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A CHARACTERIZATION OF PROJECTIVE UNITARY
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Abstract. Many applications of finite tight frames (e.g., the use of SICs and mutually unbiased
bases (MUBS) in quantum information theory and harmonic frames for the analysis of signals subject
to erasures) depend only on the vectors up to projective unitary equivalence. It is well known that
two finite sequences of vectors in inner product spaces are unitarily equivalent if and only if their
respective inner products (Gramian matrices) are equal. Here we present a corresponding result
for the projective unitary equivalence of two sequences of vectors (lines) in inner product spaces,
i.e., that a finite number of (Bargmann) projective (unitary) invariants are equal. This result is
equivalent to finding a rank-one matrix completion of a certain matrix. We give an algorithm to
recover the sequence of vectors (up to projective unitary equivalence) from a small subset of these
projective invariants and apply it to SICs, MUBs, and harmonic frames. We also extend our results
to the projective similarity of vectors.
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1. Introduction.

1.1. Motivation. Finite frames provide redundant and stable expansions, which
have numerous applications [1]. These include quantum measurements and codes
using SICs [2] [3], [4] and mutually unbiased bases (MUBs) [5], [6], [7], and signal
analysis using harmonic frames which are robust to erasures [8], [9], [10]. They are
also prominent in the theory of real and complex spherical t-designs [11], [12] and
spherical 2-distance sets [13]. Many applications of finite frames, such as those above,
depend only on the vectors up to projective unitary equivalence. This point of view
naturally leads to the notion of a fusion frame (where the vectors are replaced by
one-dimensional orthogonal projections and more generally d-dimensional orthogonal
projections). Such applications motivate our study of when sequences of vectors are
projectively unitarily equivalent. In addition, the study of lines in R? and C¢, in
particular, equiangular lines [14], is effectively the study of configurations of unit
vectors up to projective unitary equivalence.

1.2. Key definitions. Finite sequences of vectors & = (v;) and ¥ = (w;) in
(real or complex) inner product spaces H1 and Hs are unitarily equivalent if there is
a unitary map U : Hy — Hs such that

w; = Uvj Vj
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and projectively unitarily equivalent if there is a unitary map U and unit scalars c;,
such that
’LU]' = Cj UUj V],

or equivalently
wiw; = U(vv;)U* Yy

A finite spanning sequence of vectors for an inner product space is also called a finite
frame.

Orthogonal bases can be generalized as follows (cf. [1], [15]). We say a sequence
of n vectors (v;) is a tight frame for a d-dimensional inner product space # if for some
A>0

1
1717 =5 S udl Ve
J
By the polarization identity this is equivalent to the expansion

f= igj:(fa vj)v;  VfEH,

Examples of tight frames of more than d vectors include SICs, MUBs, and harmonic
frames.
The Gramian (matriz) of ® = (v;)}_; is

Gram(®) = [(vk, v;)]] k=1-

We take our inner products to be linear in the first variable. It is well known (cf. [16])
that
e O and VU are unitarily equivalent if and only if

(1.1) Gram(®) = Gram(¥),
e O and VU are projectively unitarily equivalent if and only if
(1.2) Gram(¥) = C* Gram(®)C,

where C' is the diagonal matrix with diagonal entries c;.

Clearly, (1.1) can be used to verify unitary equivalence, as can (1.2) be used to
verify projective unitary equivalence for real inner product spaces (where ¢; € {—1, 1};
cf. Example 2.3). For complex inner product spaces, we have no knowledge of ¢;, other
than |¢;| = 1, and so (1.2), i.e.,

(1.3) (W, wj) = cG; (vk, v;5) vy, k,

does not provide a practical method for verifying projective unitary equivalence in
general (see section 8). To our knowledge, projective unitary equivalence has been
calculated in only a few cases, which have a very specific structure. These are H = R¢
by considering all possible ¢; = £1 in (1.2) or by using two-graphs in the case of
equiangular lines [17] for a specific construction of MUBs via symplectic spreads and
Hadamard matrices [18], [19], [20], for SICs [21], and for the equal-norm tight frames
of n vectors in C? robust to n — 2 erasures [10]. Here we present a general method
for determining whether any two finite sequence of vectors are projectively unitarily
equivalent.
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The question of determining projective unitary equivalence between frames via
(1.2) has a structural form similar to that of the question of when a frame & = (v;)
is scalable, i.e., there are scalars ¢; for which ¥ = (¢;v,) is a tight frame [22], [23].
Since a frame is tight if and only if its Gramian is a scalar multiple of an orthogonal
projection matrix and Gram(¥) = C* Gram(®)C, it follows that if ® is not tight,
then such a scaling is possible if and only if the scalars c¢; don’t all have the same
modulus.

Following [24], we define the m-vertex Bargmann invariants or m-products of a
sequence of n vectors ® = (v;) to be

(1'4> A('Ujuvjzw"avjm) = (Uj1vvj2><vjzvvj3>"'<vjmavj1>v 1<ji,.. s jm <n.
In particular (cf. [21]), we define the triple products to be
(1.5) Tike := A(vj, vg, ve) = (v5, vk) (Vk, ve) (g, V).

We observe that the m-products are projective unitary invariants, e.g., for m = 3

A(e;Uvj, eUvg, cUve) = (c;Uvj, ek Uvg) (e Uvi, ceUvg)(ciUvp, c;Uvj)
= ¢ (Uvj, Uvg)erer(Uvg, Uve)ee; (Uvg, Uvy)
= (vj, v) {vk, ve)(ve, vj)

(1.6) = A(vj, vk, ve).

We define the frame graph (cf. [25]; also known as the correlation network [26])
of a sequence of vectors (v;) to be the graph with vertices {v;} (or the indices j
themselves) and

an edge between v; and vy, j £k <= (vj,v,) #0.

Clearly, projectively unitarily equivalent frames have the same frame graph.

1.3. Outline. We will show (Theorem 3.1) that a sequence of vectors (v;) is
determined up to projective unitary equivalence by all its m-products. Our proof
relies on the fact that certain small subsets of the m-products are sufficient. These
depend on which of the m-products are nonzero, which is conveniently encapsulated
by the frame graph.

In section 2, generalizing the results of [21] for SICs, we show that if the common
frame graph of ® = (v;) and ¥ = (w,) is complete, then they are projectively unitarily
equivalent if and only if their 3-products (triple products) are equal (Theorem 2.2).
Later we will show this condition extends (Corollary 5.1), e.g., to the case when
the frame graph is chordal. We apply this result to sequences of equiangular lines
(including SICs), then give an example to show that the 3-products do not determine
projective unitary equivalence in general (Example 2.5).

In sections 3, 4, and 5, we show that projective unitary equivalence is charac-
terized by the m—products (Theorem 3.1). This leads to methods for calculating the
projective symmetry group (see [27] for details). We show that it is sufficient to
consider only a small subset of these projective invariants, which can be determined
from the frame graph (Corollary 3.2). We give an algorithm for constructing all se-
quences with given m-products (Theorem 4.1) and consider the classification of MUBs
(Corollary 5.4).

In sections 6 and 7, we apply our results to the classification of sequences of
vectors up to (projective) similarity (Theorem 6.2) and the classification of harmonic
frames up to projective unitary equivalence (Theorem 7.2).
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In section 8, we explore a fascinating connection between our results and the
rank-one completions of partial matrices, which was pointed out by one of the referees.
Namely, determining projective unitary equivalence is equivalent to finding a rank-one
matrix completion (which is already understood). Low-rank matrix completions play
an important role in the fields of compressed sensing and phase retrieval, where they
have been extensively studied. Since we know in advance exactly where the nonzero
entries are and exactly what the rank is, sampling results such as those in [28] are not
applicable.

2. Complete frame graphs. A sequence of n > d unit vectors (v;) in C? is
equiangular if for some C' > 0

[(vj,ve)] =C,  j#k.

For C > 0, such a sequence has a complete frame graph (no zero inner products), as
does a generic sequence of vectors. In [21], it was shown that d* equiangular vectors
in C% are characterized up to projective unitary equivalence by their triple products
(3-products). Here we modify the argument to when the frame graph is complete.
We then show, by an example, that this result does not extend to a general sequence
of vectors.

The angles of a sequence of vectors ® = (v;) are the 6, € T := R/(27Z) de-
fined by

(vj,00) = |(vj, i) €%, (vj,08) # 0.
Since (v;,vx) = (vg,v;), these satisfy
Ok = —0Ok;.
A sequence of vectors may have few angles, e.g., an orthogonal basis has no angles.

LEMMA 2.1. Let ® = (vj) and U = (w;) be finite sequences of vectors in Hilbert
spaces, with angles ;5 and 93‘19- Then ® and ¥ are projectively unitarily equivalent if
and only if

1. their Gramians have entries with equal moduli, i.e.,

[(wj, wi)| = [{v,ve)| Vi, ks
2. their angles are “gauge equivalent,” i.e., there exist ¢; € T with
Q;k = ij + ¢j — ¢k Vj, k.

Proof. First suppose that ® and ¥ are projectively unitarily equivalent, i.e., w; =
c;Uv;, where U is unitary and c¢; = e'?i. Then

ek | (wy wi)| = (wy,wi) = (U, e Uvy) = e5e Uy, Uvg) = €@ (v, 0p)
— (D5 —0k) gib; (v, k)]

By equating the moduli and then the arguments we obtain 1 and 2.
Conversely, suppose that 1 and 2 hold. Let v; := e'%i v;. Then

(B, 1) = (%70, €% vy} = "I98 (y; ) = €017 ein | (p; vy)|
= e"ir[(wj, wi)| = (w;, wy).

Thus (w;) is unitarily equivalent to (9;), which is projectively unitarily equivalent to
(v;), and so ¥ and ® are projectively unitarily equivalent. d
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We observe that |(v;, vg)| can be calculated from the triple products of (1.5), since

(2.1) Tyji = (v5,05)* = lo; | Tign = (v, 05) vy, v)|* = T3 1(vy, vg) 2.

THEOREM 2.2 (characterization). Let ® = (v;)jes and ¥ = (w;) ecs be finite
sequences of vectors in Hilbert spaces. Then
1. ® and V are unitarily equivalent if and only if their Gramians are equal, i.e.,

(vj, V) = (wj, wg) Vi, ks

2. if the frame graphs of ® and U are complete, then they are projectively uni-
tarily equivalent if and only if their triple products are equal, i.e.,

(v, V) (Ui, Vo) (Ve, V) = (Wj, wi) (W, we) (W, w;) Vi, k, L.

Proof. The condition for unitary equivalence is well known. It is included in the
theorem only for the purpose of comparison. We now prove 2.

First suppose that ® and ¥ are projectively unitarily equivalent, i.e., w; = c;Uv;.
Then by (1.6) their triple products are equal.

Conversely, suppose that ® and ¥ have the same triple products, and their com-
mon frame graph is complete, i.e., all the triple products are nonzero.

It follows from (2.1) that their Gramians have entries with equal moduli, i.e.,

(v, o) | = [{wj, we)| - Vi, k.

Let 0, and 9;% be the angles of ® and W. Since the triple products have the polar
form

i(ejk+9ki+92j)|<

Tike = (vj, Vi) (Vk, ve) (ve,v5) =€ vj, Vk) (Ui, Vo) Ve, v5) ],

we obtain
Ojk + Ore + 05 = 05y + O + 0y

Fix ¢, and rearrange this, using 6x; = —8y, and 65, = —6},, to get
O = O + (005 — 00;) + (One — ) = 01 + (05 — 045) — (Oer — 0p) = Oji + 5 — bx,

where ¢; 1= 04 — 92]" i.e., the angles of ® and ¥ are gauge equivalent. Since the

conditions of Lemma 2.1 hold, it follows that & and ¥ are projectively unitarily
equivalent. O

The real case is closely connected with the theory of two-graphs (cf. [17]) as
follows.

Ezample 2.3 (equiangular lines in R%). Suppose that ® = (v;) is a sequence of
n > d equiangular unit vectors (lines) in RY, i.e., there is an a > 0 with

<Ujvvk> = :l:aa J 7& k.
Then the Gramian matrix has the form
Gg = Gram(®) = I + aSq,

where S = Sg¢ is a Seidel matriz, i.e., S is symmetric, with zero diagonal, and off
diagonal entries £1. Moreover, each Seidel matrix is associated with a sequence of
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equiangular lines. Each Seidel matrix S is in turn associated with the graph gr(.S)
which has an edge between j # k if and only if Sj; = —1. Let C be the set of all
diagonal matrices with diagonal entries +1. Then the projective unitary equivalence
class of @ is uniquely determined by all the possible Gramian matrices of its members,
ie.,

G:={CGsC™ : C € C},
and hence all the possible Seidel matrices,
S :={CGsC": C € C},

and in turn the corresponding graphs gr(S). The set of graphs gr(S) is called the
switching class of gr(Sg), or a two-graph. Since the frame graph of ® is complete,
Theorem 2.2 gives that projective unitary equivalence class of ® (equivalently G, S, or
gr(S)) is in 1-1 correspondence with the triple products of ®. It suffices to consider
only those triple products with distinct indices, since if an index is repeated twice or
thrice, then by (2.1) the triple products depend only on «. In this way, the two-graph
is in 1-1 correspondence with the triple products

{Tjre = +a® : j, k, 0 are distinct}.

Since these triple products take only two values, which are independent of the ordering
of the indices, they can be described by giving the collection of the subsets {j, k, ¢}
where they take one of these values. This association leads to the equivalent definition
of a two-graph as a set of (unordered) triples chosen from a finite vertex set X such
that every unordered quadruple from X contains an even number of triples of the
two-graph.

Ezample 2.4 (equiangular lines in C%). If @ is a sequence of n equiangular unit
vectors (lines) in C?, with C' > 0, then up to projective unitary equivalence ® is
determined by its triple products. This result was given in [21] for the special case
n = d2. Such a configuration has C = ﬁ and is known as a SIC or a SIC-POVM
(symmetric informationally complete positive operator valued measure).

We now give an example to show that projective unitary equivalence is not always
characterized by the triple products if the frame graph is not complete. We observe
that the m-products are closed under complex conjugation, i.e.,

(22) A(Ujlanga N ,”Ujm) = A(”Ujm, . angavj1)~

Ezample 2.5 (n-cycle). Let (e;) be the standard basis vectors in C". Fix |z| = 1,
and let
{ej+ej+17 1§j<n,
v = .
en +2zey, J=n.

Then the frame graph of (v;) is the n-cycle (v1,...,v,), and so the only nonzero
m~products for distinct vectors are

(2.3) A(vj) = lvl* =2,  1<j<n,

(2.4) Afvg,v541) = [ 04)? =1, 1<) <n,

(25) A(’Ula/UQa"'alUn) =%,

and their complex conjugates. Therefore different choices of z give projectively in-
equivalent frames. Thus, for n > 3, the vectors (v;) are not defined up to projective
unitary equivalence by their triple products.
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3. Characterization of projective unitary equivalence. We now show that
a sequence of n vectors is determined up to projective unitary equivalence by its m-
products for 1 < m < n. This is done by showing that if ® and ¥ have the same
m-products, then we can find unit modulus scalars ¢; satisfying (1.3).

The diagonal entries of the Gramian of ® are given by the 1-products and the
moduli of its off diagonal entries by the 2-products with distinct arguments, i.e.,

(3.1) A(vj) =llvgll*, Alwy,on) = [(vj 00?5 # k.

We recall the following facts:
e Every finite graph I' has a spanning tree (forest) 7.
e For each edge e € T'\ T, there is a unique cycle in eUT called the fundamental
cycle (corresponding to e).

THEOREM 3.1 (characterization). Two sequences (v;) and (w;) of n vectors are
projectively unitarily equivalent if and only if their m-products are equal, i.e.,

AVj,, Vjys o, 05,) = Alwjy, Wiy, -, w5, 1<j1,....im<n, 1<m<n.

Proof. We have already observed that projectively unitarily equivalent sequences
have the same m-products. We therefore suppose that & and ¥ have the same m-
products and will show that we can choose ¢1,...,c, so that (1.3) holds. By (3.1),
the Gramians of ® and ¥ are block diagonal (with entries having the same moduli),
with blocks given by the vertices of the connected components of the common frame
graph. We therefore assume without loss of generality that there is a single block,
i.e., the frame graph I' is connected.

Spanning tree argument. Find a spanning tree 7 of I with root vertex r. By
working outward from the root r, we can multiply the vertices v € T'\ {r} by unit
scalars ¢, so that for an edge {v;,vx} € T, (1.3) holds, i.e.,

(Wi, wj) = cCj(Vk, V).

In this way, we can choose c1, ..., ¢, so that (1.3) holds for all edges {v;, v} € T.

Completing cycles. Tt remains only to show that (1.3) also holds for all edges
e ={vj,ve} € T\ T. Let (vj, vk, v, ..., ve,) be the fundamental cycle given by the
edge e = {vj,v;}. Since the m-products are equal, and the other edges in this cycle
belong to T, we obtain

A(wj, wg, Wy, , - .., We,) = (wj,wk><wk, we, ) (Wey , Wey ) -+ - (We,., w;)
Wj, W) CkCe, (Vk, Vey )C, Cey (Ve , Vs )+ €2,C5 (Ve Vj)
(Ckcg (W, wi)) (U, ve, ) (Vey s vey) - -+ (v, ;)
k) (Ui, Ve ) (Vey s vey ) -+ (v, v5)

= (v;
A(Uj,’l]k,’l}gl, e ,’UgT),

and cancellation gives (1.3) for the edge {vj,vp} € T\ T. 0

Above we associated the (directed) m-cycle (vj,,...,v;,,) in the frame graph with
the nonzero m-product A(vj,,...,v;,, ). For m > 3, all m-products can be calculated
from those corresponding to simple cycles, since if a cycle crosses at a, we have

(3.2) A(v1, ..y Vs, QW1 . W, a) = Avr, ..., v, a) AWy, ..., we, a).
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We call a subset of the m-products (or the corresponding indices) a determining set
for the m-products if all m-products can be determined from them.

The cycle space of a finite graph I' is the set of its Fulerian subgraphs (those
with vertices of even degree). This can be viewed as a Zs-vector space, where the
addition is the symmetric difference of sets. From this, it follows that the cycle space
is spanned by the simple cycles (and its elements are disjoint unions of cycles). If the
sum of two simple cycles is a simple cycle (in the frame graph), then the corresponding
m-product can be determined from those of the summands

Avy, .. v, €1, e0)A(wy, .. W, €py .. €7)

= A(€1,€2) e A(erfheT‘)A(vla ceey Usy €1, W1, .. awt7er)'

Combining these observations, we have that a determining set for the m-products
of @ is given by the 2-products and the m-products corresponding to a basis for the
cycle space of the frame graph. The fundamental cycles corresponding to a spanning
tree (forest) of a finite graph form a basis for the cycle space, called a fundamental
cycle basis. We therefore have the following strengthening of Theorem 3.1.

COROLLARY 3.2. A finite frame ®, with frame graph T, is determined up to pro-
jective unitary equivalence by a determining set for the m-products, e.g.,
1. the 2-products,
2. the m-products, 3 < m < n, corresponding to a fundamental cycle basis (for
the cycle space of T') formed from a spanning tree (forest) T for T.
In particular, if M is the number of edges of T'\ T, then it is sufficient to know all of
the 2-products and M of the m-products, 3 < m < n.

Proof. Tt suffices to verify the condition of Theorem 3.1 for a determining set. O

We now illustrate Theorem 3.1 by constructing all the possible Gramian matrices
for a sequence of vectors ¥ = (w;) which is projectively unitarily equivalent to a given
sequence ® = (v;) by using only the m-products of .

Ezample 3.3. Let ® = (e;) be an orthonormal basis for C3, which has a Gramian
matrix

100

Gram(®)=(0 1 0

0 01

Here the frame graph is totally disconnected (see Figure 1), and so each projectively
unitarily equivalent frame (w;) is determined by the 1-products and 2-products using
(3.1), i.e.,

(wj, wi) = (vj,v5) =1, [wp,w;)]> = [(op,v)|> =0, j#k = (wp w;) =&

Thus (w;) and ® have the same Gramian and hence are unitarily equivalent. Alter-
natively, by (1.2), one has that the Gramians of all projectively unitarily equivalant
frames are given by C* Gram(®)C = Gram(®).

Now we give an example where the spanning tree and cycle completing arguments
are not trivial.

Example 3.4. Let ® = (v;) be three equally spaced unit vectors in R2, viewed as
vectors in C2. These have Gramian matrix

Gram(®) = | —
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and the frame graph is complete (see Figure 1). We now construct the Gramian
matrices of every ¥ = (w,) which is projectively unitarily equivalent to ®. A spanning
tree with root vy is given by the path v1,vs,vs, and so the spanning tree argument
gives

_ 1 _ _ 1 _
(wl,w2> = 0162<U17112> = —56102, <U/2,w3> = 0263@27?}3) = —502637

where ¢; is fixed (any choice will do) and ¢g, c3 are free unit modulus complex numbers.
We only require the possible values of (wy,ws). These are determined by complete-
ing the cycle (v1,vq,v3) by adding the corresponding egde {v1,v3}, which gives the
condition

A(wl, wa, ’LUg) = A(’Ul, Va2, ’Ug),

ie.,

() (gos) e = ()] = ) = ors
20102 20203 w3, w1) = 9 w1, Ws3) = 20103-

Thus all possible Gramians for ¥ (projectively unitarily equivalent to ®) are given by

1 —3a —iab
Gram(V) = —%bf 1 —3b |, la] = 1b] = 1.
—tab —ib 1

Here we write a = ¢1¢3, b = co¢3 the emphasize the fact there are two free parameters.

O

AN

FIG. 1. The frame graph of an orthonormal basis for C3 (Example 3.3), and the frame graph
for three equiangular vectors in C? (Example 3.4).

4. Reconstruction from the m-products. We now state the characterization
in a way which summarizes how all projectively unitary frames can be constructed
from a small determining set of m-products.

THEOREM 4.1 (reconstruction). Suppose ® = (v;) is a frame of n vectors. Let
T be the frame graph of ®, T be a spanning tree (forest) for T', and

N = the number of edges in T,
M = the number of edges in T'\ T.

Then the collection of all Gramians G = [(wg,w;)] of frames ¥ = (w;) which are
unitarily projectively equivalent to ® can be parameterized by N free variables. More
precisely, for each of the N edges {v;,vr} € T (choose an order) we have a free
variable

(wj, wi) = [(vj, ve)lagr), lagel =1,

and for the remaining M edges e = {vj,vp} € T\ T, (wj, ws) is uniquely determined
by equality of the m-products of ® and ¥ for the fundamental cycle given by e.
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Ezample 4.2. Let ® = (v;) be the two MUBs (see section 5) for C? given by

1 1

1 1 (1) ? ? 7§1

D <<(]j> ) <(1)) ) <\{§> ) < \/% >> 5 Graﬂl(I) 1 1 \{E 6/5
w w01

The frame graph I' of ® is the 4-cycle (v, vs,vs,v4). A spanning tree T is given
by the path vy, vs,ve,v4. Corresponding to the three edges of T, we have three free
variables

a b ¢
<w1,w3> = $7 (wg,w2> = ﬁ, <’U)2,’LU4> = E
The remaining inner product (wy,wy) = %E is determined by the fundamental cycle
given by {v1,v4}, i.e., by completing the 4-cycle
(w1, w3) (w3, w2) (wa, wa) (wa, w1) = (v1,v3)(v3, v2) (v, va)(va, V1),
which gives B
abcz = —1.

Thus all the Gramians of ¥ which are projectively unitarily equivalent to ® are
given by

a abc
1 0 e —ﬁ
0 1 b <
G=| w o P P | lad=pl=ld=1
V2 V2
abc c
~viovz 01

This particular ® is in fact determined up to projective unitary equivalence by
just its 2-products. This is because Sylvester’s criterion for G (as function of a, b, ¢, 2)
to be positive semidefinite gives

C1(bz+ ac)? 1

det = —_— =
et(G) 4  abcz 4 |ac

In contrast, the (v;) of Example 2.5 for n = 4 also has frame graph a 4-cycle, but it
is not determined up to projective unitary equivalence by its 2-products (and triple
products).

Ezample 4.3. Let ® = (v;) be four equiangular vectors with C' > 0. These exist
in C? (a SIC) and in R? (the vertices of the tetrahedron). The frame graph of ® is
complete, and M = 6 — 3 = 3. Spanning trees (see Figure 2) include

Tp := the path vy, va, v3, vy,

Ts := the star graph with internal vertex v, and leaves vs, v3, v4.
For 7, the fundamental cycles given by the edges {v1,va}, {v1,v3}, {va,v4} are
(v1,v2,v3,v4), (v1,v2,v3), (v2,v3,04).
For Tg, the fundamental cycles given by the edges {va, vs}, {va,va}, {v3,v4} are

(’01,1}2,’[)3)7 (111,’02,1}4), (Ul,'Ug,’U4).
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Thus @ is determined up to projective unitary equivalence by its 2-products and either
of the following sets of m-products:

A(’l}l,vg,vg,’l)4), A('Ul,'l}z,’l)g), A('[}Q,Ug,’l]4),

A(vi,v2,v3), A(vi,v,v4), A(v1,vs,04).

F1G. 2. The spanning trees T, and T (and cycle completions) of Example 4.3.

5. Triple products, equiangular lines, and MUBs. The following special
case of Corollary 3.2 is often useful.

COROLLARY 5.1 (triple products). A finite frame ® is determined up to pro-
jective unitary equivalence by its triple products (3-products) if the cycle space of its
frame graph is spanned by 3-cycles (and so the cycle space has a basis of 3-cycles).

Proof. The 2-products can be deduced from the triple products by using
Alvj,v5,05) = (vj,05)% Al v5,00) = (vg,0) (v, o) % 0

This generalizes Theorem 2.2.

Ezample 5.2 (chordal graphs). A graph is said to be chordal (or triangulated)
if each of its cycles of four or more vertices has a chord, and so the cycle space is
spanned by the 3-cycles. Hence a frame is determined by its triple products if its
frame graph is chordal. The extreme cases are the empty graph (orthogonal bases)
where there are no cycles and the complete graph where all subsets of three vectors
lie on a 3-cycle (equiangular lines).

We now give an example (Corollary 5.4) where the cycle space of the frame graph
has a basis of 3-cycles, but the frame graph is not chordal.

DEFINITION 5.3. A family of orthonormal bases Bi,Ba, ..., By for C is said to
be mutually unbiased if for r # j

1
d’
We call By, ...,Bx a sequence of k MUBs.

We now show that for three or more MUBs the cycle space of the frame graph is
spanned by the 3-cycles. This is not case for two MUBs (see Example 4.2).

(v, w)[* =
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COROLLARY 5.4 (MUBs). A frame ® consisting of three or more MUBs in C¢,
d > 2, is determined up to projective unitary equivalence by its triple products.

Proof. Tt suffices to show that the cycle space of the frame graph I of ® has a
basis of 3-cycles. To this end, let B;, j = 1,...,k, be the MUBs for C?, so that I' is a
complete k-partite graph (with partite sets B;). Fix v, € By and va € B. A spanning
tree T for I' is given by taking an edge from v; to each vertex of B;, j # 1, and an
edge from vs to each vertex of By \ v;. Each of the remaining edges of T'\ 7 gives a
fundamental cycle. These have two types (see Figure 3):

1. 2d?(k — 1)(k — 2) edges between vertices in B, and By, r,s # 1, which give
fundamental 3-cycles (involving vy),

2. (d—1)((k—1)d —1) edges between vertices u € B1 \ v1 and w € U;»18; \ va,
which give fundamental 4-cycles (u,w, vy, v3). These can be written as a sum
(symmetric difference) of the 3-cycles (u,w, v2) and (vy,ve, w).

Thus the cycle space is spanned by 3-cycles. ]

© O

FIG. 3. The proof of Corollary 5.4 for MUBs B1, B2, B3 in C3. The frame graph T', the spanning
tree T, and fundamental cycles of type 1 and 2.

The maximal number of MUBs is of interest in quantum information theory. For
d a prime, or a power of a prime, the maximal number of MUBs in C¢ is d + 1; see
[20], [5], [6] for constructions. These have a special (Heisenberg) structure, which has
been used to classify them up to projective unitary equivalence; see [7], [19], [20]. Our
classification using 3-products does not presuppose any structure on the MUBs.

There exist graphs which are not chordal, with every edge on a 3-cycle (as is the
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case for the frame graph of three or more MUBs), but for which the cycle space is not
spanned by 3-cycles (see Figure 4).

P

O

Fic. 4. A nonchordal graph for which each edge is on a 3-cycle.

6. Similarity and m-products for vector spaces. Using the theory of frames
for vector spaces [29], one can give analogous results for vector spaces, where the role of
unitary equivalence is played by “similarity” and the role of m-products by “canonical
m-products.” This allows the “projective symmetry group” to be defined in a very
general setting (see [27]).

Let ® = (v;) and ¥ = (w;) be finite sequences of vectors which span vector
spaces X and Y over a subfield F of C. We say that ® and ¥ are similar if there is
an invertible linear map @ : X — Y with

’U}j = Q’Uj V]
and projectively similar if there is an invertible linear map @) : X — Y and unit scalars
Cj with
wj; = ¢4 Q’Uj Vj

For a finite sequence ® = (v;),cs in X the synthesis map is

V= [Uj]jGJ : FJ —-X:a— Zajvj.
J

The subspace of all linear dependencies between the vectors of ® is
dep(®) := ker(V) = {a € F/ : 3 ajv; = 0},

and we denote the orthogonal projection onto dep(®)* (orthogonal complement)
by P@.
We have following characterization of similarity in terms of linear dependencies.

LEMMA 6.1 (see[29]). Let ® = (v;)jes and ¥ = (w;),jes be spanning sequences
for the F-vector spaces X and Y. Then the following are equivalent:

(a) ® and ¥ are similar, i.e., there is an invertible linear map @ : v; — w;.

(b) dep(®) = dep(V) (the dependencies are equal).

(¢) Py = Py (the associated projections are equal).



PROJECTIVE UNITARY EQUIVALENCE 989

The proof of Lemma 6.1 shows that ® = (v;) is similar to columns of P =
Pg. These columns (Pe;) span a subspace of F”, which inherits the Euclidean inner
product. Indeed

<P€j7P€k> = ij,
i.e., the Gramian of (Pe;) is P = Py. We will call the m-products of (Pe;) the
canonical m-products of (v;) and denote them

(6.1) Ac(vjy,---505,) = A(Pejy, ..., Pej,) = Py j, Pjjy -+ Pjjy -

In this way, we may apply Theorem 2.2.

THEOREM 6.2 (characterization). Let ® = (v;) and ¥ = (w;) be finite sequences
of vectors in vector spaces over a subfield F of C which is closed under complex con-
jugation. Then

1. ® and ¥ are similar if and only if Po = Py,
2. ® and U are projectively similar if and only if their canonical m-products (for
a determining set) are equal.

Proof. The first follows from Lemma 6.1 and implies that ® and ¥ are projectively

similar, i.e.,
wj =¢;Qu; = Q(cjv;)  Vj

if and only if ¥ = (w;) and ®’ = (¢jv;) are similar, for some choice of unit scalars
(Cj), i.e.,
(6.2) Py = P(c,0;) = C*PsC.
Here the last equality follows by a simple calculation. Since ® and ¥ are similar to
(Pgpe;) and (Pye;), which have Gramian matrices Py and Py, it follows from (1.2)
that (6.2) is equivalent to (Ppe;) and (Pye;) being projectively unitarily equivalent,
and by Theorem 2.2, this is equivalent to their m-products, i.e., the canonical m-
products of (v;) and (w,) being equal. 0

For the case of projective similarity, one can calculate the ¢; and @ in w; = ¢;Quy
explicitly, as we now illustrate.

Ezample 6.3. Suppose that ® = (v;) spans a two-dimensional space, i.e.,
avy + fug + vz =0, o + 8>+ * = 1.
Then dep(®) = span{u}, u = (o, 8,7), so that

1—la* —af  —ay
Pop=I-w=| —af 1-|8 —p¥
@y =By 1-hP?

The canonical 2-products are uniquely determined by |al, ||, |¢|, e.g.,
Ac(vi,o) = (1—[a?)?, Ac(vi,v) = | —ap|* = |af*[8]%,
as is the canonical 3-product corresponding to the unique 3-cycle
Ac(v1,v2,03) = (=aB) (=) (—a7) = —|af?|B]?|~]*.
Thus if ¥ = (w,) is given by
dwn + Bwy +Fws =0, [@ + A7+ 5 =1,
then
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1. @ is similar to V¥ if and only if Py = P, i.e.,
af=aB,  ay=oay, Bi=p7
2. ® is projectively similar to ¥ if and only if their canonical m-products are
equal, i.e., B
&l =laf, [BI=16l, A=W
When ¥ and ¢ are projectively similar, i.e., w; = ¢;Qu; (the canonical m-products
are equal), one has Py = C* P C'. Here, suppose a, 3,7 # 0; then we have

_ - ~ 5 _ __ ~ = _ — = Q 6 Q vy
cicoaf =af, cicgay=ay, afy=py = c= ETCD c3 = 55017
where @ is defined by
_ _ « Ni
Qu1 := crw, Quy :=Cows = —=ClWs.
ap

7. Projectively equivalent harmonic frames. Let G be a finite abelian group
of order n (written additively) with irreducible characters £ € G. Here G is known as
the character group (which is isomorphic to G). Let J C G with |J| = d; then any
tight frame which is unitarily equivalent to the equal-norm tight frame for C’/ ~ C¢
given by

D, = (§|J)§EG‘

is called a harmonic frame and is said to be cyclic if G is a cyclic group. This is the
class of tight frames which are the orbit of a group of unitary transformations on C¢,
which is isomorphic to G (see [30], [31]). The harmonic frames were studied up to
unitary equivalence in [32], [31]. We now recount some of the basic details.

Let G be a fixed finite abelian group. Subsets J and K of G are multiplicatively
equivalent if there is an automorphism o : G — G for which K = ¢J. In this case,

&:CA?—>CA¥:X|—>X00'71

is an automorphism of G, and

€lrinls) = (6€|Kk,0n|K),

i.e., ®; and @ are unitarily equivalent after reindexing by the automorphism 6.
The translations of G are the bijections

:G—=>G:j—j—0b, beQ@q,

and we say K is a translate of J if K = J — b, i.e., K = 1,J. We define the affine
group of G to be the group of bijections 7 : G — G generated by the translations and
automorphisms, i.e., the |G|| Aut(G)| maps of the form

7(g) =o(g) — b, o€ Aut(G), begdq.

If K = nJ for some 7 in the affine group, we say J and K are affinely equivalent.

LemMA 7.1. If J and K are subsets of a finite abelian group G, which are trans-
lates of each other, then the harmonic frames ®; and Pk are projectively unitarily
equivalent.
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Proof. Suppose K = J —b. Since ®; = ({]7)¢c¢g, we need to show

€l =ccU(Ely),  €€G,
where U : C/ — C¥ is unitary. Let U, : C/ — C¥ be the unitary map
(Upv)(k) := v(k +b), ke K.
Since £ is a character, we have

(U] 5) (k) = &l (k +b) = £(k + b) = £(k)E() = & (K)E(D),

and so we can take U = Uy and ¢ = 1/£(b). ad

Conversely, that projective unitary equivalence implies J and K are translates of
each other appears to be true.

THEOREM 7.2. Suppose J and K are subsets of a finite abelian group G. Then
1. if J and K are translates, then ®; and O are projectively unitarily equiva-
lent;
2. if J and K are multiplicatively equivalent, then ®; and ®x are unitarily
equivalent after reindexing by an automorphism;
3. if J and K are affinely equivalent, then ®; and @i are projectively unitarily
equivalent after reindexing by an automorphism.

Proof. The first part is Lemma 7.1, the second is given in [31] (Theorem 3.5), and
the third follows by combining the first two. ]

Example 7.3. Let p > 2 be a prime. Then all harmonic frames of p vectors in
C? are projectively unitarily equivalent up to reindexing (to p equally spaced vectors
in ]Rd). This follows since there is a unique affine map, taking a sequence of two
distinct elements of Z, to any other. In particular, allowing for reindexing, the two
harmonic frames of three vectors in C? which are unitarily inequivalent (one is real,
one is complex) are projectively unitarily equivalent.

The conditions of 1, 2, and 3 of Theorem 7.2 say that J and K are in the same
orbit under action of the group of translations, the automorphism group, and the affine
group on the subsets of G, respectively. Using this, we were able to calculate the
various equivalences using the computer algebra package MAGMA [33]. The results
of these calculations for the cyclic harmonic frames are summarized in Figure 5.
These indicate that the number of projective unitary equivalence classes is much
smaller than the number of unitary equivalence classes (up to any reindexing). There
are just a few cases where the number of equivalence classes is smaller than that
predicted by the group theoretic calculations, because there is a reindexing which is
not an automorphism which makes harmonic frames equivalent. This was previously
observed in the case of unitary equivalence [31]. In these cases the larger group
theoretic estimate is given in the row below in Figure 5.
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d=2 d=3 d=14
n | uni | proj n | uni | proj n | uni | proj
2 1 1 3 1 1 5 2 1
3 2 1 4 3 1 6 9 3
4 3 2 5 3 1 7 7 2
5 3 1 6 | 11 3 8 | 21 6
6 6 3 7 7 2 23 )
7 4 1 8 | 16 4 9 | 23 4
8 7 3 17 24
9 6 2 9 | 15 3 10 | 53 9
101 9 3 10 | 29 4 54
111 6 1 11 | 17 2 11 | 34 4
12 | 13 5 12 | 56 9 12 ] 138 | 21
131 7 1 o7 141
14 | 12 3 13 ] 25 3
15 | 13 3
d=5 d=16 d="17
n | uni | proj n | uni | proj n | uni | proj
5 1 1 6 1 1 7 1 1
6 4 1 7 2 1 8 4 1
7 4 1 8 | 11 3 9 8 2
8 | 19 4 9 | 16 3 10 | 32 4
20 10 | 55 9 11 | 34 4
9 | 23 4 56 12 ] 228 | 25
24 11 | 48 6 234
10 | 67 9
11 | 48 6

Fic. 5. The number of unitary and projective unitary equivalence classes (up to reindexing)
of cyclic harmonic frames of n vectors in C¢, d = 2,...,7. When the group theoretic estimate of
Theorem 7.2 is larger (because there are reindexings which are not automorphisms) it is given in
the row below.

8. Rank-one matrix completions. We now show that determining projective
unitary equivalence is equivalent to a rank-one matrix completion. This leads to an
alternative derivation of our results, as kindly pointed out by one of the referees.

The condition (1.2) for projective unitary equivalence can be written as

(8.1) Gram(®) = C Gram(¥)C* = Gram(¥) o (cc*),

where ¢ = (¢;) and o is the Hadamard matrix product. Here A = cc* is a self-adjoint
rank-one unimodular matrix, whose existence is equivalent to the projective unitary
equivalence of ® and ¥. Some of the entries of A = cc¢* can be determined by pointwise
division, i.e.,

_ Gram(®);x (v, vy) ,
- Gram(W)j,  (wg, w;)’ ks v 7 0

(8.2) ajr = cjc = (cc*)jk
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The matrix A restricted to the pattern

P (k) s (or,05) £ 0}

is called a P-matriz or partial matrixz supported on P. The possible ranks of comple-
tions of partial matrices were considered in [34]. We require the following result (see
[35] for a more direct proof).

THEOREM 8.1 (see[34]). A nonzero partial matriz has a rank-one completion if
and only if it has the zero row or column property and the cycle property.

The zero row or column property is that if a;, = 0, (j, k) € P, then either a;; =0
V(j,k) € P (zero row) or az, =0 V(j,k) € P (zero column). Since A = cc* has
unimodular entries, this is trivially satisfied.

For A an m X n partial matrix supported on P consider the bipartite graph with
vertices {1,...,m} (row vertices) and {1,...,n} (column vertices) and an edge from
J to k with weight a;, (j, k) € P. For I' = (vo, v1,...,vax), Uo = Va2, a cycle in this
edge-weighted directed graph, the cycle property is that

k—1 k—1
H Ay (2r),v(2r+1) = H Ay (2r),v(2r—1)>
r=0 r=0

i.e., the product of the weights for the edges from a row vertex to column vertex is
equal to the product of the weights for edges from a column vertex to a row vertex.
The cycle condition is that the cycle property hold for all cycles. For our partial matrix
A = cc*, consider the cycle T' = (41, j1, 2, 42, - « - s Jm, Jm ), Where the first occurence of
a jr is as a row vertex and the second as a column vertex (or vice versa). Then the
cycle property is

Aj1j1 Ajogo " Ajmgim = QjrjaAjoga " A —1im -

By (8.2) and cross multiplication, this can be written as

<wj13wj2><wj2awj3> e <wjm,—l7wjm> = <Uj1avj2><vj2avj3> T <vjm—l’vjm>’

i.e., the nonzero m-products of ¥ and ® are equal. It can be shown that the cycle
property corresponding to the other cycles in P reduces to an equality of nonzero m-
cycles. In this way one can obtain a proof of Theorem 3.1 as a corollary of Theorem 8.1.
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