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Abstract

A class of mutivariate orthogonal polynomials on a standard simplex in Rd was investigated. The moti-
vation of this research comes from a study of the three-body problem in quantum physics. The research
started by defining a generalised Jacobi weight function over the standard simplex in Rd. Analytic com-
putations of the inner product (integration of the weight function over the simplex) were carried out.
The integration was shown to converge under restricted ranges of parameters, the corresponding inte-
grability condition was established. Explicit formulas of orthogonal polynomials in this research were
expressed by using the tight frame theory.The calculations were carried out for the space of orthogonal
polynomials of degree one, it serves as a future reference for computing the orthogonal polynomials of
degree two. It was concluded that a tight frame for the space of orthogonal polynomials of degree one
under a special case of the generalised Jacobi weight exists, the corresponding frame scaling factors
were computed.
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Chapter 1

Introduction

An orthogonal polynomial sequence is a collection of polynomials such that each pair of distinct poly-
nomials in the sequence are orthogonal. The orthogonality is defined with respect to an inner product
associated with a weight function. The weight function is defined on a region in Rd with non-empty
interior, where d ∈ N is the number of variables of a polynomial.

The theory of orthogonal polynomials, especially those of several variables, play an prominent role
in various branches of modern mathematics and science; they include the approximation theory [1],
differential equations [2], quantum physics [3] and statistics [4]. The study of orthogonal polynomials
goes back at least as far as Hermite [5]. There has been enumerous developement of the theory since start
of the twentieth century. People made significant contributions to the field include Appell, Bernstein
and Hahn [5].The study on orthogonal polynomials rely heavily on other branches of mathematics,
such as the theory of special functions, complex analysis, tight frame representations and computational
mathematics.

In this research we investigated a class of mutivariate orthogonal polynomials on a standard simplex
in Rd (Figures 1.1,1.2). The motivation of this research comes from a study of the three-body prob-
lem in quantum physics by Jean [3]. Jean aimed to expand the wave function in terms of orthogonal
polynomials, the purpose was to see how the expansion converges. Jean observed that the orthogonal
polynomials have a similar but more general weight than that of a classical type Jacobi polynomial over
a simplex in R2. However, no literature on the explicit formulas of these genralised Jacobi polynomials
was found by Jean and the author.

The research started by defining a generalised Jacobi weight function over the standard simplex in
Rd. Analytic computations of the inner product (integration of the weight function over the simplex)
were carried out. The integration was shown to converge under restricted ranges of parameters, however
it was difficult to find a closed form of the integral corresponding to the most general case. For so, some
results were expressed in terms of incomplete Euler functions. Due to the diffuculty and complexity of
integrations, the research focused on a case where some parameters in the generalised Jacobi weight are
equal.

Explicit formulas of orthogonal polynomials in this research were expresed by using the frame
theory. Shayne [6] ever found a tight frame representation for the space of classical Jacobi polynomials
on a standard simplex in Rd. In comparison to the Gram-Schmidt process, the advatage of applying the
frame theory is that only the frame scaling factors and the leading term of a polynomial are required to
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Standard simplex in R2 Figure 1.2: Standard simplex in R3

obtain its explicit formula. Besides, the symmetry of the space of orthogonal polynomials can be clearly
depicted by the tight frame representation.

The calculations were carried out for the space of orthogonal polynomials of degree one, which
serves as a future reference for computing the orthogonal polynomials of degree two. It was concluded
that a tight frame for the space of orthogonal polynomials of degree one under a special case of the
generalised Jacobi weight exists, the corresponding frame scaling factors were calculated.



Chapter 2

Euler integrals

In this chapter we introduce a class of special functions known as Euler integrals, they are closely
related to the study of Jacobi polynomials. Some contents in this chapter are based on the book ”Special
functions” by George E Andrews et al [7] and the book ”Orthogonal polynomials of several variables”
by Yuan Xu [5] . Due to the nature of our research, domains of functions in this chapter are restricted to
be subsets of R. However, all functions presented have analytic continuations onto subsets of C .

2.1 Complete Euler integrals

2.1.1 The Beta function (Euler integral of the first kind)
Definition 2.1.1. The Beta function is the bivariate function

B(p, q) :=

∫ 1

0

xp−1(1− x)q−1dx,

with domain (0,+∞)× (0,+∞).

Remark. To see how the domain arose, one may write the integral as the sum of two integrals

B(p, q) :=

∫ 1/2

0

xp−1(1− x)q−1dx+

∫ 1

1/2

xp−1(1− x)q−1dx

with an observation that xp−1(1 − x)q−1 ∼ xp−1 as x → 0, so the first integral on the right hand side
converges if and only if p > 0. Similarly, xp−1(1 − x)q−1 ∼ (1 − x)q−1 as x → 1, thus the second
integral on the right hand side converges if and only if q > 0. This implies that the function B(p, q)
converges on (0,+∞)× (0,+∞).

We next list some properties of the Beta function.

Proposition 2.1.1. Let p, q ∈ (0,+∞). The Beta function satisfies the following
(a) B(p,q) is continuous on (0,+∞)× (0,+∞).
(b) (Symmetry) B(p, q) = B(q, p).

3



CHAPTER 2. EULER INTEGRALS 4

(c) (Recursion)

B(p, q) =
q − 1

p+ q − 1
B(p, q − 1),∀ p > 0, q > 1 (2.1)

B(p, q) =
p− 1

p+ q − 1
B(p− 1, q),∀ p > 1, q > 0 (2.2)

B(p, q) =
(p− 1)(q − 1)

(p+ q − 1)(p+ q − 2)
B(p− 1, q − 1),∀ p > 1, q > 1 (2.3)

.
(d) B(p, q) = 2

∫ π
2

0
sin2q−1 ϕ cos2p−1 ϕdϕ.

Proof. (a). Fix p0 > 0, q0 > 0 and let p ≥ p0, q ≥ q0 to get xp−1(1−x)q−1 ≤ xp0−1(1−x)q0−1,∀x ∈
[0, 1]. Since

∫ 1

0
xp0−1(1 − x)q0−1dx converges, by Weierstrass criterion to get

∫ 1

0
xp−1(1 − x)q−1dx

uniformly converges on [p0,+∞) × [q0,+∞). Thus B(p, q) is continuous on [p0,+∞) × [q0,+∞).
Since p0 > 0, q0 > 0 were chosen arbitrarily, therefore B(p, q) is continuous on (0,+∞)× (0,+∞).

(b). Let x = 1− t to get

B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx

=

∫ 1

0

(1− t)p−1tq−1dt

= B(q, p).

(c).Observe that (2.2) follows from (2.1) by symmetry, (2.3) is a consequence of combining (2.1)
and (2.2). Thus it is sufficient to prove (2.1).
Use integration by parts to get

B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx

=
xp(1− x)q−1

p

∣∣∣1
0

+
q − 1

p

∫ 1

0

xp(1− x)q−2dx

=
q − 1

p

∫ 1

0

[xp−1 − xp−1(1− x)](1− x)q−2dx

=
q − 1

p

∫ 1

0

xp−1(1− x)q−2dx− q − 1

p

∫ 1

0

xp−1(1− x)q−1dx

=
q − 1

p
B(p, q − 1)− q − 1

p
B(p, q),

Rearange B(p, q) to the left hand side to get B(p, q) = q−1
p+q−1B(p, q − 1).

(d). This follows by making the substitution x = cos2 ϕ in the Beta function.

Remark. The Beta function is partial differentiable, its partial derivatives involves Gamma funtions [7]
which is introduced next.
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2.1.2 The Gamma function (Euler integral of the second kind)
Definition 2.1.2. The Gamma function is the function

Γ(s) :=

∫ +∞

0

xs−1e−xdx,

with domain (0,+∞).

Remark. To see how the domain arose, one may write the integral as the sum of two integrals

Γ(s) =

∫ 1

0

xs−1e−xdx+

∫ +∞

1

xs−1e−xdx

and observe by the convergence criterion for improper integrals that the first integral diverges if s ≤ 0,
and both integrals are convergent if s > 0. This implies the domain of the Gamma function is (0,+∞).

The Gamma function has some nice properties.

Proposition 2.1.2. Let s ∈ (0,+∞) . The Gamma function satisfies the following
(a) Γ is continuous and differentiable on (0,+∞).
(b) (Recursion) Γ(s+ 1) = sΓ(s).

Proof. (a). Let [a, b] ⊂ (0,+∞) with a < b. Observe that for each s ∈ [a, b] one has

xs−1e−x ≤ xa−1e−x,∀ x ∈ (0, 1].

Since
∫ 1

0
xa−1e−xdx converges, by Weierstrass criterion to get

∫ 1

0
xs−1e−xdx uniformly converges

with respect to s on [a, b]. On the other hand, for each s ∈ [a, b] it has xs−1e−x ≤ xb−1e−x,∀x ∈ (0, 1].
By Weierstrass criterion again to get

∫∞
1
xs−1e−xdx uniformly converges with respect to s on [a, b]. So

Γ(s) is uniformly convergent with respect to s on [a, b], therefore Γ is continuous on [a, b].
By using similar arguments one can show∫ +∞

0

∂

∂s
(xs−1e−x)dx =

∫ +∞

0

xs−1e−x lnxdx.

converges uniformly on [a, b], thus Γ is differentiable on [a, b]. Since [a, b] ⊂ (0,+∞) was chosen
arbitrarily, so Γ is differentiable on (0,+∞) with derivative Γ′(s) =

∫ +∞
0

xs−1e−x lnxdx.
(b).Let A ∈ (0,+∞), by using integration by parts to get∫ A

0

xse−xdx = −xse−x
∣∣∣A
0

+ s

∫ A

0

xs−1e−xdx

= −Ase−A + s

∫ A

0

xs−1e−xdx.

Let A→ +∞ to get the recursion: Γ(s+ 1) = sΓ(s).
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Remark. In fact Γ is C∞ on (0,+∞), the proof is by induction and a similar argument used in the proof
for part (a). It turns out that Γ(n)(s) =

∫ +∞
0

xs−1e−x(lnx)ndx.
For each n ∈ N it follows from part (b) that Γ(n + 1) = nΓ(n) = n(n − 1)Γ(n − 1)... = n!Γ(1).
Combine with the fact that Γ(1) =

∫ +∞
0

e−xdx = 1 to get Γ(n + 1) = n!, this illustrates that Γ is a
continuation of the factorial fuction.

Lemma 2.1.1. The domain of Γ can be extended onto R− Z≤0, where Z≤0 := {0,−1,−2, · · · }.

Proof. By Proposition 2.1.2 (b) to get Γ(s) = Γ(s+1)
s , observe that its right hand side is a real number

for s ∈ (−1, 0). Thus Γ(s) on (−1, 0) can be defined according to Γ(s+1)
s . Applying the same argument

inductively to extend the domain of Γ onto (−∞,+∞)− Z≤0.

We now establish the connection between the Beta and Gamma functions, this connection will be used
extensively in Chaper 3 and 4.

Theorem 2.1.1. For each p, q ∈ (0,+∞),the Beta and Gamma functions have the following relation

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)

.

Proof. Observe by making the substitution x = t2 in the Gamma function that

Γ(p) = 2

∫ +∞

0

t2p−1e−t
2

dt, Γ(q) = 2

∫ +∞

0

t2q−1e−t
2

dt.

Let Ω := {(s, t)|s ∈ [0,+∞) and t ∈ [0,+∞)}. One has

Γ(p)Γ(q) = 4

∫ +∞

0

s2p−1e−s
2

ds

∫ +∞

0

t2q−1e−t
2

dt = 4

∫∫
Ω

s2p−1e−s
2

t2q−1e−t
2

dsdt.

Make the substitutions s = r cos θ, t = r sin θ and by Proposition 2.1.1 (d) to get

Γ(p)Γ(q) = 4

∫ +∞

0

∫ π
2

0

r2(p+q)−1e−r
2

cos2p−1 θ sin2q−1 θdθdr

= (2

∫ π
2

0

cos2p−1 θ sin2q−1 θdθ)(2

∫ +∞

0

r2(p+q)−1e−r
2

dr)

= B(p, q)Γ(p+ q).

Example 2.1.1. Let T 2 := {(x, y) ∈ R2|x ≥ 0, y ≥ 0, x + y ≤ 1} be the standard simplex in R2.
Given m,n, p ∈ (0,+∞) as constants. Calculate the integral∫∫

T 2

xm−1yn−1(1− x− y)p−1dxdy.
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Solution. Let T 3 := {(x, y, z) ∈ R3|x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z ≤ 1} Observe that

(p− 1)

∫∫∫
T 3

xm−1yn−1zp−2dzdydx =

∫∫
T 2

(∫ 1−x−y

0

(p− 1)xm−1yn−1zp−2 dz

)
dydx

=

∫∫
T 2

xm−1yn−1zp−1
∣∣1−x−y
0

dydx

=

∫∫
T 2

xm−1yn−1(1− x− y)p−1dydx.

Make the substitution of variables

x = u2

y = v2

z = w2
and

u = r sinϕ cos θ
v = r sinϕ sin θ
w = r cosϕ

. By Proposition 2.1.1

(d) and Theorem 2.1.1 to get

∫∫
T 2

xm−1yn−1(1− x− y)p−1dxdy

= (p− 1)

∫∫∫
T 3

xm−1yn−1zp−2dzdydx

= 8(p− 1)

∫ π
2

0

sin2n−1 θ cos2m−1 θdθ

∫ π
2

0

sin2m+2n−1 ϕ cos2p−3 ϕdϕ

∫ 1

0

r2m+2n+2p−3dr

=
B(m,n)B(p− 1,m+ n)

m+ n+ p− 1

=
(p− 1)Γ(m)Γ(n)Γ(p− 1)Γ(m+ n)

(m+ n+ p− 1)Γ(m+ n)Γ(m+ n+ p− 1)

=
Γ(m)Γ(n)Γ(p)

Γ(m+ n+ p)
.

Remark. Above example is the integral of the classical Jacobi weight function on the standard simplex
T 2 in R2. The general result for the d-dimensional case will be presented in Chapter 4. As we shall see,
the complexity of computing a class of orthogonal polynomials is primarily governed by the complexity
of integrating the weight function.

2.2 Incomplete Beta functions
Definition 2.2.1. The Pochhammer symbol, also known as the falling factorial, is defined for all
x ∈ R by

(x)n =

{
1 n = 0;∏n
i=1(x+ i− 1) n ∈ N = {1, 2, · · · }.
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Definition 2.2.2. Let a, b ∈ R and let c ∈ R − N≤0. A hypergeometric function is defined for
x ∈ R with |x| < 1 by the power series

2F1(a, b; c;x) :=

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
.

Next we present the definition of an incomplete Beta function and its relation to the hypergeometric
function.

Definition 2.2.3. Let x ∈ [0, 1]. An incomplete Beta function is the bivariate function

Bx(p, q) :=

∫ x

0

tp−1(1− t)q−1dx,

with domain (0,+∞)× (0,+∞).

Remark. It’s clear that an incomplete Beta function generalises the Beta function. The adjective ‘in-
complete’ reflects the fact that the upper limit x in an Euler’s integral of the first kind is allowed to
be less than the value of unity. Unlike the (complete) Beta function, the incompleteness prevents the
interchangeablility of p and q, this is precised in the following proposition.

Proposition 2.2.1. Let x ∈ [0, 1] and let p, q ∈ (0,+∞). An incomplete Beta function satisfies the
following
(a) (Symmetry) Bx(p, q) = B(p, q)−B1−x(q, p).
(b) (Recursion)

Bx(p+ 1, q) =
p

q
Bx(p, q + 1)− xp(1− x)q

q
(2.4)

Bx(p, q + 1) =
q

p
Bx(p+ 1, q) +

xp(1− x)q

p
(2.5)

Bx(p, q) = Bx(p+ 1, q) +Bx(p, q + 1) (2.6)

.
(c) Bx(p, q) =

(
xp

p

)
2F1(p, 1− q; 1 + p;x).

Proof. (a). By definition to get

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt

=

∫ x

0

tp−1(1− t)q−1dt+B(p, q)

∫ 1

x

tp−1(1− t)q−1dt

= Bx(p, q) +

∫ 1

x

tp−1(1− t)q−1dt. (2.7)
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Make the substitution t = 1− u to get∫ 1

x

tp−1(1− t)q−1dt = −
∫ t=1

t=x

(1− u)p−1uq−1du

=

∫ 1−x

0

uq−1(1− u)p−1du

= B1−x(q, p). (2.8)

Substitute (2.7) to (2.8) and rearrange to get Bx(p, q) = B(p, q)−B1−x(q, p).
(b). Use integration by parts to get

p

q

∫ x

0

tp−1(1− t)qdt =
tp(1− t)q

q

∣∣∣x
0

+

∫ x

0

tp(1− t)q−1.

Rearrange and by definition to get Bx(p + 1, q) = p
qBx(p, q + 1) − xp(1−x)q

q . (2.5) follows from the
(2.4) and part(a). (2.6) follows by combining (2.4) and (2.5).

(c). See [7]



Chapter 3

Orthogonal polynomials of one
variable

This chapter reviews some basic knowledge on orthogonal polynomials of one variable. Among all
classical weights of orthogonal polynomials, the classical Jacobi weight includes a variety of other
weights as special cases [5], it is thus desirable to focus on the study of Jacobi polynomials. Properties
of Jacobi polynomials of one variable are investigated, they include the leading coefficient, structural
constant, symmetry and the three term relations. It is worth mention that in this research we adopt
another approach to study orthogonal polynomials of several variables, the procedure will be presented
in Chapter 5.

3.1 A glance of orthogonal polynomials

3.1.1 General definitions
Definition 3.1.1. Let X be a non-empty interval in R and let µ be a probability measure on X . Given
the space of µ-measurable functions L2(X,µ), define 〈f, g〉 :=

∫
X
fgdµ to be the inner product of f

and g, where f and g are polynomial functions in L2(X,µ).

Remark. For classical type orthogonal polynomials, the probability measure has the form dµ(x) =
cw(x)dx, with w(x) > 0 on X . The function w(x) is called the weight function and the constant
c :=

(∫
X
w(x)dx

)−1
is the corresponding normalization factor. As most researches on orthogonal

polynomials do, we will use the weight function as the characteristic of a class of orthogonal polynomi-
als.

The orthogonality is defined with respect to above inner product. Following we assume X and µ are
pre-defined region and measure.

Definition 3.1.2. A sequence of non-zero polynomials {Pn(x) : n ∈ N0 = {0, 1, · · · }} in L2(X,µ) is
an orthogonal basis of polynomials if it satisfies the following

• {Pn(x) : n ∈ N0} is a basis of polynomials in L2(X,µ);

10
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• Pn(x) has degree n;

• 〈Pn, xj〉 = 0,∀j ∈ N with j < n.

Remark. The squared norm
∫
X
Pn(x)2dµ(x) = hn is called the structural constant. Moreover, we

denote pn(x) = ±h−
1
2

n Pn(x), with the sign determined by the the sign of the leading coefficient of
Pn(x).

A common way to obtain a sequence of orthogonal polynomials is to apply the Gram-Schmidt algo-
rithm to a basis of polynomials, for example to the basis {xi : i ∈ N0}. The Gram-Schmidt algorithm
preserves the linear independence of a basis, thus it outputs an orthogonal basis of polynomials. For
conveniency one sometimes needs an orthonormal basis of polynomials, it can be obtained by normal-
ising the output of the Gram-Schmidt algorithm. It was shown that a sequence of monic orthonormal
polynomials is uniquely determined by the region X and the weight function w(x) [8].

3.1.2 Three-term recurrence
A major disadvantage of applying Gram-Schmidt algorithm to compute orthogonal polynomials is that
it acquires a large amount of computations. Besides, it is usually difficult to see the intrinsic relation be-
tween orthogonal polynomials based on the outcome of Gram-Schmidt algorithm. As a way to improve
the computations, a recurssion relation between three consecutive orthogonal polynomials may be used
instead. As we shall see in Chapter 5, a similar approach may be adopted for the study of orthogonal
polynomials of several variables, where one uses the tight frame representations.

Proposition 3.1.1. Let {Pn(x) : n ∈ N0 ∪ {−1}} be a sequence of orthogonal polynomials with
P−1 = 0. There exists sequences (An)n≥0, (Bn)n≥0, (Cn)n≥0 such that

Pn+1(x) = (Anx+Bn)Pn(x)− CnPn−1(x),

where An = kn+1

kn
, Bn = − kn+1

knhn

∫
X
xPn(x)2dµ(x), Cn = kn+1kn−1hn

k2nhn−1
and kn is the leading coeffi-

cient of Pn(x).

Proof. Since {Pn(x) : n ∈ N0} is a basis of polynomials and xPn(x) is of degree n+ 1, there exists a
sequence of constants {ai : i ∈ N0} such that xPn(x) =

∑n+1
i=0 aiPi(x). For each j ≤ n+ 1 one has∫

X

Pn(x)Pj(x)dµ(x) =

∫
X

(
n+1∑
i=0

aiPi(x)

)
Pj(x)dµ(x)

= aj

∫
X

Pj(x)2dµ(x) +
∑
i 6=j

∫
X

aiPi(x)Pj(x)dµ(x)

= ajhj .

Note that the last line of above computation used the orthogonality relation 〈Pi(x), Pj(x)〉 = 0,∀i 6= j.
It implies aj = 1

hj

∫
X
xPj(x)Pn(x)dµ(x). Since xPj(x) has degree j + 1, so aj = 0 if |n − j| > 1.

Therefore

xPn(x) = an−1Pn−1(x) + anPn(x) + an+1Pn+1(x). (3.1)
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Observe that the leading coefficients of xPn(x) and an+1Pn+1(x) are equal, thus kn = an+1kn+1, this
implies an+1 = kn

kn+1
. Moreover, an = 1

hn

∫
X
xPn(x)2dµ(x) and

an−1 =
1

hn−1

∫
X

xPn−1(x)Pn(x)dµ(x)

=
1

hn−1

∫
X

(
kn−1

kn
Pn(x) + lower order terms

)
Pn(x)dµ(x)

=
1

hn−1

∫
X

kn−1

kn
Pn(x)2dµ(x)

=
kn−1hn
hn−1kn

.

Now rearrange (3.1) to get

Pn+1(x) =

(
x

an+1
− an
an+1

)
Pn(x)− an−1

an+1
Pn−1(x)

=

(
kn+1

kn
x− kn+1

knhn

∫
X

xPn(x)2dµ(x)

)
Pn(x)− kn+1kn−1hn

hn−1k2
n

Pn−1(x). (3.2)

According to (3.2) to get An = kn+1

kn
, Bn = − kn+1

knhn

∫
X
xPn(x)2dµ(x), Cn = kn+1kn−1hn

k2nhn−1
.

Corollary 3.1.1. Let the leading coefficient of Pn(x) be kn and let bn =
∫
X
xpn(x)2dµ(x), for each

n ∈ N one has

xPn(x) =
kn
kn+1

Pn+1(x) + bnPn(x) +
kn−1hn
knhn−1

Pn−1(x).

Proof. This follows by rearranging the three-term relation. Observe that−BnAnPn = 1
hn

∫
X
xPn(x)2dµ(x) =∫

X
xPn(x)2

hn
dµ(x) = bn (cf. Remark after Definition 3.1.2) .

As an application of the three-term relation, one may derive the Christoffel-Darboux formula.

Proposition 3.1.2. Let kn be the leading coefficient of pn (cf. remark after Definition 3.1.2),
for each n ∈ N one has the following

n∑
j=0

pj(x)pj(y) =
kn
kn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
. (3.3)

n∑
j=0

pj(x)2 =
kn
kn+1

(
p′n+1(x)pn(x)− p′n(x)pn+1(x)

)
. (3.4)
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Proof. According to Corollary 3.1.1, for each j ∈ N one has

(x− y)pj(x)pj(y)

= (xpj(x)) pj(y)− (ypj(y)) pj(x)

=

(
kj
kj+1

pj+1(x)pj(y) + bjpj(x)pj(y) +
kj−1

kj
pj−1(x)pj(y)

)
−
(

kj
kj+1

pj+1(y)pj(x) + bjpj(y)pj(x) +
kj−1

kj
pj−1(y)pj(x)

)
=

kj
kj+1

[pj+1(x)pj(y)− pj(x)pj+1(y)] +
kj−1

kj
[pj−1(x)pj(y)− pj(x)pj−1(y)] .

Denote p1(x) = k1x− α, sum above equations over 0 ≤ j ≤ n to get
n∑
j=0

(x− y)pj(x)pj(y)

= (x− y)p0(x)p0(y) +

n∑
j=1

(x− y)pj(x)pj(y)

= (x− y)k2
0 +

(
k1

k2
(p2(x)p1(y)− p1(x)p2(y)) +

k0

k1
(k0(k1y − α)− k0(k1x− α))

)
+

(
k2

k3
(p3(x)p2(y)− p2(x)p3(y)) +

k1

k2
(p1(x)p2(y)− p1(y)p2(x))

)
+ ...+

(
kn
kn+1

(pn+1(x)pn(y)− pn(x)pn+1(y)) +
kn−1

kn
(pn−1(x)pn(y)− pn(x)pn−1(y))

)
.

Observe that the above sum telescopes, it is equal to kn
kn+1

(pn+1(x)pn(y)− pn(x)pn+1(y)). Rearrange
the result to get (3.3).
One may next view x as a constant and take the limit as y → x in (3.3) to get

n∑
j=0

Pj(x)2 = lim
y→x

kn
kn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x− y

=
kn
kn+1

lim
y→x

pn+1(x)p′n(y)− pn(x)p′n+1(y)

−1

=
kn
kn+1

lim
y→x

(
pn(x)p′n+1(y)− pn+1(x)p′n(y)

)
=

kn
kn+1

(
pn(x)p′n+1(x)− pn+1(x)p′n(x)

)
.

Observe that the L-Hospital’s rule was applied at the second step above.

3.2 Classical Jacobi polynomials of one variable
Throughout this section we let α, β ∈ (−1,+∞) to be constants.
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Definition 3.2.1. For each n ∈ N0, let

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn
(
(1− x)α+n(1 + x)β+n

)
. (3.5)

Define {P (α,β)
n (x) : n ∈ N0} to be the sequence of Jacobi polynomials.

Remark. The Jacobi weight function is (1 − x)α(1 + x)β on the interval (−1, 1).The corresponding
normalization constant is computed to be 2−α−β−1B(α+ 1, β + 1)−1.
(3.5) can be expressed in terms of a hypergeometric function (cf. Definition 2.2.2).

Proposition 3.2.1. For each n ∈ N,

P (α,β)
n (x) =

(α+ 1)n
n!

(
1 + x

2

)n
2F1(−n,−n− β;α+ 1;

x− 1

x+ 1
)

=
(α+ 1)n

n!
2F1(−n, n+ α+ β + 1;α+ 1;

1− x
2

).

Proof. Let f(x) = (1− x)α+n and g(x) = (1 + x)β+n. Apply the Leibniz rule for derivatives to get

dn

dxn
(
(1− x)α+n(1 + x)β+n

)
=

n∑
j=0

(
n

j

)
f (n−j)(x)g(j)(x)

=

n∑
j=0

(
n

j

)
(−n− α)n−j(1− x)α+j(−n− β)j(−1)j(1 + x)β+n−j

=

n∑
j=0

(−n)j(−1)j

j!

(−1)n−j(α+ 1)n
(α+ 1)j

(−n− β)j(−1)j(1− x)α+j(1 + x)β+n−j . (3.6)

Combine Definition 3.2.1 and (3.6) to get

P (α,β)
n (x)

=
(−1)n

2nn!

n∑
j=0

(−n)j(−1)j

j!

(−1)n−j(α+ 1)n
(α+ 1)j

(−n− β)j(−1)j(1− x)j(1 + x)n−j

=
(1 + x)n

2nn!

n∑
j=0

(−n)j(−1)j+n

j!

(−1)n−j(α+ 1)n
(α+ 1)j

(−n− β)j(−1)2j

(
x− 1

x+ 1

)j

=
1

n!

(
1 + x

2

)n n∑
j=0

(−n)j(α+ 1)n(−n− β)j
j!(α+ 1)j

(
x− 1

x+ 1

)j

=
(α+ 1)n

n!

(
1 + x

2

)n n∑
j=0

(−n)j(−n− β)j
j!(α+ 1)j

(
x− 1

x+ 1

)j
=

(α+ 1)n
n!

(
1 + x

2

)n
2F1(−n,−n− β;α+ 1;

x− 1

x+ 1
).



CHAPTER 3. ORTHOGONAL POLYNOMIALS OF ONE VARIABLE 15

Applying the relation 2F1(a, b; c;x) = (1− x)−a2F1(a, c− b; c; x
x−1 ) [5] to the result above to get an

alternative expression of P (α,β)
n (x) stated in the proposition.

The orthogonality relations and structural constants of Jacobi polynomials can be computed explicitly.

Proposition 3.2.2. Let {P (α,β)
n (x) : n ∈ N} be the sequence of Jacobi polynomials. It has following

properties
(a) The leading coefficient of P (α,β)

n (x) is

kn =
(n+ α+ β + 1)n

2nn!
.

(b) ∫ 1

−1

q(x)P (α,β)
n (x)(1− x)α(1 + x)βdx =

1

2nn!

∫ 1

−1

dn

dxn
(q(x)) (1− x)α+n(1 + x)β+ndx,

for any polynomial q(x).
(c) ∫ 1

−1

xmP (α,β)
n (x)(1− x)α(1 + x)βdx = 0,∀ 0 ≤ m < n.

(d)

hn =
1

2(α+β+1)B(α+ 1, β + 1)

∫ 1

−1

P (α,β)
n (x)2(1−x)α(1+x)βdx =

(α+ 1)n(β + 1)n(α+ β + n+ 1)

n!(α+ β + 2)n(α+ β + 2n+ 1)
.

Proof. (a). The previous proposition implies

P (α,β)
n (x) =

(α+ 1)n
n!

2F1(−n, n+ α+ β + 1;α+ 1;
1− x

2
)

=
(α+ 1)n

n!

n∑
j=0

(−n)j(n+ α+ β + 1)j
(α+ 1)jj!

(
x− 1

2

)j
(−1)j .

Isolate the term involves xn and observe (−n)n = (−1)nn! to get

(α+ 1)n
n!

(−n)n(n+ α+ β + 1)n
(α+ 1)nn!

(−1)n(x− 1)n

2n

=
(n+ α+ β + 1)n(x− 1)n

2nn!
.

So the leading coefficient is kn = (n+α+β+1)n
2nn! .

(b). A consequence of applying integration by parts n times. At each time q(x) is differentiated and
(1− x)α+n(1 + x)β+n is integrated.

(c). A trivial consequence of part (b) after substituting q(x) = xm.
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(d). Recall that the Jacobi weight function is (1−x)α(1 +x)β and the corresponding normalization
constant is 2−α−β−1B(α+ 1, β + 1)−1. Apply part (a) and (b) to get

hn =
1

2α+β+1B(α+ 1, β + 1)

∫ 1

−1

P (α,β)
n (x)2(1− x)α(1 + x)βdx

=
1

2α+β+n+1B(α+ 1, β + 1)n!

∫ 1

−1

dn

dxn

(
P (α,β)
n (x)

)
(1− x)α+n(1 + x)β+ndx

=
1

2α+β+n+1B(α+ 1, β + 1)n!

∫ 1

−1

(α+ β + n+ 1)n
2n

(1− x)α+n(1 + x)β+ndx

=
(α+ β + n+ 1)n

2α+β+2n+1B(α+ 1, β + 1)n!

∫ 2

0

yβ+n(2− y)α+ndy

=
(α+ β + n+ 1)n

2α+β+2n+1B(α+ 1, β + 1)n!
2α+β+2n+1B(α+ n+ 1, β + n+ 1)

=
(α+ β + n+ 1)n

n!

B(α+ n+ 1, β + n+ 1)

B(α+ 1, β + 1)

=
(α+ 1)n(β + 1)n(α+ β + n+ 1)

n!(α+ β + 2)n(α+ β + 2n+ 1)
.

Proposition 3.2.3. For each n ∈ N, the three-term recurrence of Jacobi polynomials is

P
(α,β)
n+1 (x) =

(2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ 1)(n+ α+ β + 1)
xP (α,β)

n (x)

+
(2n+ α+ β + 1)(α2 − β2)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
P (α,β)
n (x)

− (α+ n)(β + n)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
P

(α,β)
n−1 (x).

Proof. cf. Proposition 3.1.1. The values of An = kn+1

kn
and Cn = kn+1kn−1hn

k2nhn−1
can be directly com-

puted. For the computation of Bn see [5].



Chapter 4

A generalised Jacobi weight function
over a simplex

A sequence of orthogonal polynomials of several variables is similar to those of one variable, except
that there is more than one polynomial with degree n ∈ N in the sequence. The main task of study-
ing orthogonal polynomials of several variables is to compute an orthogonal basis for each space of
polynomials with the same degree.
We reviewed the classical Jacobi polynomials of several variables on the standard simplex in Rd, a more
generalised Jacobi weight was defined and investigated thereafter. The author spent a lot of time on
integrating the generalized Jacobi weight function, the closed forms of the integration under restricted
parameters are presented. It is worth mention that a closed form correponding to the integral of the most
general Jacobi weight has not been found so far.
Throughout this research, we shall use the standard multi-index notation. A multi-index is usually
denoted by α, i.e. α = (α1, · · · , αd) ∈ Nd0 where d ∈ N. We define the muti-index factorial of α to be
α! = α1! · · ·αd! with size |α| = α1 + ..+ αd.

4.1 Orthogonal polynomials of several variables
We start by reviewing some basic definitions and properties of multivariate orthogonal polynomials.
The author assumes the reader has familarity in the basic theory of multivariate polynomials, such as
the content introduced in Chapter 1 of [9].

Definition 4.1.1. Let k be an algebraically closed field and let 〈·, ·〉 be an inner product defined on the
polynomial ring k[x1, ..., xd]. Two polynomials P (x) and Q(x) in k[x1, ..., xd] are said to be mutually
orthogonal with respect to the inner product if 〈P (x), Q(x)〉 = 0.

Definition 4.1.2. A polynomial P (x) ∈ k[x1, ..., xd] is called an orthogonal polynomial if P (x)
is orthogonal to all polynomials with lower degrees; that is 〈P (x), Q(x)〉 = 0,∀ Q(x) ∈ k[x1, ..., xd]
with deg Q(x) <deg P (x).

17
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Remark. The inner product is usually given in terms of a weight function W , that is

〈P (x), Q(x)〉 =

∫
Ω

P (x)Q(x)W (x)dx,

where Ω is a region with non-empty interior in Rd. We say that orthogonal polynomials are orthogonal
with respect to the weight function W . Denote by Vdn the space of orthogonal polynomials of degree
exactly n. i.e.

Vdn = {P ∈ Πd
n : degP (x) = n, 〈P (x), Q(x)〉 = 0,∀ Q(x) ∈ Πd

n−1},

where Πd
n is the subspace of k[x1, ..., xd] consists of polynomials of degree at most n.

Lemma 4.1.1. The dimension of Vdn is
(
n+d−1
n

)
.

Proof. Denote the space of homogeneous polynomials of degree n in d variables by Pdn, that is Pdn =
{P (x) : P (x) =

∑
|α|=n cαx

α, cα ∈ k}.
The space of orthogonal polynomials can be obtained by applying the Gram-Schmidt algorithm to the
basis of monomials {xα : |α| = n, n ∈ N0} arranged by the lexicographic order, thus each monic
monomial in Pdn corresponds to a unique monic polynomial in Vdn (with its leading term equals to the
monic monomial). Conversely, each monic polynomial in Vdn corresponds to a unique monic monomial
in Pdn. So dimVdn = dim Pdn.
Let rdn =dimPdn, it is clear that rdn = |{α ∈ Nd0 : |α| = n}|. By the expansion of a geometric series to
get

1

(1− t)d
=

d∏
i=1

∞∑
αi=0

tαi =

∞∑
n=0

∑
|α|=n

1

 tn =

∞∑
n=0

rdnt
n.

On the other hand, expand 1
(1−t)d by using hypergeometric function to get

1

(1− t)d
=

∞∑
n=0

(d)nt
n

n!
=

∞∑
n=0

(
n+ d− 1

n

)
tn.

Equating the coefficients of tn in the two expressions above to get rdn =
(
n+d−1
n

)
.

Therefore dimVdn =
(
n+d−1
n

)
.

Remark. The goal of the study of a class of orthogonal polynomials of several variables is to find a basis
for Vdn. Because the orthogonality is defined for polynomials with distinct degrees, certain results can
be formulated in terms of Vd0,V

d
1, · · · ,Vdn, · · · themselves instead of a sequence of representatives from

each of the Vdn’s.

Definition 4.1.3. Let {Pα : |α| = n} be a basis of Vdn. Order indices in the set {α ∈ Nd0 :

|α| = n} by α(1) < α(2) < ... < α(rdn)according to the lexicographic order. Denote Pn(x) :=(
Pα(1)(x), ..., P

α(rdn)(x)
)T

=
∑rdn
i=1Gix

i where Gi is a matrix of size rdn × rdi .

Remark. Observe that
∫

Ω
(xiPα(x))Pβ(x)W (x)dx = 0 for all α and β with |α| = n and |β| ≤ n−2.

This allows one to extend the three-term recurrence relation for orthogonal polynomials of one variable
to the those of several variables.
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Proposition 4.1.1. For each n ∈ N0 there exists matrices An,i of dimension rdn × rdn+1, Bn,i of dimen-
sion rdn × rdn and Cn,i of dimension rdn × rdn−1 such that

xiPn(x) = An,iPn+1(x) + Cn,iPn−1(x),∀ i ∈ {1, · · · , d}.

where we define P−1 = 0 and C−1,i = 0.

Proof. See [5].

Example 4.1.1. Let a = (a1, · · · , ad) and b = (b1, · · · , bd) be two multi-indices in Rd with ai, bi ∈
(−1,+∞),∀ i ∈ {1, · · · , d}. Define

Wa,b(x) =
d∏
i=1

(1− xi)ai(1 + xi)
bi

to be the multiple Jacobi weight function on the cube [−1, 1]d of Rd. An orthogonal basis for the space
Vdn is the set {P (Wa,b; x) =

∏d
i=1 P

(ai,bi)
αi (xi) : |α| = n}, in which P (ai,bi)

αi (xi) is a classical Jacobi
polynomial of one variable defined by (3.5).

Remark. It is evident from Proposision 3.2.2 that the given basis for Vdn is orthogonal. If we use the or-
thonormal Jacobi polynomials p(ai,bi)

αi in the product instead, then the basis would become orthonormal.
The multiple Jacobi weight function is a typical example of the product type weight functions, they are
the simplest multivariate weight functions.

We next review the classical Jacobi weight function over a simplex, in Section 4.2 we will define a
generalised Jacobi weight.

4.1.1 Classical Jacobi polynomials over a simplex
Let T d denote the standard simplex in Rd, that is T d = {(x1, · · · , xd) ∈ Rd : x1 ≥ 0, · · · , xd ≥
0,
∑d
i=1 xi ≤ 1}.

Definition 4.1.4. Let V be the set of d+ 1 vertices of a d-simplex in Rd. The sequence ξ = (ξv)v∈V is
called the barycentric coordinates of V if it satisfies∑

v∈V
ξv(x) = 1,

∑
v∈V

ξv(x)v = x,∀ x ∈ Rd.

.

Remark. The sequence ξ = (ξv)v∈V is unique due to the fact that points in V are affinely indepen-
dent. For the standard simplex T d, its vertices are {0 = (0, · · · , 0), e1 = (1, · · · , 0), · · · , ed =
(0, · · · , 1)}.The corresponding barycentric coordinates are

ξ0(x) = 1− x1 − · · · − xd, ξei(x) = xi,∀ i ∈ {1, · · · , d}.

Lemma 4.1.2. For each h ∈ (0,+∞), the volume of the d-simplex ∆d
h := {(x1, · · · , xd) ∈ Rd : x1 ≥

0, · · · , xd ≥ 0,
∑d
i=1 xi ≤ h} is hd

d! .
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Proof. We proceed by induction. The volume of ∆2
h is∫∫

∆2
h

dxdy =

∫ h

0

dx

∫ h−x

0

dy =

∫ h

0

(h− x)dx =
h2

2!
.

The volume of ∆3
h is thus∫∫∫

∆3
h

dxdydz =

∫ h

0

dx

∫∫
∆2
h−x

dydz =

∫ h

0

(h− x)2

2
dx =

h3

3!
.

Suppose the volume of ∆d−1
h is hn−1

(n−1)! to get the volume of ∆d
h is∫

∆d
h

dx1dx2 · · · dxd =

∫ h

0

dx1

∫
∆d−1
h−x1

dx2dx3 · · · dxd =

∫ h

0

(h− x1)d−1

(d− 1)!
dx1 =

hd

d!
.

.

Definition 4.1.5. The classicial Jacobi polynomials on T d are orthogonal with respect to the weight
function

Wν(x) = ξν−1 = xν1−1
1 · · ·xνd−1

d (1− x1 − · · · − xd)ν0−1,

where νi ∈ (0,+∞),∀i ∈ {0, · · · , d}.

Let us now calculate the normalization constant of Wν , namely
∫
Td
Wν(x)dx. The next Proposition is

a generalisation of Example 2.1.1.

Proposition 4.1.2. For each ν ∈ Rd+1
>0 one has∫

Td
Wν(x)dx =

Γ(ν0)Γ(ν1) · · ·Γ(νd)

Γ(ν0 + ν1 · · ·+ νd)

=
Γ(ν)

Γ(|ν|)
.

Proof. For each a ∈ R− {0} and m,n ∈ (0,+∞) one has

1

am+n−1

∫ a

0

ym−1(a− y)n−1dy =
1

am+n−1

∫ a

0

am+n−2
(y
a

)m−1 (
1− y

a

)n−1

dy

=
1

a

∫ a

0

(y
a

)m−1 (
1− y

a

)n−1

dy

=

∫ 1

0

xm−1(1− x)n−1dx.

Thus ∫ a

0

ym−1(a− y)n−1dy = am+n−1B(m,n).
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With above observation we can integrate xν1−1
1 · · ·xνd−1

d (1−x1−· · ·−xd)ν0−1 over T d by integrating
out variables one at each step:∫

Td
xν1−1

1 · · ·xνd−1
d (1− x1 − · · · − xd)ν0−1dx

=

∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−···−xd−1

0

xν1−1
1 xν2−1

2 · · ·xνd−1
d (1− x1 − · · ·xd)ν0−1dxd · · · dx2dx1

=

∫ 1

0

xν1−1
1

∫ 1−x1

0

xν2−1
2 · · ·

∫ 1−x1−···−xd−1

0

xνd−1
d (1− x1 − · · ·xd)ν0−1dxd · · · dx2dx1

= B(ν0, νd)

∫ 1

0

xν1−1
1

∫ 1−x1

0

xν2−1
2 · · ·

∫ 1−x1−···−xd−2

0

x
νd−1−1
d−1 (1− x1 − · · ·xd−1)ν0+νd−1dxd−1 · · · dx2dx1

= B(νd−1, ν0 + νd)B(ν0, νd)

∫ 1

0

xν1−1
1 · · ·

∫ 1−x1···−xd−2

0

x
νd−2−1
d−2 (1− x1 − · · · − xd−2)ν0+νd−1+νd−1

dxd−2 · · · dx1

= · · ·
= B(ν1, ν0 + νd + νd−1 + · · ·+ ν2)B(ν2, ν0 + νd + νd−1 + · · ·+ ν3) · · ·B(νd−1, ν0 + νd)B(ν0, νd)

=
Γ(ν0)Γ(ν1) · · ·Γ(νd)

Γ(ν0 + ν1 + · · ·+ νd)

=
Γ(ν)

Γ(|ν|)
.

Proposition 4.1.3. For each j ∈ {1, · · · , d} let xj = (x1, · · · , xj), αj = (αj , · · · , αd) and νj =
(νj , · · · , νd+1). The set of polynomials

{Pα(Wν ;x) = [hα]−1
d∏
j=1

(
1− |xj |

1− |xj−1|

)2|αj+1|

p(aj ,bj)
αj

(
2xj

1− |xj−1|
− 1

)
, |α| = n}

forms an orthonormal basis for Vdn of the classical Jacobi polynomials on T d, where aj = 2|αj+1| +
|νj+1| − (d− j), bj = νj − 1 and the constants [hα]2 are given by

[hα]2 =
(|ν|)|α|∏d

j=1 (2|αj+1|+ |νj |)2αj

.

Proof. See [5].

Remark. Explicit formulas for orthogonal polynomials usually appear to be complex. It is diffcult to see
the structure of a space of orthogonal polynomials through their explicit expressions, thus it is desirable
to find a more sensible representation of these polynomials.
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4.2 The generalised Jacobi weight function
We now generalise the weight function in Definition 4.1.5. Observe that the classical Jacobi weight
function consists of powers of barycentric coordinates of T d, that is ξν−1. In some applications one
may encounter a more general weight function which includes the classical weight along with powers
of (1− ξ) [3]. The general weight function has the form (1− ξ)µξν .
No research on this generalised Jacobi weight was carried out in the past, thus our research is original.

4.2.1 The integrability condition of the generalised weight function
Consider a normalised weight function over T d: 1

d! (1 − ξ)
µξν , where 1

d! is the normalisation constant
that is equal to the volume of T d (cf. Lemma 4.1.2).

Lemma 4.2.1. Let f : R→ R be a Riemann integrable function. For each h ∈ (0,+∞) one has∫
∆d
h

f(x1 + · · ·+ xd)dx =

∫ h

0

f(x)
xd−1

(d− 1)!
dx. (4.1)

where ∆d
h is the d-simplex defined in Lemma 4.1.2.

Proof. Make the substitutions

{
yi = xi, ∀i ∈ {1, 2, · · · , d− 1}
yd = x1 + · · ·+ xd

. By Lemma 4.1.2 to get

∫
∆d
h

f(x1 + · · ·+ xd)dx =

∫ h

0

f(yd)

∫
∆d−1
yd

dy =

∫ h

0

f(yd)
yd−1
d

(d− 1)!
dyd =

∫ h

0

f(x)
xd−1

(d− 1)!
dx.

We next establish the condition for integrability of the generalised weight function.

Lemma 4.2.2. Let d > 1, d ∈ N and let ξ = (ξj)
d
j=0 be the barycentric coordinates of the standard

d-simplex T d. The integral

1

d!

∫
Td

(1− ξ)µξν =

∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−···−xd−1

0

 d∏
j=0

(1− xj)µjx
νj
j

 dxd · · · dx2dx1, (4.2)

where x0 := 1− x1 − · · · − xd, converges if and only if

νj > −1, µj +
∑
k 6=j

νk > −d, ∀j ∈ {0, · · · , d}.

For µk = 0,∀k 6= j, we have the explicit formula

1

d!

∫
Td

(1− ξj)µjξν =
Γ(ν + 1)

Γ(µj + |ν|+ d+ 1)

Γ(µj +
∑
k 6=j vk + d)

Γ(
∑
k 6=j νk + d)

.
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Proof. Since 0 ≤ ξj ≤ 1 on the simplex T d, the only singularities are when µj < 0 (at the vertex ej)
and νj < 0 (on the opposite face of the vertex ej). When just one barycentric coordinate ξj is involved,
the formula (cf.formula (4.1))

1

d!

∫
Td
f(ξj) =

1

(d− 1)!

∫ 1

0

f(x)(1− x)d−1dx,

gives the Beta function

1

d!

∫
Td

(1− ξj)µj (ξj)νj =
1

(d− 1)!

∫ 1

0

(1− x)µjxνj (1− x)d−1dx,

which is finite if and only if νj > −1, µj > −d. Thus, the condition νj > −1 is necessary and
sufficient for the integrand to be integrable over a region which excludes neighbourhoods of the vertices.
We now estimate the integral over a neighbourhood of a vertex, say the first one. This is bounded above
and below by the (possibly infinite) iterated integral

I(µ1, ν0, ..., νd) :=
1

d!

∫
Td

(1− ξ1)µ1ξν

=

∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−···−xd−1

0

(1− x1)µ1

 d∏
j=1

x
νj
j

 (1− x1 − · · · − xd)ν0dxd · · · dx2dx1.

Make the substitution xd = (1− x1 − · · · − xd−1)t to get dxd = (1− x1 − · · · − xd−1)dt, one has

I(µ1, ν0, · · · , νd) =

∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−···−xd−2

0

∫ 1

0

(1− x1)µ1

d−1∏
j=1

x
νj
j

 [(1− x1 − · · · − xd−1)t]νd

[(1− x1 − · · · − xd−1)(1− t)]ν0(1− x1 − · · · − xd−1)dtdxd−1 · · · dx2dx1

= B(ν0 + 1, νd + 1)I(µ1, ν0 + νd + 1, ν1, · · · , νd−1).

Applying this recurrence a further d− 2 times implies I(µ1, ν0, ..., νd) is

d∏
j=2

B(ν0 + νd + νd−1 + · · ·+ νj+1 + d+ 1− j, νj + 1)I(µ1, ν0 + νd + νd−1 + · · ·+ ν2 + d− 1, ν1)

=
Γ(ν0 + 1)Γ(µd + 1) · · ·Γ(ν2 + 1)

Γ(ν0 + νd + · · ·+ ν2 + d)
I(µ1, ν0 + νd + νd−1 + · · ·+ ν2 + d− 1, ν1),

Where the condition for the Beta functions to converge is ν0, νd > −1, νd−1 > 0, ..., ν2 > 0. Finally,

I(µ1, ν0 + νd + νd−1 + · · ·+ ν2 + d− 1, ν1) =

∫ 1

0

(1− x)µ1xν1(1− x)ν0+νd+νd−1+···+ν2+d−1dx

= B(µ1 + ν0 + νd + νd−1 + · · ·+ ν2 + d, ν1 + 1)

=
Γ(µ1 + ν0 + νd + νd−1 + · · ·+ ν2 + d)Γ(ν1 + 1)

Γ(µ1 + ν0 + ν1 + · · ·+ νd + d+ 1)
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which is finite if and only if µ1 +
∑
k 6=1 νk+d > 0, ν1 > 0. Thus we obtain the integrability condition,

moreover
1

d!

∫
Td

(1− ξj)µjξν =
Γ(ν + 1)

Γ(µj + |ν|+ d+ 1)

Γ(µj +
∑
k 6=j vk + d)

Γ(
∑
k 6=j νk + d)

.

Remark. When more than one µj is non-zero, we have been unable to come up with a closed form
description of the integral. This is illustrated in the following subsection, in which we compute some
explicit forms of the integral under restricted ranges of parameters (power indices ν and µ). Some
results will be used in Chapter 5.

4.2.2 Explicit forms of the integral
To show the complexity of computing a closed form for (4.2), an example is shown below. For clarity,
the integrals in this section are not normalised (that is they are not divided by d!)

Example 4.2.1. Let µ1, µ2 ∈ (−2,+∞) and all other parameters in (4.2) are zero, for clarity let
x = x1 and y = x2 to get∫ 1

0

∫ 1−x

0

(1− x)µ1(1− y)µ2dydx =

∫ 1

0

− (1− x)µ1(1− y)µ2+1

µ2 + 1

∣∣∣y=1−x

y=0
dx

=

∫ 1

0

(1− x)µ1(1− xµ2+1)

µ2 + 1
dx

=
1

(µ1 + 1)(µ2 + 1)
−
∫ 1

0

(1− x)µ1xµ2+1

µ2 + 1
dx

=
1

(µ1 + 1)(µ2 + 1)
− Γ(µ1 + 1)Γ(µ2 + 1)

Γ(µ1 + µ2 + 3)
.

Remark. The calculation presented above is incomplete, because the result excludes the cases where
µ1 or/and µ2 is equal to −1. To obtain a complete answer one needs to investigate this integral further.

Lemma 4.2.3.
∫ 1

0
ln x
1−xdx = −π

2

6 .

Proof. For each i ∈ N0 one has∫ 1

0

(lnx)xidx = lnx
xi+1

i+ 1

∣∣∣1
0
−
∫ 1

0

xi

i+ 1
dx

=
[ (lnx)xi+1

i+ 1
− xi+1

(i+ 1)2

]1
0

=
xi+1 (lnx(i+ 1)− 1)

(i+ 1)2

∣∣∣1
0

= − 1

(i+ 1)2
. (4.3)
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By Dominated Convergence Theorem and (4.3) to get∫ 1

0

lnx

1− x
dx = lim

n→+∞

∫ 1

0

n∑
i=0

(lnx)xidx

= lim
n→∞

n∑
i=0

∫ 1

0

(lnx)xidx

= −
∞∑
i=0

1

(i+ 1)2
= −π

2

6
.

The following proposition involves complex-valued Euler functions. The aim of formulating the integral
over a subset of C is to apply an analytic continuation, that will allow us to take limits and thus find the
complete solution for the previous Example.

Proposition 4.2.1. Let µ1, µ2 ∈ (−2,+∞),

∫ 1

0

∫ 1−x

0

(1−x)µ1(1−y)µ2dydx =


1

(µ1+1)(µ2+1) −
Γ(µ1+1)Γ(µ2+1)

Γ(µ1+µ2+3) , µ1, µ2 ∈ (−2,−1) ∪ (−1,+∞);
1

µi+1 (ψ(µi + 2) + γ) , µi = −1, µj 6= −1, {i, j} = {1, 2};
π2

6 , µ1 = µ2 = −1.

, where ψ is the Digamma function and γ = −ψ(1) = 0.577 · · · is the Euler-Mascheroni constant.

Proof. Let
V := {(z1, z2) ∈ C2 : Re(z1), Re(z2) ∈ (−2,−1) ∪ (−1,+∞)}

and let
U := {(z1, z2) ∈ C2 : Re(z1), Re(z2) ∈ (−1,+∞)}.

Define funtions g, h : V → C by

g(µ1, µ2) :=

∫ 1

0

∫ 1−x

0

(1− x)µ1(1− y)µ2dydx

and

h(µ1, µ2) :=
1

(µ1 + 1)(µ2 + 1)
− Γ(µ1 + 1)Γ(µ2 + 1)

Γ(µ1 + µ2 + 3)
.

From the previous Example to get g
∣∣∣
U

= h
∣∣∣
U
. Since both g and h are analytic (due to they are analytic

in each of the variables µ1 and µ2), morever U, V are open and connected sets in C2 with U ⊂ V , so
h = g due to the Identity Theorem [10]. That is

g(µ1, µ2) =
1

(µ1 + 1)(µ2 + 1)
− Γ(µ1 + 1)Γ(µ2 + 1)

Γ(µ1 + µ2 + 3)
,∀(µ1, µ2) ∈ V.

Now consider the case µ1 = −1, µ2 6= −1. Let

V + := {(z1, z2) ∈ C2 : Re(z1), Re(z2) ∈ (−2,+∞)}
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and
K := {(µ1,−1), (−1, µ2) : Re(z1), Re(z2) ∈ (−2,+∞)}.

Observe that V ⊂ V + and V = V + −K = V is connected. According to Hartog’s Theorem [10] to
get g can be uniquelly extended onto V + analytically (note that the domain of g may incorporate K due
to Lemma 4.2.2) .
By the continuity of g at (−1, µ2), for each µ2 with Re(µ2) > −2 and µ2 6= −1 one has

g(−1, µ2) = lim
µ1→−1

[
1

(µ1 + 1)(µ2 + 1)
− Γ(µ1 + 1)Γ(µ2 + 1)

Γ(µ1 + µ2 + 3)

]
= lim
µ1→−1

1

1 + µ1

[
1

1 + µ2
− Γ(µ1 + 2)Γ(µ2 + 1)

Γ(µ1 + µ2 + 3)

]
= lim
h→0

1

h

[
Γ(µ2 + 1)

Γ(µ2 + 2)
− Γ(h+ 1)Γ(µ2 + 1)

Γ(µ2 + h+ 2)

]
=

∂

∂µ1

∣∣∣
µ1=−1

[
−Γ(µ1 + 2)Γ(µ2 + 1)

Γ(µ1 + µ2 + 3)

]
=

[
−B(µ1 + 2, µ2 + 1)

(
Γ′(µ1 + 2)

Γ(µ1 + 2)
− Γ′(µ1 + µ2 + 3)

Γ(µ1 + µ2 + 3)

)]
µ1=−1

= −B(1, µ2 + 1)

[
Γ′(1)

Γ(1)
− Γ′(µ2 + 2)

Γ(µ2 + 2)

]
= −Γ(µ2 + 1)

Γ(µ2 + 2)
[ψ(1)− ψ(µ2 + 2)]

=
1

µ2 + 1
(ψ(µ2 + 2) + γ) .

By symmetry of µ1, µ2 to get

g(µ1,−1) =
1

µ1 + 1
(ψ(µ1 + 2) + γ) ,∀ µ2 6= −1, Re(µ2) > −2.

For the case µ1 = µ2 = −1 by Lemma 4.2.3 to get

g(−1,−1) =

∫ 1

0

∫ 1−x

0

1

(1− x)(1− y)
dydx =

∫ 1

0

1

1− x
dx

∫ 1−x

0

1

1− y
dy

=

∫ 1

0

1

1− x
[ln |1− y|]1−x0 dx

=

∫ 1

0

1

1− x
[− ln |x|] dx

= −
∫ 1

0

lnx

1− x
dx

=
π2

6
.
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Remark. The author tried to simplify the result further by trying to combine the three cases, but no
closer form was discovered. This result predicts how complex a closed form of (4.2) may be. In fact the
author was not able to even integrate for the case where three µ parameters are present in (4.2), this is
illustrated in the following observation.

Observation. Let µ1, µ2, µ3 ∈ (−2,+∞), make substitutions t = x + y and s = t
1+x , by Proposition

2.2.1.(a) to get∫ 1

0

∫ 1−x

0

(1− x)µ1(1− y)µ2(x+ y)µ3dydx

=

∫ 1

0

(1− x)µ1dx

∫ 1−x

0

(1− y)µ2(x+ y)µ3dy

=

∫ 1

0

(1− x)µ1dx

∫ t=1

t=x

[(1 + x)− t]µ2 tµ3dt

=

∫ 1

0

(1− x)µ1dx(1 + x)µ2+µ3

∫ t=1

t=x

[
1− t

1 + x

]µ2
(

t

1 + x

)µ3

dt

=

∫ 1

0

(1− x)µ1dx(1 + x)µ2+µ3+1

∫ s= 1
1+x

s= x
1+x

(1− s)µ2sµ3ds

=

∫ 1

0

(1− x)µ1dx(1 + x)µ2+µ3+1

[∫ s= 1
1+x

s=0

(1− s)µ2sµ3ds−
∫ s= x

1+x

s=0

(1− s)µ2sµ3ds

]

=

∫ 1

0

(1− x)µ1(1 + x)µ2+µ3+1
[
B 1

1+x
(µ3 + 1, µ2 + 1)−B x

1+x
(µ3 + 1, µ2 + 1)

]
dx

=

∫ 1

0

(1− x)µ1(1 + x)µ2+µ3+1
[
B(µ3 + 1, µ2 + 1)−B x

1+x
(µ2 + 1, µ3 + 1)−B x

1+x
(µ3 + 1, µ2 + 1)

]
dx

=

∫ 1

0

(1− x)µ1

[
B(µ3 + 1, µ2 + 1)−

∫ x

0

wµ2 + wµ3

(1 + w)µ2+µ3+2
dw

]
dx.

The author attempted to simplify the result further, but any further substitutions made became circular.
The difficulty of this computation is to integrate the two incomplete Beta functions arose in the second
to the last line above.

We end this section by presenting another computation which is needed in Chapter 5.

Proposition 4.2.2. Let µ = (1, 1, · · · , 1) and let ν ∈ Nd+1
0 , a closed form for (4.2) (non-normalised)

is

1∑
m0=0

1∑
m1=0

· · ·
1∑

md=0

(−1)m0+···+md

∏d
j=0 Γ(νj +mj + 1)

Γ
(∑d

j=0(νj +mj + 1)
) . (4.4)

Proof. The result is obtained by expanding (1− ξ)µ followed by applying Proposition 4.1.2.



Chapter 5

Tight frames of generalised Jacobi
polynomials

5.1 A glance of the tight frame theory
Over the last twenty years there has been renewed interest in frame representations due to their applica-
tions in physics and engineering, such as in the wavelet theory [11]. Shayne Waldron discovered a tight
frame representation of the classical Jaocobi polynomials over the standard simplex in Rd [6]. In com-
parison to the presentation of a basis of Vdn, the advantage of a tight frame representation is that it depicts
the intrinsic structure of Vdn. Via the tight frame representation of Vdn one may compute an orthogonal
polynomial of degree n with a particular leading term easily, this process is much more efficient than
applying the Gram-Schmidt algorithm.
In this Section we present some knowledge of tight frame theory, they are selected from Shayne’s paper
[6]. We use H to denote a Hilbert space over R with an inner product 〈·, ·〉.

Lemma 5.1.1. Let Φj ∈ H and cj be scalers. Then there exists a representation

f =
∑
j

cj〈f, Φj〉Φj , ∀f ∈ H. (5.1)

if and only if

||f ||2 =
∑
j

cj |〈f, Φj〉|2, ∀f ∈ H. (5.2)

Proof. =⇒ : Suppose (5.1) holds to get

||f ||2 = 〈f, f〉 =
∑
j

〈cj〈f, Φj〉Φj , f〉 =
∑
j

cj〈f, Φj〉〈Φj , f〉 =
∑
j

cj |〈f, Φj〉|2, ∀f ∈ H.

28
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⇐=: By using the polarisation identity to get

〈f, Φj〉 =
1

4

(
||f + Φj ||2 − ||f − Φj ||2

)
=

1

4

(∑
k

ck|〈f + Φj , Φk〉|2 −
∑
k

ck|〈f − Φj , Φk〉|2
)

=
1

4

∑
k

ck
(
|〈f + Φj , Φk〉|2 − |〈f − Φj , Φk〉|2

)
=

1

2

∑
k

ck (〈f, Φk〉〈Φk, Φj〉+ 〈Φj , Φk〉〈Φk, f〉)

=
∑
k

ck〈f, Φk〉〈Φk, Φj〉.

Therefore f =
∑
k cj〈f, Φk〉Φk, ∀f ∈ H.

Remark. Condition (5.2) can be rewritten as ||f ||2 =
∑
j σj |〈f, ψj〉|2, where σj := sign(cj), and

ψj :=
√
|cj |Φj .

Definition 5.1.1. A family (ψj) in H is called a signed frame with signature σ = (σj), σj ∈ {−1, 1}
if there exists A,B > 0 with

A||f ||2 ≤
∑
j

σj |〈f, ψj〉|2 ≤ B||f ||2,∀ f ∈ H,

and (ψj) is a Bessel set, i.e., there exists C > 0 with∑
j

|〈f, ψj〉|2 ≤ C||f ||2,∀f ∈ H.

If A = B then (ψj) is called a tight signed frame.

Recall from Section 4.1 that the classical Jacobi polynomials on T d are associalted with the inner prod-
uct 〈f, g〉 =

∫
Td
fgξν where ν > −1. Let α ∈ Nd+1

0 with |α| = n, denote the orthgonal projection of
ξα onto the space Vdn by pξα . A tight signed frame representation of Vdn has the form [6]

f =
∑
|α|=n

cα
〈f, pξα〉
〈pξα , pξα〉

pξα , ∀f ∈ Vdn. (5.3)

Observe that {pξα : |α| = n} spans Vdn.
A signed tight frame of classical Jacobi polynomials over T d was explicitly computed by Shayne [6].
In the next Section we will compute for tight frames of the generalised Jacobi polynomials over T d .
Due to the complexity of the genralised weight function (cf. Section 4.2), the parameters µ and ν are
restricted to be integers.
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5.2 Generalised Jacobi polynomials of degree one
We now carry out some investigations on the tight frame representation of Vd1 for the generalised Jacobi
polynomials. Denote the inner product associated with the non-normalised generalised Jacobi weight
function by 〈·, ·〉, that is 〈f, g〉 =

∫
Td
fg(1− ξ)µξν . We restrict µ = (1, 1, · · · , 1) ∈ Nd+1

0 .

Recall that the d+ 1 barycentric coordinates of T d are

ξ0 = 1− x1 − · · · − xd, ξj = xj , ∀j ∈ {1, · · · , d}.

We need to compute for a set of constants {cj : j ∈ {0, · · · , d}} such that the following representation
holds

f =

d∑
j=0

cj〈f, pξj 〉pξj , ∀f ∈ Vd1. (5.4)

Since {pξi : i ∈ {0, · · · , d}} is a basis for Vd1, so (5.4) is valid if it is valid for each f = pξi . Moreover,
according to Lemma 5.1.1, an equivalent condition to (5.4) is as follows

〈pξi , pξi〉 =

d∑
j=0

cj〈pξi , pξj 〉2, ∀i ∈ {0, · · · , d}. (5.5)

5.2.1 Vd
1 for the case ν is homogeneous

Let ν = (ν, ν, · · · , ν) ∈ Nd+1
0 . Since both µ = (1, 1, · · · , 1) and ν = (ν, ν, · · · , ν) are homogeneous

and T d is the standard d−simplex , so 〈ξi, 1〉 = 〈ξj , 1〉, 〈ξi, ξi〉 = 〈ξj , ξj〉,∀ i, j ∈ {0, · · · , d + 1}.
Similarly, 〈ξi, ξj〉 = 〈ξk, ξl〉,∀ i 6= j, k 6= l ∈ {0, · · · , d}. Let

a :=
〈xj , 1〉
〈1, 1〉

, b1 =
〈xi, xi〉
〈1, 1〉

, b2 =
〈xi, xj〉
〈1, 1〉

,∀ i 6= j ∈ {1, · · · , d}.

Observe by Proposition 4.2.2 that b1 6= b2. Since pξi is the orthogonal projection of ξi onto Vd1 and {1}
is a basis for Vd0, so pξi = ξi − 〈ξi,1〉〈1,1〉 .The inner products in (5.5) are given by

〈pξi , pξj 〉 = 〈ξi − a, ξj − a〉 =

{
(b2 − a2)〈1, 1〉 if i 6= j ∈ {1, · · · , d}
(b1 − a2)〈1, 1〉 if i = j ∈ {1, · · · , d}

and {
〈pξ0 , pξ0〉 =

∑
1≤i,j≤d [〈xi, xj〉 − aiaj〈1, 1〉] =

[
db1 + d(d− 1)b2 − d2a2

]
〈1, 1〉

〈pξ0 , pξj 〉 = −
∑d
i=1 [〈xi, xj〉 − aiaj〈1, 1〉] = −

[
(d− 1)b2 + b1 − da2

]
〈1, 1〉

.

By homogeneity ofµ and ν to get 〈pξ0 , pξ0〉 = 〈pξj , pξj 〉,∀j ∈ {1, · · · , d} and 〈pξ0 , pξj 〉 = 〈pξi , pξj 〉,∀i 6=
j ∈ {1, · · · , d}.
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Let e := (b1 − a2)〈1, 1〉 and w := (b2 − a2)〈1, 1〉 to get the (d + 1) × (d + 2) augmented matrix for
the system (5.5) 

e2 w2 w2 . . . w2 e
w2 e2 w2 . . . w2 e
w2 w2 e2 . . . w2 e
...

...
... . . .

...
...

w2 w2 w2 . . . e2 e

 .

Notice that that e = 〈pξ0 , pξ0〉 = −d〈pξ0 , pξj 〉 = −d〈pξi , pξj 〉 = −dw,∀i 6= j ∈ {1, · · · , d}. From the
second row onwards, each row minus the first row to get

e2 w2 w2 . . . w2 e
w2 − e2 e2 − w2 0 . . . 0 0
w2 − e2 0 e2 − w2 . . . 0 0

...
...

... . . .
...

...
w2 − e2 0 0 . . . e2 − w2 0

 .

Adding − w2

e2−w2 times each row below the first row to the first row to get
e2 + dw2 0 0 . . . 0 e
w2 − e2 e2 − w2 0 . . . 0 0
w2 − e2 0 e2 − w2 . . . 0 0

...
...

... . . .
...

...
w2 − e2 0 0 . . . e2 − w2 0

 .

Forward substitution implies

cj =
e

e2 + dw2
=

e

e2 − ew
=

1

e− w
=

1

(b1 − b2)〈1, 1〉
,∀ j ∈ {0, · · · , d}.

Remark. Above formulation can be used to compute scalings for any case where µ,ν ∈ Nd+1
0 are both

homogeneous.

5.2.2 V2
1 for the case ν is arbitrary

Let ν = (ν0, ν1, · · · , νd) ∈ Nd+1
0 . We start by formulating a procedure to compute the scalings for Vd1.

Let

aj :=
〈1, xj〉
〈1, 1〉

, bij :=
〈xi, xj〉
〈1, 1〉

, eij := (bij − aiaj)〈1, 1〉,∀ i, j ∈ {1, · · · , d}

to get

pξ0 = (1− x1 − · · · − xd)−
〈1− x1 − · · · − xd, 1〉

〈1, 1〉
= (1− x1 − · · · − xd)− [1− (a1 + · · ·+ ad)]

= −(x1 + · · ·+ xd) + (a1 + · · ·+ ad)
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and pξj = xj − aj ,∀ j ∈ {1, · · · , d}. For each i, j ∈ {1, · · · , d} one has

〈pξ0 , pξ0〉 = 〈−(x1 + · · ·+ xd) + (a1 + · · ·+ ad),−(x1 + · · ·+ xd) + (a1 + · · ·+ ad)〉
= 〈x1 + · · ·+ xd, x1 + · · ·+ xd〉 − 2(a1 + · · ·+ ad)〈x1 + · · ·+ xd, 1〉+ (a1 + · · ·+ ad)

2〈1, 1〉

=

 ∑
1≤i,j≤d

bij

 〈1, 1〉 − 2(a1 + · · ·+ ad)
2〈1, 1〉+ (a1 + · · ·+ ad)

2〈1, 1〉

=

 ∑
1≤i,j≤d

bij − (a1 + · · ·+ ad)
2

 〈1, 1〉
=

 ∑
1≤i,j≤d

bij −
∑

1≤i,j≤d

aiaj

 〈1, 1〉
=

 ∑
1≤i,j≤d

eij

 .

〈pξ0 , pξj 〉 = −〈x1 + · · ·+ xd − (a1 + · · ·+ ad), xj − aj〉
= −〈x1 + · · ·+ xd, xj〉+ aj〈x1 + · · ·+ xd, 1〉+ (a1 + · · ·+ ad)〈xj , 1〉 − aj(a1 + · · ·+ ad)〈1, 1〉
= −(b1j + · · ·+ bdj)〈1, 1〉+ 2aj(a1 + · · ·+ ad)〈1, 1〉 − aj(a1 + · · ·+ ad)〈1, 1〉
= −(e1j + · · ·+ edj).

〈pξi , pξj 〉 = 〈xi − ai, xj − aj〉 = 〈xi, xj〉 − aj〈xi, 1〉 − ai〈1, xj〉+ aiaj〈1, 1〉 = (bij − 2aiaj + aiaj)〈1, 1〉 = eij .

The augmented (d+ 1)× (d+ 2) matrix for the system (5.5) is

(∑
1≤i,j≤d eij

)2 (∑d
j=1 e1j

)2 (∑d
j=1 e2j

)2

. . .
(∑d

j=1 edj

)2 ∑
1≤i,j≤d eij(∑d

j=1 e1j

)2

e2
11 e2

12 . . . e2
1d e11(∑d

j=1 e2j

)2

e2
21 e2

22 . . . e2
2d e22

...
...

... . . .
...

...(∑d
j=1 edj

)2

e2
d1 e2

d2 . . . e2
dd edd


.

The coefficient determinant is the determinant of the following (d+1)×(d+1) real symmetric submatrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(∑
1≤i,j≤d eij

)2 (∑d
j=1 e1j

)2 (∑d
j=1 e2j

)2

. . .
(∑d

j=1 edj

)2(∑d
j=1 e1j

)2

e2
11 e2

12 . . . e2
1d(∑d

j=1 e2j

)2

e2
21 e2

22 . . . e2
2d

...
...

... . . .
...(∑d

j=1 edj

)2

e2
d1 e2

d2 . . . e2
dd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.6)
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If one can show the coefficient determinant (5.6) is non-zero, then by Cramer’s rule the system would
have a unique solution. No proper way has been found by the author for computing this determinant in
general.
Here we present the computation for the case d = 2, note that e12 = e21. The coefficient determinant
(5.6) is ∣∣∣∣∣∣

(e11 + 2e12 + e22)2 (e11 + e12)2 (e12 + e22)2

(e11 + e12)2 e2
11 e2

12

(e12 + e22)2 e2
12 e2

22

∣∣∣∣∣∣ = 2(e11e22 − e2
12)3.

It is non-zero according to Proposition 4.2.2, thus the system has a unique solution. By Cramer’s rule to
get

c0 =

∣∣∣∣∣∣
e11 + 2e12 + e22 (e11 + e12)2 (e12 + e22)2

e11 + e12 e2
11 e2

12

e12 + e22 e2
12 e2

22

∣∣∣∣∣∣
2(e11e22 − e2

12)3
=
−2e12(−e2

12 + e11e22)2

2(e11e22 − e2
12)3

= − e12

e11e22 − e2
12

,

Similarly,

c1 =
e12 + e22

e11e22 − e2
12

, c2 =
e11 + e12

e11e22 − e2
12

.

Remark. The coefficient determinant (5.6) can not be factorized into ”simple” factors when d > 2.

5.2.3 An approach for representing Vd
2

The tight frame representation for quadratic generalised Jacobi polynomials will be computed as a se-
quel of the representation of Vd1. According to (5.3), the tight frame representation for Vd2 has two scaling
factors γ1, γ2 with the following form

f = γ1

d∑
j=0

〈f, pξ2j 〉pξ2j + γ2

∑
0≤i 6=j≤d

〈f, pξiξj 〉pξiξj , ∀ f ∈ Vd2. (5.7)

For each quadratic polynomial g one has

pg = g − the orthogonal projection of g onto Vd1 = g −
d∑
j=0

cj〈g, pξj 〉pξj .

Thus we may use the tight frame representation of Vd1 to compute the polynomials pξ2j and pξiξj . Ac-
cording to Lemma 5.1.1, an equivalent condition for (5.7) is as follows{

〈pξ2k , pξ2k〉 = γ1

∑d
j=0〈pξ2k , pξ2j 〉

2 + γ2

∑
0≤i 6=j≤d〈pξ2k , pξiξj 〉

2, ∀k ∈ {0, · · · , d}
〈pξlξs , pξlξs〉 = γ1

∑d
j=0〈pξlξs , pξ2j 〉

2 + γ2

∑
0≤i 6=j≤d〈pξlξs , pξiξj 〉2, ∀l 6= s ∈ {0, · · · , d}

.

(5.8)

Due to the time restraint of this research, the computation of scaling factors of Vd2 will be carried out in
the future. The next example presents the scaling factors of quadratics corresponding to some specific
µ and ν.
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Example 5.2.1. Denote γµ,ν := (γ1, γ2). Some scaling factors for the cases d = 2, 3 are

γ(1,1,1),(0,0,0) =

(
63972720

40843
,

127144080

40843

)
, γ(1,1,1),(1,1,1) =

(
3168396

19
,

7076916

19

)
,

γ(1,1,1),(2,2,2) =

(
338929390800

29203
,

767145178800

29203

)
, γ(1,1,1),(3,3,3) =

(
294756548486400

456251
,

663685217395200

456251

)
;

γ(1,1,1,1),(0,0,0,0) =

(
362470577771926324008000

50465925661481946173
,

992466901262053962360000

50465925661481946173

)
,

γ(1,1,1,1),(1,1,1,1) =

(
13196398975741481299751952000

947764458396602322481
,

34286268953808638619364512000

947764458396602322481

)
,

γ(1,1,1,1),(2,2,2,2) =

(
2388397700039906369401868736000

185932448301399208063
,

5906448832671823147207279056000

185932448301399208063

)
,

γ(1,1,1,1),(3,3,3,3) =

(
58918023898457393218351625222400

6997702198160017783
,

4078006911218832135238481859072000

202933363746640515707

)
.

Remark. With observations from the trial computations, we suspect that there exists a unique set of
scaling factors for Vd2 in cases where µ,ν ∈ Nd+1

0 are homogeneous.
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Conclusions

A generalised Jacobi weight function over the standard simplex in Rd was defined, the integrability
condition of the weight function over the simplex was established. The orthogonal polynomials corre-
sponding to the generalised Jacobi weight function were investigated by using the tight frame theory.
It was observed that the symmetry of a space of orthogonal polynomials can be clearly depicted by its
tight frame representation.
Computations were carried out for the space of orthogonal polynomials of degree one, which serves
as a future reference for computing the tight frame representation of orthogonal polynomials of degree
two. It was concluded that a tight frame for the space of orthogonal polynomials of degree one under
a special case of the generalised Jacobi weight exists and it is unique, the corresponding frame scaling
factors were computed.
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