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ABSTRACT

We show (by examples) that tight frame decompositions
are useful and natural for finite dimensional Hilbert spaces
which have symmetries, in particular for spaces of multivariate
orthogonal polynomials.
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A question

Let u1, u2, u3 be three equally spaced unit vectors in IR2.

u1

u2 u3

For a given nonzero vector f ∈ IR2, what is the sum of its
orthogonal projections onto these vectors?

(a)

3
∑

j=1

〈f, uj〉uj = 0 (since u1 + u2 = u3 = 0).

(b)

3
∑

j=1

〈f, uj〉uj =
3

2
f, ∀f ∈ IR2.
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Frames in finite dimensional spaces

The following sets of vectors {vj}3
j=1 form tight frames for IR2

i.e., give decompositions of the form

f =

3
∑

j=1

〈f, vj〉vj , ∀f ∈ IR2.

This is technically similar to an orthogonal expansion, except
it has more terms (redundancy).
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The start of a (long) story

The Bernstein operator Bn : C([0, 1]) → Πn is defined
by

Bnf(x) :=
n

∑

k=0

(

n

k

)

xk(1 − x)n−kf
(k

n

)

.

In [Cooper,Waldron 2000] it was shown Bn has the diagonal
form

Bnf =
n

∑

k=0

λ
(n)
k p

(n)
k µ

(n)
k (f),

where the eigenvalues 1 = λ
(n)
0 = λ

(n)
1 > λ

(n)
2 > · · · > λ

(n)
n > 0

are

λ
(n)
k := 1

(

1 − 1

n

) (

1 − 2

n

)

· · ·
(

1 − k − 1

n

)

and the corresponding eigenfunctions have the form

p
(n)
k (x) = xk − k

2
xk−1 + lower order terms.
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The limiting eigenfunctions

The Bernstein operator converges as n → ∞

Bnf =

n
∑

k=0

λ
(n)
k p

(n)
k µ

(n)
k (f)

↓ ↓ ↓ ↓
f =

∞
∑

k=0

1 · p∗k · µ∗
k(f),

where the “limit” eigenfunctions p∗k are related to the Jacobi
polynomials (similarly for the multivariate Bernstein operator).

Fig. The first few limit eigenfunctions p∗k.

4



Jacobi polynomials on a simplex

Let T = conv(V ) be a simplex in IRd with d + 1 vertices V ,
with corresponding barycentric coordinates ξ = (ξv)v∈V , and
define the Jacobi inner product

〈f, g〉ν :=

∫

T

fg ξν−1, ν = (νv)v∈V > 0.

e.g., for d = 2, T = conv{e1, e2, 0}, ν − 1 = (α, β, γ)

ξ0(x, y) = 1 − x − y

ξe2
(x, y) = y

ξe1
(x, y) = x

〈f, g〉ν =

∫ 1

0

∫ 1−x

0

f(x, y)g(x, y) xαyβ(1 − x − y)γ dy dx

The Jacobi polynomials of degree k are

Pν
k := {f ∈ Πk : 〈f, p〉ν = 0,∀p ∈ Πk−1}.

This space has

dim(Pν
k ) =

(

k + d − 1

d − 1

)

.

Each polynomial in Pν
k is uniquely determined by its leading

term, e.g., for ξ2
0 + lower order terms, the leading term is

{(1 − x − y)2}↓ = x2 − 2xy + y2.
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Orthogonal and biorthogonal systems

We describe the known representations for Pν
k in terms of

the leading terms (for the case d = 2, k = 2).

Biorthogonal system (Appell 1920’s): partial symmetries

x2, xy, y2.

Orthogonal system (Prorial 1957, et al): no symmetries

x2 + y2 + 2xy, x2 − y2, x2 − y2 − 4xy.

For the three dimensional space of all quadratic Jacobi
polynomials on the triangle, we want an orthonormal basis with
leading terms determined by the six polynomials

x2, xy, y2, x(1 − x − y), y(1 − x − y), (1 − x − y)2.

Let
Φ := {pξα = ξα + l.o.t ∈ P2 : |α| = 2}

be these six functions. Then Φ is a frame for Pν
2 (i.e., it spans)

but it is not tight. We would like to find contants cα > 0 with

f =
∑

|α|=2

cα〈f, pξα〉pξα =
∑

|α|=2

〈f, p̃ξα〉p̃ξα , ∀f ∈ Pν
2 ,

where p̃ξα :=
√

cαpξα .
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Signed frames

Theorem [PW]. Let H be Hilbert space of dimension d, and

n =

{

1
2d(d + 1), H real;

d2, H complex.

Then for almost every choice of unit vectors u1, . . . , un in H
there are unique scalars c1, . . . , cn for which

f =

n
∑

j=1

cj〈f, uj〉uj , ∀f ∈ H.

The cj can be computed explicitly, some may nonnegative, and

n
∑

j=1

cj = d = dim(H).

Example. For any three vectors in IR2 for which none is a
multiple of another, there is a unique such scaling as above.

+

+

+

+

−

+

+

−

+

Fig. Tight signed frames of three vectors in IR2 with
the signature indicated.

Example. For our six functions Φ, d = dim(Pν
2 ) = 3, and

n =
1

2
d(d + 1) = 6.
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A tight frame for the Jacobi polynomials

Let φν
α be the orthogonal projection of

ξα/(ν)α, |α| = n

onto Pν
n , which is given by

φν
α :=

(−1)n

(n + |ν| − 1)n
FA

( |α| + |ν| − 1,−α

ν
; ξ

)

=
(−1)n

(n + |ν| − 1)n

∑

β≤α

(n + |ν| − 1)|β|(−α)β

(ν)β

ξβ

β!
,

with FA the Lauricella function of type A.

Theorem [WXR]. The Jacobi polynomials on a simplex have

the tight frame representation

f = (|ν|)2n

∑

|α|=n

(ν)α

α!
〈f, φν

α〉νφν
α, ∀f ∈ Pν

n ,

where the normalisation is 〈1, 1〉ν = 1.

Remark. It can be shown that the polynomials

pν
α := (ν)αφν

α = ξα + lower order terms, |α| = n

have a limit p∗α as ν → 0+, and that p∗α is a limit eigenfunction
for the Bernstein operator Bn on the simplex T .
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Well distributed points on the sphere

A number of nice configurations of points on the sphere
give isometric (equal length vector) tight frames, e.g.,

These turn out to be examples of the orbit of a single
vector v ∈ Cd under a finite group G of unitary matrices which
form an irreducible representation, i.e.,

span{gw : g ∈ G} = Cd, ∀w 6= 0.

Theorem ([VW04]). If span{gw}g∈G = Cd for some vector

w, then one can construct a vector v for which

Gv := {gv : g ∈ G}

is a tight frame for Cd.
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A nice example

The group of symmetries of the triangle (G = D3 ≈ S3)
induces a representation on the quadratic Legendre polynomi-
als P2 on the triangle. Since there is a polynomial whose orbit
spans P2, we can construct a single polynomial

f = (2
√

5−5
√

2)
(

ξ2
v +ξ2

w+ξ2
u−

1

2

)

+15
√

2
(

ξ2
v−

4

5
ξv+

1

10

)

∈ P2

whose orbit under G consists of three polynomials which form
an orthonormal basis for P2.

Fig. Contour plots of f and those of its orbit showing
the triangular symmetry.
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Orthogonal polynomials on the disc

Let Pn = Pw
n be the n+1 dimensional space of orthogonal

polynomials of degree n on the unit disc

D := {(x, y) ∈ IR2 : x2 + y2 ≤ 1}

given by the radially symmetric inner product

〈f, g〉 :=

∫

D

fg w =

∫ 2π

0

∫ 1

0

(fg)(r cos θ, r sin θ) w(r) rdr dθ.

The Gegenbauer polynomials are given by the weight

w(r) := (1 − r2)α α > −1.

These polynomials have long been used to analyse the optical
properties of a circular lens, and to reconstruct images from
Radon projections, etc.

Let Rθ : IR2 → IR2 denote rotation through the angle θ,
i.e.,

Rθ(x, y) :=

(

cos θ − sin θ
sin θ cos θ

) (

x
y

)

=

(

x cos θ − y sin θ
x sin θ + y cos θ

)

.

Let the group of rotations of the disc (which are symmetries of
the weight)

SO(2) = {Rθ : 0 ≤ θ < 2π}
act on functions defined on the disc in the natural way, i.e.,

Rθf := f ◦ R−1
θ .

11



The Logan Shepp polynomials

[Logan, Shepp 1975] showed the Legendre polynomials
on the disc (constant weight w = 1) have an orthonormal basis
given by the n + 1 polynomials

pj(x, y) :=
1√
π

Un

(

x cos
jπ

n + 1
+ y sin

jπ

n + 1

)

, j = 0, . . . , n,

where Un is the n–th Chebyshev polynomial of the second kind.
This says that an orthonormal basis can be constructed

from a single simple polynomial p0 (a ridge function obtained
from a univariate polynomial) by rotating it through the angles

jπ

n + 1
, 0 ≤ j ≤ n.

It turns out, that for any weight w such an orthogonal
expansion always exists, though the ‘simple’ polynomial p0 is
not in general a ridge function. Moreover, such an expansion
reflects the rotational symmetry of the weight in a deeper way,
e.g., for the Legendre polynomials there exists the tight frame
decompositions

f =
n + 1

k

k−1
∑

j=0

〈f, Rj
2π

k

p0〉Rj
2π

k

p0

=
n + 1

2π

∫ 2π

0

〈f, Rθp0〉Rθp0 dθ, ∀f ∈ Pn,

where k ≥ n + 1 with k not even if k ≤ 2n.
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A tight frame

For the weight function w : [0, 1] → IR+ and a fixed n, let

Pj 6= 0, 0 ≤ j ≤ n

2

be an orthogonal polynomial of degree j for the univariate

weight (1 + x)n−2jw(
√

1+x
2 ) on [−1, 1], and

hj :=
π

2n−2j+1

∫ 1

−1

P 2
j (x)(1 + x)n−2jw

(

√

1 + x

2

)

dx.

Theorem [W07]. Let v ∈ Pn be the polynomial with real

coefficients defined by

v(x, y) :=
1√

n + 1

∑

0≤j≤n

2

2

1 + δj, n

2

1
√

hj

Re(ξjz
n−2j)Pj(2|z|2−1),

where z := x + iy, ξj ∈ C, |ξj | = 1, with ξn

2
∈ {−1, 1}. Then

{Rj
π

n+1

v}n
j=0 is an orthonormal basis for Pn, and

f =
n + 1

k

k−1
∑

j=0

〈f, Rj
2π

k

v〉Rj
2π

k

v

=
n + 1

2π

∫ 2π

0

〈f, Rθv〉Rθv dθ, ∀f ∈ Pn,

whenever k ≥ n + 1 and k is odd, or k ≥ 2(n + 1).
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Zonal functions

Fig. Contour plots of the Legendre polynomial v ∈
P5 for the choices ξ0 = 1 and ξ1, ξ2 ∈ {−1, 1}. The
first is the Logan-Shepp polynomial.

A function f on the ball or IRd is zonal if it can be written in
the form

f(x) = g(〈x, ξ〉, |x|).
Compare this with

f(x) = g(〈x, ξ〉) (ridge function with direction ξ),

f(x) = g(|x|) (radial function).
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Orthogonal polynomials on a ball

Let Pn be the orthogonal polynomials on a ball in IRd.

Theorem. Let p = pξ be the zonal function

pξ :=

√

area(S)

dim(Pn)

∑

0≤j≤n

2

Z
(n−2j)
ξ

Pj(| · |2)
‖Pj‖w

∈ Pn.

Then

f = dim(Pn)

∫

SO(d)

〈f, gp〉gp dµ(g)

=
dim(Pn)

area(S)

∫

S

〈f, pξ〉pξ dξ, ∀f ∈ Pn,

where µ denotes the normalised Haar measure on SO(d).

Here Z
(k)
ξ is the zonal harmonic of degree k, and Pj is a

univariate orthogonal polynomial of degree j.

Corollary (Legendre polynomials). For the weight w = 1
on the unit ball pξ is is the ridge polynomial given by

pξ(x) =

√
2n + d

√

area(S)
√

dim(Pn)
Cd/2

n (〈x, ξ〉).

Here Cλ
n are Gegenbauer polynomials.
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