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Abstract

This thesis investigates unitary equivalence for a special class of finite tight
frames called harmonic frames, which are constructed as the orbit of an uni-
tary action of a finite abelian group. The notion of a multiplicative equiv-
alence is defined and we show that in C1 and C2, unitary equivalence is
completely characterised by multiplicative equivalence. It turns out that
multiplicative equivalence is unitarily equivalence via an automorphism (per-
mutation which respects group structure). In dimensions greater than two, a
partial classification of unitary equivalences in terms of multiplicative equiva-
lence is made. The unitary equivalence between any two frames is categorised
into equivalences induced by permutations which preserve group structure
and those which do not. Pertinent to this whole study of equivalences, the
sums of roots of unity, their minimal vanishing sums and finding nice bases
for cyclotomic fields reveal an intricate relationship due to their links with
group characters.
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Chapter 1

Introduction

The theory of frames has been in the literature for some time, dating back at
least as far as 1937 [Sch37], but the modern development can be attributed to
the seminal paper of Duffin and Schaeffer [DS52], where the notion of frame
bounds were introduced. Since then, frame bounds have been assimilated into
the modern definition of frames. Frames are essentially spanning sequences
(when order is important) or sets, in a Hilbert space, satisfying the frame
bound conditions. While much emphasis has been on the study of infinite
dimensional frames, the study of finite tight frames should not neglected. As
most real life applications often truncate dimensions at some point, it makes
sense to explore the theory in finite dimensions. Some additional niceties are
afforded to the finite context, from the results in functional analysis (e.g.,
the guaranteed existence of an inner product), to being able to draw upon
the horde of well established results in finite group and character theory, as
well as topics like the roots of unity. Tight frames in particular, give a nice
generalisation to the notion of an orthonormal basis and all the bells and
whistles of being able to encode vectors with an inner product expansion.

Frames have been used since the 1980’s in wavelet theory to obtain de-
sirable Fourier expansions and in modern times through the study of convex
polytopes[CFK09], physics (quantum mechanics [Eld02]), and engineering
(Gabor systems, filter banks and a plethora of other engineering applica-
tions). See [KC07] for a nice canvas of some areas of application.

Sometimes redundancy is desirable in an encoding of information. If one
was to encode a vector using an orthonormal basis, to achieve redundancy in
any of the basis vectors, you would need to encode your vector in two copies
of the basis. Certain tight frames have the advantage of allowing for such
redundancy across the board, without the need for full duplicates. The extra
efficiency achieved is attributed by encoding the information in a uniform
way.
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CHAPTER 1. INTRODUCTION 2

A prototypical example is the famous“Mercedes-Benz” frame, consisting
of the three equally spaced vectors in R2. We can also think of them as
{i, eπi/6, e−πi/12} in C obtained by taking the 3–th roots of unity and trans-
lating by an angle of π

2
, so that one of the vectors is i. There are no cookies

for realising the graphical representation of these three vectors in C. This
type of arrangement allows one to equally weight the information encoded
in each vector so that we are now able to lose the coefficient in front of any
given frame vector and still reconstruct the original vector.

Figure 1.0.1: The Mercedes–Benz tight frame of three equally spaced vectors
in R2.

The process can be generalised to provide as much redundancy as one
requires and also into higher dimensions by taking n equally spaced vectors
of dimension d. One notices that this symmetric arrangement has close as-
sociations with cyclic groups and the n–th roots of unity. Teasing out these
connections, the thesis aims to shed light on when two cyclic harmonic frames
are unitarily equivalent.

The main points from the rest of the thesis will now be outlined.

Chapter Two

This chapter is based mostly on [Wal10] with some reference to [Chr03]. It is
a collection of well known basic results and concepts concerning finite tight
frames, available in common frame theory books. We will have our first for-
mal encounter with frames in the general sense early on in Definition 2.6,
what it is for a frame to be tight (Definition 2.3) and why they are neces-
sarily a spanning set (Proposition 2.2). In particular, every finite spanning
set for a finite dimensional vector space is a frame. Next, the machinery of
analysis, synthesis and frame operators are established by definitions 2.5, 2.6.
These powerful tools are used to deduce some useful properties about tight
frames. For example, Proposition 2.7, which establishes the equivalence be-
tween the inner product expansion and tight frames. The important concept
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of the Gramian (Definition 2.14) is introduced, as is the notion of unitary
equivalence between two tight frames (Definition 2.15).

Gramians are shown to play a significant connection with unitary equiv-
alences as two normalised tight frames are unitarily equivalent if and only if
their Gramians are equal (Corollary 2.17). Theorem 2.20 then characterises
normalised tight frames as orthonormal projections of an orthonormal basis,
and that the Gramian can act as the orthonormal projection (Theorem 2.16).
The important concept of an angle multiset (Definition 2.22) is introduced
which will help us distinguish between unitarily inequivalent frames.

Then the connection between group theory and finite frame theory is
made clear with G–frames (Definition 2.25) and a way to construct tight
frames from irreducible representations of groups (Theorem 2.30). Special
attention is directed to a type of frame called a harmonic frame (Defini-
tion 2.34), constructed using the character table of an abelian group. Pon-
tryagin duality (Theorem 2.33) tells us that to generate harmonic frames, we
can alternatively use subsets of the group, rather than subsets of characters.
Theorem 2.35 tells us this construction gives us a G–frame with an abelian
group G. These cyclic harmonic frames become the centre of interest for the
rest of the thesis.

Chapter Three

This chapter is devoted to study of sums of roots of unity, when they vanish,
and bases of cyclotomic fields. Vanishing sums are of interest as they allow
us to understand the linear relations between roots of unity. These properties
will help in chapter four when we try to give a classification for certain types
of unitarily equivalent classes. Material from [Rom05], [CJ76] and [LL00]
will be drawn upon, with some brief mention of other closely related areas.

Lemma 3.6 will show that any two different sums of roots of unity will
give a unique complex number, unless the sums vanish. Theorems 3.12 and
3.15 tell us the minimal vanishing sums look like sums of all p–th roots of
unity, for primes p, but note that an explicit classification of sums of roots
of unity for given orders n has not been done for very large n.

The set of all primitive n–th roots of unity, with n square free, are shown
to form a basis (Theorem 3.18) and a constructive proof will be presented
in which the roots of unity are represented as sums of primitive roots of
unity. The idea for this proof was hinted in [CJ76]. From this construction,
Corollary 3.19 is deduced which allows us to infer that the coefficients in
any particular basis representation take the same sign. This will be used
in chapter four to prove a characterisation of the unitary equivalences of a
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particular family of cyclic harmonic frames.

Chapter Four

This chapter will present a majority of the new research on unitary equiv-
alences between harmonic frames, jointly conducted with Shayne Waldron.
Notions of unitary equivalence via an automorphism(Definition 4.2) and mul-
tiplicatively equivalence(Definition 4.4) are defined for harmonic frames in
general. We prove that unitary equivalence via an automorphism is equiva-
lent to multiplicative equivalence (Theorem 4.13). i.e., multiplicative equiv-
alence implies it is possible to find a permutation inducing a unitary equiv-
alence that respects group structure.

We show that cyclic harmonic frames for C1 and C2 are unitarily equiv-
alent if and only if they are multiplicatively equivalent. This is a complete
classification of equivalences for these types of frames in terms of multiplica-
tive equivalence (Theorems 4.17, 4.20). For dimensions greater than two,
Theorems 4.27, 4.30, 4.34 carve out families of cyclic harmonic frames which
are unitarily equivalent but not multiplicatively equivalent. The idea of a
σ–invariant number is defined for such families of frames (Definition 4.36)
and shown to allow the construction of more families by freely adding or
removing these elements (Proposition 4.37). This notion generalises the idea
of lifted frames.

Finally, we construct a few cyclic harmonic frame families in dimensions
greater than two, where unitary equivalence and multiplicative equivalence
are the same. Subsets of Z∗n with n square free (Theorem 4.40), and a more
abstract class (utilising the situations with unique sums of roots of unity)
are shown to exhibit this behaviour (Theorem 4.42).

The thesis is concluded with a few conjectures regarding some other iden-
tified families which may also exhibit this behaviour.



Chapter 2

General Theory of Finite Tight
Frames

2.1 Introduction

In this chapter we will explore the basic concepts and definitions of finite
tight frames necessary to understand the work of chapter four on unitary
equivalences. Much can be said about the general theory of finite tight
frames. A general exposition of the nature of finite frame theory can be
found in [Wal10] and [Chr03]. The proofs of the theorems in this chapter
are provided for the sake of completeness. Apart from the goal of setting
up machinery for later use, the rest of the chapter is here to give us an
appreciation of what it is to be a finite tight frame, their characteristics, and
form, in order to solidify understanding.

2.2 Frame Bounds

Definition 2.1. A countable sequence (fj) of vectors in a Hilbert space H is
a frame if and only if there exists A,B > 0 such that for all v ∈ H,

A‖v‖2 ≤
∑
j

|〈v, fj〉|2 ≤ B‖v‖2. (2.2.1)

A, B are the frame bounds given in [DS52]. One consequence of this definition
is that the multiset of vectors constituting the frame must span the vector
space as a set.

Proposition 2.2. Let (fj) be a frame, then span{fj} = H.

5
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Proof. Suppose not. Let V = span{fj}. Then H = V
⊕

V ⊥ and V ⊥ 6= 0.
Take a non trivial v ∈ V ⊥. Then,

0 < A‖v‖2 ≤
∑
j

|〈v, fj〉|2 = 0,

a contradiction. Therefore span{fj} = H.

While the formal definition of frames makes use of the concept of se-
quences, sometimes the ordering of the vectors involved will not affect whether
a multiset constitutes a frame. It is convenient in particular cases to refer to
frames as a (multi)set rather than a sequence.

Definition 2.3. A frame is tight if the two frame bounds are equal. i.e.,

A‖v‖2 =
∑
j∈J

|〈v, fj〉|2, ∀v ∈ H.

(fj) is a finite frame if J is a finite set.

A frame is a normalised tight frame if A = 1. In literature, this is some-
times referred to as a Parseval frame. Since the bound A is just a normalising
constant, it suffices to study normalised tight frames.

Proposition 2.4. Any finite spanning multiset is a frame.

Proof. Take a finite spanning multiset {f1, f2, . . . , fm}. The case where f = 0
is trivial, so suppose f 6= 0 ∈ H. The Cauchy-Schwarz inequality implies

m∑
j=1

|〈f, fj〉|2 ≤
m∑
j=1

‖fj‖2‖f‖2, ∀f 6= 0 ∈ H.

Hence
∑m

j=1 ‖fj‖2 is an upper frame bound (not necessarily the smallest).
The lower frame bound can be defined as

A := inf{
m∑
j=1

|〈f, fj〉|2 : ‖f‖ = 1}.

This is well defined as the infimum is attained via a compactness argument.
Since for all f ∈ H,

m∑
j=1

|〈f, fj〉|2 =
m∑
j=1

|〈 f
‖f‖

, fj〉|2‖f‖2 ≥ A‖f‖2,

A is suitable as the lower frame bound. It follows that any finite spanning
multiset in a finite dimensional vector space will be a frame.
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The same is not necessary true if we take a countably infinite set. For
example, the multiset of {(1, 0), (0, 1), (0, 1), . . .} is not a frame for R2 as no
upper frame bound is possible.

2.3 Analysis and Synthesis Operators

For a given finite frame (not necessarily tight), its analysis and synthesis
operators give much insight into many properties of the frame, including
whether or not it is tight, as well as a direct connection to the key concept
of the Gramian matrix of a frame.

Definition 2.5. For a finite sequence (fj)j∈J ∈ H, the synthesis or pre-
frame operator is the linear map

V : `2(J)→ H, V (a) :=
∑
j∈J

ajfj, a := (a1, a2, . . .) ∈ `2(J).

The dual of this operator, the analysis or frame-transform operator is
defined as

V ∗ : H → `2(J), V ∗(f) := (〈f, fj〉)j∈J .

Definition 2.6. Let

S : H → H, Sf := V V ∗f =
∑
j∈J

〈f, fj〉fj, f ∈ H.

Then S is called the frame operator.

Note that S is a self-adjoint operator.

Proposition 2.7. A frame is tight if and only if

f =
1

A

∑
j∈J

〈f, fj〉fj, ∀f ∈ H. (2.3.1)

In particular, a finite frame is a tight frame if and only if S = AI for some
frame bound A.

Proof. Let (fj)j∈J denote a finite tight frame, I the identity operator. Con-
sider the analysis operator S of the frame. Observe that by properties of the
inner product,

A‖f‖2 =
∑
j∈J

|〈f, fj〉|2 = 〈Sf, f〉, ∀f ∈ H.
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Then,

〈(S − AI)f, f〉 = 〈Sf, f〉 − A〈f, f〉 = A‖f‖2 − A‖f‖2 = 0, ∀f ∈ H.

Since S−AI is a self-adjoint operator, and 〈(S−AI)f, f〉 = 0, for all f ∈ H,
we have that S − AI = 0. Therefore a tight frame gives rise to the frame
expansion in (2.3.1). Conversely, if (2.3.1) is true, then∑

j∈J

|〈f, fj〉|2 = 〈Sf, f〉 = 〈Af, f〉 = A‖f‖2.

This type of expansion is sometimes referred to as a Parseval type ex-
pansion.

Corollary 2.8. The image of a tight frame under a unitary transformation
is still a tight frame.

Proof. Let V be the pre-frame operator for a tight frame, A the frame bound,
and U be an unitary operator.

(UV )(UV )∗ = UV V ∗U∗ = UAIU∗ = AUIU∗ = AI.

Remark 2.9. The only normalised tight frames which are a basis are the
orthonormal bases. As a basis, they admit a unique expansion. For a nor-
malised tight frame with redundancy, the coefficients used in the frame ex-
pansion may not be unique, but if we use the inner product expansion, then
the coefficients associated with that are.

Example 2.10. The sequence of vectors ((1, 0), (0, 1), (1, 0), (0, 1)) forms a
tight frame while ((1, 0), (1, 0), (0, 1)) does not. The frame operators of the
two frames are (respectively),(

2 0
0 2

)
,

(
2 0
0 1

)
.

Example 2.11. The classic example of a tight frame is three equally spaced
vectors in R2 which give the following frame decomposition:

f =
2

3

3∑
j=1

〈f, uj〉uj, ∀f ∈ R2.
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Figure 2.3.1: The Mercedes–Benz tight frame of three equally spaced vectors
in R2.

This idea of using equally spaced vectors was generalised to n vectors at
least as early as 1937 in [Sch37], i.e., n equally spaced vectors u1, u2, . . . , un ∈
R2 give rise to a tight frame with decomposition,

f =
2

n

n∑
j=1

〈f, uj〉uj, ∀f ∈ R2.

Example 2.12. A continuous analogue of Example 2.11 is possible by taking
a continuous set of rotations around the circle given by

f =
1

π

∫ 2π

0

〈f, fθ〉fθ dθ, fθ :=

(
cos θ
sin θ

)
, ∀f ∈ R2.

Proposition 2.13. If (fj)j∈J is a finite tight frame and d := dim(H), then

trace(S) =
∑
j∈J

‖fj‖2 = dA. (2.3.2)

Proof. A simple calculation shows that trace(S) =
∑

j∈J ‖fj‖2, but since we
also have S = V V ∗, it is a d × d matrix. As (fj)j∈J is also a tight frame,
S = AI, so trace(S) = dA. Hence (2.3.2) is satisfied.

Definition 2.14. For a finite sequence of vectors (fj)j∈J ∈ H, the Gramian
or Gram matrix is the n× n matrix

Gram((fj)j∈J) := [〈fk, fj〉]j,k∈J .

This is just the composition of the analysis and synthesis operators in
opposite order to the frame operator, i.e., the Gramian is the matrix rep-
resenting the operator V ∗V : `2(J) → `2(J) with respect to the standard
orthonormal basis {ej}j∈J .

It is now appropriate to introduce the notion of equivalence between two
tight frames, a fundamental concept explored in this thesis.
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Definition 2.15. Two tight frames (φj)j∈J , (ψk)k∈K are unitarily equiv-
alent if there exists a bijection σ : J → K, a unitary map U and a c > 0
such that

φj := cUψσj, ∀j ∈ J,

i.e., there exists a map U that takes one frame to another and preserves
inner products under some permutation σ.

When we do not wish to allow for a reordering of frame vectors, we set σ
to be the trivial permutation. The scaling factor c is set to 1 when dealing
with tight frames of equal norm (i.e., ‖fi‖ = ‖fj‖, ∀i, j). Harmonic frames
(Definition 2.34) in particular, are equal norm.

Later on, we will study unitary equivalences with emphasis on the per-
mutations involved (often non trivial) and attempt to classify unitary equiv-
alences through studying the associated permutations σ.

2.4 Projections and Tight Frames

Theorem 2.16. An n× n matrix P = [pj,k]j,k∈J is the Gramian matrix of a
normalised tight frame (fj)j∈J for the space H := span{fj}j∈J if and only if
it is an orthogonal projection matrix, i.e., P = P ∗ = P 2. Moreover,

d = dim(H) = rank(P ) = trace(P ) =
∑
j∈J

‖fj‖2. (2.4.1)

Proof. (⇒) Let Φ = (fj)j∈J be a normalised tight frame, and P = Gram(Φ).
Take f = f` in the Parseval expansion (2.3.1). Then f` =

∑
j∈J〈f`, fj〉fj and

〈fk, f`〉 =
∑
j∈J

〈f`, fj〉〈fk, fj〉 ⇐⇒ p`k =
∑
j∈J

p`jpjk ⇐⇒ P = P 2.

P is Hermitian since pjk = 〈Φk,Φj〉 = 〈Φj, φk〉 = pkj and hence P is a
projection.
(⇐) Suppose that P is an n× n orthogonal matrix such that P = P ∗ = P 2.
The columns of P are fj := Pej, j ∈ J where {ej}j∈J is the standard
orthonormal basis of `2(J). Fix f ∈ H := span{fj}nj=1 ⊂ `2(J). Then f =
Pf , so that

f = P

(∑
j∈J

〈Pf, ej〉ej

)
=
∑
j∈J

〈f, Pej〉Pej =
∑
j∈J

〈f, fj〉fj,

i.e., (fj)
n
j=1 is a normalised tight frame for H. Taking the trace of P gives

(2.4.1) by (2.3.2).
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Corollary 2.17. Normalised tight frames are unitarily equivalent if and only
if their Gramians are equal.

Proof. Let Φ = (fj)j∈J , ψ = (gj)j∈J be normalised tight frames for H and K
respectively.
(⇒) If Φ and Ψ are unitarily equivalent, i.e., There exists a U unitary, and
a c > 0 such that gj = cUfj, ∀j ∈ J , then

〈gj, gk〉 = 〈cUfj, cUfk〉 = c2〈fj, fk〉,

but by (2.4.1) we have c = 1, hence the Gramians are equal.
(⇐) Suppose the Gramians of Φ and Ψ are equal, i.e., 〈gj, gk〉 = 〈fj, fk〉,
for all j, k ∈ J . Since Theorem 2.16 tells us the Gramian is an orthogonal
projection matrix in this case, we can suppose without loss of generality that
f1, f2, . . . , fd and g1, g2, . . . , gd form a basis. Let U be the mapping Ufj = gj,
for j ∈ {1, 2, . . . , d}. As the Gramians are equal, this implies U is unitary.
Now we check that that U maps fs to gs for d < s ≤ k. Let d < s ≤ k and
1 ≤ j ≤ d. Then

〈Ufs − gs, gj〉 = 〈Ufs, gj〉 − 〈gs, gj〉 = 〈Ufs, Ufj〉 − 〈gs, gj〉
= 〈fs, fj〉 − 〈gs, gj〉 = 0, ∀1 ≤ j ≤ d,

as required. Therefore U is our desired unitary map.

In light of this corollary, when reordering is allowed, Definition 2.15 can be
reformulated as follows: two tight frames Φ, Ψ, indexed by J are unitarily
equivalent if and only if there exists a c > 0, and a permutation σ on J ,
such that

Gram(Φ) = c2P ∗σGram(Ψ)Pσ, (2.4.2)

where Pσ is the permutation matrix induced by σ.

Example 2.18. Let ω = e2πi/3. Then

Φ :=

([
1
1

]
,

[
ω
ω2

]
,

[
ω2

ω

])
,Ψ :=

([
1
1

]
,

[
1
ω

]
,

[
1
ω2

])
.

are equal norm tight frames for C2 which are not unitarily equivalent since

Gram(Φ) =

 2 −1 −1
−1 2 −1
−1 −1 2

 , Gram(Ψ) =

 2 1 + ω2 1 + ω
1 + ω 2 1 + ω2

1 + ω2 1 + ω 2


are different.
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Later on, we will present a complete characterisation of the unitary
equivalence classes of a family of equal tight frames called cyclic harmonic
frames(c.f., Definition 2.34) in C2.

Lemma 2.19. The orthogonal projection of a normalised tight frame is a
normalised tight frame.

Proof. Let (fj)j∈J be a normalised tight frame for H and P be an orthogonal
projection of H. Since

‖Pv‖2 =
∑
j∈J

|〈Pv, fj〉|2 =
∑
j∈J

|〈P 2v, fj〉|2 =
∑
j∈J

|〈Pv, Pfj〉|2, ∀v ∈ P (H),

it follows that (Pfj)j∈J is a normalised tight frame for P (H) ⊂ H.

In particular, this means that the orthogonal projection of an orthonormal
basis is a normalised tight frame. The converse is captured in the following
theorem.

Theorem 2.20. Every finite normalised tight frame is the orthogonal pro-
jection of an orthonormal basis.

Proof. Let Φ = (fj)j∈J be a finite normalised tight frame for H, P =
Gram(Φ), (ej)j∈J be the standard orthonormal basis for `2(J). By Theo-
rem 2.16, P is an orthogonal projection matrix. By Lemma 2.19, (Pfj)j∈J
is a normalised tight frame. As

〈Pej, P ek〉 = 〈Pej, ek〉 =
(
(k, j) entry of P

)
= 〈fj, fk〉,

it follows that (Pej)j∈J is unitarily equivalent to Φ (see Corollary 2.17)

This theorem is a special case of Năimark’s theorem[AG63].

Example 2.21. A projection of the orthonormal basis of R3 onto R2 is a
tight frame for R2.

Definition 2.22. An angle multiset of a frame Φ = (φj)j∈J is

Ang(Φ) := {〈φj, φ1〉 : j ∈ J, j 6= 1}.

Members of this multiset will be referred to as angles.

Recall that multisets are sets where we allow for multiplicity of elements.
For example, {0, 0} is a multiset.

Remark 2.23. In order for two tight frames to be unitarily equivalent, it
is necessary (but not sufficient) that the two frames share the same angle
multisets since they share the same Gramian matrix of inner products. This
provides another way to differentiate the two frames in Example 2.18.
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Figure 2.4.1: Graphical sketch of a tight frame in R3 being projected onto
tight frames for R2 or for R.

2.5 G–Frames

One might wonder how frames might be generated. Various linkages exist
in other branches of mathematics enabling the construction of tight frames.
Clear correspondences are present between graphs and tight frames with
various constructions from Seidel matrices [Wal09], to Paley tournaments
[Ren07]. Combinatorial constructions involving Hadamard matrices [PW02],
and polygons may also be used [BF03]. See [Wal10] for an overview of various
techniques.

Groups also give rise to strong relationship with frames. The idea of using
groups to construct frames has been used for a long time (at least since the
1940s [BC79]) and allow us to hook in to the wonderful machinery of modern
algebra. Tight frames are often highly symmetric, so it makes sense to utilise
groups in some way. While most of the focus has been on abelian groups and
cyclic groups in particular, some work has been done on the Heisenberg group
[CV98] and other non abelian varieties [VW08].

Group frames arise by letting a group act on a non trivial vector and
taking the orbit under this action to be your frame.

To begin with, we first develop the theory of G–frames in general then
we will derive some nice results showing the relationship to tight frames.

Definition 2.24. A representation of a finite group G is a finite dimen-
sional Hilbert space H, together with a group homomorphism ρ : G→ U(H).
The group action will be denoted

gv := ρ(g)(v), g ∈ G, v ∈ H.
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Definition 2.25. Let G be a finite group. We say that a frame (φg)g∈G for
H is a G–frame if there exists a representation ρ = ρφ : G → U(H) such
that

gφh := ρ(g)φh = φgh.

A subspace V ⊂ H is G-invariant if gv ∈ V , ∀v ∈ V .

This definition has the advantage that a G-frame is automatically an
equal-norm frame.

Proposition 2.26. The frame operator S of a G-frame commutes with G,
i.e.,

S(hf) = hS(f), h ∈ G, ∀f ∈ H.

Proof. Let Φ = (φg)g∈G be a G-frame for H, with frame operator S = SΦ.
As φ(h)∗ = φ(h)−1 = ρ(h−1),

S(hf) =
∑
g∈G

〈hf, φg〉φg = h
∑
g∈G

〈f, h−1φg〉h−1φg = h
∑
g∈G

〈f, φh−1g〉φh−1g

= hS(f).

Remark 2.27. The Gramian of G-frames have the form

〈φg, φh〉 = 〈gφ1, hφ1〉 = 〈h−1gφ1, φ1〉,

where 1 refers to the identity element of the group.

Definition 2.28. A unitary action (representation) of a group G on H is
irreducible if the only G-invariant subspaces of H are {0} and H. i.e.,

span{gv}g∈G = H, ∀v 6= 0, v ∈ H.

Lemma 2.29. S is a positive operator.

Proof. The frame bound condition (2.1) can be rewritten as

〈Af, f〉 ≤ 〈Sf, f〉 ≤ 〈Bf, f〉, ∀f ∈ H,

i.e.,
AI ≤ S ≤ BI.

Hence S is positive.

Theorem 2.30. If the unitary action of G on H is irreducible, then (gv)g∈G
is a tight G-frame for H for any v 6= 0.
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Proof. Let v 6= 0 and S denote the frame operator of (gv)g∈G. Since S is
positive, we can take some eigenvalue λ > 0 with eigenvector w. S commutes
with G by Proposition 2.26, so for any g ∈ G, gw is also an eigenvector for
λ by the calculation

S(gw) = gS(w) = g(λw) = λ(gw).

As {gw}g∈G spans H implies S = λI, by Proposition 2.7, (gv)g∈G is a tight
frame.

Thus, G-frames allow us to construct finite tight frames through their
irreducible representations.

Example 2.31. Let Zn = 〈a〉 be the cyclic group of order n. Then the
irreducible representation

ρR2(a) :=

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
induces the sequence (gv)g∈Zn of n equally spaced vectors for any v ∈ R2 of
unit norm. This forms a tight frame.

2.6 Harmonic Frames

Definition 2.32. The characters of a finite abelian group are maps

χ : G→ C \ {0}, χ(g + h) = χ(g)χ(h), χ(1) = 1, ∀g, h ∈ G.

It is well known that characters have a one to one correspondence with the
irreducible representations of the group (up to representation equivalence).
For abelian groups the value characters evaluated at each group element is
just an n–th root of unity, where n is the order of the group. Under pointwise
multiplication, characters form a group Ĝ. The group of characters Ĝ is
known to be isomorphic to the original group G.

Each character is also orthogonal to each other, i.e.,

〈ξ, η〉 =
∑
g∈G

ξ(g)η(g) =

{
0, ξ 6= η

n, ξ = η

Theorem 2.33 (Pontryagin Duality). The dual of Ĝ is isomorphic to G

under a canonical map, i.e.,
ˆ̂
G ∼= G.



CHAPTER 2. GENERAL THEORY OF FINITE TIGHT FRAMES 16

The character table of an abelian group G of order n is an n×n matrix
with rows corresponding to characters and the columns are indexed by group
elements. Since the characters are orthogonal, the character table is a scalar
multiple of an orthogonal matrix. For cyclic groups of order n, the character
table looks like

1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

1 ω3 ω6 ω9 · · · ω3(n−1)

...
...

...
...

...
...

1 ωn−1 ω2(n−1) ω3(n−1) · · · ω(n−1)(n−1)


.

If we scale that matrix by 1/
√
n then it is the matrix corresponding to the

discrete Fourier transform (Fourier Matrix).
In light of this, we can make the following definition:

Definition 2.34. Let G be a finite abelian group of order n, with characters
(ξj)

n
j=1 and Ĵ ⊂ Ĝ. Then any tight frame which is unitarily equivalent to the

equal-norm tight frame given by

Φ = (φg)g∈G, φg := (ξj(g))j∈Ĵ ∈ CĴ

is called a harmonic frame. If G is taken to be a cyclic group, then we
call the corresponding frame a cyclic harmonic frame.

This definition essentially says that if we take the character table of a
finite abelian group, take subsets of the rows of the character table (i.e.,
subsets of characters), then the n column vectors of dimension d formed by
looking at the columns of the subsequent submatrix form a tight frame called
a harmonic frame.

There are two convenient ways to see why this definition is well defined.
Firstly we can show by direct computation that the frame operator of the col-
umn vectors is equal to nI using the fact that the characters are orthogonal.
Secondly, since the character table matrix is essentially an orthogonal ma-
trix (up to a scaling by 1/

√
n), by the theorem of Naimark (Theorem 2.20),

we can use the columns of the character table (which form an orthonor-
mal basis), and project down onto the d dimensional subspace of Cn formed
by considering only the selected rows (zeroing out the components in other
rows). We can then identify this subspace with Cd.

Harmonic frames are also G-frames since

φg = ρ(g)v1, ρ(g) = diag(ξ(g))ξ∈Ĵ , v1 = (ξ(1))ξ∈Ĵ ,
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implies
gφh = ρ(g)φh = ρ(g)ρ(h)v1 = ρ(gh)v1 = φgh.

Theorem 2.35. Let Φ be a finite equal-norm tight frame for H. Then the
following are equivalent:

(a) Φ is a G-frame, where G is an abelian group.

(b) Φ is a harmonic frame (obtained from the character table of G).

Proof. See [VW05] for a proof.

The groups G,H can be taken to be the same group, but this need not
be the case.

Example 2.36. The only harmonic frame arising from Z2 × Z2 is unitarily
equivalent to a cyclic harmonic frame of Z4. We will revisit this example in
more detail later on in the context of unitary equivalences.

Example 2.37.

Φ =

([
1
1

]
,

[
ω
ω

]
,

[
ω2

ω2

]
,

[
ω3

ω3

]
, · · · ,

[
ωn−1

ωn−1

])
formed by taking the second and last rows of the character table of a cyclic
group of order n, is a cyclic harmonic frame in C2. It is unitarily equivalent
to n equally spaced vectors of unit length in C2 via the map

U :=
1√
2

[
1 1
−i i

]
,

i.e.,
1√
2
U

[
ωj

ωj

]
=

[
cos(2πj/n)
sin(2πj/n)

]
, ∀j ∈ {0, 1, 2, . . . , n− 1}.

Example 2.38. The C8 cyclic harmonic frames

Φ =

([
1
1

]
,

[
ω
ω3

]
,

[
ω2

ω6

]
,

[
ω3

ω9

]
,

[
ω4

ω4

]
,

[
ω5

ω7

]
,

[
ω6

ω2

]
,

[
ω7

ω5

])
and

Φ =

([
1
1

]
,

[
ω
ω5

]
,

[
ω2

ω2

]
,

[
ω3

ω7

]
,

[
ω4

ω4

]
,

[
ω5

ω

]
,

[
ω6

ω6

]
,

[
ω7

ω3

])
formed by taking the first and third, first and fifth rows of the character table
are not unitarily equivalent as their angle multisets differ.
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Since the rows of the character matrix are orthogonal, so are its columns.
We could use the construction with columns instead. Therefore we would be
considering J ⊂ G instead of Ĵ ⊂ Ĝ. This would still be a G-frame since Ĝ
is isomorphic to G and if we define the frame to be (wξ)ξ∈Ĝ, with wξ := ξ|J
and

wξ = ρ(ξ)w1, ρ(ξ) := diag(ξ|J), w1 := 1|J ,
we have (wξ)ξ∈Ĝ satisfying the conditions for being a G-frame.

By Pontryagin duality map (canonical group isomorphism) (see Theo-
rem 2.33),

G→ ˆ̂
G : g → ˆ̂g, ˆ̂g(χ) := χ(g), ∀χ ∈ Ĝ, g ∈ G.

We may refer to
vg = (ξ(g))ξ∈Ĵ = (ˆ̂g(ξ))ξ∈Ĵ = ˆ̂g|Ĵ ,

or Φ = (ξJ)ξ∈Ĝ for convenience. This allows us to index our finite tight frames
using subsets of the original group rather than characters when convenient.

Proposition 2.39. Given a cyclic harmonic frame (vj),

〈vj+a, vk+a〉 = 〈vj, vk〉, ∀a ∈ Zn,

i.e., The Gramian is preserved by a constant translation of all frame vectors
in the sequence.

Proof. Let vj = ωa1j + . . .+ ωadj. Then,

〈vj+a, vk+a〉 = ωa1(j+a)ωa1(k+a) + . . .+ ωad(j+a)ωan(k+a)

= ωa1(j+a)−a1(k+a) + . . .+ ωan(j+a)−an(k+a)

= ωa1(j−k) + . . .+ ωan(j−k)

= 〈vj, vk〉.

Corollary 2.40. If two cyclic harmonic frames (vj)j∈Zn and (wj)j∈Zn are
unitarily equivalent, then for any s ∈ Zn, there exists a unitary map U that
maps vs to wk for any k ∈ Zn.

Proof. Let (vj)j∈Zn and (wj)j∈Zn be unitarily equivalent frames under the
unitary map W . Suppose Wvs = w` = (ωb1 , . . . , ωbd)T for some ` ∈ Zn, and
wk = (ωa1 , . . . , ωad)T. Define a = k − ` and

P =


ω(−b1+a1) 0 . . . 0

0 ω(−b2+a2) . . . 0
...

...
. . .

...
0 0 . . . ω(−bd+ad)
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be the unitary matrix corresponding to the translation by a (as in Proposi-
tion 2.39). Since the composition of unitary maps is a unitary map, U = PW
is a unitary map such that

Uvs = PWvs = Pw` = w`+a = w`+k−` = wk.

Remark 2.41. Corollary 2.40 also follows by observing that the vectors in
the two frames all have the same norm.

Corollary 2.42. Given two cyclic harmonic frames Φ := (φg)g∈G, Ψ :=
(ψg)g∈G generated by the same finite group G of order n. If Φ and Ψ are
unitarily equivalent, then there exists at least n unitary maps taking Φ to Ψ.

Proof. By the previous proposition, we can assume there exists a unitary
map U which maps φ1 to ψi, for all i ∈ G.



Chapter 3

Sums of Roots of Unity

3.1 Introduction

In chapter two, we were introduced to characters of an abelian group, and
saw that characters take on values which are just roots of unity. As unitary
equivalence implies frames share the same angle multiset, one approach to
studying unitary equivalences is to study the members of this multiset, the
inner products between the frame vectors. Because the coefficients for each
harmonic frame vector is just a root of unity, studying the inner products
between vectors of a harmonic frame becomes a study of the sums of roots
of unity. These sums give rise to some highly symmetric patterns when the
resulting sums are plotted on the complex plane.

Figure 3.1.1: All possible sums of
five 5–th roots of unity.

Figure 3.1.2: All possible sums of
five 7–th roots of unity.

20
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Figure 3.1.3: All possible sums of
five 9–th roots of unity.

Figure 3.1.4: All possible sums of
four 10–th roots of unity.

Let ω = e2πi/n be an n–th root of unity. It is a well known fact that

n∑
i=1

ωi = 0. (3.1.1)

Definition 3.1. A cyclotomic field is the smallest extension field of Q formed
by adding an n–th root of unity. We denote this by Q[ω] where ω := e2πi/n

is a root of unity.

Ideally we want to find a nice unique way to represent the roots of unity
in order to study when sums are the same. The natural approach involves
finding a basis for the cyclotomic field associated with the n–th root of unity
and to represent the roots in terms of this basis. One would hope that all the
n–th roots of unity would form a basis. Unfortunately this is not the case.

Theorem 3.2. The cyclotomic field Q[ω], where ω = e2πi/n, has dimension
ϕ(n), where ϕ is the Euler totient function.

The above theorem makes us hopeful that perhaps the primitive roots
of unity, of which there are ϕ(n), form a basis. This would be a convenient
basis to use as the primitive roots of unity form a group under multiplication.
Unfortunately this is also not the case.

Definition 3.3. An integer n is called square free if it is a product of distinct
primes, i.e., if p | n then p2 - n.

Definition 3.4. The Möbius Function is µ : Z+ 7→ Z

µ(n) :=


1 if n = 1

(−1)k if n square free

0 if n is not square free
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where k is the number of prime factors of n counting multiplicities.

Theorem 3.5. The sum of all primitive n–th roots of unity is given by the
Möbius function at n. i.e., ∑

m∈Z∗n

ωm = µ(n).

One immediate consequence of this theorem is that for n not square free,
the primitive roots of unity for the cyclotomic field Q[ω] with ω := e2πi/n are
linearly dependent and do not form a basis for Q[ω] over Q. The good news
is it leaves open the possibility that for n square free, the primitive roots are
a basis. Luckily this is indeed the case and we will prove this result later in
Theorem 3.18.

Lemma 3.6. Let R > 0, z ∈ C, and 0 < |z| ≤ 2R. Then z can be uniquely
written as a sum of two elements x, y such that |x| = |y| = R (up to reorder-
ing). If z = 0 then there are an infinite number of distinct ways to represent
z.

Proof. Suppose R > 0 and z ∈ C such that 0 < |z| ≤ 2R. Let C1 = {y ∈
C : |y| = R}, C2 = {y ∈ C : |y− z| = R} be two circles representing possible
destination points when adding a complex number of modulus R, at the given
centres. Notice that unless they are equal, C1 and C2 intersect at least in
one place, and at most two, i.e., |C1 ∩ C2| ≤ 2. The intersection captures
the geometric interpretation of a valid combination of complex numbers of
modulus R that gives z. If x ∈ C1∩C2, then z−x ∈ C1∩C2 so z = x+(z−x)
is the desired sum. For z = 0 it is then clear that since the two circles
constructed above overlap everywhere there are an infinite number of ways
to construct a sum as two complex numbers of length R. The above idea is
captured concisely using trig identities.

z = eiθ1 + eiθ2

= cos(θ1) + cos(θ2) + i(sin(θ1) + sin(θ2))

= 2 cos(
θ1 + θ2

2
) cos(

θ1 − θ2

2
) + i(2 sin(

θ1 + θ2

2
) cos(

θ1 − θ2

2
))

= 2 cos(
θ1 − θ2

2
)ei(θ1+θ2).

Except for when θ1 + θ2 = {−π, π} we can see from observing the properties
of cosine and the θi’s, that a unique complex number is produced up to
reordering.
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Corollary 3.7. Let ω = e2πi/n, and i, j ∈ Zn. Then ωi +ωj is a unique sum
unless n is even and j = n

2
+ i.

Proof. Let R = 1. Then ∀i ∈ Zn, ωi ∈ C := {x : |x| = R} and so by the

lemma ωi + ωj is unique unless ωj = −ωi. Note that −ωi = ω
n
2

+i is only
possible if n is even.

Remark 3.8. It is only possible for two roots of unity to sum to 0 when n
is even.

One would hope this uniqueness of sums of roots of unity generalises over
larger sums. Unfortunately this need not be the case. Even when we move
to just sums of three roots of unity, things start to break down.

Example 3.9. Let ω = e2πi/8. Then ω + ω5 + ω2 = ω3 + ω7 + ω2 = ω2 6= 0.

In the example above, the complex number produced by the first sum on
the left hand side can be produced by a different sum of roots of unity on
the right. What we observe in the two dimensional case no longer holds.

Example 3.10. Let ω = e2πi/9. Then ω2 + ω5 + ω8 = ω4 + ω + ω7 = 0.

We will see later that the (partial) uniqueness of sums of two roots of
unity provide a pivotal role in the characterisation of unitary equivalences of
cyclic harmonic frames in two dimensions.

3.2 Vanishing Sums and Linear Relations of

Roots of Unity

Like (3.1.1), other so called vanishing sums (sums of roots of unity which
give 0) give rise to relationships between the various roots of unity, espe-
cially minimal vanishing sums (where no sum of a smaller subset vanishes).
One example of a related area is counting the number of vanishing sums
(see [LL00],[Eve99]). A sweep through the literature surrounding the van-
ishing sums of the roots of unity seems to suggest it is still an active area
of research. Despite the fundamental nature of this area and its extensive
study, interestingly enough, an explicit classification of the sums of roots of
unity is not complete. A classification up to n ≤ 12 seems to be known from
work by Mann[Man65], Conway-Jones[CJ76], and Poonen-Rubinstein[PR98]
in connection with their studies of regular polygons. Notwithstanding this,
significant insight into the structure of vanishing sums is known.
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Definition 3.11. Let G = 〈a〉 be a cyclic group of order n and ζ be a fixed
primitive n-th root of unity. Define Ω : ZG→ Z[ζ] such that Ω(z) = ζ as the
“usual map” from the group ring ZG into Z[ζ] the ring of cyclotomic
integers.

Theorem 3.12 (Lam-Leung). 1 Let Ω be the usual map, G = 〈a〉 of order
n = pa11 . . . parr , ζ = ζn a primitive n-th root of unity, Pi(1 ≤ i ≤ r) be the
unique subgroup of order pi in G, and consider σ(Pi) :=

∑
g∈Pi g ∈ ZG. Then

ker(Ω) =
r∑
i=1

ZG · σ(Pi), and ker(Ω) = Z · σ(P1) when n = p1.

This theorem sets up a map from the ring of the formal sums of roots
of unity into the ring of cyclotomic integers, then gives a characterisation of
the kernel, which corresponds to when the sums vanish. The subgroups can
be thought of like sets of the pi roots of unity.

Theorem 3.13. Let ai, i ∈ I, I ⊂ {1, 2, . . . , n} be n-th roots of unity. If
a1 + a2 + . . . + an = 0 is a minimal vanishing sum of n-th roots of unity,
then after a suitable rotation, we may assume that all ai are m roots of unity
where m is a product of distinct primes.

Definition 3.14. A sum of n-th roots of unity S is similar to another sum
S ′ if S ′ = cαS for some c ∈ Q \ {0}, α any n-th root of unity.

The above theorems can be restated in the language of similarity if re-
quired.

Theorem 3.15. 2 Let p be prime and ω a primitive p-th root of unity. If S
is a vanishing sum, then either S is similar to 1 + ω + ω2 + . . . + ωp−1, or
S = S ′ + S ′′, where S ′ and S ′′ are vanishing sums such that:

(i) The number of roots involved in S ′ is less than or equal to number of
roots involved in S,

(ii) The least common order of the roots of unity of S ′ (and similar sums)
is strictly less than that of S,

(iii) The number of roots involved in S ′′ is less than or equal to number of
roots involved in S,

1This is the theorem of Rédei - de Bruijn - Schoenberg recast in terms of group rings
by Lam-Leung in [LL00].

2Rediscovered by Conway–Jones in [CJ76].
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(iv) The least common order of the roots of unity of S ′′ (and similar sums)
is less than or equal to that of S,

Corollary 3.16. Let n = paqb, where p, q are primes. Then up to a rotation,
the only minimal vanishing sums of n-th roots of unity are 1 + ζp + ζ2

p + . . .+
ζp−1
p and 1 + ζq + ζ2

q + . . .+ ζq−1
q .

Theorems 3.13 and 3.15 are telling us the vanishing sums look like (3.1.1)
with n prime (up to rotation). This is essentially Theorem 3.12. In light
of this, Lemma 3.6 is really just a corollary of Theorem 3.15 since the only
vanishing sums are necessarily rotations of the sums of 2-th roots of unity,
allowing us to deduce uniqueness of other sums.

3.3 Bases for the Cyclotomic Fields

We are interested in the finding suitable bases for cyclotomic fields Q[ω] to
representing our roots of unity, and hope that their basis representations may
yield some useful structure in order to study the frame angle multisets.

Theorem 3.17. The cyclotomic extension of Q[ω] over Q has degree ϕ(n),
i.e., there are ϕ(n) elements in a basis of Q[ω].

Theorem 3.18. The primitive n–roots of unity form a basis for the cyclo-
tomic extension of Q[ω] over Q if and only if n is a product of distinct primes.
Hence if n is a product of distinct primes, then any sums of primitive roots
of unity of n are unique.

Proof. We have already seen that if n is not square free, the primitive roots
of unity are not linearly independent. Now we will prove that if n is square
free, then the primitive roots do form a basis. A common approach is to
make use of machinery in field theory to deduce this as a consequence (see
[Rom05]), but we will instead give a constructive proof, since by studying
the construction we are able to deduce some further properties of what the
basis representation looks like.

Let n = p1p2 . . . pk. Observe that all the pj-th roots of unity are embedded
in the n–th roots of unity as e2πinj/pj for all 1 ≤ j ≤ pj. Let ωj denote e2πij/n,
a n–th root of unity. Our aim is to represent ωj as a sum of primitive roots
of unity. If gcd(j, n) = 1 then ωj is a primitive root of unity so there is
nothing to prove. Without loss of generality we can assume gcd(j, n) =
c = p1 . . . ps > 1, where 1 ≤ s ≤ k, and that p1 < p2 < . . . < ps. Let
j = cm, gcd(m,n) = 1. Define ζt := ωn/pt , i.e., a pt-th root of unity. We
will now describe an iterative method which represents ωj as a sum of roots



CHAPTER 3. SUMS OF ROOTS OF UNITY 26

of unity which first have p2 . . . ps as factors (but none of pα, s < α ≤ k in
the exponents of ω. On each root of unity in that sum, we wish to apply
the procedure again. On each new iteration, the next smallest factor in
{p1, . . . , ps}, where 1 ≤ s ≤ k, is eliminated from the roots of unity in the
new sum, and no new factor of n is introduced. After s iterations, we will
necessarily obtain a sum of the original ωj in terms of primitive roots of
unity.

We make repeated use of the fact that by equation (3.1.1),

ωγ
p`−1∑
b=0

ζb` = ωγ + ωγζ` + ωγζ2
` + . . .+ ωγζp`−1

` = 0,

hence

ωγ = −ωγζ` − ωγζ2
` − . . .− ωγζ

p`−1
`

= −ωγωn/` − ωγω2n/p` − . . .− ωγω(p`−1)n/p` .

The first step in this procedure is as follows: Let ωγ = ωj and p` = p1.
Then

ωj = −ωjζ1 − ωjζ2
1 − . . .− ωjζ

pj−1
1

= −ωjωn/j − ωjω2n/p1 − . . .− ωjω(p1−1)n/p1 .

As p1 is the smallest prime divisor of j in common with n and n
p1

does not

contain p1 as a factor, p - j + bn
p1

, pα - j + b′n
pα

, for all s < α ≤ k, for all
1 ≤ b < p1, and for all 1 ≤ b′ < pα. Now apply the same procedure for p2 on
each of the summands generated by the procedure with p1 and set γ = j+ bn

p1
,

for all 1 ≤ b < p1, and p` = p2. At the r–th step, the procedure produces
exponents of ω carrying the form

j +
r∑
`=1

b`n

p`
,

with the property that they share no common divisors with ps+1 · · · pk and
share only pr+1 · · · ps as common divisors with n.

It is now clear that after s iterations, ωj is expressed as a sum of primitive
n–th roots of unity.

Finally, notice that the number of primitive roots of unity equals the
dimension, and hence they form a basis.
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Corollary 3.19. If ωj is an nth root of unity and

ωj =
∑
b∈Z∗n

cbω
b, cb ∈ R

is the basis representation of ωj in terms of the primitive roots of unity, then
all the cb are integers and have the same sign. Furthermore, if gcd(j, n) =
p1 . . . ps then

cb = (−1)s|cb|. (3.3.1)

Proof. Clear from the proof of Theorem 3.18. By construction, the signs of
the sums are changing at each level in unison. Hence we obtain (3.3.1).

Corollary 3.20. If n is prime, then the set of roots of unity(excluding 1)
form a basis. Hence any sums of roots of unity of n are unique.

Example 3.21. Let n = 3 × 5 = 15. Take ω = e2πi/15. We will use the
algorithm in the proof of Theorem 3.18 to construct ω6’s basis representation.
Since gcd(6, 15) = 3, we only need to apply the procedure once with the sums
of the third roots of unity (ω5).

ω6 = −ω6ω5 − ω6ω10 = −ω6+5 − ω6+10 = −ω11 − ω16

= −ω11 − ω.

Example 3.22. Let n = 6, ω a primitive 3-th root of unity. If we pick ω2,
ω3 to be our basis, then ω = ω2 − ω3. It demonstrates that the nice property
of Corollary 3.19 is not universal to all basis representations of the roots of
unity.

This way of representing the roots of unity when n is square free is ex-
tremely convenient as the primitive roots can be thought of as Z∗n, the mul-
tiplicative group of units of Zn. It is closely related to the notion of multi-
plicative equivalence, which will be defined in the next chapter. Of particular
interest is Corollary 3.19, a useful observation from the way we construct the
basis representation. It is a key cog in a later proof which characterises uni-
tary equivalence of a particular family of cyclic harmonic frames, where the
generating group has order n (square free).

In general, the first ϕ(n) roots of unity form a basis for the cyclotomic
integers Z[ω] ⊂ Q[ω] and various other bases are also possible, with a basis
representation being recovered by using all the minimal vanishing sums to
provide linear relations. See [Bos90] for some theorems where n 6≡ 2 mod 4,
for which a subset of the roots of unity are an integral basis, and for a way



CHAPTER 3. SUMS OF ROOTS OF UNITY 28

to construct an integral basis that has an integral basis for every cyclotomic
subfield of Q[ω]).

We do not explore the various other ways used to represent cyclotomic
fields in practice (often using some representation of elements with polyno-
mials in the field, see [Fie06]).

However, in our context of studying unitary equivalences, we wish to
exploit the group structure of the primitive roots because of their relationship
to (Z∗n as the automorphism group of Zn), as we shall see in the next chapter.
There is scope here for future research in developing more machinery in
attempt to exploit these non favourable basis representations using the linear
relations between the roots of unity.



Chapter 4

Unitary Equivalences

4.1 Introduction

The unitary equivalences between harmonic frames will be studied here.
With the exception of the next section, and notably Theorem 4.13, the rest
of the sections will deal with cyclic harmonic frames.

We already met what it means for two finite tight frames to be equivalent
in the introductory chapter (Definition 2.15), but we will restate it here for
convenience.

Definition 4.1. Two tight frames (Φj)j∈J , (ψk)k∈K are unitarily equiva-
lent if there exists a bijection σ : J → K, a unitary map U and a c > 0 such
that

Φj := cUψσj, ∀j ∈ J.

Recall this is equivalent to (4.1.1) in chapter two,

Gram(Φ) = c2P ∗σGram(Ψ)Pσ. (4.1.1)

The significance in establishing a unitary equivalence of any two given
tight frames is the power to inherit a lot of properties of the other frame,
given that the Gramian matrix plays such an important role in many results
concerning finite tight frames. This helps in the classification of finite tight
frames as it gives a way to group classes of similarly behaving frames together.

The problem of computing whether any two given finite harmonic frames
are unitarily equivalent is in general a difficult problem. Past approaches
have involved a brute force approach in an attempt to construct a unitary
operator that maps one frame to the other. Usually this involves a polynomial
(of degree d, the dimension of the frames) time algorithm that maps a basis

29
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to a basis, but this becomes computationally infeasible as n and d become
large (see [HW06]).

Optimisation can be made to this method by first comparing the an-
gle multisets of the two frames and only proceeding if they are the same.
Alternatively, by comparing angle multisets and then by constructing the
permutations that are possible between the two frames by first fixing where
one element is mapped to, e.g., from the first frame vectors to each other,
a legitimate operation due to Corollary 2.40). Once fixed, looking to the
Gramian, we can deduce the possible options left for the other vectors, and
proceed to enumerate all possible permutations to try.

In practice this second approach seems to reduce the computational time
drastically as the angle multisets first rule out most inequivalences, and also
in many frames the number of repeating angles in the angle multiset is small.
Hence the number of permutations to check is also small. However, as the
number of repeated angles increases, this approach has a worse case time cost
exceeding the first approach, as complexity is now in terms of multiplying
factorials of the number of repeating angles, e.g., if there are three repeated
angles, first repeats 3 times, second repeats 5 times and third repeats 2 times,
then there will be 3!5!2! permutations to check.

We can reduce this complexity by computing the expected cost of either
approach beforehand and then calling the routine which will be less complex
in each given case.

This computational approach becomes unwieldy with large n and d but
also fails to give insight into why two harmonic frames may be unitarily
equivalent. In the search for a nice characterisation, we are led to making
the following definitions.

4.2 Unitary Equivalence and the Preserva-

tion of Group Structure

Let Aut(G) denote the group of automorphisms of G, i.e., isomorphisms
σ : G→ G.

Definition 4.2. We say G-frames Φ = (φg)g∈G, Ψ = (ψg)g∈G are unitarily
equivalent via an automorphism if the map σ : G→ G in Definition 4.1
can be taken to be in Aut(G).

Example 4.3. If G-frames Φ and Ψ are equal, then the set of permutations
σ in the unitary equivalences (4.1.1) between them form a group called the
symmetry group of Φ (see [VW09]). This group, denoted by Sym(Φ), contains
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a subgroup of order |G| consisting of the permutations

σ : g 7→ hg, h ∈ G,

with only the identity being an automorphism of G.

The above example shows that if two frames are unitarily equivalent via
an automorphism, then there still exist permutations out there inducing a
unitary equivalence which do not preserve the group structure. Another way
to see this is by taking a group automorphism which induces a permutation,
then apply Corollary 2.40 to obtain another permutation which does not
map the identity element to the identity element, and hence cannot be an
automorphism, but still preserves unitary equivalence.

Definition 4.4. We say subsets J and K of a finite abelian group G are
multiplicatively equivalent if there is an automorphism σ : G → G for
which K = σJ .

Example 4.5. For G = Zn, each σ ∈ Aut(G) has the form g 7→ ag, with
a ∈ Z∗n, and hence J , K ⊂ Zn are multiplicatively equivalent if and only
if K = aJ for some a ∈ Z∗n. This is the given condition for multiplicative
equivalence when dealing with cyclic harmonic frames.

Definition 4.6. A harmonic frame Φ = (fj) is said to be unlifted if
∑

j fj =
0, otherwise it is lifted.

Definition 4.7. A tight frame is called real if its Gramian only has real
entries. Otherwise it is a complex tight frame.

Definition 4.8. A finite tight frame is called geometrically uniform (see
[BE03]) if its vectors are the orbits of a single non trivial vector v ∈ H under
the action of a finite abelian group G of unitary matrices, i.e., Φ = (gv)g∈G.
These frames have distinct vectors.

The conditions on J for such a harmonic frame to have distinct vectors,
to be real, and to be lifted are as follows.

Theorem 4.9. Let G be an abelian group of order n, and Φ = ΦJ = (ξ|J)ξ∈Ĝ
be the harmonic frame of n vectors for Cd given by a choice J ⊂ G, where
|J | = d. Then

(a) Φ has distinct vectors if and only if J generates G.

(b) Φ is a real frame if and only J is closed under taking inverses.
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(c) Φ is a lifted frame if and only if the identity is an element of J .

Proof. We will now utilise some results below which are found in any intro-
ductory book on character theory. See [JL93] for example.

(a) Let H be the subgroup generated by J . Then Φ has distinct vectors
if and only if the composition of maps Ĝ → Ĥ → CJ , ξ 7→ ξ|H 7→ ξ|J is
1–1. Since each h ∈ H can be written as a sum of elements in J , and ξ is a
character, ξ(h) is determined by ξ|J , and so ξ|H 7→ ξ|J is 1–1. Hence ξ 7→ ξ|J
is 1–1 if and only if the group homomorphism given by Ĝ 7→ Ĥ : ξ 7→ ξ|H is
1–1, i.e., Ĝ = Ĥ and so G = H = 〈J〉.

(b) The frame Φ is real if and only if its multiset of angles is real, i.e.,∑
j∈J

ξ(j) =
∑
j∈J

ˆ̂j(ξ) ∈ R, ∀ξ ∈ Ĝ ⇐⇒ ψ :=
∑
j∈J

ˆ̂j ∈ RĜ.

Suppose that J is closed under taking inverses, and j ∈ J . Then either j is
its own inverse, so ξ(j) = ξ(−j) = ξ(j) ∈ R, or j,−j ∈ J , so they contribute
ξ(j) + ξ(−j) = ξ(j) + ξ(j) ∈ R to the sum for the angle. Thus we conclude
each angle is zero. Conversely, suppose the multiset of angles is real, so that
ψ = ψ. Let 〈ζ, χ〉 be the inner product on CĜ for which the characters
of Ĝ are orthogonal, i.e., 〈ζ, χ〉 := 1

|Ĝ|

∑
ξ∈Ĝ ζ(ξ)χ(ξ). Recall the Pontryagin

duality map

G→ ˆ̂
G : g → ˆ̂g, ˆ̂g(χ) := χ(g), ∀χ ∈ Ĝ, g ∈ G.

Since χ(g) = χ(g−1), then

ˆ̂j(χ) = χ(j) = χ(−j) =
ˆ̂

(−j)(χ).

Hence,

j ∈ J ⇐⇒ 〈ψ, ˆ̂j〉 = 1

if and only if,

〈ψ, ˆ̂j〉 = 〈ψ, ˆ̂j〉 = 〈ψ, ˆ̂
(−j)〉 = 1

if and only if,
−j ∈ J.

(c) By the orthogonality relations for characters, Φ is unlifted if and only
if ∑

ξ∈Ĝ

ξ|J = 0
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if and only if, ∑
ξ∈Ĝ

ξ(j)ξ(1) =
∑
ξ∈Ĝ

ξ(j) = 0,∀j ∈ J,

if and only if,
j 6= 1, ∀j ∈ J.

Corollary 4.10. Let G be a finite abelian group, and d∗ be the minimum
number of generators for G. Then there is a G-frame of distinct vectors for
Cd if and only if d ≥ d∗.

In the cyclic harmonic frame context, it is only necessary to study geo-
metrically uniform tight frames.

The theorem implies that we do not get distinct vectors if and only if
we take a subset of Zn such that there is a k, where k | n and k | x for all
x in the subset, e.g. the elements of {0, 2, 4} have a common factor of 2,
and would not generate Z6. The set {0, 2, 3} would. Even though 2 and 3
have common factors with 6, they are different ones. Observe that in this
scenario, the there exists some m < n so that for each character χ, we have
χm = 1. This tells us that we can obtain the particular harmonic frame as
a geometrically uniform frame (i.e., has distinct vectors) by using a smaller
group instead. Thus, we can restrict our study to frames of distinct vectors.

Example 4.11. Let G = Zp × · · · × Zp (k times), where p is prime. Then
G gives harmonic frames of distinct vectors for Cd only for d ≥ k (d∗ = k
since 0 6= g ∈ G has order p).

Example 4.12. In G = Z2 × · · · × Z2, the non zero elements have order
2, and so are their own inverses. So the harmonic frames generated by this
group are real. Note that the order of the group elements here implies that
the characters are real too.

The next theorem captures the connection between multiplicative equiv-
alence and unitary equivalence via automorphisms. In some senses these are
the nice kinds of unitary equivalences since the permutations respect the
group structure of the harmonic frames involved.

Theorem 4.13. Suppose J and K are subsets of a finite abelian group G.
Then the following are equivalent

(a) The subsets J and K are multiplicatively equivalent (see Definition 4.4).
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(b) The harmonic frames given by J and K are unitarily equivalent via an
automorphism.

Proof. (a) =⇒ (b): Suppose that K = σJ , where σ ∈ Aut(G).
The natural action of Aut(G) on Ĝ, which is given by

Tχ = T̂ χ := χ ◦ T−1, T ∈ Aut(G), χ ∈ Ĝ,

induces automorphisms of Ĝ, since

T̂ (ξη) = (ξη) ◦ T−1 = (ξ ◦ T−1)(η ◦ T−1) = (T̂ ξ)(T̂ η), ξ, η ∈ Ĝ.

Using χ(j) = (χ ◦ σ−1)(σj) = σ̂χ(σj), we calculate

〈ξ|J , η|J〉 =
∑
j∈J

ξ(j)η(j) =
∑
j∈J

σ̂ξ(σj)σ̂η(σj) =
∑
k∈K

σ̂ξ(k)σ̂η(k)

= 〈σ̂ξ|K , σ̂η|K〉.

Hence, by the condition (4.1.1), the Ĝ–frames (ξ|J)ξ∈Ĝ and (ξ|K)ξ∈Ĝ are

unitarily equivalent via the automorphism σ̂ : Ĝ→ Ĝ : χ 7→ χ ◦ σ−1.
(b) =⇒ (a): Suppose the harmonic frames given by J,K ⊂ G are unitarily

equivalent via an isomorphism σ̂ : Ĝ→ Ĝ, i.e.,

〈ξ|J , η|J〉 = 〈σ̂ξ|K , σ̂η|K〉, ∀ξ, η ∈ Ĝ.

Taking η = 1, the trivial character, above, gives∑
j∈J

ξ(j) =
∑
k∈K

(σ̂ξ)(k), ∀ξ ∈ Ĝ. (4.2.1)

We now seek to define an automorphism σ = τ−1 : G→ G satisfying

(σ̂χ)(g) = (χ ◦ σ−1)(g), ∀χ ∈ Ĝ, ∀g ∈ G.

Since σ̂ : Ĝ → Ĝ is an automorphism, χ 7→ σ̂χ(g) belongs to
ˆ̂
G, and so we

can use Pontryagin duality to define τg by

̂̂τg(χ) := σ̂χ(g), ∀χ ∈ Ĝ.

This map τ : G→ G is a bijection, since

τg = τh ⇐⇒ σ̂χ(g) = σ̂χ(h), ∀χ ∈ Ĝ ⇐⇒ ˆ̂g(σ̂χ) =
ˆ̂
h(σ̂χ), ∀χ ∈ Ĝ

⇐⇒ ˆ̂g(ξ) =
ˆ̂
h(ξ), ∀ξ ∈ Ĝ ⇐⇒ ˆ̂g =

ˆ̂
h ⇐⇒ g = h,
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and it is a homomorphism since

σ̂ξ ∈ Ĝ =⇒ (σ̂ξ)(g + h) = (σ̂ξ)(g)(σ̂ξ)(h), ∀ξ ∈ Ĝ

⇐⇒ ̂̂
(τ(g + h))(ξ) = ̂̂τg(ξ)

̂̂
τh(ξ), ∀ξ ∈ Ĝ

⇐⇒ ̂̂
(τ(g + h)) = (̂̂τg)(

̂̂
τh) ⇐⇒ τ(g + h) = τg + τh

(where we write the group operation in
ˆ̂
G as ·). Thus σ := τ−1 ∈ Aut(G),

which satisfies

(σ̂ξ)(k) =
̂̂
σ−1k(ξ),

Hence, by Pontryagin duality, (4.2.1) gives∑
j∈J

ˆ̂j(ξ) =
∑
k∈K

̂̂
σ−1k(ξ), ∀ξ ∈ Ĝ =⇒

∑
j∈J

ˆ̂j =
∑
k∈K

̂̂
σ−1k.

Since characters of a finite abelian group are linearly independent, we con-
clude

{ˆ̂j : j ∈ J} = {̂̂σ−1k : k ∈ K} =⇒ {j : j ∈ J} = {σ−1k : k ∈ K}.

Hence K = σJ , i.e., J and K are multiplicatively equivalent subsets of G.

The number of generating sets of G is essentially given by the Eulerian
function multiplied by a normalising amount to stop the over count intro-
duced by ordering (see [Hal36].) One approach to calculating this function
could be to employ the machinery of measure theory on special zeta func-
tions(see [dS00]).1

We note here that computational evidence in magma seems to suggest
that multiplicative equivalence captures the vast majority of unitarily equiv-
alent cyclic harmonic frames and that a very small number fall outside this
category.

Example 4.14 (Four vectors in C2). Consider G = Z4. The automorphism
group has order 2, generated by σ : g 7→ 3g (Z∗4 = {1, 3}). Thus the multi-
plicative equivalence classes of 2–element subsets of G, which are the orbits
under the action of Aut(G), are{

{0, 1}, {0, 3}
}
,

{
{1, 2}, {2, 3}

}
,

{
{1, 3}

}
,

{
{0, 2}

}
.

1For cyclic harmonic frames of prime order, M. Hirn came with a recursive formula for
doing a count [Hir09]. See also [Wal10] for an alternative way to count cyclic harmonic
frames of prime order.
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n 8 16 24 32 40
Mul. eq. classes. 16 66 238 278 571
Mul. ineq, uni. eq. 2 6 8 14 12

Table 4.1: Cyclic harmonic frames of order n, in C3. Number of multiplicative
equivalence classes compared with number of multiplicatively inequivalent
classes that are unitarily equivalent to another.

The first three give cyclic harmonic frames with distinct vectors(since 1 gen-
erates G), while the last does not. None are unitarily equivalent, since the
(respective) angle multisets are

{−i+ 1, 0, i+ 1}, {0,−i− 1, i− 1}, {0, 0,−2}, {0, 0, 2}.

Example 4.15. Consider G = Z2×Z2, which is generated by any two of its
three elements {a, b, a + b} of order 2. The automorphism group has order
6, with an automorphism corresponding to each permutation of {a, b, a+ b}.
Thus the multiplicative equivalence classes are{

{a, b}, {a, a+ b}, {b, a+ b}
}
,

{
{0, a}, {0, b}, {0, a+ b}

}
.

Only the first gives a harmonic frame with distinct vectors. This real frame
has angles {0, 0,−2}, and is unitarily equivalent to the cyclic harmonic frame
with these angles.

Example 4.16 (Seven vectors in C3). For G = Z7, the seven multiplicative
equivalence classes have representatives

{1, 2, 6}, {1, 2, 3}, {0, 1, 2}, {0, 1, 3}, {1, 2, 5}, {0, 1, 6} (size 6)

{0, 1, 6} (size 3) {1, 2, 4} (size 2).

Each gives a cyclic harmonic frame of distinct vectors (as nonzero elements
generate G). None of these are unitarily equivalent since their angle multisets
are different.

A finite abelian group G can be written as a direct sum of p–groups

Gp = Zpe1 ⊕ Zpe2 ⊕ · · · ⊕ Zpem

where p are the prime divisors of |G|. The automorphism group of Gp has
order

|Aut(Gp)| =
m∏
k=1

(pdk − pk−1)
m∏
j=1

(pej)m−dj
m∏
i=1

(pei−1)m−ci+1, (4.2.2)
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d=2 d=3 d=4
n non cyc n non cyc n non cyc
4 0 3 4 0 3 4 0 1
8 1 7 8 5 16 8 8 21
9 1 6 9 3 15 9 5 23
12 2 13 12 11 57 12 30 141
16 4 13 16 28 74 16 139 228
18 2 18 18 19 121 18 80 494
20 3 19 20 29 137 20 154 622
24 6 27 24 89 241 24 604 1349
25 1 15 25 8 115 25 37 636
27 3 18 27 33 159 27 202 973
28 4 25 28 57 255 28 443 1697
32 9 25 32 158 278 32 1379 2152

Table 4.2: the number of inequivalent non-cyclic and cyclic harmonic frames
of n ≤ 32 distinct vectors in Cd.

where

ck := min{r : er = ek} ≤ k, dk := max{r : er = ek} ≥ k,

and so the order of Aut(G) is the product of these orders (see [HR07]).
Computational data suggests most harmonic frames are cyclic and that

as the group G became less cyclic, the number of cyclic harmonic frames
from G decreased.[HW06] Theorems 4.13, 4.9, and the automorphism order
(4.2.2) seem to suggest the following mechanisms are at play:

• As G becomes less cyclic, |Aut(G)| becomes larger, and so the number of
multiplicative equivalence classes becomes smalller.

• As G becomes less cyclic, the orders of its elements become smaller, so
J ⊂ G is less likely to generate G, and hence give a harmonic frame with
distinct vectors.

4.3 The Cases of C1 and C2

In this section, we will show that in one dimension, there is only one unique
harmonic frame of n distinct vectors, and that in two dimensions, multi-
plicative equivalence completely characterises the unitary equivalence classes
of cyclic harmonic frames, i.e., that two cyclic harmonic frames in C2 are
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unitarily equivalence if and only if they are multiplicatively equivalent. This
seems like a surprising result at first given that exceptional families seem to
exist in families outside of one and two dimensions. But on further reflec-
tion, the theorems of 3.12, 3.15 and Lemma 3.6 conjures up an explanation
for why no exceptions exist in C2.

Theorem 4.17 (One Dimension). There is a unique harmonic frame of n
distinct vectors for C1, namely the cyclic harmonic frame given by the n–th
roots of unity.

Proof. Use Theorems 4.9 and 4.13. If g generates an abelian group G of
order n, then G must be Zn. If g1,g2 generate Zn, then {g1},{g2} are multi-
plicatively equivalent (as g1 7→ g2 gives an automorphism of G), and so give
unitarily equivalent frames.

Example 4.18. There is a unique lifted harmonic frame of n vectors for C2,
i.e., the cyclic harmonic frame given by the subset {0, a} where Zn = 〈a〉.
The angle multiset of the cyclic harmonic frame for C2 given by {j1, j2} ⊂ Zn
is

{ωaj1 + ωaj2 : a ∈ Zn, a 6= 0}, ω := e2πi/n.

Now we turn our attention to the two dimensional setting. Because of
those strong results concerning vanishing sums, we can show that if two cyclic
harmonic frames in C2 are not multiplicatively equivalent, then their angle
multisets differ. This is done by constructing an angle in one of the frame’s
angle multiset and not in the other. We then combine this with Theorems
4.13 and 4.9 to show that cyclic harmonic frames in C2 are multiplicatively
equivalent if and only if they are unitarily equivalent.

Lemma 4.19. Let ω = e2πi/n and j1, j2 ∈ Zn. If ωj1 + ωj2 = 0, then n is
even, and

ωaj1 + ωaj2 =

{
0, a odd;

2ωaj1 , a even.

Proof. If ωj1 +ωj2 = 0, then ωj2−j1 = −1, so n is even, and j2− j1 = n
2
. This

gives
ωaj1 + ωaj2 = ωaj1 + ωa(j1+n

2
) = ωaj1 + (−1)aωaj1 ,

as supposed.

Recall the cyclic group Zn has a unique cyclic subgroup of each order
dividing n, and no other subgroups. Thus, if j1, j2 ∈ Zn have the same order,
then they generate the same subgroup, i.e.,

ord(j1) = ord(j2) ⇐⇒ 〈j1〉 = 〈j2〉.
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We will also repeatedly use the facts

ord(aj) ≤ ord(j), ∀a ∈ Z, j ∈ Zn, ord(b) = n ⇐⇒ b ∈ Z∗n. (4.3.1)

Theorem 4.20. Cyclic frames of n distinct vectors for C2 are unitarily equiv-
alent if and only if the subsets of Zn that give them are multiplicatively equiv-
alent.

Proof. Suppose the subsets {j1, j2} and {k1, k2} of Zn are not multiplica-
tively equivalent, and give harmonic frames of distinct vectors, i.e., 〈j1, j2〉 =
〈k1, k2〉 = Zn. We will show that the cyclic harmonic frames they give have
different angle multisets, and so are not unitarily equivalent. Since mul-
tiplicatively equivalent subsets give the same angle multisets, it suffices to
consider the following cases.

Case (a). ωj1 + ωj2 6= 0. By Lemma 3.6, if this angle appears in the second
frame as ωbk1 + ωbk2 , b ∈ Zn, then {j1, j2} = {bk1, bk2}. Since the frames are
not multiplicatively equivalent, we must have b 6∈ Z∗n, and hence 〈b〉 6= Zn.
But this implies 〈j1, j2〉 = 〈bk1, bk2〉 ⊂ 〈b〉 6= Zn, and so ωj1 + ωj2 cannot be
an angle in the second frame.

Case (b). ωaj1 + ωaj2 = ωbk1 + ωbk2 = 0, ∀a, b ∈ Z∗n. Suppose first that there
is a unit in each of the subsets. Then by going to multiplicatively equivalent
subsets, we may assume that j1 = k1 = 1, and thus obtain ω + ωj2 = 0 =
ω+ωk2 , which gives j2 = k2, and so the two subsets are equal. Thus we may
assume that j1, j2 6∈ Z∗n. By Lemma 4.19, n is even, and the nonzero angles
of the first frame are {2ω2kj1 : 1 ≤ k ≤ n

2
} = {2ω2kj2 : 1 ≤ k ≤ n

2
}, and we

conclude 〈2j1〉 = 〈2j2〉. Since j1, j2 are not units, they cannot have the same
order (and generate Zn), and so we can assume that ord(j1) < ord(j2). The
group 〈2j1〉 is either equal to 〈j1〉, or has half its order, and similarly for 〈j2〉.
Thus the only way to have 〈2j1〉 = 〈2j2〉 is for 〈j1〉 = 〈2j1〉, in which case
j1 ∈ 〈2j2〉 ⊂ 〈j2〉, and 〈j1, j2〉 = 〈j2〉 6= Zn. We conclude that case (b) can
never occur.

Remark 4.21. A careful reading of the proof shows that if ωj1 + ωj2 6= 0,
then

{ωaj1 + ωaj2 : ωaj1 + ωaj2 6= 0, a ∈ Z∗n} (4.3.2)

is a set of nonzero angles, which is unique to frame given by {j1, j2} (or any
multiplicatively equivalent subset), and that for n even, there is a unique(up
to unitary equivalence) frame in which the angles given by (4.3.2) are all
zero, namely that given by {1, 1+ n

2
}. The frame generated by this subset will

have the zero angle repeating n
2

times in the angle multiset.
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Example 4.22 (A noncyclic harmonic frame in C2). There a seven unitarily
inequivalent cyclic harmonic frames of n = 8 distinct vectors for C2. We now
list them, giving a representative of the multiplicative equivalence class they
correspond to, followed by the 4 angles given by (4.3.2) – note these are
unique, and then the remaining 3 angles.

{0, 1} 1 + ω, 1 + ω3, 1 + ω5, 1 + ω7 1 + ω2, 1 + ω4 = 0, 1 + ω6

{1, 2} ω + ω2, ω3 + ω6, ω5 + ω2, ω7 + ω6 ω2 + ω4, ω4 + 1 = 0, ω6 + ω4

{1, 3} ω + ω3, ω5 + ω7(twice) ω2 + ω6 = 0, ω4 + ω4, ω6 + ω2 = 0
{1, 4} ω + ω4, ω3 + ω4, ω5 + ω4, ω7 + ω4 ω2 + 1, ω4 + 1 = 0, ω6 + 1
{1, 5} ω + ω5 = ω3 + ω7 = 0(twice) ω2 + ω2, ω4 + ω4, ω6 + ω6

{1, 6} ω + ω6, ω3 + ω2, ω5 + ω6, ω7 + ω2 ω2 + ω4, ω4 + 1 = 0, ω6 + ω4

{1, 7} ω + ω7, ω3 + ω5(twice) ω2 + ω6 = 0, ω4 + ω4, ω6 + ω2

There are two harmonic frames of distinct vectors given by the group G =
Z4 × Z2. Here is a representative subset giving them, followed by the angle
multiset.

{(0, 1), (1, 0)} 0, 0, 1 + ω2, 1 + ω6, ω2 + ω4, ω4 + ω4, ω6 + ω4

{(1, 0), (1, 1)} 0, 0, 0, 0, ω2 + ω2, ω4 + ω4, ω6 + ω6

The last of these has the same angles as the cyclic harmonic frame given by
{1, 5}, and it is easy to check that it is unitarily equivalent to it. The angle
multiset of the first is not shared by any cyclic harmonic frame, and so is
an example of a noncyclic harmonic frame. This noncyclic harmonic frame
(ξ|J)ξ∈Ĝ for J = {(0, 1), (1, 0)} is{[

1
1

]
,

[
1
−1

]
,

[
i
1

]
,

[
i
−1

]
,

[
−1
1

]
,

[
−1
−1

]
,

[
−i
1

]
,

[
−i
−1

]}
.

4.4 Equivalences Breaking the Group Struc-

ture

Example 4.23. (n = 8, d = 3). For Z8 there are 17 multiplicative equiva-
lence classes of 3–element subsets which generate it. Only two of these give
frames with the same angles, namely{

{1, 2, 5}, {3, 6, 7}
}
,

{
{1, 5, 6}, {2, 3, 7}

}
.

The common angle multiset is

{−1, i, i,−i,−i,−2i− 1, 2i− 1} (ω2 = i, ω4 = −1, ω6 = −i, ω := e
2πi
8 ).
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Notice here that in many of the angles ωaj1 +ωaj2 +ωaj2, a 6= 0 there is can-
cellation, as outlined in Lemma 4.19. This explains why the angles multisets
for multiplicatively inequivalent subsets can be the same. These frames are
unitarily equivalent (to be proved),but not via an automorphism.

Definition 4.24. Let p be prime, p2 | n. Define

Bp,n := {mb : m ∈ Z∗n, 1 ≤ b < n, p2b divides n in Z} ⊂ Zn.

Lemma 4.25. Let p be prime, d = p+ 1, n ≥ d with p2 | n, and

A :=
n

p
Zn + a = {a, n

p
+ a,

2n

p
+ a, . . . , (p− 1)

n

p
+ a}, a ∈ Zn.

Then the cyclic harmonic frames for Cd given by the subsets,

A ∪ {b}, A ∪ {b+ r
n

p
}, b, b+ r

n

p
∈ Bp,n, b 6∈ A,

of Zn are unitarily equivalent.

Proof. Since multiplicative equivalence implies unitary equivalence (Theo-
rem 4.13), we can multiply our subsets by some m ∈ Z∗n. This gives subsets
of the same form since mA = n

p
Zn+ma and mBp,n = Bp,n. Hence, in view of

the definition of Bp,n, we can suppose without loss of generality that p2b | n.
Let ζ = ωn/p = e2πi/p and (fj)j∈Zn , (gj)j∈Zn be the cyclic frames given by

A ∪ {b} and A ∪ {b+ rn
p
}, where p2b | n. Then

〈fj, fk〉 = ωajωak + . . .+ ω(a+(p−1)n
p

)jω(a+(p−1)n
p

)k + ωbjωbk

= ωa(j−k){1 + ζj−k + . . .+ ζ(p−1)(j−k)}+ ωb(j−k),

and similarly,

〈gj, gk〉 = ωa(j−k){1 + ζj−k + . . .+ ζ(p−1)(j−k)}+ ω(b+r n
p

)(j−k).

Since p2b | n we can define a permutation σ of Zn given by

σj := j − t∗j , j ≡ j∗ mod p, t∗j := r
n

pb
j∗.

This is well defined and 1–1 since

σj = σk =⇒ j − r n
pb
j∗ = k − r n

pb
k∗

=⇒ j ≡ k mod p (since p divides r n
pb

)

=⇒ j∗ = k∗ =⇒ j = k.
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We now show that σ gives a unitary equivalence, i.e., 〈gσj, gσk〉 = 〈fj, fk〉,
∀j, k. If j − k ≡ 0 mod p, then σj − σk = j − k, so that

〈gσj, gσk〉 = pωa(j−k) + ω
(b+r

n
p

)(j−k)
, 〈fj, fk〉 = pωa(j−k) + ωb(j−k),

which are equal since ω
r
n
p

(j−k)
= ζr(j−k) = ζ0 = 1.

Now consider j − k 6≡ 0 mod p. Since ζj−k 6= 1 is a p–th root of unity we
have by equation (3.1.1) that

〈fj, fk〉 = ωb(j−k), 〈gσj, gσk〉 = ω(b+r n
p

)(σj−σk) = ω(b+r n
p

)(j−k+tj∗−tk∗ ) =: ωc.

Since bp2 | n and j∗ − k∗ = j − k + px, x ∈ Z we have

c = (b+ rn
p
)
(
j − k − r n

pb
(j∗ − k∗)

)
≡ b
(
j − k − r n

pb
(j∗ − k∗)

)
+ rn

p
(j − k)

≡ b
(
j − k − r n

pb
(j − k + px)

)
+ rn

p
(j − k) ≡ (j − k){b− rn

p
+ rn

p
}

≡ b(j − k) mod n.

Hence 〈gσj, gσk〉 = ωc = ωb(j−k) = 〈fj, fk〉.

Lemma 4.26. Let p be prime, d = p+1, n = p2z, z ∈ N, and A := n
p
Zn+a,

where a ∈ {1, 2, . . . , p−1}, b 6∈ A and p | b. Then the cyclic harmonic frames
given by

Jr = A ∪ {b+ rn
p
}, r ∈ {0, 1, . . . , p− 1},

are not multiplicatively equivalent.

Proof. Suppose by way of contradiction that Jr1 and Jr2 , r1 6= r2 are multi-
plicatively equivalent, i.e., mJr1 = Jr2 , m ∈ Z∗n. As mA = n

p
Zn + ma, this

implies

ma = a+ s
n

p
, m(b+ r1

n
p
) = b+ r2

n

p
.

(a+ sn
p
)(b+ r1

n
p
) = ma(b+ r1

n
p
) = a

(
m(b+ r1

n
p
)
)

= a(b+ r2
n
p
)

which gives

s
b

p
n = a(r2 − r1)

n

p
− s n

p2
r1n

Hence
0 ≡ a(r2 − r1)

n

p
6≡ 0 mod n,

a contradiction. Therefore Jr1 and Jr2 are not multiplicatively equivalent.
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Theorem 4.27. Let p be prime, d = p+ 1, n ≥ d with p2 | n, and

A :=
n

p
Zn + a = {a, n

p
+ a, 2n

p
+ a, . . . , (p− 1)n

p
+ a}, a ∈ Zn.

Then the cyclic harmonic frames for Cd given by the subsets,

A ∪ {b}, A ∪ {b+ rn
p
}, b, b+ rn

p
∈ Bp,n, b 6∈ A

of Zn are unitarily equivalent if and only if they are multiplicatively equiva-
lent.

Proof. By combining lemmata 4.25 and 4.26, we have the desired result.

Note that Example 4.23 is one type of frame caught by Theorem 4.27, as
the theorem suggests, there are an infinite number of examples in this class
living in various dimensions higher than two.

Lemma 4.28. Let p be prime, d = p+ 1, n ≥ d, and

A :=
n

p
Zn + a = {a, n

p
+ a, 2n

p
+ a, . . . , (p− 1)n

p
+ a}, a ∈ Zn

Then the cyclic harmonic frames for Cd given by the subsets,

A ∪ {b}, A ∪ {bq}, b ∈ Zn, b 6∈ A, q ∈ Zn \ {0}

of Zn are unitarily equivalent if for some m ∈ Zn,

qb ≡ b mod
n

p
, mqb ≡ qb− b mod n, m 6≡ 1 mod p.

Proof. Observe qb ≡ b mod n
p

is equivalent to qb = b + rn
p
, for some r ∈ Zn.

As before,

〈fj, fk〉 = ωajωak + . . .+ ω(a+(p−1)n
p

)jω(a+(p−1)n
p

)k + ωbjωbk

= ωa(j−k){1 + ζj−k + . . .+ ζ(p−1)(j−k)}+ ωb(j−k),

and similarly

〈gσj, gσk〉 = ωa(σj−σk){1 + ζσj−σk + . . .+ ζ(p−1)(σj−σk)}+ ωbq(σj−σk).

For these to be equal, we seek a permutation σ of the form

σj := j −mj∗, j∗ := j mod p.
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We now check that this defines a permutation. Observe

σj = σk ⇐⇒ ∃xj, xk ∈ Zn : j∗ + pxj −mj∗ = k∗ + pxk −mk∗.

If j ≡ k mod p i.e., j∗ = k∗, this implies pxj = pxk, hence j = k.
If j 6≡ k mod p i.e., j∗ 6= k∗, this implies

σj = σk ⇐⇒ 0 6≡ (j∗ − k∗)(1−m) = p(xk − xj) ≡ 0 mod p,

a contradiction. Therefore σ defines a permutation.
We now show that σ gives a unitary equivalence, i.e., 〈gσj, gσk〉 = 〈fj, fk〉,

for all j, k. If j − k ≡ 0 mod p, then σj − σk = j − k, so that

〈fj, fk〉 = pωa(j−k) + ωb(j−k), 〈gσj, gσk〉 = pωa(j−k) + ωqb(j−k),

which are equal since j − k = px, ∃x ∈ Zn, so

ωqb(j−k) = ωqb(px) = ωbpx = ωb(j−k).

Now consider j − k 6≡ 0 mod p. Since ζj−k 6= 1 is a pth root of unity we
have by equation (3.1.1) that

〈fj, fk〉 = ωb(j−k), 〈gσj, gσk〉 = ωqb(σj−σk) = ωqb
(
j−k−m(j∗−k∗)

)
.

Since j∗ − k∗ = j − k + px, x ∈ Z we have

qb
(
j − k −m(j∗ − k∗)

)
= (b+ rn

p
)
(
j − k −m(j∗ − k∗)

)
= b(j − k)− bm(j∗ − k∗) + rn

p

(
j∗ − k∗ + px−m(j∗ − k∗)

)
= b(j − k) + (j∗ − k∗){−m(b+ rn

p
) + rn

p
}+ rnx

= b(j − k) + (j∗ − k∗){−mqb+ (qb− b)}+ rnx

≡ b(j − k) mod n.

Hence 〈gσj, gσk〉 = ωc = ωb(j−k) = 〈fj, fk〉.

Example 4.29. A special case of Lemma 4.28 is when

b 6≡ 0 mod
n

p
: p2b | n, qb := b+ r

n

p
6≡ 0 mod

n

p
, m := r

n

pb
,

i.e., the situation of Lemma 4.25.
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Theorem 4.30. Let p be prime, d = p+ 1, n ≥ d, and

A :=
n

p
Zn + a = {a, n

p
+ a, 2n

p
+ a, . . . , (p− 1)n

p
+ a}, a ∈ Zn.

Then the cyclic harmonic frames for Cd given by the subsets,

A ∪ {b}, A ∪ {bq}, b ∈ Zn, b 6∈ A, q ∈ Zn \ {0}

of Zn are unitarily equivalent and not multiplicatively equivalent if for some
m ∈ Zn,

qb ≡ b mod
n

p
, mqb ≡ qb− b mod n, m 6≡ 1 mod p

and
zb 6= zbq for all z ∈ Z∗n such that zA = A. (4.4.1)

In particular, if b ∈ Z∗n, then q 6∈ Z∗n ∪ {0} is sufficient.

Proof. Lemma 4.28 gives the result in one direction. For the converse, we
note that the extra condition (4.4.1) added to Lemma 4.28, by definition
implies the sets cannot be multiplicatively equivalent.

Example 4.31. (n = 9, d = 4) For Z9, the following multiplicative equiva-
lence classes of 4–element subsets give cyclic frames with the same angles{

{1, 4, 6, 7}, {2, 3, 5, 8}
}
,

{
{1, 3, 4, 7}, {2, 5, 6, 8}

}
.

The common angle multiset is

{ω3, ω3, ω3, ω6, ω6, ω6, 1 + 3ω3, 1 + 3ω6}, ω := e2πi/9.

It can be verified by Theorem 4.30 that the frames these give are unitarily
equivalent (but not via an automorphism). Here the permutation σ is

σ =

(
1 2 3 4 5 6 7 8 0
1 3 2 4 6 5 7 0 8

)
( for {1, 4, 6, 7} and {1, 3, 4, 7} ).

Lemma 4.32. Let n = p3m, p prime, m ∈ N, and

A :=
n

p
Zn + a = {a, n

p
+ a, 2n

p
+ a, . . . , (p− 1)n

p
+ a}, a ∈ {1, 2, . . . , p− 1},

B1 := {p, pz1, . . . , pzm}, zj ∈ Z∗n,
B2 := {p+ n

p
, pz1 + n

p
, . . . , pzm + n

p
},

with A ∩ B1 = A ∩ B2 = ∅ and B1 6= B2. Then the frames generated by
the sets A ∪ B1 and A ∪ B2, are unitarily equivalent if zj ≡ 1 mod p for all
j ∈ {1, . . . ,m}.
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Proof. We will call the two frames (fi) and (gi) respectively.
Define the permutation as follows

σj := j − j′ n
p2
, j′ := j mod

n

p
.

To show this is well defined, we will prove that σ is injective. Observe

σj = σk ⇐⇒ j′ − j′ n
p2

+
n

p
xj = k′ − k′ n

p2
+
n

p
xk

If j ≡ k mod n
p
, then

σj = σk =⇒ xj = xk =⇒ j = k

If j 6≡ k mod n
p
, suppose for a contradiction that σj = σk. Then,

0 = σj − σk = j′ − j′ n
p2

+
n

p
xj − k′ + k′

n

p2
− n

p
xk,

if and only if,

(j′ − k′)(1− n
p2

) = −n
p

(xj − xk).

Let d = n
p2

. Then n
p

= pd. Note 1− d = −(d− 1) and d is coprime to d− 1.

Since p3 | n, d = n
p2

= pk so that d − 1 = pk − 1 is coprime to p. Hence

gcd(1− d, pd) = 1, i.e., 1− n
p2

is a unit in Zn
p
. It follows that

(j′ − k′)(1− n
p2

) = (j′ − k′)(1− d) ≡ 0 mod
n

p
,

if and only if,

(j′ − k′)(1− d)(1− d)−1 ≡ 0 mod
n

p
⇐⇒ j′ − k′ ≡ 0 mod

n

p
,

if and only if,

j′ ≡ k′ mod
n

p
,

a contradiction. Therefore, σ is a permutation.
Now we show the permutation σ induces a unitary equivalence. We will

again proceed similarly to the above proofs. The argument will proceed on
the individual zj involved, but for simplicity we will use z to denote it.
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Case (a). j − k ≡ 0 mod p.
Note that σj − σk = j − k − (j′ − k′) n

p2
= j − k. It follows that

ωa(j−k)

p−1∑
t=0

ζj−k = ωa(σj−σk)

p−1∑
t=0

(ζσj−σk)t = pωa(j−k).

But also for z ∈ Z∗n,

ω(pz+n
p

)(σj−σk) = ω
(pz+n

p
)
(
j−k−(j′−k′) n

p2

)
= ω(pz+n

p
)(j−k)

= ωpz(j−k)+n
p

(j−k) = ωpz(j−k)+n
p
ps = ωpz(j−k)

Case (b). j − k 6≡ 0 mod p.
As p3 | n, σj − σk = j − k − (j′ − k′) n

p2
≡ j − k mod p, and (j − k, p) = 1,

p−1∑
t=0

(ζσj−σk)t =

p−1∑
t=0

(ζj−k)t = 0.

But also for z ∈ Z∗n,

ω(pz+n
p

)(σj−σk) = ωpz(σj−σk)+n
p

(σj−σk)

= ω
pz(j−k)−pz(j′−k′)( n

p2
)+n

p
(j−k)−n

p
(j′−k′)( n

p2
)

≡ ω
pz(j−k)−pz(j′−k′)( n

p2
)+n

p
(j−k)

≡ ωpz(j−k)−n
p

(j−k)+n
p

(j−k)

≡ ωpz(j−k) mod n.

In both cases we have shown that 〈gσj, gσk〉 = 〈fj, fk〉. i.e., σ induces a
unitary equivalence between the two frames.

Lemma 4.33. Let n = p3m, p prime, m ∈ N, and

A :=
n

p
Zn+a = {a, n

p
+a, 2n

p
+a, . . . , (p−1)n

p
+a}, a ∈ {1, 2, . . . , p−1}∩Z∗n,

B1 := {p, pz1, . . . , pzm}, zj ∈ Z∗n,

B2 := {p+ n
p
, pz1 + n

p
, . . . , pzm + n

p
},

with A ∩ B1 = A ∩ B2 = ∅ and B1 6= B2. Then the frames generated by the
sets A ∪B1 and A ∪B2, are not multiplicatively equivalent.
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Proof. Without loss of generality, assume a = 1. If it such a u ∈ Z∗n exists to
make the two frames multiplicatively equivalent, observe that we must have
u = sn

p
+ 1 for some s. Then

upzj = ( sn
p

+ 1)pzj = pzj

for each zj, i.e., all elements of the set are fixed. Therefore the two sets are
not multiplicatively equivalent.

Theorem 4.34. Let n = p3m, p prime, m ∈ N, and

A :=
n

p
Zn+a = {a, n

p
+a, 2n

p
+a, . . . , (p−1)n

p
+a}, a ∈ Z∗n∩{1, 2, . . . , p−1}

B1 := {p, pz1, . . . , pzm}, zj ∈ Z∗n,

B2 := {p+ n
p
, pz1 + n

p
, . . . , pzm + n

p
},

with A∩B1 = A∩B2 = ∅ and B1 6= B2 as before. Then the frames generated
by A∪B1 and A∪B2, with zj ≡ 1 mod p for all j ∈ {1, . . . ,m} are unitarily
equivalent and not multiplicatively equivalent.

Proof. Apply Lemma 4.32 and Lemma 4.33.

Example 4.35. (n = 16, d = 4). The harmonic frames generated by subsets
{1, 6, 9, 10} and {1, 2, 9, 14} are unitarily equivalent but not via an automor-
phism by Theorem 4.34. Here, the elements 1, 9 correspond to the set A, and
2 × 3 = 6, 2 × 5 = 10, 2 × 1 = 2, 2 × 7 = 14 correspond to the various bzj,
with b = 2.

Definition 4.36. Let J , K be two sets which generate cyclic harmonic
frames that are unitarily equivalent. An element ` ∈ Zn is permutation
invariant, if adding or removing that element from both J and K will not
affect the unitary equivalence of J and K.

Proposition 4.37. Some permutation invariants for the permutation con-
structions corresponding to Theorems 4.27, 4.30, 4.34 are as follows:

(a) For σj = j − rn
p
, ` = pαt, α ∈ N, t ∈ N0.

(b) For σj = j −mj′, j′ := j mod p, ` = n
m
t, t ∈ N0.

(c) For σj = j − j′ n
p2

, j′ := j mod n
p
, ` = p2t, t ∈ N0.

Proof. We show that under each type of permutation, ω`(j−k) = ω`(σj−σk).
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Case (a). Let ` = pαt, α ∈ N, t ∈ N0. Then

ω`(σj−σk) = ω`(j−k−r
n
p
j′+r n

p
k′) = ω`(j−k)−`r n

p
j′+`r n

p
k′ = ω`(j−k).

Case (b). Let ` = n
m
t, t ∈ N0. Then

ω`(σj−σk) = ω`(j−k−m(j′−k′)) = ω`(j−k)−`m(j′−k′) = ω`(j−k).

Case (c). Let ` = p2t, t ∈ N0. Then

ω`(σj−σk) = ω
`(j−k−(j′ n

p2
−k′ n

p2
))

= ω
`(j−k)−`j′ n

p2
−`k′ n

p2 = ω`(j−k).

Example 4.38. Lifted frames contain permutation invariant characters in
the subsets which generate them. The number 0 ∈ Zn which corresponds to
the lifting character (trivial one) is a permutation invariant for all σ. In this
way we can construct more types of cyclic harmonic frames where unitary
equivalence is possible but not via an automorphism, e.g.,
(n = 8, d = 4) We can ‘lift’ the Example 4.23, i.e., add 0 to each subset to
obtain (multiplicative equivalence classes){

{0, 1, 2, 5}, {0, 3, 6, 7}
}
,

{
{0, 1, 5, 6}, {0, 2, 3, 7}

}
.

These are still multiplicative equivalence classes, since m0 = 0, m ∈ Zn,
and by the same reasoning are not multiplicatively equivalent. They still
give the same angles, since the angle θ = ωaj1 + ωaj2 + ωaj3 transforms to
ω0 + ωaj1 + ωaj2 + ωaj3 = 1 + θ, and they are unitarily equivalent.

Example 4.39. A less obvious example is in n = 8, d = 4 where{
{1, 4, 5, 6}, {2, 3, 4, 7}

}
,

{
{1, 2, 4, 5}, {3, 4, 6, 7}

}
.

Here, the σ–invariant is 4 which is fixed under Theorems 4.27 and 4.30.

The above results contribute to a classification of the cyclic harmonic
frames falling outside of the criteria stipulated in Theorem 4.13. Ultimately,
a full classification remains a small cove of mystery for future adventurers to
explore.
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4.5 Equivalences Respecting Group Structure

We saw in the last section a few families of frames which were unitarily equiv-
alent but not via an automorphism, and hence not multiplicatively equiva-
lent. Here, we present some families of frames which are unitarily equivalent
if and only if they are multiplicatively equivalent, and conjecture about some
other families which may exhibit this property.

Theorem 4.40. Cyclic harmonic frames of n (square free) distinct vectors,
generated by subsets of Z∗n are multiplicatively equivalent if and only if they
are unitarily equivalent.

Proof. Let ω = e2πi/n, J , K be two subsets of Z∗n (with n square free) which
generate harmonic frames Φ and Ψ. One direction follows directly from
Theorem 4.13.

Conversely suppose Φ and Ψ are not multiplicatively equivalent. Let
ω a primitive n–th root of unity. Then

∑
j∈J ω

j is an angle in the angle

multiset of Φ but not in Ψ. This follows from the fact that ωj, j ∈ J ∪ K
are all basis elements of the basis consisting of the primitive roots of unity
(Theorem 3.18). Since the sets J , K are not multiplicatively equivalent,∑

j∈J ω
j could only be an angle of Ψ if and only if there exists a z ∈ Zn \Z∗n

such that,
∑

j∈J ω
j =

∑
k∈K ω

zk. Since gcd(zk, n) = gcd(z, n) for all k ∈
K, we have by Corollary 3.19 that the basis representation of

∑
k∈K ω

zk is
different to

∑
j∈J ω

j, and hence this is not possible.

Corollary 4.41. Cyclic harmonic frames of p (prime) distinct vectors are
multiplicatively equivalent if and only if they are unitarily equivalent.

Proof. This follows immediately from the theorem as all non zero elements
of Zp are in Z∗p.

Let θ be the angle map on d–element subsets of Zn given by

θ(J) :=
∑
j∈J

ωj.

Theorem 4.42. Let Cd be the collection of d–element subsets of Zn given by

Cd :=
{
J : θ−1(θ(J)) = {J}

}
.

If J ∈ Cd, then J and K are give unitarily equivalent cyclic harmonic frames
of distinct vectors if and only if they are multiplicatively equivalent subsets.
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Proof. Suppose, by way of contradiction, that J and K are not multiplica-
tively equivalent. Then the angle θ(J) =

∑
j∈J ω

j in the frame given by J is
in the frame given by K if and only if∑

j∈J

ωj =
∑
k∈K

ωbk =⇒ J = bK (since θ is 1–1),

where b 6∈ Z∗n (since the frames are not multiplicatively equivalent). Since
the frame given by J has distinct vectors, Zn = 〈J〉, and we have

Zn = 〈J〉 = 〈bK〉 ⊂ 〈b〉 6= Zn,

a contradiction.

The subsets in Cd exhibit properties similar to a basis of a cyclotomic field.
For any J ∈ Cd, when the sum of all the roots of unity associated with each
element in J , we get a number which is only obtainable as a sum of the roots
of unity associated with that subset.

Example 4.43. Consider the cyclic harmonic frames when d = 2, n odd.
Here C2 is all 2–element subsets of Zn (see Theorem 4.20).

Example 4.44. (n = p a prime). Here the p–th roots of unity are linearly
independent over Q, and form a basis, and thus Cd is all d–element subsets
of Zp. Moreover, unitarily inequivalent frames share no angles.

Conjecture 4.45. Let n = p1p2 · · · pk, p1 > p2 > . . . > pk (square free).
The cyclic harmonic frames of n distinct vectors in dimension less than or
equal to p1 are unitarily equivalent if and only if they are multiplicatively
equivalent.

This conjecture is based on the intuition from Theorem 3.15 which tells
us the minimal vanishing sums for Q[ω] (with ω an n–th root of unity), are
at least of length p1.

Conjecture 4.46. The cyclic harmonic frames of n (square free) distinct
vectors are unitarily equivalent if and only if they are multiplicatively equiv-
alent.

This conjecture stems from the observation in computational data which
strongly suggests this is the case. No counterexample has been found. In C3,
data strongly suggests non multiplicatively equivalent frames always have
different angle multisets. In C4 this behaviour is no longer the case. For ex-
ample, when n = 10, the harmonic frames generated by the subsets {1, 2, 4, 7}
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and {1, 2, 4, 7} are not multiplicatively equivalent, but share the same angle
multiset {0,−ω3−ω2− 1,−ω3−ω2,−ω3 +ω2− 2ω,−ω3 +ω2− 2ω+ 1, ω3−
ω2 + 2ω − 2, ω3 − ω2 + 2ω − 1, ω3 + ω2 − 1, ω3 + ω2}. Nevertheless, despite
the angle multiset overlap, they are unitarily inequivalent, so we are unable
to produce a counterexample to this conjecture. It does mean if it is true,
then new techniques need to be applied to prove it.

Conjecture 4.47. The cyclic harmonic frames generated by subsets of Z∗n
are unitarily equivalent if and only if they are multiplicatively equivalent.

The data strongly suggests multiplicatively inequivalent frames produce
different angle multisets under these conditions.
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