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Abstract

The Welch bounds for a finite set of unit vectors are a family of inequalities
indexed by t = 1, 2, . . ., which describe how “evenly spread” the vectors are. They
have important applications in signal analysis, where sequences giving equality in
the first Welch bound are known as WBE sequences or as unit norm tight frames.

Here we consider sequences of vectors giving equality in the higher order Welch
bounds. These are seen to correspond to tight frames for the complex symmetric
t–tensors (which we prove always exist). We show that for t > 1 the Welch bounds
can be sharpened for real vectors, and again, vectors giving equality alway exist.
We give a unified treatment of various conditions for equality in both the real and
complex cases. In particular, we give an explicit description of the corresponding
cubature rules (t–designs). Our results set up a framework for the construction
and classification several configurations of vectors of recent interest. These include
MUBs (mutually unbiased bases), SICs (complex equiangular lines), spherical half–
designs, projective t–designs and minimisers of the higher order frame potential.
One interesting consequence is a construction of sets of complex equiangular lines
which were previously unknown.

Key Words: Welch bounds, WBE sequences (Welch bound equality sequences), finite
tight frames, symmetric tensors, cubature rules for the sphere, spherical t–designs, pro-
jective t–designs, MUBs (mutually unbiased bases), SICs (symmetric informationally
complete positive operator valued measures), complex equiangular lines

AMS (MOS) Subject Classifications: primary 05B30, 42C15, 65D30, 94A12, sec-
ondary 42C15, 42C40
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1 Introduction

Let v1, . . . , vn be a finite set of unit vectors in C
d. In [Wel74], Welch gave the following

estimate of the maximum cross correlation

(

max
j 6=k

|〈vj, vk〉|

)2t

≥
1

n− 1

(

n
(

d+t−1
t

) − 1

)

, t = 1, 2, . . . , (1.1)

which follows from

n
∑

j=1

n
∑

k=1

|〈vj, vk〉|
2t ≥

n
(

d+t−1
t

) , t = 1, 2, . . . . (1.2)

These Welch bounds describe how “evenly spread” the vectors are, and have important
applications in signal analysis and quantum information theory [MM93], [EF02], [LL14],
where sequences giving equality in the first Welch bound of (1.2) are known as WBE
sequences or as unit norm tight frames. Here we consider the inequalities

n
∑

j=1

n
∑

k=1

|〈vj, vk〉|
2t ≥

1
(

d+t−1
t

)

(

n
∑

ℓ=1

‖vℓ‖
2t

)2

, t = 1, 2, . . . , (1.3)

(for any v1, . . . , vn ∈ C
d) from which the Welch bounds follow, and, in particular, when

equality is achieved. We will show that

• Equality in (1.3) corresponds to (v⊗t
j )nj=1 being a a tight frame for the space of

symmetric t–tensors. This gives a simple proof of (1.3) from the t = 1 case (which
follows from the Cauchy–Schwartz inequality).

• Equality in (1.3) corresponds to a cubature rule for the complex sphere. From this
it follows that sequences of unit vectors giving equality always exist (for some n).

• For t > 1, the inequality (1.3) can be sharpened for vectors in R
d to

n
∑

j=1

n
∑

k=1

|〈vj, vk〉|
2t ≥

1 · 3 · 5 · · · (2t− 1)

d(d+ 2) · · · (d+ 2(t− 1))

(

n
∑

ℓ=1

‖vℓ‖
2t

)2

. (1.4)

Sequences of vectors in R
d giving equality in (1.4) correspond to a cubature rule

for the real sphere, and so always exist (for some n).

• There are various equivalent conditions for equality in (1.3) and (1.4), which can
be treated in a unified way.

The key to our approach is the identification of equality in (1.3) and (1.4) with a
suitable cubature rule (spherical design). From this and associated equivalent condi-
tions, the connection with several configurations of vectors of recent interest becomes
apparent. These include MUBs (mutually unbiased bases), SICs (complex equiangu-
lar lines), spherical half–designs, (weighted) projective t–designs and minimisers of the
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higher order frame potential. Our unified treatment (for the real and complex cases,
and vectors with no restriction on their norms) sets up a framework for the construction
and classification of such sets of vectors. To this end, let F denote R or C throughout.

Many special cases of the results presented here have appeared in the literature,
and we give references where known. To the best of our knowledge, the case where the
vectors have no restriction on their norms has not been considered for t > 1, and the
sharpened Welch bound (1.4) for real unit vectors is only known implicitly in the area
of sphericial t–designs [SW09]. The complex equiangular lines of Example 7.1 are new.

2 Tight frames of symmetric tensors

A sequence of vectors (fj)
n
j=1 is a tight frame for a Hilbert space H if (for some A > 0)

n
∑

j=1

|〈f, fj〉|
2 = A‖f‖2, ∀f ∈ H, (2.5)

or, equivalently (by the polarisation identity)

f =
1

A

n
∑

j=1

〈f, fj〉fj, ∀f ∈ H. (2.6)

These generalisations of orthonormal bases have been extensively used (in the infinite
dimensional setting) to construct wavelets and Gabor systems for L2(R

d) with good time–
frequency localisation [DS52], [You01], [Chr03], [Grö01]. More recently, they have found
applications for finite dimensional spaces [CK13], e.g., signal analysis [GKK01], quantum
information theory [RBKSC04] and multivariate orthogonal polynomials [VW05].

The following (see [Wal03]) shows that WBE sequences are unit norm tight frames.

Proposition 2.1 Let v1, . . . , vn be vectors in F
d, which are not all zero. Then

n
∑

j=1

n
∑

k=1

|〈vj, vk〉|
2 ≥

1

d

(

n
∑

j=1

‖vj‖
2
)2

, (2.7)

with equality if and only if (vj)
n
j=1 is a tight frame for F

d.

Proof: Let S be the frame operator of (vj), i.e., the d×d positive semidefinite matrix
given by

Sf :=
n
∑

j=1

〈f, vj〉vj, ∀f ∈ F
d,

which satisfies

trace(S) =
∑

j

‖vj‖
2, trace(S2) =

∑

j

∑

k

|〈vj, vk〉|
2.
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Let λ1, . . . , λd ≥ 0 be the eigenvalues of S. By the Cauchy–Schwarz inequality

trace(S)2 = (
∑

j

λj)
2 = 〈(1), (λj)〉

2 ≤ ‖(1)‖2‖(λj)‖
2 = d

∑

j

λ2
j = d trace(S2),

which is (2.7), with equality if and only if λj = A, ∀j, A > 0 i.e., by (2.6),

S = AI ⇐⇒ (vj) is a tight frame for Fd.

Note above, since one of the vectors (vj) is nonzero, S 6= 0, and so A 6= 0.

We now extend (2.7) to an inequality, for which equality gives a tight frame for the
symmetric tensors in ⊗t

F
d := F

d ⊗ · · · ⊗ F
d (t times). For simplicity, we define the

symmetric tensors of rank t to be the subspace of ⊗t
F
d given by

Symt(Fd) := span{v⊗t : v ∈ F
d}, v⊗t := v ⊗ · · · ⊗ v (t times).

This Hilbert space has dimension

dim(Symt(Fd)) =

(

t+ d− 1

t

)

, (2.8)

and its inner product satisfies

〈v⊗t, w⊗t〉 = 〈v, w〉t, ∀v, w ∈ F
d. (2.9)

The dual space (Symt(Fd))∗ = Symt((Fd)∗) contains 〈·, v〉⊗t, v ∈ F
d, and its inner

product is given by

〈〈·, v〉⊗t, 〈·, w〉⊗t〉 = 〈w, v〉t, ∀v, w ∈ F
d. (2.10)

A vector space isomorphism between Symt((Fd)∗) and the space Lt(F
d) of symmetric

t–linear maps (Fd)t → F is given by

λ⊗t 7→ L, (λ ∈ (Fd)∗) L(v1, . . . , vt) := λ(v1) · · ·λ(vt).

We define the space of homogeneous polynomials on F
d of degree t to be

Π◦
t (F

d) := {L̂ : L ∈ Lt(F
d)}, L̂ : Fd → F, L̂(v) := L(v, . . . , v).

The map L 7→ L̂ above gives a vector space isomorphism Lt(F
d) → Π◦

t (F
d).

The inner product on Π◦
t (F

d) induced from that on (Symt(Fd))∗ via the above iso-
morphisms is the apolar (or Bombieri or Fisher) inner product, which is given by

〈〈·, v〉t, 〈·, w〉t〉◦ := 〈〈·, v〉⊗t, 〈·, w〉⊗t〉 = 〈w, v〉t. (2.11)

It follows from (2.11) that the apolar inner product satisfies

〈p, 〈·, w〉t〉◦ = p(w), ∀p ∈ Π◦
t (F

d), ∀w ∈ F
d, (2.12)
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i.e., 〈·, w〉t is the Riesz representer of point evaluation at w. A calculation (see [Wal16])
shows that the monomials {zα}|α|=t are orthogonal (for F equal to R and C), with

〈zα, zα〉◦ =
α!

|α|!
. (2.13)

The equation (2.13) is usually used to define the Bombieri inner product.
We are now able to prove the higher order Welch bounds (1.3), as an example of

Proposition 2.1. The equivalent condition (a) was found independently by [DHC12] (in
the case of unit vectors).

Theorem 2.1 Fix t ∈ {1, 2, . . .}. Let v1, . . . , vn be vectors in F
d, which are not all zero.

Then
n
∑

j=1

n
∑

k=1

|〈vj, vk〉|
2t ≥

1
(

t+d−1
t

)

(

n
∑

j=1

‖vj‖
2t
)2

, (2.14)

with equality precisely when any of the equivalent conditions holds

(a) (v⊗t
j )nj=1 is a tight frame for the symmetric tensors Symt(Fd).

(b) (〈·, vj〉
⊗t)nj=1 is a tight frame for (Symt(Fd))∗ = Symt((Fd)∗).

(c) (〈·, vj〉
t)nj=1 is a tight frame for Π◦

t (F
d) with the apolar inner product (2.11).

Proof: Firstly, we observe that (v⊗t
j )nj=1 is a sequence of vectors in Symt(Fd) which are

not all zero, since v⊗t is zero if and only if v = 0.
Thus we may apply Proposition 2.1, using (2.8), to obtain

n
∑

j=1

n
∑

k=1

|〈v⊗t
j , v⊗t

k 〉|2 ≥
1

(

t+d−1
t

)

(

n
∑

j=1

‖v⊗t
j ‖2

)2

,

with equality if and only if (a) holds. By (2.9), the equation above equals (2.14). A
similar argument, using (2.10) and (2.11) in place of (2.9), gives (c) and (d), respectively.

We observe that Theorem 2.1 reduces to Proposition 2.1 for t = 1.

Corollary 2.1 Equality in (2.14) is equivalent to the generalised Bessel and Plancherel
identities

‖x‖2t =

(

d+t−1
t

)

∑n
ℓ=1 ‖vℓ‖

2t

n
∑

j=1

|〈x, vj〉|
2t, ∀x ∈ F

d, (2.15)

〈x, y〉t =

(

d+t−1
t

)

∑n
ℓ=1 ‖vℓ‖

2t

n
∑

j=1

〈x, vj〉
t〈vj, y〉

t, ∀x, y ∈ F
d. (2.16)
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Proof: By the polarisation identity, the condition that (fj) be a tight frame for H is
equivalent to the Plancherel identity

〈f, g〉 =
1

A

n
∑

j=1

〈f, fj〉〈fj, g〉, ∀f, g ∈ H, (2.17)

where (by taking the trace of the frame operator)

dim(H)A =
∑

ℓ ‖fℓ‖
2. (2.18)

Let (fj) be the tight frame (v⊗t
j )nj=1 for H = Symt(Fd). Then taking f = x⊗t, g = y⊗t

in (2.5) and (2.17), and using (2.8), (2.9) and (2.18), gives (2.15) and (2.16).

3 Cubature on the real and complex spheres

Here we show that inequalities of the form (1.3) and (1.4), i.e.,

n
∑

j=1

n
∑

k=1

|〈vj, vk〉|
2t ≥ C

(

n
∑

ℓ=1

‖vℓ‖
2t

)2

, (3.19)

are closely related to cubature formulas for polynomials on the real and complex spheres.
Let S = SF denote the unit sphere in F

d, and σ be the normalised surface area
on S. The invariance of surface area measure under unitary maps (and a standard
computation) shows that

∫

S

|〈x, y〉|2t dσ(y) = ‖x‖2tct(d,F), ∀x ∈ F
d, (3.20)

where

ct(d,C) =
1

(

d+t−1
t

) , ct(d,R) =
1 · 3 · 5 · · · (2t− 1)

d(d+ 2) · · · (d+ 2(t− 1))
. (3.21)

We observe that ct(d,R) ≥ ct(d,C), with strict inequality when t, d > 1. Suppose that
all the vectors (vj) lie on S. Then integrating (3.19) with respect to dσ(vk) and using
(3.20), gives

∑

j

∑

k

‖vj‖
2tct(d,F) ≥ Cn2 =⇒ ct(d,F) ≥ C.

Let Πk(R
d) denote the polynomials R

d → R of degree at most k, and Π◦
k(R

d) the
subspace of homogeneous polynomials of degree k. Of interest to us is the space of
polynomials Fd → F given by

Π◦
t,t(F

d) = Hom(t, t) := span{z 7→ zαzβ : |α| = |β| = t}, (3.22)

which are homogeneous of degree t in z and in z. Equivalently

Π◦
t,t(F

d) = span{z 7→ |〈z, v〉|2t : v ∈ F
d}. (3.23)

We note that Π◦
t,t(R

d) = Π◦
2t(R

d). Denote the restriction of a polynomial space P to the
unit sphere by P (S). Recall that a homogeneous polynomial f of degree 2t is uniquely
determined by its values on S by f(x) = ‖x‖2tf(x/‖x‖), x 6= 0.
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Definition 3.1 A sequence (vj)
n
j=1 of vectors in F

d is a cubature rule for a space P
of homogeneous polynomials of degree 2t, such as Π◦

t,t(F
d), if

∫

S

p(x) dσ(x) =
1

∑

k ‖vk‖
2t

n
∑

j=1

p(vj) =
n
∑

j=1

vj 6=0

‖vj‖
2t

∑

k ‖vk‖
2t
p(

vj
‖vj‖

), ∀p ∈ P.

A cubature rule for which the vectors (vj) have equal norms gives an unweighted
cubature rule for the integration of P over S. The following generalisation of the integral
form of the mean value theorem implies that equal weight cubature rules exist.

Theorem 3.1 ([SZ84]) Let X be a path–connected topological space, and µ be a finite
(positive) measure on X, defined on the open sets, with full support, i.e., µ(U) > 0 for
every nonempty open set U ⊂ X. For a continuous integrable function f : X → R

m,
there exists a finite set of samples A ⊂ X for which

1

µ(X)

∫

X

f dµ =
1

|A|

∑

a∈A
f(a).

Here |A|, the size of A, can be any number with a finite number of exceptions.

Let µ = σ (normalised surface area on S), and the coordinates of f = (f1, . . . , fn) be
the real and complex parts of spanning set for P . Then Theorem 3.1 implies that equal
weight cubature rules for P exist.

4 The sharpened Welch bounds

We now prove the main result: the Welch bound (1.3) and its sharpened form (1.4) for
real vectors, together with conditions for equality. Let ct(d,F) be given by (3.21).

Theorem 4.1 Fix t ∈ {1, 2, . . .}. Let v1, . . . , vn be vectors in F
d, not all zero. Then

n
∑

j=1

n
∑

k=1

|〈vj, vk〉|
2t ≥ ct(d,F)

(

n
∑

ℓ=1

‖vℓ‖
2t
)2

, (4.24)

with equality when any of the following equivalent conditions hold

(a) The generalised Bessel identity

ct(d,F)‖x‖
2t =

1
∑n

ℓ=1 ‖vℓ‖
2t

n
∑

j=1

|〈x, vj〉|
2t, ∀x ∈ F

d. (4.25)

(b) The generalised Plancherel identity

ct(d,F)〈x, y〉
t =

1
∑n

ℓ=1 ‖vℓ‖
2t

n
∑

j=1

〈x, vj〉
t〈vj, y〉

t, ∀x, y ∈ F
d. (4.26)
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(c) The cubature rule for Πt,t(F
d)

∫

S

p(x) dσ(x) =
1

∑n
ℓ=1 ‖vℓ‖

2t

n
∑

j=1

p(vj), ∀p ∈ Π◦
t,t(F

d), (4.27)

or, equivalently, for Πt,t(S)

∫

S

p(x) dσ(x) =
n
∑

j=1

vj 6=0

‖vj‖
2t

∑n
ℓ=1 ‖vℓ‖

2t
p(

vj
‖vj‖

), ∀p ∈ Π◦
t,t(S). (4.28)

(d) The tensor product integration formula

∫

S

x⊗t ⊗ x⊗t dσ(x) =
1

∑n
ℓ=1 ‖vℓ‖

2t

n
∑

j=1

v⊗t
j ⊗ vj

⊗t. (4.29)

(e) The integration formula

∫

S

〈·, x⊗t〉x⊗t dσ(x) =
1

∑n
ℓ=1 ‖vℓ‖

2t

n
∑

j=1

〈·, v⊗t
j 〉v⊗t

j . (4.30)

(f) For all univariate polynomials g ∈ Πt(R), we have

∫

S

∫

S

g
(

|〈x, y〉|2
)

dσ(y) dσ(x) =
n
∑

j=1

vj 6=0

n
∑

k=1

vk 6=0

‖vj‖
2t‖vk‖

2t

(
∑

ℓ ‖vℓ‖
2t)2

g
(

|〈
vj
‖vj‖

,
vk
‖vk‖

〉|2
)

. (4.31)

Proof: Let C :=
∑n

ℓ=1 ‖vℓ‖
2t. Define a tensor ξ ∈ Symt(Fd) ⊗ Symt(Fd) and a self

adjoint operator Q on Symt(Fd) by

ξ :=

∫

S

x⊗t ⊗ x⊗t dσ(x)−
1

C

n
∑

j=1

v⊗t
j ⊗ vj

⊗t,

Q :=

∫

S

〈·, x⊗t〉x⊗t dσ(x)−
1

C

n
∑

j=1

〈·, v⊗t
j 〉v⊗t

j .

Equip Symt(Fd)⊗ Symt(Fd) with the apolar inner product, and the linear operators on
Symt(Fd) with the Frobenius inner product. Then a simple calculation using (2.9) and
(3.20) shows that

〈ξ, ξ〉◦ = 〈Q,Q〉F =
1

C2

∑

j

∑

k

|〈vj, vk〉|
2t − ct(d,F) ≥ 0,

which is (4.24). Moreover, equality in (4.24) is equivalent to (d) or to (e). By the
polarisation identity and (2.10), (a) and (b) are equivalent.
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We now complete the proof by showing

(d) =⇒ (c) =⇒ (a), (f) =⇒ equality in (4.24).

(d)=⇒(c): Expand x⊗t ⊗ x⊗t in terms of the coordinates of x. Since

x⊗t =
d
∑

k1=1

xk1ek1 ⊗ · · · ⊗

d
∑

kt=1

xktekt =
∑

k∈{1,...,d}t
pk(x)ηk,

pk(x) := xk1xk2 · · · xkt , ηk := ek1 ⊗ ek2 ⊗ · · · ⊗ ekt ,

we obtain
x⊗t ⊗ x⊗t =

∑

k,ℓ

pk(x)pℓ(x) ηk ⊗ ηℓ.

Thus (d) can be written as

∫

S

∑

k,ℓ

pk(x)pℓ(x) ηk ⊗ ηℓ dσ(x) =
1

C

n
∑

j=1

∑

k,ℓ

pk(vj)pℓ(vj) ηk ⊗ ηℓ.

Since the tensors ηk ⊗ ηℓ are linearly independent, equating their coefficients gives the
cubature rule for all the polynomials x 7→ pk(x)pℓ(x), and hence for Π◦

t,t(F
d).

(c)=⇒(a): Let p = |〈x, ·〉|2t ∈ Π◦
t,t(F

d) in (4.27) and use (3.20) to obtain

ct(d,F)‖x‖
2t =

∫

S

|〈x, y〉|2t dσ(y) =
1

C

∑

j

|〈x, vj〉|
2t.

(c)=⇒(f): Let p = ‖ · ‖2(t−s)|〈x, ·〉|2s ∈ Π◦
t,t, 0 ≤ s ≤ t in (4.28) to get

∫

S

|〈x, y〉|2s dσ(y) =
∑

k

‖vk‖
2t

C
|〈x,

vk
‖vk‖

〉|2s.

For x ∈ S, |〈x, vk
‖vk‖〉|

2s = ‖x‖2(t−s)|〈x, vk
‖vk‖〉|

2s, and so using (4.28) again gives

∫

S

∫

S

|〈x, y〉|2s dσ(y) dσ(x) =
∑

j

‖vj‖
2t

C

∑

k

‖vk‖
2t

C
|〈

vj
‖vj‖

,
vk
‖vk‖

〉|2s.

Thus (4.31) holds for the monomials (·)s, 0 ≤ s ≤ t, and hence for Πt(R).
(a)=⇒ equality in (4.24): Take x = vk in (a) then sum over k to obtain the required
equality

ct(d,F)‖vk‖
2t =

1

C

∑

j

|〈vk, vj〉|
2t,

ct(d,F)C = ct(d,F)
∑

k

‖vk‖
2t =

1

C

∑

k

∑

j

|〈vk, vj〉|
2t.
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(f)=⇒ equality in (4.24): Take g = (·)t in (f) to obtain the desired equality

ct(d,F) =

∫

S

∫

S

|〈x, y〉|2t dσ(y) dσ(x) =
n
∑

j=1

vj 6=0

n
∑

k=1

vk 6=0

‖vj‖
2t‖vk‖

2t

(
∑

ℓ ‖vℓ‖
2t)2

|〈
vj
‖vj‖

,
vk
‖vk‖

〉|2t

=
1

C2

∑

j

∑

k

|〈vj, vk〉|
2t.

Since ct(d,R) ≥ ct(d,C), with strict inequality when t, d > 1, (4.24) sharpens (1.3)
to (1.4) for t > 1 (and d > 1). The corresponding sharpened form of (1.1) for unit
vectors v1, . . . , vn ∈ R

d is

(

max
j 6=k

|〈vj, vk〉|

)2t

≥
1

n− 1
(nct(d,R)− 1) , t = 1, 2, . . . . (4.32)

Example 4.1 For d ≥ 2 and t > 1, there is no tight frame (v⊗t
j ) for Symt(Rd). If there

was, then Proposition 2.1 gives

∑

j

∑

k

|〈v⊗t
j , v⊗t

k 〉|2 =
∑

j

∑

k

|〈vj, vk〉|
2t =

1
(

t+d−1
t

)

(

∑

j

‖vj‖
2t
)2

,

which violates the sharpened Welch bound (1.4).

We adapt the notation of [RS14] (for the cubature rule).

Definition 4.1 A sequence of vectors (vj) in F
d giving equality in Theorem 4.1, i.e.,

n
∑

j=1

n
∑

k=1

|〈vj, vk〉|
2t = ct(d,F)

(

n
∑

ℓ=1

‖vℓ‖
2t
)2

, (4.33)

is called a (spherical) (t, t)–design for F
d.

In view of condition (c), it follows from Theorem 3.1 that unit norm (t, t)–designs always
exist (for some n). We now seek to place Theorem 4.1 within the literature.

For t = 1,

c1(d,R) = c1(d,C) =
1

d
,

and the generalised Bessel identity (4.25) implies that (vj) is a tight frame for Fd (see
[Wal03]). In [BF03], the left hand side of (4.24) for unit vectors (vj) is identified as the
potential corresponding to a frame force, and its minimisers identified as the unit norm
tight frames.

For t > 1 (and d > 1) the circle of ideas embodied in Theorem 4.1 seem to first
appear via cubature rules for the sphere, which are widely known as spherical designs.
Up until recently, cubature rules for the real sphere were the most studied (see [BB09]).
Here the space of polynomials integrated is usually Πt(R

d), which gives a (real) spherical

10



t–design. Cubature rules which integrate Π◦
t (R

d) for t even1 were considered by [Sei01].
These were also called spherical t–designs, but the term (real) spherical half–design of
order t is now in common use [KP11]. In view of (4.28) and Π◦

t,t(R
d) = Π◦

2t(R
d), unit

vectors (vj) in R
d are a (t, t)–design if and only if they are a spherical half–design of

order 2t. In [Sei01], (4.24) for unit vectors is attributed to Sidel’nikov, and the equivalent
conditions (a) and (d) are developed: they are called Definitions III (Waring formula)
or IV (isometry condition) and II (tensor). The condition (f) is used by [Lev98] to define
weighted t–designs in the very general setting of a metric space endowed with a measure.

Cubature rules for the complex sphere (including projective versions) were intro-
duced in the 1970’s [DGS77] and various estimates given for their (minimum) size. There
has been a recent resurgence of interest [RS07] [RS14], motivated by the application of
SICs and MUBs in quantum information theory (see §7). The conditions (c), (e) and
(f) are developed in [RS07] and are presented in terms of weighted complex projective
t–designs (see §6).

5 Weighted spherical (t, t)–designs

For a given spherical (t, t)–design (vj), the cubature rule (4.28) can be written as
∫

S

p(x) dσ(x) =
n
∑

j=1

vj 6=0

wjp(φj), ∀p ∈ Π◦
t,t(S), (5.34)

where

φj =
vj
‖vj‖

, wj =
‖vj‖

2t

∑

ℓ ‖vℓ‖
2t
. (5.35)

For q ∈ Π◦
r,r(F

d), ‖ · ‖2(t−r)q ∈ Π◦
t,t(F

d), 1 ≤ r ≤ t, and so we obtain

Π◦
r,r(S) ⊂ Π◦

t,t(S), 0 ≤ r ≤ t. (5.36)

Combining these observations gives:

Proposition 5.1 Fix t ≥ 1. If (vj)
n
j=1 is a (t, t)–design for F

d, then (‖vj‖
t/r−1vj) is an

(r, r)–design for F
d, 1 ≤ r ≤ t, i.e.,

n
∑

j=1

n
∑

k=1

|〈vj, vk〉|
2r‖vj‖

2(t−r)‖vk‖
2(t−r) = cr(d,F)

(

n
∑

ℓ=1

‖vℓ‖
2t
)2

. (5.37)

Proof: Let gj := ‖vj‖
t/r−1vj and q ∈ Π◦

r,r(S). Since p := ‖ · ‖2(t−r)q ∈ Π◦
t,t(S), we

have
n
∑

j=1

gj 6=0

‖gj‖
2r

∑n
ℓ=1 ‖gℓ‖

2r
q(

gj
‖gj‖

) =
n
∑

j=1

vj 6=0

‖vj‖
2t

∑n
ℓ=1 ‖vℓ‖

2t
p(

vj
‖vj‖

) =

∫

S

p dσ =

∫

S

q dσ,

and so, by (4.28), (gj) is an (r, r)–design. Substituting into (4.33) gives (5.37).

1[Sei01] does not say explicitly that t must be even. However, if t is odd, then the distribution

t–tensor
∫

S
x⊗t dσ(x) is zero, and the results of [Sei01] do not hold.
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Example 5.1 An equal norm (t, t)–design for F
d is an (r, r)–design, 1 ≤ r ≤ t.

Example 5.2 If (vj) is a (t, t)–design, t ≥ 1, then (‖vj‖
t−1vj) is tight frame.

If the norms of (vj) are not all equal, then the properties (5.37) for 1 ≤ r ≤ t of a
(t, t)–design and the corresponding equivalent conditions given by Theorem 4.1 are most
naturally described in terms of weighted (t, t)-designs.

Definition 5.1 Suppose that Φ = (φj)
n
j=1 are unit vectors in F

d, and w = (wj)
n
j=1

satisfy wj ≥ 0,
∑

j wj = 1. Then (Φ, w) is a weighted (spherical) (t, t)–design2 if

n
∑

j=1

n
∑

k=1

wjwk|〈φj, φk〉|
2t = ct(d,F). (5.38)

Clearly, there is a 1–1 correspondence between the (t, t)–designs (vj) and the weighted
(t, t)–designs (Φ, w) given by (5.35), where φj can be any vector and wj = 0 when vj = 0.
In this terminology, Theorem 4.1 gives:

Corollary 5.1 (Weighted version) Let Φ = (φj)
n
j=1 be a sequence of unit vectors in F

d,
and w = (wj)

n
j=1 be nonnegative weights, i.e., wj ≥ 0,

∑

j wj = 1. Then

n
∑

j=1

n
∑

k=1

wjwk|〈φj, φk〉|
2t ≥ ct(d,F), (5.39)

with equality if and only if (Φ, w) is a weighted (t, t)–design, or, equivalently,

∫

S

p(x) dσ(x) =
n
∑

j=1

wjp(φj), ∀p ∈ Π◦
t,t(S). (5.40)

If (Φ, w) is a weighted (t, t)–design, then it is a weighted (r, r)–design, 1 ≤ r ≤ t.

Proof: Make the substitution (5.35) in Theorem 4.1, and observe that (c) can be written
as (5.40). The last assertion follows from this and (5.36).

Example 5.3 A weighted (t, t)–design (Φ, w) satisfies

n
∑

j=1

n
∑

k=1

wjwk|〈φj, φk〉|
2r = cr(d,F), 1 ≤ r ≤ t,

which is the weighted version of (5.37).

2These are also known as weighted spherical half–designs of order t (see [KP11]).
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Substituting (5.35) into Theorem 4.1 gives a weighted version of each of the equivalent
conditions, e.g., condition (a) becomes

ct(d, F )‖x‖2t =
n
∑

j=1

wj|〈x, φj〉|
2t, ∀x ∈ F

d,

or, equivalently
n
∑

j=1

wj|〈x, φj〉|
2t = ct(d,F), ∀x ∈ S. (5.41)

A naive numerical search (see [Bra11]) for weighted spherical (t, t)–designs in C
d

suggests that in some cases, e.g., t = 4, d = 4 and t = 3, d = 3, those with the minimal
number of vectors do not have constant weights. There are few known constructions of
such weighted (t, t)–designs. A very general construction is given in [RS07].

6 Weighted complex projective (t, t)–designs

The equality (4.33) defining (t, t)–designs is invariant under multiplying the vectors by
unit scalars, and so (t, t)–designs can be extended to a projective setting. This has
been done not only for R and C, but also the quaternians H and the octonians O (see
[Hog82]). We will focus on the complex projective sphere, as this is currently being
intensively studied, particularly in quantum physics.

The complex projective sphere CP d−1 can be viewed variously as

• The complex sphere S(Cd) with points z and az, |a| = 1 identified.

• The 1–dimensional subspaces of Cd (the complex lines through 0).

• The rank 1 orthogonal projections on C
d.

The polynomials on S(Cd) which carry over to this space, i.e., those with

p(z) = p(az), ∀z, ∀a ∈ F, |α| = 1

are precisely those in Π◦
0,0(F

d)⊕ Π◦
1,1(F

d)⊕ Π◦
2,2(F

d) · · · .
We will take the elements of CP d−1 to be rank one orthogonal projections. There

is a unique unitarily invariant probability measure µ on FP d−1 induced from the area
measure σ on the sphere S(Fd), via

∫

FP d−1

f(P ) dµ(P ) =

∫

F(Cd)

f(Px) dσ(x), (6.42)

where Px = 〈·, x〉x denotes the rank one orthogonal projection onto span{x}, ‖x‖ = 1.
The Frobenius inner product between rank one orthogonal projections is

〈Px, Py〉 = trace(PxPy) = |〈x, y〉|2 ∈ R. (6.43)
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Definition 6.1 Suppose that P = (Pj)
n
j=1 are rank one orthogonal projections on F

d,
and w = (wj)

n
j=1 satisfy wj ≥ 0,

∑

j wj = 1. We say (P , w) is a (weighted) projective

(t, t)–design3 if
n
∑

j=1

n
∑

k=1

wjwk〈Pj, Pk〉
t = ct(d,F).

The (t, t)–designs (vj) (up to multiplication by unit scalars) are in 1–1 correspon-
dence with the projective (t, t)–designs (P , w), via

Pj =
1

‖vj‖2
〈·, vj〉vj, wj =

‖vj‖
2t

∑

ℓ ‖vℓ‖
2t
. (6.44)

This gives the following projective version of Theorem 4.1 (see [RS07], cf. Corollary 5.1).

Corollary 6.1 (Projective version) Let P = (Pj)
n
j=1 be rank one orthogonal projections

in F
d, and w = (wj)

n
j=1 satisfy wj ≥ 0,

∑

j wj = 1. Then

n
∑

j=1

n
∑

k=1

wjwk〈Pj, Pk〉
t ≥ ct(d,F), (6.45)

with equality if and only if (P , w) is a projective (t, t)–design.
A projective (t, t)–design is a projective (r, r)–design, 1 ≤ r ≤ t.

Proof: With Pj and wj given by (6.44), (6.43) gives

wjwk〈Pj, Pk〉
t =

‖fj‖
2t‖fk‖

2t

(
∑

ℓ ‖fℓ‖
2t)2

(

|〈fj, fk〉|
2

‖fj‖2‖fk‖2

)t

=
|〈fj, fk〉|

2t

(
∑

ℓ ‖fℓ‖
2t)2

.

Thus, making the substitution (6.44) in Theorem 4.1 gives (6.45), with equality for
projective (t, t)–designs. The last part follows from Corollary 5.1 and (6.44).

Other conditions equivalent to being a projective (t, t)–design can be obtained by
substituting (6.44) into Theorem 4.1, e.g., by using (6.43), condition (a) becomes

ct(d,F) =
n
∑

j=1

wj〈Q,Pj〉
t, ∀Q ∈ FP d−1. (6.46)

The condition (e) gives Levenshtein’s definition [Lev98] of a weighted t–design

∫

FP d−1

∫

FP d−1

g
(

〈P,Q〉
)

dµ(P ) dµ(Q) =
n
∑

j=1

n
∑

k=1

wjwk g
(

〈Pj, Pk〉
)

, ∀g ∈ Πt(R). (6.47)

The condition (d) becomes

∫

FP d−1

P⊗t dµ(P ) =
n
∑

j=1

wj P
⊗t
j . (6.48)

3Other terms such as weighted or quantum t–design are also commonly used.
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7 SICs and MUBs

We now consider SICs and MUBs, which are of interest in quantum information theory
(where they are viewed as projections giving quantum measurements).

Recall (6.43), that the rank one orthogonal projections Pj , Pk corresponding to unit
vectors vj, vk ∈ C

d satisfy
〈Pj, Pk〉 = |〈vj, vk〉|

2.

A sequence of equal norm vectors (vj) is said to be equiangular if they have equal
cross–correlation, for some constant C ≥ 0, one has

|〈vj, vk〉| = C, j 6= k.

An orthonormal basis is an equiangular tight frame, with C = 0.

Definition 7.1 A sequence of d2 vectors (vj) in C
d, or the corresponding rank one or-

thogonal projections (Pj), is said to be a SIC (symmetric informationally complete
positive operator valued measure) for C

d if

〈Pj, Pk〉 = |〈vj, vk〉|
2 =

1

d+ 1
, j 6= k.

It follows that a SIC (vj) is a (2, 2)–design by the calculation

∑

j

∑

k

|〈vj, vk〉|
4 =

(

(d2)2 − d2)
( 1

d+ 1

)2

+ d2 =
2d3

d+ 1
= c2(2,C)

(

∑

j

‖vj‖
4
)2

.

The existence of a SIC for every dimension d is known as Zauner’s conjecture (or the
SIC problem) [Zau10]. There is strong evidence for this conjecture [SG10], which has
been established for certain values of d (see Example 7.1).

Since a SIC (vj) is a (2, 2)–design, it follows from Theorem 2.1 that (vj ⊗ vj) is an
equiangular tight frame for Sym2(Cd). Thus we have:

Corollary 7.1 If there is a SIC for C
d, then there are equiangular tight frames of d2

vectors for C
1

2
d(d+1) and for C

1

2
d(d−1).

Proof: Let (vj) be a SIC. Since (vj) is a (2, 2)–design, it follows from Theorem 2.1
that (v⊗2

j ) = (vj ⊗ vj) is a tight frame for the space Sym2(Cd) of dimension 1
2
d(d + 1),

which has the property

|〈v⊗2
j , v⊗2

k 〉| = |〈vj, vk〉
2| =

1

d+ 1
, j 6= k.

The complement of an equiangular tight frame of n vectors for Cd is an equiangular tight
frame of n vectors for Cn−d, and so we also obtain the other equiangular tight frame.
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Complex equiangular tight frames with the above parameters can be constructed for
d ≥ 2 from the d × d Fourier matrix [BE10], and for d = 2apb, p prime and 0 ≤ a ≤ b,
from Butson–type complex Hadamard matrices of order d with p–th root entries [Szö13].
Thus Corollary 7.1 can’t be used to prove Zauner’s conjecture is false. On the other
hand it does provide some new sets of equiangular lines:

Example 7.1 The complex equiangular lines (tight frames) obtained from the known
SICs by Corollary 7.1 for

d = 4, . . . , 20, 24, 35, 48 (published), d = 21, 22, 31, 37, 43 (unpublished)

are new examples of equiangular lines since their m–products (see [CW16]) are not in
a cyclotomic field, as is the case for the known constructions mentioned above. This
suggests that in these cases the algebraic variety of equiangular tight frames might have a
nonzero dimension (if its dimension was zero, then its study would shed light on Zauner’s
conjecture).

Definition 7.2 Orthonormal basis B1, . . . ,Bm for C
d are mutually unbiased if

|〈v, w〉|2 =
1

d
, v ∈ Bj, w ∈ Bk, j 6= k.

We call B1, . . . ,Bm a sequence of m MUBs (mutually unbiased bases) for C
d.

The maximal number of MUBs for Cd, which we denote by Md, is bounded by d+1.
For d a prime power, there are various constructions giving d + 1 MUBs. On the other
hand, for d = 6, it is only known that 3 ≤ M6 ≤ 7, and there is ongoing interest in this
MUB problem (see, e.g., [WF89], [GR09], [MB15], [ABD15]).

A set of d+1 MUBs (vj) for C
d (known as a maximal set of MUBs) is a (2, 2)–design

by the calculation

∑

j

∑

k

|〈vj, vk〉|
4 = d(d+1)+d3(d+1)

(1

d

)2

+d(d2−1)·0 = 2d(d+1) = c2(2,C)
(

∑

j

‖vj‖
4
)2

.

The analogue of Corollary 7.1 is the following.

Corollary 7.2 If there is a maximal set of MUBs for C
d, then there is a unit norm

tight frame (uj) of d(d + 1) vectors for C
1

2
d(d+1) which has the property that the cross

correlation |〈uj, uk〉|, j 6= k, is zero for 1
2
d(d2 − 1) pairs of vectors, and equal to 1

d
for

the remaining 1
2
d3(d+ 1) pairs of vectors.

Proof: Let (vj) be the d(d+ 1) unit vectors given by d+ 1 MUBs for Cd, which is a
(2, 2)–design. By Theorem 2.1, (uj) := (v⊗2

j ) = (vj ⊗ vj) is a tight frame for the space

Sym2(Cd), which has dimension 1
2
d(d + 1). If the vectors vj, vk come from the same

orthonormal basis, then uj , uk are orthogonal, otherwise

|〈uj, uk〉| = |〈v⊗2
j , v⊗2

k 〉| = |〈vj, vk〉
2| =

1

d
, j 6= k.

The complement of (uj) is also an equiangular tight frame for C
1

2
d(d+1).
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Example 7.2 A maximal set of MUBs (vj) for C
2 is given by

{e1, e2}, { 1√
2
(e1 + e2),

1√
2
(e1 − e2)}, { 1√

2
(e1 + ie2),

1√
2
(e1 − ie2)}.

The corresponding tight frame of six vectors [u1, . . . , u6] for C
3 is given by









1 0 1
2

1
2

1
2

1
2

0 0 1
2

−1
2

1
2
i −1

2
i

0 0 1
2

−1
2

1
2
i −1

2
i

0 1 1
2

1
2

−1
2

−1
2









,

where the Kronecker products above lie in the 3–dimensional space {x ∈ C
4 : x2 = x3}.

This set of MUBs is also a (3, 3)–design, and so (v⊗3
j ) is a tight frame of six vectors for

the 4–dimensional space Sym3(C2).
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