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Abstract

Tight frames are a generalisation of orthonormal bases which may have re-

dundancy. Special examples used in quantum information theory include

MUBs (mutually unbiased bases), SIC-POVMs (symmetric, information-

ally complete, positive operator valued measures). They are examples of

spherical (t, t)-designs. It is known that spherical (t, t)-designs exist for a

sufficient large number of vectors. In this dissertation we seek to determine

basic existence results for the smallest number of vectors required. We un-

dertook a näıve numerical search which revealed some interesting features.

We present our results in a set of table, give conjectures and present some

notable examples.
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Chapter 1

Introduction

The concept of spherical (t, t)-designs dates from 1977 and is due to Delsarte, Goethals,

and Seidel [DGS77]. Such designs have the property of allowing the integration of homo-

geneous polynomials of total degree 2t to be turned into the summation of polynomials

evaluated at a finite number of points. These designs have been studied extensively

in the real case and have applications to approximation theory, combinatorics, and

statistics for experimental design. Their study in the complex case should however not

be neglected. Justification of such study is to be found in quantum mechanics and has

applications in quantum information theory, quantum computing, quantum coding and

much more. It is perhaps farfetched, but not completely inconceivable, that spherical

(t, t)-designs could play a role in quantum teleportation, thus bringing Star Trek to

life [BPM+98]! The existence of spherical (t, t)-designs was proved by Seymour and

Zaslavsky [SZ84] in 1984. They showed that such designs exist provided they are “big”

enough, but gave no idea of what is meant by “big”. The main goal of this project is

to investigate this notion of “big”.

We will start by looking at frames and tight frames. Spherical (t, t)-design are frames,

and tight frames are spherical (1, 1)-designs, so this small detour will give the reader a

better appreciation of spherical (t, t)-designs.

This chapter provides a taste of what is to come. First, it provides a motivation for

looking at frames. Then it proceeds to a brief discussion of frames, stating the limi-

tations of this concept. Next, it demonstrates the idea of tight frames with examples,
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1. INTRODUCTION

introduce the properties that we would like them to have, and provide examples of

“nice” tight frames. After this we introduce spherical (t, t)-designs, linking them to

examples of “nice” tight frames. Finally, we give a summary of what can be expected

from this dissertation.

1.1 Motivation

Points in Euclidean space are usually specified by their coordinates with respect to

some basis. Such coordinates have no redundancy, i.e., if one coordinate is lost, then

the position of that point is lost. This can be problematic in some applications. One

simple approach to the problem is to keep duplicate copies of each coordinate. With

frames we have redundant vectors which give us additional coordinates, so that we

can lose some coordinates and still retain the point. When the probability of losing

a coordinate is small, adding a small number of extra vectors will usually result in

a higher probability of retaining the point, even in high dimensional spaces. This is

demonstrated in Appendix A.

1.2 Frames

The ideas outlined in Section 1.1 have been extensively studied in the infinite dimen-

sional setting (infinite dimension Hilbert spaces). Such objects, which span the whole

Hilbert space (where the Hilbert space might be real or complex), but might be linearly

dependent, are called frames when they contain finitely many vectors. This is because

for finite frames, it is always possible to write a vector f as a linear combination of

sequences of these vectors (fj)j∈J , |J | < ∞ in the frame by having some constants

α ∈ F (where F is a Hilbert space) such that

f = α
∑

j∈J

〈f, fj〉 fj.

However, when there are countably infinte many vectors in the frame, this sum is

not guaranteed to converge. We shall consider some examples in Chapter 2 and give

formal a definition for frames. Having a frame is desirable, but the question of how

to determine the coefficients is not so clear: namely, the constant α might change

depending on our f .

2



1.3 Tight Frames

1.3 Tight Frames

Given the constraint on frames as mentioned above, the idea of tight frames, which

allows us to determine the coefficients for any f given (fj)j∈J follows naturally.

Example 1.1. A prototypical example of a tight frame is the Mercedes-Benz frame,

shown below.

The Mercedes-Benz frame consists of three equally spaced unit vectors f1, f2, f3 in R2,

and yields the following decomposition

f =
2

3

3
∑

j=1

〈f, fj〉 fj (1.1)

of any f ∈ R2. We shall revisit this example in Chapter 3.

Finite tight frames have many applications, and it is of interest to find “nice” tight

frames for such applications. Some of the “nice” properties we might hope for are:

• Equal norms. The vectors in the tight frame have equal norm, so we can think

of the vectors as lying on a sphere.

• Symmetries. The frame is invariant under some group G of symmetries, e.g., it

could be the case that it is the rotation copy of some vectors.

• Equiangularity/equispacing. In Rd, this is equivalent to having the same angles

between distinct vectors. In the complex case, we need to look at the complex

analogous of angle, namely the absolute value of the inner product. Sometimes

having all “angles” the same can not be achieved, so we can only hope to make the

number of distinct “angles” as small as possible. If there are k distinct “angle”

values, then this tight frame is called k-angular.

3



1. INTRODUCTION

• Robustness to erasures. Consider the example in Section 1.1. We want to be

able to restore the position of our point when we can only retain small amount of

information. In Example 1.1, we can lose any one coefficient 2
3 〈f, fj〉 for j = 1, 2, 3

and still be able to find our f . This will be illustrated in Appendix B.

• Stability. Suppose that when coefficients are “transported”, they are perturbed

by random error. For a tight frame expansion, the computed errors are bounded,

and could even be zero even with nonzero pertubation. Such bounds cannot be

achieved with orthogonal expansion. Moreover, tight frame expansions usually

give us smaller error than do orthonormal expansions. We will illustrate this

phenomenon with an example in Appendix C.

We now introduce a few examples which have one or more desirable properties.

Example 1.2. Here is a tight frame in R2, which consists of four equally spaced unit

vectors f1, f2, f3, f4 in R2.

It yields decompositions

f =
1

2

4
∑

j=1

〈f, fj〉 fj, ∀f ∈ R
2. (1.2)

Note that the absolute value of the inner product (which is an analogous of the angle,

hence we shall refer to it as “angle” from now on) between any two elements of the

frame can only be either 0 or 1. Thus we have an example of a 2-angular tight frame.

If the angle set is
{

0, 1√
d

}

where d is the dimension of the space, then we shall call

the frame mutually unbiased bases (MUBs). We will demonstrate later that any

MUBs is a tight frame.
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1.4 spherical (t, t)-designs

Example 1.3. Using Matlab, we came up with the following example of mutually unbi-

ased bases in C2:

{f1, f2, . . . f6} =

{[

0.6002 + 0.7731i

0.0953 + 0.1815i

]

,

[

0.6367 − 0.5434i

−0.4695 + 0.2808i

]

,

[

0.4769 + 0.5205i

−0.5952 + 0.3839i

]

,

[

−0.5197 + 0.4813i

0.3857 + 0.5913i

]

,

[

−0.1206 − 0.1658i

0.4277 + 0.8803i

]

,

[

0.3612 + 0.4109i

0.4401 + 0.7120i

]}

.

Mutually unbiased bases in Rd have been studied extensively so we shall focus on the

Cd context.

Example 1.4. Another example of a tight frame in C2 is:

{f1, f2, f3, f4} =

{[

0.2981 + 0.5298i

0.5780 + 0.5444i

]

,

[

−0.6664 − 0.0888i

0.3887 + 0.6301i

]

,

[

0.1888 + 0.9693i

−0.1537 + 0.0323i

]

,

[

−0.4023 + 0.2035i

−0.0817 − 0.8889i

]}

.

This is a tight frame with the property that the absolute value of inner product between

all vectors in the frame is the same. This is called a symmetric, informationally

complete, positive operator valued measure (SIC-POVM).

1.4 spherical (t, t)-designs

The tight frames in the examples above all satisfy the the cubature rule. That is, if we

think of the vectors in those tight frames as points, then for some t the integral of any

homogenous polynomial of total degree 2t over the unit sphere is equal to the average

value of the polynomial evaluated at those points. Example 1.1 and Example 1.2 satisfy

this condition for t = 1, Example 1.3 for t ≤ 3 and Example 1.4 for t ≤ 2. This idea of

being able to turn integration into summation can be useful in some applications. We

call a sequence of vectors (fj) satisfying the cubature rule for polynomials of degree 2t

a spherical (t, t)-design.

Spherical designs are of value in approximation theory, quantum mechanics, statistics

for experimental designs, and many other disciplines. It is of interest, for a given t and

a given Hilbert space, to construct designs with small numbers n of vectors to make

computation easy. The study of such designs in Rd has been extensive. However they

rarely exist. In this dissertation, we shall focus on the complex setting.
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1. INTRODUCTION

1.5 Outline

The main points of what can be expected from the rest of this dissertation will now be

outlined.

In chapter 2, we give a very brief overview of frames. We start with the formal defini-

tion, then a small collection of well-known facts, available in most frame theory books.

In discussing these facts we make reference to the examples encountered in Chapter 1.

In chapter 3, we look at tight frames carefully so as to provide the tools needed for

investigating spherical (t, t)-design. We encounter synthesis, analysis, and frame oper-

ators as well as the Gramian and angle matrix, and some examples to illustrate these

concepts. We see what it means for tight frames to be equivalent. Finally, we exam-

ine the notion of frame potential and variational inequality, which can be translated

directly into the spherical (t, t)-design setting.

Chapter 4 is mostly example based, with our goal being to investigate interesting cases

of spherical (t, t)-designs, rather than to provide a thorough study of spherical (t, t)-

designs. We only provide as much theory as needed. The majority of this chapter

involves discussing examples and conjectures. Towards the end of the chapter we study

in detail two families of spherical (t, t)-design that possess the equal norm and equian-

gular property.

In chapter 5 our main goal is to find spherical (t, t)-designs numerically. We first dis-

cuss the methodology to be used to find spherical (t, t)-designs using Matlab. Then we

discuss what we observed while investigating the conjectures we came up with on the

basis of the Matlab computations. Finally, we discuss some interesting examples that

might be worthy of further study.

6



Chapter 2

Frames

In 1952, Duffin and Schaeffer [DS52] gave a “frame condition” on a sequence of vectors

to make it possible to compute the coefficients of the frame expansion regardless of

dimension. The notion of frame bound was introduced, and this idea contributed vastly

to the development of modern frame theory. Frame theory is a substanstial topic in

its own right, with a history dating back at least as far as 1937 [Sch37]. As this is not

the focus of this dissertation, we shall only give a brief overview. We shall start with

the formal definition from [DS52], then provide a few facts, relating them back to the

examples in Chapter 1.

Definition 2.1. A countable sequence (fj)j∈J in a Hilbert space H is said to be a

frame (for H) if there exist constants A and B, 0 < A ≤ B < ∞, such that

A ‖f‖2 ≤
∑

j∈J

|〈f, fj〉|2 ≤ B ‖f‖2 , ∀f ∈ H. (2.1)

In this case, A is called a lower frame bound and B an upper frame bound.

We shall establish a few facts.

Fact 2.1. To be a frame, (fj)j∈J needs to span H.

Proof. If this is not the case, then we can find f 6= 0 that is orthogonal to all fj. If

(fj)j∈J is indeed a frame then there is a lower frame bound 0 < A such that

A ‖f‖2 ≤
∑

j∈J

|〈f, fj〉|2 = 0,

which is a contradiction.

7



2. FRAMES

Fact 2.2. (fj)j∈J spanning H is not a sufficient condition to be a frame.

Proof. The following set of vectors is not a frame in R2.

{f1, f2, f3, f4, . . .} =

{[

1

0

]

,

[

0

1

]

,

[

0

1

]

,

[

0

1

]

, . . .

}

.

This sequence spans R2, but
∑

j∈J |〈(1, 1), fj〉|2 =
∑

j∈J 1 does not converge. We

cannot choose our upper frame bound B such that B < ∞. Thus, (fj)j∈J is not a

frame in this case.

Fact 2.3. If J is finite, then the spanning condition is both necessary and sufficient for

(fj)j∈J to be a frame.

Proof. We already seen why it is necessary, so now we shall show it is sufficient. Let

dimension of H be d. Using the Cauchy-Schwarz inequality, we have that

∑

j∈J

|〈f, fj〉|2 ≤
∑

j∈J

‖f‖2 · ‖fj‖2 =





∑

j∈J

‖fj‖2



 · ‖f‖2 . (2.2)

Hence if we pick B =
∑

j∈J ‖fj‖2, this is our upper frame bound and B < ∞ since

(fj)j∈J is a finite sequence of vectors. Now observe that

∑

j∈J

|〈f, fj〉|2 =
∑

j∈J

∣

∣

∣

∣

‖f‖
〈

f

‖f‖ , fj

〉∣

∣

∣

∣

2

= ‖f‖2
∑

j∈J

∣

∣

∣

∣

〈

f

‖f‖ , fj

〉∣

∣

∣

∣

2

(2.3)

Let A = infh∈Sd

∑

j∈J |〈h, fj〉|2. This is well-defined due to compactness of S
d. We then

have A ≥ 0 and A = 0 only when h is orthogonal to all fj, this is impossible as (fj)j∈J

is a spanning set, thus A > 0. The A thus defined is our lower frame bound.

From this we see that Example 1.1, 1.2, 1.3 and 1.4 are all frames.

Example 2.2. Consider the set
{

1√
2π

einx : n ∈ Z

}

. It is an orthonormal basis in Hilbert

space L2 [−π, π]. If we take its projection from L2 [−π, π] onto subspace L2 [−a, a],

where 0 < a < π using the standard projection, then it forms a frame with an infinite

number of elements.

We will now move onto tight frames, which allow us to determine the coefficients of

frame expansion for any f given a tight frame with an easy formula.

8



Chapter 3

Tight frames

In this chapter, we discuss tight frames which overcome some of the limitations that

frames possess. Although tight frames are not central to this dissertation, the un-

derstanding of tight frame provides valuable insight into the study of spherical (t, t)-

designs. First we give the definition of tight frames. Then we introduce the synthesis,

analysis and frame operators which will provide us with useful results that are easy to

apply. Next, we discuss the unitary operator, the Gramian and the idea of equivalence

of tight frames. Finally, we discuss the frame potential and variational inequality, which

seems to have been underappreciated and which provides great insight into appreciation

of the physical structure of tight frames.

3.1 Basic definition of tight frame

We shall now define tight frame formally.

Definition 3.1. A countable sequence (fj)j∈J in a Hilbert space H is said to be a tight

frame (for H) if there exists a (frame bound) A > 0, such that

A ‖f‖2 =
∑

j∈J

|〈f, fj〉|2 , ∀f ∈ H. (3.1)

Further, (fj)j∈J is normalised if A = 1, and finite if J is finite.

Example 3.2. For the case of the Mercedes-Benz frame in Example 1.1, we have A = 3
2 .

Let fj =

[

cos
(2πj

3

)

sin
(2πj

3

)

]

, for j = 1, 2, 3. We will show later why this is sufficient to show

9



3. TIGHT FRAMES

the result holds for any three equally spaced unit vectors. Let f = [ a
b ] , a, b ∈ R, then

we have

3
∑

j=1

|〈f, fj〉|2 =

3
∑

j=1

[

cos2
(

2πj
3

)

a2 + 2cos
(

2πj
3

)

sin
(

2πj
3

)

ab + sin2
(

2πj
3

)

b2
]

= a2
(

1
4 + 1

4 + 1
)

+ 2ab
(

−1
2

√
3

2 + −1
2

−
√

3
2

)

+ b2
(

3
4 + 3

4

)

= 3
2

(

a2 + b2
)

=
3

2
‖f‖2 .

We call (3.1) the Bessel identity. It is equivalent to the following identities which can

be easily verified by making use of the polarisation identity1,

Parseval: f =
1

A

∑

j∈J

〈f, fj〉 fj , ∀f ∈ H, (3.2)

Plancherel: 〈f, g〉 =
1

A

∑

j∈J

〈f, fj〉 〈fj, g〉 , ∀f, g ∈ H. (3.3)

Observe that the frame bound A is simply a normalising constant wheres it is sufficient

to consider only normalised tight frames. Given that (fj)j∈J is a tight frame in H with

frame bound A, let gj = fj/
√

A for all j ∈ J . Then (gj)j∈J is a normalised tight frame

which satisfies

g =
∑

j∈J

〈g, gj〉 gj , ∀g ∈ H.

We call (gj)j∈J a Parseval frame for H.

The Parseval identity (3.2) can be used to calculate coordinates for f under a given

frame. Identities (3.1), (3.2) and (3.3) are good for some applications, but are not very

efficient for verifying and hence finding tight frames. We shall introduce a few more

definitions to arrive at results which allow us to tell whether a set of vectors is a tight

frame more efficiently.

1The polarisation identity for an Hilbert space H is: for all f, g ∈ H we have that

ℜ〈f, g〉 =
1

4

`

‖f + g‖2 − ‖f − g‖2
´

,

ℑ〈f, g〉 =
1

4

`

‖f + ig‖2 − ‖f − ig‖2
´

, for H complex.

10



3.2 The synthesis, analysis and frame operators

3.2 The synthesis, analysis and frame operators

Definition 3.3. For a finite sequence (fj)j∈J in H the synthesis operator (recon-

struction operator or pre-frame operator) is the linear map V : ℓ2(J) → H defined

by

V

(

∑

j∈J

ajej

)

=
∑

j∈J

ajfj. (3.4)

In the foregoing (ej)j∈J is the canonical basis for ℓ2(J). If V is the synthesis operator

determined by a finite sequence (fj)j∈J we write V := [fj]j∈J . The adjoint V ∗ of the

synethesis operator is the analysis operator (or frame transform operator). Note

that

V ∗ : H → ℓ2(J) and V ∗f 7→
∑

j∈J

〈f, fj〉 ej . (3.5)

The product, V V ∗ = S : H → H is known as the frame operator. It has the property

that

Sf = V V ∗f =
∑

j∈J

〈f, fj〉 fj, ∀f ∈ H. (3.6)

Note that S is self adjoint as we have S∗ = (V V ∗)∗ = (V ∗)∗V ∗ = V V ∗ = S. Using this

we obtain

trace(S) = trace(V V ∗) = trace(V ∗V ) =
∑

j∈J

‖fj‖2 , (3.7)

trace(S2) = trace(S∗S) = trace((V V ∗)∗(V V ∗)) =
∑

j∈J

∑

k∈J

|〈fj, fk〉|2 . (3.8)

Hence we have the following results:

Proposition 3.4. A finite sequence (fj)j∈J in H is a tight frame for H (with frame

bound A) if and only if

S = V V ∗ = AIH, V := [fj]j∈J . (3.9)

In the foregoing IH is the identity operator for H. In particular, a tight frame satisfies
∑

j∈J

‖fj‖2 = dA, where d = dim(H), (3.10)

and

∑

j∈J

∑

k∈J

|〈fj, fk〉|2 =
1

d

(

∑

j∈J

‖fj‖2

)2

. (3.11)

11



3. TIGHT FRAMES

Proof. Equation (3.9) follows directly from the Parseval identity (3.2).

∑

j∈J

‖fj‖2 = trace(S) = trace(AIH) = dA,

∑

j∈J

∑

k∈J

|〈fj, fk〉|2 = trace(S2) = trace(A2IH) = A2d =
1

d
(Ad)2 =

1

d

(

∑

j∈J

‖fj‖2

)2

.

Example 3.5. Recall the vectors for Example 1.2. The synthesis operator is

V =

[

1 0 −1 0

0 1 0 −1

]

,

and the frame operator is

S = V V ∗ =

[

2 0

0 2

]

= 2IR2 .

Thus we see that those four equally spaced vectors in R2 form a tight frame. This

demonstrates that using the synthesis operator to show that something is a tight frame

is easier than proceeding directly from the definition.

3.3 Unitary operators and tight frames in R
2

We shall now introduce the idea of a unitary operator. We will use this concept to

show that in Example 3.2 and Example 3.5, it is justifiable to demonstrate only that

a particular representation of a class of related frames is tight. We will conclude with

a brief discussion of tight frames in R2 which possess the equal norm and equiangular

property.

Definition 3.6. Let U : H → K be a linear operator. We say that U is unitary if U

is surjective, and 〈Uf,Ug〉 = 〈f, g〉 for all f, g ∈ H.

Theorem 3.7. A tight frame will remain a tight frame after unitary transformation.

Proof. Let V : ℓ2(J) → H be the synthesis operator for a given tight frame (fj)j∈J ,

A > 0 the frame bound and U : H → K a unitary operator. Observe that U∗U = IH,

UU∗ = IK. Note that UV is the synthesis operator for the sequence (Ufj)j∈J . Now

we have

(UV ) (UV )∗ = UV V ∗U∗ = UAIHU∗ = AUIHU∗ = AIK.

12



3.4 The Gramian and unitarily equivalence

From this we see that in Example 3.2 and Example 3.5, verifying that specific instance

of those frames are tight is justified, as rotation is a unitary transformation. In the first

example the reciprocal of the frame bound is 2
3 , whereas in the second example it is 2

4 .

We can think of this as distributing two dimensions worth of information onto three or

four coordinates, so in the first example, each coordinate gets 2
3 dimensions worth of

information, and in the second example, 2
4 dimensions worth.

Example 3.8. In 1937, Schönhardt [Sch37] generalised the idea of Example 3.2 and

Example 3.5 to n equally spaced unit vectors f1, . . . , fn ∈ R2. The decomposition

f =
2

n

n
∑

j=1

〈f, fj〉 fj, ∀f ∈ R
2, (3.12)

follows naturally.

In 1940, Brauer and Coxeter [BC40] gave an example of the continuous analogy

f =
1

π

∫ 2π

0
〈f, fθ〉 fθ dθ, ∀f ∈ R

2, fθ :=
( cos θ

sin θ

)

. (3.13)

The collection (fθ)θ∈[0,2π) is called a continuous tight frame.

The use of unitary operators in the study of tight frames will be further demonstrated

in the next section.

3.4 The Gramian and unitarily equivalence

We shall now define the Gram matrix. We have seen the importance of the frame

operator S = V V ∗. Composing V and its adjoint V ∗ the other way gives us the

Gramian, V ∗V : ℓ2(J) → ℓ2(J).

Definition 3.9. For a finite sequence of n vectors (fj)j∈J in H, the Gramian or

Gram matrix is the n × n Hermitian matrix

Gram((fj)j∈J) := [〈fk, fj〉]j,k∈J . (3.14)

To facilitate the full appreciation of the Gramian we shall now introduce the idea of

equivalence for finite tight frames.

13



3. TIGHT FRAMES

Definition 3.10. Two normalised tight frames (fj)j∈J for H and (gj)j∈J for K, with

the same index set J are (unitarily) equivalent if there is a unitary transformation

U : H → K, such that gj = Ufj, for all j ∈ J .

Example 3.11. The following two tight frames Φ and Ψ are unitarily equivalent. See

below for their graphical representation in R2 by letting a + ib = (a, b). Let ω :=

e
2πi
3 , ν := e

πi
9 .

Φ :=
(

1, ν, ω, νω, ω2, νω2
)

, Ψ := (ν, ν2, νω, ν2ω, νω2, ν2ω2).

The following two tight frames Φ and Θ are not unitarily equivalent.

Φ :=
(

1, ν, ω, νω, ω2, νω2
)

, Θ := (1, ν2, ω, ν2ω, ω2, ν2ω2).

This is because the unitary map must preserves the inner product between vectors

(analogy of angle), which is the case for Φ and Ψ but clearly not the case for Φ and Θ.

We will demonstrate this example numerically in Example 3.13.

Theorem 3.12. Normalised tight frames are unitarily equivalent if and only if their

Gramians are equal.

Proof. Let (fj)j∈J , (gj)j∈J be normalised tight frames for H and K respectively.

If (fj)j∈J and (gj)j∈J are unitarily equivalent, then there exists a unitary map U : H →
K such that gj = Ufj for all j ∈ J . We then have

〈gj , gk〉 = 〈Ufj, Ufk〉 = 〈fj, fk〉 , ∀j, k ∈ J

14



3.4 The Gramian and unitarily equivalence

so their Gramians are equal.

If the Gramians of (fj)j∈J and (gj)j∈J are equal, that is, 〈gj , gk〉 = 〈fj, fk〉 for all

j, k ∈ J . Then, there exists a unitary U : H → K with gj = Ufj for all j ∈ J . Thus

(fj)j∈J and (gj)j∈J are unitarily equivalent.

Theorem 3.12 implies that: Any properties of a tight frame that is invariant under

unitary transformation can be determined from its Gramian.

Example 3.13. Recall Example 3.11. We will show that Φ and Ψ are unitarily equivalent

by calculating the difference between their Gramians in Matlab:

>>w=exp (2 * pi * 1i/3);v= exp ( pi * 1i/9);

>>Phi=[1 v w v * w wˆ2 v * wˆ2]; Psi=[v vˆ2 v * w vˆ2 * w v* wˆ2 vˆ2 * wˆ2];

>>Phi' * Phi −Psi' * Psi

ans =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Therefore the Gramians for Φ and Ψ are the same, hence Φ and Ψ are unitarily equiv-

alent. In contrast the difference of the Gramians for Φ and Θ is

>>Theta=[1 vˆ2 w vˆ2 * w wˆ2 vˆ2 * wˆ2];

>> Phi' * Phi − Theta' * Theta

ans =

0 0.2 − 0.3i 0 0.2 + 0.3i 0 −0.4 + 0.00i

0.2 + 0.3i 0 −0.4 + 0.0i 0 0.2 − 0.3i 0

0 −0.4 − 0.0i 0 0.2 − 0.3i 0 0.2 + 0.30i

0.2 − 0.3i 0 0.2 + 0.3i 0 −0.3 − 0.0i 0

0 0.2 + 0.3i 0 −0.3 + 0.0i 0 0.2 − 0.30i

−0.4 − 0.0i 0 0.2 − 0.3i 0 0.2 + 0.3i 0

Hence Φ and Θ are not unitarily equivalent.

We shall now define the angle matrix. This definition is not standard, but it will be

useful further on in determining whether a set of vectors is k-angular.

Definition 3.14. For a finite sequence of n vectors (fj)j∈J in H, the angle matrix

is the n × n matrix

angle ((fj)j∈J) := [|〈fk, fj〉|]j,k∈K
. (3.15)

The angle matrix is the Gramian after taking entry-wise absolute value.
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3. TIGHT FRAMES

We shall refer to |〈f, g〉| as the angle between f and g. This terminology is not standard.

Some writers refer to |〈f, g〉|2 as the angle.

3.5 The frame potential and the variational inequality

The idea of the frame potential provides a nice framework for conceptualizing frames

from a physical point of view. Recall (3.11) from Proposition 3.4. The function

FP: S
n → [0,∞) defined by

FP(f1, . . . , fn) =

n
∑

j=1

n
∑

k=1

|〈fj, fk〉|2 (3.16)

was called the frame potential by Fickus [Fic01] in 2001 because it was derived from

a frame force, where S
n is the n dimensional unit sphere.

In physics, potential energy is the energy stored in a body or in a system due to its

position in a force field or due to its configuration. When the bodies are free to move,

they will attempt to change position to arrive at the configuration that minimises the

potential energy. For example, a spring will return to its unextended state when there

is no outside force, electrons will move away from each other, and objects in the air will

fall to the ground. The frame potential is analogous to the potential energy of objects

in the physical world. It is minimised when vectors form a tight frame. Example 3.2

motivates us to think of electrons placed on a wired circle. This system will reach

equilibrium when the electrons are equally spaced. See below for a comparison between

the Mercedes-Benz frame and three electrons on a wire frame.
b

b b

However, this analogy is not perfect. If we had only two electrons, they would go to

opposite ends to maximise the distance between them and thus manimises the potential

energy. In contrast in the tight frame situation, unit vectors form a normalised tight
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3.5 The frame potential and the variational inequality

frame if and only if they are an orthonormal basis. Tight frames seem to occur when

the vectors are “as orthogonal as possible”. Thus we must adjust the analogy, by

considering a system where vectors are subject to a repellent force when the angle

between them is less than π
2 , and subject to an attraction force when the angle between

them is greater than π
2 . In this system the configuration that minimises the potential

energy is exactly a tight frame.

If we have f1, . . . , fn being n ≥ d unit vectors in Cd, then

FP(f1, . . . , fn) =

n
∑

j=1

n
∑

k=1

|〈fj, fk〉|2 ≥ n2

d
.

This is known as the Welch bound, after [Wel74]. Unit vectors f1, . . . , fn which give

equality are called Welch bound equality sequences (WBE sequences), a notion

made popular by Massey and Mittelholzer [MM93]. A WBE sequence is the same thing

as a tight frame. The following theorem extends the Welch bound to the case where

the vectors may have arbitrary lengths.

Theorem 3.15. Let f1, . . . , fn be vectors in H, not all zero, and d = dim(H). Then

n
∑

j=1

n
∑

k=1

|〈fj, fk〉|2 ≥ 1

d

(

n
∑

j=1

‖fj‖2

)2

, (3.17)

with equality if and only if (fj)
n
j=1 is a tight frame for H.

Proof. Given V V ∗ is positive definite, it is unitarily diagonalisable with eigenvalues

λ1, λ2, . . . , λd ≥ 0. Then using the Cauchy-Schwarz inequality we have

(trace(S))2 =

(

d
∑

j=1

λj

)2

= 〈(1) , (λj)〉2 ≤ ‖(1)‖2 ‖(λj)‖2 = d
d
∑

j=1

λ2
j = d trace(S2),

The result follows from (3.7) and (3.8).

We call (3.17) the variational inequality. When equality is attained, it is known as the

variational formula, and is equivalent to

∫

S

p(x) dσ(x) =
1

∑n
ℓ=1 ‖fℓ‖2

n
∑

j=1

p(fj), (3.18)

which is the cubature rule, where p is a homogeneous polynomial of total degree 2. A

proof can be found in [Wal11]. From this, we see that all tight frames are spherical
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3. TIGHT FRAMES

(1, 1)-designs. We have also seen previously that some of our examples of tight frames

are spherical (t, t)-designs, for t > 1. In the next Chapter we will further investigate

spherical (t, t)-designs.

3.6 Summary

In this chapter we have developed results that will help us with the study of tight

frames. Many of these results can be generalised to the spherical (t, t)-design setting,

which we will see in Chapter 4. We have seen that Any properties of a tight frame

that is invariant under unitary transformation can be determined from its Gramian..

This tells us that in studying tight frames we need only look at their Gramians to

understand them. In fact we will demonstrate in Chapter 4 through examples that the

same applies to spherical (t, t)-designs. What is more, most of the time we need in fact

only look at the angle matrix.
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Chapter 4

spherical (t, t)-designs

We have seen that certain tight frames are spherical (1,1)-designs. It should not be

surprising that there may be some relationship between tight frames and spherical

(t, t)-designs. We have seen that tight frames are helpful in integrating homogenous

polynomials of total degree 2. It is of interest to generalise this to homogenous polyno-

mials of higher total degree. In this chapter, we first look at the basic mathematics of

spherical (t, t)-designs. Then, motivated by examples, we consider some special kinds

of designs, instances of such designs include MUBs and SIC-POVMs. Along the way,

we will point out patterns that seems to be worth-while investigating, which we will do

numerically in Chapter 5.

4.1 Outline of spherical (t, t)-designs

The original definition of spherical (t, t)-designs from [DGS77] is not useful for our

discussion. Hence we shall start with an equivalent definition of spherical (t, t)-designs.

A proof of equivalence can be found in [Wal11].

Definition 4.1. Let f1, . . . , fn be vectors in H = Fd (where F = C or R), not all zero.

Then

n
∑

j=1

n
∑

k=1

|〈fj, fk〉|2t ≥ ct(d,F)

(

n
∑

j=1

‖fj‖2t

)2

. (4.1)

Where

ct(d,C) =
1

(

d+t−1
t

) , ct(d,R) =
1 · 3 · 5 · · · · · (2t − 1)

d(d + 2) · · · (d + 2(t − 1))
.
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4. SPHERICAL (T, T )-DESIGNS

When equality is attained, (fi)
n
i=1 is called a spherical (t, t)-design for Fd. When

fi is a unit vector for all 1 ≤ i ≤ n, (fi)
n
i=1 is referred to as a weighted spherical

(t, t)-design.

Similar to the tight frame case, we refer to (4.1) as the variational inequality and call

it the variational formula when equality is attained. The variational formula in this

case is also equivalent to the cubature rule,

∫

S

p(x) dσ(x) =
1

∑n
ℓ=1 ‖fℓ‖2t

n
∑

j=1

p(fj), (4.2)

for all p where p are homogeneous polynomials on H of total degree 2t.

From now on, we shall use the phrase t-design and spherical (t, t)-design interchange-

ably, and sometimes omit the word weighted if it is clear from the context.

Checking whether a sequence of vectors is a t-design is easy using (4.1) and calculations

involving the angle matrix.

Example 4.2. Recall the MUBs in Example 1.3, which is the union of three mutually

unbiased bases in C2. This was obtained when we were trying to find a 3-design in C2

with 6 vectors. Let Φ = {f1, f2, . . . , f6} be the sequence of vectors from Example 1.3.

It has the angle matrix

angle(Φ) =

























1 1√
2

1√
2

1√
2

0 1√
2

1√
2

1 1√
2

1√
2

1√
2

0
1√
2

1√
2

1 0 1√
2

1√
2

1√
2

1√
2

0 1 1√
2

1√
2

0 1√
2

1√
2

1√
2

1 1√
2

1√
2

0 1√
2

1√
2

1√
2

1

























, and

c3(2,C) = 1

(4

3
)

= 1
4 ,

c2(2,C) = 1

(3

2
)

= 1
3 ,

c1(2,C) = 1

(2

1
)

= 1
2 .

Then we have

6
∑

j=1

6
∑

k=1

|〈fj, fk〉|6 = 24 × 1

8
+ 6 =

1

4
× 62 =

1

4

(

6
∑

j=1

‖fj‖6

)2

,

6
∑

j=1

6
∑

k=1

|〈fj, fk〉|4 = 24 × 1

4
+ 6 =

1

3
× 62 =

1

3

(

6
∑

j=1

‖fj‖4

)2

,

6
∑

j=1

6
∑

k=1

|〈fj, fk〉|2 = 24 × 1

2
+ 6 =

1

2
× 62 =

1

2

(

6
∑

j=1

‖fj‖2

)2

.
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4.1 Outline of spherical (t, t)-designs

Ergo we see that Φ is a weighted 3-design and a weighted 2-design as well as a weighted

1-design (tight frame).

Example 4.3. Now consider Example 1.4, which is a SIC-POVM in C2. This was

obtained when we were trying to find a 2-design in C2 with 4 vectors. Let Ψ =

{f1, f2, f3, f4} be the sequence of vectors from Example 1.4. It has the angle matrix

angle(Ψ) =















1 1√
3

1√
3

1√
3

1√
3

1 1√
3

1√
3

1√
3

1√
3

1 1√
3

1√
3

1√
3

1√
3

1















, and
c2(2,C) = 1

(3

2
)

= 1
3 ,

c1(2,C) = 1

(2

1
)

= 1
2 .

Then we have

4
∑

j=1

4
∑

k=1

|〈fj, fk〉|4 = 12 × 1

9
+ 4 =

1

3
× 42 =

1

3

(

4
∑

j=1

‖fj‖4

)2

,

4
∑

j=1

4
∑

k=1

|〈fj, fk〉|2 = 12 × 1

3
+ 4 =

1

2
× 42 =

1

2

(

4
∑

j=1

‖fj‖2

)2

.

Hence we see that Ψ is a weighted 2-design as well as a weighted 1-design (tight frame).

From the above examples and other computations we can make a few conjectures which

we shall investigate further.

• If a set of equal norm vectors Φ is a t-design, then it is also an r-design for

1 ≤ r ≤ t. It is to be hoped that we can effect a scaling when the norms of the

vector are not equal and still have this conjecture hold.

• When trying to find a t-design, we tend to get vectors sets with equal norm

properties.

• Attempt to find t-designs generate vectors sets with nice equiangular properties.

• In Cd we can get d + 1 mutually unbiased bases.

We shall answer the first conjecture with the following proposition.

Proposition 4.4. Let (fj)
n
j=1 be a t-design for Fd. Then (‖fj‖t/r−1 fj)

n
j=1 is an r-

design for Fd, 1 ≤ r ≤ t.

21



4. SPHERICAL (T, T )-DESIGNS

Proof. Let gj := ‖fj‖t/r−1 fj. To show that (gj)
n
j=1 is an r-design it is sufficient to show

that it satisfies the cubature rule, as the cubature rule is equivalent to the variational

formula. Let q be an arbitrary homogeneous polynomial on Fd with total degree 2r.

Then if we let p(x) = ‖x‖2(t−r) q(x), it is a homogeneous polynomial on Fd with total

degree 2t. Using this we obtain

n
∑

j=1

‖gj‖2r

∑n
ℓ=1 ‖gℓ‖2r q

( gj

‖gj‖
)

=

n
∑

j=1
fj 6=0

‖fj‖2t

∑n
ℓ=1 ‖fℓ‖2t p

( fj

‖fj‖
)

=

∫

S

p dσ =

∫

S

q dσ. (4.3)

Thus, g is an r-design.

From this, we see that if a set of vectors Φ is a weighted t-design then it is also

weighted r-design for 1 ≤ r ≤ t. Therefore weighted t-designs can be used to integrate

homogenous polynomials of total even degree up to 2t, not just for degree 2t. We shall

now look more closely at MUBs and SIC-POVMs which not only have the equal-norm

property but also have the desirable property of having a small angle set.

4.2 MUBs

We stated that in Section 1.3 that it is desirable to find tight frames with equiangu-

larity (such as MUBs) for applications and we now briefly explain the motivation for

MUBs. In physics, there is an interest in quantum mechanical observables that are

complementary: that is, where precise knowledge of one of them gives no information

on the probability of the outcomes of the other. This idea was first introduced by Bohr

[Boh28] in 1928. One application of this idea is the quantum key exchange protocol

introduced by Bennett and Brassard [BB84]. This protocal exploits complementarity

to secure a key exchange against eavesdropping. The eigenbases of non-degenrate com-

plementary observables turn out to be mutually unbiased. The converse is also true:

we can associate a pair of mutually unbiased bases with a pair of non-degenerate com-

plementary observables. There are properties of MUBs that are invaluable in quantum

information processing. However, in view of the limited scope of this dissertation we

shall not go into the physics. We will now formally define MUBs and look into a few

theorems to further our understanding.

Definition 4.5. Two orthonormal bases Φ and Ψ of Cd are called mutually unbi-

ased if and only if |〈fi, gj〉|2 = 1/d holds for all fi ∈ Φ and gj ∈ Ψ. A collection of
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4.3 SIC-POVMs

orthonormal bases in Cd that are pairwise mutually unbiased are referred to as mutu-

ally unbiased bases (MUBs) in Cd.

We shall now examine a few results to gain further insight into MUBs.

Theorem 4.6. The union Φ of d + 1 mutually unbiased bases in Cd forms a weighted

2-design with angle set
{

0, 1/
√

d
}

and d(d+ 1) elements. Moreover Φ is a tight frame.

Proof. Recall that c1(d,C) =
(d
1

)−1
= 1

d , c2(d,C) =
(d+1

2

)−1
= 2

d(d+1) . Using the

variation formula (when (4.1) attain equality) we can verify that

∑

f,g∈Φ |〈f, g〉|2
(
∑

f∈Φ ‖f‖2)2
=

d(d + 1) + d(d + 1)d2 1
d

(d(d + 1))2
=

1

d
= c1(d,C),

∑

f,g∈Φ |〈f, g〉|4
(
∑

f∈Φ ‖f‖4)2
=

d(d + 1) + d(d + 1)d2 1
d2

(d(d + 1))2
=

2

d(d + 1)
= c2(d,C).

Whence Φ is a 1-design and 2-design.

We see that in Example 4.2 we have that d = 2, angle set
{

0, 1/
√

2
}

and 6 = 2(2 + 1)

vectors. The converse of Theorem 4.6 is also true.

Theorem 4.7. A weighted 2-design Φ in Cd with angle set
{

0, 1/
√

d
}

and d(d + 1)

elements is the union of d + 1 mutually unbiased bases.

For the purpose of applications, it is of interest to construct a maximal number of

mutually unbiased bases in any dimension d ≥ 2. For prime power dimensions the

problem is solved, the maximal set of d + 1 mutually unbiased bases in Cd exists. One

of the earlier constructions is by Wotters and Fields [WF89] in 1989. More recent

methods include one by Bandyopadhyay [BBRV02] in 2002 and one making use of

Galois rings by Klappenecker [KR04] in 2004. The case of non-prime power dimensions

remains an open problem. It is known that three mutually unbiased bases exist in

dimension six, and it is believed that four mutually unbiased bases do not exist in

dimension six. No proof has been given for this yet, but Grassl [Gra04] in 2004 has

shown that particular sets of three MUBs cannot be extended to four MUBs.

4.3 SIC-POVMs

The family of SIC-POVMs is another family of frames which, similar to MUBs has

recently become popular due to its use in quantum computing. It has the nice property
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4. SPHERICAL (T, T )-DESIGNS

of being equal-norm and equiangular. As is the case for MUBs, the construction of

SIC-POVMs remains a challenging task. Scott and Grassl [SG10] has found solutions

for up to 67 dimensions. Here, we formally define this family then show that members

of this family actually forms weighted 2-designs. We then discuss what work has been

done so far.

Definition 4.8. A symmetric, informationally incomplete, positive operator

valued measure (SIC-POVM) is a family of unit vectors (fj)
d2

j=1 in Cd such that

|〈fi, fj〉|2 =
1

d + 1

for all 1 ≤ i, j ≤ d2 where i 6= j.

It turns out that the problem of finding SIC-POVMs is equivalent to the Grassman-

nian packing problem: how do we pack d2 lines into Cd, such that they all pass

through a single point, and the angles between any two of them are as large as possi-

ble?

Theorem 4.9. Let Ψ be a SIC-POVM in Cd, then Ψ forms a 2-design with the angle

set
{

1/
√

d + 1
}

and d2 elements.

Proof. Using the variational formula (when (4.1) attains equality) we can verify that

Φ is a 1-design as well as a 2-design.

∑

f,g∈Ψ |〈f, g〉|2
(
∑

f∈Ψ ‖f‖2)2
=

d2 +
(

d4 − d2
)

1
d+1

(d2)2
=

1

d
= c1(d,C),

∑

f,g∈Ψ |〈f, g〉|4
(
∑

f∈Ψ ‖f‖4)2
=

d2 +
(

d4 − d2
)

1
(d+1)2

(d2)2
=

2

d(d + 1)
= c2(d,C).

We see in Example 4.3, we have that d = 2, the angle set is
{

1/
√

3
}

and we have 4 = 22

vectors.

The following conjecture is widely believed, and there is compelling numerical evidence

in support of it [SG10]. However the proof remains an open challenge.

Conjecture 4.10. For all d > 2, there exists a SIC-POVM in Cd with d2 vectors and

angle set
{

1/
√

1 + d
}

.
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4.4 Summary

Theorem 4.11. [Boh28] Let S = S(H) be the unit sphere in H and d = dim(H). The

local minimisers of the frame potential

F(f1, . . . , fn) =

n
∑

j=1

n
∑

k=1

|〈fj, fk〉|2 , f1, . . . , fn ∈ S (4.4)

are global minimisers, which in turn are tight frames for H, or nonspanning orthonor-

mal sequences. In particular, there exist equal norm tight frames of n vectors in Rd

and Cd, for all values of n ≥ d.

See [Wal11] for a proof that is more intuitive than the one in [Boh28].

Example 4.12. If Ψ is a SIC-POVM Ψ in Cd, then we have

F(Ψ) =
∑

f,g∈Ψ

|〈f, g〉|2 = d2 + (d4 − d2)
1

d + 1
= d3. (4.5)

Using the variational inequality, we see that the minimum value of frame potential is

F(Ψ) ≥ 1

d

(

∑

f∈Ψ

‖f‖2

)2

= d3. (4.6)

Thus we have that Ψ is a local minimiser of frame potential, hence a global minimiser.

However, whether the global minimiser is unique up to unitary equivalence remains an

open question.

4.4 Summary

In this chapter, we were firstly motivated by the fact that t-designs are good for inte-

grating polynomials. Then we saw by example that sometimes, certain t-designs possess

interesting properties such as the equal norm and equiangularity. Later we discussed

the motivation for having an equal norm t-design: it is automatically an r-design for

1 ≤ r ≤ t. We then looked at MUBs and SIC-POVMs, which are both equal norm

2-designs. The idea of MUBs is to pack orthonormal bases into a space in such a way

that the “angles” between any two vectors from different orthonormal bases are con-

stant. The idea of SIC-POVMs is similar, but involves packing lines into a space so

the angle between any two of them is the same. We suspect that when trying to find

a t-design, we will find vector sets that have equal norm and equiangular properties.

This provides motivation for us to investigate further, which we do in the next chapter.
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Chapter 5

Constructing t-designs

We have seen in Chapter 4 that it is desirable to have weighted t-designs with large t as it

allows us to integrate homogeneous polynomials of total even degree up to 2t. We have

seen two special families of tight frames, namely MUBs and SIC-POVMs, that are also

weighted 2-designs. We suspect that they can be obtained by trying to find t-designs

for t > 2: in other words, though they might not be t-designs, they could be “close” to

t-designs for t > 2. Both MUBs and SIC-POVMs possess the equiangular property that

makes them invaluable in quantum computing. The problem lies in their construction.

We generated t-designs iteratively by making use of (4.1) (refer to Appendix D for

code and comment). In this chapter, we will first explain the methodology we used to

construct t-designs. Then we will discuss patterns observed and make some conjectures.

Finally we will discuss some interesting examples that showed up in the process.

5.1 Methodology

Recall that a set of vectors Φ forms a t-design in Fd precisely when the variation

inequality (4.1) attains equality. Thus, with rearrangement we can define the error

functional err : ℓ2(J) → R to be

err(Φ) :=
∑

f,g∈Φ

|〈f, g〉|2t − ct(d,F)

(

∑

f∈Φ

‖f‖2t

)2

, Φ ∈ ℓ2(J). (5.1)

Then the variational inequality is equivalent to having err(Φ) ≥ 0 and err(Φ) = 0

precisely when Φ is a t-design. We can think of the error value as a measure of how

close we are to a t-design, which is the idea we used in constructing t-designs.
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Armed with the error functional, we can construct t-designs in the following way in

Matlab.

• Create a random pre-frame operator (in the form of a matrix), calculate the error

value, save the pre-frame operator as Vm, and have the error value as errm.

• Repeat the following steps.

– Make small changes to the Vm, where the size of the change is dependent on

errm and call the result V . Calculate the error value for V . Call the error

value err.

– If errm ≤ err, do nothing. Otherwise, let Vm = V .

If a t-design does exist, then the errm value should eventually approach 0 and the

t-design is the columns of our final Vm. The idea of this algorithm is simple but the

number of iterations needed might be extremely large. This is especially true when we

are trying to find a t-design with large number of vectors, or a t-design for large t.

5.2 Discussion

From now on we will work in complex Hilbert space by default, we shall refer to the

dimension of the space by d, the number of vectors by n, and by the “first” case of a

t-design we mean the t-design for a fixed d with the smallest n.

The motivation for this project was the following theorem by Seymour and Zaslavsky.

Theorem 5.1. [SZ84] There is a number N(d, t, ) such that for every N ≥ N(d, t),

there exists a t-design of N vectors in dimension d.

Our goal at the very beginning was to find for a fixed d and t the smallest n that

will provide us with a t-design, and maybe come up with a formula for n. Due to

computer power constraints, that goal now seems overly ambitious. However, as in

much mathematical experimentation, we observed interesting patterns along the way,

and came up with a few conjectures. In this section, we will list and discuss the

conjectures made based on the numerical evidence. The commented code used to

obtain the numerical evidence can be found in Appendix D.

We first suspected that “for a fixed t and d, the first case of t-design has the equal-norm
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5.2 Discussion

property”. The motivation for this suspection is the fact that all orthonormal bases

are tight frames, and are the smallest possible tight frames. Thus, for any d, the first

case of obtaining a 1-design will always be equal norm. This conjecture also seems to

be true for t = 2. However, for t > 2, we have obtained several counter examples.

Then, we suspected that “the first case of a t-design is more likely to be equal-norm”.

Unfortunately, numerical evidence shows that this only seems to hold for a small t.

For larger value of t it seems that we will almost always get a t-design that is not

equal-norm.

Conjecture 5.2. A 2-design with n = d2 elements always exists, and is a SIC-POVM.

We have tried this out for a large number of d’s (1 ≤ d ≤ 20), and it seems to always be

the case. There are also overwhelming numerical evidence in support of this conjecture

from Scott and Grassl [SG10].

Conjecture 5.3. Theorem 4.11 also holds for 2-design. That is, the local minimisers

of

n
∑

j=1

n
∑

k=1

|〈fj, fk〉|4 , f1, . . . , fn ∈ S (5.2)

are global minimisers.

This is true for every t = 2 case we tried (1 ≤ d ≤ 20, 2 ≤ n ≤ 70). It seems like

it could be true for t = 3, and difference in minimisers we observed could be due to

rounding error. It is definitely not true for t ≥ 4.

Conjecture 5.4. When we attempt to find d(d + 1) vectors in Cd that minimise the

error for t = 3, we get MUBs, when such MUBs exist.

This seem to always be the case except for d = 6, though for big d, the number of

iterations needed is large and we have some rounding errors.

Conjecture 5.5. When trying to find a weighted t-design, the set of vectors that min-

imises that error but are not t-design sometimes form an r-design for r < t.

Quite often, this seems to be the case.
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5. CONSTRUCTING T -DESIGNS

We shall now list the result from our numerical exercises, for each d and t, we will list

under n the smallest n that provides us with a t-design. If we are unsure of the actual

value, we will give a bound. In the next column, we will list under k the size of its angle

set. Under nw we will list the smallest n that provides us with a weighted t-design,

and similarly for the next column kw. Note that the maximal value of k or kw are
(n
2

)

.

When calculation limits of Matlab are encountered the missing results are left blank.

t d n k
(n
2

)

nw kw

(nw

2

)

1 d d 1
(d
2

)

d 1
(d
2

)

2 d d2 1
(d2

2

)

d2 1
(d2

2

)

3 2 6 2 15 6 2 15
3 3 22 60 231 27 280 351
3 4 40 2 780 40 2 780
3 5 100 < n 100 < nw

4 2 10 39 45 12 8 66
4 3 47 513 1081 47 ≤ nw

4 4 85 < n 85 < nw

5 2 13 34 78 16 11 120
5 3 70 < n 70 < nw

6 2 19 128 171 26 249 325
6 3 81 < n 81 < nw

7 2 24 157 276 24 < nw

7 3 65 < n 65 < nw

8 2 37 403 666 37 ≤ nw

8 3 80 < n 80 < nw

9 2 44 546 946 44 ≤ nw

9 3 80 < n 80 < nw

10 2 60 < n 60 < nw

5.3 Examples

Example 5.6. For t = 4, d = 2, n = 8, minimising the error function gave the union of

two equal norm tight frames each with four vectors. However the norms of the two tight

frames are different. One thing to be careful about is that there are two minimisers for

this situation, and this particular Example corresponds to the global minimiser. The

converse is not true: putting two tight frames with four vectors together doesn’t seem

to get the same minimiser back no matter what is tried.

Example 5.7. For d = 4, n = 40 we seem to get a 3-design that is similar to a MUBs.

For the design to be a MUBs the angle set would have to be
{

0, 1/
√

4
}

, but this example
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5.3 Examples

has angle set
{

0, 1/
√

3
}

. Each of its vectors is orthogonal to 12 other vectors and forms

angle 1/
√

3 with 27 other vectors. What is even more interesting is it is the first case

of a 3-design for d = 4.
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Chapter 6

Conclusions

The original goal of this project was to find the number N(d, t) in Seymour and Za-

slavsky’s theorem regarding the existence of t-design. We wrote code to find t-designs

by means of an iterative procedure. Although we did not achieve our original goal, we

made interesting discoveries along the way, and they produced conjectures that could

be motivation for further work. We saw that the first case of t-designs is hardly ever

equal-norm when our t is large, even though the equal norm property of finite case

t-design seems to hold for t = 1 and t = 2. It seems plausible that we can always

get a SIC-POVM regardless of dimension, but how do we prove it? Is it possible to

prove that the local minimisers are global minimisers in the case when t = 2? When

n = d(d+1), will minimising the error for t = 3 always give us MUBs when such MUBs

exist?

Section 5.3 presented some interesting cases and raises many unresolved questions. Fu-

ture research could consider issues like: Did we obtain such cases purely by coincidence?

Or is there a family of those objects which hasn’t yet been discovered? If so, what can

we use them for?
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Appendix A

Sensitivity analysis

Recall Section 1.1. The goal is to conserve the position of a point in the Euclidean

space. The position of the point is determined by its coordinates with respect to some

basis. Further assume the probability of losing each coordinate is p, that the losses are

independent, and that we are working with a space with dimension d.

If we keep two copies of the same coordinate, then the probability of begin able to

recover the point is
(

1 − p2
)d

. We call this approach method one.

If we can add α redundant vectors to the basis in such a way that we now have d + α

coordinates, and we can lose any α coordinates and still recover the position of the point,

then the probability of being able to recover the point is now
∑α

i=0

(d+α
i

)

pi(1−p)d+α−i.

We call this approach method two.

We will present the results from our sensitivity analysis over the next four pages. Here,

we will explain how to interpret the results.

Consider the output below. The values in this table are fictional; they are only used to

illustrate the concept.

The top row represents the values of the different d at which we are evaluating the

probability of recovering the coordinates. The leftmost column contains the values of

the coordinate-loss probability p. The other data in the table represents the difference

in the probabilities of recovering the point between method one and method two. That

is, if method one has higher chance of retaining the point, the number will be positive,
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. APPENDIX A

and negative otherwise. The green formatting for the four top left values is used when

method two has a greater than or equal probability of retaining the point as method

one. The red formatting for the four bottom left cells is used when method one’s

probability of retaining the point is at least 0.005 greater than that of method two.

The other formatting is used when method one has higher probability of retaining

the point compared to method two, but not high enough for us to consider it to be

practically useful. This is a crude measure of practical significance as otherwise it would

involve constructing a utility curve which could be highly subjective in this case.

We will provide four sensitivity tables of this sort in the next two pages, each with a

different α. The value d ranges from 2 to 30, the value p ranges from 0.0005 to 0.1

with a 0.0005 increment. We will not consider p > 0.1 as it would be absurd to have

probability of losing an individual point being that high; in reality p would tend more

towards the lower end of the scale. The values in the tables displayed below are not

intended to be readable, the information we require is displayed through conditional

formatting and we should view them as graphs
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Figure 1: Sensitivity graph for

α = 1.

Figure 2: Sensitivity graph for

α = 2.
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Figure 3: Sensitivity graph for

α = 3.

Figure 4: Sensitivity graph for

α = 4.

We can see above that in Figure 1, where α = 1, making two copies of the same

coordinate will always yield better probabilities of retaining the point as there are no

green cells at all. When the number of redundant vectors added grows however, method

two will produce better probabilities of retaining the point for smaller p and d. When

α = 4, method two always produces better probabilities of retaining the point; even

when p and d are both large. This shows that adding redundant vectors is usually

more efficient than making two copies of the same coordinate, as we need to keep fewer

coordinates and this usually results with a higher probability of retaining the point.

Thus, this sensitivity analysis illustrates the efficiency of tight frames over repeated

orthonormal vectors in providing redundancy in information encoding.
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Appendix B

Reconstructing a point when partial information is lost

Recall Example 1.1. We will demonstrate how to recover a point recorded using the

Mercedes-Benz frame when one coordinate is lost.

Let f1, f2, f3 be as in Example 1.1, and f be the location of the Angle Man’s secret lair

that Superman would like to send to Wonder Woman. Superman transmits the coor-

dinates αi = 〈f, fi〉. If Wonder Woman receives all the coordinates, she can compute

the location of the Angle Man’s lair by

f =
2

3

3
∑

i=1

αifi.

See below for a diagram illustrating this.

b
b

b

b

bb f

2
3α1f1

2
3α2f2

2
3α3f3

2
3α1f1 + 2

3α2f2
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To make sure the information is safe, Superman put each coordinate into an egg and

sent the three eggs separately. Unfortunately, Robin stole an egg. Thus Wonder Woman

only received two coordinates, say α1 and α3. Nothing is too hard for Wonder Woman.

With her in depth knowledge of frames she set about computing the the location of

Angle Man’s lair the following ways. She ploted α1f1 and α2f3 on the atlas, draw the

lines perpendicular to f1 at α1f1 and perpendicular to f3 at α3f3. The intersection

of two lines provides her with location of Angle Man. Below is an illustration of how

Wonder Woman found the location of the Angle Man so she can set out to destroy him

and bring peace to the world.

b

b

b fα1f1

α3f3
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Appendix C

Demonstration of the error reduction property of tight

frames

Recall Example 1.1, the Mercedes-Benz frame. We will demonstrate how tight frame

can reduce error compared with orthonormal bases.

Assume we are back in the situation of Appendix B. This time, Wonder Woman would

like to send Superman the location g of Darkseid’s secret lair. She knows that her

Amazons would do a better job than the lousy postman Superman employs, so all

coordinates should reach Superman. She also knows however that Lex Luthor will

perturb the coordinates on the way with random error εi for each coordinate αi, where

εi ∼ N(0, σ2) independently. Wonder Woman set about doing some calculations. If she

chooses to send the location using an orthonormal basis, then the mean square error

in each coordinate would be σ2. In the Mercedes-Benz frame situation, she found the

error of the reconstruction to be

g − ĝ =
2

3

n
∑

j=1

〈g, fj〉 fj −
2

3

3
∑

j=1

(〈g, fj〉 + ε) fj = −2

3

3
∑

j=1

εjfj.

Hence the average mean-squared error per component would be

MSE =
1

2
E ‖g − ĝ‖2 =

1

2
E

∥

∥

∥

∥

∥

2

3

3
∑

j=1

εjfj

∥

∥

∥

∥

∥

2

=
1

2
σ2 4

9

3
∑

j=1

‖fj‖2 =
2

3
σ2.

That is, the amount of error per component has been reduced using the Mercedes-

Benz frame. Let ĝ be the coordinates received by Superman. If Wonder Woman

sent Superman the coordinates in an orthonormal basis, then if Superman wanders

around in a circle of radius 2σ2 centered at ĝ, he will have approximately a 95% chance

of finding Darkseid’s secret lair. If Wonder Woman used the Mercedes-Benz frame
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coordinates, Superman would only need to wander around in a circle of radius 4
3σ2 to

have approximately a 95% chance of finding Darkseid. Wonder Woman knows that

Superman is extremely lazy and will go home to sleep if he doesn’t find Darkseid

quickly, therefore, sending the Mercedes-Benz frame coordinates is a better option.

Wonder Woman could do even better by using the frames in Example 3.8. If she used a

large number of equally spaced vectors in R2, this would make the error per component

approach zero, and thus make it extra easy for Superman to be lazy.
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Code for finding spherical t-designs

function [errm Vst angle Vm VVmm] = findingtdesign(d, n, t, iscomplex,k, Vin)

% d=the dimension we are in

% n=the number of vectors we want

% t= t −design integer

% iscomplex=1 if we are dealing with complex vectors

% this function finds V such that the set of vectors formed by i ts columns are ...

closest

to being a t −design

% k=numbers of iteration to we run

% Vin=optional, it allow us to start the iteration at using a c ertain pre −frame ...

operator

ct = iscomplex * factorial(t) * factorial(d −1)/factorial(d+t −1) + ...

(1 −iscomplex) * ((factorial(2 * t −1))/(factorial(t) * (2ˆt)))/(factorial(d+2 * (t −1))/factorial(d −1));

%constant

errn= zeros (k,1);

%errn is current error

errm= zeros (k,1);

%minimal error we found so far

B=zeros (d,n);

%initializer.

if nargin ==5

%if we don't have start matrix Vin, create a random one

Vm = (rand (d,n) −1/2)+iscomplex * 1i * ( rand (d,n) −1/2);

else

Vm=Vin;

%if we have a start matrix Vin, use that

end

Vm=(n/( sum( diag (Vm' * Vm).ˆt)))ˆ(1/(2 * t)) * Vm;

%standardise it so norms sum to n which helps with comparabil ity

Vst=Vm;

%save the matrix we start with
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for j=2:k;

%run iterations

if iscomplex==1

B=1i * ( rand (d,n) −1/2);

%make a random matrix B if in complex case

end

Vn=Vm+((errm(j −1)+0.1)/nˆ3) * ( rand (d,n) −1/2+B);

%take the error minimising matrix, and make small random cha nge to it, include ...

complex

case if we are interested in complex design

Vn=(n/( sum( diag (Vn' * Vn).ˆt)))ˆ(1/(2 * t)) * Vn;

%standardise it so norms sum to n which helps with comparabil ity

for jj=1:n; w=Vn(:,jj); Vn(:,jj)=w/ norm(w); end;

%keep this code if trying to find spherical t −design, comment out otherwise

V=Vn' * Vn; VV=Vm' * Vm;

%creat the Gram matrix for the current matrix and error minim ising matrix we saved...

from previous

iterations

errn(j)= norm(V(:),2 * t)ˆ(2 * t) −ct * nˆ2;

%compute erro for current matrix

errm(j)= norm(VV(:),2 * t)ˆ(2 * t) −ct * nˆ2;

%compute error for error minimising matrix

if errn(j) < errm(j);

%check if current matrix has smaller error then error minimi sing matrix

Vm=Vn;

%make current matrix the new error minimising matrix if it do es have smaller error

end ;

end ;

plot (errm(10:k)/(nˆ2))

%to check that the error converged

A=Vm'* Vm;

angle =abs (A);

VVmm=Vm* Vm';

%out put the angle matrix, Gram matrix to check for angularit y

Code for checking multiple local minimisers

function []=locmin(jj)

%jj=number of iterations we would like to run

res=[];

%create empty array to save minimising errors in

for a=1:jj

[errm Vst angle Vm VVmm] = findingtdesign(d, n, t, iscomplex,k);

%run findingtdesign
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res(a)=errm(k);

%save the minimising errors

end ;

diff =max(res) −min (res),

% output the difference between the maximum and minimum erro rs we found

Code for checking if something is a t-design

Since our main interest in this project are complex t-designs, this code is only appropriate for the

complex case.

function [] = istdesign(G, t)

% G=Gram matrix of the vectors we want to check whether it is a t −design

% t= the kind of design we want to check

d=rank (G);

% to find out the dimension those vectors in

v=size (G);

% to find the size of G

n=v(1);

% since G is a square matrix, n x n will give us size of G

ct = factorial(t) * factorial(d −1)/factorial(d+t −1) ;

% calculate constant

sum( sum( abs (G).ˆ(2 * t))) −ct * ( sum( diag ( abs (G)).ˆt))ˆ2,

%calculate the error value

% if output is close to 0 then it is a t −design
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