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ABSTRACT

A formula for the error in multivariate quasi interpolation which reproduces the linear
polynomials is given. From it sharp pointwise Lo, bounds for the error in linear interpola-
tion (interpolation by linear polynomials) to function values at the vertices of a simplex are
obtained. The corresponding ‘envelope theorem’ giving the optimal recovery of functions
is discussed.
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1. Introduction

The high applicability of numerical methods based on interpolation from spaces that
contain polynomials, such as the finite element method, has lead to a large literature
dealing with the error in such schemes. The main contribution of this paper is an error
formula for a multivariate quasi interpolation operator which reproduces IIy (the linear

polynomials). By this we mean an operator defined on some space of functions Q@ — IR,
Q2 C IR" (that contains TIy) which is of the form

L.f = Z.f(”)pm (1.1)

vEO

where © C IR"” is a finite set of points, and satisfies
Lf=f, Viell. (1.2)

This formula covers the much studied case of linear interpolation at the vertices of a
triangle (Courant’s ‘original’ finite element [Co43]).

The paper is set out as follows. In the remainder of this section we define the linear
functional f — f(_) f and give some of its relevant properties. This linear functional
is proving to be the appropriate notation in which to express the error in multivariate
polynomial interpolants (see, e.g., de Boor [B95]). In Section 2, the error formula is given.
In Section 3, sharp Lo, error bounds for (multivariate) linear interpolation are obtained
from the formula. These bounds are compared with others in the literature, including

recent work of Handscomb [H95] and earlier work of Subbotin [Su904], [Su90-].

The linear functional f — f@ f

To describe the error in a multivariate quasi interpolation operator it is often conve-
nient to use the following linear functional called the divided difference functional on IR"

by Micchelli in [M&0].
Definition 1.3. For O the sequence [y, ...,60;] of k + 1 points in IR", let

1 S1 Sk—1
f|—> / f = / / / f(90 —I—S1 (91 *90)++‘3k(9k*9k,1))(]‘3k(]‘32 d817
Jo Jo Jo Jo
with the convention that f[] f :=0. Note that for one point
[ =), (14)
/]

The value of f(_) f does not depend on the ordering of the points in . The nature of
f(_) f becomes more apparent by observing that

Lf_%[m@M“@ﬁ (1.5)
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where M (-|©) is the simplex spline with knots © (which is supported on conv ©, the convex
hull of the points in ©). The class of functions for which f(_) f is defined can be determined
from (1.5).

Crucial to the arguments of the paper is the following form of the fundamental theorem

of calculus, that
/ fﬁ / f: / vawf- (16)
J[0,v] J[O,w] J[O,v,w]

This is a form of the difference identity for simplex splines (see [M80:Th.6]). Throughout,
D, f denotes the derivative of f in the direction y.
Notice that the Hermite Genocchi formula can be written as

o, 041 = /[9 D (1.7)

where [0y, ...,0;]f is the univariate divided difference of f at the points 6, ..., 8 in IR.

2. The error formula

In this section we give an error formula for a multivariate quasi interpolation operator
which reproduces IIy (the linear polynomials). This formula involves only second order
derivatives of the function interpolated, and this form permits one to conclude, e.g., by
scaling, that a numerical scheme based on such an operator has order of convergence
(accuracy) h? in the simplex size h (for ‘good’ simplices). The idea of the proof below is
to use the ‘difference identity’ (1.6) in just the right way so as to introduce these second
order derivatives.

Theorem 2.1. Suppose () is starshaped with respect to ©. If L is a multivariate quasi
interpolation operator, as defined by (1.1), which reproduces the linear polynomials, then

VfeC* Q)

f(T) - Lf(T) = Z pw( )pW( ) / D, WDy of

{0, w}C® [z,v,w)]
vFEw (2.2)
5 Z Z p” p7” / vawafn,ﬂ Vo € 97
UEO wEB [7,0,w]

where the first sum is taken over all 2-element subsets of ©.

Proof: Since L reproduces the constants, it follows from (1.1) that
» pp=1 (2.3)

This, together with (1.4) and the ‘difference identity’ (1.6), gives

f(x) = Lf(x (/ f— / )pU = Z( - D”,f> o (). (2.4)

vEO vEO



Since L reproduces the linear polynomials, and each coordinate of (- — v) is a linear poly-
nomial, it follows from (1.1) that

r—v= Z W — V)P (x). (2.5)

weEB

Substituting (2.5) into (2.4), and using the linearity of y — D, gives

f(T) Z Z pv pw unfyf. (26)

vEO WEB E)

The double summation in (2.6) is over all ordered pairs (v, w) where v # w (the terms for
v = w are zero). By summing the pairs (v,w) and (w,v) first, we obtain the following sum
over the unordered pairs {v, w}

Fo) - L) = 3 el

{v,w}CO®
vFEw

Dwfv,f - Dwv,f) - (27)
J[x,v] J[z,w]

Finally, by the ‘difference identity’ (1.6) again,

Dwfvf - Dwfvf = / DU*“JDU]*U,fj
J[x,v] [7,w] [z,v,w)]

which gives the result. O

This error formula, once known, can be obtained from a general result of [W97*]
(which is more involved), by choice of a particular measure. Also obtainable in this way

is the multipoint Taylor formula of Ciarlet and Wagschal [CWT71] that

fo) L) == Yomlo) [ D2Lf Weeo, 28)

vE® oSz, 7, 0]

which is the multivariate form of Kowalewski’s remainder (see [K32:p21-24]).

The error formula (2.2) reflects the geometry in a particularly appealing way. The
error at any point = not lying on a line connecting points in O is the sum over distinet
points v,w € O of 1/2 the average of the second order derivative D,_,, Dy, over the
triangle conv{x, v, w} multiplied by the function p,p,, (which vanishes at all of the points
in O if L matches function values at ).

Though we will not consider such examples here, it is worth mentioning that (2.2)
holds when © is an infinite sequence of points. More generally, for operators of the form

- / F(0)o () du(v),

where 1 is a measure (supported on ), there is the ‘continuous’ version that

fo) - Lio) =5 [ [ pw<m>pw<m>/[ Do Do dpe) ). (29)
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The special case of (2.2) when L is the map of Lagrange interpolation from IIy is the
first in a family of error formulae for Chung Yao interpolation from II; (the polynomials
of degree < k) recently obtained by de Boor [B95]. In Chung Yao interpolation, see
[CYT77] for more details, the points of interpolation are the intersections of certain sets of
hyperplanes.

There are many examples of univariate quasi interpolation operators which reproduce
the linear polynomials, e.g., the Lagrange interpolation and Bernstein operators, and hence
to which Theorem 2.1 applies. The corresponding error formulae can be expressed in terms
of second order divided differences by using the Hermite Genocchi formula (1.7). Our
primary interest here is in multivariate operators, and so we will not elaborate on these.

3. Sharp pointwise L. —error bounds for linear interpolation

The main result of this section is a sharp pointwise L., error bound for linear inter-
polation. By linear interpolation we mean interpolation by linear polynomials to function
values at n + 1 points in IR". These n + 1 points are necessarily affinely independent, i.e.,
the vertices of a (nondegenerate) simplex in IR". This simplex will be denoted

T := conv O,
its diameter by
h:= diam ©® = max [[v — w],
v, WwED

and the map of linear interpolation by Lg.
To measure the size of the second order derivative of f € C*(T) we define the function

|D? f| € C(T) by the rule

ID*fl(x) == sup |Dy, Du, f(x)| = sup |Dgf(x)], (3.1)
i, up€RY cemn
Fee g 1< lI&l=1
where || - || denotes the Euclidean norm, which satisfies
Dy, Dt < D%l lllall, s € R (32)

The Loo(T) norm of |D? f] gives a seminorm on C?*(T)

folflasor =1 D fl I or)- (3.3)

Theorem 3.4. Suppose that Le is the map of linear interpolation at ©. Let ¢ be the
centre and R the radius of the (unique) sphere containing ©. Then, for each x € T, there
is the sharp inequality

@) Lof@)] < (B~ |lr — ) | flomr  VFeCT). (3.5)

1
2
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Equality in (3.5) occurs when

f € Q :=span{|| - ||2} ¢ I, (3.6)

and for x in the interior of T these are the only functions giving equality in (3.5).
In particular, there is the sharp inequality

1
If = Lefllr.r < §(R2 — ) 1 f gm0, vF, (3.7)

where d is the distance of ¢ from T, i.e.,

d :=dist(¢,T) = min ||z — ¢||.
reT

Special cases of (3.7) of interest include the following:
(a) If ¢ € T, then there is the sharp inequality

1
If = Lefllrn.cr < §R2 |f12,00,7 vf. (3.8)

(b) For the bivariate case (n =2), if ¢ € T, then there is the sharp inequality

1
If —Lefllr.(r < ghQ |f 12,00, 7 vf. (3.9)

The inequalities (3.7), (3.8) and (3.9) are sharp, with equality when f € Q).
Proof: The ‘Lagrange form’ of Lg will be written as

Lef = Z f(v)As, (3.10)

vEO

since the Lagrange polynomials A\, € Iy, v € © are the barycentric coordinate functions
with respect to the points in ©. Notice that each )\, is nonnegative on T, and so using

(3.2) we obtain

/\U(m)/\w(m)/ Dy—wDoyof <A7,<m>Aw<m>/ [o = wl*1 fl2,00,7
Jz,v,w0] MERRE (311)

1
= M@0 = 0l 1 L -

Therefore, from the first inequality (2.2),

Yo @@l —wl? 1 flyer  VFECHT).  (3.12)

{v,w}CO®
vFEw

N | —

|f(z) — Lo f(x)] <



The next part of the proof relies on the fact that

=Y vh(a), 1= A7), (3.13)

vEO vEO

which, in view of (3.10), is the statement that Le reproduces ITy. With (-;-) denoting
the Euclidean inner product, the quadratic polynomial (of ) occurring in (3.12) can be
expanded and simplified using (3.13) in the following way.

1

LS Al ul?
{owice
vFEw

= —ZZAU A ()]0 —w||

LS S @A)l — 20,0} + 0]P)

= _Z/\” ||7)||2 — _Z/\” Zw/\w Z/\w ||w||2
1

= (z oA o) - <zm7,<m>7m>)
1 2 2

(A ) )

(3.14)
Since

v 3P () P (3.15)

is the unique quadratic polynomial which is zero at the points in © and has the quadratic

part of its Taylor series at the origin equal to —|| - ||%, it must be equal to

R |- —|]”

This gives (3.5) with equality for f € Q.
We now show that for x in the interior of T these are the only cases of equality.
Suppose, without loss of generality, that | f], .. » = 2, and

Fr) - Lef(r) = B |r |
Then the function ¢ defined on T by

oy) = fy) — Lofly) — B* +lly — |

satisfies

o(v) =10, veEOBO, o(x) =0,
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and is convex, because
Dip=Dif +2> ~|flyor+2=0, 1€l =1.

Since  is in the interior of T' (the convex hull of @), this implies that ¢ = 0, i.e., f € Q.
The sharp inequality

1
\f — Lefllr.(m < 5?2%(1%2 — Nz = el®) 1f 2007 v,

follows immediately from (3.5), and the constant

max(R? — ||z — ¢||*) = B> —min ||z — ¢||> = R* — d°,
reT reT

giving (3.7). Finally the special cases.

Case (a). If ¢ € T, then R* — d* = R~

Case (b). If ¢ € T, then 2* the (unique) choice of € T which minimises ||z — ¢|| must
lie in some facet F of T, since when x is in the interior of T it may be moved closer to ¢
(thereby reducing ||# — ¢||). In the bivariate case (n = 2), T is an obtuse angled triangle
with F its largest side and z* is the midpoint of F (see Fig. 4.1). Since the line segment
from ¢ to #* is orthogonal to the facet F' which has length i, Pythagoras’s theorem gives

d’> +(h/2)* = R,

and so

Fig. 4.1. The situation for an obtuse angled triangle: showing the triangle T
(shaded), the facet F (thick side), and 2* the closest point to the center ¢
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Comparison with the sharp L..—bounds of Handscomb and Subbotin

The sharp inequality (3.5) is well-known in the univariate case. The inequalities (3.8)
and (3.9) were recently proved by Handscomb [H95] for the bivariate case (when T is
a triangle). There the condition ¢ € T (respectively ¢ € T) is stated in the equivalent
way that the triangle T be acute angled (respectively obtuse angled). The inequality (3.9)
does not extend to n > 2, since in this case for given h, R there is an interval of possible
values for d (depending on the geometry of the points ). For example, when n = 3 the
constant %(RQ — d?) occurring in (3.7) can as small as h?/8 (exactly two of the points are
at a distance h from each other), or as large as h?/6 (exactly three of the points are at a
distance h from each other).

In the bivariate case (when T is a triangle)

sup{R*/h? : T acute angled} = 1/3,

with the supremum attained (only) when T is an equilateral triangle. Thus from (3.8) and
(3.9) it follows that for all triangles

1
If = Lefllrn.cr < 677/2 |fls,00, 7 v, (3.16)

which is sharp if and only if T is an equilateral triangle. The inequality (3.16) was proved
in Subbotin [Su904].

More generally, for n > 1 it can be shown that
sup{R*/h% e €T = —
sup{R"/ ceT} S 1 1)

with the supremum attained (only) when the points in O are equidistant from each other.
In this way one obtains the n > 2 analogue of (3.16) that

1 n
— Le < ——— B v 3.17
\f — Lo fllr.(rm < i | fl2 00 7 1 (3.17)

which is sharp when the points in © are equal distances from each other. This inequality
(3.17) was proved by Subbotin [Su902:Th.1] where the sharpness was demonstrated by
considering an appropriate quadratic polynomial f € (), namely

f: %hz Z /\U/\um

{v,w}CO®
vFEw

which we recognise as the polynomial given by (3.14), with each occurrence of ||v — w]|
replaced by h.

Geometric interpretation of the result,
the optimal recovery of functions and envelope theorems

Suppose that the following information about f € C*(T) is known:

fv), veBO (its values at the points ) (3.18)
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and

ID’f|<K on T  (ie, |flyor < K). (3.19)

then it follows from an observation of Golomb and Weinberger [GW59] that there exist
functions L, U for which

L(r) < f(a) <U(),  VeeT.

and these bounds cannot be improved in the sense that there exists an f taking any value
strictly between them. For obvious reasons, some authors refer to these functions L and U
that enclose f as (lower and upper) envelopes for f.

Theorem 3.4 provides the solution of this optimal recovery problem of determining L
and U as follows. Since f satisfies (3.19), inequality (3.5) gives

KR o — )
which can be rewritten as
1 1
Lof(r) ~ SK(B® — llo —cl) < f(s) < Lof(a) + 2K (B o —c?).  (3:20)

which is sharp for those f € @ with |f], . = K. Hence (3.20) provides the envelopes
for f, which we now state as a corollary.

Corollary 3.21 (Envelope Theorem). Suppose that Lg is the map of linear interpo-
lation at O, and let ¢ be the centre and R the radius of the (unique) sphere containing 0.
If the value of f € C*(T) is known at the points ©, and |D*f| < K on T, then

L(z) < f(r) < U(z), Vo eT, (3.22)

where

L(r) = Lo f(r) — 5K (B — |lr ).

1 (3.23)

0(a) = Lof(e) + 2K (B — |lr — c]").
and for any of the values allowed by (3.22), there exists a function taking on that value.
In particular, the quadratic functions L,U match f at © and satisfy |D*L|,|D?U| = K on
T.

Notice that the envelope functions L, U given by (3.23) can be computed from O and
the values given for f(v), v € ©.

Perhaps the best known ‘envelope theorem’ is the result of Gaffney Powell [GP76]
and Micchelli Rivlin Winograd [MRW76] which shows that if the values of a univariate
function f is known at m + k points in [a,b] and |D*f| < K on [a,b], then f must lie
between two perfect splines of degree k. Corollary 3.21 is a multivariate generalisation
of the case k = 2 (with m = n — 1). Though a trivial generalisation in the sense that
the envelope functions are such simple multivariate splines (quadratic polynomials), it

9



is interesting in view of the lack of such results on the optimal recovery of multivariate
functions from such more general information.

The corresponding L,—error bounds

It is possible to obtain L, error bounds from (2.2) by using inequalities such as the
multivariate Hardy inequality of [W97]. For example, with |[D* f||;,cry == || |D*f] ||1..¢1)
it can be shown that for linear interpolation on a triangle

3
1f = Lefllram < 577/2 ID*fllroemy,  Vf e CHT), (3.24)

which improves by a factor of 1/2 the previous best known bound of Arcangeli and Gout
[AG76:Ex. 3 1, p. 17].
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