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1. Introduction

The last decade has seen a surge of work to find arrangements of points in real 
and complex Grassmannian spaces that are well spaced in some sense; for example, 
one may seek optimal codes, which maximize the minimum distance between points, 
or designs, which offer an integration rule. While precursor work in this vein appeared 
between the ’50s and ’80s by Rankin [72,71], Grey [40], Seidel [74], Welch [88], and 
Levenshtein [62], the seminal paper by Conway, Hardin and Sloane [21] arrived later 
in 1996. The recent resurgence of interest in this problem has been largely stimulated 
by emerging applications in multiple description coding [80], digital fingerprinting [67], 
compressed sensing [7], and quantum state tomography [73].

There have been several fruitful approaches to studying arrangements of points in 
the Grassmannian. First, it is natural to consider highly symmetric arrangements of 
points. Such arrangements were extensively studied in [83,17,14,86,82,16] in the context 
of designs, and later, symmetry was used to facilitate the search for optimal codes [49--51, 
60,12,57,52]. In many cases, the symmetries that underly optimal codes can be abstracted 
to weaker combinatorial structures that produce additional codes. For example, one may 
use strongly regular graphs to obtain optimal codes in Gr(1,Rd) [87], or use Steiner 
systems to obtain optimal codes in Gr(1,Cd) [37]. In this spirit, several infinite families 
of optimal codes have been constructed from combinatorial designs [54,59,36,33,34,32,29, 
38,28]. In some cases, it is even possible to construct optimal codes from smaller codes [10, 
84,11,58]. Researchers have also leveraged different computational techniques to find new 
arrangements [3,47,53] and to study various properties of known arrangements [19,31, 
30,66,65]. See [8,35,85] for surveys of many of these results.

To date, the vast majority of this work has focused on the special case of projective 
spaces, and it is easy to explain this trend: it is harder to interact with points in general 
Grassmannian spaces. To illustrate this, suppose you are given two tuples A and B of 
r-dimensional subspaces of Rd. You are told that the subspaces in A were drawn inde
pendently and uniformly at random from the Grassmannian Gr(r,Rd), and that B was 
drawn according to one of two processes: either there exists an orthogonal transforma
tion g ∈ O(d) such that B = g · A, or B was also drawn independently and uniformly 
at random. How can you tell which process was used to construct B? In the special 
case where r = 1, the lines are almost surely not orthogonal, and one may leverage this 
feature to select vector representatives of the lines and then compute a canonical form of 
the Gramian (i.e., the reduced signature matrix discussed in [85]) that detects whether 
there exists g ∈ O(d) such that B = g ·A. However, if r > 1, it is not obvious how to find 
such an invariant. On the other hand, we benefit from the fact that many optimal con
figurations -- like so-called equiangular tight frames -- share certain properties -- like not 
being pairwise orthogonal -- with generic configurations, allowing results about generic 
configurations to be applied to certain optimal configurations.

This obstruction has had substantial ramifications on progress toward optimal codes 
in more general Grassmannian spaces. In particular, Sloane maintains an online cata
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log [77] of putatively optimal codes in Gr(r,Rd) for r ∈ {1, 2, 3} and d ∈ {3, . . . , 16}. 
Suppose one were to find a code for r ∈ {2, 3} that is competitive with Sloane’s corre
sponding putatively optimal code. Are these codes actually the same up to rotation? If 
researchers cannot easily answer this question, then they are less inclined to contribute 
to the hunt for optimal codes in these more general Grassmannian spaces. Alternatively, 
optimal packings that are different (even up to unitary transformations) might have 
different structures which may be exploited. For example, different structures that ap
pear in distinct optimal configurations of 9 points in Gr(1,C3) [48] led to progress on 
Zauner’s conjecture in quantum information theory [2,22], along with infinite classes of 
optimal packings with nice matroidal structures [12]. While there are several works in 
the literature that treat related problems [78,89,68,55,76,45,44], the particular problem 
we identify has yet to be treated. The primary purpose of this paper is to help close this 
gap with both theory and code.

Notationally, we let F denote an arbitrary field. Every Γ ≤ GL(d,F) has a natural 
action on Gr(r,Fd). Given an involutive automorphism σ of F, we consider the Hermitian 
form defined by ⟨x, y⟩ =

∑︁
i σ(xi)yi, and we let U(d,F, σ) denote the subgroup of all 

g ∈ GL(d,F) such that ⟨gx, gy⟩ = ⟨x, y⟩ for all x, y ∈ Fd. For example, U(d,F, σ) contains 
all d×d permutation matrices. Over any field, the identity is an involutive automorphism 
and over quadratic extensions one may choose the only nontrivial field automorphism 
as the involution (see, e.g., [41,42]). Specifically, we also adopt the standard notations 
for the orthogonal group O(d) = U(d,R, id) and the unitary group U(d) = U(d,C, · ). 
For F ∈ {R,C}, we say that generic points in Gr(r,Fd) satisfy property P if there 
exists an open and dense subset S ⊆ Fd×r such that for every A ∈ S, it holds that 
V := imA ∈ Gr(r,Fd) and V has property P . Throughout this paper, this open and 
dense subset turns out to be the complement of the zero set of a nonzero real polynomial, 
and so one may think of genericity in terms of the associated Zariski topology.

Our problem can be viewed as an instance of a more general, fundamental problem:

Problem 1 (Common orbit). Given a G-set X and two points x, y ∈ X, determine 
whether there exists g ∈ G such that g · x = y.

One attractive approach to solving the common orbit problem is to construct an 
invariant, that is, a function f : X → S for some set S such that f(x) = f(y) only if 
there exists g ∈ G such that g · x = y. In particular, f(x) is determined by the orbit 
G ·x. If f always returns different values for different orbits, then we say f is a complete 
invariant. Observe that a complete invariant provides a complete solution to common 
orbit (hence the name), since one may simply compare f(x) with f(y).

We will study three types of common orbit problems with X = (Gr(r,Fd))n. In 
particular, for Γ ∈ {U(d,F, σ),GL(d,F)}, we consider the following actions on X:

G = Γ × Sn,  (g, π) · (xi)i∈[n] = (g · xπ−1(i))i∈[n]; G = Γ,  g · (xi)i∈[n] = (g · xi)i∈[n].
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Here, Sn denotes the symmetric group on n letters. In the following section, we show 
that any solution to common orbit in the case of G = Γ×Sn can be used to solve graph 
isomorphism, thereby suggesting that this case is computationally hard. Next, Section 3
treats the case G = Γ ∈ {O(d), U(d)}. First, we show how to obtain a canonical choice 
of Gramian for generic real planes (i.e., points in Gr(2,Rd)), before finding injective 
invariants using ideas from the representation theory of H∗-algebras. We note that the 
remaining orbit problem with G = Γ = GL(d,F) has been completely solved, not only for 
F ∈ {R,C} but also for other rings and fields [13,18,81,75,70]. Matlab implementations 
of Algorithm 1, Algorithm 2, and Lemma 11 may be downloaded from [56].

2. Isomorphism up to permutation

An important instance of common orbit is when G = Sm×Sn acts on X = {0, 1}m×n

by (g, h) ·x = gxh−1. If we restrict X to only include matrices for which each column has 
exactly two 1s and no two columns are equal, then X corresponds to the set of incidence 
matrices of simple graphs on m vertices and n edges, and the common orbit problem 
corresponds to graph isomorphism:

Problem 2 (Graph isomorphism). Given two simple graphs G and H, determine whether 
G ∼ H, that is, there exists a bijection f : V (G) → V (H) between the vertices that 
preserves the edges; i.e., for every u, v ∈ V (G), it holds that {u, v} ∈ E(G) if and only 
if {f(u), f(v)} ∈ E(H).

In general, a decision problem is a pair (P,M) where P maps problem instances to 
answers P : Q → {yes, no} and M : Q → N measures the size of the problem instance. 
For example, for the graph isomorphism problem, Q is the set of all (G,H), where G
and H are both simple graphs, P (G,H) returns whether G and H are isomorphic, and 
if we represent G and H in terms of their incidence matrices, we are inclined to take 
M(G,H) = |V (G)||E(G)| + |V (H)||E(H)|. We say a decision problem (P,M) is GI
hard if, given a black box that computes P (x), one may solve graph isomorphism by 
an algorithm that uses that black box, and that, outside of that black box, takes time 
that is at most polynomial in the number of vertices in the input graphs G and H. 
For example, if we restrict the input set of graph isomorphism to only consider (G,H)
for which G and H are regular graphs, then the resulting subproblem is known to be 
GI-hard [90]. Today, the fastest known graph isomorphism algorithm in the worst case 
has quasipolynomial runtime [4], though faster algorithms are available in practice [64]. 
Graph isomorphism is one of a few problems that are believed to be NP-intermediate, 
meaning it is in NP, but not in P, and not NP-complete.

This section is concerned with two different isomorphism problems between tu
ples of subspaces. In both cases, we focus our attention on a discrete set of prob
lem instances. Given a field F, take 0, 1 ∈ F and let Q(r, d, n,F) denote the set of 
(A,B) ∈ ({0, 1}d×r)n × ({0, 1}d×r)n such that rankAi = rankBi = r for every i ∈ [n]. 
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The standard representation of (A,B) ∈ Q(r, d, n,F) uses 2rdn bits. With this, we may 
define our decision problems:

• PU(r,F, σ) = (P,M), where F is an arbitrary field with involutive automorphism σ, 
Q =

⋃︁
d,n≥1 Q(r, d, n,F), P (A,B) returns whether there exists (g, π) ∈ U(d,F, σ) ×

Sn such that (g, π) · (imAi)i∈[n] = (imBi)i∈[n], where d = d(A,B) and n = n(A,B), 
and M(A,B) = 2 · r · d(A,B) · n(A,B).

• PGL(F) = (P,M), where F is an arbitrary field, Q =
⋃︁

r,d,n≥1 Q(r, d, n,F), P (A,B)
returns whether there exists (g, π) ∈ GL(d,F) × Sn such that (g, π) · (imAi)i∈[n] =
(imBi)i∈[n], where d = d(A,B) and n = n(A,B), and M(A,B) = 2·r(A,B)·d(A,B)·
n(A,B).

In words, PU(r,F, σ) concerns isomorphism up to unitary and permutation for any 
fixed rank r, whereas PGL(F) concerns isomorphism up to linear automorphism and 
permutation, but with the rank no longer fixed. As we will see, both problems are hard. 
Prior work studied the special case where r = 1. For work relating to PU(1,R, σ), 
see [20]. The fact that r is fixed for one problem and not for the other is an artifact 
of our proof of hardness. In particular, by fixing r = 1 rather than all r, one may 
consider a problem denoted as PGL(1,F) for arbitrary fields F. This problem is known 
as monomial code equivalence and is related to permutational code equivalence, which 
are both known to be GI-hard [9,43,69]. This might suggest that PGL(r,F) is GI-hard for 
each r. However, our proof technique relies on a reduction to regular graph isomorphism 
in which r is determined by the graph degree; n.b. bounded degree GI is in P, while GI 
is not known to be [63].

Theorem 3. The following problems are GI-hard:

(a) PU(r,F, σ) for every r ∈ N and every field F with involutive automorphism σ and
(b) PGL(F) for every field F.

Proof. (a) Fix r, F and σ. We will use a PU(r,F, σ) oracle to efficiently solve graph 
isomorphism. Given two simple graphs G and H, we return no if V (G) and V (H) are 
of different size, or if E(G) and E(H) are of different size. Otherwise, put n := |V (G)|, 
e = |E(G)| and d := re, and for each graph, arbitrarily label the vertices and edges with 
members of [n] and [e], respectively. We use this labeling of G to determine A. Specifically, 
for each j ∈ [n], define Aj ∈ Fd×r to consist of e blocks of size r × r, where for each 
i ∈ [e], the ith block of Aj is Ir if j is a vertex in edge i, and otherwise the block is zero. 
Define B similarly in terms of our labeling of H. Given (A,B), the PU(r,F, σ) oracle 
returns whether there exists (g, π) ∈ U(d,F, σ) × Sn such that (g, π) · (imAi)i∈[n] =
(imBi)i∈[n], and we will output this answer as our solution to graph isomorphism. It 
remains to show that G ∼ H if and only if there exists (g, π) ∈ U(d,F, σ) × Sn such 
that (g, π) · (imAi)i∈[n] = (imBi)i∈[n]. For (⇒), observe that a graph isomorphism 
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determines a choice of π ∈ Sn as well as a permutation of edges. This permutation 
of edges can be implemented as a block permutation matrix g ∈ U(d,F, σ) so that 
gAπ−1(i) = Bi, which then implies (g, π) · (imAi)i∈[n] = (imBi)i∈[n]. For (⇐), we first 
define two additional graphs G′ and H ′, both on vertex set [n]. For G′, say i ↔ j if there 
exists x ∈ imAi and y ∈ imAj such that ⟨x, y⟩ ̸= 0. Define H ′ similarly in terms of B. 
By our construction of A and B, it holds that G′ ∼ G and H ′ ∼ H. Furthermore, the 
existence of (g, π) ∈ U(d,F, σ) × Sn such that (g, π) · (imAi)i∈[n] = (imBi)i∈[n] implies 
that G′ ∼ H ′, meaning G ∼ H, as desired.

(b) Fix F. We will use a PGL(F) oracle to efficiently solve graph isomorphism for 
regular graphs, which suffices by [90]. Without loss of generality, we may put n :=
|V (G)| = |V (H)|, d := |E(G)| = |E(H)|, and let r denote the common degree of G
and H. For each graph, arbitrarily label the vertices and edges with members of [n]
and [d], respectively, and let (ei)i∈[d] denote the identity basis in Fd. For each j ∈
[n], select Aj ∈ Fd×r so that its column vectors are the r members of (ei)i∈[d] that 
correspond to edges i incident to vertex j. Define B similarly in terms of our labeling of 
H. Given (A,B), the PGL(F) oracle returns whether there exists (g, π) ∈ GL(d,F)×Sn

such that (g, π) · (imAi)i∈[n] = (imBi)i∈[n], and we will output this answer as our 
solution to graph isomorphism. It remains to show that G ∼ H if and only if there 
exists (g, π) ∈ GL(d,F) × Sn such that (g, π) · (imAi)i∈[n] = (imBi)i∈[n]. For (⇒), the 
isomorphism determines a permutation matrix g ∈ GL(d,F) and a permutation π ∈ Sn

such that (g, π) · (imAi)i∈[n] = (imBi)i∈[n]. For (⇐), we first define two additional 
graphs G′ and H ′, both on vertex set [n]. For G′, say i ↔ j if imAi ∩ imAj ̸= {0}, 
and define H ′ similarly in terms of B. By our construction of A and B, it holds that 
G′ ∼ G and H ′ ∼ H. Furthermore, the existence of (g, π) ∈ GL(d,F) × Sn such that 
(g, π) · (imAi)i∈[n] = (imBi)i∈[n] implies that G′ ∼ H ′, meaning G ∼ H, as desired. □

Of course, Theorem 3 does not mean that solving PU(r,F, σ) or PGL(F) is always 
hopeless. (In particular, graph isomorphism is solvable in practice [64].) As an example, 
the Bargmann invariants computed in Section 3.1 are ordered lists of numbers; if the 
histograms of these numbers are not equal, then the lines cannot be isomorphic up to 
permutation.

3. Isomorphism up to linear isometry

While the previous section demonstrated that certain isomorphism problems are hard, 
this section will show that isomorphism up to linear isometry is relatively easy. This 
would have taken Halmos by surprise, as he considered this problem to be difficult even 
for triples of subspaces [46]. Throughout this section, we assume F ∈ {R,C} without 
mention, meaning U(d,F, σ) ∈ {O(d),U(d)}.
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3.1. Lines

Chien and Waldron [16] provide a complete invariant for tuples of lines in Fd up to 
isometric isomorphism. Given a tuple (vi)i∈[n] of unit vectors in Fd that span each line 
in the tuple L = (ℓi)i∈[n], define1 the m-vertex Bargmann invariants or m-products by

Δ(vi1 , . . . , vim) := ⟨vi1 , vi2⟩⟨vi2 , vi3⟩ · · · ⟨vim , vi1⟩, i1, . . . , im ∈ [n].

Denoting Pi := viv
∗
i , we see that Δ(vi1 , . . . , vim) = tr(Pi1 · · ·Pim), and so the choice of 

vi ∈ ℓi is irrelevant. Furthermore, as their name suggests, these quantities are invariant 
to isometric isomorphism, since for Q ∈ U(d,F, σ), the orthogonal projection onto Q · ℓi
is QPiQ

∗, and tr(QPi1Q
∗ · · ·QPimQ∗) = tr(Pi1 · · ·Pim).

Let’s take a moment to discuss the relationship to classical invariant theory. In the 
special case where F = R, we are interested in the orbit of (vi)i∈[n] ∈ (Rd)n under the 
action of O(d) × O(1)n. Any polynomial that is invariant to this group is invariant to 
the subgroup O(d), and is therefore a polynomial of (xij := ⟨vi, vj⟩)1≤i≤j≤n by the first 
fundamental theorem of invariant theory for the orthogonal group. Next, if we apply 
the Reynolds operator of O(1)n to any monic monomial of the xij ’s, the result is either 
zero or the same monomial, with the later case occurring precisely when the multiset of 
indices ij that appear in the monomial form the edges of a (not necessarily simple) graph 
with vertex set [n] in which every vertex has even degree. Since every such graph can be 
decomposed into cycles, it follows that the m-products with m ∈ [n] together generate 
the algebra of polynomial invariants, which in turn separates the orbits. As we discuss 
below, Chien and Waldron [16] identify a much smaller subset of m-products separate 
these orbits.

Given the 2-products, one may define the frame graph G(L ) on [n] in which we draw 
an edge i ↔ j when ℓi and ℓj are not orthogonal; we note that the frame graph has 
also been referred to as the correlation network [79]. Letting E denote the edge set of 
the frame graph, then the indicator functions of the edge sets of Eulerian subgraphs of 
G(L ) form a subspace E ⊆ FE

2 . Given a maximal spanning forest F of G(L ), then each 
edge in E \E(F ) completes a unique cycle with this forest, and the indicator functions of 
the edge sets of these cycles form a basis for E . Let C(F ) denote the set of these cycles. 
With these notions, we may enunciate the main result of [16] (for unweighted lines).

Proposition 4 (Corollary   3.2 in   [16], cf. Theorem   2 in   [39]). Given a tuple L of lines in 
Fd, select any maximal spanning forest F of the frame graph G(L ). Then L is deter
mined up to isometric isomorphism by its 2-products and each m-product corresponding 
to a cycle in C(F ).

1 Our definition differs slightly from [16] since our inner product is conjugate-linear in the first argument.
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Proof. Let L and L ′ be n-tuples of lines in Fd. As noted above, if L and L ′ are 
isometrically isomorphic, then all of their m-products must be equal.

For the other direction, select an n-tuple of unit vectors {vi}ni=1 in Fd that span 
the lines in L . Let {ui}ni=1 be another n-tuple of unit vectors in Fd such that the 
2-products and each m-product corresponding to a cycle in C(F ) (corresponding to a 
spanning forest F of L ) of each tuple of vectors are equal. We would like to show that 
{vi}ni=1 and {ui}ni=1 are the same modulo U(d,F, σ) and choice of basis vectors. Since the 
spectral theorem implies tuples of vectors are the same modulo U(d,F, σ) if and only if 
their Gramians are component-wise equal, it suffices to show that there exist unimodular 
ηi for i ∈ [n] such that for all i, j ∈ [n]

⟨ui, uj⟩ = ηiηj ⟨vi, vj⟩ . (1)

If i and j are in different components of G(L ) (where we are using i as shorthand for 
ℓi), then ⟨vi, vj⟩ = 0 and (1) yields no restriction on the values of ηi and ηj . Thus, we 
may assume without loss of generality that G(L ) is connected and F is a spanning tree 
with root r. Since 2-products are equal,

|⟨ui, uj⟩|2 = ⟨ui, uj⟩ ⟨uj , ui⟩ = ⟨vi, vj⟩ ⟨vj , vi⟩ = |⟨vi, vj⟩|2

for all i, j ∈ [n]. For i ∈ [n] such that ri is an edge in F , let ηi be the necessarily 
unimodular scalar such that ⟨ur, ui⟩ = ηi ⟨vr, vi⟩. Now for j ∈ [n] such that ri and ij are 
edges in F but not rj let ηj be the necessarily unimodular scalar such that (1) holds. 
Continue this process inductively, setting the ηk for vertices k at distance 3, 4, . . . from r. 
Since F is spanning, we have uniquely defined ηi for each i ∈ [n]. However, we now need 
to verify that (1) holds for any ij that is an edge in G(L ) but not F . Let ij be such 
an edge; it lies in a unique cycle in C(F ), say with vertex sequence i, j, k3, k4, . . . , km, i. 
Since each edge but ij lies in F ,

⟨vi, vj⟩ ⟨vj , vk3⟩ ⟨vk3 , vk4⟩ · · · ⟨vkm
, vi⟩

= ⟨ui, uj⟩ ⟨uj , uk3⟩ ⟨uk3 , uk4⟩ · · · ⟨ukm
, ui⟩

= ⟨ui, uj⟩ ηjηk3 ⟨vj , vk3⟩ ηk3ηk4 ⟨vk3 , vk4⟩ · · · ηkm
ηi ⟨vkm

, vi⟩
= ηiηj ⟨ui, uj⟩ ⟨vj , vk3⟩ ⟨vk3 , vk4⟩ · · · ⟨vkm

, vi⟩ ,

implying that (1) holds for ij, as desired. □
Generically (or for equiangular tight frames and certain other optimal configurations), 

none of the inner products ⟨vi, vj⟩ equal zero. In this case, the frame graph is complete, 
and so we may take F to be the star graph in which 1 ↔ j for every j ̸= 1. Then C(F ) con
sists of all triangles in Kn that have 1 as a vertex. Alternatively, we can put the Gramian 
A = (⟨vi, vj⟩)i,j∈[n] in a canonical form by taking D = diag(sgn⟨v1, v1⟩, . . . , sgn⟨v1, vn⟩)
and G = DAD∗. Here, sgn(reiθ) = eiθ, and so DAD∗ has all positive entries in its first 
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row and column. We refer to G as the normalized Gramian of A. Since the Gramian of 
(vi)i∈[n] is invariant to isometries acting on (vi)i∈[n], normalizing the Gramian removes 
any ambiguity introduced by selecting vi ∈ ℓi, and so the normalized Gramian is a gener
ically injective invariant for (Gr(1,Fd))n modulo U(d,F, σ). Notice that the entries of 
G are the triple products corresponding to C(F ), and so this conclusion may also be 
viewed in terms of Proposition 4.

At this point, we can treat the case of lines from two related but different perspectives: 
Generically (and for certain optimal configurations), it suffices to compute the normalized 
Gramian, but in general, we must appeal to more intricate Bargmann invariants. In what 
follows, we will see that a similar story holds for general subspaces.

3.2. Real, nowhere orthogonal planes

We say two subspaces U, V ⊆ Fd are nowhere orthogonal if U ∩ V ⊥ = U⊥ ∩ V =
{0}. By counting dimensions, one may conclude that subspaces are nowhere orthogonal 
only if they have the same dimension. Given bases (ui)i∈[r] and (vi)i∈[r] for U and V , 
nowhere orthogonality is equivalent to the cross Gramian (⟨ui, vj⟩)i,j∈[r] being invertible. 
As one might expect, nowhere orthogonality is a generic property of subspaces of common 
dimension; we provide a short proof in the real case:

Lemma 5. Two generic r-dimensional subspaces of Rd are nowhere orthogonal.

Proof. Given A1, A2 ∈ Rd×r, then imA1 and imA2 are nowhere orthogonal subspaces 
of dimension r if and only if f(A1, A2) := det(A∗

1A2) ̸= 0. Since the polynomial f is 
nonzero at A1 = A2 = [Ir; 0], it follows that f ̸= 0, and so f−1(R \ {0}) is a generic set, 
as desired. □

In this section, we consider the special case of nowhere orthogonal 2-dimensional sub
spaces of Rd. This case is particularly relevant to the study of real equi-isoclinic planes, 
which have received some attention recently [24,26,25,27,58]. In general, subspaces are 
said to be equi-isoclinic if there exists θ > 0 such that every principal angle between 
any two of the subspaces equals θ. (Note that equi-isoclinic subspaces with θ < π

2 are 
nowhere orthogonal.) Such subspaces were introduced by Lemmens and Seidel [61], and 
at times, they emerge as arrangements of points in the Grassmannian that maximize the 
minimum chordal distance [23]. In fact, most of Sloane’s chordal-distance codes of real 
planes [77] are nowhere orthogonal, and well over half have the property that all cross 
Gramians have a minimum singular value greater than 10−4.

In what follows, we obtain a normalized Gramian for real, nowhere orthogonal planes, 
and to do so, we exploit several features of this special case. For example, the singular 
values of a cross Gramian between two planes are either all equal or all distinct. We will 
also leverage consequences of the fact that SO(2) is abelian:

Lemma 6. If A ∈ SO(2) and B ∈ O(2), then A−1 = [ 1 0
0 −1 ] A [ 1 0

0 −1 ] and AB = BAdetB.
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Algorithm 1: Canonical Gramian between real, nowhere orthogonal planes.
Data: Gramian A ∈ (R2×2)n×n of orthobases of n nowhere orthogonal planes in Rd

Result: Gramian G ∈ (R2×2)n×n of another choice of orthobases

Put R = [ 1 0
0 −1

] and S = diag(R, . . . , R)
if there exists (k, l) such that Akl has distinct singular values then

Let (k, l) be the first such indices, lexicographically
Compute the singular value decomposition Akl = WkΣV ∗ and put ˜︂Wk = WkR

For j ̸= k, compute polar decompositions W ∗
k Akj = PjW

∗
j and ˜︂W ∗

kAkj = ˜︁Pj
˜︂W ∗

j

Put D = diag(W1, . . . ,Wn) and ˜︁D = diag(˜︂W1, . . . , ˜︂Wn)
Put G = min(D∗AD, ˜︁D∗A ˜︁D), lexicographically

else
For each (i, j), find αij > 0 such that Hij := αijAij ∈ O(2)
Put H = (Hij)i,j∈[n] and D = diag(H11, . . . , H1n)
if there exists (k, l) such that det(DHD∗)kl = −1 then

Let (k, l) be the first such indices, lexicographically
Put Q = ((DHD∗)klR)−1/2 // either square root may be selected
Put E = diag(QH11, . . . , QH1n)
Put G = min(EAE∗, SEAE∗S), lexicographically

else
Put G = min(DAD∗, SDAD∗S), lexicographically

end
end

Proof. The first claim follows from the fact that [ c −s
s c

]−1 = [ c s
−s c ] when c2 + s2 = 1. 

For the second claim, if detB = 1, then since SO(2) is abelian, we have AB = BA. If 
detB = −1, then put R = [ 1 0

0 −1 ] and C = BR. Then C ∈ SO(2), and so the first claim 
gives

AB = ABRR = ACR = CAR = CRRAR = CRA−1 = BA−1. □

Theorem 7. The function implemented by Algorithm 1 is a complete invariant for 
nowhere orthogonal tuples in (Gr(2,Rd))n modulo O(d).

We note that the Algorithm 1 takes as input (and gives as output) a Gramian of 
n orthonormal bases of nowhere orthogonal planes in Rd). That is, given an element 
(Gr(2,Rd))n, one fixes an orthonormal basis (i.e., columns of a d × 2 matrix Ai) for 
each of the points in Gr(2,Rd) and then computes the Gramian of the 2n vectors (i.e., 
columns of d × 2n matrix (A1, A2, . . . An)). The Gramian output by the algorithm can 
then be factored using spectral methods to yield a d × 2n matrix (B1, B2, . . . Bn) with 
columns orthonormal bases of points in Gr(2,Rd). Thus, this theorem also means that 
the algorithm returns the same output regardless of choice of orthonormal bases for 
elements of (Gr(2,Rd))n.

Proof. First, if two different inputs A1 and A2 produce the same output G, then by the 
construction of G in both cases, there must exist block diagonal unitary matrices U1 and 
U2 such that G = U1A1U

∗
1 = U2A2U

∗
2 . It then follows that A2 = (U∗

2U1)A1(U∗
2U1)∗, 
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that is, A1 and A2 are equivalent. It remains to show that equivalent inputs produce 
identical outputs.

Take any tuple (Ui)i∈[n] in O(2) and put U = diag(U1, . . . , Un). We will first show that 
UAU∗ produces the same output as A. Throughout, we use ♯ to denote the version of 
calculations that come from UAU∗, e.g., A♯ = UAU∗. First, Akl has the same singular 
values as A♯

kl = UkAklU
∗
l , and so (k, l)♯ exists if and only if (k, l) exists for the first 

condition in Algorithm 1. Suppose (k, l)♯ = (k, l) does exist. Next, there are four choices 
of left singular vectors of UkAklU

∗
l , namely, W ♯

k ∈ {±UkWk,±UkWkR}. As such, there 
exists ϵ ∈ {±1} and t ∈ {0, 1} such that

W ♯
k = ϵUkWkR

t, ˜︂W ♯
k = ϵUkWkR

t+1.

Since each Akj is invertible, the polar decompositions are unique, and we have

(W ∗
kAkj)♯ = ϵRtW ∗

kU
∗
kUkAkjU

∗
j = ϵRtW ∗

kAkjU
∗
j =

{︄
ϵPjW

∗
j U

∗
j if t = 0

ϵ˜︂Pj
˜︂Wj

∗
U∗
j if t = 1.

Either way, the polar decomposition gives W ♯
j = ϵUjWjR

t. Similarly, ˜︂W ♯
j = ϵUjWjR

t+1. 
With this we see that

(D∗AD)♯ij = (W ∗
i AijWj)♯ = RtW ∗

i U
∗
i UiAijU

∗
j UjWjR

t = (WiR
t)∗Aij(WjR

t),

and similarly ( ˜︁D∗A ˜︁D)♯ij = (WiR
t+1)∗Aij(WjR

t+1). It follows that {(D∗AD)♯, ( ˜︁D∗A ˜︁D)♯} 

= {D∗AD, ˜︁D∗A ˜︁D}, and so G♯ = G.
Next, we suppose that no such (k, l) exists. Since A♯

ij = UiAijU
∗
j with Ui, Uj ∈ O(2), 

then α♯
ij = αij and so H♯

ij = UiHijU
∗
j . Next,

(DHD∗)♯kl = (H1kHklH
∗
1l)♯ = U1H1kU

∗
kUkHklU

∗
l UlH

∗
1lU

∗
1 = U1(DHD∗)klU∗

1 ,

and so det(DHD∗)♯kl = det(DHD∗)kl. For the remainder of the proof, put T = DHD∗

and define t to be 1 if detU1 = −1, and otherwise 0.
Suppose there exists (k, l)♯ = (k, l) such that detTkl = −1. Then Q♯ = 

±(U1TklU
∗
1R)−1/2, and since Q♯ ∈ SO(2), Lemma 6 gives

(EAE∗)♯ij = α−1
ij (QTijQ

∗)♯ = α−1
ij Q♯U1TijU

∗
1 (Q♯)∗ = α−1

ij U1TijU
∗
1 (Q♯)detTij (Q♯)∗.

If detTij = 1, then this reduces to

(EAE∗)♯ij = α−1
ij U1TijU

∗
1 (Q♯)detTij (Q♯)∗ = α−1

ij U1TijU
∗
1 = α−1

ij T detU1
ij = α−1

ij RtTijR
t.

Otherwise, detTij = −1, and so

(EAE∗)♯ij = α−1
ij U1TijU

∗
1 (Q♯)−2 = α−1

ij U1TijU
∗
1U1TklU

∗
1R = α−1

ij U1TijTklU
∗
1R.
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Since det(TijTkl) = 1, Lemma 6 then gives

(EAE∗)♯ij = α−1
ij U1TijTklU

∗
1R = α−1

ij (TijTkl)detU1R = α−1
ij RtTijTklR

t+1.

Similarly,

(EAE∗)ij =
{︄

α−1
ij Tij if detTij = 1

α−1
ij TijTklR if detTij = −1,

meaning {(EAE∗)♯, S(EAE∗)♯S} = {EAE∗, SEAE∗S}, and so G♯ = G.
In the final case, we have det(DHD∗)♯ij = det(DHD∗)ij = 1 for every i, j ∈ [n]. Here, 

Lemma 6 gives

T ♯
ij = U1TijU

∗
1 = T detU1

ij = RtTijR
t,

meaning {T ♯, ST ♯S} = {T, STS}, and so G♯ = G. □
A Matlab implementation of Algorithm 1 may be downloaded from [56].
We note that another (uglier) algorithm produces a normalized Gramian for generic 

rank-r subspaces, but the algorithm we found does not produce a Gramian if any two of 
the subspaces are isoclinic (for example). Due to this failure, we decided to not report 
the details of this algorithm.

3.3. H∗-algebras and generalized Bargmann invariants

In pursuit of a complete invariant for (Gr(r,Fd))n modulo U(d,F, σ), we consider 
traces of products of matrices, generalizing Bargmann invariants and building on the 
approaches in [78,89,68,55,39,76]. There are large upper bounds on the number of traces 
of products that must be computed to generate a complete invariant on a single (1-tuple) 
d × d matrix, like 4d2 [68], and we prove in Lemma 8 that there is a lower bound on 
Bargmann invariants that must be computed in general to provide a complete invariant 
for tuples of lines. Thus, our goal of this section is to give (two different) algorithms to 
compute injective invariants that generalize Bargmann invariants and require a reason
able number of computations. Neither requires genericity of the subspaces.

First, we clarify how we must use these invariants with the help of a lemma:

Lemma 8. Consider any function f : (Gr(1,Fd))d → Fm such that each coordinate func
tion of f is a fixed Bargmann invariant. Then f is a complete invariant of (Gr(1,Fd))d
modulo U(d,F, σ) only if m ≥ (d− 1)!/2.

Proof. Select ϵ ∈ {±} and consider the lines Lϵ spanned by the vectors

e1 + e2, . . . , ed−1 + ed, ed + ϵe1.
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For both choices of ϵ, the frame graph G(Lϵ) is the cycle graph Cd of length d, and so 
the maximal spanning forest F is a path graph. The 2-products of L+ equal those of 
L−, but the d-product corresponding to the lone cycle Cd ∈ C(F ) has the same sign 
as ϵ. As such, L+ is not isomorphic to L− modulo U(d,F, σ) by Proposition 4. The 
Bargmann invariants that do not vanish on Lϵ are the ones that correspond to closed 
walks along Cd. Of these, the Bargmann invariants that distinguish L+ from L− are 
closed walks with odd winding number around Cd. Overall, distinguishing L+ from L−
requires a Bargmann invariant whose closed walk is supported on all of Cd.

Now select π ∈ Sd and ϵ ∈ {±} and consider the lines π · Lϵ obtained by permuting 
the tuple Lϵ according to π. Distinguishing π ·L+ from π ·L− for every π ∈ Sd requires 
Bargmann invariants whose closed walks are supported on each of the length-d cycles in 
the complete graph Kd. The result follows from the fact that there are (d − 1)!/2 such 
cycles. □

Considering (d − 1)!/2 is far too large for efficient computation, we instead accept a 
different type of injective invariant: Given a tuple L of n lines, return a collection W of 
walks on Kn as well as the Bargmann invariant of w evaluated at L for each w ∈ W . Note 
that this is the form provided by Proposition 4, at least if F were selected canonically; 
this can be accomplished by iteratively growing F from edges in lexicographic order.

The remainder of this section considers two different generalizations of the Bargmann 
invariants, and we use these invariants to distinguish between tuples of subspaces modulo 
isometric isomorphism. Our results for both generalizations apply ideas from the repre
sentation theory of H∗-algebras. For what follows, we remind the reader that F ∈ {R,C}.

Definition 9. We say A is an H∗-algebra over (F, σ) if

(H1) (A ,+,×,F) is a finite-dimensional associative algebra with unity,
(H2) ∗ : A → A is a conjugate-linear involutory antiautomorphism, and
(H3) (·, ·) : A × A → F is a Hermitian form on A such that

(xy, z) = (y, x∗z) = (x, zy∗) ∀x, y, z ∈ A .

A representation of an H∗-algebra A is a ∗-algebra homomorphism f : A → Fk×k. The 
corresponding character χf : A → F is given by χf (x) = tr f(x). Two representations 
f, g : A → Fk×k are equivalent if there exists U ∈ U(k,F) such that g(x) = Uf(x)U∗.

One example of an H∗-algebra over F is Fk×k, with conjugate-linear involutory antiau
tomorphism ∗ the adjoint and Hermitian form (·, ·) the Hilbert–Schmidt inner product. 
The quaternions form an H∗-algebra over the reals (see, e.g., [5]), where q∗ = q and 
(q1, q2) = Re q1q2. H∗-algebras have also more recently arisen in infinite-dimensional 
quantum mechanics [1].

One might ask why the Hermitian form is not mentioned in the definition of a 
representation of an H∗-algebra, considering it is an important part of the structure. 
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Homomorphisms of Hilbert spaces are continuous linear operators, which also do not 
explicitly involve the Hermitian form, just the topology induced from it. Since we are 
dealing with finite-dimensional objects, this reduces to any linear map, e.g., an algebra 
homomorphism.

Proposition 10 (Theorem   3 in   [39]). Two representations of an H∗-algebra are equivalent 
if and only if their characters are equal.

Given S ⊆ Fk×k, let A (S) denote the smallest algebra with unity containing S.

Lemma 11. Consider tuples (Ai)i∈[n] and (Bi)i∈[n] over Fk×k for which there exists 
π ∈ Sn such that A∗

i = Aπ(i) and B∗
i = Bπ(i) for every i ∈ [n]. Select words 

(wj(x1, . . . , xn))j∈[m] in noncommuting variables xi such that the evaluation (Ej :=
wj(A1, . . . , An))j∈[m] is a basis for A ((Ai)i∈[n]). (Here, evaluating the word of length 
zero produces the identity matrix.) There exists U ∈ U(k,F, σ) such that UAiU

∗ = Bi

for every i ∈ [n] if and only if

(i) the evaluation (Fj := wj(B1, . . . , Bn))j∈[m] is a basis for A ((Bi)i∈[n]),
(ii) tr(E∗

i Ej) = tr(F ∗
i Fj) for every i, j ∈ [m],

(iii) tr(E∗
i EjEk) = tr(F ∗

i FjFk) for every i, j, k ∈ [m], and
(iv) tr(E∗

i Aj) = tr(F ∗
i Bj) for every i ∈ [m], j ∈ [n].

Proof. (⇒) Suppose there exists U ∈ U(k,F, σ) such that UAiU
∗ = Bi for every i ∈ [n]. 

Then UEiU
∗ = Fi for every i ∈ [m], and (i)--(iv) follow immediately.

(⇐) First, the assumed existence of π ∈ Sn implies that A ((Ai)i∈[n]) and A ((Bi)i∈[n])
are H∗-algebras. Indeed, both algebras inherit (H3) from Fk×k by taking (x, y) = tr(x∗y). 
By (i), there is a unique linear f : A ((Ai)i∈[n]) → A ((Bi)i∈[n]) that maps Ei ↦→ Fi for 
every i ∈ [m]. Next, (ii) and the non-degeneracy of (A,B) ↦→ tr(A∗B) implies that for 
every x ∈ A ((Ai)i∈[n]), it holds that f(x) is the unique y ∈ A ((Bi)i∈[n]) such that 
tr(E∗

i x) = tr(F ∗
i y) for every i ∈ [m]. This combined with (iii) and (iv) then imply 

that f maps EjEk ↦→ FjFk for every j, k ∈ [m] and Aj ↦→ Bj for every j ∈ [n]. The 
former implies that f is an algebra isomorphism, since decomposing x =

∑︁
i aiEi and 

y =
∑︁

j bjEj gives xy =
∑︁

ij aibjEiEj , which f then maps to 
∑︁

ij aibjFiFj = f(x)f(y). 
Since f : Ai ↦→ Bi for every i ∈ [n], the assumed existence of π ∈ Sn implies that f is a 
∗-algebra isomorphism. Indeed, letting Rw denote the reversal of the word w, then since 
f is an algebra isomorphism, f maps

(w(A1, . . . , An))∗ = (Rw)(A∗
1, . . . , A

∗
n) = (Rw)(Aπ(1), . . . , Aπ(n))

to (Rw)(Bπ(1), . . . , Bπ(n)) = (w(B1, . . . , Bn))∗, and so f(x∗) = f(x)∗ by linearity. At this 
point, we consider two representations of A ((Ai)i∈[n]), namely, the identity map and f . 
Since the identity matrix resides in both A ((Ai)i∈[n]) and A ((Bi)i∈[n]) by definition, 
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Algorithm 2: Canonical basis for matrix algebra from finite generating set.
Data: Matrices (Ai)i∈[n] in Fk×k

Result: Words (wj)j∈[m] such that (wj(A1, . . . , An))j∈[m] is a basis for A ((Ai)i∈[n])

Put w1 = 1 (the word of length zero)
Initialize mold = 0 and mnew = 1
while mnew > mold do

Update mold = mnew
for i ∈ [n] and j ∈ [mold] do

if Aiwj(A1, . . . , An) is linearly independent of (wl(A1, . . . , An))l∈[mnew] then
Put wmnew+1 = xiwj and update mnew = mnew + 1

end 
end 

end 

(ii) together with linearity gives that the characters of these representations are equal, 
and so Proposition 10 implies the existence of U ∈ U(k,F, σ) such that f(x) = UxU∗. 
Since f : Ai ↦→ Bi for every i ∈ [n], we are done. □

In [39], Proposition 10 is used to prove (Theorem 4 in [39]) that calculating the traces 
of the evaluations of every possible word on the generating matrices of length between 
one and 4k2 (i.e., on the order of n4k2) is a complete invariant. Our goal in what follows 
is to prune the list of necessary words to evaluate.

Overall, to determine a tuple of matrices in Fk×k up to unitary equivalence, it suffices 
to specify a collection of words (wi)i∈[m] that can be used to span the corresponding 
H∗-algebra, and then report traces of the form (ii)--(iv). In the following, we show that 
a certain (obvious) choice of words, i.e., the result of Algorithm 2, is invariant to conju
gation by unitary matrices and computable in polynomial time.

Lemma 12. Given (Ai)i∈[n] in Fk×k, Algorithm 2 returns words (wj)j∈[m] such that the 
evaluation (wj(A1, . . . , An))j∈[m] is a basis for A ((Ai)i∈[n]). Given (UAiU

∗)i∈[n] for 
some U ∈ U(k,F, σ), Algorithm 2 returns the same words (wj)j∈[m]. Algorithm 2 ter
minates after at most m ≤ k2 iterations of the while loop, and each iteration can be 
implemented in a way that costs O(mnk4) operations.

Proof. First, consider the set of evaluations of all words at (Ai)i∈[n]. This set spans 
A ((Ai)i∈[n]), which is a subspace of Fk×k, and therefore has finite dimension. It follows 
that there exists a basis among these evaluations. Let L denote the smallest possible 
length of the longest word in a basis.

For the moment, let us remove the constraint mnew > mold of the while loop. We claim 
that after the lth iteration of the unconstrained while loop, span(wj(A1, . . . , An))j∈[mnew]
contains all evaluations of words of length l. By our initialization w1 = 1, this holds 
for l = 0. Assume it holds for l ≥ 0. Then every word of length l + 1 has the form 
xiw, where w is a word of length l. Evaluating then produces Aiw(A1, . . . , An). By 
the induction hypothesis, w(A1, . . . , An) can be expressed as a linear combination of 
(wj(A1, . . . , An))j∈[mold]. Since we test all of (Aiwj(A1, . . . , An))j∈[mold] for linear indepen
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dence in order to select (wj)j∈[mnew], it follows that span(wj(A1, . . . , An))j∈[mnew] contains 
Aiw(A1, . . . , An).

Now suppose that the lth iteration of the unconstrained while loop resulted in 
mnew = mold. Then no new words were added to {wj} in the lth iteration. In 
fact, for every i ∈ [n] and j ∈ [mold], it holds that Aiwj(A1, . . . , An) resides in 
span(wl(A1, . . . , An))l∈[mold], and so no new words will also be added in any future it
eration. Considering (wl(A1, . . . , An))l∈[mnew] forms a basis for A ((Ai)i∈[n]) by the end 
of the Lth iteration, it follows that the original while loop with constraint mnew > mold
terminates with a basis after L + 1 iterations.

Now suppose we were instead given (UAiU
∗)i∈[n] for some U ∈ U(k,F, σ). Since the 

map x ↦→ UxU∗ is a linear isometry over Fk×k, it follows that UAiU
∗wj(UA1U

∗, . . . , 
UAnU

∗) = UAiwj(A1, . . . , An)U∗ is linearly independent of

(wl(UA1U
∗, . . . , UAnU

∗))l∈[mnew] = (Uwl(A1, . . . , An)U∗)l∈[mnew]

if and only if Aiwj(A1, . . . , An) is linearly independent of (wl(A1, . . . , An))l∈[mnew]. As a 
consequence, Algorithm 2 returns the same words (wj)j∈[m].

For the final claim, recall that the while loop terminates after L + 1 iterations. To 
estimate this number of iterations, let ml denote the dimension of span(wl(A1, . . . , 
An))l∈[mnew] after the lth iteration of the while loop, i.e., ml = mnew. Then

1 = m0 < m1 < · · · < mL = mL+1 = m.

It follows that L < m, and so the while loop terminates after at most m ≤ k2 iterations, 
as claimed. One may implement each iteration of the while loop by first multiplying every 
matrix Ai by every matrix wj(A1, . . . , An), costing nmold · O(k3) = O(nk5) operations, 
then vectorizing the matrices (wl(A1, . . . , An))l∈[mnew] and the nmold matrix products to 
form the columns of a k2 × (mold + nmold) matrix, computing the row echelon form of 
this matrix in O(k4(mold + nmold)) = O(mnk4) operations, and then finally using the 
pivot columns of the result to decide which words to add to {wj}. □

Matlab implementations of Algorithm 2 and Lemma 11 may be downloaded from [56].
While the per-iteration cost of Algorithm 2 scales poorly with k, we will find that 

this cost can sometimes be improved dramatically. At the moment, the main takeaway 
should be that Algorithm 2 always returns the desired basis in polynomial time.

3.3.1. Projection algebras
Taking inspiration from [39], and in light of Lemma 11, there is a natural choice of 

invariant to determine tuples of subspaces up to isometric isomorphism.

Theorem 13. There exists a complete invariant for (Gr(r,Fd))n modulo U(d,F, σ) that, 
given a tuple of orthogonal projection matrices, can be computed in O(nd8 + r2d9) oper
ations.
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Proof. Let Ai denote the orthogonal projection onto the ith subspace, run Algorithm 2
to determine words (wj)j∈[m] that produce a basis (Ej)j∈[m] for the algebra A ((Ai)i∈[n]), 
and then compute the traces prescribed in Lemma 11(ii)--(iv). By Lemmas 11 and 12, 
the words (wj)j∈[m] together with the traces (ii)--(iv) form a complete invariant for 
(Gr(r,Fd))n modulo U(d,F, σ). Since Algorithm 2 ensures that E1 = I, then the traces 
in (ii) are already captured by the traces in (iii).

To compute these traces, it is helpful to perform some preprocessing. For each projec
tion Ai, we find a decomposition of the form Ai = TiT

∗
i with Ti ∈ Fd×r in O(rd2)

operations. (It suffices to draw Gaussian vectors (gj)j∈[r] in O(rd) operations, then 
compute (Aigj)j∈[r] in O(rd2) operations, then perform Gram–Schmidt in O(dr2) opera
tions.) Every trace that we need to compute can be expressed as the trace of a product of 
Ai’s. We will apply the cyclic property of the trace and compute matrix–vector products 
whenever possible. For example, the trace of A1A2 is given by

tr(A1A2) = tr(T1T
∗
1 T2T

∗
2 ) = tr(T ∗

1 T2T
∗
2 T1) =

∑︂
j∈[r]

e∗jT
∗
1 T2T

∗
2 T1ej ,

where (ej)j∈[r] denotes the identity basis in Fr. We compute the right-hand side by first 
computing T1ej in O(rd) operations, then T ∗

2 (T1ej) in O(rd) operations, etc. In our case, 
each word has length at most m, and so each term of the above sum can be computed 
in O(rdm) operations.

Overall, we compute the words in O(m2nd4) operations (by Lemma 12), then we 
compute (Ti)i∈[n] in O(nrd2) operations, and then each of the m3 traces in (iii) and 
each of the mn traces in (iv) costs O(r2dm) operations. In total, this invariant costs 
O(m2nd4 + nrd2 + m4r2d + m2nr2d) operations. Since m ≤ d2, this operation count is 
O(nd8 + r2d9). □

While this invariant can be computed in polynomial time, the runtime is sensitive to 
the ambient dimension d.

3.3.2. Quivers and cross Gramian algebras
Consider any sequence (Ai)i∈[n], where each Ai is an isometric embedding of some 

r-dimensional vector space Vi over F into Fd. That is, Ai : Vi ↪→ Fd and (imAi)i∈[n] ∈
(Gr(r,Fd))n. For every (i, j) ∈ [n]2, we then have a mapping A∗

iAj : Vj → Vi. Together, 
((Vi)i∈[n], (A∗

iAj)i,j∈[n]) forms a representation of a so-called quiver Q = (Q0, Q1, s, t)
defined by Q0 = [n], Q1 = [n]2, s : (i, j) ↦→ j, and t : (i, j) ↦→ i. The corresponding quiver 
algebra FQ enjoys a representation over V :=

⨁︁
i∈[n] Vi with maps

fij : V πj −−−−−−−−→
 
Vj

A∗
i Aj −−−−−−−−→

 
Vi

π∗
i

↪−−−−−−−→
 

V,

where πi denotes the coordinate projection from V to Vi. As we will see, these endomor
phisms over V generate an H∗-algebra that provides more efficient invariants.
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Theorem 14. There exists a complete invariant for (Gr(r,Fd))n modulo U(d,F, σ) that, 
given a Gramian of orthobases of subspaces, can be computed in O(r8n5 + r9n3) opera
tions.

Proof. Denote the subspaces by (imAi)i∈[n], where each Ai ∈ Fd×r has orthonormal 
columns, and put A = [A1 · · ·An]. By assumption, we are given the Gramian A∗A. 
Letting Πi denote the rn × rn orthogonal projection matrix onto the ith block of r
coordinates in Frn, then the matrix representation of fij is Aij := ΠiA

∗AΠj .
Given (Aij)i,j∈[n] and (Bij)i,j∈[n] of this form, suppose there exists U ∈ U(rn,F, σ)

such that UAijU
∗ = Bij for every i, j ∈ [n]. Then since Aii = Bii = Πi, it holds that U

is necessarily block diagonal. Furthermore,

UA∗AU∗ = U
(︂∑︂

ij 
ΠiA

∗AΠj

)︂
U∗ =

∑︂
ij 

UAijU
∗ =

∑︂
ij 

Bij = B∗B.

As such, unitary equivalence between (Aij)i,j∈[n] and (Bij)i,j∈[n] implies block unitary 
equivalence between the orthobasis Gramians A∗A and B∗B. The implication also goes in 
the other direction: Given a block diagonal U ∈ U(rn,F, σ) such that UA∗AU∗ = B∗B, 
then

UAijU
∗ = UΠiA

∗AΠjU
∗ = ΠiUA∗AU∗Πj = ΠiB

∗BΠj = Bij .

It remains to test whether there exists U ∈ U(rn,F, σ) such that UAijU
∗ = Bij for 

every i, j ∈ [n], which leads us to consider Lemma 11.
Note that A∗

ij = Aji and similarly for B, and so (Aij)i,j∈[n] and (Bij)i,j∈[n] satisfy the 
hypothesis of Lemma 11 with π(i, j) = (j, i). Since 

∑︁
i Aii = I, we may run a version of 

Algorithm 2 that instead initializes with all words xij of length 1 whose evaluations Aij

are nonzero; these evaluations are linearly independent since they have disjoint support. 
Since all words of positive length evaluate as a matrix in Frn×rn that is supported on 
some r×r block, it follows that the resulting basis can be indexed as (Eijk)i,j∈[n],k∈[mij ], 
where Eijk is the kth basis element that is supported in the (i, j)th r × r block. For 
example, it holds that Eij1 = Aij whenever Aij ̸= 0.

To see how efficient this choice of invariants is, we first describe how to reduce the 
per-iteration cost of Algorithm 2 to O(r6n3). First, we take all products between Aij ’s 
and evaluations of existing words. For each word, there are at most n different Aij ’s 
that will produce a nonzero product, and so the total number of products is at most 
r2n3, each costing O(r3) operations. Next, the evaluations of existing words and the 
resulting products can be partitioned according to their support before testing linear 
independence. For each i, j ∈ [n], the total number of these matrices that are supported 
on the (i, j)th r×r block is at most r2 +nr2 (at most r2 from the existing words, and at 
most nr2 from the resulting products), and it costs O(r6n) operations to compute the 
corresponding row echelon form. We perform this for each of the n2 blocks to identify new 
words to add. All together, the per-iteration cost is O(r2n3 ·r3+n2 ·r6n) = O(r6n3). Our 
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bound on the total number of iterations is r2n2, meaning we obtain the desired words 
after O(r8n5) operations.

Next, we point out the complexity of computing the traces (ii)--(iv). First, since 
Eii1Eijk = Eijk, the traces in (ii) are examples of traces in (iii). Next, for every 
(i, j) ∈ [n], we either have Eij1 = Aij or xij is not one of the words in (wj)j∈[m]. 
As such, the traces in (iv) are captured by both the words and the traces in (iii). Of the 
traces in (iii), the only ones that are possibly nonzero take the form

tr(E∗
jiaEjkbEkic)

for some i, j, k ∈ [n], a ∈ [mji], b ∈ [mjk] and c ∈ [mki]. Since mij ≤ r2 for every 
i, j ∈ [n], we therefore have at total of at most n3r6 traces to compute, each costing 
O(r3) operations. These O(r9n3) operations contribute to the total of O(r8n5 + r9n3)
operations it takes to compute this invariant. □

Interestingly, the cross Gramian algebra introduced in the above proof can be used to 
obtain a new (short) proof of Proposition 4:

Proof of Proposition 4. Consider A = [a1 · · · an], where each ai is a unit vector spanning 
the corresponding line in L . Then the cross Gramian algebra is generated by Aij =
⟨ai, aj⟩eie∗j . Observe that every product of these matrices is either 0 or a multiple of eie∗j
for some (i, j) ∈ [n]2. Furthermore, eie∗j resides in the algebra precisely when i and j
belong to a common component of the frame graph G(L ).

Given a maximal spanning forest F of the frame graph G(L ), we select the following 
words in noncommuting variables (xij)i,j∈[n]: For each (i, j) ∈ [n]2 such that i and j
belong to a common component of G(L ), select the unique directed path in F from j
to i with vertices denoted by j = i0 → i1 → · · · → il = i, and then put

wij := xil,il−1xil−1,il−2 · · ·xi2,i1xi1,i0 .

In particular, wii = xii for every i ∈ [n]. Then the evaluation of wij is a nonzero multiple 
of eie∗j , and all of these evaluations together form a basis for the algebra.

Now consider the traces in Lemma 11(ii)--(iv). Every trace in (ii) and (iii) is either 
0 or some product of 2-products. Indeed, the trace is nonzero only if the corresponding 
directed paths form a closed walk along the edges of F , in which case each edge of F
is traversed as many times in one direction as it is in the other direction. Meanwhile, 
a trace in (iv) is nonzero only if the corresponding directed paths form a closed walk 
comprised of a directed path in F and a directed edge in G(L ). If the path has length 1, 
then the result is a 2-product, and otherwise the result is an m-product corresponding 
to a cycle in C(F ). □
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4. Discussion

This paper studied the problem of testing isomorphism between tuples of subspaces 
with respect to various notions of isomorphism. Several open problems remain:

• Is there a canonical choice of Gramian for equi-isoclinic subspaces of dimension r > 2? 
What about the complex case?

• How many (generalized) Bargmann invariants are required to solve isomorphism up 
to linear isometry?

• How should one compute the symmetry group of a given tuple of subspaces?

Some of the ideas in the paper may have interesting applications elsewhere. For example, 
there has been a lot of work to develop symmetric arrangements of points in the Grass
mannian [83,17,14,86,82,16,49--51,60,12,57,52,38,28]. What are the projection and cross 
Gramian algebras of these arrangements? It would also be interesting to see if some of 
the techniques presented in this paper could be used to treat other emerging problems 
involving invariants to group actions, e.g. [6,15].
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