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ABSTRACT

We show (by examples) that tight frame decompositions
are useful and natural for finite dimensional Hilbert spaces
which have symmetries, in particular for spaces of multivariate
orthogonal polynomials.



A question

Let uy, us, ug be three equally spaced unit vectors in IR?.

U1

U us

For a given nonzero vector f € IR?, what is the sum of its
orthogonal projections onto these vectors?

3
(a) Z(f, uj)u; =0 (since up + ug = uz = 0).

(b) Z<f7 Uj)U; = §f, Vi e IR

N}



Frames in finite dimensional spaces

The following sets of vectors {fuj | form tight frames for IR?
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i.e., give decompositions of the form

3
F=) {fijv;,  VfER?

Jj=1

This is technically similar to an orthogonal expansion, except
it has more terms (redundancy).



The start of a (long) story

The Bernstein operator B, : C([0,1]) — II, is defined

B, f(z) := f: (Z) 2F(1 - :c)”_kf(g).

k=0

by

In [Cooper,Waldron 2000] it was shown B, has the diagonal
form
B, f — Z A ) ) gy

where the eigenvalues 1 = )\én) = Aﬁ") > Aé") > o> A0 >0

=1 (- 0) (1-2) - (-5

and the corresponding eigenfunctions have the form

n k
pl(g )(90) =gk — §a:k_1 + lower order terms.



The limiting eigenfunctions

The Bernstein operator converges as n — o0

Buf =Y A" p™ ul (f)
Lok L

F=>1-p5 - mlh)
k=0

where the “limit” eigenfunctions pj are related to the Jacobi
polynomials (similarly for the multivariate Bernstein operator).
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Fig. The first few limit eigenfunctions pj.




Jacobi polynomials on a simplex

Let T = conv(V) be a simplex in IR with d + 1 vertices V,
with corresponding barycentric coordinates £& = (&,)ycv, and
define the Jacobi inner product

(f,9)0 = / fg&t, v = (Vy)vev > 0.
T
e.g., for d =2, T = conv{es,es,0}, v — 1= (o, 3,7)

i (2,y) =2
562 (LE, y) =Y

So(z,y) =1—x—y

1 1—x
{f, 900 = / / f(@,9)g(z,y) 2y’ (1 — x — y)? dy da
0o Jo
The Jacobi polynomials of degree k£ are

Pr ={f€llx: (f,p), =0,Vp € Ix_1}.
This space has

o (k+4d-1

Each polynomial in P/ is uniquely determined by its leading
term, e.g., for £2 + lower order terms, the leading term is

{(1 —:U—y)2}l — 72 —2xy+y2.



Orthogonal and biorthogonal systems

We describe the known representations for P} in terms of
the leading terms (for the case d = 2, k = 2).

Biorthogonal system (Appell 1920’s): partial symmetries

2 2
L TY, Y.

Orthogonal system (Prorial 1957, et al): no symmetries
2?4+ gt 4+ 2zy, % —y?, 2% —y® —day.

For the three dimensional space of all quadratic Jacobi
polynomials on the triangle, we want an orthonormal basis with
leading terms determined by the six polynomials

22, zy, v, z(l—x—vy), yl-z-y), (1-z—1y)>

Let
Q= {pea =& +lot € Py: || =2}

be these six functions. Then ® is a frame for P (i.e., it spans)
but it is not tight. We would like to find contants ¢, > 0 with

f: Z C(X<f7p§°‘>pfo‘ — Z <f7ﬁ§o‘>ﬁfo‘7 vfepg7

la|=2 || =2

where pea 1= \/coDee.



Signed frames

Theorem [PW]. Let ‘H be Hilbert space of dimension d, and
— { ld(d+1), H real;

d?, H complex.
Then for almost every choice of unit vectors ui,...,u, in 'H
there are unique scalars cq, ..., c, for which

f=> cilfiushu;,  VfEH.
j=1
The c; can be computed explicitly, some may nonnegative, and

Y ¢j =d=dim(H).
j=1

Example. For any three vectors in IR® for which none is a
multiple of another, there is a unique such scaling as above.
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Fig. Tight signed frames of three vectors in IR* with
the signature indicated.

Example. For our six functions ®, d = dim(P¥) = 3, and
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A tight frame for the Jacobi polynomials

Let ¢¥ be the orthogonal projection of

E(War  la| =mn

onto P}, which is given by

P Gt af +[v| =1, -
P = (n+\y\—1)nFA( z <)
_ (n+ v — Dipi(—a)s €7
(v =1, B; (V)5 2

with Fy the Lauricella function of type A.

Theorem [WXR]. The Jacobi polynomials on a simplex have
the tight frame representation

f= b Y Doy, vrems
|a|=n .

where the normalisation is (1,1), = 1.
Remark. It can be shown that the polynomials
o = (V)adh = £ + lower order terms, la| =n

have a limit p* as v — 07, and that p}, is a limit eigenfunction
for the Bernstein operator B,, on the simplex T



Well distributed points on the sphere

A number of nice configurations of points on the sphere
give isometric (equal length vector) tight frames, e.g.,

These turn out to be examples of the orbit of a single
vector v € C% under a finite group G of unitary matrices which
form an irreducible representation, i.e.,

span{gw : g € G} = C?, Yw # 0.

Theorem ([VWO04]). If span{gw}yseq = C? for some vector
w, then one can construct a vector v for which

Gv:={gv:g€ G}

is a tight frame for C¢.



A nice example

The group of symmetries of the triangle (G = D3 = Ss3)
induces a representation on the quadratic Legendre polynomi-
als Py on the triangle. Since there is a polynomial whose orbit
spans Ps, we can construct a single polynomial

1 4 1
f= V-5V (&+El+6—5 ) +15v2 (&6t 15 ) € P

whose orbit under G consists of three polynomials which form
an orthonormal basis for Ps.

Fig. Contour plots of f and those of its orbit showing
the triangular symmetry.
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Orthogonal polynomials on the disc

Let P, = PY be the n+1 dimensional space of orthogonal
polynomials of degree n on the unit disc

D:={(z,y) €eR?: 2 +¢y* <1}

given by the radially symmetric inner product

(f,9) 3:/ngwz/OQW/Ol(fg)(rcos&rsine)w(r)rdrd@.

The Gegenbauer polynomials are given by the weight
w(r) == (1 —r?)~ a > —1.

These polynomials have long been used to analyse the optical
properties of a circular lens, and to reconstruct images from
Radon projections, etc.

Let Ry : IR? — IR? denote rotation through the angle 6,

l.e.,
cosf) —sinf x
Ro(w,y) = (sin@ cos 0 ) <y>
[ xcosf —ysinb
~ \zsinf+ycosf )’
Let the group of rotations of the disc (which are symmetries of

the weight)
SO(2) ={Rp:0<0<2r}

act on functions defined on the disc in the natural way, i.e.,

Rof := foRy".
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The Logan Shepp polynomials

[Logan, Shepp 1975] showed the Legendre polynomials
on the disc (constant weight w = 1) have an orthonormal basis
given by the n 4+ 1 polynomials

1 VK
pi(x,y) = ﬁUn (z cos ]

T
),

1 =0,...
_|_1 J ) uz

+ 9 sin
n

where U, is the n—th Chebyshev polynomial of the second kind.

This says that an orthonormal basis can be constructed
from a single simple polynomial pgy (a ridge function obtained
from a univariate polynomial) by rotating it through the angles

: 0< 7 <n.
n+1 =J =

It turns out, that for any weight w such an orthogonal
expansion always exists, though the ‘simple’ polynomial pg is
not in general a ridge function. Moreover, such an expansion
reflects the rotational symmetry of the weight in a deeper way,
e.g., for the Legendre polynomials there exists the tight frame
decompositions

f= (f, R‘%p@R‘éwpo

= / (f, Ropo) Repo db, v} € Pn,
0

where k > n + 1 with k£ not even if £ < 2n.
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A tight frame

For the weight function w : [0,1] — IR" and a fixed n, let

P;#0, 0<j<

NS

be an orthogonal polynomial of degree j for the univariate

weight (1+ z)" % w(y/+$2) on [—1,1], and

s

1
e 1+=x
h = 2n_2j+1/1Pj2(x)(1—|—x) 2=7w( : )da:.

Theorem [WO07|. Let v € P, be the polynomial with real
coefficients defined by

1 2 1 .
= > Re(&;2" 2 P;(2]z|*—1
W= T 2 T ey R, e TR,

where z 1= x + 1y, §; € C, [§;] = 1, with {» € {—1,1}. Then

{R’~_v}"_q is an orthonormal basis for P,, and
n—+4+1

k—1
1 : :
Font (f, RL. v)R%, v
k A

J=0

n-+1

27
= / (f, Rov) Rgv df, Vf € P,
27T 0

whenever k > n + 1 and k is odd, or k > 2(n + 1).
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Zonal functions

Fig. Contour plots of the Legendre polynomial v €
Ps for the choices £y = 1 and &1,& € {—1,1}. The
first is the Logan-Shepp polynomial.

A function f on the ball or IR? is zonal if it can be written in
the form

f(x) = g({z,8), [=]).
Compare this with

f(x) =g({x,&)) (ridge function with direction &),
f(x) =g(|Jz|]) (radial function).
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Orthogonal polynomials on a ball

Let P,, be the orthogonal polynomials on a ball in IR®.
Theorem. Let p = p¢ be the zonal function

area(S (n— QJ)P(‘ \ )
— Z — .
o=\ Gmn) 2 Pl <
o< <n

Then

f = dim(P,) / (. 9pYgp dulg)

SO(d)
dim(Py,)

= “arca(d) /S<fap§>pgdf, VfeP,,

where p denotes the normalised Haar measure on SO(d).

Here Zék) is the zonal harmonic of degree k, and P; is a
univariate orthogonal polynomial of degree j.

Corollary (Legendre polynomials). For the weight w = 1
on the unit ball p¢ is is the ridge polynomial given by

x) = C x,£)).
pe(r) = e el (2. )

Here C are Gegenbauer polynomials.
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