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ABSTRACT

We show (by examples) that tight frame decompositions
are useful and natural for finite dimensional Hilbert spaces
which have symmetries, e.g., IRd, Cd and spaces of multivariate
orthogonal polynomials.
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Frames in infinite dimensional spaces

The “Mexican hat” function

ψ(x) :=
2√
3
π− 1

4 (1 − x2)e−
1

2
x2
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gives a continuous wavelet frame

ψa,b(t) =
1√
a
ψ
( t− b

a

)

, a ∈ IR+, b ∈ IR,

and a (discrete) wavelet frame

ψj,k(t) := 2j/2ψ(2jt− kb), j, k ∈ ZZ, (b < 1.97).

These lead to frame decompositions of the form

f =
∑

j

〈f, ψj〉φj , ∀f ∈ L2(IR),

where the ψj are obtained by applying “simple operations” to
a single function ψ.
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Frames in finite dimensional spaces

The following sets of vectors {vj}3
j=1 form tight frames for IR2

i.e., give decompositions of the form

f =
3
∑

j=1

〈f, vj〉vj , ∀f ∈ IR2.

This is technically similar to an orthogonal expansion, except
it has more terms (redundancy).
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The start of a (long) story

The Bernstein operator Bn : C([0, 1]) → Πn

Bnf(x) :=
n
∑

k=0

(

n

k

)

xk(1 − x)n−kf
(k

n

)

has the diagonal form

Bnf =
n
∑

k=0

λ
(n)
k p

(n)
k µ

(n)
k (f),

where the eigenvalues 1 = λ
(n)
0 = λ

(n)
1 > λ

(n)
2 > · · · > λ

(n)
n > 0

are

λ
(n)
k := 1

(

1 − 1

n

)(

1 − 2

n

)

· · ·
(

1 − k − 1

n

)

and the corresponding eigenfunctions have the form

p
(n)
k (x) = xk − k

2
xk−1 + lower order terms.

The Bernstein operator converges as n→ ∞

Bnf =
n
∑

k=0

λ
(n)
k p

(n)
k µ

(n)
k (f)

↓ ↓ ↓ ↓

f =

∞
∑

k=0

1 · p∗k · µ∗
k(f),

where the “limit” eigenfunctions p∗k are related to the Jacobi
polynomials (similarly for the multivariate Bernstein operator).
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Jacobi polynomials on a simplex

Let T = conv(V ) be a simplex in IRd with d + 1 vertices V ,
with corresponding barycentric coordinates ξ = (ξv)v∈V , and
define the Jacobi inner product

〈f, g〉ν :=

∫

T

fg ξν−1, ν = (νv)v∈V > 0.

e.g., for d = 2, T = conv{e1, e2, 0}, ν − 1 = (α, β, γ)

ξ0(x, y) = 1 − x− y

ξe2
(x, y) = y

ξe1
(x, y) = x

〈f, g〉ν =

∫ 1

0

∫ 1−x

0

f(x, y)g(x, y)xαyβ(1 − x− y)γ dy dx

The Jacobi polynomials of degree k are

Pν
k := {f ∈ Πk : 〈f, p〉ν = 0, ∀p ∈ Πk−1}.

This space has

dim(Pν
k ) =

(

k + d− 1

d− 1

)

.

Each polynomial in Pν
k is uniquely determined by its leading

term, e.g., for ξ20 + lower order terms, the leading term is

{(1 − x− y)2}↓ = x2 − 2xy + y2.
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Orthogonal and biorthogonal systems

We describe the known representations for Pν
k in terms of

the leading terms (for the case d = 2, k = 2).

Biorthogonal system (Appell 1920’s): partial symmetries

x2, xy, y2.

Orthogonal system (Prorial 1957, et al): no symmetries

x2 + y2 + 2xy, x2 − y2, x2 − y2 − 4xy.

For the three dimensional space of all quadratic Jacobi
polynomials on the triangle, we want an orthonormal basis with
leading terms determined by the six polynomials

x2, xy, y2, x(1 − x− y), y(1 − x− y), (1 − x− y)2.

Let
Φ := {pξα = ξα + l.o.t ∈ P2 : |α| = 2}

be these six functions. Then Φ is a frame for Pν
2 (i.e., it spans)

but it is not tight. We would like to find contants cα > 0 with

f =
∑

|α|=2

cα〈f, pξα〉pξα =
∑

|α|=2

〈f, p̃ξα〉p̃ξα , ∀f ∈ Pν
2 ,

where p̃ξα :=
√
cαpξα .
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Signed frames

Theorem [PW]. Let H be Hilbert space of dimension d, and

n =

{

1
2d(d+ 1), H real;

d2, H complex.

Then for almost every choice of unit vectors u1, . . . , un in H
there are unique scalars c1, . . . , cn for which

f =
n
∑

j=1

cj〈f, uj〉uj , ∀f ∈ H.

The cj can be computed explicitly, some may nonnegative, and

n
∑

j=1

cj = d = dim(H).

Example. For any three vectors in IR2 for which none is a
multiple of another, there is a unique such scaling as above.

+

+

+

+

−

+

+

−

+

Fig. 1. Tight signed frames of three vectors in IR2

with the signature indicated.

Example. For our six functions Φ, d = dim(Pν
2 ) = 3, and

n =
1

2
d(d+ 1) = 6.
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A tight frame for the Jacobi polynomials

Let φν
α be the orthogonal projection of

ξα/(ν)α, |α| = n

onto Pν
n , which is given by

φν
α :=

(−1)n

(n+ |ν| − 1)n
FA

( |α| + |ν| − 1,−α
ν

; ξ
)

=
(−1)n

(n+ |ν| − 1)n

∑

β≤α

(n+ |ν| − 1)|β|(−α)β

(ν)β

ξβ

β!
,

with FA the Lauricella function of type A.

Theorem [WXR]. The Jacobi polynomials on a simplex have

the tight frame representation

f = (|ν|)2n

∑

|α|=n

(ν)α

α!
〈f, φν

α〉νφν
α, ∀f ∈ Pν

n ,

where the normalisation is 〈1, 1〉ν = 1.

Remark. It can be shown that the polynomials

pν
α := (ν)αφ

ν
α = ξα + lower order terms, |α| = n

have a limit p∗α as ν → 0+, and that p∗α is a limit eigenfunction
for the Bernstein operator Bn on the simplex T .
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Isometric tight frames

Any n ≥ 3 equally spaced unit vectors u1, . . . , un in IR2

u1

u2

u3

u3

u2

u1

un

un−1

provide the following tight frame

f =
2

n

n
∑

j=1

〈f, uj〉uj , ∀f ∈ IR2.

Only five years ago, it wasn’t generally known whether a tight
frame of n ≥ d vectors existed for IRd (or Cd), d ≥ 3. At one
of the problem sessions at Bommerholz 2000 it was asked what
are the best frame bounds for a frame of n ≥ 3 vectors in IR3.

Independently, a number of people considered this question,
e.g., Goyal, et al (signal processing), Zimmermann (in an-
swer to the Bommerholz question), Waldron and Fickus (for
the equidistribution of points). The field of construction and
application of what are usually called finite normalised tight

frames was born. Major advocates include Pete Casazza, John
Benedetto and Jelena Kovačević.
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Harmonic frames

An isometric frame which is generated by an abelian group
of symmetries is called an harmonic frame.

Example. The character table of the cyclic group of order 3





1 1 1
1 ω ω2

1 ω2 ω



 , ω := e
2πi

3 ,

has orthogonal columns, and so the projection of them onto
two coordinates gives isometric frames

{
[

1
1

]

,

[

ω
ω2

]

,

[

ω2

ω

]

} (real) {
[

1
1

]

,

[

1
ω

]

,

[

1
ω2

]

} (complex)

and these are harmonic.

Theorem [VW04]. All harmonic frames of n vectors can be

obtained by taking rows of the character table of an abelian

group of order n.
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The list of all harmonic frames
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Well distributed points on the sphere

A number of nice configurations of points on the sphere
give isometric tight frames, e.g.,

These turn out to be examples of the orbit of a single

vector v ∈ Cd under a finite group G of unitary matrices which
form an irreducible representation, i.e.,

span{gw : g ∈ G} = Cd, ∀w 6= 0.

Theorem ([VW04]). If span{gw}g∈G = Cd for some vector

w, then one can construct a vector v for which

Gv := {gv : g ∈ G}

is a tight frame for Cd.
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A nice example

Since the group of symmetries of the triangle (the dihedral

group G = D3 ≈ S3) induces an irreducible representation on
the quadratic Legendre polynomials P2 on the triangle, we can
construct a single polynomial

f = (2
√

5−5
√

2)
(

ξ2v +ξ2w+ξ2u−
1

2

)

+15
√

2
(

ξ2v−
4

5
ξv+

1

10

)

∈ P2

whose orbit under G consists of three polynomials which form
an orthonormal basis for P2.

Fig. 1. Contour plots of f and those of its orbit
showing the triangular symmetry.
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Heisenberg frames

Let S be the shift and Ω the modulation operator on Cd,

i.e., with ω := e
2πi

d a primitive d–th root of unity

S :=















0 0 · · · 0 1
1 0 · · · 0 0

0 1
...

...
...

. . . 0 0
0 0 1 0















, Ω :=













1
ω

ω2

. . .

ωd−1













.

These generate the (discrete) Heisenberg group, with

ΩkSj = ωjkSjΩk.

Numerically there exists a v ∈ Cd for which Φ := (SjΩk)d−1
j,k=0

is an isometric tight frame with equal cross correlation, i.e.,

〈φj , φk〉 =
1√
d+ 1

, j 6= k.

These are known as Heisenberg frames, SICPOVM’s (rank

one quantum measurements) and as sets of equiangular lines.
Explicit solutions for v are known only for d ≤ 7 and

d = 19, e.g., for d = 7 one has v = (a, b, b, c, b, c, c)T ∈ C7,
where

a = −
√

8 − 5
√

2(2
√

2 + 1 ± 7i)

2
√

7(3
√

2 − 2)
,

b =

√

8 − 5
√

2

4
√

7
+

4
√

2

4
, c =

√

8 − 5
√

2

4
√

7
−

4
√

2

4
.
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More on harmonic frames
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Fig. The number of inequivalent harmonic frames of

n vectors in C3 and C4. The lower graph shows how
many of them are lifted.
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Fig. The number of harmonic frames of n vectors

in C2 and C3, and those with n − d erasures (lower

graph).
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