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Abstract

The L,(Q2)-distance of sufficiently smooth functions from n-variate polyno-
mials of degree k is investigated.
The method, as in past approaches, is first to construct a formula for a right

inverse R of the differential operator
DL f o DML = (DOf s fa] = E 4+ 1),
and then to manipulate the expression
R(D*'f)

to obtain L,(€2)-bounds.

New formulae for such R are presented. These are based on representations
for the error in the family of polynomial interpolators which includes the maps of
Kergin and Hakopian.

A multivariate form of Hardy’s inequality involving the linear functional of
integration against a simplex spline is given. This inequality provides a simple way
to obtain L,(Q)-bounds from the formulae for R(D**1f) given here, and many

others in the literature.
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Introduction

The early work on Sobolev spaces contains many theorems similar to the
following which can be found in Morrey [Mo66]. Let W]f'i'l(Q), 1 < p < oo be the
usual Sobolev space (discussed in more detail in Section 2.1), and let II; denote

the n-variate polynomials of degree < k.

Theorem ([Mo066:Th.3.6.11,p85]). Let Q be a connected bounded open set in

IR"™ with a Lipschitz boundary. Suppose that
P:WiItH(Q) — Wit(Q)
is a bounded linear projector with range Ily. Then there exists C' > 0 such that
If = Pfllwr+iq) < CIUD"™ fllr ), V€ WTH(Q),

where the suggestive notation | D*t1 f||; (o) indicates any of the usual (equivalent)

seminorms that measure the L,()-size of the (k + 1)st derivative of f.

Theorems of this type first occurred in the work of Sobolev, see, e.g., [S050],
and in the paper of Deny and Lions [DL53] (for the case p = 2).
In the early 1970s it was realised that this theorem is important in numerical

analysis because of the following immediate corollary.

Corollary. Let X be a normed linear space. If 1lj is contained within the kernel

of a bounded linear map

L:WithHQ) — X,

then there exists K > (0 such that

IZFIL < LI dist yyss ) (f, TTk) < KD fllp, ), YF € WHH(Q).



The special case of this corollary when X = IR is commonly referred to as
the Bramble-Hilbert lemma after the paper [BH70] where it appeared.

This corollary is used to conclude that a numerical scheme, such as a fi-
nite element method (see e.g., [Ci78]), has the highest order of accuracy that its
polynomial reproduction allows.

The difficulty with the theorem (and its corollary) is that it is not construc-
tive, i.e., gives no estimate of the constant involved. Because of this fact, there
have been, since the publication of [BH70], many papers dealing with ‘constructive
instances of the Bramble-Hilbert lemma’, i.e., estimating the constants C' and K
of the theorem and its corollary. For example see Ciarlet and Wagschal [CWT1],
and Gregory [Gr75].

The standard way of doing this (see, e.g., Meinguet [Me78]) is to find a map

R so that the error in approximating f by Pf can be expressed as
f=Pf=RD"f), ¥feW; Q) (a)
where D**! is the differential operator
DL f s DRUf = (DOF o = F 4 1),

By applying D**! to both sides of (a) it is seen that the (necessarily) linear map R
is a right inverse for D**'. The hope is then to manipulate a suitable formula for
R(D**1 f) to obtain such L,(2)-bounds as occur in the theorem. More generally,

if L is as in the corollary, then
Lf =L(f - Pf) = LR(D""'f), (b)

and one tries to bound LR(D**!f) by HDk—i_lfHLp(Q).



The observation (b) can be viewed as the multivariate analogue of the Peano
kernel theorem. In the Peano kernel theorem, P is taken as the Taylor interpolant
of degree k at the left end point of the interval of interest, R is the formula for
the error involving integration against the (k 4 1)st derivative, and L is a linear

functional.

There are many possible maps R, and for each R there are many possible
formulee describing it. Thus, the difficulty with using (b) as the basis for a mul-
tivariate Peano kernel theory is deciding which R to choose, and then obtaining
formulee for R and LR which can easily be manipulated to obtain L,(£) bounds.

In this thesis we consider such questions.

In Chapter 1 of this thesis we consider the case when P is from a family of
linear maps which includes Kergin and Hakopian interpolation. These maps are
‘lifted’ versions of univariate Hermite interpolation, and contain Taylor interpola-
tion at a point as special cases. For these maps we obtain integral error formuleae
of the desired form R(D*T!f). In contrast to most error formula for these maps
obtained in the past (see e.g., Lai and Wang [LW84]), those given here involve only

derivatives of order k + 1.

The error formule given in Chapter 1, like those for many other multivariate
generalisations of Hermite interpolation, express the error at the point = in terms
of the linear functional of integration against a simplex spline with a knot set which
includes z a certain number of times. To obtain L,()-bounds from such formulee,

in Chapter 2 we present the following multivariate form of Hardy’s inequality, that



form—n/p>0

. 171, C
| /[x,...,x,@]f lo < o= Tm —n/pge” (c)
N

valid for f € L,(IR") and © an arbitrary finite sequence of points in R". Examples
treated with this inequality include the formulae of Chapter 1 in Section 2.3, and
those for ‘Lagrange maps’ in Section 2.4.

We conclude Chapter 2 with a discussion of why (c¢) plays a crucial role
in obtaining L,({)-bounds from pointwise integral error formulea for multivariate
generalisations of Lagrange interpolation, and why it is likely to do so for those

that will be obtained in the future.



1. Integral error formul= for the scale of
mean value interpolations which includes

Kergin and Hakopian interpolation

1.1. Introduction

In this chapter we study the error in a certain scale of mean value interpo-
lations which includes Kergin and Hakopian interpolation. The literature divides
into two different approaches to this problem.

The first is concerned with the convergence of the interpolants as the number
of interpolation points increases. Here only Kergin interpolation has been studied.
Certain conditions on the position of the interpolation points and the growth of
the entire function to be interpolated are given which guarantee that the sequence
of interpolants converges uniformly on compact sets. See, e.g., Bloom [BI81].

We are interested in the second approach, which is to write the error in
interpolation as integration against derivatives of high order, much as is done for
univariate Hermite interpolation.

There have been several papers in this direction, including Lai and Wang
[LW84] (Hakopian interpolation), [LW86] (Kergin interpolation), and Gao [Ga88]
(mean value interpolation). Each of these gives formule for the error, complicated
by the spurious use of certain multivariate divided differences, involving derivatives
of various orders. There seems to be very little correspondence between the degree
of the interpolating polynomial space and the order of the derivatives involved.
This order can be as low as 0, and as high as twice the degree of the interpolating

polynomial space.



In this chapter we give an integral error formula for the scale of mean value
interpolations that involves only derivatives of order one higher than the degree
of the interpolating polynomial space. From this we obtain sharp L..-estimates.
These estimates imply that a numerical scheme based on mean value interpolation
has the highest order that its polynomial reproduction allows.

The chapter is set out in the following way. To describe the scale of mean
value interpolations, we use a certain linear functional f — f® f and the notion
of ‘lifting’” univariate maps. These two notions are studied in requisite detail in
Sections 1.2 and 1.3 respectively. In Section 1.4, we define the scale of mean value
interpolations and give its Newton form. In Section 1.5, we give two different
integral error formule for the scale. In Section 1.6, from these formulae, we obtain

L .-estimates.

Some notation

The space of n-variate polynomials of total degree k& will be denoted by
ITx(IR™) and the homogeneous polynomials of degree k by II(IR"™). The differential
operator induced by ¢ € IIx(IR") will be written ¢(D).

We find it convenient to make no distinction between the matrix [6y,. .., ;]
and the k-sequence 6,...,0; of its columns. Since [0y,...,0;]f is a standard
notation for the divided difference of f at © = [0y,..., 0], we use for the latter the

nonstandard notation

bof = 6,001

Note the special case

o) f = fl).
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Similarly, to avoid any confusion, the closed interval with endpoints ¢ and b will

be denoted by [a .. b].
The notation © C © means that © is a subsequence of O, @\(:) denotes the

complementary subsequence. The derivative of f in the directions © is denoted
Do f := Dy, --- Dy, f.
The subsequence consisting of the first j terms of © is denoted ©;, and
r—0 =[x —60,...,0 — 0.
Thus, with O :=[6y,...,07], we have, for example, that
Die—ovos,0-65f = Di—9Dy—g, Dz, f-

The diameter and convex hull of a sequence © will be that of the corre-
sponding set and will be denoted by diam © and conv © respectively. Let || - || be
the Fuclidean norm. To measure the size of the k-th derivative of f at x € IR", we

use the seminorm

ID*fl(x) == sup  |Dy, -+ Dy, f(z)]
U yenns up €ER
lugll<1
Notice that
Dy, -+ Dy f()| < [D*fl() ||ug |- [u]|- (1.1.1)

To measure the size of the k-th derivative of f over K C IR", we use

| £ Lo yo0, i 1= su}ole’“fl(x). (1.1.2)
rEK
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Because of (1.1.1), the co-ordinate-independent seminorm |-|j 5 is more appro-

priate to the analysis that follows than other equivalent seminorms, such as

fr max [D°fllre. o).

1.2. The linear functional f+— [, f

The construction of the maps of Kergin and Hakopian depends intimately
on the following linear functional called the divided difference functional on

IR"™ by Micchelli in [M79], and analysed there and in [M&0].

Definition 1.2.1. For any © € R+ Jet

1 51 Sk—1
fl—)/ f:/ / / f(90—|—81(91—90)—|—'"—|—8k(9k—9k_1))d8k"'d82 dSl,
e 0o Jo 0
with the convention that f[] f:=0.

In addition to Kergin and Hakopian interpolation, the linear functional f +—
f® f also occurs when discussing other multivariate generalisations of Lagrange
interpolation, e.g., the Lagrange maps of Section 2.4. It was used as early as 1859,

when in [Hel859] Hermite proved the Hermite-Genocchi formula, namely that

for @ € R+ and f € C*(conv ©)

6@f:/®D’“f.

In this section we outline those properties of f — f® f needed in the subse-
quent sections. Many of these properties are apparent from the following observa-

tion.
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Observation 1.2.2. If S is any k-simplex in IR™ and A : R™ — IR" is any affine

map taking the k + 1 vertices of S onto the k + 1 points in O, then

,# = s Lo

with volg(S) the (k-dimensional) volume of S.
In Definition 1.2.1
A:RF S R": (s1,...,58) — 04 51(01—00) + ... + s1(0r—0_1),
S i={(s1,...,50) €eRF:0 <5 < <y <5y <1}
In [M80], Micchelli uses a different choice of S and A, namely

A:IRk+1—>IR":(vo,...,vk)|—>v090—|—---—|—vk9k,

k
S = {(vo,...,vk) € R . v; >0, Zvj = 1}‘
7=0

This is the form that Genocchi used in [Gel878] when giving his version of the

Hermite-Genocchi formula.

Properties 1.2.3.

(a) The value of f@ f does not depend on the ordering of the points in ©.
(b) The distribution

M@:COOO(IR")HIR:fHk!/f
©

is the (normalised) simplex spline with knots ©.

(¢) If f € C(conv @), then [ f is defined and, for some § € conv O,

| f=wr©
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(d) If g : IR* - IR, and B : IR" — IR’ is an affine map, then

/@(903)2/369-

Some technical details

Remark 1.2.4. In view of Property (a),

@~Af

could be thought of as a map defined on finite multisets in IR" rather than on
sequences. However, adopting this definition leads to certain unnecessary compli-
cations. For example, to discuss the continuity of © — f® f, 1t would be necessary
to endow the set of multisets of k + 1 points in IR" with the appropriate topology.
Thus, in the interest of simplicity, © — f® f remains a map on sequences — but
with the reader encouraged to think of it, as does the author, as a map on multisets.

O

Remark 1.2.5. The simplex spline Mg of (b) has support conv®. It can be

represented by the nonnegative bounded function

VOlk_d(A_lt N S)

conv® — R:t = M(H0) = = o (5)

d := dim conv O,

in the sense that

Mof = M(|0)f. (1.2.6)

conv ©

In particular, if the points of © are affinely independent, then

1
k!/ f= —/ f = average value of f on conv ©. (1.2.7)
© VOlk( conv ©

conv O)
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Thus, [, f is defined (as a real number) if and only if M(-|®)f € Ly(conv 0),

|/®f|§/®|f|- (1.2.8)

If f is nonnegative on conv O, then [g f € [0.. oc] is defined (by Definition 1.2.1).

in which case

Therefore, we will write (1.2.8) for all f which are defined on conv® — with the
understanding that f® f is defined if and only if f@ |f| < oo or f is nonnegative.
In the univariate case, that is when n = 1, M(-|0) is the (normalised) B-spline
with knots ©. For additional details about Mg and M(-|0), see, e.g., Micchelli
[M79]. O

Lastly, by (1.2.6), we can describe the continuity of © — f® f as follows.

Proposition 1.2.9.
(a) For f € C(IR"), the map

R+ 1R ®'—>/ f
e

is continuous.

(b) For f € L'°¢(IR"), the map
{0 e R vl (conv O) > 0} — IR : O — / f
C]

is continuous.

1.3. Liftable maps

In this section, we discuss univariate maps which may be lifted to multivari-
ate ones. These ‘liftable’ maps are crucial to both the construction and descrip-

tion of the error in a family of linear projectors which includes the Kergin and
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Hakopian maps. The main papers on ‘lifting’ are [CMSS80;], [CMS80,], [CGMSS3]
and [HMS7].
We denote the linear functional on IR”, induced by scalar product with
A€ R", by
MR S R:z e Moo= ix(@')x(@').

=1

A plane wave (or ridge function) is any map
goA' :IR" - 1R,

where ¢ : IR — IR and A € R". If ¢ € C'(IR), then we can differentiate g o A*,
thereby obtaining
Dy(goAX*)=(AN"y)(Dg) o \". (1.3.1)

This ‘lifts” differentiation to IR".

In [CMS80,] only the lifting of polynomial-valued maps is discussed. To ‘lift’
the error in such maps, we need a more general definition. The only real difficulty
involved in giving such a definition is in choosing the domain of the lifted map
appropriately to make certain that the plane waves are fundamental in it, thereby

implying the uniqueness of the ‘lift’, as is done in the following definition.

Definition 1.3.2. Let L : © — Lg associate with each k-sequence © in IR a
continuous linear map Lo : C*(IR) — C(IR). We say that a continuous linear map

Lo : C*(R") — C(IR") is the lift of L to © in IR" if it satisfies
Lo(go )= (Lixeg)o A", YAeR", Vg e C*(IR). (1.3.3)

If there exists a lift Lo of L to each k-sequence © in IR", then we say that L is

liftable (to R"), and call £ : © — Lg the lift of L (to IR").
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Notice that (1.3.3) overdetermines the map Lo, and so the use of the definite
article in the above definition is justified. Furthermore, by the fundamentality of
the polynomial plane waves (which span II(IR")) in C*(IR"), if L can be lifted to
Lo, then Lo is uniquely determined by (1.3.3). To avoid confusion, we will use
calligraphic letters to denote the lift of a univariate map and, from now on, reserve
k for the number of points such a map is based on.

The geometric intent of lifting is that the ‘lift’ of a function which varies
in one direction, i.e., a plane wave, should be a plane wave (varying in the same
direction) obtained in a natural way from the univariate map to be lifted.

The basic tool for recognising liftable maps and presenting their lifts is to

write them as a sum of ‘elementary liftable maps’, which are defined as follows.

Definition 1.3.4. Let s,m > 0. Fix a; € RFTN0, j = 1,...,s and B ¢
REHDXm+D) - For each k-sequence © in IR, let Le : C*(R) — C(IR) be the

continuous linear map given by

Ll

Lof(o) = (ITle0l) [ 0= [M]B(HID[I,@M)JC. (13.5)

j=1
We call L : © — Lo an elementary (k-point) liftable map (of order s).

Here and below, in line with our earlier identification of vector sequences

and matrices, [, ©]B is the matrix whose j-th column is the vector

In other words, [z, ©]B is an (m + 1)-sequence.
The equality in (1.3.5) expresses Lo f(x) in a form which has a natural
multivariate analogue. In this way, the definition is tailor-made to make it obvious

that such a map is liftable, as we prove next.
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Theorem 1.3.6. FEach elementary liftable map of order s, as in Definition 1.3.4,
is liftable to R"™. Its lift £L: © +— Lg, with Lo : C*(IR") — C(IR"), is given by

,C@f(l') = / (H D[x,@]aj>f- (137)
In the special case that B(1,-) = 0, the range of L¢ is contained in II,(IR").

Proof. The continuity of Le required in Definition 1.3.4 and the conti-

nuity of Lo asserted in Theorem 1.3.6, follow from the inequality
1 8
HE@fHLoo(I\) < m (gcné[ic 1_[1 H[xv @]CL]H> |f|s,oo,conv([x,®]B)7
]:

where I C IR" is compact. This is proved by applying, to (1.3.7), Property 1.2.3
(c) followed by (1.1.1) and (1.1.2).
Given the continuity of the maps Lg and Lg, to show that £ is the lift of

L, it is sufficient to prove that
LolgoN)=(Lreg)o)*, YAXeIR" Vgec C(R), VO € (R")".

By applying (1.3.1) s times, it follows that

Cotgoxyio = [ (121 Vo 0la; ) (D)0 X"

To the right-hand side of this, we apply Property 1.2.3 (d) (with A* the affine map)

and the identity A*[x, ©] = [A\*2, A*O] to obtain that

Ll

/ (H[A*% x‘@]%) (D%g) = (Lx-o g)(A"2).
e are]B \ O
Ezample 1.5.8. In [HMS87] it is shown that (sadly) the divided difference cannot

be lifted; however we may lift the following divided difference identity

6@,1} g — 6®,w g
6[®,v,w]g = [ . [ ] , U 7£w (139)

v —w
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By the Hermite-Genocchi formula, (1.3.9) may be rewritten as

(0= w) /[e’w] Df = /[@,v] . /[@,w] ‘.

where f := D¥g and k = #0. By Theorem 1.3.6, this lifts to

/ Dv—wf:/ f_/ f7 (1310)
[©,v,w] [©,v] [O,w]

for all sufficiently smooth f, where O is any finite sequence in IR" and v,w € IR".

An elementary liftable map depends continuously on ©, in the following

sense.

Theorem 1.3.11. Let L be the lift to IR" of an elementary k-point liftable map

of order s. For all f € C*(IR"), the map
(R")* - C(R™): 0 — Lof

is continuous.

Proof. By Property 1.2.3 (e), the map
(l’, ®) = ,C@f(l')

1s continuous. O

The literature contains no discussion of the ‘continuous’ dependence of Lg on
©. In [CMS80,] it is shown that a complex reqular Birkhoff interpolation procedure
is liftable by writing it as a sum of what we have called here elementary liftable

maps. Thus, we have the following.
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Corollary 1.3.12. Let B be the complex regular Birkhoft interpolation procedure
and B its lift to R". For each f € C*(IR"), the map

O — Bof

is continuous.

In the case n = 1, 1.e., when Bg = Be, this continuity result was proved in
[DLR82] by using ‘de-coalescence’ of the interpolation matrix.

Another immediate consequence is the continuous dependence of the Hermite
interpolant on its points of interpolation. However, that is a direct consequence of

the well-known continuity of O — g f.

Related considerations

In [CMS804], [HMS8T], there is a discussion about lifting the family of dis-
tributions

Rk+1 — 5 (l‘,@) = (S[I]L@,

where S is some suitable space of distributions, e.g., C§°(IR), or, in our case,
EIS(IR) (the space of compactly supported distributions of order s).

Lifting such a family is shown there to be equivalent to inverting its Radon
transform. Without going too far into details, we mention that, for an elementary

liftable map of the form (1.3.5), its Radon transform H is given by

H(f) = /B(]:I1 D.,) .

and so Lg may be expressed as

Lo f(z) = H(f o[z, 0]).



17

One useful consequence of the Radon transform theory is the following com-
patibility condition: if L is liftable, then (z,0) + Lo((-))(z) is homogeneous
of degree i. Moreover, by Property 1.2.3 (d), if L is an elementary liftable map and
f is a homogeneous polynomial of degree i, then (z,0) — Lo f(2) is homogeneous

of degree 7.

1.4. The scale of mean value interpolations

In this section we describe a family H"™) m < k, of liftable maps that were
lifted in [G83] to obtain multivariate polynomial interpolation schemes. Special
cases of these multivariate schemes, referred to in [BHS93:p203] as the scale of
mean value interpolations, are the well-known maps of Kergin and Hakopian.

We will need the following facts about linear interpolation.

Linear interpolation

Let F be a finite-dimensional space and A a finite-dimensional space of
linear functionals defined at least on F. We say that the corresponding linear
interpolation problem, LIP(F, A) for short, is correct if for every ¢ upon which

A is defined there is a unique f € F which agrees with ¢ on A, i.e.,
M) = Mg), VA€ A

The linear map L : g — [ is called the associated (linear) projector with inter-
polants F' and interpolation conditions A. Each linear projector with finite-
dimensional range F' is the solution of a LIP(F, A) for some unique choice of the

interpolation conditions A.
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Notice that the correctness of LIP(F, A) depends only on the action of A on

The map H™
Let D™™ f be any function with D™ (D~ f) = f. If
P:C*(R)—II,(IR)
is any linear projector, then for m <n
f=D"P(D™™f),

is a linear projector into II,,_,,(IR) which is defined on C°*~™(IR).
We are interested in the case where P is Hg, which is, by definition, the

Hermate interpolation operator at ©, a k-sequence in IR.

Definition 1.4.1. For 0 < m < k = #0, the generalised Hermite map
H™ 0 H((am)
is given by the linear projectors
HY - " YR) - Iy_m1(R) : f > D™ (Ho D™ f).

For convenience, H(®) := 0.

Observe that Hé)o) = He, which in part justifies the term ‘generalised Her-
mite map’. The generalised Hermite maps H((am) occurred in the approximation
theory literature before they were lifted by Goodman in [G83]; see e.g., de Boor

[B75] where they were used to bound spline interpolation.
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The interpolants for H((am) are [T, —1(IR), and the interpolation conditions

are

span{fH[D#é_m_lf:éCG, #6 >m+1).
©

For O a finite sequence in IR, let

Note that if 7 < #0, then

Diwe =j! ) wero- (1.4.2)
éce
#6=j
If ©=1[6,...,0k], then we may write the ‘Newton form’ of H((am) as
HYY f(z) Z bo, ( f)D"we,;_,(x), m <k. (1.4.3)

j=m+1
The term ‘Newton form’ used here is justified not only by the fact that (1.4.3) is
obtained by differentiating the Newton form of He(D ™™ f), but by the observation
that

H((anZLf = H((an;:)f + 6®k+1(D_mf) mee)k, m < k+1.

H(™) the lift of H(™
We now show that H™ is liftable to IR™. The lifts H(™), m < k, form what
we call, with [BHS93], the scale of mean value interpolations.
By using (1.4.2) and the Hermite-Genocchi formula, the ‘Newton form’
(1.4.3) may be written as the following sum of elementary liftable maps:

HS f(2) Z 3 < :1;—9 /DJ m—1 ¢ (1.4.4)

j=m+1 G)CG)] 1 9€@] 1\@
#é):m
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We refer to this as the Newton form of H((am).

Thus, by Theorem (1.3.6), the map H(™) can be lifted to H(™), where
Hgn) : Ck_m_l(IRn) _ Hk—m—l(IRn)7

with its Newton form given by

H £( Z 3 / D, o _\of (1.4.5)

j=m+1 @c@)] 1
#G) m

This formula (1.4.5) is due to Goodman [G83]. He shows that each Hgn) is

a linear projector with range IIx_,,—1(IR") and (lifted) interpolation conditions

R")}.  (1.4.6)

spanlf = [ g(D)f 6 C 0. #6=m 1 g €My,

Special cases

The map Hg) is the Kergin map, see [K80] and [M80]. The Newton form

of Kergin’s map,

HY f(o) = £(61) + / Dyof 4+ / Dyog Doty f.
[61,....6%]

[01,62]

is given in [M80] and [MMS80]. Notice that the interpolation conditions of this
map include evaluation at the points ©. Thus Kergin’s map is a multivariate
generalisation of Lagrange interpolation.

The map Hg) was introduced in [CMS80;] where it was referred to as the
area matching map. Presumably the term ‘area matching’ came from the fact
that if the points in © := [6y,...,6;] in IR are distinct, then the interpolation

conditions of Hé)l) are

B4
span{f|—>/ fri=1,...k—1}.
0;
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If the k¥ > n points in O are in general position in IR", then Hg_l) is the
Hakopian map, see [H81] and [H82;]. For this map, the interpolation conditions

may be written as

span{f|—>/éf:(:)c®, #(:):n}

Thus, Hgn_l) has an extension (the map originally given by Hakopian) to C(IR")
and interpolants II;_,(IR"). Though not immediately apparent from (1.4.6), the
interpolation conditions for Hakopian’s map include evaluation at the points O.
Thus it, like Kergin’s map, provides a multivariate generalisation of Lagrange in-
terpolation.

For additional discussion on expressing the interpolation conditions for H(@m)

in terms of derivatives of lower orders than given in (1.4.6), see [DM83].

1.5. Integral error formulae

Observe that
f—HSf = D"(D~" f — Ho(D™" f). (15.1)

Thus, to obtain an error formula for H(™), one might hope to lift the error formula
for Hermite interpolation. In this section, this is done in two ways. The first and
more natural way introduces derivatives of higher order than one might like. In the
second, this deficiency is remedied by taking advantage of a little-known formula

for the derivative of the error in Hermite interpolation.
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The first error formula

Using the differentiation rule for divided differences

di

@%,@]f =0, .. 20 (1.5.2)
i1
the Hermite error formula
D" f(z) = Ho(D™™ f) () = wo(x) &1s.0) (D" f) (1.5.3)

can be differentiated (m times) to obtain, by (1.5.1), that

o) = HG 1) = 3 (1) Do) = el o D) (L5

m—j+1

Using (1.4.2) and the Hermite-Genocchi formula, we may write (1.5.4) as

flo) = HE" f(x) —m'z D wosle / (D=7 §), ¥fe CHR).

7j=0 éce seer Ly ]
£E—j N~
m—j+1

(1.5.5)
The formula (1.5.5) expresses the error, f — f — H((am)f, as a sum of elementary
liftable maps of orders k —m, ..., k. Thus, using Theorem 1.3.6, this can be lifted,

thereby giving the following.

First error formula. If m < k and f € C*(IR"), then

Fz) = HE f(a) —m’z Z/ , Deorf (1.5.6)

] 0 @)C@) PRRRPR

#6=j "
m—j+1

For Kergin interpolation, i.e., when m = 0, this formula reduces to

fla) —HY = D.-ef, (1.5.7)
[,0]
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which was given in Micchelli [M80].
The only other mention of this formula in the literature is for Hakopian
interpolation, i.e., when m = n — 1, and occurs in the book [BHS93:p200]. There

(1.5.6) is stated incorrectly, and without proof, as

n—1
ICRLCRVEED S O (Ul I I

Jj=0 éce
#6=j 4
m—j+1

In other words, the constant (n B ) there should be replaced by (n — 1)l

The interpolants for H(@m) are IIx_p—1(IR™). The error formula (1.5.6) in-
volves derivatives of orders k — m, ..., k. For m > 0, it would be desirable to not

have the higher derivatives k —m+1, ...,k occurring. We now give such a formula.

The second error formula

The higher derivatives in (1.5.6) are introduced when (1.5.2) is used to dif-
ferentiate = +— 6, 0)(D ™™ f) in (1.5.3). To avoid this problem, we use the following

formula for the derivative in Hermite interpolation. It was given independently by

Dokken and Lyche [DoLy78], [DoLy79] and by Wang [WT78], [WT79].

Theorem 1.5.8 ([DoLy78],[W78]). If © = [#1,...,60], 0 < j < k and [ €
C*(R), then

k

‘ . (x — ;) +i—k
D](f—H@f) (l’) :]’ E 7'1)] ! w®1_1(x)6[x,,w,®z]f
ity U= k) e

Applying to (1.5.1), Theorem 1.5.8 followed by the Hermite-Genocchi for-
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mula, we obtain that, for f € C*~™(IR),

k
m (l‘ — 91) i —k k—
fla) — H )f(:zj) =m! Y _pmt we,_, () DF—™f,
——’
E4l—i

(1.5.9)
This formula (1.5.9) is a sum of elementary liftable maps, each of order k — m. Its

(m)

lift, using Theorem 1.3.6, gives the following error formula for Hg

Second error formula. If m < k and f € C*~™(IR"), then

Flz) — HI f(2) Z 3 / Div_o noasyf- (15.10)

i—k—m  6Co;_, [z,...,2,0]

#O=m+i—k e

This formula involves only derivatives of f of order k — m.

Those worried that the formula (1.5.10) is not symmetric in the points of ©
could, if desired, take the average over all possible orderings for © to obtain such a
symmetric formula. More to the point, it would be desirable to find the ‘simplest’
symmetric form of Theorem 1.5.8.

Derivatives of the error

The univariate identity
Dj H(m) :H(m+j) Dj
(He 'f)=He "7 (D'f)

can be ‘lifted’ to the following; see, e.g., [BHS93:p205].

Proposition 1.5.11. If m < k, j <k —m, g € IY(IR") and f € Ch=m=1(IR"),
then
g(DNHG" ) =HG" (9(D)f).
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This allows us, in a very natural way, to use an error formula for H(@m) to
describe the derivatives of the error in Hgn). In particular, with the second error

formula (1.5.10), we obtain the following.
Theorem 1.5.12. If m <k, j <k—m, g € IIY and f € C*~™(IR"), then

g(DY(f —HY F) (=)

k

—m Y Y [ Do esDF

i=k—m—j  ©ceo;_, [2,...,2,0,]

#O=m+jt+i—k k1

This formula involves only derivatives of f of order k — m.

Proof. By Proposition 1.5.11,
g(D)(f —HE f) = (9(D)f) — HG T (g(D)f).

Since g(D)f € C'k_(m+j)(IR"), we may apply the second error formula (1.5.10) to

the error in Hgn—i_j) at g(D)f, thereby obtaining the given formula. O

This theorem is the major result of this chapter. Special cases of it include
the second error formula (1.5.10) and Theorem 1.5.8. It expresses the error in
Hgn)f, and its derivatives, in terms of integration against the derivative of order
one higher than the degree of the interpolating polynomial space. This is precisely
the estimate that numerical analysts want, to guarantee that their scheme, e.g., a
Hgn) finite element (see, e.g., [L92:p164]), has the maximum possible order.

From this Theorem, L..-estimates for the error can easily be obtained. This

1s done in Section 1.6.

Comparison with the results of Lai-Wang and Gao

The results of [LW84], [LW86] and [Ga88] are written in terms of the mul-
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tivariate divided differences
[91,...,9|a|]af ::/ D*f, Vac 7. (1.5.13)
(61, o |]

The simplest of these results to state is the following error formula for Kergin

interpolation.

Theorem 1.5.14 ([LWSG:Th.S.l]). If o € ZZ3 with |a| <j <k —1, then

7

R IEID 33 YR (HLEE) Sy

r=0 v<a p2a-v =1
[vl=r |Bl=i-r

[, .o 2,01, .0, 1907 f
N— —’

r+1

_ Z Z l)oz(,u,Y [91,...,91”—1—1]7](7

S
(1.5.15)
where
(5)=(5)(5)
B)  \h Bn )’
and

wy(z) = Yoo (@b (e =iy,
eil —|——|—el|7|:'y
The above uses standard multi-index notation. The 2-th component of x €
IR” is x;, and ¢’ is the i-th unit vector in IR".
Formula (1.5.15) of Theorem 1.5.14 involves derivatives of f of orders j +
1,...,k — 1; whereas the formula (1.5.10) involves only derivatives of order k.

Also, in the case of greatest interest for this formula, namely when j + 1 =

k—1 and a = 0, formula (1.5.15) reduces, in the univariate case, to

f(l') - H@f(l‘) = w®k—1(x)/

[w,&l,...,ek_l]

D f—ve, (o) [ DI,
[01,---,0%]
(1.5.16)
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Since formula (1.5.16) is a sum of elementary liftable maps, and follows from one
application of (1.3.10) to the Hermite error formula
(o)~ Hof(e) = (e = 60) -+ (e~ 80) | Df,
[x_ela"'af_ek]

we obtain at once the case j +1 =k — 1 and o = 0 of Theorem 1.5.14 by lifting

(1.5.16), and in the following form:

fla) =Y f(x) = / Dy—g, - Dy—g,_, f— Dy—p, -+ Dy, f.
[x,Ol,...Ok_l] [91,9k]
(1.5.17)
If one now expands (1.5.17) in multivariate divided differences, then one
obtains (1.5.15) for this case. However, it is not clear what has been gained in the
process.

Similar considerations, can, and should, be given to other formulas in

[LW84], [LWS86] and [Ga88].

Additional comments

The only justification for the term ‘multivariate divided difference’ for
(1.5.13) that the author can see, is the identity (1.3.10), which is due to Mic-
chelli (see [M80:Th.6]), and (in its many guises) pervades the multivariate spline
literature. With that justification, the term might as well be applied to any linear

combination of functionals

fo /@ g(D)f, ©€(R")*, g eTl(IR"),

that can be expressed as a linear combination of other such functionals involving

lower order derivatives of f.
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1.6. L-estimates

In this final section, we obtain L..-estimates from the formulee of Section
1.5. Our choice of the seminorm |-|j o x defined in (1.1.2) makes this a straight-
forward task. Let

hy e = max ||z — 0| < diam[z, O].
#cO
From the first error formula (1.5.6), we obtain the following L. -estimate.

Proposition 1.6.1. If m < k and f € C*(IR"), then
|f(l') — Hgn)f(l'ﬂ S Z COIlStj,k,m(hx,@)k_j |f|k—j,oo,conv[x,®]7
j=0

where

o m! k
COIlSt]"k’m = m ] .

Proof. To the first error formula (1.5.6), apply Property 1.2.3 (¢), then

use (1.1.1) and (1.1.2) to obtain

|f( ) H(m)f |<m’z Z (hx @)k ]lflk j,00,conv(z,0]-

]Oe)c@)
#6=j

Lastly, observe that

#{0CO:# }—<>

O
From Theorem 1.5.12, we obtain the main result of this section.
Theorem 1.6.2. If m < k, j <k —m and f € CF~™(IR"™), then
|D](f H( )f)|($) < @)k I |f|k—m,oo,conv[x,®]' (163)

e
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The constant is the best possible in the sense that if © = [0, ..., 0], then it cannot

be improved.

Proof. To prove the inequality, begin as in the proof of Proposition

1.6.1, then use the identity:

(m+j) < i—1 B 1
! 2 ‘<m—|-j—|-i—k>_(k—m—j)!'

t=k—m—j

Suppose © = [6,...,6]. By (1.4.6) we have that H(@m)f is the Taylor in-
terpolant from Ilj_p—1(IR") to f at 6. Let u := (x — 0)/||lx — 8]|]. Note that

hye = ||z — 6||. Then for the plane wave
fi=(—-u*)fFmou* € M_,(IR"),

H(Gm)f = 0, and we have, by (1.3.1), that

Di(f - HG" Pl(x) _ |Dif(a)]
| fli—m,c0,conv[z,0] (kK —m)!
_(k—m)- (k(f ;7)7’1 —J Tt 1)( — R o (u )
= e
Thus, in the case © = [6, ..., 6], the constant is the best possible. O

When m = 0, Proposition 1.6.1 and Theorem 1.6.2 (with j = 0) reduce to

1
F(2) = e F(2)] < 15(0,0)* | F 1k, 0.com(z 0

which was given in [M80]. For m > 0, none of the above L..-estimates are in the

literature.



30
Remark 1.6.4. In [Bo83:Th.2.5] Bos gives the following estimate for Kergin in-
terpolation on the disc. Let O consist of k points equally spaced on the disc
{z € R?: ||z|| = h}, where h > 0. Then for f € C*(IR?)

max | f(z) - HO f(a)] < = =

1
B N . ‘
llzll<h L1 ok L o0, il <n)

This indicates that it may be possible to reduce the size of the constant in
(1.6.3) for restricted values of h, ¢. However, in view of the sharpness for the case
of Taylor interpolation (when © = [0, ..., 6]) and the continuity of @ — H(@m)f (by
Theorem 1.3.11), for unrestricted values of h, @ the constant is the best possible

in all cases.

It is not possible to apply Properties 1.2.3 (¢) to the integral error formulee
of this chapter to obtain Ly-estimates for 1 < p < oco. A partial solution to this
impasse, which uses a multivariate form of Hardy’s inequality, is given in Chapter

2.
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2. A multivariate form of Hardy’s inequality
and r,-error bounds for multivariate

Lagrange interpolation schemes

2.1. Introduction

The central result of this chapter is the inequality, that for m —n/p >0

1
T — f <
” /[@] Iz < i —npwe
——

1fll, @), Yf€ELy(), (2.1.1)

where O is a finite sequence of points in IR", and 2 is a suitable domain in IR".
This inequality is a multivariate generalisation of Hardy’s inequality, that for

p>1

1 [ P
I~ ;/ Pl < 27 Iy 0,000 VF € (0, 00). (2.12)
0

Thus, we will refer to (2.1.1) as the multivariate form of Hardy’s inequality.
Our interest in (2.1.1) comes from a desire to obtain L,-bounds from the
many integral error formulze for multivariate generalisations of Lagrange interpo-

lation that involve the linear functional

— . 2.1.3
f /[x,...,x,@] f ( )
——

The chapter is set out in the following way. In the remainder of this section,
the notation, and facts about Sobolev spaces that we will need are discussed. In

Section 2.2, the multivariate form of Hardy’s inequality is proved. In Section 2.3,
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the multivariate form of Hardy’s inequality is applied to obtain L,-bounds for
the error in the scale of mean value interpolations, which includes Kergin and
Hakopian interpolation. In Section 2.4, in a similar vein, L,-bounds for the error
in Lagrange maps are obtained. In Section 2.5, we discuss why the multivariate
form of Hardy’s inequality is applicable to the many error formulee for multivariate
Lagrange interpolation schemes, and is likely to be so for others obtained in the

future.

Some additional notation

Let Q C IR", with Q its closure. The letters ¢, 7, k,[,m,n will be reserved
for integers, and 1 < p < co.

Many of the constants in this chapter involve the shifted factorial func-
tion

(a)p :=(a)a+1)(a+2) - (a+n—-1)= ———— (2.1.4)

where I' is the Gamma function. The Gamma function satisfies the relation:
I'(a+1) =al(a), Ya > 0, and has I'(1) = 1. Some of our calculations require the

Beta integrals

! b)
ta 1 1—t b ldt— — 0 a b 0 215
/0 ( ) P( b)7 9 > 9 ( )

and the hypergeometric function

2F1<a’b':1;> = Z (a);g&x". (2.1.6)

¢’ nl(e)n

The standard reference to these is the monograph [E53].
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Geometry of the domain

We say that Q@ C IR" is starshaped with respect to S a set (resp. se-
quence) in R" when € contains the convex hull of S U {«} for any « € Q. This
condition is weaker than € being convex.

In our results, it will be required that Q be starshaped with respect to
O € R"**, where Q is an open set in IR™. This condition is required of Q, rather
than of €2, so as to include cases where some points in O lie on the boundary of
Q. One such example of interest is the Lagrange finite element given by linear
interpolation at O, the vertices of a n-simplex, see, e.g. Ciarlet [Ci78:p46]. In this

case, () = conv © and none of the points of O lies in the open simplex (2.

Fig 2.1.1 Examples of domains  (shaded) for which Q is starshaped

with respect to the points in O (e)

We now show that being starshaped with respect to a finite sequence is

equivalent to being starshaped with respect to its convex hull.

Proposition 2.1.7. IfQ ¢ IR" and © € IR"**, then the following are equivalent:
(a) Q is starshaped with respect to ©.

(b) Q is starshaped with respect to conv 0.
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Proof. Only the implication (a) = (b) requires proof. Suppose (a). To
obtain (b) it suffices to prove that if  is starshaped with respect to points u and
v, then conv{u,v,z} C Q, Vx € Q, i.e., Q is starshaped with respect to conv{u,v}.

Assume wlog that w,v, 2 are affinely independent and z € conv{u,v,x}.
Let w be the point of intersection of the line through v and z with the interval
conv{z,v}. Since ) is starshaped with respect to v, one has that w € . Thus,

since € is starshaped with respect to u, one has that z € conv{u,w} C Q. O

Fig 2.1.2 The proof of Proposition 2.1.7

This equivalence ensures that if { is starshaped with respect to ©, then

f € L,(R) is defined over the region of integration in (2.1.3) for all z € .

Sobolev spaces

Let ngk)(Q) be the Sobolev space consisting of those functions defined on
Q2 (a bounded open set in IR" with a Lipschitz boundary) with derivatives up to

order k in L,(£2), and equipped with the usual topology; see, e.g., Adams [AdT75].
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It is convenient to include in the definition the condition that €2 have a Lipschitz
boundary, so that Sobolev’s embedding theorem can be applied. The full statement
of Sobolev’s embedding theorem can be found in any text on Sobolev spaces, see,
e.g., [Ad75:p97]; however we will need only the following consequence of it. If
J—n/p >0, then

Witi(Q) c ch(Q).

To measure the size of its k-th derivative, it is convenient to associate with

each f € W]Sk)(Q) the function |D* f| € L,(Q), given by the rule

|D*f|(z) == sup |Def(x)|= sup |Djf(z)l, (2.1.8)
NP i

where the derivatives Dg f are computed from any (fixed) choice of representatives
for the partial derivatives D®f € L,(2), |a| = k. The equality of the two suprema
is proved in Chen and Ditzian [CD90]. This definition of |D* f| is consistent with
its alternative interpretation in the univariate case. From (2.1.8), it is easy to see

that |D* f| is well-defined and satisfies
Dof| < D" fl6:]]--- |8l (2.19)

for all ® € IR"**. The inequality (2.1.9) holds a.e. To emphasize that Def,
|D*f| € L,(R), we will say that (2.1.9) holds in L,(2). The L,(Q)-norm of |D*f|

gives a seminorm on ngk)(Q),

FeoAflepa =1 ID*fl Iz, (2.1.10)

Because of (2.1.9), this coordinate-independent seminorm (2.1.10) is more appro-

priate for the analysis that follows than other equivalent seminorms, such as

F= LD Ly = led = F) lp-
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2.2. The main results:

the multivariate form of Hardy’s inequality

In this section we prove the multivariate form of Hardy’s inequality. This
inequality is useful for obtaining L,-bounds from integral error formulee for various

multivariate interpolation schemes.

First we need a technical lemma.

Lemma 2.2.1. Let m,k be integers, and p € IR. If 1 < m <k andm+ pu > 0,

then
L(m + p)
(1 —sm)dsg---dsy = )
/ / / T Tk + 1 p)
Proof. This can be proved by successively evaluating the univariate in-

tegrals. Instead we give the following proof — a neat application of the properties

of f— f® f. From Definition 1.2.1, we see that

/’/ / (1= s ) dsp - “1:K$V’

where

m k+1—m
For this ©, the nontrivial part of M(-|©) is a polynomial of order k on [0..1], with
(m — 1)-fold, (k — m)-fold zeros at 0, 1 respectively. Since [M(:|©) =1, (2.1.5)

implies that

T(k+1)

MEH®) = Tt +1 = m)

"1 =) 0<t <1,
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From (1.2.6) and (2.1.5) we conclude that

Ler =g [ oracie)
1 ! pwyam—1 k—m
= FTE T /0 trem=L(] )k gy
_ Tim+p)
D)k +1+ )

Here the condition that m + g > 0 is needed to ensure that the Beta integral is

finite. O

The multivariate form of Hardy’s inequality
Now we prove the multivariate form of Hardy’s inequality.

Theorem 2.2.2. Let O be a finite sequence in IR", and let Q) be an open set in

IR" for which Q is starshaped with respect to ©. If m —n/p > 0, then the rule

Limef(x):= / f (2.2.3)

[z,...,z,0]
——

m

induces a monotone bounded linear map Ly, ¢ : L,(2) — L,(2) with norm

1
[Lmoll < —~o00 as m-—n/p—0T. (2.2.4)

(m—1D!(m —n/p)ge

This upper bound for || Ly, e|| is sharp when p = occ.

Proof. Suppose that m—n/p > 0. Then m > 0, and we let k+1:= m+
#0O. Let L,(Q) be the semi-normed linear space consisting of those (measurable)

functions f defined on Q with || f||1,, (@) < o0, together with the semi-norm |||/ 1, (q)-

Let Z be the set of those f € L,(§2) for which || f||z, @) = 0. By Proposition 2.1.7,



38

the condition that © be starshaped with respect to © ensures that it is starshaped
with respect to conv ©. In particular, for any = € €0, the region of integration in
(2.2.3) is contained within  (upto a null set := set of measure zero). However, a
priori, we do not know whether (2.2.3) defines a function L, o f € L,(2) for every
f € L,(Q), i.e., equivalently, that the linear map £, 0 : L,(2) — L,(Q) given
by (2.2.3) maps Z to Z. In view of Remark 1.2.5, to show this, together with the

bound for || L, e||, it is sufficient to prove the inequality

L sareey o L DAY (225)

for all f € L,(€Q) which are nonnegative. In this case, L,, of is a well-defined
nonnegative function, which could possibly take on the value oco.

We now prove (2.2.5). Let f € L,(2) be nonnegative, and write

[2,...,2,0] =[2,..., 2,0, 0mt1,...,0k].
—— ——
By Definition 1.2.1,
Ly of(x /f (Ays) (2.2.6)
where s := (s1,..., ;) and

/// A

28 =0+ 8m(Om — ) + Smt1(Omt1 — Om) + -+ + s5(0 — Ok—1).

Applying Minkowski’s inequality for integrals (see, e.g., Folland [Fo84:p186]) to the

sum [ of functions x — f(A.s) we obtain, by (2.2.6), that

1 LmofllL,@) < /S |z f(Aes)||1, (@) ds. (2.2.7)
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The case 1 < p < co. We may write (2.2.7) as

1/p
ILmoflo @ < /S ( /Q f(Al,s)pd:z:> s,

In the inner integral, make the change of variables y = A,s. For this choice, the
new region of integration is contained in Q, and dy = (1 — s,,,)"dx. Thus, by the

change of variables formula, see, e.g., Rudin [Ru87:p153], we obtain that

[ "o ([ 325)
_ (/9(1 ~sp) TP d3> T

Finally, by Lemma 2.2.1 with m 4+ ¢ = m —n/p > 0, we have

s —n/p 5 — T(m—n/p)
/;1 ) = T 1 )

giving (2.2.4) for 1 < p < oc.
The case p = co. Since x — A, s maps null sets to null sets, we obtain from

(2.2.7) that

1
IZmo e < [ IFlim ds = 5517

with equality when f is constant. Here we used

ge_ L _ T(m)
/S TR T Tk 1)

which follows from Observation 1.2.2, or by Lemma 2.2.1 with g = 0. This com-

pletes the case p = oc. O

Remark 2.2.8. If vol,(conv®) > 0, then, by Remark 1.2.5, it follows that the

value of L., o f(z) is the same for all representatives of f € L,(£2). Indeed, by
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Proposition 1.2.9, for all f € L,(Q) we have that L, of € C(Q), regardless of
whether or not m —n/p > 0.

On the other hand, when vol,(conv ©) = 0, then the function L,, e f need
not be so well-behaved. For example, if n > 1 and © consists of a single point
6, then f € L,(Q) can be altered on a null set so that L,, ¢ f takes on arbitrary
preassigned values on any countable dense subset of {2. For the details of one such
construction, see the end of this section.

The function L, 14 f is more than simply an interesting example. It occurs in
the multipoint Taylor error formula for multivariate Lagrange interpolation given
by Ciarlet and Raviart [CR72]. From the multipoint Taylor formula, Arcangeli
and Gout [AGT76] obtained L,-bounds for multivariate Lagrange interpolation, long
used by those working in finite elements, but known to few approximation theorists.

For this reason, these bounds are discussed in some detail in Section 2.4. O

Special case: Hardy’s inequality

In the very special case n =1, m = 1, and © = [0], one has, by (1.2.7), that

Lo f(r) = %/0 f (2.2.9)

With the choice 2 = (0,00), (2.2.4) is Hardy’s inequality (2.1.2). This well-known
inequality was first proved by Hardy [Ha28], see also [HLP67:89.8].

For a comprehensive survey of the literature connected with Hardy’s inequal-
ity, see Chapter IV: Hardy’s, Carleman’s and related inequalities, of the monograph
[FMPOI1]. The only multivariate occurrence of Theorem 2.2.2 that the author is

aware of is, implicitly, in Arcangeli and Gout [AGT6] for the case when © consists

of a single point. The bulk of the 174 references for chapter IV of [FMP91] deals
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with univariate generalisations of Hardy’s inequality — some of which are special
cases of Theorem 2.2.2.

In this thesis we will not be concerned with the sharpness of (2.2.4). How-
ever, for those so interested we mention the following point of departure. For the

map (2.2.9), with Q = (0, o0),

p
L, = —.
Lol = 2

See, e.g., Shum [Sh71], [Ru8T7:ex.14,p72], and [J093:p275,p289].

Further L,-bounds

Next we use Theorem 2.2.2 to give a bound particularly suited for obtaining

L,-bounds from integral error formulae, such as those given in Sections 2.3 and 2.4.

Theorem 2.2.10. Fix ay,...,a, € R*\ 0, where s > 0. Let © € R"**, and
let  be a bounded open set in IR™ for which Q is starshaped with respect to ©.

If m —n/p >0, then the rule

Lf(z):= /[ . (H D[x,@]a])f (2.2.11)

induces a bounded linear map £ : W () — L,(§2), with

1
m — ”/P)#@

LA, @) < (mggg H[:fc,®]ajH> T 1flopo  (2212)

In addition, when p = oo, we have the pointwise estimate

1 S
L) £ o= (1:I .0l )/l c €0 (2213)
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Proof. Let € , and f € W7 (Q). By (2.1.9),

‘(E{D[x,e]aj>f‘ = (1;[1 !\[wﬁ]aﬂ\)ll?sﬂ, (2.2.14)

in L,(Q2). Here |D°f| € L,(Q) is defined by (2.1.8). Thus,

Ay f = (H D[x,@]aj>f

i=1

defines a bounded linear map A, : W;(2) — Ly(2), with
A, < K|D*S). (2.2.15)
in L,(Q2), where
K=K ce,ag,8) = , Ola,||.
V= K(ay,...,a,,9Q) rggggl\[x Ja|

Notice that
Lf(x) = (Lmeo Asf)(z).

Thus, (2.2.15) and the monotonicity of Ly, @ : L,(Q2) — L,(£2) implies
[Lf] < Lino (K [D*f]),

in L,(€2). Take the L,(2)-norm of this inequality, then apply Theorem 2.2.2, to

obtain

1

£l L, @) < (m — D)l(m — n/p)so

KD fl 1, (0)-

Since

Dl Nz, @) = 1 s .0

this proves (2.2.12).
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Similarly, from (2.2.14) and Theorem 2.2.2, we have for a.e. « € 2, that

[Lf(z)] < (H H[l’a@]aﬂoHLm,e(|D8f|)HLoo<ﬂ>

i=1

i 1
< (H mx,maju) 1o
1 (#0 +m 1)
which is (2.2.13). O

In the special case when s = 0, Theorem 2.2.10 reduces to Theorem 2.2.2.
Theorem 2.2.10, together with Property 1.2.3 (d), can be used to obtain bounds
for maps more general than (2.2.11). One such example is the lift of an elementary

liftable map, see Section 1.3.

An example

Finally, the example promised in Remark 2.2.8.

Let n > 1 and © consist of the single point §. Suppose that (2 is starshaped
with respect to 6, and that B is a countable dense subset of €. It is possible to
change f € L,({2) on the intersection of {2 with the cone C' with vertex 6 and base
B, which is a null set, so that L, 9 f, as computed from (2.2.3), takes on arbitrary
preassigned values on B.

The cone C' consists of the union of rays r emanating from 6 and passing
through a point b € B. Let r be such a ray, and order the points from B lying on

r as by, bs, ..., so that b; is closer to 6 than b;1;. By Remark 1.2.5,

Ly o f(i) = /M('|bi,---7bi,9)f

m

with the integration above being over the interval [0 .. b;] := conv{8, b;} weighted

by a nonnegative polynomial. Thus, by redefining f to be an appropriate constant
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over each of the intervals [0 .. b1], [b1 .. b], [b2 .. b3], ..., one can make L, 14 f(b;)

take on any preassigned values.

2.3. Application:

L,-error bounds for Kergin and Hakopian interpolation

In this section we use Theorem 2.2.10 to obtain Ly-error bounds for the scale

of mean value interpolations, which includes the Kergin and Hakopian maps.

The scale of mean value interpolations

Throughout this section, © € IR"**. For 0 < m < k, we have the mean

value interpolation (see Section 1.4)
H(@m) {f: fisC* ™V on conv @O} — Mi_p_i(IR"),

which 1s given by

<m> Z Z /DI _o, ol

j=m+1 @c@)] 1
#G) m

For the remainder of this section, §2 will be a bounded open set in IR" with a
Lipschitz boundary. From Theorem 1.5.12, one obtains the following integral error

formulee for the scale of mean value interpolations.

Theorem 2.3.1. Suppose that  is starshaped with respect to ©. If0 < j < k—m,
q € H?(IR"), p>n,and f € ngk_m)(ﬂ), then
a(D)(f —Hg" f)(x)

#O=mtiti-k T .



45

This formula involves only derivatives of f of order k — m.

Remark 2.5.3. In Theorem 1.5.12 the formula (2.3.2) was proved only for f €

C*=m(IR"), without any reference to p. We now outline how it can be extended
to f € ngk_m)(ﬂ). By Sobolev’s embedding theorem, the condition p > n implies
that

Wik=m(Q) c cF=m(Q) C O(Q).

Thus, Hg" f is defined for all f € W3 ™™ (Q). To extend (2.3.2) to f € ;" ™(Q)
use the density of C§°(§2) in ngk_m)(Q)- 0

L,-bounds for the scale of mean value interpolations

Next we apply Theorem 2.2.10 to (2.3.2) to obtain L,-bounds for the scale

of mean value interpolations. Let

hye :=supl|lz—0|, hge :=suph,e < diam.
0cO TEQ

Theorem 2.3.4. Suppose that Q is starshaped with respect to ©. If0 < j < k—m,
p>n,and f € ngk_m)(ﬂ), then

1F = HS" Fl; 0 < Capskim (h2.0) ™ | Lz pa (2.3.5)

where

1
(1- n/p)k—m—j'

The constant Cy, p j k.m — o0 as p — nt. Additionally, if p = oo, then we have the

Crpjkm =

pointwise estimate that, for all x € (Q,

1

e

1DI(f —HE" P)l(x) < KT
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Proof. Choose ¢ € ITY(IR") so that
¢(D) = Dy, -+ Dy,
where uy,...,u; € R" with ||u;|| < 1. By Theorem 2.2.10, we have for each of the
terms in (2.3.2) that

e = D[I_Gi—1\é,x—&i]q(D)fHLp(Q)

[z,...,z,0;

- Fk4+1—7¢—n/p)
“Ik+1-0)I(k+1—-n/p)

Notice that in the above, the constants

max [ -6l

zEQ -
0€[0,;-1\0,0;]

(hw,G)k_m_j |f|k—m,oo,Q‘

were replaced by the possibly larger, but far less complicated constant
(ha.e)¥~™~7. This gives the first inequality with

o () f: i—1 T(k+1—1i—n/p)
"%er_rw+1—nm%ﬂHWﬂ m+j+i—k (k=)

(k—m—j—lﬂl—n@)21< 1—k ’>
By the Chu-Vandermonde convolution identity:

2F1<_7Z7b 1) = 7(6(2)?”7
which is the special case a = —n of equation (14) in [E53:p61], it follows that
1
(1 —=n/plk—m—j

The second inequality, which is Theorem 1.6.2, follows from the pointwise

Cpjkym =

estimate (2.2.13). O

By considering the special case of Taylor interpolation at a point by polyno-
mials of degree < k., one obtains the following estimate of the distance of smooth

functions from II.
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Corollary. Suppose that Q C IR" is a bounded, open, starshaped region that has

a Lipschitz boundary. Then for p >n and 0 <j <k +1,

dist |.|jypyﬂ(f7Hk) 1= glengk If —9l;,.0
- 1
T (1 =n/plrt1—j

(diamﬂ)k+1_j |f|k+1,p,97 Vfe W;—i—l(g)'
(2.3.6)
Note that

1
(1 - n/p)k-l-l—j

— o0, asp—nT.

That an inequality of the form (2.3.6) exists for j = 0, where the constant
1/(1 — n/p)kt1—; is replaced by some unknown constant depending only on n, k
and p, is the content of the paper by Dechevski and Quak [DQ90]. From this they
obtain the corresponding ‘improved’ version of the Bramble-Hilbert lemma (see

[BHT70]).

A related result of Lai and Wang

The only related result in the literature is an L,-bound for the error in
Hakopian interpolation given by Lai and Wang [LW84]. In that paper they show

the following.

Theorem 2.3.7 ([LW84:Th.1]). Let |a| < k —n. Then for any positive integer
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(<k+|a|—n+1, we have

De(f —HS ™))

lal+n n B on
=(la|+n—1) Z Z(w — Olajtn—pi+1)ir Z Z(w — Olajtn—pa+2)ir X
n1=11,=1 puo=11=1
He—1 n ¢ .
+300 e
e Z Z(x — ol tn—pit+0)ic / D EFl f
pe=1 1=1 [x""’faela"'a9|a|-|—n—p(-|—(]

K
k—1

- ) > Dawy(:p)/ D7f.

j=lal+n=14+L  |y|=j—n+1 [01,....65]
(2.3.8)

To (2.3.8), Lai and Wang apply the integral form of Minkowski’s inequality

in the form

|2 — /[ D’ fllr, ) <Co D fllr,cy, m=1,....]al+n,
5 ,Z,el,...,9k+1_M

m

(2.3.9)

to obtain the following.

Theorem 2.3.10 ([LW84:Th.2]). Let G be a convex set containing ©, with

diameter h. If p > n, |o| <k —n, and f € ngk_n—i_l)(G), then

1D°(F = HG ™ Plliyey < CH TN max D7 fl, . (2311)

where C' a constant independent of f.
Since [ — maX|ﬂ|:k+1_nHDﬂfHLp(Q)7 and f +— |flj41-n,q are equiva-

lent seminorms, Theorem 2.3.10 follows from Theorem 2.3.4. Had Lai and Wang

attempted to compute the Cy of (2.3.9) using the multivariate form of Hardy’s
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inequality, they would have obtained

T(p—n/p)

@ = T+ 1)

Thus, their constant C in (2.3.11) would have the same qualitative behaviour as

our own Cy, p j k.m of (2.3.5), namely that C' — oo as p — n't.

The behaviour of C}, , j ,m as a function of its parameters

In Section 1.6 it is shown that, in an appropriate sense, the constant
Chp.jk,m of (2.3.5) is best possible when p = co. The question then arises whether
or not the over-estimation committed in using the multivariate form of Hardy’s
inequality to obtain C), p j r,m 1s significant for p < co. In particular, does the best
possible constant C' in the inequality

1F=HEFL o <Clhao) ™ 1 fliemps (2.3.12)

japaQ -

become unbounded as p — n*I In the univariate case, at least, the answer is no
— the best possible constant in (2.3.12) does not become unbounded.

Before we show this, let us clarify a little the role that the condition p > n
plays in Theorems 2.3.4 and 2.3.10. The condition p > n is necessary if these
results are to be stated in terms of the Sobolev space ngk_m)(Q) — in particular
so that H(@m)f is defined for f € ngk_m)(ﬂ). However, it makes good sense to
ask what is the best constant C' for which (2.3.12) holds for all sufficiently smooth
functions f — say, e.g., f € C*~™(Q). The condition p > n is again needed when
one seeks to apply the multivariate form of Hardy’s inequality to the integral error

formulee (2.3.2) and (2.3.8).
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We end this section by showing that in the univariate case, i.e., when n = 1,
there is a best possible constant C in (2.3.12) for all sufficiently smooth f, which
can be bounded independently of 1 < p < oco. The crucial step in the argument to

follow is the use of the B-spline L,-estimate that

#0 —1\'7'/"
- <
14 |®)HL”(]R) - (diam@

when diam © > 0, see de Boor [B73].

(2.3.13)

The univariate case of the map Hgn), will be emphasised by writing it as

H((am). This map has the simple form

HSVf = D™(HoD™™ f),
where Hg 1s the Hermaite interpolator at the points O, and D~ f is any function
for which D™(D~™f) = f.

Theorem 2.3.14. Let © be a k-sequence in the interval [a..b]. If0 < j < k—m,
and f € C*=™[a..b], then

(m+4)! ke
(k—m—j)! k!

1D (f = HS™ F)lln, o s < (b—a)* ™5 =5 | D" fll 1 0

Here 1 < p,q < .

Proof. Fix « € [a..b]. For O a finite sequence in IR, let

wel(x) = H(:L' —6).

€O

With this notation, replacing each occurrence in (2.3.2) of a linear functional of

the form f — f® f by integration against a B-spline, we obtain that

D(f - HS" f)(x)

=(m+7) Z Z w®i—1\é(x) (z—6;) % /Dk—me(-|:1;,®i).

t=k—m—j OCO®;_1
#O=m+j+i—k
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By Hoélder’s inequality, and (2.3.13), we have that

k k Hi k
‘/D _me(|x7®l) < <m> HD _meLq[a..b]-

Since
wei_l\é(l')(f—ei)
(diam[z, ©;])1/4

(b . a)k—m—l/q7

we obtain that
DI(f — HG" f)(x)]

k
. i—1 i/ . .
SUESIEDS ( ) 8 (b—a) =D fl 1 ey

4 Am+i+i—k
t=k—m—j
m+ ) ke o -
- (k(—m—)j)! E! (b—a) l/qHDk Fllz,a.)-
Finally, take || - |1, [4..) of both sides. 0

To adapt this argument to the multivariate case, it is necessary to have the
simplex spline analog of the B-spline L,-estimate (2.3.13). This is provided by
Dahmen [D79], who shows that when vol,,(conv ®) > 0,

Bk +1)! 1 1=1/p
. ny < ..
[AEC1O) ey vy = nl(n 4+ 1)(n —k)! (voln(conv @)) ’ (2.3.15)

with k + 1 := #0. Yet, with this in hand, it does not seem possible to apply the

argument of Theorem 2.3.14 in any satifactory form.

Remark 2.3.16. Incidentally, the constant in (2.3.15) is not the best possible.
Already, by using the fact that [ M(-|®) = 1, together with the case p = oo of

(2.3.15), one obtains

El(k + 1)) 1 L=t/p
)

. ny <
1M (-[0)]| L, (rn) < (n!(n + 1)!(n — k)! vol,(conv ©
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In the univariate case this over-estimates (2.3.13) by a factor of ((k + 1)!/2)1_1/1’.

The key step in proving (2.3.13) is the bound

k

) <
M(-|0) < diam ©’

(2.3.17)

which follows from the partition of unity property of B-splines. Thus, a close
examination of the simplex spline analog of the B-spline partition of unity, given
recently by Dahmen, Micchelli and Seidel [DMS92], should give tighter bounds than

those of (2.3.15). However, we make no attempt here to give such an argument. O

Remark 2.3.18. There are other integral error formulae for the scale of mean value
interpolations, to which Theorem 2.2.10 can be applied to give L,-bounds. These
include Lai and Wang [LW86] (Kergin interpolation), Gao [Ga88], and Hakopian
[BHS93:p200] (Hakopian interpolation). See Section 1.5 for a discussion of the

relative merits of each of these formulse. O

2.4. Application:

L,~error bounds for multivariate Lagrange interpolation

In this section we use Theorem 2.2.10 to obtain L,-error bounds for mult:-

variate Lagrange interpolation schemes.

Lagrange maps

A linear interpolation problem for which the space of interpolation conditions
is spanned by point evaluations at O, a finite sequence in IR", is called a Lagrange

interpolation problem. If P is the space of interpolants for such a problem and
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the problem is correct, then the associated linear projector, called the Lagrange
map, will be denoted by Lpe. The Lagrange form of a Lagrange map is given
by

Lpof =Y f(B)s. (2.4.1)

€O

Here (2.4.1) uniquely defines
lg := Ke,p,e - P,

the Lagrange function for § € ©. In other words, (d4)sco is dual (bi-ortho-
normal) to ({g)gco.

Lagrange maps into a space containing polynomials of degree k are frequently
used to interpolate to scattered data, see, e.g., Alfeld [Al89]. Particular examples
receiving much attention lately are maps where the interpolants include radial
basis functions or multivariate splines, and de Boor and Ron’s least solution for the
polynomial interpolation problem [BR90] (also see [BR92] for its generalisation).
In addition there are of course the maps of Kergin and Hakopian.

For such maps, there is the multipoint Taylor formula for the error. This
formula was initiated by the work of Ciarlet and Wagschal [CWT1]; most of the
relevant papers are in French, and it is little known outside the area of finite
elements. It is for these reasons, and because our Theorem 2.2.10 implies L,-

estimates from the multipoint Taylor formula, that we discuss the formula here.

The multipoint Taylor formula

Multipoint Taylor formula 2.4.2 ([CR72]). Let © be a finite sequence in R",

and let Q be an open set in IR™ for which Q is starshaped with respect to ©.
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If Lpe is a Lagrange map with IIx(IR") C P C C¥(Q), then for f € C*T1(Q),

q € ;(IR™), and z € Q, its error satisfies:

(WD) Lrof - ) =3 ( /[ 9] D{zt;f) @DYo)a).  (243)

0cO
k41

The term multipoint Taylor formula comes from the fact that

o H/ Ditly
[z,...,z,0]
——

k41

is the error in Taylor interpolation of degree k at the point z, a special case of the
error in Kergin interpolation. The proof of (2.4.3) further justifies the use of this

term.

The region of integration in (2.4.3) consists of line segments from x to § € ©.

Fig 2.5.1 The region of integration in (2.4.3) for © consisting of 6 points

From the multipoint Taylor formula, Arcangeli and Gout [AG76] obtain L,-
bounds for the error in a Lagrange map. These bounds are precisely those obtained
by applying Theorem 2.2.10 to (2.4.3). The crucial step in the argument presented
in [AG76:Prop.1-1] is the use of the multivariate form of Hardy’s inequality for the

map

T+ Lyyq o f(x) = /[ ]f. (2.4.4)
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This inequality is not explicitly stated, though the proof of their (weaker) Propo-

sition 1-1 would imply it.
Remark 2.4.5. The key step in the proof of Proposition 1-1 in [AGT76] is an appli-
cation of Holder’s inequality to the splitting

/[x f= %/01(1 — )M ((1 — ) f 4 (o — x))) dt.

yeey T, 0]
N——
E+41

where ¢ := (k+1—n/p)/q, and 1/p+1/q = 1, as opposed to our use of the integral

form of Minkowski’s inequality. O

Having identified the precise role of the multivariate form of Hardy’s in-
equality in [AGT6] it is possible to use it to run through Arcangeli and Gout’s
calculation for a much more general class of norms, including those most often
used in numerical analysis. The resulting bounds, given below, have smaller (and
simpler) constants than those one might hope to obtain by applying the inequalities
for similar norms to the results of [AGT76].

For the remainder of this section € will denote a bounded open set in IR"
with a Lipschitz boundary, and © a finite sequence in IR". Recall

hge = supsup ||z — || < diam €.
EO zEQ

Corollary 2.4.6. Suppose that () is starshaped with respect to ©, and that Lpe
is a Lagrange map with II;(IR") C P C C¥Q). I k+1—n/p >0, and f €
W(Q), then

1
= Lroflun < =7 (20 6len ) Ik (o)™, (24)

€O
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Here |- |,.q is any seminorm on W}(Q) of the form

| flp.a = | (lg:(D)fllz, @))iz [[R™,

where the g; € II;(IR") are fixed, and || - ||r= is any norm on R™ — or |- |, is

|, p.q for some 0 <@ < k.

Proof. By Sobolev’s embedding theorem, the condition k+1—n/p >0
implies

. _
WH(Q) C C(Q),

and so the Lagrange map Lp g is well defined. As in Remark 2.3.3, (2.4.3) can be
extended to f € W]gk—l_l)(Q). Fix f € ngk—i_l)(Q), and = € Q. Let h := hge. By
(2.1.9),

DXL fI < IDMUF N6 — [T < | DR F R

in L,(Q). Thus, with ¢; € IIx(IR"), we have for a.e. € Q that

(0PN~ Lrofiol < X |

[z,...,z,6]
€O
E+41

|Dk+1f|> lge(D) ol e B+,

To this, the condition k +1 — n/p > 0 allows us to apply the multivariate form of

Hardy’s inequality to obtain

lgi(D)(f — Lrof)| < k'(k+1 (Z lgi(D KeHLoo> |11 p b
0cO
Finally, take the || - |[r= norm of the inequality (for m-vectors) given above. O

In [AG76:Th.1-1] Corollary 2.4.6 is proved only in the case when |- |, o is

of the form |f]; , o for some 0 < ¢ < k, with hg e replaced by diam 2. In that
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paper some bounds on the size of the Lagrange functions ¢y, together with relevant
applications are given.

The condition in Corollary 2.4.6 that £ + 1 — n/p > 0 plays an analogous
role to the condition in Theorem 2.3.4 that n > p. Namely, it is required so that
the results can be stated in terms of Sobolev spaces, and to apply the multivariate
form of Hardy’s inequality. Additionally, by Theorem 2.3.14, the unboundedness
of the constant in (2.4.7) as k+1—n/p — 0T is, in the univariate case, not a true
reflection of the behaviour of the error.

With the multivariate form of Hardy’s inequality in hand, it is also possible

to obtain pointwise error bounds for Lagrange maps.

Corollary 2.4.8. Suppose that () is starshaped with respect to ©, and that Lpe
is a Lagrange map with IIx(IR") C P C C*(Q). With f ¢ WD - C(Q), and

z € Q2 we have the (coordinate-independent) pointwise error bound

1
|f(z) = Lpoeflz)] < CE] | Fliston D116 — 2] eo()], (2.4.9)
) fco

and the (coordinate-dependent) pointwise error bound

F@) = Lrof@ <30 30 LD fllism (0~ ) Coe). (2410)

€0 |a|=k+1

Proof. The proof runs along the same lines as that for Corollary 2.4.6,

except that for (2.4.10) we first expand Dgi’if as

pitip= . U apepery,

|a|=k+1

by using the multinomial identity. O



o8

Neither of (2.4.9) or (2.4.10) occurs in the literature. For f € C**1(Q), they
can be obtained more simply, by applying the mean value theorem, as given by

Properties 1.2.3 (c¢), to the integrals occurring in (2.4.3).

Remark 2.4.11. The results of [AG76] have been extended in the following ways.
In [GoT7], Gout treats the error in certain forms of Hermaite interpolation — that is
where, in addition to function values, certain derivatives are matched at the points
in O. In [AS84], Arcangeli and Sanchez bound the error in a Lagrange map for

functions from fractional order Sobolev spaces. O

The error formula of Sauer and Xu

There i1s another error formula, for the error in a Lagrange map with range
(interpolants) IIx(IR™), that has been given recently by Sauer and Xu, see [SX94].

Sauer and Xu order the dim IT;(IR"™) points in © so that each Lagrange inter-
polation problem with points ©/ (by definition the initial segment of © consisting
of the first dimIT;(IR™) terms) and interpolants II;(IR") is correct for j =0, ..., k.
They consider the collection W of all (k + 1)-sequences ¥ = [tbg, ..., ¢x], called
paths by them, with ¢»; € ©/\07~! all j. Given this notation, Sauer and Xu state

their result in the following form.

Theorem 2.4.12 ([SX94:Th.3.6]). Suppose that Lpe := L, (rn),e is a La-

grange map, and f € C*TY(IR™). Then

Lp’@f(l') - f(l‘) = Z pq;(l‘)/ Doy Dy =iy "'D¢2—¢1D¢1—¢0f7
Vew [, V]

(2.4.13)
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where py € II;(IR") is given by

k
qu(l') = (k + 1)!£¢k,ﬂk(]R"),®(x) H&bi,ﬂi(]}{"),@i(@bi-l-l)'
=1

The region of integration in each term of (2.4.13) is the convex hull of  and

Fig 2.5.2 The region of integration in (2.4.13) for O consisting of 6 points

From (2.4.13) the following pointwise estimate is obtained.

Corollary 2.4.14 ([SX94:Cor.3.11]). Suppose, in addition to the hypotheses of

Theorem 2.4.12, that  is starshaped with respect to ©. Then, for all x € Q,

1
|f(z) = Lpef(z)] < Fr1) D IDw—ie Dy =+ Dy o Fll oo [P0 ()]
" Tew
(2.4.15)

The bound (2.4.15) is of a similar form to those of (2.4.9) and (2.4.10). For

a more direct comparison, one obtains from (2.4.3) the bound

1
) = Leo S0 < gy 2 ID6 ool (2.4.16)
€O

This bound has #0 = Ef:o #0OJ terms, as opposed to #¥ = Hf:o #OJ for

(2.4.15), and requires no ordering of ©. For the purposes of comparison, in the
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bivariate case, i.e., when n = 2, one has that #0 = (k 4 2)(k + 1)/2, while
#W = (k+ 1), In addition, analogous bounds to (2.4.16) can be obtained, from
(2.4.3), for the derivatives of the error in Lpg.

To obtain L,-bounds from (2.4.13) it is necessary to bound

t— Ly yf(x):= f (2.4.17)
[z, V]

in terms of || f|[z,(q). This can be done by using the multivariate form of Hardy’s

inequality. Thus, we have the following instance of Theorem 2.2.10.

Corollary 2.4.18. Suppose the hypotheses of Corollary 2.4.14. If 1 —n/p > 0,

then

I( n/p k+1
f—L f E f .
H P,© HL (Q) = P(k 5 _ n/ <‘l/€ HP‘IIHL (Q)>| |k+1,p, ( Q@)

The condition 1 —n/p > 0 is needed so that the multivariate form of Hardy’s
inequality can be applied to (2.4.17). By comparison, to obtain (2.4.7) from (2.4.4),

only the weaker condition that £ +1 —n/p > 0 was needed.

2.5. Other error bounds

All of the integral error formulea for Lagrange maps given in the literature,
including those of Section 5, can be obtained from

f(@) - Lrof(a (/ / )69

€O

which is valid whenever P contains the constants, by appropriately using the iden-

/ f_/ f: Dv—wf7 (251)
[©,v] [O,w] [©,v,w]

tity
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and the integration by parts formula.

For example, in Gregory [Gr75] the integration by parts formula is used to
give a Taylor type expansion for f. From this is obtained an integral error formula
for linear interpolation on a triangle, i.e., when © consists of 3 affinely independent
points in IR?, and the interpolants are the linear polynomials P := II;(IR*). Such
an argument is frequently referred to as a Sard kernel theory argument, as developed
by Sard [Sa63]. The resulting formula is complicated — it has 4 line integrals and
5 area integrals. Another example is given by Hakopian [H82;], who uses (2.5.1)
to obtain an integral error formula for tensor product Lagrange interpolation.

In view of their derivations, all of these integral error formulz involve terms
which consist of a function (obtained appropriately from the Lagrange functions)
multiplied by the integral of some derivative against a simplex spline. Thus, it is
possible to apply the multivariate form of Hardy’s inequality to all such formulae
(and those likely to be obtained in the future) to obtain L,-bounds — with the
caution that, as pointed out for the examples in Sections 2.3 and 2.4, for small p
this may not accurately reflect the behaviour of the error.

Exactly how to use (2.5.1) and the integration by parts formula to obtain the
best possible error formula for a given purpose is far from clear. In a future paper
the author considers the simplest case, that of linear interpolation on a triangle.
There, the formule of Ciarlet and Wagschal [CWT1], Gregory [Gr75], Sauer and

Xu [SX94], amongst others, are discussed.
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