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)-distance of su�ciently smooth functions from n-variate polyno-mials of degree k is investigated.The method, as in past approaches, is �rst to construct a formula for a rightinverse R of the di�erential operatorDk+1 : f 7! Dk+1f := (D�f : j�j = k + 1);and then to manipulate the expressionR(Dk+1f)to obtain Lp(
)-bounds.New formulae for such R are presented. These are based on representationsfor the error in the family of polynomial interpolators which includes the maps ofKergin and Hakopian.A multivariate form of Hardy's inequality involving the linear functional ofintegration against a simplex spline is given. This inequality provides a simple wayto obtain Lp(
)-bounds from the formulae for R(Dk+1f) given here, and manyothers in the literature.
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1 IntroductionThe early work on Sobolev spaces contains many theorems similar to thefollowing which can be found in Morrey [Mo66]. Let W k+1p (
), 1 � p �1 be theusual Sobolev space (discussed in more detail in Section 2.1), and let �k denotethe n-variate polynomials of degree � k.Theorem ([Mo66:Th.3.6.11,p85]). Let 
 be a connected bounded open set inIRn with a Lipschitz boundary. Suppose thatP :W k+1p (
)!W k+1p (
)is a bounded linear projector with range �k. Then there exists C > 0 such thatkf � PfkWk+1p (
) � C kDk+1fkLp(
); 8f 2W k+1p (
);where the suggestive notation kDk+1fkLp(
) indicates any of the usual (equivalent)seminorms that measure the Lp(
)-size of the (k + 1)st derivative of f .Theorems of this type �rst occurred in the work of Sobolev, see, e.g., [So50],and in the paper of Deny and Lions [DL53] (for the case p = 2).In the early 1970s it was realised that this theorem is important in numericalanalysis because of the following immediate corollary.Corollary. Let X be a normed linear space. If �k is contained within the kernelof a bounded linear map L :W k+1p (
)! X;then there exists K > 0 such thatkLfk � kLkdistWk+1p (
)(f;�k) � K kDk+1fkLp(
); 8f 2W k+1p (
):



2The special case of this corollary when X = IR is commonly referred to asthe Bramble-Hilbert lemma after the paper [BH70] where it appeared.This corollary is used to conclude that a numerical scheme, such as a �-nite element method (see e.g., [Ci78]), has the highest order of accuracy that itspolynomial reproduction allows.The di�culty with the theorem (and its corollary) is that it is not construc-tive, i.e., gives no estimate of the constant involved. Because of this fact, therehave been, since the publication of [BH70], many papers dealing with `constructiveinstances of the Bramble-Hilbert lemma', i.e., estimating the constants C and Kof the theorem and its corollary. For example see Ciarlet and Wagschal [CW71],and Gregory [Gr75].The standard way of doing this (see, e.g., Meinguet [Me78]) is to �nd a mapR so that the error in approximating f by Pf can be expressed asf � Pf = R(Dk+1f); 8f 2W k+1p (
); (a)where Dk+1 is the di�erential operatorDk+1 : f 7! Dk+1f := (D�f : j�j = k + 1):By applyingDk+1 to both sides of (a) it is seen that the (necessarily) linear map Ris a right inverse for Dk+1. The hope is then to manipulate a suitable formula forR(Dk+1f) to obtain such Lp(
)-bounds as occur in the theorem. More generally,if L is as in the corollary, thenLf = L(f � Pf) = LR(Dk+1f); (b)and one tries to bound LR(Dk+1f) by kDk+1fkLp(
).



3 The observation (b) can be viewed as the multivariate analogue of the Peanokernel theorem. In the Peano kernel theorem, P is taken as the Taylor interpolantof degree k at the left end point of the interval of interest, R is the formula forthe error involving integration against the (k + 1)st derivative, and L is a linearfunctional.There are many possible maps R, and for each R there are many possibleformul� describing it. Thus, the di�culty with using (b) as the basis for a mul-tivariate Peano kernel theory is deciding which R to choose, and then obtainingformul� for R and LR which can easily be manipulated to obtain Lp(
) bounds.In this thesis we consider such questions.In Chapter 1 of this thesis we consider the case when P is from a family oflinear maps which includes Kergin and Hakopian interpolation. These maps are`lifted' versions of univariate Hermite interpolation, and contain Taylor interpola-tion at a point as special cases. For these maps we obtain integral error formul�of the desired form R(Dk+1f). In contrast to most error formul� for these mapsobtained in the past (see e.g., Lai and Wang [LW84]), those given here involve onlyderivatives of order k + 1.The error formul� given in Chapter 1, like those for many other multivariategeneralisations of Hermite interpolation, express the error at the point x in termsof the linear functional of integration against a simplex spline with a knot set whichincludes x a certain number of times. To obtain Lp(
)-bounds from such formul�,in Chapter 2 we present the following multivariate form of Hardy's inequality, that



4for m� n=p > 0 k x 7! Z[x;:::;x| {z }m ;�] f kp � kfkp(m� 1)!(m� n=p)#� ; (c)valid for f 2 Lp(IRn) and � an arbitrary �nite sequence of points in IRn. Examplestreated with this inequality include the formul� of Chapter 1 in Section 2.3, andthose for `Lagrange maps' in Section 2.4.We conclude Chapter 2 with a discussion of why (c) plays a crucial rolein obtaining Lp(
)-bounds from pointwise integral error formul� for multivariategeneralisations of Lagrange interpolation, and why it is likely to do so for thosethat will be obtained in the future.



5 1. Integral error formul� for the scale ofmean value interpolations which includesKergin and Hakopian interpolation1.1. IntroductionIn this chapter we study the error in a certain scale of mean value interpo-lations which includes Kergin and Hakopian interpolation. The literature dividesinto two di�erent approaches to this problem.The �rst is concerned with the convergence of the interpolants as the numberof interpolation points increases. Here only Kergin interpolation has been studied.Certain conditions on the position of the interpolation points and the growth ofthe entire function to be interpolated are given which guarantee that the sequenceof interpolants converges uniformly on compact sets. See, e.g., Bloom [Bl81].We are interested in the second approach, which is to write the error ininterpolation as integration against derivatives of high order, much as is done forunivariate Hermite interpolation.There have been several papers in this direction, including Lai and Wang[LW84] (Hakopian interpolation), [LW86] (Kergin interpolation), and Gao [Ga88](mean value interpolation). Each of these gives formul� for the error, complicatedby the spurious use of certain multivariate divided di�erences, involving derivativesof various orders. There seems to be very little correspondence between the degreeof the interpolating polynomial space and the order of the derivatives involved.This order can be as low as 0, and as high as twice the degree of the interpolatingpolynomial space.



6In this chapter we give an integral error formula for the scale of mean valueinterpolations that involves only derivatives of order one higher than the degreeof the interpolating polynomial space. From this we obtain sharp L1-estimates.These estimates imply that a numerical scheme based on mean value interpolationhas the highest order that its polynomial reproduction allows.The chapter is set out in the following way. To describe the scale of meanvalue interpolations, we use a certain linear functional f 7! R� f and the notionof `lifting' univariate maps. These two notions are studied in requisite detail inSections 1.2 and 1.3 respectively. In Section 1.4, we de�ne the scale of mean valueinterpolations and give its Newton form. In Section 1.5, we give two di�erentintegral error formul� for the scale. In Section 1.6, from these formul�, we obtainL1-estimates. Some notationThe space of n-variate polynomials of total degree k will be denoted by�k(IRn) and the homogeneous polynomials of degree k by �0k(IRn). The di�erentialoperator induced by g 2 �k(IRn) will be written g(D).We �nd it convenient to make no distinction between the matrix [�1; : : : ; �k]and the k-sequence �1; : : : ; �k of its columns. Since [�1; : : : ; �k]f is a standardnotation for the divided di�erence of f at � = [�1; : : : ; �k], we use for the latter thenonstandard notation ��f = �[�1;:::;�k]f:Note the special case �[x]f = f(x):



7Similarly, to avoid any confusion, the closed interval with endpoints a and b willbe denoted by [a : : b].The notation ~� � � means that ~� is a subsequence of �, �n~� denotes thecomplementary subsequence. The derivative of f in the directions � is denotedD�f := D�1 � � �D�kf:The subsequence consisting of the �rst j terms of � is denoted �j, andx �� := [x � �1; : : : ; x � �k]:Thus, with � := [�1; : : : ; �7], we have, for example, thatD[x��n�5;x��3]f = Dx��6Dx��7Dx��3f:The diameter and convex hull of a sequence � will be that of the corre-sponding set and will be denoted by diam� and conv� respectively. Let k � k bethe Euclidean norm. To measure the size of the k-th derivative of f at x 2 IRn, weuse the seminorm jDkf j(x) := supu1;:::;uk2IRnkuik�1 jDu1 � � �Dukf(x)j:Notice that jDu1 � � �Dukf(x)j � jDkf j(x) ku1k � � � kukk: (1:1:1)To measure the size of the k-th derivative of f over K � IRn, we usef k;1;K := supx2K jDkf j(x): (1:1:2)



8Because of (1.1.1), the co-ordinate-independent seminorm � k;1;K is more appro-priate to the analysis that follows than other equivalent seminorms, such asf 7! maxj�j=k kD�fkL1(K):1.2. The linear functional f 7! R� fThe construction of the maps of Kergin and Hakopian depends intimatelyon the following linear functional called the divided di�erence functional onIRn by Micchelli in [M79], and analysed there and in [M80].De�nition 1.2.1. For any � 2 IRn�(k+1), letf 7! Z� f := Z 10 Z s10 :::Z sk�10 f(�0+s1(�1��0)+� � �+sk(�k��k�1)) dsk � � � ds2 ds1;with the convention that R[ ] f := 0.In addition to Kergin and Hakopian interpolation, the linear functional f 7!R� f also occurs when discussing other multivariate generalisations of Lagrangeinterpolation, e.g., the Lagrange maps of Section 2.4. It was used as early as 1859,when in [He1859] Hermite proved the Hermite-Genocchi formula, namely thatfor � 2 IR1�(k+1) and f 2 Ck(conv�)��f = Z�Dkf:In this section we outline those properties of f 7! R� f needed in the subse-quent sections. Many of these properties are apparent from the following observa-tion.



9Observation 1.2.2. If S is any k-simplex in IRm and A : IRm ! IRn is any a�nemap taking the k + 1 vertices of S onto the k + 1 points in �, thenZ� f = 1k! volk(S) ZS f �A;with volk(S) the (k-dimensional) volume of S.In De�nition 1.2.1A : IRk ! IRn : (s1; : : : ; sk) 7! �0 + s1(�1��0) + : : :+ sk(�k��k�1);S := f(s1; : : : ; sk) 2 IRk : 0 � sk � � � � � s2 � s1 � 1g:In [M80], Micchelli uses a di�erent choice of S and A, namelyA : IRk+1 ! IRn : (v0; : : : ; vk) 7! v0�0 + � � �+ vk�k;S := f(v0; : : : ; vk) 2 IRk+1 : vj � 0; kXj=0 vj = 1g:This is the form that Genocchi used in [Ge1878] when giving his version of theHermite-Genocchi formula.Properties 1.2.3.(a) The value of R� f does not depend on the ordering of the points in �.(b) The distribution M� : C10 (IRn)! IR : f 7! k!Z� fis the (normalised) simplex spline with knots �.(c) If f 2 C(conv�), then R� f is de�ned and, for some � 2 conv�,Z� f = 1k!f(�):



10(d) If g : IRs ! IR, and B : IRn ! IRs is an a�ne map, thenZ�(g �B) = ZB� g:Some technical detailsRemark 1.2.4. In view of Property (a),� 7! Z� fcould be thought of as a map de�ned on �nite multisets in IRn rather than onsequences. However, adopting this de�nition leads to certain unnecessary compli-cations. For example, to discuss the continuity of � 7! R� f , it would be necessaryto endow the set of multisets of k+1 points in IRn with the appropriate topology.Thus, in the interest of simplicity, � 7! R� f remains a map on sequences � butwith the reader encouraged to think of it, as does the author, as a map on multisets.Remark 1.2.5. The simplex spline M� of (b) has support conv�. It can berepresented by the nonnegative bounded functionconv�! IR : t 7!M(tj�) := volk�d(A�1t \ S)jdetAj volk(S) ; d := dimconv�;in the sense that M�f = Zconv�M(�j�)f: (1:2:6)In particular, if the points of � are a�nely independent, thenk!Z� f = 1volk(conv�) Zconv� f = average value of f on conv�: (1:2:7)



11 Thus, R� f is de�ned (as a real number) if and only ifM(�j�)f 2 L1(conv�),in which case jZ� f j � Z� jf j: (1:2:8)If f is nonnegative on conv�, then R� f 2 [0 : :1] is de�ned (by De�nition 1.2.1).Therefore, we will write (1.2.8) for all f which are de�ned on conv� � with theunderstanding that R� f is de�ned if and only if R� jf j < 1 or f is nonnegative.In the univariate case, that is when n = 1, M(�j�) is the (normalised) B-splinewith knots �. For additional details about M� and M(�j�), see, e.g., Micchelli[M79].Lastly, by (1.2.6), we can describe the continuity of � 7! R� f as follows.Proposition 1.2.9.(a) For f 2 C(IRn), the mapIRn�(k+1) ! IR : � 7! Z� fis continuous.(b) For f 2 Lloc1 (IRn), the mapf� 2 IRn�(k+1) : vol n(conv�) > 0g ! IR : � 7! Z� fis continuous. 1.3. Liftable mapsIn this section, we discuss univariate maps which may be lifted to multivari-ate ones. These `liftable' maps are crucial to both the construction and descrip-tion of the error in a family of linear projectors which includes the Kergin and



12Hakopian maps. The main papers on `lifting' are [CMS801], [CMS802], [CGMS83]and [HM87].We denote the linear functional on IRn, induced by scalar product with� 2 IRn, by �� : IRn ! IR : x 7! ��x := nXi=1 �(i)x(i):A plane wave (or ridge function) is any mapg � �� : IRn ! IR;where g : IR ! IR and � 2 IRn. If g 2 C1(IR), then we can di�erentiate g � ��,thereby obtaining Dy(g � ��) = (��y) (Dg) � ��: (1:3:1)This `lifts' di�erentiation to IRn.In [CMS801] only the lifting of polynomial-valued maps is discussed. To `lift'the error in such maps, we need a more general de�nition. The only real di�cultyinvolved in giving such a de�nition is in choosing the domain of the lifted mapappropriately to make certain that the plane waves are fundamental in it, therebyimplying the uniqueness of the `lift', as is done in the following de�nition.De�nition 1.3.2. Let L : � 7! L� associate with each k-sequence � in IR acontinuous linear map L� : Cs(IR)! C(IR): We say that a continuous linear mapL� : Cs(IRn)! C(IRn) is the lift of L to � in IRn if it satis�esL�(g � ��) = (L���g) � ��; 8� 2 IRn; 8g 2 Cs(IR): (1:3:3)If there exists a lift L� of L to each k-sequence � in IRn, then we say that L isliftable (to IRn), and call L : � 7! L� the lift of L (to IRn).



13 Notice that (1.3.3) overdetermines the map L�, and so the use of the de�nitearticle in the above de�nition is justi�ed. Furthermore, by the fundamentality ofthe polynomial plane waves (which span �(IRn)) in Cs(IRn), if L can be lifted toL�, then L� is uniquely determined by (1.3.3). To avoid confusion, we will usecalligraphic letters to denote the lift of a univariate map and, from now on, reservek for the number of points such a map is based on.The geometric intent of lifting is that the `lift' of a function which variesin one direction, i.e., a plane wave, should be a plane wave (varying in the samedirection) obtained in a natural way from the univariate map to be lifted.The basic tool for recognising liftable maps and presenting their lifts is towrite them as a sum of `elementary liftable maps', which are de�ned as follows.De�nition 1.3.4. Let s;m � 0. Fix aj 2 IRk+1n0, j = 1; : : : ; s and B 2IR(k+1)�(m+1). For each k-sequence � in IR, let L� : Cs(IR) ! C(IR) be thecontinuous linear map given byL�f(x) := � sYj=1[x;�]aj�Z[x;�]BDsf = Z[x;�]B� sYj=1D[x;�]aj�f: (1:3:5)We call L : � 7! L� an elementary (k-point) liftable map (of order s).Here and below, in line with our earlier identi�cation of vector sequencesand matrices, [x;�]B is the matrix whose j-th column is the vectorxB(1; j) + �1B(2; j) + � � �+ �kB(k + 1; j):In other words, [x;�]B is an (m + 1)-sequence.The equality in (1.3.5) expresses L�f(x) in a form which has a naturalmultivariate analogue. In this way, the de�nition is tailor-made to make it obviousthat such a map is liftable, as we prove next.



14Theorem 1.3.6. Each elementary liftable map of order s, as in De�nition 1.3.4,is liftable to IRn. Its lift L : � 7! L�, with L� : Cs(IRn)! C(IRn), is given byL�f(x) := Z[x;�]B� sYj=1D[x;�]aj�f: (1:3:7)In the special case that B(1; �) = 0, the range of L� is contained in �s(IRn).Proof. The continuity of L� required in De�nition 1.3.4 and the conti-nuity of L� asserted in Theorem 1.3.6, follow from the inequalitykL�fkL1(K) � 1m!�maxx2K sYj=1 k[x;�]ajk� f s;1;conv([x;�]B);where K � IRn is compact. This is proved by applying, to (1.3.7), Property 1.2.3(c) followed by (1.1.1) and (1.1.2).Given the continuity of the maps L� and L�, to show that L is the lift ofL, it is su�cient to prove thatL�(g � ��) = (L��� g) � ��; 8� 2 IRn; 8g 2 Cs(IR); 8� 2 (IRn)k:By applying (1.3.1) s times, it follows that(L�(g � ��))(x) = Z[x;�]B� sYj=1 ��[x;�]aj� (Dsg) � ��:To the right-hand side of this, we apply Property 1.2.3 (d) (with �� the a�ne map)and the identity ��[x;�] = [��x; ���] to obtain thatZ[��x;���]B� sYj=1[��x; ���]aj� (Dsg) = (L��� g)(��x):Example 1.3.8. In [HM87] it is shown that (sadly) the divided di�erence cannotbe lifted; however we may lift the following divided di�erence identity�[�;v;w]g = �[�;v]g � �[�;w]gv � w ; v 6= w: (1:3:9)



15By the Hermite-Genocchi formula, (1.3.9) may be rewritten as(v � w)Z[�;v;w]Df = Z[�;v] f � Z[�;w] f;where f := Dkg and k = #�. By Theorem 1.3.6, this lifts toZ[�;v;w]Dv�wf = Z[�;v] f � Z[�;w] f; (1:3:10)for all su�ciently smooth f , where � is any �nite sequence in IRn and v;w 2 IRn.An elementary liftable map depends continuously on �, in the followingsense.Theorem 1.3.11. Let L be the lift to IRn of an elementary k-point liftable mapof order s. For all f 2 Cs(IRn), the map(IRn)k ! C(IRn) : � 7! L�fis continuous.Proof. By Property 1.2.3 (e), the map(x;�) 7! L�f(x)is continuous.The literature contains no discussion of the `continuous' dependence of L� on�. In [CMS801] it is shown that a complex regular Birkho� interpolation procedureis liftable by writing it as a sum of what we have called here elementary liftablemaps. Thus, we have the following.



16Corollary 1.3.12. Let B be the complex regular Birkho� interpolation procedureand B its lift to IRn. For each f 2 Cs(IRn), the map� 7! B�fis continuous.In the case n = 1, i.e., when B� = B�, this continuity result was proved in[DLR82] by using `de-coalescence' of the interpolation matrix.Another immediate consequence is the continuous dependence of the Hermiteinterpolant on its points of interpolation. However, that is a direct consequence ofthe well-known continuity of � 7! ��f .Related considerationsIn [CMS801], [HM87], there is a discussion about lifting the family of dis-tributions IRk+1 ! S : (x;�) 7! �[x]L�;where S is some suitable space of distributions, e.g., C10 (IR), or, in our case,E0s(IR) (the space of compactly supported distributions of order s).Lifting such a family is shown there to be equivalent to inverting its Radontransform. Without going too far into details, we mention that, for an elementaryliftable map of the form (1.3.5), its Radon transform H is given byH(f) := ZB� sYj=1Daj�f;and so L� may be expressed asL�f(x) = H(f � [x;�]):



17 One useful consequence of the Radon transform theory is the following com-patibility condition: if L is liftable, then (x;�) 7! L�((�)i) (x) is homogeneousof degree i. Moreover, by Property 1.2.3 (d), if L is an elementary liftable map andf is a homogeneous polynomial of degree i, then (x;�) 7! L�f(x) is homogeneousof degree i.1.4. The scale of mean value interpolationsIn this section we describe a family H(m), m < k, of liftable maps that werelifted in [G83] to obtain multivariate polynomial interpolation schemes. Specialcases of these multivariate schemes, referred to in [BHS93:p203] as the scale ofmean value interpolations, are the well-known maps of Kergin and Hakopian.We will need the following facts about linear interpolation.Linear interpolationLet F be a �nite-dimensional space and � a �nite-dimensional space oflinear functionals de�ned at least on F . We say that the corresponding linearinterpolation problem, LIP(F;�) for short, is correct if for every g upon which� is de�ned there is a unique f 2 F which agrees with g on �, i.e.,�(f) = �(g); 8� 2 �:The linear map L : g 7! f is called the associated (linear) projector with inter-polants F and interpolation conditions �. Each linear projector with �nite-dimensional range F is the solution of a LIP(F;�) for some unique choice of theinterpolation conditions �.



18Notice that the correctness of LIP(F;�) depends only on the action of � onF . The map H(m)Let D�mf be any function with Dm(D�mf) = f . IfP : Cs(IR)! �n(IR)is any linear projector, then for m � nf 7! DmP (D�mf);is a linear projector into �n�m(IR) which is de�ned on Cs�m(IR).We are interested in the case where P is H�, which is, by de�nition, theHermite interpolation operator at �, a k-sequence in IR.De�nition 1.4.1. For 0 � m < k = #�, the generalised Hermite mapH(m) : � 7! H(m)�is given by the linear projectorsH(m)� : Ck�m�1(IR)! �k�m�1(IR) : f 7! Dm(H�D�mf):For convenience, H(k) := 0.Observe that H(0)� = H�, which in part justi�es the term `generalised Her-mite map'. The generalised Hermite maps H(m)� occurred in the approximationtheory literature before they were lifted by Goodman in [G83]; see e.g., de Boor[B75] where they were used to bound spline interpolation.



19 The interpolants for H(m)� are �k�m�1(IR), and the interpolation conditionsare spanff 7! Z~�D#~��m�1f : ~� � �; #~� �m+ 1g:For � a �nite sequence in IR, let!�(x) := Y�2�(x � �):Note that if j � #�, then Dj!� = j! X~���#~�=j !�n~�: (1:4:2)If � = [�1; : : : ; �k], then we may write the `Newton form' of H(m)� asH(m)� f(x) = kXj=m+1 ��j (D�mf)Dm!�j�1(x); m < k: (1:4:3)The term `Newton form' used here is justi�ed not only by the fact that (1.4.3) isobtained by di�erentiating the Newton form of H�(D�mf), but by the observationthat H(m)�k+1f = H(m)�k f + ��k+1(D�mf)Dm!�k ; m < k + 1:H(m) the lift of H(m)We now show that H(m) is liftable to IRn. The lifts H(m), m < k, form whatwe call, with [BHS93], the scale of mean value interpolations.By using (1.4.2) and the Hermite-Genocchi formula, the `Newton form'(1.4.3) may be written as the following sum of elementary liftable maps:H(m)� f(x) =m! kXj=m+1 X~���j�1#~�=m � Y�2�j�1n~�(x � �)� Z�j Dj�m�1f: (1:4:4)



20We refer to this as the Newton form of H(m)� .Thus, by Theorem (1.3.6), the map H(m) can be lifted to H(m), whereH(m)� : Ck�m�1(IRn)! �k�m�1(IRn);with its Newton form given byH(m)� f(x) = m! kXj=m+1 X~���j�1#~�=m Z�j Dx��j�1n~�f: (1:4:5)This formula (1.4.5) is due to Goodman [G83]. He shows that each H(m)� isa linear projector with range �k�m�1(IRn) and (lifted) interpolation conditionsspanff 7! Z~� g(D)f : ~� � �; #~� � m+ 1; g 2 �0#~��m�1(IRn)g: (1:4:6)Special casesThe map H(0)� is the Kergin map, see [K80] and [M80]. The Newton formof Kergin's map,H(0)� f(x) = f(�1) + Z[�1;�2]Dx��1f + � � �+ Z[�1;:::;�k]Dx��1 � � �Dx��k�1f;is given in [M80] and [MM80]. Notice that the interpolation conditions of thismap include evaluation at the points �. Thus Kergin's map is a multivariategeneralisation of Lagrange interpolation.The map H(1)� was introduced in [CMS802] where it was referred to as thearea matching map. Presumably the term `area matching' came from the factthat if the points in � := [�1; : : : ; �k] in IR are distinct, then the interpolationconditions of H(1)� are spanff 7! Z �i+1�i f : i = 1; : : : ; k � 1g:



21 If the k � n points in � are in general position in IRn, then H(n�1)� is theHakopian map, see [H81] and [H822]. For this map, the interpolation conditionsmay be written as spanff 7! Z~� f : ~� � �; #~� = ng:Thus, H(n�1)� has an extension (the map originally given by Hakopian) to C(IRn)and interpolants �k�n(IRn). Though not immediately apparent from (1.4.6), theinterpolation conditions for Hakopian's map include evaluation at the points �.Thus it, like Kergin's map, provides a multivariate generalisation of Lagrange in-terpolation.For additional discussion on expressing the interpolation conditions forH(m)�in terms of derivatives of lower orders than given in (1.4.6), see [DM83].1.5. Integral error formul�Observe that f �H(m)� f = Dm�D�mf �H�(D�mf)�: (1:5:1)Thus, to obtain an error formula for H(m), one might hope to lift the error formulafor Hermite interpolation. In this section, this is done in two ways. The �rst andmore natural way introduces derivatives of higher order than one might like. In thesecond, this de�ciency is remedied by taking advantage of a little-known formulafor the derivative of the error in Hermite interpolation.



22The �rst error formulaUsing the di�erentiation rule for divided di�erencesdidxi �[x;�]f = i! �[x;:::;x| {z }i+1 ;�]f; (1:5:2)the Hermite error formulaD�mf(x) �H�(D�mf) (x) = !�(x) �[x;�](D�mf) (1:5:3)can be di�erentiated (m times) to obtain, by (1.5.1), thatf(x) �H(m)� f(x) = mXj=0�mj �Dj!�(x) (m � j)! �[x;:::;x| {z }m�j+1;�](D�mf): (1:5:4)Using (1.4.2) and the Hermite-Genocchi formula, we may write (1.5.4) asf(x) �H(m)� f(x) = m! mXj=0 X~���#~�=j !�n~�(x) Z[ x;:::;x| {z }m�j+1;�](Dk�jf); 8f 2 Ck(IR):(1:5:5)The formula (1.5.5) expresses the error, f 7! f �H(m)� f , as a sum of elementaryliftable maps of orders k�m; : : : ; k. Thus, using Theorem 1.3.6, this can be lifted,thereby giving the following.First error formula. If m < k and f 2 Ck(IRn), thenf(x) �H(m)� f(x) = m! mXj=0 X~���#~�=j Z[ x;:::;x| {z }m�j+1;�]Dx��n~�f: (1:5:6)For Kergin interpolation, i.e., when m = 0, this formula reduces tof(x) �H(0)� = Z[x;�]Dx��f; (1:5:7)



23which was given in Micchelli [M80].The only other mention of this formula in the literature is for Hakopianinterpolation, i.e., when m = n � 1, and occurs in the book [BHS93:p200]. There(1.5.6) is stated incorrectly, and without proof, asf(x) �H(n�1)� f(x) = n�1Xj=0 X~���#~�=j �n� 1j �Z[ x;:::;x| {z }m�j+1;�]Dx��n~�f:In other words, the constant �n� 1j � there should be replaced by (n � 1)!.The interpolants for H(m)� are �k�m�1(IRn). The error formula (1.5.6) in-volves derivatives of orders k �m; : : : ; k. For m > 0, it would be desirable to nothave the higher derivatives k�m+1; : : : ; k occurring. We now give such a formula.The second error formulaThe higher derivatives in (1.5.6) are introduced when (1.5.2) is used to dif-ferentiate x 7! �[x;�](D�mf) in (1.5.3). To avoid this problem, we use the followingformula for the derivative in Hermite interpolation. It was given independently byDokken and Lyche [DoLy78], [DoLy79] and by Wang [W78], [W79].Theorem 1.5.8 ([DoLy78],[W78]). If � = [�1; : : : ; �k], 0 � j < k and f 2Ck(IR), thenDj (f �H�f) (x) = j! kXi=k�j (x � �i)(j + i� k)!Dj+i�k!�i�1(x) �[x;:::;x| {z }k+1�i;�i]f:Applying to (1.5.1), Theorem 1.5.8 followed by the Hermite-Genocchi for-



24mula, we obtain that, for f 2 Ck�m(IR),f(x) �H(m)� f(x) =m! kXi=k�m (x � �i)(m+ i� k)!Dm+i�k!�i�1(x) Z[x;:::;x| {z }k+1�i;�i]Dk�mf:(1:5:9)This formula (1.5.9) is a sum of elementary liftable maps, each of order k�m. Itslift, using Theorem 1.3.6, gives the following error formula for H(m)� .Second error formula. If m < k and f 2 Ck�m(IRn), thenf(x) �H(m)� f(x) = m! kXi=k�m X~���i�1#~�=m+i�k Z[x;:::;x| {z }k+1�i;�i]D[x��i�1n~�;x��i]f: (1:5:10)This formula involves only derivatives of f of order k �m.Those worried that the formula (1.5.10) is not symmetric in the points of �could, if desired, take the average over all possible orderings for � to obtain such asymmetric formula. More to the point, it would be desirable to �nd the `simplest'symmetric form of Theorem 1.5.8.Derivatives of the errorThe univariate identityDj (H(m)� f) = H(m+j)� (Djf)can be `lifted' to the following; see, e.g., [BHS93:p205].Proposition 1.5.11. If m < k, j < k �m, g 2 �0j (IRn) and f 2 Ck�m�1(IRn),then g(D)(H(m)� f) = H(m+j)� (g(D)f):



25 This allows us, in a very natural way, to use an error formula for H(m)� todescribe the derivatives of the error in H(m)� . In particular, with the second errorformula (1.5.10), we obtain the following.Theorem 1.5.12. If m < k, j < k �m, g 2 �0j and f 2 Ck�m(IRn), theng(D)�f �H(m)� f�(x)= (m+ j)! kXi=k�m�j X~���i�1#~�=m+j+i�k Z[x;:::;x| {z }k+1�i;�i]D[x��i�1n~�;x��i]g(D)f:This formula involves only derivatives of f of order k �m.Proof. By Proposition 1.5.11,g(D)�f �H(m)� f� = (g(D)f) �H(m+j)� (g(D)f):Since g(D)f 2 Ck�(m+j)(IRn), we may apply the second error formula (1.5.10) tothe error in H(m+j)� at g(D)f , thereby obtaining the given formula.This theorem is the major result of this chapter. Special cases of it includethe second error formula (1.5.10) and Theorem 1.5.8. It expresses the error inH(m)� f , and its derivatives, in terms of integration against the derivative of orderone higher than the degree of the interpolating polynomial space. This is preciselythe estimate that numerical analysts want, to guarantee that their scheme, e.g., aH(m)� �nite element (see, e.g., [L92:p164]), has the maximum possible order.From this Theorem, L1-estimates for the error can easily be obtained. Thisis done in Section 1.6.Comparison with the results of Lai-Wang and GaoThe results of [LW84], [LW86] and [Ga88] are written in terms of the mul-



26tivariate divided di�erences[�1; : : : ; �j�j]�f := Z[�1;:::;�j�j]D�f; 8� 2 ZZs+: (1:5:13)The simplest of these results to state is the following error formula for Kergininterpolation.Theorem 1.5.14 ([LW86:Th.3.1]). If � 2 ZZs+ with j�j � j < k � 1, thenD�(f �H(0)� f)(x) = j�jXr=0 X
��j
j=r X����
j�j=j�r r!��
 �D��
!�(x) nXi=1(x� �j�r+1)i[x; : : : ; x| {z }r+1 ; �1; : : : ; �j�r+1]�+
+eif� k�1Xr=j+1 X
��j
j=r D�!
(x) [�1; : : : ; �r+1]
f; (1:5:15)where ��� � := ��1�1 � � � ���n�n � ;and !
(x) := Xei1+���+eij
j=
(x � �1)i1 � � � (x � �j
j)ij
j :The above uses standard multi-index notation. The i-th component of x 2IRn is xi, and ei is the i-th unit vector in IRn.Formula (1.5.15) of Theorem 1.5.14 involves derivatives of f of orders j +1; : : : ; k � 1; whereas the formula (1.5.10) involves only derivatives of order k.Also, in the case of greatest interest for this formula, namely when j + 1 =k � 1 and � = 0, formula (1.5.15) reduces, in the univariate case, tof(x) �H�f(x) = !�k�1(x)Z[x;�1;:::;�k�1]Dk�1f � !�k�1(x)Z[�1;:::;�k]Dk�1f:(1:5:16)



27Since formula (1.5.16) is a sum of elementary liftable maps, and follows from oneapplication of (1.3.10) to the Hermite error formulaf(x) �H�f(x) = (x� �1) � � � (x � �k)Z[x��1;���;x��k]Dkf;we obtain at once the case j + 1 = k � 1 and � = 0 of Theorem 1.5.14 by lifting(1.5.16), and in the following form:f(x) �H(0)� f(x) = Z[x;�1;:::�k�1]Dx��1 � � �Dx��k�1f � Z[�1;:::�k]Dx��1 � � �Dx��k�1f:(1:5:17)If one now expands (1.5.17) in multivariate divided di�erences, then oneobtains (1.5.15) for this case. However, it is not clear what has been gained in theprocess.Similar considerations, can, and should, be given to other formulas in[LW84], [LW86] and [Ga88].Additional commentsThe only justi�cation for the term `multivariate divided di�erence' for(1.5.13) that the author can see, is the identity (1.3.10), which is due to Mic-chelli (see [M80:Th.6]), and (in its many guises) pervades the multivariate splineliterature. With that justi�cation, the term might as well be applied to any linearcombination of functionalsf 7! Z� g(D)f; � 2 (IRn)k; g 2 �j(IRn);that can be expressed as a linear combination of other such functionals involvinglower order derivatives of f .



281.6. L1-estimatesIn this �nal section, we obtain L1-estimates from the formul� of Section1.5. Our choice of the seminorm � k;1;K de�ned in (1.1.2) makes this a straight-forward task. Let hx;� := max�2� kx� �k � diam[x;�]:From the �rst error formula (1.5.6), we obtain the following L1-estimate.Proposition 1.6.1. If m < k and f 2 Ck(IRn), thenjf(x) �H(m)� f(x)j � mXj=0 constj;k;m(hx;�)k�j f k�j;1;conv[x;�];where constj;k;m := m!(k +m� j)! � kj � :Proof. To the �rst error formula (1.5.6), apply Property 1.2.3 (c), thenuse (1.1.1) and (1.1.2) to obtainjf(x) �H(m)� f(x)j �m! mXj=0 X~���#~�=j 1(k +m� j)!(hx;�)k�j f k�j;1;conv[x;�]:Lastly, observe that #f~� � � : #~� = jg = � kj � :From Theorem 1.5.12, we obtain the main result of this section.Theorem 1.6.2. If m < k, j < k �m and f 2 Ck�m(IRn), thenjDj(f �H(m)� f)j(x) � 1(k �m� j)!(hx;�)k�m�j f k�m;1;conv[x;�]: (1:6:3)



29The constant is the best possible in the sense that if � = [�; : : : ; �], then it cannotbe improved.Proof. To prove the inequality, begin as in the proof of Proposition1.6.1, then use the identity:(m+ j)!k! kXi=k�m�j� i � 1m+ j + i� k� = 1(k �m� j)! :Suppose � = [�; : : : ; �]. By (1.4.6) we have that H(m)� f is the Taylor in-terpolant from �k�m�1(IRn) to f at �. Let u := (x � �)=kx � �k. Note thathx;� = kx� �k. Then for the plane wavef := (� � u��)k�m � u� 2 �k�m(IRn);H(m)� f = 0, and we have, by (1.3.1), thatjDj(f �H(m)� f)j(x)f k�m;1;conv[x;�] � jDjuf(x)j(k �m)!= (k �m) � � � (k �m� j + 1)(k �m)! (� � u��)k�m�j � (u�x)= 1(k �m� j)! (hx;�)k�m�j :Thus, in the case � = [�; : : : ; �], the constant is the best possible.When m = 0, Proposition 1.6.1 and Theorem 1.6.2 (with j = 0) reduce tojf(x) �H(0)� f(x)j � 1k! (hx;�)k f k;1;conv[x;�];which was given in [M80]. For m > 0, none of the above L1-estimates are in theliterature.



30Remark 1.6.4. In [Bo83:Th.2.5] Bos gives the following estimate for Kergin in-terpolation on the disc. Let � consist of k points equally spaced on the discfx 2 IR2 : kxk = hg, where h > 0. Then for f 2 Ck(IR2)maxkxk�h jf(x) �H(0)� f(x)j � 1k! 42k hk f k;1;fx:kxk�hg:This indicates that it may be possible to reduce the size of the constant in(1.6.3) for restricted values of hx;�. However, in view of the sharpness for the caseof Taylor interpolation (when � = [�; : : : ; �]) and the continuity of � 7! H(m)� f (byTheorem 1.3.11), for unrestricted values of hx;� the constant is the best possiblein all cases.It is not possible to apply Properties 1.2.3 (c) to the integral error formul�of this chapter to obtain Lp-estimates for 1 � p < 1. A partial solution to thisimpasse, which uses a multivariate form of Hardy's inequality, is given in Chapter2.



31 2. A multivariate form of Hardy's inequalityand Lp-error bounds for multivariateLagrange interpolation schemes2.1. IntroductionThe central result of this chapter is the inequality, that for m� n=p > 0k x 7! Z[x;:::;x| {z }m ;�] f kLp(
) � 1(m� 1)!(m� n=p)#� kfkLp(
); 8f 2 Lp(
); (2:1:1)where � is a �nite sequence of points in IRn, and 
 is a suitable domain in IRn.This inequality is a multivariate generalisation of Hardy's inequality, that forp > 1 k x 7! 1x Z x0 f kLp(0;1) � pp� 1 kfkLp(0;1); 8f 2 Lp(0;1): (2:1:2)Thus, we will refer to (2.1.1) as the multivariate form of Hardy's inequality.Our interest in (2.1.1) comes from a desire to obtain Lp-bounds from themany integral error formul� for multivariate generalisations of Lagrange interpo-lation that involve the linear functionalf 7! Z[x;:::;x| {z }m ;�] f: (2:1:3)The chapter is set out in the following way. In the remainder of this section,the notation, and facts about Sobolev spaces that we will need are discussed. InSection 2.2, the multivariate form of Hardy's inequality is proved. In Section 2.3,



32the multivariate form of Hardy's inequality is applied to obtain Lp-bounds forthe error in the scale of mean value interpolations, which includes Kergin andHakopian interpolation. In Section 2.4, in a similar vein, Lp-bounds for the errorin Lagrange maps are obtained. In Section 2.5, we discuss why the multivariateform of Hardy's inequality is applicable to the many error formul� for multivariateLagrange interpolation schemes, and is likely to be so for others obtained in thefuture. Some additional notationLet 
 � IRn, with �
 its closure. The letters i; j; k; l;m; n will be reservedfor integers, and 1 � p �1.Many of the constants in this chapter involve the shifted factorial func-tion (a)n := (a)(a + 1)(a + 2) � � � (a + n� 1) = �(a + n)�(a) ; (2:1:4)where � is the Gamma function. The Gamma function satis�es the relation:�(a + 1) = a�(a), 8a > 0, and has �(1) = 1. Some of our calculations require theBeta integrals Z 10 ta�1(1� t)b�1 dt = �(a)�(b)�(a + b) ; a; b > 0; (2:1:5)and the hypergeometric function2F1� a; bc ;x� := 1Xn=0 (a)n(b)nn!(c)n xn: (2:1:6)The standard reference to these is the monograph [E53].



33 Geometry of the domain 
We say that 
 � IRn is starshaped with respect to S a set (resp. se-quence) in IRn when 
 contains the convex hull of S [ fxg for any x 2 
. Thiscondition is weaker than 
 being convex.In our results, it will be required that �
 be starshaped with respect to� 2 IRn�k, where 
 is an open set in IRn. This condition is required of �
, ratherthan of 
, so as to include cases where some points in � lie on the boundary of
. One such example of interest is the Lagrange �nite element given by linearinterpolation at �, the vertices of a n-simplex, see, e.g. Ciarlet [Ci78:p46]. In thiscase, �
 = conv� and none of the points of � lies in the open simplex 
.
Fig 2.1.1 Examples of domains 
 (shaded) for which �
 is starshapedwith respect to the points in � (�)We now show that being starshaped with respect to a �nite sequence isequivalent to being starshaped with respect to its convex hull.Proposition 2.1.7. If 
 � IRn and � 2 IRn�k, then the following are equivalent:(a) 
 is starshaped with respect to �.(b) 
 is starshaped with respect to conv�.



34Proof. Only the implication (a) =) (b) requires proof. Suppose (a). Toobtain (b) it su�ces to prove that if 
 is starshaped with respect to points u andv, then convfu; v; xg � 
, 8x 2 
, i.e., 
 is starshaped with respect to convfu; vg.Assume wlog that u; v; x are a�nely independent and z 2 convfu; v; xg.Let w be the point of intersection of the line through u and z with the intervalconvfx; vg. Since 
 is starshaped with respect to v, one has that w 2 
. Thus,since 
 is starshaped with respect to u, one has that z 2 convfu;wg � 
.
u vz x wFig 2.1.2 The proof of Proposition 2.1.7This equivalence ensures that if �
 is starshaped with respect to �, thenf 2 Lp(
) is de�ned over the region of integration in (2.1.3) for all x 2 
.Sobolev spacesLet W (k)p (
) be the Sobolev space consisting of those functions de�ned on
 (a bounded open set in IRn with a Lipschitz boundary) with derivatives up toorder k in Lp(
), and equipped with the usual topology; see, e.g., Adams [Ad75].



35It is convenient to include in the de�nition the condition that 
 have a Lipschitzboundary, so that Sobolev's embedding theorem can be applied. The full statementof Sobolev's embedding theorem can be found in any text on Sobolev spaces, see,e.g., [Ad75:p97]; however we will need only the following consequence of it. Ifj � n=p > 0, then W k+jp (
) � Ck(�
):To measure the size of its k-th derivative, it is convenient to associate witheach f 2W (k)p (
) the function jDkf j 2 Lp(
), given by the rulejDkf j(x) := sup�2IRn�kk�ik�1 jD�f(x)j = sup�2IRnk�k=1 jDk�f(x)j; (2:1:8)where the derivatives D�f are computed from any (�xed) choice of representativesfor the partial derivatives D�f 2 Lp(
), j�j = k. The equality of the two supremais proved in Chen and Ditzian [CD90]. This de�nition of jDkf j is consistent withits alternative interpretation in the univariate case. From (2.1.8), it is easy to seethat jDkf j is well-de�ned and satis�esjD�f j � jDkf j k�1k � � � k�kk; (2:1:9)for all � 2 IRn�k. The inequality (2.1.9) holds a.e. To emphasize that D�f ,jDkf j 2 Lp(
), we will say that (2.1.9) holds in Lp(
). The Lp(
)-norm of jDkf jgives a seminorm on W (k)p (
),f 7! f k;p;
 := k jDkf j kLp(
): (2:1:10)Because of (2.1.9), this coordinate-independent seminorm (2.1.10) is more appro-priate for the analysis that follows than other equivalent seminorms, such asf 7! k (kD�fkLp(
) : j�j = k) kp:



362.2. The main results:the multivariate form of Hardy's inequalityIn this section we prove the multivariate form of Hardy's inequality. Thisinequality is useful for obtaining Lp-bounds from integral error formul� for variousmultivariate interpolation schemes.First we need a technical lemma.Lemma 2.2.1. Let m;k be integers, and � 2 IR. If 1 � m � k and m + � > 0,then Z 10 Z s10 � � � Z sk�10 (1 � sm)� dsk � � � ds1 = �(m + �)�(m)�(k + 1 + �) :Proof. This can be proved by successively evaluating the univariate in-tegrals. Instead we give the following proof � a neat application of the propertiesof f 7! R� f . From De�nition 1.2.1, we see thatZ 10 Z s10 � � �Z sk�10 (1 � sm)� dsk � � � ds1 = Z�(�)�;where � := [0; : : : ; 0| {z }m ; 1; : : : ; 1| {z }k+1�m ]:For this �, the nontrivial part of M(�j�) is a polynomial of order k on [0 : :1], with(m � 1)-fold, (k �m)-fold zeros at 0, 1 respectively. Since R M(�j�) = 1, (2.1.5)implies thatM(tj�) = �(k + 1)�(m)�(k + 1�m) tm�1(1 � t)k�m; 0 � t � 1:



37From (1.2.6) and (2.1.5) we conclude thatZ�(�)� = 1�(k + 1) Z 10 (�)�M(�j�)= 1�(m)�(k + 1�m) Z 10 t�tm�1(1� t)k�m dt= �(m + �)�(m)�(k + 1 + �) :Here the condition that m + � > 0 is needed to ensure that the Beta integral is�nite. The multivariate form of Hardy's inequalityNow we prove the multivariate form of Hardy's inequality.Theorem 2.2.2. Let � be a �nite sequence in IRn, and let 
 be an open set inIRn for which �
 is starshaped with respect to �. If m� n=p > 0, then the ruleLm;�f(x) := Z[x;:::;x| {z }m ;�] f (2:2:3)induces a monotone bounded linear map Lm;� : Lp(
)! Lp(
) with normkLm;�k � 1(m� 1)!(m� n=p)#� !1 as m� n=p! 0+: (2:2:4)This upper bound for kLm;�k is sharp when p =1.Proof. Suppose that m�n=p > 0. Thenm > 0, and we let k+1 := m+#�. Let Lp(
) be the semi-normed linear space consisting of those (measurable)functions f de�ned on 
 with kfkLp(
) <1, together with the semi-norm k�kLp(
).Let Z be the set of those f 2 Lp(
) for which kfkLp(
) = 0. By Proposition 2.1.7,



38the condition that �
 be starshaped with respect to � ensures that it is starshapedwith respect to conv�. In particular, for any x 2 
, the region of integration in(2.2.3) is contained within �
 (upto a null set := set of measure zero). However, apriori, we do not know whether (2.2.3) de�nes a function Lm;�f 2 Lp(
) for everyf 2 Lp(
), i.e., equivalently, that the linear map Lm;� : Lp(
) ! Lp(
) givenby (2.2.3) maps Z to Z. In view of Remark 1.2.5, to show this, together with thebound for kLm;�k, it is su�cient to prove the inequalitykLm;�fkLp(
) � �(m� n=p)�(m)�(k + 1� n=p)kfkLp(
); (2:2:5)for all f 2 Lp(
) which are nonnegative. In this case, Lm;�f is a well-de�nednonnegative function, which could possibly take on the value 1.We now prove (2.2.5). Let f 2 Lp(
) be nonnegative, and write[x; : : : ; x| {z }m ;�] = [x; : : : ; x| {z }m ; �m; �m+1; : : : ; �k]:By De�nition 1.2.1, Lm;�f(x) = ZS f(Axs) ds; (2:2:6)where s := (s1; : : : ; sk) andZS := Z 10 Z s10 � � � Z sk�10 ; ds := dsk � � � ds1;Axs := x + sm(�m � x) + sm+1(�m+1 � �m) + � � �+ sk(�k � �k�1):Applying Minkowski's inequality for integrals (see, e.g., Folland [Fo84:p186]) to thesum RS of functions x 7! f(Axs) we obtain, by (2.2.6), thatkLm;�fkLp(
) � ZS kx 7! f(Axs)kLp(
) ds: (2:2:7)



39 The case 1 � p <1. We may write (2.2.7) askLm;�fkLp(
) � ZS�Z
 f(Axs)p dx�1=p ds:In the inner integral, make the change of variables y = Axs. For this choice, thenew region of integration is contained in 
, and dy = (1 � sm)ndx. Thus, by thechange of variables formula, see, e.g., Rudin [Ru87:p153], we obtain thatZS�Z
 f(Axs)p dx�1=p ds � ZS�Z
 f(y)p dy(1� sm)n�1=p ds= �ZS(1� sm)�n=p ds�kfkLp(
):Finally, by Lemma 2.2.1 with m+ � = m� n=p > 0, we haveZS(1� sm)�n=p ds = �(m� n=p)�(m)�(k + 1� n=p) ;giving (2.2.4) for 1 � p <1.The case p =1. Since x 7! Axs maps null sets to null sets, we obtain from(2.2.7) that kLm;�fkL1(
) � ZS kfkL1(
) ds = 1k! kfkL1(
);with equality when f is constant. Here we usedZS ds = 1k! = �(m)�(m)�(k + 1) ;which follows from Observation 1.2.2, or by Lemma 2.2.1 with � = 0. This com-pletes the case p =1.Remark 2.2.8. If voln(conv�) > 0, then, by Remark 1.2.5, it follows that thevalue of Lm;�f(x) is the same for all representatives of f 2 Lp(
). Indeed, by



40Proposition 1.2.9, for all f 2 Lp(
) we have that Lm;�f 2 C(�
), regardless ofwhether or not m� n=p > 0.On the other hand, when voln(conv�) = 0, then the function Lm;�f neednot be so well-behaved. For example, if n > 1 and � consists of a single point�, then f 2 Lp(
) can be altered on a null set so that Lm;�f takes on arbitrarypreassigned values on any countable dense subset of 
. For the details of one suchconstruction, see the end of this section.The function Lm;[�]f is more than simply an interesting example. It occurs inthe multipoint Taylor error formula for multivariate Lagrange interpolation givenby Ciarlet and Raviart [CR72]. From the multipoint Taylor formula, Arcangeliand Gout [AG76] obtained Lp-bounds for multivariate Lagrange interpolation, longused by those working in �nite elements, but known to few approximation theorists.For this reason, these bounds are discussed in some detail in Section 2.4.Special case: Hardy's inequalityIn the very special case n = 1, m = 1, and � = [0], one has, by (1.2.7), thatLm;�f(x) = 1x Z x0 f: (2:2:9)With the choice 
 = (0;1), (2.2.4) is Hardy's inequality (2.1.2). This well-knowninequality was �rst proved by Hardy [Ha28], see also [HLP67:x9.8].For a comprehensive survey of the literature connected with Hardy's inequal-ity, see Chapter IV: Hardy's, Carleman's and related inequalities, of the monograph[FMP91]. The only multivariate occurrence of Theorem 2.2.2 that the author isaware of is, implicitly, in Arcangeli and Gout [AG76] for the case when � consistsof a single point. The bulk of the 174 references for chapter IV of [FMP91] deals



41with univariate generalisations of Hardy's inequality � some of which are specialcases of Theorem 2.2.2.In this thesis we will not be concerned with the sharpness of (2.2.4). How-ever, for those so interested we mention the following point of departure. For themap (2.2.9), with 
 = (0;1), kLm;�k = pp� 1 :See, e.g., Shum [Sh71], [Ru87:ex.14,p72], and [Jo93:p275,p289].Further Lp-boundsNext we use Theorem 2.2.2 to give a bound particularly suited for obtainingLp-bounds from integral error formul�, such as those given in Sections 2.3 and 2.4.Theorem 2.2.10. Fix a1; : : : ; as 2 IRk+1 n 0, where s � 0. Let � 2 IRn�k, andlet 
 be a bounded open set in IRn for which �
 is starshaped with respect to �.If m� n=p > 0, then the ruleLf(x) := Z[x;:::;x| {z }m ;�]� sYj=1D[x;�]aj�f (2:2:11)induces a bounded linear map L :W sp (
)! Lp(
), withkLfkLp (
) � �maxx2�
 sYj=1 k[x;�]ajk� 1(m� 1)!(m� n=p)#� f s;p;
: (2:2:12)In addition, when p =1, we have the pointwise estimatejLf(x)j � 1(#�+m� 1)!� sYj=1 k[x;�]ajk� f s;1;
; a.e. x 2 
: (2:2:13)



42Proof. Let x 2 
, and f 2W sp (
). By (2.1.9),����� sYj=1D[x;�]aj�f���� � � sYj=1 k[x;�]ajk�jDsf j; (2:2:14)in Lp(
). Here jDsf j 2 Lp(
) is de�ned by (2.1.8). Thus,Axf := � sYj=1D[x;�]aj�fde�nes a bounded linear map Ax :W sp (
)! Lp(
), withjAxf j � K jDsf j; (2:2:15)in Lp(
), where K := K(a1; : : : ; as;
) := maxx2�
 sYj=1 k[x;�]ajk:Notice that Lf(x) = (Lm;�Axf) (x):Thus, (2.2.15) and the monotonicity of Lm;� : Lp(
)! Lp(
) impliesjLf j � Lm;�(K jDsf j);in Lp(
). Take the Lp(
)-norm of this inequality, then apply Theorem 2.2.2, toobtain kLfkLp(
) � 1(m� 1)!(m� n=p)#�K k jDsf j kLp(
):Since k jDsf j kLp(
) = f s;p;
;this proves (2.2.12).



43 Similarly, from (2.2.14) and Theorem 2.2.2, we have for a.e. x 2 
, thatjLf(x)j � � sYj=1 k[x;�]ajk�kLm;�(jDsf j)kL1(
)� � sYj=1 k[x;�]ajk� 1(#�+m� 1)! f s;1;
;which is (2.2.13).In the special case when s = 0, Theorem 2.2.10 reduces to Theorem 2.2.2.Theorem 2.2.10, together with Property 1.2.3 (d), can be used to obtain boundsfor maps more general than (2.2.11). One such example is the lift of an elementaryliftable map, see Section 1.3. An exampleFinally, the example promised in Remark 2.2.8.Let n > 1 and � consist of the single point �. Suppose that �
 is starshapedwith respect to �, and that B is a countable dense subset of 
. It is possible tochange f 2 Lp(
) on the intersection of 
 with the cone C with vertex � and baseB, which is a null set, so that Lm;[�]f , as computed from (2.2.3), takes on arbitrarypreassigned values on B.The cone C consists of the union of rays r emanating from � and passingthrough a point b 2 B. Let r be such a ray, and order the points from B lying onr as b1; b2; : : :, so that bi is closer to � than bi+1. By Remark 1.2.5,Lm;[�]f(bi) = Z M(�j bi; : : : ; bi| {z }m ; �) fwith the integration above being over the interval [� : : bi] := convf�; big weightedby a nonnegative polynomial. Thus, by rede�ning f to be an appropriate constant



44over each of the intervals [� : : b1], [b1 : : b2], [b2 : : b3]; : : :, one can make Lm;[�]f(bi)take on any preassigned values.2.3. Application:Lp-error bounds for Kergin and Hakopian interpolationIn this section we use Theorem 2.2.10 to obtain Lp-error bounds for the scaleof mean value interpolations, which includes the Kergin and Hakopian maps.The scale of mean value interpolationsThroughout this section, � 2 IRn�k. For 0 � m < k, we have the meanvalue interpolation (see Section 1.4)H(m)� : ff : f is Ck�m�1 on conv�g ! �k�m�1(IRn);which is given byH(m)� f(x) := m! kXj=m+1 X~���j�1#~�=m Z�j Dx��j�1n~�f:For the remainder of this section, 
 will be a bounded open set in IRn with aLipschitz boundary. From Theorem 1.5.12, one obtains the following integral errorformul� for the scale of mean value interpolations.Theorem2.3.1. Suppose that �
 is starshaped with respect to �. If 0 � j < k�m,q 2 �0j (IRn), p > n, and f 2W (k�m)p (
), thenq(D)�f �H(m)� f�(x)= (m+ j)! kXi=k�m�j X~���i�1#~�=m+j+i�k Z[x;:::;x| {z }k+1�i;�i]D[x��i�1n~�;x��i]q(D)f:(2:3:2)



45This formula involves only derivatives of f of order k �m.Remark 2.3.3. In Theorem 1.5.12 the formula (2.3.2) was proved only for f 2Ck�m(IRn), without any reference to p. We now outline how it can be extendedto f 2W (k�m)p (
). By Sobolev's embedding theorem, the condition p > n impliesthat W (k�m)p (
) � Ck�m�1(�
) � C(�
):Thus,H(m)� f is de�ned for all f 2W (k�m)p (
). To extend (2.3.2) to f 2W (k�m)p (
)use the density of C10 (
) in W (k�m)p (
).Lp-bounds for the scale of mean value interpolationsNext we apply Theorem 2.2.10 to (2.3.2) to obtain Lp-bounds for the scaleof mean value interpolations. Lethx;� := sup�2� kx � �k; h
;� := supx2
hx;� � diam
:Theorem2.3.4. Suppose that �
 is starshaped with respect to �. If 0 � j < k�m,p > n, and f 2W (k�m)p (
), thenf �H(m)� f j;p;
 � Cn;p;j;k;m (h
;�)k�m�j f k�m;p;
; (2:3:5)where Cn;p;j;k;m := 1(1 � n=p)k�m�j :The constant Cn;p;j;k;m !1 as p! n+. Additionally, if p =1, then we have thepointwise estimate that, for all x 2 �
,jDj(f �H(m)� f)j(x) � 1(k �m� j)!(hx;�)k�m�j f k�m;1;
:



46Proof. Choose q 2 �0j (IRn) so thatq(D) = Du1 � � �Duj ;where u1; : : : ; uj 2 IRn with kuik � 1. By Theorem 2.2.10, we have for each of theterms in (2.3.2) thatkx 7! Z[x;:::;x| {z }k+1�i;�i]D[x��i�1n~�;x��i]q(D)fkLp (
)� �(k + 1� i� n=p)�(k + 1� i)�(k + 1� n=p) (hx;�)k�m�j f k�m;1;
:Notice that in the above, the constantsmaxx2�
 Y�2[�i�1n~�;�i] kx� �kwere replaced by the possibly larger, but far less complicated constant(h
;�)k�m�j . This gives the �rst inequality withCn;p;j;k;m := (m+ j)!�(k + 1� n=p) kXi=k�m�j� i� 1m+ j + i� k� �(k + 1� i � n=p)(k � i)!= (k � 1)!(k �m� j � 1)!(1� n=p) 2F1��m� j, 1� n=p1� k ; 1�:By the Chu-Vandermonde convolution identity:2F1��n; bc ; 1� = (c� b)n(c)n ;which is the special case a = �n of equation (14) in [E53:p61], it follows thatCn;p;j;k;m = 1(1 � n=p)k�m�j :The second inequality, which is Theorem 1.6.2, follows from the pointwiseestimate (2.2.13).By considering the special case of Taylor interpolation at a point by polyno-mials of degree � k, one obtains the following estimate of the distance of smoothfunctions from �k.



47Corollary. Suppose that 
 � IRn is a bounded, open, starshaped region that hasa Lipschitz boundary. Then for p > n and 0 � j � k + 1,dist � j;p;
(f;�k) := infg2�k f � g j;p;
� 1(1 � n=p)k+1�j (diam
)k+1�j f k+1;p;
; 8f 2W k+1p (
):(2:3:6)Note that 1(1� n=p)k+1�j !1; as p! n+:That an inequality of the form (2.3.6) exists for j = 0, where the constant1=(1 � n=p)k+1�j is replaced by some unknown constant depending only on n, kand p, is the content of the paper by Dechevski and Quak [DQ90]. From this theyobtain the corresponding `improved' version of the Bramble-Hilbert lemma (see[BH70]). A related result of Lai and WangThe only related result in the literature is an Lp-bound for the error inHakopian interpolation given by Lai and Wang [LW84]. In that paper they showthe following.Theorem 2.3.7 ([LW84:Th.1]). Let j�j � k � n. Then for any positive integer



48` � k + j�j � n+ 1, we haveD�(f �H(n�1)� )(x)=(j�j+ n� 1) j�j+nX�1=1 nXi1=1(x � �j�j+n��1+1)i1 �1X�2=1 nXi2=1(x � �j�j+n��2+2)i2�� � � � �`�1X�`=1 nXi`=1(x� �j�j+n��`+`)i` Z[x;:::;x| {z }�` ;�1;:::;�j�j+n��`+`]D�+Pj̀=1 eij f� k�1Xj=j�j+n�1+` Xj
j=j�n+1D�!
(x)Z[�1;:::;�j ]D
f: (2:3:8)To (2.3.8), Lai and Wang apply the integral form of Minkowski's inequalityin the formkx 7! Z[x;:::;x| {z }� ;�1;:::;�k+1��]D�fkLp(G) � C2 kD�fkLp(G); � = 1; : : : ; j�j+ n;(2:3:9)to obtain the following.Theorem 2.3.10 ([LW84:Th.2]). Let G be a convex set containing �, withdiameter h. If p > n, j�j � k � n, and f 2W (k�n+1)p (G), thenkD�(f �H(n�1)� f)kLp (G) � C hk�n+1�j�j maxj�j=k�n+1kD�fkLp(G); (2:3:11)where C a constant independent of f .Since f 7! maxj�j=k+1�n kD�fkLp(
), and f 7! f k+1�n;p;
 are equiva-lent seminorms, Theorem 2.3.10 follows from Theorem 2.3.4. Had Lai and Wangattempted to compute the C2 of (2.3.9) using the multivariate form of Hardy's



49inequality, they would have obtainedC2 � �(� � n=p)�(�)�(k + 1) :Thus, their constant C in (2.3.11) would have the same qualitative behaviour asour own Cn;p;j;k;m of (2.3.5), namely that C !1 as p! n+.The behaviour of Cn;p;j;k;m as a function of its parametersIn Section 1.6 it is shown that, in an appropriate sense, the constantCn;p;j;k;m of (2.3.5) is best possible when p =1. The question then arises whetheror not the over-estimation committed in using the multivariate form of Hardy'sinequality to obtain Cn;p;j;k;m is signi�cant for p <1. In particular, does the bestpossible constant C in the inequalityf �H(m)� f j;p;
 � C (h
;�)k�m�j f k�m;p;
 (2:3:12)become unbounded as p ! n+? In the univariate case, at least, the answer is no� the best possible constant in (2.3.12) does not become unbounded.Before we show this, let us clarify a little the role that the condition p > nplays in Theorems 2.3.4 and 2.3.10. The condition p > n is necessary if theseresults are to be stated in terms of the Sobolev space W (k�m)p (
) � in particularso that H(m)� f is de�ned for f 2 W (k�m)p (
). However, it makes good sense toask what is the best constant C for which (2.3.12) holds for all su�ciently smoothfunctions f � say, e.g., f 2 Ck�m(�
). The condition p > n is again needed whenone seeks to apply the multivariate form of Hardy's inequality to the integral errorformul� (2.3.2) and (2.3.8).



50We end this section by showing that in the univariate case, i.e., when n = 1,there is a best possible constant C in (2.3.12) for all su�ciently smooth f , whichcan be bounded independently of 1 � p �1. The crucial step in the argument tofollow is the use of the B-spline Lp-estimate thatkM(�j�)kLp(IR) � �#�� 1diam� �1�1=p (2:3:13)when diam� > 0, see de Boor [B73].The univariate case of the map H(m)� , will be emphasised by writing it asH(m)� . This map has the simple formH(m)� f = Dm(H�D�mf);where H� is the Hermite interpolator at the points �, and D�mf is any functionfor which Dm(D�mf) = f .Theorem 2.3.14. Let � be a k-sequence in the interval [a : : b]. If 0 � j < k�m,and f 2 Ck�m[a : : b], thenkDj (f �H(m)� f)kLp [a::b] � (m+ j)!(k �m� j)! k1=qk! (b � a)k�m+ 1p� 1q kDk�mfkLq [a::b]:Here 1 � p; q � 1.Proof. Fix x 2 [a : : b]. For � a �nite sequence in IR, let!�(x) := Y�2�(x � �):With this notation, replacing each occurrence in (2.3.2) of a linear functional ofthe form f 7! R� f by integration against a B-spline, we obtain thatDj(f �H(m)� f)(x)= (m+ j)! kXi=k�m�j X~���i�1#~�=m+j+i�k !�i�1n~�(x) (x��i) 1k! Z Dk�mf M(�jx;�i):



51By H�older's inequality, and (2.3.13), we have that����Z Dk�mf M(�jx;�i)���� � � kdiam[x;�i]�1=qkDk�mfkLq [a::b]:Since ����!�i�1n~�(x) (x��i)(diam[x;�i])1=q ���� � (b � a)k�m�1=q ;we obtain thatjDj(f �H(m)� f)(x)j� (m+ j)! kXi=k�m�j� i� 1m+ j + i� k� k1=qk! (b� a)k�m�1=qkDk�mfkLq [a::b]= (m + j)!(k �m� j)! k1=qk! (b � a)k�m�1=qkDk�mfkLq [a::b]:Finally, take k � kLq [a::b] of both sides.To adapt this argument to the multivariate case, it is necessary to have thesimplex spline analog of the B-spline Lp-estimate (2.3.13). This is provided byDahmen [D79], who shows that when voln(conv�) > 0,kM(�j�)kLp(IRn) � k!(k + 1)!n!(n+ 1)!(n � k)!� 1voln(conv�)�1�1=p; (2:3:15)with k + 1 := #�. Yet, with this in hand, it does not seem possible to apply theargument of Theorem 2.3.14 in any satifactory form.Remark 2.3.16. Incidentally, the constant in (2.3.15) is not the best possible.Already, by using the fact that R M(�j�) = 1, together with the case p = 1 of(2.3.15), one obtainskM(�j�)kLp(IRn) �� k!(k + 1)!n!(n+ 1)!(n� k)! 1voln(conv�)�1�1=p:



52In the univariate case this over-estimates (2.3.13) by a factor of ((k + 1)!=2)1�1=p.The key step in proving (2.3.13) is the boundM(�j�) � kdiam� ; (2:3:17)which follows from the partition of unity property of B-splines. Thus, a closeexamination of the simplex spline analog of the B-spline partition of unity, givenrecently by Dahmen, Micchelli and Seidel [DMS92], should give tighter bounds thanthose of (2.3.15). However, we make no attempt here to give such an argument.Remark 2.3.18. There are other integral error formul� for the scale of mean valueinterpolations, to which Theorem 2.2.10 can be applied to give Lp-bounds. Theseinclude Lai and Wang [LW86] (Kergin interpolation), Gao [Ga88], and Hakopian[BHS93:p200] (Hakopian interpolation). See Section 1.5 for a discussion of therelative merits of each of these formul�.2.4. Application:Lp-error bounds for multivariate Lagrange interpolationIn this section we use Theorem 2.2.10 to obtain Lp-error bounds for multi-variate Lagrange interpolation schemes.Lagrange mapsA linear interpolation problem for which the space of interpolation conditionsis spanned by point evaluations at �, a �nite sequence in IRn, is called a Lagrangeinterpolation problem. If P is the space of interpolants for such a problem and



53the problem is correct, then the associated linear projector, called the Lagrangemap, will be denoted by LP;�. The Lagrange form of a Lagrange map is givenby LP;�f = X�2� f(�)`� : (2:4:1)Here (2.4.1) uniquely de�nes `� := `�;P;� 2 P;the Lagrange function for � 2 �. In other words, (�[�])�2� is dual (bi-ortho-normal) to (`�)�2�.Lagrange maps into a space containing polynomials of degree k are frequentlyused to interpolate to scattered data, see, e.g., Alfeld [Al89]. Particular examplesreceiving much attention lately are maps where the interpolants include radialbasis functions or multivariate splines, and de Boor and Ron's least solution for thepolynomial interpolation problem [BR90] (also see [BR92] for its generalisation).In addition there are of course the maps of Kergin and Hakopian.For such maps, there is the multipoint Taylor formula for the error. Thisformula was initiated by the work of Ciarlet and Wagschal [CW71]; most of therelevant papers are in French, and it is little known outside the area of �niteelements. It is for these reasons, and because our Theorem 2.2.10 implies Lp-estimates from the multipoint Taylor formula, that we discuss the formula here.The multipoint Taylor formulaMultipoint Taylor formula 2.4.2 ([CR72]). Let � be a �nite sequence in IRn,and let 
 be an open set in IRn for which �
 is starshaped with respect to �.



54If LP;� is a Lagrange map with �k(IRn) � P � Ck(�
), then for f 2 Ck+1(�
),q 2 �k(IRn), and x 2 �
, its error satis�es:�q(D)(LP;�f � f)�(x) = X�2��Z[x;:::;x| {z }k+1 ;�]Dk+1��xf�(q(D)`�)(x): (2:4:3)The term multipoint Taylor formula comes from the fact that� 7! Z[x;:::;x| {z }k+1 ;�]Dk+1��xfis the error in Taylor interpolation of degree k at the point x, a special case of theerror in Kergin interpolation. The proof of (2.4.3) further justi�es the use of thisterm. The region of integration in (2.4.3) consists of line segments from x to � 2 �.x�Fig 2.5.1 The region of integration in (2.4.3) for � consisting of 6 pointsFrom the multipoint Taylor formula, Arcangeli and Gout [AG76] obtain Lp-bounds for the error in a Lagrange map. These bounds are precisely those obtainedby applying Theorem 2.2.10 to (2.4.3). The crucial step in the argument presentedin [AG76:Prop.1-1] is the use of the multivariate form of Hardy's inequality for themap x 7! Lk+1;[v]f(x) := Z[x;:::;x| {z }k+1 ;v] f: (2:4:4)



55This inequality is not explicitly stated, though the proof of their (weaker) Propo-sition 1-1 would imply it.Remark 2.4.5. The key step in the proof of Proposition 1-1 in [AG76] is an appli-cation of H�older's inequality to the splittingZ[x;:::;x| {z }k+1 ;v] f = 1k! Z 10 (1 � t)�1=q�" �(1� t)k+1=q�"f(x + t(v � x))� dt;where " := (k+1�n=p)=q, and 1=p+1=q = 1, as opposed to our use of the integralform of Minkowski's inequality.Having identi�ed the precise role of the multivariate form of Hardy's in-equality in [AG76] it is possible to use it to run through Arcangeli and Gout'scalculation for a much more general class of norms, including those most oftenused in numerical analysis. The resulting bounds, given below, have smaller (andsimpler) constants than those one might hope to obtain by applying the inequalitiesfor similar norms to the results of [AG76].For the remainder of this section 
 will denote a bounded open set in IRnwith a Lipschitz boundary, and � a �nite sequence in IRn. Recallh
;� = sup�2� supx2
 kx � �k � diam
:Corollary 2.4.6. Suppose that �
 is starshaped with respect to �, and that LP;�is a Lagrange map with �k(IRn) � P � Ck(
). If k + 1 � n=p > 0, and f 2W (k+1)p (
), thenjf �LP;�f jp;
 � 1k!(k + 1� n=p)�X�2� j`�j1;
� f k+1;p;
 (h
;�)k+1: (2:4:7)



56Here j � jp;
 is any seminorm on W kp (
) of the formjf jp;
 := k (kgi(D)fkLp (
))mi=1 kIRm;where the gi 2 �k(IRn) are �xed, and k � kIRm is any norm on IRm � or j � jp;
 is� i;p;
 for some 0 � i � k.Proof. By Sobolev's embedding theorem, the condition k+1�n=p > 0implies W (k+1)p (
) � C(�
);and so the Lagrange map LP;� is well de�ned. As in Remark 2.3.3, (2.4.3) can beextended to f 2 W (k+1)p (
). Fix f 2 W (k+1)p (
), and x 2 
. Let h := h
;�. By(2.1.9), jDk+1��xf j � jDk+1f j k� � xkk+1 � jDk+1f jhk+1;in Lp(
). Thus, with gi 2 �k(IRn), we have for a.e. x 2 
 thatj(gi(D)(f � LP;�f))(x)j � X�2��Z[x;:::;x| {z }k+1 ;�] jDk+1f j�kgi(D)`�kL1(
) hk+1:To this, the condition k + 1� n=p > 0 allows us to apply the multivariate form ofHardy's inequality to obtainkgi(D)(f � LP;�f)k � 1k!(k + 1� n=p)�X�2� kgi(D)`�kL1� f k+1;p;
 hk+1:Finally, take the k � kIRm norm of the inequality (for m-vectors) given above.In [AG76:Th.1-1] Corollary 2.4.6 is proved only in the case when j � jp;
 isof the form f i;p;
 for some 0 � i � k, with h
;� replaced by diam
. In that



57paper some bounds on the size of the Lagrange functions `�, together with relevantapplications are given.The condition in Corollary 2.4.6 that k + 1 � n=p > 0 plays an analogousrole to the condition in Theorem 2.3.4 that n > p. Namely, it is required so thatthe results can be stated in terms of Sobolev spaces, and to apply the multivariateform of Hardy's inequality. Additionally, by Theorem 2.3.14, the unboundednessof the constant in (2.4.7) as k+1�n=p! 0+ is, in the univariate case, not a truere
ection of the behaviour of the error.With the multivariate form of Hardy's inequality in hand, it is also possibleto obtain pointwise error bounds for Lagrange maps.Corollary 2.4.8. Suppose that �
 is starshaped with respect to �, and that LP;�is a Lagrange map with �k(IRn) � P � Ck(
). With f 2 W (k+1)1 � C(�
), andx 2 �
 we have the (coordinate-independent) pointwise error boundjf(x) � LP;�f(x)j � 1(k + 1)! f k+1;1;
X�2�k� � xkk+1j`�(x)j; (2:4:9)and the (coordinate-dependent) pointwise error boundjf(x) � LP;�f(x)j �X�2� Xj�j=k+1 1�!kD�fkL1(
) j(� � x)�`�(x)j: (2:4:10)Proof. The proof runs along the same lines as that for Corollary 2.4.6,except that for (2.4.10) we �rst expand Dk+1��xf asDk+1��xf = Xj�j=k+1 (k + 1)!�! (� � x)�D�f;by using the multinomial identity.



58Neither of (2.4.9) or (2.4.10) occurs in the literature. For f 2 Ck+1(
), theycan be obtained more simply, by applying the mean value theorem, as given byProperties 1.2.3 (c), to the integrals occurring in (2.4.3).Remark 2.4.11. The results of [AG76] have been extended in the following ways.In [Go77], Gout treats the error in certain forms of Hermite interpolation � that iswhere, in addition to function values, certain derivatives are matched at the pointsin �. In [AS84], Arcangeli and Sanchez bound the error in a Lagrange map forfunctions from fractional order Sobolev spaces.The error formula of Sauer and XuThere is another error formula, for the error in a Lagrange map with range(interpolants) �k(IRn), that has been given recently by Sauer and Xu, see [SX94].Sauer and Xu order the dim�k(IRn) points in � so that each Lagrange inter-polation problem with points �j (by de�nition the initial segment of � consistingof the �rst dim�j(IRn) terms) and interpolants �j (IRn) is correct for j = 0; : : : ; k.They consider the collection 	 of all (k + 1)-sequences 	 = [ 0; : : : ;  k ], calledpaths by them, with  j 2 �jn�j�1, all j. Given this notation, Sauer and Xu statetheir result in the following form.Theorem 2.4.12 ([SX94:Th.3.6]). Suppose that LP;� := L�k(IRn);� is a La-grange map, and f 2 Ck+1(IRn). ThenLP;�f(x) � f(x) = X	2	 p	(x)Z[x;	]Dx� kD k� k�1 � � �D 2� 1D 1� 0f;(2:4:13)



59where p	 2 �k(IRn) is given byp	(x) := (k + 1)! ` k;�k(IRn);�(x) kYi=1 ` i;�i(IRn);�i( i+1):The region of integration in each term of (2.4.13) is the convex hull of x and	. x�Fig 2.5.2 The region of integration in (2.4.13) for � consisting of 6 pointsFrom (2.4.13) the following pointwise estimate is obtained.Corollary 2.4.14 ([SX94:Cor.3.11]). Suppose, in addition to the hypotheses ofTheorem 2.4.12, that �
 is starshaped with respect to �. Then, for all x 2 �
,jf(x) � LP;�f(x)j � 1(k + 1)! X	2	 kDx� kD k� k�1 � � �D 1� 0fkL1(
)jp	(x)j:(2:4:15)The bound (2.4.15) is of a similar form to those of (2.4.9) and (2.4.10). Fora more direct comparison, one obtains from (2.4.3) the boundjf(x) � LP;�f(x)j � 1(k + 1)! X�2� kDk+1��xfkL1(
)j`�(x)j: (2:4:16)This bound has #� = Pkj=0#�j terms, as opposed to #	 = Qkj=0#�j for(2.4.15), and requires no ordering of �. For the purposes of comparison, in the



60bivariate case, i.e., when n = 2, one has that #� = (k + 2)(k + 1)=2, while#	 = (k + 1)!. In addition, analogous bounds to (2.4.16) can be obtained, from(2.4.3), for the derivatives of the error in LP;�.To obtain Lp-bounds from (2.4.13) it is necessary to boundx 7! L1;	f(x) := Z[x;	] f (2:4:17)in terms of kfkLp(
). This can be done by using the multivariate form of Hardy'sinequality. Thus, we have the following instance of Theorem 2.2.10.Corollary 2.4.18. Suppose the hypotheses of Corollary 2.4.14. If 1 � n=p > 0,thenkf � LP;�fkLp(
) � �(1� n=p)�(k + 2� n=p)�X	2	 kp	kL1(
)� f k+1;p;
(h
;�)k+1:The condition 1�n=p > 0 is needed so that the multivariate form of Hardy'sinequality can be applied to (2.4.17). By comparison, to obtain (2.4.7) from (2.4.4),only the weaker condition that k + 1� n=p > 0 was needed.2.5. Other error boundsAll of the integral error formul� for Lagrange maps given in the literature,including those of Section 5, can be obtained fromf(x) � LP;�f(x) = X�2��Z[x] f � Z[�] f�`�(x);which is valid whenever P contains the constants, by appropriately using the iden-tity Z[�;v] f � Z[�;w] f = Z[�;v;w]Dv�wf; (2:5:1)



61and the integration by parts formula.For example, in Gregory [Gr75] the integration by parts formula is used togive a Taylor type expansion for f . From this is obtained an integral error formulafor linear interpolation on a triangle, i.e., when � consists of 3 a�nely independentpoints in IR2, and the interpolants are the linear polynomials P := �1(IR2). Suchan argument is frequently referred to as a Sard kernel theory argument, as developedby Sard [Sa63]. The resulting formula is complicated � it has 4 line integrals and5 area integrals. Another example is given by Hakopian [H821], who uses (2.5.1)to obtain an integral error formula for tensor product Lagrange interpolation.In view of their derivations, all of these integral error formul� involve termswhich consist of a function (obtained appropriately from the Lagrange functions)multiplied by the integral of some derivative against a simplex spline. Thus, it ispossible to apply the multivariate form of Hardy's inequality to all such formul�(and those likely to be obtained in the future) to obtain Lp-bounds � with thecaution that, as pointed out for the examples in Sections 2.3 and 2.4, for small pthis may not accurately re
ect the behaviour of the error.Exactly how to use (2.5.1) and the integration by parts formula to obtain thebest possible error formula for a given purpose is far from clear. In a future paperthe author considers the simplest case, that of linear interpolation on a triangle.There, the formul� of Ciarlet and Wagschal [CW71], Gregory [Gr75], Sauer andXu [SX94], amongst others, are discussed.
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