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ABSTRACT

This paper shows what are called Welch bound equality (WBE) sequences by the
signal processing community are precisely the isometric/equal norm/normalized/uniform
tight frames which are currently being investigated for a number of applications, and in the
real case are the spherical 2–designs of combinatorics. Recent applications include wavelet
expansions, Grassmannian frames, frames robust to erasures, and quantum measurements.

This is done by giving an elementary proof of a generalisation of Welch’s inequality
to vectors which need not have equal energy, and then showing that equality occurs in this
exactly when the vectors form a tight frame.
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1. Introduction

Let φ1, . . . , φn be n ≥ d unit vectors in Cd (signals of unit energy). Then

F (φ1, . . . , φn) :=
n∑

i=1

n∑
j=1

|〈φi, φj〉|2 ≥ n2

d
, (1.1)

which is known as the Welch bound, after Welch [W74] who proved

max
i6=j

|〈φi, φj〉|2 ≥ n2/d− n

n2 − n
=

n− d

d(n− 1)
. (1.2)

Each of these give a lower bound on how small the cross correlation of a set of signals of
unit energy can be.

The vectors φ1, . . . , φn in IFd (IF = IR, C) form a tight frame for IFd (cf [D92]) if

‖f‖2 = C

n∑
i=1

|〈f, φi〉|2, ∀f ∈ IFd,

for some C > 0, and this is isometric/equal norm/normalized/uniform when all the
φi have the same norm. See [CK01] for a full discussion of the ‘notation battle’.

Unit vectors φ1, . . . , φn which give equality in (1.1) are called WBE sequences
(Welch bound equality sequences), see, e.g., [MM93] where they were used for CDMA
(code–division multiple–access) systems. In Benedetto and Fickus [BF0x] it is shown
that the functional F of (1.1) attains its minimum of n2/d precisely when φ1, . . . , φn is
a tight frame (of unit vectors), thereby proving the existence of what were there called
normalized tight frames, i.e., WBE sequences. The existence of isometric tight frames,
equivalently WBE sequences, for each n ≥ d has not been well known until recently, see,
e.g., the remarks in [BF0x] and [RW02]. Recent applications of such seqences include
wavelet expansions (cf [D92]), Grasmannian frames (cf [HS02]), frames robust to erasures
(cf [CK01]), and quantam measurements (cf [EF02]).

In the following section, we give an elementary proof of the following generalisation of
(1.1) to vectors which need not have unit norm. This result could be used to extend the
above applications to sequences of signals which need not have equal energy.

Theorem 1.3 (Generalised Welch inequality). Let φ1, . . . , φn be n ≥ d vectors in
IFd, which are not all zero, then∑n

i=1

∑n
j=1 |〈φi, φj〉|2

(
∑n

i=1〈φi, φi〉)2
≥ 1

d
. (1.4)

Clearly, (1.4) reduces to (1.1) when the vectors have unit length, but it cannot be
obtained from (1.1) by making the substitution φi/‖φi‖ in the case φi is not a unit vector,
and so is a new result.
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In the final section, we show the condition for equality in (1.4) is that φ1, . . . , φn be a
tight frame, thereby extending the result of [BF0x], and discuss some consequences.

2. Proof of the generalised Welch inequality

Proof of Theorem 1.3: Let Φ = [φ1, . . . , φn] be the d × n matrix with the
vectors φi as columns. Choose a singular value decomposition

Φ = USV ∗, S :=


√

λ1

. . . √
λm

 , S ∈ IRd×n

where λ1, . . . , λm, m ≤ d are the nonzero eigenvalues of the Gramian Φ∗Φ, and so satisfy

λ1 + · · ·+ λm = trace(Φ∗Φ) =
n∑

i=1

〈φi, φi〉 =: K =⇒ min
i

λi ≥ K

m
.

Since the Frobenius norm ‖A‖F := (
∑

i,j |aij |2)1/2 is unitarily invariant, we have

n∑
i=1

n∑
j=1

|〈φi, φj〉|2 = ‖Φ∗Φ‖2
F = ‖S∗S‖2

F = λ2
1 + · · ·+ λ2

m ≥ m

(
K

m

)2

=
K2

m
≥ K2

d
,

which is (1.4), with equality if and only if m = d and λ1 = · · · = λd = K/d.

For this inequality, the analogue of (1.2) is

max
i6=j

|〈φi, φj〉|2 ≥ (
∑

i ‖φi‖)2/d−∑
i ‖φi‖4

n2 − n
> 0. (2.1)

3. Consequences

Equality in (1.4) can be expressed in the following equivalent ways.

Theorem 3.1 (Generalised Welch equality). Let φ1, . . . φn be n ≥ d vectors in IFd,
with K :=

∑n
i=1〈φi, φi〉 > 0. Then the following are equivalent

1. There is equality in (1.4), i.e.,∑n
i=1

∑n
j=1 |〈φi, φj〉|2

(
∑n

i=1〈φi, φi〉)2
=

1
d
.
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2. There is the representation

f =
d

K

n∑
i=1

〈f, φi〉φi, ∀f ∈ IFd.

3. The vectors φ1, . . . , φn form a tight frame, i.e., there exists C > 0, with

‖f‖2 = C

n∑
i=1

|〈f, φi〉|2, ∀f ∈ IFd.

4. The following sums hold

n∑
i=1

|〈φj , φi〉|2 =
K

d
‖φj‖2, ∀j.

Proof: (1 =⇒ 2). From the proof of Theorem 1.3 there is equality in (1.4) if and
only if m = d and λ1 = · · · = λd = K/d, in which case SS∗ = (K/d)Id, and we calculate

n∑
i=1

〈f, φi〉φi = ΦΦ∗f = USV ∗V S∗U∗f = U

(
K

d
Id

)
U∗ =

K

d
f, ∀f ∈ IFd.

(2 =⇒ 3 =⇒ 4 =⇒ 1). Take the inner product of the representation of 2 with f to
obtain 3 with C = d/K, then choose f = φj to obtain 4, and finally sum over j = 1, . . . , n
to get 1.

When all φi have unit norm, so K :=
∑n

i=1〈φi, φi〉 = n, this reduces to the known result:

Corollary 3.2 (Welch equality). Let Φ = (φ1, . . . , φn) be a sequence of n ≥ d unit
vectors in IFd. Then the following are equivalent

1. Φ is a WBE sequence, i.e.,

n∑
i=1

n∑
j=1

|〈φi, φj〉|2 =
n2

d
.

2. There is the representation

f =
d

n

n∑
i=1

〈f, φi〉φi, ∀f ∈ IFd.

3. Φ is an isometric tight frame, i.e.,

‖f‖2 =
d

n

n∑
i=1

|〈f, φi〉|2, ∀f ∈ IFd.
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4. The following sums hold
n∑

i=1

|〈φj , φi〉|2 =
n

d
, ∀j.

The Welch bound (1.1) is proved in [MM93] using the Cauchy–Schwarz inequality and
it is shown that equality holds if and only if the rows of Φ := [φ1, . . . , φn] are orthogonal
and of equal length, i.e., ΦΦ∗ = n/d (which gives 2). There the condition 4 is called the
‘uniformly–good property’.

In [BF0x] the functional F of (1.1) is called the frame potential (for the frame force).
It is shown that this continuous function on a compact set attains its minimum of n2/d
precisely when Φ is a (normalized) tight frame (its maximum is n2). We can express
Theorem 3.1 in terms of an appropriately defined potential function, thereby obtaining a
physical interpretation of tight frames, which can be used in computations (cf [CFKLT03]).

Theorem 3.3. For n ≥ d, the frame potential function

F : IFd × · · · × IFd \ {0} → IR+, F(φ1, . . . , φn) :=

∑n
i=1

∑n
j=1 |〈φi, φj〉|2

(
∑n

i=1〈φi, φi〉)2

attains its minimum 1/d when φ1, . . . , φn is a tight frame for IFd, and its maximum 1 when
span{φ1, . . . , φn} is one–dimensional.

Proof: We need only consider the maximum. By Cauchy–Schwarz

F(φ1, . . . , φn) :=

∑n
i=1

∑n
j=1 |〈φi, φj〉|2

(
∑n

i=1〈φi, φi〉)2
≤

∑n
i=1

∑n
j=1 ‖φi‖2‖φj‖2

(
∑n

i=1 ‖φi‖2)2
= 1,

with equality precisely when span{φ1, . . . , φn} is one–dimensional.

In addition, from the proof of Theorem 1.3, we can obtain the bound

F(φ1, . . . , φn) ≥ 1
m

, m := dim(span{φ1, . . . , φn}),

with equality when φ1 . . . , φn is a tight frame for its span.
Following Seidel [S01], we say a spherical t–design is a finite subset Φ of the unit

sphere S in IRd, for which the normalised surface integral satisfies∫
S

f dσ =
1
|Φ|

∑
φ∈Φ

f(φ),

for all homogeneous polynomials f of total degree t in d variables. For t even, a set
Φ := {φ1, . . . , φn} of unit vectors is a spherical t–design if and only if it satisfies the so
called Waring formula

〈x, x〉t/2 =
d(d + 2) · · · (d + t− 2)

1 · 3 · 5 · · · (t− 1)
1
n

n∑
i=1

〈x, φi〉t, ∀x ∈ IRd.
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For t = 2, this becomes

‖x‖2 =
d

n

n∑
i=1

|〈x, φi〉|2, ∀x ∈ IRd,

which is equivalence 3 of Corollary 3.2. Thus a 2–design is precisely a WBE sequence of
distinct vectors (equivalently an isometric tight frame) for IRd.

Venkov [V01:Th. 8.1] has proved that if Φ := {φ1, . . . , φn} is a symmetric set of unit
vectors in IRd, i.e., −Φ = Φ, and t is even, then Φ is an r–design, r ≤ t + 1 if and only if

n∑
i=1

n∑
j=1

〈φi, φj〉t = n2

t
2−1∏
j=0

2j + 1
d + 2j

.

For t = 2, this becomes
n∑

i=1

n∑
j=1

〈φi, φj〉2 =
n2

d
,

which is equivalence 1 of Corollary 3.2, i.e., Φ is a symmetric 2–design. We can summarise
these results as follows.

Corollary 3.4 (t–designs). A set Φ := {φ1, . . . φn} of unit vectors in IRd is a t–design
for t ≤ 2 if and only if

n∑
i=1

φi = 0,
n∑

i=1

n∑
j=1

〈φi, φj〉2 =
n2

d
.

Moreover, such a Φ is also a 3–design if it is symmetric.

Proof: Any Φ is a 0–design, and Φ is a 1–design if and only if

n∑
i=1

φi = 0,

which automatically holds if Φ is symmetric. By Corollary 3.2, Φ is a 2–design, and such
a 0, 1, 2–design is a 3–design if Φ is symmetric.

This result can be found in the literature (cf [DGS77] and [S01]).
In Eldar and Forney [EF02] the relationship between tight frames and rank–one quan-

tum measurements is investigated. It is shown that rank–one generalized quantum mea-
surements (or POVMs) correspond to tight frames.

It is hoped, that by drawing attention to the fact that WBE sequences, isometric
(normalized, uniform) tight frames and 2–designs are the same thing, that the respective
communities can benefit from each others endeavours. Clearly, such an object which has
appeared independently in different areas is of interest, and deserves to be understood in
this wider context.
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