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Abstract

Given an explicit presentation of a reflection group of rank two (or any rank two
group for that matter), we give a simple procedure for calculating all its systems of
imprimitivity, when viewed as a matrix group over the quaternions. This is applied
to all the reflection groups, in particular the quaternionic reflection groups, thereby
unifying a number of results and ideas in the literature. For example, a primitive
complex reflection group of rank two has either uncountably many quaternionic
systems of imprimitivity (3 cases) or none (16 cases).
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1 Introduction
The (irreducible) reflection groups, i.e., finite groups generated by reflections, have been
classified into those which are real [Cox34], complex [ST54] and quaternionic [Coh80].
A reflection on Rd, Cd or Hd is a linear map r which pointwise fixes a subspace of
dimension d − 1, and has finite order, i.e., satisfies rv = vξ for some nonzero vector v
(called a root of the reflection) and a scalar ξ 6= 1 with ξm = 1 (m the order of r). For
real reflections ξ = −1, and for complex reflections any λ 6= 1 in the cyclic group 〈ω〉
generated by the m-th root of unity ω = ξ gives a reflection which is a power of r. In the
quaternionic setting, which is of ongoing interest, see [BST23], [Sch23], [DZ24], [BW25],
the group 〈ω〉 is replaced by a finite (multiplicative) subgroup of H∗ = H \ {0}.

We will use F = R,C,H when we can treat the three cases simultaneously (we seek
to unify the theory as much as is possible). The subgroups of G ⊂ GL(Fd), such as
the reflection groups, are classified up to a change of basis (which preserves reflections),
i.e., conjugation in GL(Fd). We write ∼=F for conjugacy in GL(Fd). See [Zha97], [CS03],
[Voi21] for general facts about groups of matrices over the quaternions H.

If G ⊂ GL(Fd) is group, then we say that it (or its linear action on Fd) has a system
of imprimitivity V1, . . . , Vm of m ≥ 2 nonzero subspaces if the action of G permutes
the Vj’s and Fd = V1 ⊕ · · · ⊕ Vm (internal direct sum). In this case, G is said to be
imprimitive, and otherwise it is primitive. If G is irreducible, i.e., {gv}g∈G spans Fd
for every v 6= 0, and G is a reflection group, then any system of imprimitivity must have
dimF(Vj) = 1, and so the matrices of G can be represented as monomial matrices (each
row or column has exactly one nonzero entry) by choosing a basis from the system of
imprimitivity. It may be (as we will see for reflection groups) that a subgroup of GL(Rd)
or GL(Cd) is primitive, but is imprimitive when viewed as a group of matrices over the
larger field (division algebra) C,H or H, respectively.

The general question considered in this paper is: when does an irreducible group G
have a system of imprimitivity when viewed as matrices over R,C,H? This boils down
to determining

Which (if any) changes of bases give G as a monomial group of matrices?

Here we consider the rank two groups (groups of 2 × 2 matrices over R,C,H), which
considerably simplifies the problem. The main results are the explicit calculation of all
the systems of imprimitivity (including the quaternionic ones) for the real, complex and
quaternionic reflection groups (Theorem 3.1, Theorems 4.1, 4.2, Theorems 5.1, 5.2 and
Table 1, Table 3, Table 4). The overall picture is as follows:

• There is just one imprimitive real reflection group D4 = G(2, 1, 2) ∼=C G(4, 4, 2).
It has two real systems of primitivity, three complex systems of primitivity, and
infinitely many quaternionic systems of primitivity.

• The primitive real reflection groups have one complex system of imprimitivity, and
infinitely many quaternionic systems of imprimitivity.

• There are 16 real and complex reflection groups with no quaternionic systems of
primitivity (all of them complex), and all others have uncountably many systems.
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• The imprimitive complex reflection group G(4, 2, 2) has three complex systems
of imprimitivity, and the others have just one. All of them have infinitely many
quaternionic systems of imprimitivity.

• An imprimitive quaternionic reflection group has either one, two, three, five (one
caseG(2, 1, 2, 1)) systems of imprimitivity, or infinitely many (the three cases where
it is conjugate to the primitive complex reflection groups G12, G13, G22).

We have three basic observations (which we will exploit repeatedly):

1. Enlarging a group decreases the systems of imprimitivity,

i.e., any system of imprimitivity for G is also a system of imprimitivity for any subgroup
H ⊂ G (H may have more, e.g., consider H = 1). Moreover, the complex systems of
imprimitivity for a group of real or complex matrices are unchanged if nonzero scalar
matrices are added, and so the systems of imprimitivity (over R or C), depend only on
the collineation group (i.e., the group of matrices up to scalar multiplication). Since
each nonscalar matrix in GL(C2) can be multiplied by two scalars (the inverses of its
eigenvalues) to obtain a reflection, each collineation group is associated with a (maximal)
reflection group (see [Wal26]), and so the systems of imprimitivity in C2 for the finite rank
two subgroups of GL(C2) are given by those of the corresponding (maximal) complex
reflection groups. The systems of imprimitivity over H are seen to depend on the scalar
matrices in G, i.e., matrix groups over C giving the same collineation group may have
different quaternionic systems of imprimitivity (see Example 4.4).

2. The systems of imprimitivity for a group G depend only on its generators.

3. The finite group G may be taken to unitary for the standard inner product

〈v, w〉 :=
∑
j

vjwj, v, w ∈ Fd,

so that its systems of imprimitivity are orthogonal, and any possible change of
basis matrix U for a system of imprimitivity can be chosen to be unitary.

Henceforth, we will assume that all groups are unitary, which simplifies finding their
systems of primitivity (which are orthogonal and have a unitary change of basis matrix),
and Hd is a right vector space, so that linear maps (matrices) are applied on the left.

2 How to find systems of imprimitivity
We now consider all the possible orthogonal systems (the candidates for systems of
imprimitivity). There is of course the standard orthonormal basis {e1, e2}. Any other
orthogonal system must have a vector which is nonzero in the first coordinate (otherwise
it would give the standard basis), and so after scaling it is given by the equal-norm
orthogonal vectors (

1
q

)
,

(
−q
1

)
, q ∈ H, q 6= 0.

We consider how many times an orthogonal system is given by a vector (1, q), q ∈ H.
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Proposition 2.1 Every orthogonal system for F2 is given by a vector(
1
q

)
, q ∈ F, |q| ≤ 1,

with different values of q giving different orthogonal systems, unless |q| = 1, in which
case the same orthogonal system is given by (1,±q) (i.e., these are counted twice above).

Proof: For q 6= 0, we have (
−q
1

)
=
(

1
−q/|q|2

)
(−q),

so that if |q| > 1, the orthogonal system given by (1, q) is also given by (1, q′), where

q′ = − 1
|q|2

q, |q′| = 1
|q|

< 1,

so that all orthogonal systems are obtained with the restriction |q| ≤ 1.
Suppose that (1, q) and (1, q′) give the same orthogonal system, i.e., one of

〈
(

1
q

)
,

(
1
q′

)
〉 = 1 + qq′ = 0, 〈

(
1
q

)
,

(
−q′
1

)
〉 = −q′ + q = 0 ⇐⇒ q′ = q,

holds. The systems could only be the same for q′ 6= q, |q|, |q′| ≤ 1 if the first holds, i.e.,

qq′ = −1 =⇒ |q| = |q′| = 1, q′ = −q,

and we have the claimed double indexing.
A unitary change of basis matrix for the orthogonal system for (1, q) is given by

U = 1√
1 + |q|2

(
1 q
q −1

)
. (2.1)

We note that the columns of U have been scaled so that U2 = I, i.e., U∗ = U . All the
possible unitary change of basis matrices are obtained by multiplying the columns of U
by unit scalars. We will sometimes do this to obtain nice formulas, see, e.g., (3.11).

We give a condition for a unitary matrix g to have a system of imprimitivity given
by (1, q), i.e., for U−1gU = U∗gU to be a monomial matrix.

Lemma 2.1 The orthogonal system given by (1, q), q ∈ H, is a system of imprimitivity
for a unitary group of matrices G ⊂ GL(F2) if and only if for every generator

g =
(
a b
c d

)
,

in a set of generators for G, one of the following two equations holds

a+ bq + qc+ qdq = 0, qa+ qbq − c− dq = 0. (2.2)
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Proof: Let U be the change of basis matrix (2.1) for the orthogonal system given by
(1, q). Then the matrix representation of g in this basis is

U−1gU = 1
1 + |q|2

(
1 q
q −1

)(
a b
c d

)(
1 q
q −1

)

= 1
1 + |q|2

(
a+ bq + qc+ qdq aq − b+ qcq − qd
qa+ qbq − c− dq qaq − qb− cq + dq

)
,

which is a monomial matrix if and only if one of the entries of the first column is zero
(this implies the same for the second column since U−1gU is unitary), i.e., one of the
equations in (2.2) holds.

We observe that for (1, 0) to give a system of imprimitity (the standard basis), the
condition (2.2) for q = 0 reduces to a = 0 or c = 0, i.e., that g is monomial.

3 The systems of imprimitivity of the real reflection
groups

To illustrate the calculations and results to come (for the complex and quaternionic
reflection groups), we now use Lemma 2.1 to find the systems of imprimitivity for the
irreducible real reflection groups of rank two. These are the dihedral groups

Dn = 〈R, S〉, n ≥ 3, R =
(

cos 2π
n
− sin 2π

n

sin 2π
n

cos 2π
n

)
, S =

(
1 0
0 −1

)
, (3.3)

generated by a rotation R by 2π
n

and a reflection S in the x-axis, which is the symmetry
group of the regular n-gon. Writing cn = cos 2π

n
, sn = sin 2π

n
, the conditions of (2.2) for

R and S are

cn − snq + qsn + qcnq = 0, qcn − qsnq − sn − cnq = 0,

i.e.,
cn(1 + |q|2) + sn(q − q) = 0, sn(q2 + 1) = 0, (3.4)

and
1− qq = 1− |q|2 = 0, q + q = 2q = 0. (3.5)

Taking q = 0 to satisfy the second equation in (3.5) reduces (3.4) to

cn = 0, sn = 0,

one of which can hold only for n = 4 (c4 = 0). Thus only D4 has the standard basis as
a system of imprimitivity (it is a monomial group, as is seen by inspection).

Taking |q| = 1, q = a+bi+cj+dk ∈ H, to satisfy the first equation in (3.5), reduces
(3.4) to

2cn − 2sn(bi+ cj + dk) = 0, sn(q2 + 1) = 0 ⇐⇒ q2 = −1.
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Since sn 6= 0, every dihedral group has a system of imprimitivity given by (1, q), where
q2 = −1 (this is equivalent to Re(q) = 0 and |q| = 1). In particular (1, i) gives a
complex system of primitivity. Since cn 6= 0, n 6= 4, and c4 = 0, there is second system
of primitivity for D4 given by (1, 1).

Thus we have found all the systems of primitivity for the real reflection groups.

Theorem 3.1 The systems of imprimitivity for the irreducible real reflection groups Dn,
n ≥ 3, are given by (1, q), q ∈ H, in the following cases

(a) (1, 0), (1, 1) for D4.

(b) (1, i) for Dn, n ≥ 3.

(c) (1, q), |q| = 1, q ∈ H \ C, Re(q) = 0, for Dn, n ≥ 3.

with the possible double countings described in Proposition 2.1.

Table 1: The systems of imprimitivity for the real reflection groups Dn, n ≥ 3, of (3.3).
The condition |q| = 1, Re(q) = 0 is equivalent to q2 = −1. In particular, we observe that
D4 is imprimitive, with two systems of imprimitivity, and the other groups are primitive.

G real complex quaternionic comment

Dn, n 6= 4 (1, i) (1, q), |q| = 1, Re(q) = 0 primitive, ∼=C G(n, n, 2)
D4 (1, 0), (1, 1) (1, i) (1, q), |q| = 1, Re(q) = 0 imprimitive, ∼=C G(4, 4, 2)

Since (1, i) gives a (complex) system of imprimitivity for all the real reflection groups
Dn of (3.3), they may be conjugated by the U of (2.1) for q = i to obtain a complex
imprimitive reflection group. With ω = e

2πi
n , the generators for this group are

U−1RU = 1
2

(
1 −i
−i 1

)(
cn −sn
sn cn

)(
1 i
i 1

)
=
(
cn − isn 0

0 cn + isn

)
=
(
ω 0
0 ω

)
,

U−1SU = 1
2

(
1 −i
−i 1

)(
1 0
0 −1

)(
1 i
i 1

)
=
(

0 −i
i 0

)
, (3.6)

which is the imprimitive “dihedral” group G(n, n, 2) in the Shephard-Todd classification
of complex reflection groups (see Example 3.1). The Shephard-Todd group G(2, 1, 2) is
precisely our D4, which explains the isomorphism

G(2, 1, 2) ∼=C G(4, 4, 2),

which is the only isomorphism between the Shephard-Todd groups G(n, p, d) for d ≥ 2
fixed, where d is the rank of the group.

We now seek to do essentially the same calculations for the complex and quaternionic
reflection groups of rank two. Many of these are imprimitive, i.e., already in monomial
form, and so in this case we are looking for additional systems of imprimitivity.
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The classification of the imprimitive complex and quaternionic reflection groups of
rank two (and the real one for that matter) proceeds from the observation that the
monomial reflections have two types(

0 b
b 0

)
,

(
h 0
0 1

)
,

(
1 0
0 h

)
, h 6= 1, (3.7)

which have orders 2 and the order of h, respectively. The roots for these reflections are
(1,−b), e1, e2, respectively.

The set L of the b’s giving the reflections of the first type (for a given imprimitive
reflection group) are closed under the binary operation

(a, b) 7→ a ◦ b := ab−1a,

and form what is called a reflection system in [Wal25]. If the closure of a subset
L ⊂ L under the operation ◦ is L, then we say that L generates the reflection system
L. If 1 ∈ L, then the multiplicative group K generated by the reflection system L is a
finite subgroup of H∗. We will enumerate the possible K (all of which give imprimitive
reflection groups) as we go through the classification. The group K = 〈−1〉 ⊂ R gives
the real reflection group D4, K = 〈ω〉 ⊂ C, ω = e

2πi
n , n ≥ 3, gives the complex reflection

groups, and the binary tetrahedral, octahedral, icosahedral and dihedral groups K =
T ,O, I and Dn, n ≥ 2, the quaternionic ones (see Table 2). The set H of the h’s giving
the reflections of the second type together with 1 is a normal subgroup of K.

The imprimitive reflection group G(K,L,H) is defined to be the reflection group
generated by the reflections of the types (3.7) given by b ∈ L, h ∈ H \ {1}, as above.
Canonical choices of (K,L,H) which give all the reflection groups without repetition
(groups being conjugate) are given in [Wal25] (see Table 2 below). A small set of
generating reflections for these groups corresponding to subsets L ⊂ L and H ⊂ H are
given, and we have

G(K,L,H) = G(L,H) := 〈
{(0 β
β 0

)}
β∈L

⋃{(h 0
0 1

)}
h∈H
〉. (3.8)

It is enough to simply use the generators given in Table 2. We observe that for these
1. L is a generating set for the reflection system L (which can be labelled to indicate
K and its number of elements).

2. L always contains 1.

3. H need not contain 1, and H = {} gives what is called the base group, and larger
sets H give the higher order groups for the given reflection system L.

One advantage of (3.8) over the classification of [Coh80] for quaternionic reflection groups
is that the groups are given explicitly with a small number of generating reflections.
Another is that inclusions of the form

G(K1, L1, H1) ⊂ G(K2, L2, H2), K1 ⊂ K2, L1 ⊂ L2, H1 ⊂ H2, (3.9)

are readily apparent. It should also be noted that the classification of [Coh80] is not
correct, it both over counts and under counts reflection groups (see [Wal25], [Tay25]).
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Table 2: The imprimitive reflection groups G = GK(L,H) = G(L,H) obtained from the
reflection systems L for K = Dn (n ≥ 2, [n, a, b, r] ∈ Λn) and K = T ,O, I of [Wal25].
The base groups have H = 1, and the L given for the base group generates L. The
only conjugate groups are GT (LT12, C2) ∼=H GO(LO14, 1). The number of reflections in G

is |L|+ 2(|H| − 1), e.g., G(n, a, b, r) = GDn(L(n)
(a,b), Cr), has 2n

a
+ 2n

b
+ 2(r− 1) reflections.

K L H |G| L H

Dn Dn Dn 32n2 {1, ω, j, ωj} {ω, j}
Dn Dn Dn/2 16n2 {1, ω, j, ωj} {j}
Dn L

(n)
(a,b) Cr 8nr {1, ωa, j, ωbj} ([n, a, b, r] ∈ Λ∗n) {ω 2n

r }

T T T 1152 {1, i} {1+i+j+k
2 }

T T Q8 384 {1, i, j, 1+i+j+k
2 } {}

T LT12 C2 96 {1, i, 1+i+j+k
2 } {−1}

T LT12 1 48 {1, i, 1+i+j+k
2 } {}

O O O 4608 {1, 1+i+j+k
2 } {1+i√

2 }
O O T 2304 {1, 1+i√

2 ,
1+j√

2 ,
1+i+j+k

2 } {}
O LO32 Q8 768 {1, 1+i√

2 , j,
1+i+j+k

2 } {}
O LO20 C2 192 {1, 1+i√

2 ,
1+i+j+k

2 , j−k√2 } {}
O LO18 1 96 {1, 1+i√

2 ,
1+i+j+k

2 } {}
O LO14 1 96 {1, i, 1+i+j+k

2 , j−k√2 } {}

I I I 28800 {1, i, 1+i+j+k
2 , τ+σi−j

2 } {}
I LI32 C2 480 {1, 1+i+j+k

2 , τ+σi−j
2 , j−τi−σk2 } {}

I LI30 1 240 {1, 1+i+j+k
2 , τ+σi−j

2 } {}
I LI20 C2 480 {1, i, 1+i+j+k

2 , i+σj+τk2 } {−1}
I LI20 1 240 {1, i, 1+i+j+k

2 , i+σj+τk2 } {}
ω = e

πi
n , τ = 1+

√
5

2 , σ = 1− τ

Example 3.1 Left or right multiplication of a reflection system by some unit scalar x
gives another reflection system, e.g.,

(xa) ◦ (xb) = xa(xb)−1xa = xab−1x−1xa = −xab−1a = x(a ◦ b),

which is considered to be equivalent, since(
x 0
0 1

)−1

Mxb

(
x 0
0 1

)
=
(

1 0
0 x

)
Mbx

(
1 0
0 x

)−1

= Mb, Mb :=
(

0 b
b−1 0

)
. (3.10)

The reflections S, SR, . . . , SRn−1 of the dihedral group of (3.3) in the basis of (3.6) are

U−1SRjU =
(

0 −i
i 0

)(
ω 0
0 ω

)j
=
(

0 −iωj
(−iωj)−1 0

)
,
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giving the reflection system {−i,−iω, . . . ,−iωn−1}, which is equivalent to {1, ω, . . . , ωn−1}
(which has generating set {1, ω}), so by (4.14), we have that Dn

∼=C G(n, n, 2). This
can also be obtained directly by appropriately scaling the orthonormal basis, i.e.,

V −1SV =
(

0 1
1 0

)
, V −1SRV =

(
0 ω
ω 0

)
, V = U

(
−i 0
0 1

)
= 1√

2

(
−i −i
1 −1

)
.

(3.11)

Since the generating reflections in (3.8) are monomial matrices, the Lemma 2.1 takes
the following simplified form.

Lemma 3.1 The vector (1, q) ∈ H2, q 6= 0, gives an additional system of imprimitivity
for the imprimitive reflection group G = G(K,L,H) = G(L,H) if and only if

(i) Re(βq) = 0 or q = ±β, for all β ∈ L. (base group)

(ii) h = −|q|2, for all h ∈ H, h 6= 1. (higher order groups)

In particular, G can have additional systems of imprimitivity only when all its reflections
have order two.

Proof: For the generators

g =
(

0 β
β 0

)
, β ∈ L, g =

(
h 0
0 1

)
, j ∈ H,

the condition (2.2) in Lemma 2.1 reduces to

βq+qβ = 0 ⇐⇒ Re(βq) = 0, −qβq+β = 0 ⇐⇒ (βq)2 = 1 ⇐⇒ q = ±β,

h+ qq = 0 ⇐⇒ h = −|q|2, −qh+ q = 0 ⇐⇒ h = 1,
respectively, and we obtain the conditions (i) and (ii).

If G had a reflection of order m ≥ 3, then it would be given by some h of order m,
and (ii) would be false.

We observe that for a given β = β1 + β2i + β3j + β4k ∈ L, the first condition of (i)
gives a homogeneous linear equation in the coefficients of q = a+ bi+ cj + dk, i.e.,

Re(βq) = β1a− β2b− β3c− β4d = 0. (3.12)

Further, if βq ∈ C, then we have the equivalences

Re(βq) = 0 ⇐⇒ βq = ±|q|i ⇐⇒ (βq)2 = −|q|2. (3.13)

We observe that only case where there could be a q with |q| 6= 1, and hence a
continuous infinite family of systems of imprimitivity is when

q 6∈ {±β : β ∈ L}, H = 1.
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4 The complex reflection groups and their systems
of imprimitivity

We now consider the complex reflection groups (see [BMR95], [LT09]).
Let ω = e

2πi
n . The (irreducible) imprimitive complex reflection groups of rank two

are given by the cyclic groups K = Cn = 〈ω〉. They are
G(n, p, 2) = G({1, ω}, {ωp}), p | n, n ≥ 3, (n, p, 2) 6= (4, 4, 2). (4.14)

We exclude n = 2, which gives the real reflection groups G(2, 1, 2) = D4 (as already
discussed) and G(2, 2, 2) (which is not irreducible). We will also see that G(4, 4, 2) is
conjugate to the real imprimitive reflection group G(2, 1, 2) = D4.

Theorem 4.1 The imprimitive complex reflection groups G(n, p, 2), p | n, n ≥ 3, as
defined by (4.14, have in addition to the standard basis, systems of imprimitivity given
by (1, q), q ∈ H, q 6= 0, in the following cases
(a) (1, 1), (1, i) for G(4, 4, 2) and G(4, 2, 2). (the last group contains the first).

(b) (1, zj), z ∈ C (z 6= 0), for G(n, n, 2).

(c) (1, zj), z ∈ C, |z| = 1, for G(n, n2 , 2), when n is even.
The group G(4, 4, 2) is conjugate to the real reflection group D4 = G(2, 1, 2), and we
note the inclusion

G(n, n, 2) ⊂ G(n, n2 , 2).

Proof: We apply Lemma 3.1 to the generating reflections of (4.14) for G(n, p, 2), i.e.,
L = {1, ω}, H = {ωp}.

The condition (ii) for H = {ωp} holds if and only if h = ωp = 1, i.e., p = n, or
h = ωp = −|q|2, i.e., p = n

2 and |h| = 1.
The conditions of (i) for β ∈ L = {1, ω} are

Re(q) = 0, q = ±1,
Re(ωq) = 0, q = ±ω.

If we take q = ±1, then we must have Re(ω) = 0, i.e., n = 4, and there is a system of
imprimitivity given by (1, 1) for G(4, 4, 2) and G(4, 2, 2). We now seek a system with
q = ±ω 6= ±1, since Re(q) = 0, we must have n = 4, and we obtain (1, i) for G(4, 4, 2),
G(4, 2, 2). Finally, we seek a system with

Re(q) = 0, Re(ωq) = 0,
i.e., by (3.12), a quaternion q = a+ bi+ cj + dk with

a = 0,
(
cos 2π

n

)
a−

(
sin 2π

n

)
b = 0 =⇒ a = b = 0 (since n ≥ 3).

The q obtained in this way can be written q = cj + dk = zj, z ∈ C.
The conjugacy G(4, 4, 2) ∼=C G(2, 1, 2) is given in the Example 4.1 to follow, and the

inclusion follows immediately from (3.9).
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Example 4.1 For n = 4, we consider G(4, p, 2) = G(4, 4, 2), G(4, 2, 2). Since ω = i,
these groups are generated by the reflections(

0 1
1 0

)
,

(
0 i
−i 0

)
,

(
−1 0
0 1

)
(for p = 2).

In the system of imprimitivity given by {(1, 1), (−1, 1)} these are(
1 0
0 −1

)
,

(
0 i
−i 0

)
,

(
0 1
1 0

)
,

and in the system {(1, i), (i, 1)} they are(
0 1
1 0

)
,

(
−1 0
0 1

)
,

(
0 −i
i 0

)
.

From the last, we conclude that G(4, 4, 2) is conjugate to G(2, 1, 2) = D4.

Example 4.2 We consider the mechanics of the system of imprimitivity given by

U = 1√
1 + |z|2

(
1 zj
zj 1

)
, z ∈ C, U−1 = U∗ = 1√

1 + |z|2

(
1 −zj
−zj 1

)
. (4.15)

In this system, the generators

g =
(

0 1
1 0

)
,

(
0 ω
ω 0

)
,

(
ωp 0
0 1

)
,

for G(n, p, 2) become

U−1gU =
(

0 1
1 0

)
,

(
0 ω
ω 0

)
,

1
1 + |z|2

(
ωp + |z|2 (ωp − 1)zj

(1− ωp)zj ωp|z|2 + 1

)
,

with the last clearly monomial if ωp = 1 or |z| = 1, ωp = −1. Moreover, we have

U−1
(

0 j
−j 0

)
U = 1

1 + |z|2

(
−z − z (1− z2)j

(z2 − 1)j z + z

)
= 1

1 + |z|2

(
−2 Re(z) (1− z2)j
(z2 − 1)j 2 Re(z)

)
,

(4.16)
which is monomial and real if and only if z = ±1.

The 19 (irreducible) primitive complex reflection groups of rank two are denoted by

G4, . . . , G7 (tetrahedral), G8, . . . , G15 (octahedral), G16, . . . , G22 (icosahedral).

Will use the explicit unitary generators of [Wal26] for these groups, which satisfy certain
inclusions (see Figure 1). Only G12, G13 and G22 will turn out to have quaternionic
systems of imprimitivity, and these have the following generators. Let

F := 1√
2

(
1 1
1 −1

)
, R :=

(
1 0
0 −i

)
, Z = e

2πi
24 RF = 1+

√
3+(
√

3−1)i
4

(
1 1
−i i

)
,
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A := R2 =
(

1 0
0 −1

)
, M := (− τ

4 +
√

1−τ2/4
2 i)

(
−τ + i σ
−σ −τ − i

)
,

with τ = 1+
√

5
2 , σ = 1− τ = 1−

√
5

2 . Then

G12 = 〈F, FZ , FZ2〉, G13 = 〈F, FZ , R2〉, G22 = 〈A,AZ , AM〉, (4.17)

where
FZ = ZFZ−1 = 1√

2

(
1 i
−i −1

)
, FZ2 = 1√

2

(
0 1 + i

1− i 0

)
,

AZ =
(

0 i
−i 0

)
, AM =

(
τ
2 −1

2 −
σ
2 i

−1
2 + σ

2 i − τ
2

)
.

Figure 1: The inclusions between the primitive complex reflection groups G4, . . . , G22.
Those which turn out to have quaternionic systems of imprimitivity are shaded.

G11

G15 G9 G10 G19

G14 G13 G8 G7 G21 G17 G18

G12 G5 G6 G22 G20 G16

G4

Lemma 4.1 If a primitive complex reflection group G4, G5, . . . , G22 has a quaternionic
system of imprimitivity, then it is given by (1, q), where

q = zj, |z| = 1, z ∈ C.

Proof: These groups have a common (imprimitive) subgroup

G4 ∩G5 ∩ · · · ∩G22 = 〈
(
i 0
0 −i

)
,

(
0 i
i 0

)
〉.

For the above generators (which are not reflections), the equations (2.2) of Lemma 2.1
for (1, q), q = a+ bi+ cj + dk, to give a system of imprimitivity are

i− qiq = 0, −qi− iq = 0 ⇐⇒ i− qiq = 0, q = cj + dk = zj, (z ∈ C),

iq + qi = 0, −qiq + i = 0 ⇐⇒ q = bi, −qiq + i = 0.

12



Since the complex reflection groups are primitive, we cannot have q = bi, so we must
have −qiq + i = 0 in the second set of equations. Now

−qiq + i = 0, i− qiq = 0 =⇒ q = q =⇒ q ∈ R,

so we must have q = zj in the first set of equations, and we calculate

q = zj =⇒ −qiq + i = (1− |z|2)i = 0 ⇐⇒ |z| = 1,

giving the condition for −qiq + i = 0 to hold in this case.
We observe that (zj)2 = −1, so that zj = −zj and (zj, 1) is orthogonal to (1, zj).

We will write the representation of the matrix g with respect to the orthogonal basis
{(1, zj), (zj, 1)} given by q = zj, |z| = 1, z ∈ C, as

[g] = U−1gU, U = 1√
2

(
1 zj
zj 1

)
, U−1 = U∗ = 1√

2

(
1 −zj
−zj 1

)
. (4.18)

In view of Lemma 4.1, a primitive complex reflection group of rank two has a system
of imprimitivity, necessarily given by (1, zj), |z| = 1, z ∈ C, if and only if each of its
generators is a monomial matrix in the representation of (4.18). In this regard, we have

Example 4.3 The generators for G12, G13, G22 of (4.17) in the representation (4.18)
are

[F ] = 1√
2

(
0 1 + zj

1− zj 0

)
, [FZ ] = 1√

2

(
0 i+ zj

−i− zj 0

)
,

[FZ2 ] = 1√
2

(
0 1 + i

1− i 0

)
, [R2] =

(
0 zj
−zj 0

)
,

[A] =
(

0 zj
−zj 0

)
, [AZ ] =

(
0 i
−i 0

)
, [AM ] =

(
0 −1−σi

2 + τzj
2

−1+σi
2 − τzj

2 0

)
.

and so these groups have systems of imprimitivity given by q = zj, |z| = 1, z ∈ C.
The reflection system for the monomial representation of G12 over H given above,

which is generated by {1+zj√
2 ,

i+zj√
2 ,

1+i√
2 }, has 12 elements, i.e.,

L = {1+zj√
2 ,

1−zj√
2 ,
−1+zj√

2 , −1−zj√
2 , i+zj√2 ,

i−zj√
2 ,
−i+zj√

2 , −i−zj√
2 , 1+i√

2 ,
1−i√

2 ,
−1+i√

2 ,
−1−i√

2 }.

If the set L is multiplied by the inverse of any one of its elements, to obtain an equivalent
reflection system containing 1, then the group K generated by its elements has order 24.
Thus L is equivalent to LT12, which is the only quaternionic reflection system of that size
for a group K of order 24 (either T or D6), and hence the primitive complex reflection
group G12 is conjugate to the imprimitive quaternionic reflection group GT (LT12, 1). The
reflection system for G13 obtained by adding the extra generator zj from [R2] has six
additional elements ±1,±zj,±i. It is equivalent to LO18, which is the unique quaternionic
reflection system of size 18, and so the monomial representation for G13 given above is
the imprimitive quaternionic reflection group GO(LO18, 1).

Similarly, the reflection system for the monomial representation of G22 is generated
by {zj, i, −1−σi

2 + τzj
2 } and has size 30 (it contains 1 and generates a group of order 120).

It is therefore equivalent to LI30, which is the only quaternionic reflection system of this
size, and G22 is conjugate to the imprimitive quaternionic reflection group GI(LI30, 1).

13



We observe that the inclusion G12 ⊂ G13 implies the inclusion

GT (LT12, 1) ⊂ GO(LO18, 1),

which is apparent from the generators for their reflection systems given in Table 2.

Example 4.4 The imprimitive complex reflection groups of rank two correspond to the
following three collineation groups

G4, . . . , G7 (tetrahedral), G8, . . . , G15 (octahedral), G16, . . . , G22 (icosahedral).

Those with the same collineation group have the same complex systems of imprimitivity
(none in this case). However, this is not the case for quaternionic systems of primitivity,
as G12, G13 (octahedral) and G22 (icosahedral) have infinitely many systems, whilst the
other groups have none.

We can now determine all the quaternionic systems of imprimitivity of the primitive
complex reflection groups, using the inclusions of Figure 1 (see [Wal26]) to expedite the
proof.

Theorem 4.2 The primitive complex reflection groups of rank two with quaternionic
systems of imprimitivity are

G12, G13, (octahedral type) G22 (iscosahedral type).

Their systems of imprimitivity are given by (1, zj), |z| = 1, z ∈ C, and a corresponding
change of basis matrix conjugates them to the imprimitive quaternionic reflection (base)
groups

GT (LT12, 1), GO(LO18, 1), GI(LI30, 1),
respectively. The remaining 16 groups

G4, G5, G6, G7, G8, G9, G10, G11, G14, G15, G16, G17, G18, G19, G20, G21,

have no quaternionic systems of imprimitivity.

Proof: The first part is given in Example 4.3. It therefore suffices to show that the
other groups have no systems of imprimitivity. This can be proved (directly) by applying
Lemma 2.1 to each of the groups, or, equivalently, by finding the matrix representation
(4.18) of their generators. However, in view of the inclusions of Figure 1, it suffices to
show that the groups

G4 = 〈Z,ZS〉, G8 = 〈R,RF 〉, G16 = 〈M,MA〉,

have no systems of imprimitivity, and hence nor do the groups which contain them.
If the group G = G4, G8, G16 had a quaternionic system of imprimitivity, then the

corresponding imprimitive quaternionic reflection group would have the same order and
same number of reflections. In particular, since the imprimitive quaternionic reflection
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groups all have reflections of order two corresponding to the reflection system L, the
group G must have reflections of order two. Since all the reflections of G4 and G16 have
orders 3 and 5, respectively, we only need consider G8 = 〈R,RF 〉. Since R is a monomial
reflection of order 4, Lemma 3.1 (with h = −i) gives that group generated by R has
only the system of imprimitivity given by (1, 0). Therefore, G8, which contains R and
does not have a system of imprimitivity given by (1, 0), has no quaternionic systems of
imprimitivity, and we are done.

Alternatively, to show G4, G8, G16 have no systems of imprimitivity directly from
Lemma 2.1, we can use the fact that q = zj and a, b, c, d ∈ C to simplify (2.2) to

(a+ d) + (b− c)zj = 0, −(b+ c) + (a− d)zj = 0,

i.e., a = −d, b = c, or a = d, b = −c. These are easily seen to not hold for the generators
g = Z,R,M .

Table 3: The systems of imprimitivity for the complex reflection groups G4, . . . , G22
(primitive) and G(n, p, 2) (imprimitive) of (4.14), as classified by Shephard and Todd.
The real reflection group G(4, 4, 2) ∼=C G(2, 1, 2) = D4 is included for comparison.

G complex quaternionic comments

G12 (1, zj), z ∈ C, |z| = 1 ∼=H QT (LT12, 1)
G13 (1, zj), z ∈ C, |z| = 1 ∼=H GO(LO18, 1)
G22 (1, zj), z ∈ C, |z| = 1 ∼=H GI(LI30, 1)
Gn, n 6= 12, 13, 22 no systems

G(4,4,2) (1, 0), (1, 1), (1, i) (1, zj), z ∈ C, |z| ≤ 1 real reflection group
G(4, 2, 2) (1, 0), (1, 1), (1, i) (1, zj), z ∈ C, |z| = 1 ∼=H G(2, 1, 2, 1)
G(n, n, 2), n 6= 4 (1, 0) (1, zj), z ∈ C, |z| ≤ 1
G(n, n2 , 2), n 6= 4 (n even) (1, 0) (1, zj), z ∈ C, |z| = 1 ∼=H G(n2 , 1,

n
2 , 1)

G(n, p, 2), n 6= 4, p 6= n, n2 (1, 0) no additional systems

From Table 3, we observe that the only complex reflection groups of rank two with
additional complex systems of imprimitivity are G(4, 4, 2) ∼=C G(2, 1, 2) (real reflection
group) and G(4, 2, 2) (see Theorem 2.16 of [LT09]).

5 The systems of imprimitivity of the quaternionic
reflection groups

We now consider the systems of imprimitivity for the quaternionic reflection groups.
The primitive quaternionic reflection groups of rank two consist of six with primitive

complexifications (see [Coh80], [Wal24], [BW25]), and an infinite family of those with
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imprimitive complexifications (see [Coh80], [Tay25]). All of these, by definition of being
primitive, have no quaternionic systems of imprimitivity.

The imprimitive quaternionic reflection groups are given the Table 2, and we begin
with those with group K = Dn. We define the dicyclic groups (binary dihedral groups)

Dn := 〈ω, j〉, ω := ζ2n = e
πi
n , n ≥ 2,

where ω is a primitive 2n-th root of unity. This group has 4n has elements, of two types

ωm, ω`j = jω−`, 1 ≤ m, ` ≤ 2n. (5.19)

The group D2 is the quaternion group Q8 = {1,−1, i,−i, j,−j, k,−k}, which has a
slightly special structure, since ω = i, so that i, j, k play the same role, and this will
lead to additional systems of imprimitivity in this case (see Example 6.2).

The reflection systems for Dn are given in [Wal25] in terms of generators as

L
(n)
(a,b) := L({1, ωa, j, ωbj}), (a, b) ∈ Ωn,

where
Ωn := {(a, b) : 1 ≤ a ≤ b ≤ n, a | n, b | n, gcd(a, b) = 1}. (5.20)

Each of these has a different number of elements, which is given by

|L(n)
(a,b)| =

2n
a

+ 2n
b
. (5.21)

The corresponding imprimitive quaternionic reflection groups with H cyclic are

G(n, a, b, r) := GDn(L(n)
(a,b), Cr) = G({1, ωa, j, ωbj}, {ω 2n

r }), [n, a, b, r] ∈ Λn, (5.22)

where
Λn =

⋃
(a,b)∈Ωn

{[n, a, b, n
ab

]} ∪
⋃

(a,b)∈Ωn
ab is odd

{[n, a, b, 2n
ab

]}. (5.23)

The reflection group G(n, 1, n, 1) = G({1, ω, j,−j}, {}) = G({1, ω, j}, {}) will be seen to
be conjugate to the imprimitive complex reflection group G(2n, n, 2) = G({1, ω}, {−1}),
see Example 5.2, and so we exclude its index [n, 1, n, 1]. For L(n)

(1,1) = Dn, there are also
reflection groups with H not cyclic, namely,

G(Dn,Dn,Dn) = G({1, ω, j, ωj}, {ω, j}),
G(Dn,Dn,Dn/2) = G({1, ω, j, ωj}, {j}), (n even, n ≥ 4). (5.24)

Therefore the imprimitive quaternionic reflection groups for K = Dn are those of (5.24)
and

G(n, a, b, r), [n, a, b, r] ∈ Λ∗n := Λn \ {[n, 1, n, 1]}, (5.25)
where

|Λ∗n| =
τ(2n2)

2 ,

with τ(2n2) the number of divisors of 2n2.
We now give the quaternionic systems of imprimitivity for the groups G(n, a, b, r),

including G(n, 1, n, 1), for the purpose of comparison.
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Theorem 5.1 Let n ≥ 2. The imprimitive reflection group G(n, a, b, r), [n, a, b, r] ∈ Λn,
has an additional system of imprimitivity given by (1, q) ∈ H2 in precisely the cases:

(a) (1, j), (1, k) for the indices [n, 1, n, 1], [n, 1, n, 2] (n odd), [n, 1, n2 , 2] (n even), and
[n, 2, n2 , 1] (n even, n

2 odd).

(b) (1, 1), (1, i) for the indices [2, 1, 2, 1], [2, 1, 1, 2].

and the infinite family

(c) (1, αk), −1 < α < 1 (α 6= 0), for the indices [n, 1, n, 1].

We have G(n, 1, n, 1) ∼=H G(2n, n, 2), and so the group G(n, 1, n, 1) above is counted as
an imprimitive complex reflection group (not a quaternionic one).

The other imprimitive quaternionic reflection groups G(Dn,Dn,Dn) and G(Dn,Dn,Dn/2)
have no additional systems of imprimitivity.

Proof: We apply Lemma 3.1, with

L = {1, ωa, j, ωbj}, H = {ω 2n
r }.

The two possibilities of (ii) are

ω
2n
r = −|q|2 ⇐⇒ ω

2n
r = −1, |q| = 1

⇐⇒ r = 2, |q| = 1,
ω

2n
r = 1 ⇐⇒ r = 1, (5.26)

which gives the necessary condition r = 1, 2. We observe that for r = 1, there is as yet
no restriction on |q|. Taking β = 1, ωa, j, ωbj in (i), respectively, gives the following two
conditions, one of which must hold for there to be a system of imprimitivity,

Re(q) = 0, q = ±1,
Re(ωaq) = 0, q = ±ω−a,

Re(jq) = 0, q = ±j,
Re(ωbjq) = 0, q = ±ωbj.

First suppose that q = ±1, then Re(jq) = ±Re(j) = 0, Re(ωbjq) = ±Re(ωbj) = 0
hold, and so to obtain a system of imprimitivity one of the following must hold

Re(ωa) = 0, ω2a = 1 ⇐⇒ ω2a = (ωa)2 = (±i)2 = −1, ω2a = 1,

i.e., 2a = n or 2a = 2n. We cannot have a = n, which would imply gcd(a, b) = n > 1,
and so we require a = n

2 , which implies

a = n

2 ≤ b ≤ n

n/2 = 2.
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We cannot have a = 2, which would imply gcd(a, b) = 2, and so we require

a = n

2 = 1 =⇒ n = 2.

There are two indices in Λ2 of the form [2, 1, b, r], r = 1, 2, namely [2, 1, 2, 1], [2, 1, 1, 2],
and so we obtain the indices of (b).

Henceforth, we can suppose that Re(q) = 0. Suppose that q = ±ωa, then we have

±ωa = ±i ⇐⇒ ω2a = −1,

which is satisfied by the indices [2, 1, 2, 1], [2, 1, 1, 2], as before, and (b) is proved, since
this q satisfies Re(jq) = 0 and Re(ωbjq) = 0.

Now we may suppose that Re(q) = 0, Re(ωaq) = 0. Consider the case q = ±j, which
satisfies these conditions. To satisfy the last, we must have one of

Re(ωb) = 0, ωb = ±1 ⇐⇒ b = n

2 , b = n.

For b = n, we have a = 1, and r = 1 (base group) and r = 2 for n odd (higher order
group). For b = n

2 (n even), we can have a = 1, which gives r = 2 (base group), and
a = 2 when n

2 is odd, which gives r = 1 and there is no higher order group.
Finally, we may suppose Re(q) = 0, Re(ωaq) = 0, Re(jq) = 0. If Re(ωbjq) = 0, then

Re(ωbjq) = 0 ⇐⇒ ωbjq = ±i|q| ⇐⇒ q = ±|q|ωb−n2 j.

Thus we have the two cases

q = ±|q|ωb−n2 j, q = ±ωbj,

which both satisfy Re(q) = 0, Re(ωaq) = 0, and for a system of imprimitivity to exist
we must have Re(jq) = 0, i.e.,

Re(ω n
2−b) = 0, Re(ω−b) = 0 ⇐⇒ ω

n
2−b = ±i, ω−b = ±i

⇐⇒ ωn−2b = −ω−2b = −1, ω−2b = −1
⇐⇒ −2b = 2n, n = −2b

⇐⇒ b = n, b = n

2 ,

for which have previously determined the possible indices. We observe that in these
cases q is given by

q = ±|q|ωn−n2 j = ±|q|ij = ±|q|k, q = ±ω n
2 j = ±ij = ±k,

and so, together with the previous case, we obtain (a). The only case where |q| is not
restricted to the value 1 by (5.26) or the choice q = ±ωbj is for the index [n, 1, n, 1],
which gives (c).

The conjugacy G(n, 1, n, 1) ∼=H G(2n, n, 2) is considered in Example 5.2 (to follow).
The groups G(Dn,Dn,Dn) and G(Dn,Dn,Dn/2) contain contain the reflection given by
h = ω2, which does not satisfy the condition (ii) of Lemma 3.1, and so these groups have
no systems of imprimitivity.
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Theorem 5.1 corresponds to the Theorem 6.4 of [Tay25], as we now explain.

Example 5.1 In [Tay25], the groups G(n, a, b, r) are described via the “standard copy”

G(Dn, Cr, ψc) = 〈
(

0 1
1 0

)
,

(
0 j
−j 0

)
,

(
ω

2n
r 0

0 1

)
,

(
ω 0
0 ωc

)
〉, (5.27)

indexed by (n, r, c), where c = 1, or 1 < c ≤ n
r

(r | 2n) and

gcd(c, 2n
r

) = gcd(ν, κ) = 1, ν :=
2n
r

gcd(2n
r
, c− 1) , κ :=

2n
r

gcd(2n
r
, c+ 1) .

We observe that c = 1 also satisfies the above condition. The fourth generator in (5.27)
is not a reflection. From Lemma 4.8 and Lemma 4.10 of [Tay25], it appears that the
reflection system for G(Dn, Cr, ψc) contains ωκ and ωνj (in addition to 1, j), so that

G(Dn, Cr, ψc) = G({1, ωκ, j, ωνj}, {ω 2n
r }),

and we have the following correspondence between the respective indices

[n, a, b, r] ∈ Λn ⇐⇒ (n, r, c), {a, b} = {ν, κ} = {
2n
r

gcd(2n
r
, c− 1) ,

2n
r

gcd(2n
r
, c+ 1)}.

Moreover, the groups G(n, a, b, r) and G(Dn, Cr, ψc) are equal when κ ≤ ν, and are
isomorphic (but not equal) when κ > ν. In the latter case,

G(n, a, b, r) = 〈
(

0 1
1 0

)
,

(
0 j
−j 0

)
,

(
ω

2n
r 0

0 1

)
,

(
ω 0
0 ω−c

)
〉, κ > ν,

and, by (3.10), we have

G(n, a, b, r) = UG(Dn, Cr, ψc)U−1, U =
(

1 0
0 j

)
.

In this way, the Theorem 6.4 of [Tay25] is seen to be equivalent to Theorem 5.1.

Example 5.2 We consider the group

G(n, 1, n, 1) = G({1, ω, j,−j}) = G({1, ω, j}) = 〈
(

0 1
1 0

)
,

(
0 ω
ω 0

)
,

(
0 j
−j 0

)
〉.

For the system of imprimitivity given by (1, j), we take the change of basis matrix

U = 1√
2

(
1 j
j 1

)
.

The conjugation (change of basis) g 7→ U−1gU applied to above generators gives(
0 1
1 0

)
7→
(

0 1
1 0

)
,

(
0 ω
ω 0

)
7→
(

0 ω
ω 0

)
,

(
0 j
−j 0

)
7→
(
−1 0
0 1

)
,
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i.e., the generators of the imprimitive complex reflection group

G(2n, n, 2) = G({1, ω}, {−1}),

which is therefore conjugate to G(n, 1, n, 1).
Further, the other groups of Theorem 5.1 (a) with this system of imprimitivity are

G(n, 1, n, 2) = G({1, ω, j}, {−1}),

G(n, 1, n2 , 2) = G({1, ω, j, ij}, {−1}),

G(n, 2, n2 , 1) = G({1, ω2, j, ij}, {}),

with the generators for h = −1 ∈ H and β = ij = k ∈ L conjugating as follows(
−1 0
0 1

)
7→
(

0 −j
j 0

)
,

(
0 k
−k 0

)
7→
(

0 k
−k 0

)
.

Therefore none of these groups conjugate to a complex reflection group.

The reflection systems for the imprimitive quaternionic reflection groups given by
Theorem 5.1 are summarised in the first section of Table 4.

We now consider the groups GK(L,H) for K the binary tetrahedral, octahedral
and icosahedral groups which given by (see Table 2)

T := 〈i, j, 1 + i+ j + k

2 〉,

O := 〈1 + i√
2
,
1 + j√

2
,
1 + i+ j + k

2 〉,

I := 〈1 + i√
2
,
1 + i+ j + k

2 ,
τ + σi− j

2 〉, τ = 1 +
√

5
2 , σ = 1− τ.

Theorem 5.2 Let T ,O, I be the binary tetrahedral, octahedral and icosahedral groups.
Then the associated quaternionic reflection groups, as listed in Table 2, have additional
systems of imprimitivity given by (1, q) ∈ H2 in the following cases:

(a) (1, j−k√2 ) for GT (LT12, C2), GO(LO14, 1), GO(LO20, C2).

(b) (1, j−τi−σk2 ) for GI(LI32, C2).

and the infinite families

(c) (1, α j−k√2 ), −1 < α ≤ 1 (α 6= 0) for GT (LT12, 1), GO(LO18, 1).

(d) (1, α j−τi−σk2 ), −1 < α ≤ 1 (α 6= 0) for GI(LI30, 1).

For the groups above giving infinite families, we have the conjugacies

GT (LT12, 1) ∼=H G12, GO(LO18, 1) ∼=H G13, GI(LI30, 1) ∼=H G22. (5.28)
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Figure 2: The inclusions of the reflection groups for T ,O, I given in Table 2, with those
having additional systems of imprimitivity shaded in grey.

GT (T , T )

GT (T , Q8)

GT (LT12, C2)

GT (LT12, 1)

GO(O,O)

GO(O, T )

GO(LO32, Q8)

GO(LO20, C2)

GO(LO18, 1) GO(LO14, 1)

GI(I, I)

GI(LI32, C2) GI(LI20, C2)

GI(LI30, 1) GI(LI20, 1)

Proof: We apply Lemma 3.1, with L and H as given in Table 2. Since

G(K1, L1, H1) ⊂ G(K2, L2, H2), for K1 ⊂ K2, L1 ⊂ L2, H1 ⊂ H2,

it follows that a system of imprimitivity for G(K2, L2, H2) is a system of imprimitivity
for G(K1, L1, H1). Thus, it suffices to start at the bottom of the lattice of inclusions
for the K = T ,O, I groups given in Figure 2, working upwards until a group with
no additional systems of imprimitivity is identified, at which point all the additional
systems of imprimitivity have been found.

The case K = T . The lattice is linear, with bottom element GT (LT12, 1) of order 48
given by

L = {1, i, 1 + i+ j + k

2 }, H = {}.

The pairs of conditions on q given by (i) of Lemma 3.1 are

β = 1 : Re(q) = 0, q = ±1,
β = i : Re(iq) = 0, q = ±i,

β = 1 + i+ j + k

2 : Re(1 + i+ j + k

2 q) = 0, q = ±1− i− j − k
2 ,

and one of each pair must hold. This is not possible for any of the choices for q (which
are mutually exclusive), e.g., q = ±1, gives

Re(1 + i+ j + k

2 q) = ±1
2 6= 0.

Thus q = a+ bi+ cj + dk must satisfy

Re(q) = 0, Re(iq) = 0, Re(1 + i+ j + k

2 q) = 0, (5.29)
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i.e., by (3.12),

a = 0, −b = 0, a− b− c− d = 0 =⇒ q = α
j − k√

2
, α ∈ R.

The group GT (LT12, C2) above GT (LT12, 1) is obtained by adding −1 to H, which satisfies
(ii), i.e., h = −1 = −|q|2 for the choice α = 1, giving q = j−k√

2 . The group GT (LT20, Q8)
above GT (LT12, C2) is obtained by adding β = j to L. This β does not satisfy (i), i.e.,

Re(βq) = Re(j j − k√
2

) = − 1√
2
6= 0, q = j − k√

2
6= ±j = ±β. (5.30)

Thus GT (LT20, Q8) and GT (LT20, T ) (the group above) have no additional systems of
imprimitivity.

The case K = O. The lattice has two minimal elements: GO(LO14, 1) and GO(LO18, 1).
The group GO(LO14, 1) has

L = {1, i, 1 + i+ j + k

2 ,
j − k√

2
}, H = {},

which is the same as for GT (LT12, 1), except for the addition of β = q = j−k√
2 to L, which,

by construction, satisfies (5.29), and the one of the conditions

Re(βq) = 0, q = ±β,

namely the last, so that there is a system of imprimitivity given by q = j−k√
2 .

The other minimal element GO(LO18, 1) has

L = {1, 1 + i√
2
,
1 + i+ j + k

2 }, H = {}.

The conditions which must be satisfied are (one of each of)

Re(q) = 0, q = ±1,

Re(1 + i√
2
q) = 0, q = ±1− i√

2
,

Re(1 + i+ j + k

2 q) = 0, q = ±1− i− j − k
2 ,

and these cannot be satisfied for any of the choices of q, thus we must have

Re(q) = 0, Re(1 + i√
2
q) = 0, Re(1 + i+ j + k

2 q) = 0 =⇒ q = α
j − k√

2
.

We now consider the group GO(LO20, C2) which contains the two groups considered, and
so has a system of imprimitivity given by q = j−k√

2 or none. Its L is obtained from that
for GO(LO18, 1) by adding j−k√

2 , and so it has a system of imprimitivity given by q = j−k√
2 .
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The group GO(LO32, Q8) above GO(LO20, C2) is obtained by adding β = j to L, but this
does not satisfy the condition (i), as per (5.30), and so there a no further systems of
imprimitivity for the O groups.

The case K = I. There are two minimal groups GI(LI20, 1) and GI(LI30, 1). The L
for GI(LI20, 1) is obtained from that for GT (LT12, 1) by adding β = 1+σj+τk

2 , so we must
have q = α j−k√2 , but this choice does not satisfy (i), i.e.,

Re(βq) = Re(1 + σj + τk

2 α
j − k√

2
) = α

τ − σ
2 6= 0, q 6= ±1 + σj + τk

2 ,

and so GI(LI20, 1) has no additional systems of imprimitivity. Since GI(LI20, C2) and
GI(I, I) are above GI(LI20, 1) they have no additional systems of imprimitivity.

For GI(LI30, 1),
L = {1, 1 + i+ j + k

2 ,
τ + σi− j

2 },

none of the choices for q in (i) works, and so we seek a q = a+ bi+ cj + dk satisfying

Re(q) = 0, Re(1 + i+ j + k

2 q) = 0, Re(τ + σi− j
2 ) = 0,

i.e.,

a = 0, a− b− c− d = 0, τa− σb+ c = 0 =⇒ q = α
j − τi− σk

2 .

The group GI(LI32, C2) above GI(LI30, 1) has its L obtained by adding β = j−τi−σk
2 to

that for GI(LI30, 1) (both have H = {}), so that it has a system of imprimitivity given
by q = j−τi−σk

2 , and we are finished.
We observe that the isomorphism GO(L14, 1) → GT (LT12, C2) of [Wal25] (Example

4.4) is given by a system of imprimitivity (this is Theorem 7.1 of [Tay25]).

Example 5.3 We have (see Table 2) that

LO14 = LT12 ∪ {
j − k√

2
,
k − j√

2
},

where LT12 is generated by {1, i, 1+i+j+k
2 }. For the second reflection system for GO(LO14, 1)

given by (1, j−k√2 ), take the change of basis matrix

U = 1√
2

 1 j−k√
2

j−k√
2 1

 .
Then U−1GO(L14, 1)U = GT (LT12, C2), i.e., GO(L14, 1) ∼=H GT (LT12, C2), since

U−1

 0 j−k√
2

k−j√
2 0

U =
(
−1 0
0 1

)
, U−1

(
0 b
b−1 0

)
U =

(
0 b
b−1 0

)
, b ∈ LT12.
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Table 4: The systems of imprimitivity for the (imprimitive) quaternionic reflection
groups of rank two (see Theorems 5.1 and 5.2). Note that GT (LT12, C2) ∼=H GO(LO14, 1).

G quaternionic comments

G(n, 1, n, 2) (n odd) (1, 0), (1, j), (1, k) three systems
G(n, 1, n2 , 2) (n even, n 6= 2) (1, 0), (1, j), (1, k) three systems
G(n, 2, n2 , 1) (n even, n

2 odd) (1, 0), (1, j), (1, k) three systems
G(2, 1, 1, 2) (1, 0), (1, 1), (1, i), (1, j), (1, k) five systems [BW25]
G(n, a, b, r) (all other cases) (1, 0) [n, a, b, r] ∈ Λ∗n
GT (T , T ) (1, 0)
GT (T , Q8) (1, 0)
GT (LT12, C2) (1, 0), (1, j−k√2 ) two, ∼=H GO(LO14, 1)
GT (LT12, 1) (1, α j−k√2 ), −1 < α ≤ 1 infinite family, ∼=H G12

GO(O,O) (1, 0)
GO(O, T ) (1, 0)
GO(LO32, Q8) (1, 0)
GO(LO20, C2) (1, 0), (1, j−k√2 ) two systems
GO(LO18, 1) (1, α j−k√2 ), −1 < α ≤ 1 infinite family, ∼=H G13

GO(LO14, 1) (1, 0), (1, j−k√2 ) two, ∼=H GT (LT12, C2)

GI(I, I) (1, 0)
GI(LI32, C2) (1, 0), (1, j−τi−σk2 ) two systems
GI(LI30, 1) (1, α j−τi−σk2 ), −1 < α ≤ 1 infinite family, ∼=H G22
GI(LI20, C2) (1, 0)
GI(LI20, 1) (1, 0)

6 Concluding remarks
We have calculated all the quaternionic systems of imprimitivity for the rank two real,
complex and quaternionic reflection groups, see Tables 1, 3, 4), respectively.

The systems of primitivity for the quaternionic reflection groups of rank two were
calculated in [Tay25] (Theorems 6.4, 6.5, 6.6). These results are not directly comparable
with our results (see Example 5.27), as “copies” of the reflection groups which do not
satisfy the inclusions (see Figure 2) that we used. In this regard, see Table 5.

From Table 4, we can observe the following.

Corollary 6.1 An imprimitive quaternionic reflection group of rank two can have more
than one system of imprimitivity only if H = 1, C2, i.e., every reflection has order two.
This is not a sufficient condition, e.g., GI(LI20, 1) and GI(LI20, C2) have just one system
of imprimitivity. The number of systems of imprimitivity of an imprimitive quaternionic
reflection group of rank two can be one (infinitely many cases), two (three cases), three
(three infinite families), five (one case), or infinite (three cases).
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Table 5: The imprimitive quaternionic reflection groups for K = T ,O, I that have
additional systems of imprimitivity (left table, six groups up to conjugacy) and those
that don’t (right table), and the corresponding groups used in [Tay25].

G G of [Tay25] |G|

GT (LT12, C2) G(T , C2, ρ(δ)) 96
GT (LT12, 1) G(T , 1, ρ(δ)) 48
GO(LO20, C2) G(O, C2, 1) 192
GO(LO14, 1) G(O, 1, β) 96
GO(LO18, 1) G(O, 1, ρ(δ)) 96
GI(LI32, C2) G(I, C2, 1) 480
GI(LI30, 1) G(I, 1, ρ(j)) 240

G G of [Tay25] |G|

GT (T , T ) G(T , T , 1) 1152
GT (T , Q8) G(T ,D2, ρ(δ)) 384
GO(O,O) G(O,O, 1) 4068
GO(O, T ) G(O, T , 1) 2304
GO(LO32, Q8) G(O,D2, 1) 768
GI(I, I) G(I, I, 1) 28800
GI(LI20, C2) G(I, C2,Θ) 480
GI(LI20, 1) G(I, 1,Θ) 240

There are also groups for Dn with just one system of imprimitivity, e.g., G(12, 3, 4, 1)
and G(12, 2, 3, 2).

The first observation of Corollary 6.1 is the Corollary 6.3 of [Tay25]. With hindsight,
this can be proved directly, by showing that reflections of order m ≥ 3 are incompatible
with multiple systems of imprimitivity.

Lemma 6.1 If a group G ⊂M2(F) contains a reflection of order m ≥ 3, then it has at
most one system of imprimitivity.

Proof: Suppose, without loss of generality, that G is imprimitive, and so, after an
appropriate conjugation, contains

H := G({}, {h}) = 〈
(
h 0
0 1

)
〉,

where h has order m ≥ 3. Then, by Lemma 3.1, for H to have an additional system of
imprimitivity given by (1, q), we must have h = −|q|2, which is not possible.

In view of the fact that the real/complex systems of imprimitivity for a rank two
real/complex group depends only on the associated collineation group (see observation
1 in the introduction), Lemma 6.1 suggests that multiple systems of imprimitivity are
unusual. Indeed, there is just one example in each case.

Example 6.1 There are unique rank two real and complex collineation groups which
have multiple sets of imprimitivity. They are G(2, 1, 2) and G(4, 2, 2), with systems of
imprimitivity given by (1, 0), (1, 1) and (1, 0), (1, 1), (1, i), respectively.

A rank two quaternionic reflection group with five systems of imprimitivity was
observed in [BW25]. This is in fact the maximal finite number of such systems possible.
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Example 6.2 The three rank two primitive quaternionic reflection groups of type P with
primitive complexifications given in [Coh80] have the following irreducible imprimitive
normal subgroup

K = G(2, 1, 1, 2) = GQ8(Q8, C2) = G({1, i, j, k}, {}) = G({1, i, j, k}, {−1}).

In [BW25], it was observed that this group has 10 reflections corresponding to the five
pairs of mutually unbiased bases

{(1
0

)
,

(
0
1

)}
,

{ 1√
2

(
1
±1

)}
,

{ 1√
2

(
1
±i

)}
,

{ 1√
2

(
1
±j

)}
,

{ 1√
2

(
1
±k

)}
,

which are the systems of imprimitivity for K. By Corollary 6.1, this is the maximum
finite number of systems of imprimitivity for a rank two quaternionic reflection group,
and the only time that it occurs.

It was also observed that G(4, 1, 2, 2) has three systems of imprimitivity. This first
group in the family G(n, 1, n2 , 2), n ≥ 4, with exactly three systems of imprimitivity.

The calculation of systems of imprimitivity can be used to see whether a reflection
group is imprimitive, or conjugate to another with a different sized reflection system (see
Example 5.3). In this regard, [Tay25] calculated the systems of imprimitivity for the
infinite families of rank two primitive reflection groups with nonmonomial imprimitive
complexifications of [Coh80] (Lemma 3.3), and determined that three of them are in fact
imprimitive, namely

C4�O ∼=H GO(LO20, C2), C4�2O ∼=H GO(LO14, 1) ∼=H GT (LT12, C2), C4�I ∼=H GI(LI32, C2).

We have repeatedly used our observation that larger groups have fewer systems of
imprimitivity – both to prove and understand results. We give one final example.

Example 6.3 The reflection system for G(n, a, b, r) contains the 2n
a

root of unity ωa,
so that we have

G(2n
a
,
2n
a
, 2) ⊂ G(2n

a
,
2n
ar
, 2) ⊂ G(n, a, b, r).

Hence, by Theorem 4.1, the possible quaternionic systems of imprimitivity for G(n, a, b, r)
are given by the matrices U of (4.15). One can check whether [g] = U−1gU is monomial,
for each generator g of G(n, a, b, r), to obtain Theorem 5.1.

The particular case n = 2 relates the groups of Example 6.1 and Example 6.2

G(4, 4, 2) ⊂ G(4, 2, 2) ⊂ K = G(2, 1, 1, 2),

with Theorem 4.1 suggesting that (1, 1), (1, i) may give systems of imprimitivity for K.
It appears that the map G(n, a, b, r) 7→ G(2n

a
, 2n
ar
, 2) is one-to-one.
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