1}) where Gi := 〈αj | j 6= i〉 for

i = 1, . . . , n − 1 and G0 := 〈α−1
1 αj〉.

Theorem (Fernandes, Leemans and Ivić Weiss, 2014) Let
Γ = Γ(G +,R) := Γ(G +, (Gi )i∈{0,...,n−1}) be a coset geometry constructed
from G + and a set on independent generators R = {α1, . . . , αn−1}. If Γ is
thin and SCC it is chiral if and only if there is no automorphism of G +

that inverts all elements of R.

Example: B− diagram of a hypertope

related to the tessellation {6, 3, 6} of H3.
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Toroidal Hypertopes of Rank 3

The toroidal hypertopes of rank 3 are divided into the following families:

toroidal maps {3, 6}(b,c), {6, 3}(b,c), {4, 4}(b,c), and

hypermaps (3, 3, 3)(b,c) with (b, c) 6= (1, 1).

Note: Hypermap (3, 3, 3)(b,c) is obtained from the toroidal map {6, 3}(b,c)

by doubling the fundamental region, but in the case (b, c) = (1, 1) the
corresponding incidence graph is a complete tripartite graph K3,3,3 and
therefore the geometry is not thin.
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Toroidal Hypertopes of Rank 4

Doubling the fundamental region of rank 4 polytope {6, 3, p} which
tessellates the hyperbolic 3−space for p = 3, 4, 5 we similarly obtain the
finite universal locally toroidal hypertopes with diagram

d
d dd

H
HH

H

�
���

p

These hypertopes have only one toroidal residue that is the hypermap
(3, 3, 3)(b,c), all the remaining residues are spherical.

We denote these
hypertopes by (3, 3, 3; p)(b,c) and with Fernandes and Leemans show that
when p ∈ {3, 4, 5} and (b, c) 6= (1, 1), the hypertope (3, 3, 3; p)(b,c) is
finite if and only if the universal polytope {{6, 3}(b,c), {3, p}} is finite.
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Asia Ivić Weiss (York University) Beyond Polyhedra and Polytopes Queenstown February 2016 44 / 48



Toroidal Hypertopes of Rank 4

The existence of regular universal locally toroidal polytopes of rank 4 is
investigated in ARP where McMullen and Schulte give an enumeration of
finite such universal polytopes.

In particular, they have complete classification of {{6, 3}(b,c), {3, p}} with
p ∈ {3, 4, 5} and {{6, 3}(b,c), {3, 6}(e,f )} thus enabling the classification of
hypertopes (3, 3, 3; p)(b,c) when p ∈ {3, 4, 5, 6}.

Other toroidal hypertopes ...
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Toroidal Hypertopes of Rank 4

Universal locally toroidal non-polytopal hypertopes of rank 4 (all residues
of rank 3 are either spherical or toroidal, with at least one being toroidal)

◦ OOO ◦ p ◦
◦

ooo

◦ ◦
6

◦
◦

◦
6

◦
p

◦ ◦
◦ 4 ◦

4
◦

◦
◦ 4

4
◦

◦ ◦

◦
??

?? ◦
◦

���� ◦
◦

??
?? ◦
◦ ◦

◦ 4 ◦
4

4 ◦
◦

◦ 4

4
◦

4
◦ ◦

◦ 4

4
◦

4
◦

4
◦

(Here p = 3, 4, 5 or 6).
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Some Open Problems

Classification of regular toroidal hypertopes in ranks greater than 3.

Existence of chiral toroidal hypertopes in ranks greater than 3.

Classification of locally spherical (and locally toroidal) hypertopes.

Classification of uniform polyhedra.
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Thank You!
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