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1. IntroductionThe high applicability of numerical methods based on interpolation from spaces thatcontain polynomials, such as the �nite element method, has lead to a large literaturedealing with the error in such schemes. The main contribution of this paper is an errorformula for a multivariate quasi{interpolation operator which reproduces �1 (the linearpolynomials). By this we mean an operator de�ned on some space of functions 
 ! IR,
 � IRn (that contains �1) which is of the formLf := Xv2� f(v) pv ; (1:1)where � � IRn is a �nite set of points, and satis�esLf = f; 8f 2 �1: (1:2)This formula covers the much studied case of linear interpolation at the vertices of atriangle (Courant's `original' �nite element [Co43]).The paper is set out as follows. In the remainder of this section we de�ne the linearfunctional f 7! R� f and give some of its relevant properties. This linear functionalis proving to be the appropriate notation in which to express the error in multivariatepolynomial interpolants (see, e.g., de Boor [B95]). In Section 2, the error formula is given.In Section 3, sharp L1{error bounds for (multivariate) linear interpolation are obtainedfrom the formula. These bounds are compared with others in the literature, includingrecent work of Handscomb [H95] and earlier work of Subbotin [Su901], [Su902].The linear functional f 7! R� fTo describe the error in a multivariate quasi{interpolation operator it is often conve-nient to use the following linear functional called the divided di�erence functional on IRnby Micchelli in [M80].De�nition 1.3. For � the sequence [�0; : : : ; �k] of k + 1 points in IRn, letf 7! Z� f := Z 10 Z s10 :::Z sk�10 f(�0 + s1(�1��0) + � � �+ sk(�k��k�1)) dsk � � � ds2 ds1;with the convention that R[ ] f := 0. Note that for one pointZ[u] f = f(u): (1:4)The value of R� f does not depend on the ordering of the points in �. The nature ofR� f becomes more apparent by observing thatZ� f = 1k! Zconv�M(�j�) f; (1:5)1



whereM(�j�) is the simplex spline with knots � (which is supported on conv�, the convexhull of the points in �). The class of functions for which R� f is de�ned can be determinedfrom (1.5).Crucial to the arguments of the paper is the following form of the fundamental theoremof calculus, that Z[�;v] f � Z[�;w] f = Z[�;v;w]Dv�wf: (1:6)This is a form of the di�erence identity for simplex splines (see [M80:Th.6]). Throughout,Dyf denotes the derivative of f in the direction y.Notice that the Hermite{Genocchi formula can be written as[�0; : : : ; �k]f = Z[�0;:::;�k]Dkf; (1:7)where [�0; : : : ; �k]f is the univariate divided di�erence of f at the points �0; : : : ; �k in IR.2. The error formulaIn this section we give an error formula for a multivariate quasi{interpolation operatorwhich reproduces �1 (the linear polynomials). This formula involves only second orderderivatives of the function interpolated, and this form permits one to conclude, e.g., byscaling, that a numerical scheme based on such an operator has order of convergence(accuracy) h2 in the simplex size h (for `good' simplices). The idea of the proof below isto use the `di�erence identity' (1.6) in just the right way so as to introduce these secondorder derivatives.Theorem 2.1. Suppose 
 is starshaped with respect to �. If L is a multivariate quasi{interpolation operator, as de�ned by (1:1), which reproduces the linear polynomials, then8f 2 C2(
)f(x) � Lf(x) = Xfv;wg��v 6=w pv(x)pw(x)Z[x;v;w]Dv�wDw�vf= 12 Xv2� Xw2�pv(x)pw(x)Z[x;v;w]Dv�wDw�vf; 8x 2 
; (2:2)where the �rst sum is taken over all 2-element subsets of �.Proof: Since L reproduces the constants, it follows from (1.1) thatXv2� pv = 1: (2:3)This, together with (1.4) and the `di�erence identity' (1.6), givesf(x) � Lf(x) =Xv2��Z[x] f � Z[v] f� pv(x) = Xv2��Z[x;v]Dx�vf� pv(x): (2:4)2



Since L reproduces the linear polynomials, and each coordinate of (� � v) is a linear poly-nomial, it follows from (1.1) thatx � v = Xw2�(w � v)pw(x): (2:5)Substituting (2.5) into (2.4), and using the linearity of y 7! Dy givesf(x) � Lf(x) = Xv2� Xw2� pv(x)pw(x)Z[x;v]Dw�vf: (2:6)The double summation in (2.6) is over all ordered pairs (v;w) where v 6= w (the terms forv = w are zero). By summing the pairs (v;w) and (w; v) �rst, we obtain the following sumover the unordered pairs fv;wgf(x) � Lf(x) = Xfv;wg��v 6=w pv(x)pw(x)�Z[x;v]Dw�vf � Z[x;w]Dw�vf�: (2:7)Finally, by the `di�erence identity' (1.6) again,Z[x;v]Dw�vf � Z[x;w]Dw�vf = Z[x;v;w]Dv�wDw�vf;which gives the result.This error formula, once known, can be obtained from a general result of [W97�](which is more involved), by choice of a particular measure. Also obtainable in this wayis the multipoint Taylor formula of Ciarlet and Wagschal [CW71] thatf(x) � Lf(x) = �Xv2� pv(x)Z[x;x;v]D2v�xf; 8x 2 �
; (2:8)which is the multivariate form of Kowalewski's remainder (see [K32:p21-24]).The error formula (2.2) re
ects the geometry in a particularly appealing way. Theerror at any point x not lying on a line connecting points in � is the sum over distinctpoints v;w 2 � of 1=2 the average of the second order derivative Dv�wDw�vf over thetriangle convfx; v;wg multiplied by the function pvpw (which vanishes at all of the pointsin � if L matches function values at �).Though we will not consider such examples here, it is worth mentioning that (2.2)holds when � is an in�nite sequence of points. More generally, for operators of the formLf(x) := Z f(v)pv(x) d�(v);where � is a measure (supported on 
), there is the `continuous' version thatf(x) � Lf(x) = 12 Z Z pv(x)pw(x)Z[x;v;w]Dv�wDw�vf d�(v) d�(w): (2:9)3



The special case of (2.2) when L is the map of Lagrange interpolation from �1 is the�rst in a family of error formul� for Chung{Yao interpolation from �k (the polynomialsof degree � k) recently obtained by de Boor [B95]. In Chung{Yao interpolation, see[CY77] for more details, the points of interpolation are the intersections of certain sets ofhyperplanes.There are many examples of univariate quasi{interpolation operators which reproducethe linear polynomials, e.g., the Lagrange interpolation and Bernstein operators, and henceto which Theorem 2.1 applies. The corresponding error formul� can be expressed in termsof second order divided di�erences by using the Hermite{Genocchi formula (1.7). Ourprimary interest here is in multivariate operators, and so we will not elaborate on these.3. Sharp pointwise L1{error bounds for linear interpolationThe main result of this section is a sharp pointwise L1{error bound for linear inter-polation. By linear interpolation we mean interpolation by linear polynomials to functionvalues at n+ 1 points in IRn. These n+ 1 points are necessarily a�nely independent, i.e.,the vertices of a (nondegenerate) simplex in IRn. This simplex will be denotedT := conv�;its diameter by h := diam� = maxv;w2� kv �wk;and the map of linear interpolation by L�.To measure the size of the second order derivative of f 2 C2(T ) we de�ne the functionjD2f j 2 C(T ) by the rulejD2f j(x) := supu1;u22IRnkuik�1 jDu1Du2f(x)j = sup�2IRnk�k=1 jD2�f(x)j; (3:1)where k � k denotes the Euclidean norm, which satis�esjDu1Du2f j � jD2f j ku1kku2k; 8u1; u2 2 IRn: (3:2)The L1(T ){norm of jD2f j gives a seminorm on C2(T )f 7! f 2;1;T := k jD2f j kL1(T ): (3:3)Theorem 3.4. Suppose that L� is the map of linear interpolation at �. Let c be thecentre and R the radius of the (unique) sphere containing �. Then, for each x 2 T , thereis the sharp inequalityjf(x) � L�f(x)j � 12(R2 � kx� ck2) f 2;1;T ; 8f 2 C2(T ): (3:5)4



Equality in (3:5) occurs when f 2 Q := spanfk � k2g ��1; (3:6)and for x in the interior of T these are the only functions giving equality in (3:5).In particular, there is the sharp inequalitykf � L�fkL1(T ) � 12(R2 � d2) f 2;1;T ; 8f; (3:7)where d is the distance of c from T , i.e.,d := dist(c; T ) = minx2T kx � ck:Special cases of (3:7) of interest include the following:(a) If c 2 T , then there is the sharp inequalitykf � L�fkL1(T ) � 12R2 f 2;1;T ; 8f: (3:8)(b) For the bivariate case (n = 2), if c 62 T , then there is the sharp inequalitykf �L�fkL1(T ) � 18h2 f 2;1;T ; 8f: (3:9)The inequalities (3:7), (3:8) and (3:9) are sharp, with equality when f 2 Q.Proof: The `Lagrange form' of L� will be written asL�f = Xv2� f(v)�v ; (3:10)since the Lagrange polynomials �v 2 �1, v 2 � are the barycentric coordinate functionswith respect to the points in �. Notice that each �v is nonnegative on T , and so using(3.2) we obtain����v(x)�w(x)Z[x;v;w]Dv�wDw�vf ��� � �v(x)�w(x)Z[x;v;w] kv � wk2 f 2;1;T= 12�v(x)�w(x)kv � wk2 f 2;1;T : (3:11)Therefore, from the �rst inequality (2.2),jf(x) �L�f(x)j � 12 Xfv;wg��v 6=w �v(x)�w(x)kv � wk2 f 2;1;T ; 8f 2 C2(T ): (3:12)5



The next part of the proof relies on the fact thatx = Xv2� v�v(x); 1 =Xv2��v(x); (3:13)which, in view of (3.10), is the statement that L� reproduces �1. With h�; �i denotingthe Euclidean inner product, the quadratic polynomial (of x) occurring in (3.12) can beexpanded and simpli�ed using (3.13) in the following way.12 Xfv;wg��v 6=w �v(x)�w(x)kv � wk2= 14Xv Xw �v(x)�w(x)kv � wk2= 14Xv Xw �v(x)�w(x)(kvk2 � 2hv;wi + kwk2)= 14Xv �v(x)kvk2 � 12Xv �v(x)hv;Xw w�w(x)i + 14Xw �w(x)kwk2= 12  Xv kvk2�v(x) � hXv v�v(x); xi!= 12  Xv kvk2�v(x) � kxk2! : (3:14)Since x 7!Xv kvk2�v(x) � kxk2 (3:15)is the unique quadratic polynomial which is zero at the points in � and has the quadraticpart of its Taylor series at the origin equal to �k � k2, it must be equal toR2 � k � �ck2:This gives (3.5) with equality for f 2 Q.We now show that for x in the interior of T these are the only cases of equality.Suppose, without loss of generality, that f 2;1;T = 2, andf(x) � L�f(x) = R2 � kx � ck2:Then the function � de�ned on T by�(y) = f(y) � L�f(y) �R2 + ky � ck2satis�es �(v) = 0; v 2 �; �(x) = 0;6



and is convex, becauseD2�� = D2�f + 2 � � f 2;1;T + 2 = 0; k�k = 1:Since x is in the interior of T (the convex hull of �), this implies that � = 0, i.e., f 2 Q.The sharp inequalitykf � L�fkL1(T ) � 12 maxx2T (R2 � kx� ck2) f 2;1;T ; 8f;follows immediately from (3.5), and the constantmaxx2T (R2 � kx � ck2) = R2 �minx2T kx� ck2 = R2 � d2;giving (3.7). Finally the special cases.Case (a). If c 2 T , then R2 � d2 = R2.Case (b). If c 62 T , then x� the (unique) choice of x 2 T which minimises kx�ck mustlie in some facet F of T , since when x is in the interior of T it may be moved closer to c(thereby reducing kx � ck). In the bivariate case (n = 2), T is an obtuse angled trianglewith F its largest side and x� is the midpoint of F (see Fig. 4.1). Since the line segmentfrom c to x� is orthogonal to the facet F which has length h, Pythagoras's theorem givesd2 + (h=2)2 = R2;and so 12(R2 � d2) = 18h2:
x� Rdh=2 c

Fig. 4.1. The situation for an obtuse angled triangle: showing the triangle T(shaded), the facet F (thick side), and x� the closest point to the center c7



Comparison with the sharp L1{bounds of Handscomb and SubbotinThe sharp inequality (3.5) is well-known in the univariate case. The inequalities (3.8)and (3.9) were recently proved by Handscomb [H95] for the bivariate case (when T isa triangle). There the condition c 2 T (respectively c 62 T ) is stated in the equivalentway that the triangle T be acute angled (respectively obtuse angled). The inequality (3.9)does not extend to n > 2, since in this case for given h;R there is an interval of possiblevalues for d (depending on the geometry of the points �). For example, when n = 3 theconstant 12 (R2 � d2) occurring in (3.7) can as small as h2=8 (exactly two of the points areat a distance h from each other), or as large as h2=6 (exactly three of the points are at adistance h from each other).In the bivariate case (when T is a triangle)supfR2=h2 : T acute angledg = 1=3;with the supremum attained (only) when T is an equilateral triangle. Thus from (3.8) and(3.9) it follows that for all triangleskf � L�fkL1(T ) � 16h2 f 2;1;T ; 8f; (3:16)which is sharp if and only if T is an equilateral triangle. The inequality (3.16) was provedin Subbotin [Su901].More generally, for n � 1 it can be shown thatsupfR2=h2 : c 2 Tg = n2(n + 1) ;with the supremum attained (only) when the points in � are equidistant from each other.In this way one obtains the n > 2 analogue of (3.16) thatkf � L�fkL1(T ) � 14 nn+ 1h2 f 2;1;T ; 8f; (3:17)which is sharp when the points in � are equal distances from each other. This inequality(3.17) was proved by Subbotin [Su902:Th.1] where the sharpness was demonstrated byconsidering an appropriate quadratic polynomial f 2 Q, namelyf = 12h2 Xfv;wg��v 6=w �v�w;which we recognise as the polynomial given by (3.14), with each occurrence of kv � wkreplaced by h. Geometric interpretation of the result,the optimal recovery of functions and envelope theoremsSuppose that the following information about f 2 C2(T ) is known:f(v); v 2 � (its values at the points �) (3:18)8



and jD2f j � K on T (i.e., f 2;1;T � K): (3:19)then it follows from an observation of Golomb and Weinberger [GW59] that there existfunctions L; U for which L(x) � f(x) � U(x); 8x 2 T;and these bounds cannot be improved in the sense that there exists an f taking any valuestrictly between them. For obvious reasons, some authors refer to these functions L and Uthat enclose f as (lower and upper) envelopes for f .Theorem 3.4 provides the solution of this optimal recovery problem of determining Land U as follows. Since f satis�es (3.19), inequality (3.5) givesjf(x) � L�f(x)j � 12K (R2 � kx� ck2);which can be rewritten asL�f(x) � 12K(R2 � kx� ck2) � f(x) � L�f(x) + 12K (R2 � kx� ck2); (3:20)which is sharp for those f 2 Q with f 2;1;T = K. Hence (3.20) provides the envelopesfor f , which we now state as a corollary.Corollary 3.21 (Envelope Theorem). Suppose that L� is the map of linear interpo-lation at �, and let c be the centre and R the radius of the (unique) sphere containing �.If the value of f 2 C2(T ) is known at the points �, and jD2f j � K on T , thenL(x) � f(x) � U(x); 8x 2 T; (3:22)where L(x) := L�f(x) � 12K (R2 � kx� ck2);U(x) := L�f(x) + 12K (R2 � kx� ck2); (3:23)and for any of the values allowed by (3.22), there exists a function taking on that value.In particular, the quadratic functions L; U match f at � and satisfy jD2Lj; jD2Uj = K onT . Notice that the envelope functions L; U given by (3.23) can be computed from � andthe values given for f(v), v 2 �.Perhaps the best known `envelope theorem' is the result of Ga�ney{Powell [GP76]and Micchelli{Rivlin{Winograd [MRW76] which shows that if the values of a univariatefunction f is known at m + k points in [a; b] and jDkf j � K on [a; b], then f must liebetween two perfect splines of degree k. Corollary 3.21 is a multivariate generalisationof the case k = 2 (with m = n � 1). Though a trivial generalisation in the sense thatthe envelope functions are such simple multivariate splines (quadratic polynomials), it9
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