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Abstract

If a (weighted) spherical design is defined as an integration (cubature) rule for a
unitarily invariant space P of polynomials (on the sphere), then any unitary image
of it is also such a spherical design. It therefore follows that such spherical designs
are determined by their Gramian (Gram matrix). We outline a general method
to obtain such a characterisation as the minima of a function of the Gramian,
which we call a potential. This characterisation can be used for the numerical and
analytic construction of spherical designs. When the space P of polynomials is not
irreducible under the action of the unitary group, then the potential is not unique.
In several cases of interest, e.g., spherical t-designs and half-designs, we use this
flexibility to provide potentials with a very simple form. We then use our results
to develop certain aspects of the theory of real and complex spherical designs for
unitarily invariant polynomial spaces.
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1 Introduction

Let σ be the normalised surface area measure on the unit sphere S in Rd or Cd. A
(weighted) spherical design (for P ) is a sequence of points v1, . . . , vn in S and weights
w1, . . . , wn ∈ R, w1 + · · ·+ wn = 1, for which the integration (cubature) rule∫

S
p(x) dσ(x) =

n∑
j=1

wjp(vj), (1.1)

holds for all p in a finite dimensional space of polynomials P . This is essentially the
first of the four definitions given in [Sei01]. We say that a polynomial p (or a space
of polynomials) is integrated by the spherical design (integration/cubature rule) if
(1.1) holds. The existence of spherical designs for constant weights, i.e., wj = 1

n
, and

n sufficiently large, was proved in [SZ84]. In applications, it is often required that
wj ≥ 0. The common choices for P are unitarily invariant, i.e., for U unitary, p◦U ∈ P ,
∀p ∈ P . In the real case, the unitary (inner product preserving) maps are the orthogonal
transformations. For such a space P , the unitary invariance of the measure σ implies
that (Uvj), (wj) is also a spherical design when U is unitary, by the calculation∑

j

wjp(Uvj) =

∫
S
(p ◦ U)(x) dσ(x) =

∫
S
p(x) dσ(x), ∀p ∈ P.

The Gramian (or Gram matrix) of a sequence of vectors (vj) is the Hermitian
matrix of inner products [〈vj, vk〉]. We say that sequences of vectors (vj) and (uj) are
unitarily equivalent if uj = Uvj, ∀j, where U is unitary. Since

〈uj, uk〉 = 〈Uvj, Uvk〉 = 〈vj, vk〉,

a sequence of vectors is defined up to unitary equivalence by its Gramian (see [Wal18]).
Combining this with our previous observation gives:

� The real or complex spherical designs (vj) for a unitarily invariant polynomial
space P are determined by the Gramian of (vj).

It should therefore be possible to express the condition of (vj) being a spherical
design in terms of 〈vj, vk〉, 1 ≤ j, k ≤ n, and the weights (wj) if these are not constant.
The primary objective of this paper is to give such a characterisation for being a spherical
design, which is as simple as possible. Some key features of our approach are:

� Because the reproducing kernel K(x, y) for a unitarily invariant polynomial space
P is a function of 〈x, y〉, we are able to find a “potential” AP

(
[〈vj, vk〉]) ≥ 0 whose

zeros are the spherical designs for P .

� The potential AP can be given by a univariate polynomial F , which is not unique
when P is not irreducible under the action of the unitary group (see Table 1).

� The polynomial space P and the corresponding real or complex spherical designs
can be described by a finite set of indices L ⊂ N or τ ⊂ N2, respectively, which
index the irreducible subspaces of P .
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Motivated by a careful analysis of the real spherical designs [BB09], we obtain a
unified theory of the most general real and complex spherical designs, which includes:

� A general variational characterisation for all types of designs (Theorem 3.1).

� New characterisations for real spherical designs, including t-designs (Theorem 4.1)
and half-designs (Theorem 4.2).

� New characterisations for complex spherical designs (Theorem 5.1, Theorem 5.2).

� A natural description for real and complex projective spherical designs (§6).

� A description of the Gegenbauer polynomials that appear naturally in the analysis
of complex spherical designs as orthogonal polynomials (of two variables), together
with results about their products and sums (§7, §8).

� A unified approach to bounds on the numbers of points in a spherical design (§9).

� Unified results about the number of vectors in A-sets and s-angular sets (§10).

As much as possible, we treat the real and complex cases simultaneously, with F = R,C.

2 Basic definitions

Sometimes it is convenient to describe a weighted spherical design for P as a sequence
of (possibly not unit) vectors (vj), where the weights are inferred from the ‖vj‖ by

wj = w
(m)
j :=

‖vj‖m∑
` ‖v`‖m

, which we call the m-weights. (2.2)

Designs with constant weights are called unweighted, classical or simply designs.
It is a subtle but important point, which follows from (1.1), that a spherical design

depends only the restriction of P to the sphere, i.e. the space of harmonic polynomials

harm(P ) := P |S,

which we will call the harmonic part of the polynomial space P .
Choices for the (unitarily invariant) polynomial space P of interest include:

Πt(Rd) = polynomials of degree ≤ t on Rd (spherical t-designs),

Homm(Rd) = homogeneous polynomials of degree m on Rd (spherical half-designs),

Harmm(Rd) = harmonic polynomials in Homm(Rd) (spherical designs of harmonic index m),

Homt,t(Cd) = span{|〈·, v〉|2t : v ∈ Cd} (spherical (t, t)-designs, projective t-designs).

The half-designs for P = Hom2t(Rd) are also called (real) spherical (t, t)-designs.
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Example 2.1 From the observation∫
S
‖x‖2kp(x) dσ(x) =

∫
S
p(x) dσ(x) =

∑
j

wjp
( vj
‖vj‖

)
=
∑
j

wj
(
‖ · ‖2kp

)( vj
‖vj‖

)
,

it follows that a spherical design for P also integrates the spaces

P− =
{
q : ‖ · ‖2jq ∈ P, ∃j ≥ 0

}
, P+ =

{
‖ · ‖2kp : p ∈ P, k ≥ 0

}
,

with harm(P−) = harm(P+) = harm(P ). In particular, for P = Homm(Rd), we have

P− = Homm(Rd)⊕ Homm−2(Rd)⊕ Homm−4(Rd)⊕ · · · , P+ =
∞⊕
k=0

‖ · ‖2k Homm(Rd).

Because of this, [KP11] refer to the spherical designs for P = Homm(Rd) as the spherical
half-designs (of order m).

Every homogeneous polynomial p ∈ Homk(Rd) of degree k can be written uniquely

p(x) =
∑

0≤j≤ k
2

‖x‖2jpk−2j(x) =

[ k
2

]∑
j=0

‖x‖2jpk−2j(x), (2.3)

where pk−2j ∈ Harmk−2j(Rd), and the restriction map

Harmk(Rd)→ L2(S) : f 7→ f |S

is injective, with image denoted Harmk(S). We will freely identify spaces of harmonic
functions on Rd and S (solid and surface spherical harmonics). It follows from the
irreducibility of the summands above [ABR01], that every unitarily invariant (invariant
under orthogonal transformations) polynomial space on Rd can be written uniquely as
a direct sum

P =
⊕

(j,k)∈J

‖ · ‖2j Harmk−2j(Rd),

for a subset J of the indices {(j, k) : 0 ≤ j ≤ k
2
}. For the purpose of integration on S,

it suffices to consider the (possibly lower dimensional) space of harmonic polynomials

harm(P ) = P |S =
⊕
`∈L

Harm`(S) ≈
⊕
`∈L

Harm`(Rd), L := {k − 2j : (j, k) ∈ J } ⊂ N.

(2.4)
We note, in particular

harm(Πm(Rd)) =
m⊕
j=0

Harmj(Rd), harm(Homm(Rd)) =
⊕

0≤j≤m
2

Harmm−2j(Rd).
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A necessary condition for (vj) to integrate Homm(Rd) with the m-weights (2.2) is that∫
S

∫
S
〈x, y〉mdσ(x) dσ(y) =

∫
S

n∑
j=1

‖vj‖m∑
` ‖v`‖m

〈 vj
‖vj‖

, y〉mdσ(y)

=
n∑
j=1

n∑
k=1

‖vj‖m‖vk‖m

(
∑

` ‖v`‖m)2
〈 vj
‖vj‖

,
vk
‖vk‖

〉m

=
1

(
∑

` ‖v`‖m)2

n∑
j=1

n∑
k=1

〈vj, vk〉m. (2.5)

To also integrate Homm−1(Rd) with these m-weights a necessary condition is∫
S

∫
S
〈x, y〉m−1dσ(x) dσ(y) =

∫
S

n∑
j=1

‖vj‖m∑
` ‖v`‖m

〈 vj
‖vj‖

, y〉m−1dσ(y)

=
n∑
j=1

n∑
k=1

‖vj‖m‖vk‖m

(
∑

` ‖v`‖m)2
〈 vj
‖vj‖

,
vk
‖vk‖

〉m−1

=
1

(
∑

` ‖v`‖m)2

n∑
j=1

n∑
k=1

‖vj‖‖vk‖〈vj, vk〉m−1. (2.6)

We will show that these conditions (for a weighted spherical m-design) are also sufficient
(Theorem 4.2). It is most natural to view this result as a special case of a very general
variational characterisation of spherical designs, which we now describe.

3 The variational characterisation of designs

We generalise the surface area measure σ on S to a measure µ on a set Ω ⊂ Fd. We say
that a sequence of points (v1, . . . , vn) in Ω and weights w = (wj), w1 + · · · + wn = 1,
wj ≥ 0, is a weighted (spherical) design for a space P of functions Ω→ F (or simply
a P -design) if ∫

Ω

p(x) dµ(x) =
n∑
j=1

wjp(vj), ∀p ∈ P.

If point evaluation on P is a continuous linear functional with respect to the inner
product

〈f, g〉µ :=

∫
Ω

fg dµ

given by µ (as is the case for P finite dimensional), then it can be represented by the
reproducing kernel K = KP : Ω× Ω→ F, which is given by

f(x) =

∫
Ω

K(x, y)f(y) dµ(y), ∀f ∈ P,

where K(x, y) =
∑

s Ys(x)Ys(y) for (Ys) an orthonormal basis of P .
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Theorem 3.1 (Variational characterisation) Let µ be a measure on Ω with µ(Ω) = 1,
P be a finite dimensional space of integrable functions on Ω, and H be the subspace of
functions which are orthogonal to the constants, i.e.,

H = P 	 span{1} = {p ∈ P :

∫
Ω

p dµ = 0}.

Let Φ = (v1, . . . , vn), vj ∈ Ω, and w = (wj) ∈ Rn be weights with w1 + · · · + wn = 1.
Write H as a direct sum H = ⊕`H(`), with K` the reproducing kernel of H(`) and c` > 0.
Then

Aw,c(Φ) = AP,µ,w,c(Φ) :=
n∑
j=1

n∑
k=1

wjwk
∑
`

c`K`(vj, vk) ≥ 0, (3.7)

with equality if and only if (vj), (wj) is a weighted spherical design for P .

Proof: We first recall that the reproducing kernel K` for H(`) represents the point
evaluations, i.e.,

f(x) =

∫
Ω

K`(x, y)f(y) dµ(y), ∀f ∈ H(`),

and that

K`(x, y) =
∑
s

Y (`)
s (x)Y

(`)
s (y),

where (Y
(`)
s ) is an orthonormal basis for H(`). We therefore compute

Aw,c(Φ) :=
n∑
j=1

n∑
k=1

wjwk
∑
`

c`K`(vj, vk)

=
∑
`

c`

n∑
j=1

n∑
k=1

wjwk
∑
s

Y (`)
s (vj)Y

(`)
s (vk)

=
∑
`

c`
∑
s

(
n∑
j=1

wjY
(`)
s (vj)

)(
n∑
k=1

wkY
(`)
s (vk)

)

=
∑
`=1

c`
∑
s

∣∣∣ n∑
j=1

wjY
(`)
s (vj)

∣∣∣2 ≥ 0,

with equality if and only if

n∑
j=1

wjY
(`)
s (vj) = 0 =

∫
Ω

Y (`)
s (x) dµ(x), ∀s, ∀`.

which is equivalent to (vj), (wj) being a P -design (by linearity and the fact
∑

j wj = 1
ensures that the constants are integrated).
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This result is essentially an abstract version of [SW09] (Theorem 3), which was for
spherical designs on the real sphere, with P = Πt(Rd). For examples of such potentials,
we will use a variety of subscripts for A indicating parameters that it depends on, and
which we choose to emphasize in a particular context.

We call the Aw,c(Φ) of (3.1) a potential for the P -designs (with weights w), given
by

K :=
∑
`

c`K`.

The potential for P when there is a single summand and c1 = 1 is called the canonical
potential, and is denoted by AP . This can be obtained by taking ⊕`H(`) to be an
orthogonal direct sum and c` = 1, ∀`. It is also convenient at times to add a (positive)
constant b0 to a potential, to obtain a potential with constant B(Φ) = Aw,c(Φ) + b0,
with (3.7) then replaced by B(Φ) ≥ b0.

There are many possible potentials for P -designs, and so P -designs are “universally
optimal distributions of points” (cf. [CK07]) for the above class of such potentials. Given
a tractable formula for a potential, P -designs can be constructed numerically (for suffi-
ciently many points) by minimising it (to zero) [BGM+21], [EW25]. We now investigate
the case of real and complex spherical designs in detail, where K(x, y) is a univariate
function F of 〈x, y〉, which we also refer to as (giving) a potential, and hence Aw,c(Φ)
is indeed function of the Gramian of Φ. Potentials which depend on triples of points,
and hence not the Gramian in general, have recently been considered by [BFG+22].

4 Real spherical designs

We have observed in (2.4) that every unitarily invariant polynomial space P restricted
to the real sphere has the form

P |S = PL :=
⊕
`∈L

Harm`(S) (orthogonal direct sum), (4.8)

with L ⊂ N = {0, 1, 2, . . .} an index set (which is finite for P |S finite-dimensional). For
the irreducible subspace Harm`(Rd), the reproducing kernel is

K
(d)
` (x, y) := ‖x‖`‖y‖`Q(d)

`

( 〈x, y〉
‖x‖‖y‖

)
, (4.9)

where Qk = Q
(d)
k are the orthogonal polynomials for the Gegenbauer weight for λ = d−2

2
,

i.e., (1− x2)
d−3
2 on [−1, 1], with the normalisation Q

(d)
k (1) = dim(Harmk(Rd)) [DGS77].

These satisfy

Q
(d)
` (x) = (2`+ d− 2)

[`/2]∑
j=0

(−1)j
d(d+ 2) · · · (d+ 2`− 2j − 4)

2jj!(`− 2j)!
x`−2j

= C
( d
2

)

` (x)− C( d
2

)

`−2(x) =
2`+ d− 2

d− 2
C

( d−2
2

)

` (x), (4.10)
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where C
(λ)
` are the Gegenbauer (ultraspherical) polynomials, with C

(λ)
` := 0, ` < 0.

They are given by Q0(x) = 1, Q1(x) = dx, and the three-term recurrence

λk+1Qk+1(x) = xQk(x)− (1− λk−1)Qk−1(x), λk :=
k

2k + d− 2
.

Since surface area measure on the sphere is unitarily invariant, for U unitary, we
have

(f ◦ U)(x) =

∫
S
K(Ux, y)f(y) dσ(y) =

∫
S
K(Ux, Uy)(f ◦ U)(y) dσ(y).

Hence the reproducing kernel K(x, y) of a unitarily invariant space P is a function
of 〈x, y〉, and hence the potential is a function of the Gramian [〈vj, vk〉]. The direct
calculation of the formula (4.9) is called the addition formula (see [BHS19]). We also
observe, that for the real sphere

〈x, y〉 =
1

2

(
‖x‖2 + ‖y‖2 − ‖x− y‖2

)
= 1− 1

2
‖x− y‖2, (4.11)

so that the reproducing kernel on S can also be thought of as a function of the “squared
distance” ‖x− y‖2, which is the direction generalised by Delsarte spaces (see [Hog92]).

Since Harm0(S) = span{1}, a potential for P of the form (4.8), with weights wj, is
given by

Aw,c(Φ) = AF,w(Φ) :=
n∑
j=1

n∑
k=1

wjwkF (〈vj, vk〉), (4.12)

where F is the univariate polynomial given by

F (x) :=
∑

`∈L\{0}

c`Q`(x) =
∑

`∈L\{0}

c`
{
C

( d
2

)

` (x)− C( d
2

)

`−2(x)
}
. (4.13)

Indeed, every univariate polynomial F =
∑

k ckQk with ck ≥ 0 gives a potential for the
unitarily invariant polynomial space P = PL of (4.8), where L := {k > 0 : ck > 0}.
We will say that such a polynomial F is a potential for PL. The function F of (4.13)
is an example of what Schoenberg [Sch42] calls a positive definite function on the
sphere, i.e., a continuous function F : [−1, 1] → R for which the right-hand side of
(4.12)

n∑
j=1

n∑
k=1

wjwkF (〈vj, vk〉) = wT [F (〈vj, vk〉)]nj,k=1w

is nonnegative for all choices of points (vj) ⊂ S(Rd) and w = (wj) ∈ Rn, n = 1, 2, . . ..
These are characterised by the fact that their Fourier series in (Q`) has only nonnegative
coefficients [DX13]. In this terminology, we can paraphrase our observation:

� A positive definite function F on the real sphere which is a polynomial is a potential
for a spherical P -design, where P = PL is given by the correspondence (4.13).
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We observe that the value of the potential AF,w(Φ) depends only on the set of angles
and their weighted multiplicities (see Section 9), i.e.,

Ang(Φ) = {〈vj, vk〉}1≤j,k≤n, mw,α =
∑
j,k

〈vj,vk〉=α

wjwk, α ∈ A.

Example 4.1 For spherical designs of harmonic index m [BOT15], P = Harmm(Rd),
i.e., L = {m}, and there is a unique (up to a scalar) potential Qm(x) given by (4.10).

Example 4.2 (Tight frames) For P = Hom2(Rd), P |S = Harm2(S) ⊕ span{1}, i.e.,
L = {0, 2}, and

Q
(d)
2 (x) =

1

2
d(d+ 2)

(
x2 − 1

d

)
.

gives the canonical potential. The zeros of this potential are the unit norm tight frames,
and if the 2-weights wj = w

(2)
j given by (2.2) are taken, then one obtains the variational

characterisation of tight frames [Wal03] (take m = 2 in (4.21) of Theorem 4.2), [BF03].

For spherical half-designs of order m, i.e.,

P |S = Homm(Rd)|S = Harmm(S)⊕ Harmm−2(S)⊕ Harmm−4(S)⊕ · · · , m ≥ 1,

the sum over ` for c` = 1 in (4.13) is telescoping, with C
( d
2

)

0 (x) = 1, and we obtain:

Example 4.3 The canonical potential for spherical half-designs of order m is given by

F (x) =

{
C

( d
2

)
m (x), m odd;

C
( d
2

)
m (x)− 1, m even,

i.e.,

Aw,1(Φ) =
n∑
j=1

n∑
k=1

wjwkC
( d
2

)
m (〈vj, vk〉)− ε, ε :=

{
0, m odd;

1, m even.
(4.14)

Since the univariate polynomials C
( d
2

)

` are even or odd, with monomial coefficients of
alternating sign, it turns out that we can choose the c` to obtain a potential for the
spherical half-designs with a very simple form. Let

bm(Rd) :=

∫
S

∫
S
〈x, y〉mdσ(x) dσ(y) =

{
0, m odd;

1·3·5···(m−1)
d(d+2)···(d+m−2)

, m even.
(4.15)

Lemma 4.1 (Half-designs) A potential for the spherical designs for P = Homm(Rd),
equivalently L = {m,m− 2, . . .}, is given by the polynomial F (x) = xm − bm(Rd), i.e.,

AF,w(Φ) =
n∑
j=1

n∑
k=1

wjwk〈vj, vk〉m − bm(Rd),

where bm(Rd) is given by (4.15).
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Proof: The index set is L = {m− 2a : 1 ≤ m− 2a ≤ m} = {m− 2a : 0 ≤ a ≤ m−1
2
}.

Let

cm,a :=
1

2aa!

a∏
r=1

(d+ 2(m− r)), 0 ≤ a ≤ m− 1

2
.

Then a simple calculation, using the explicit formula of (4.10), gives

F (x) :=
m!

d(d+ 2) · · · (d+ 2m− 2)

∑
0≤a≤m−1

2

cm,aQd,m−2a(x) = xm − bm(Rd),

so that we have a potential

AF,w(Φ) =
n∑
j=1

n∑
k=1

wjwk

{
〈vj, vk〉m − bm(Rd)

}
=

n∑
j=1

n∑
k=1

wjwk〈vj, vk〉m − bm(Rd),

as claimed.

This result was proved for m even by Venkov [Ven01] (constant weights) and [KP11]
(nonnegative weights), by using a different method.

We can now describe various variational conditions for being a real spherical t-design.

Theorem 4.1 Let w1 + · · · + wn = 1, wj ∈ R, vj ∈ S, and t ≥ 1. Then (vj), (wj) is a
weighted spherical t-design if and only if there is equality in the inequalities

n∑
j=1

n∑
k=1

wjwk〈vj, vk〉t ≥ bt(Rd),
n∑
j=1

n∑
k=1

wjwk〈vj, vk〉t−1 ≥ bt−1(Rd). (4.16)

In particular, (vj) is a spherical t-design if and only if

1

n2

n∑
j=1

n∑
k=1

〈vj, vk〉m =

∫
S

∫
S
〈x, y〉m dσ(x) dσ(y) = bm(Rd), m ∈ {t− 1, t}. (4.17)

Proof: Since Πt(Rd)|S = Homt(Rd)|S ⊕ Homt−1(Rd)|S, the spherical t-designs are
precisely the spherical half-designs of order t which are also half-designs of order t− 1,
and the result follows directly from Lemma 4.1.

The condition (4.17) for m ∈ {1, 2, . . . , t} is well known (see [GS79], Theorem 4.4).
The following condition given by the canonical potential (4.14) appears to be new.

Corollary 4.1 The unit vectors (vj) ⊂ Rd give a weighted spherical t-design if and only
if

n∑
j=1

n∑
k=1

wjwk C
( d
2

)
m (〈vj, vk〉) =

{
0, m odd;

1, m even,
m ∈ {t− 1, t}, (4.18)

which can also be written as

n∑
j=1

n∑
k=1

wjwk
{
C

( d
2

)
t (〈vj, vk〉) + C

( d
2

)

t−1(〈vj, vk〉)
}

= 1. (4.19)
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The condition that spherical t-designs are characterised by their canonical potentials
for Harm`(Rd) vanishing, i.e.,

n∑
j=1

n∑
k=1

wjwk C
( d−2

2
)

` (〈vj, vk〉) = 0, ` ∈ {1, 2, . . . , t},

is well known, as is the generalisation to spherical designs of harmonic index t [ZBB+17]
(Lemma 2.1).

We now show that the necessary conditions (2.5) and (2.6), which are given in
Sidel’nikov [Sid74] (Corollary 1) for unit vectors, are sufficient.

Theorem 4.2 Let (vj) be vectors in Rd, not all zero, with corresponding m-weights,
i.e.,

wj :=
‖vj‖m∑
` ‖v`‖m

. (4.20)

Then (vj) gives a weighted spherical half-design of order m if and only if there is equality
in the inequality

n∑
j=1

n∑
k=1

〈vj, vk〉m ≥ bm(Rd)
( n∑
`=1

‖v`‖m
)2

. (4.21)

Moreover, this is also a weighted spherical m-design if and only if in addition there is
equality in

n∑
j=1

n∑
k=1

‖vj‖‖vk‖〈vj, vk〉m−1 ≥ bm−1(Rd)
( n∑
`=1

‖v`‖m
)2

. (4.22)

Proof: Take wj given by (4.2) in Lemma 4.1 and Theorem 4.1.

To find spherical t-designs with nonnegative weights, one can minimise the single
potential

A(Φ) :=
n∑
j=1

n∑
k=1

(
〈vj, vk〉t + ‖vj‖‖vk‖〈vj, vk〉t−1

)
≥ ct(Rd) + ct−1(Rd),

over the compact set of Φ = (vj) with
∑

` ‖v`‖m = 1, where equality gives a weighted
spherical t-design for the t-weights.

If X = {vj} is antipodal (centrally symmetric), i.e., X = −X, then it gives a
spherical half-design of odd order m, for every m. We will say a spherical half-design of
odd order is nontrivial if its vectors span Rd and it is not antipodal.

Example 4.4 The d+ 1 vertices of a regular simplex in Rd are a nontrivial example of
a spherical half-design of order m = 1, via direct calculation of (4.21)∑

j

∑
k

〈vj, vk〉1 = (d+ 1) + {(d+ 1)2 − (d+ 1)}
(−1

d

)
= 0.

Hardin and Sloane [HS96] give various half-designs for R3, e.g., they give 11, 13 and
15-point spherical 3-designs which are nontrivial half-designs of order 3.
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It follows from the definition of designs (1.1), that a weighted spherical half-design
of order m is a weighted spherical-half design of orders m− 2,m− 4, . . ., with the same
weights. Expressing this observation in terms of (4.21) gives:

Example 4.5 Let (vj) be a sequence in Rd and m be an odd positive integer. If

n∑
j=1

n∑
k=1

〈vj, vk〉m = 0,

then
n∑
j=1

n∑
k=1

‖vj‖m−`‖vk‖m−`〈vj, vk〉` = 0, ` = 1, 3, 5, . . . ,m.

Example 4.6 (Sharp configurations) In [CK07], an f -potential energy for a finite set
points C on the real sphere by ∑

x,y∈C
x 6=y

f(‖x− y‖2),

where f := (0, 4]→ [0,∞) is any decreasing continuous function. In view of (4.11), this
can be written as∑

x,y∈C
x 6=y

F (〈x, y〉), F (t) := f(2(1− t)), −1 ≤ t < 1.

A subset C of S is a sharp configuration (or code) if there are m inner products
between distinct points and it is a spherical (2m − 1)-design. It is shown by Cohn and
Kumar [CK07] (also see [BHS19] §5.7) that if C is a sharp configuration or the vertices
of the 600-cell, and the above f is completely monotonic, i.e., (−1)kf (k)(t) ≥ 0, k ≥ 0,
equivalently, F is absolutely monotonic, i.e., F (k)(t) ≥ 0, k ≥ 0, then∑

x,y∈C′
x 6=y

f(‖x− y‖2) ≥
∑
x,y∈C
x 6=y

f(‖x− y‖2),

for any other set of points with |C ′| = |C|, i.e., C is a uniformly optimal distribution of
points on the sphere (for all such f).

5 Complex spherical designs

The complex unitary matrices for Cd are a subgroup of the unitary matrices for R2d

(the orthogonal group), and so irreducible subspaces under the action of the orthogonal
group may not be irreducible under the action of the complex unitary group.

For the complex sphere S, the harmonic functions Harmk(Cd) ≈ Harmk(R2d) can be
further decomposed into orthogonal (complex) unitarily invariant irreducible subspaces

Harmk(Cd) = H(k, 0)⊕H(k − 1, 1)⊕ · · · ⊕H(0, k),

12



where H(p, q) consists of all harmonic homogeneous polynomials on Cd that have degree
p in the variables z1, . . . , zd and degree q in the variables z1, . . . , zd (see [Rud80]). Thus
the unitarily invariant subspaces of polynomials restricted to the complex sphere have
the form

P |S = Pτ :=
⊕

(p,q)∈τ

H(p, q), (orthogonal direct sum)

for τ a finite subset of indices from {(j, k) : j, k ≥ 0}. Thus, the most general complex
spherical design is one which integrates Pτ , which we call a (spherical) τ-design.
Aspects of these τ -designs have been studied by [MOP11], [RS14] and [MW24].

There is a subtlety in defining classes of complex spherical designs, as the τ defining
a class is not unique (as is the L in the real case), as we now see.

The reproducing kernel Kpq = K
(d)
pq for H(p, q) (and hence for any unitarily invariant

space of polynomials) has been calculated explicitly by [Fol75] for d > 1 as a function
of 〈z, w〉

K
(p,q)
d (z, w) = Q(d)

pq (〈z, w〉), z, w ∈ Cd,

where Qpq = Q
(d)
pq is the univariate polynomial

Q(d)
pq (z) := c(d)

pq z
p−min{p,q}zq−min{p,q}

P
(d−2,|p−q|)
min{p,q} (2|z|2 − 1)

P
(d−2,|p−q|)
min{p,q} (1)

=
p+ q + d− 1

(d− 1)!

min{p,q}∑
j=0

(−1)j
(d+ p+ q − j − 2)!

j!(p− j)!(q − j)!
zp−jzq−j, z ∈ C, (5.23)

and

c(d)
pq := dim(H(p, q)) =

(p+ q + d− 1)(p+ d− 2)!(q + d− 2)!

p!q!(d− 1)!(d− 2)!
= Q(d)

pq (1). (5.24)

The second of these formulas also holds for d = 1, where H(p, q) = 0, unless p = 0 or
q = 0, in which case H(p, 0) = span{zp}, H(0, q) = span{zq}. We also have

Hom(p, q) = Homp,q(Cd)|S = H(p, q)⊕H(p− 1, q − 1)⊕ · · · .

We observe that the expansion for Qpq(z) in terms of the monomials zjzk has real
coefficients, so that

Qpq(z) = Qpq(z) = Qqp(z),

and so the canonical potentials for H(p, q) and H(q, p) are equal, by the calculation

Aw,H(p,q)(Φ) = Aw,H(p,q)(Φ) =
∑
j

∑
k

wjwkQpq(〈vj, vk〉)

=
∑
j

∑
k

wjwkQ
(d)
qp (〈vj, vk〉) = Aw,H(q,p)(Φ), (5.25)

13



as are those for Hom(p, q) and Hom(q, p). Since the canonical potentials for H(p, q) and
H(q, p) are equal, the class of spherical designs for some unitarily invariant polynomial
spaces are equal. For a set of indices τ , we define

τ rev := {(q, p) : (p, q) ∈ τ}.

By the class of a spherical τ -design we mean the maximal unitarily invariant subspace
that it integrates, or the indices τ ∗ of that subspace.

Proposition 5.1 The class of complex spherical designs for PL and PK are equal if and
only if

L ∪ Lrev ∪ {0} = K ∪Krev ∪ {0}.

In particular, the class (of indices) for any τ -design is

τ ∗ = τ ∪ τ rev ∪ {0}.

Proof: Since every complex spherical design integrates the constants, we can add
0 = (0, 0) to the set of indices L without changing the class of the spherical designs it
gives. Similarly, since H(p, q) and H(q, p) have the same canonical potential, by (5.25),
we may add (q, p) for (p, q) ∈ L. Thus if L∪Lrev∪{0} ⊂ K∪Krev∪{0}, then a spherical
design for PK is spherical design for PL. This gives the forward implication.

The converse follows from the fact that the canonical potentials for different classes
differ by at least one term, and then a linear algebra argument.

We will not labour the point, but the classes of complex spherical designs are given
by the possible choices for τ ∗, and for a τ -design we will refer to τ ∗ as the canonical
indices for the design, and use τ ∗ \ {(0, 0)} to calculate the canonical potential.

We will carry over terminology from the real case, e.g., we say that a univariate
polynomial

F =
∑
(p,q)

fpqQpq, fpq ≥ 0, (5.26)

gives a potential AF,w(Φ) for the unitarily invariant polynomial space

P = Pτ =
⊕

(p,q)∈τ

H(p, q), τ := {(p, q) : fpq > 0, (p, q) 6= (0, 0)}.

Example 5.1 (Balanced sets) Let Pτ = H(1, 0), i.e., τ = {(1, 0)}. Then

τ ∗ = {(0, 0), (1, 0), (0, 1)}, Q
(d)
10 (z) = dz,

so that the τ -designs (vj) are characterised by∑
j

∑
k

〈vj, vk〉 = 〈
∑
j

vj,
∑
k

vk〉 = ‖
∑
j

vj‖2 = 0 =⇒
∑
j

vj = 0,

i.e., the sum of their vectors is zero, and they are said to be balanced.
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We have the complex version of Example 4.2.

Example 5.2 (Complex tight frames) For P = Hom1,1(Cd), P |S = H(1, 1) ⊕ H(0, 0),
i.e., τ = τ ∗ = {(1, 1), (0, 0)}, and

Q
(d)
11 (z) = d(d+ 1)

(
|z|2 − 1

d

)
,

gives the canonical potential (which is zero for d = 1)

AP,w(Φ) = d(d+ 1)
∑
j

∑
k

wjwk

(
|〈vj, vk〉|2 −

1

d

)
.

The zeros of this potential are the unit norm tight frames for Cd. For vectors (vj) in
Cd, by taking the 2-weights given by (2.2), one obtains the variational characterisation
of tight frames [Wal03].

The functions F : D→ C, on the complex unit disc D = {z ∈ C : |z| ≤ 1}, of (5.26)
that give a potential, are in general complex-valued. They do satisfy

F (z) = F (z),

and so the potential AF,w that F gives is real-valued, since we may group terms in (4.12)

wjwk
(
F (〈vj, vk〉)+F (〈vk, vj〉)

)
= wjwk

(
F (〈vj, vk〉)+F (〈vj, vk〉)

)
= 2wjwk<

(
F (〈vj, vk〉)

)
.

It is possible to develop a theory of positive definite functions on the complex
sphere which include such polynomials F (see [MP01], [MPP17]).

The canonical potential for

P = Hom2(Cd), P |S = H(2, 0)⊕H(1, 1)⊕H(0, 2)⊕H(0, 0),

is given by

F (z) = Q
(d)
20 (z)+Q

(d)
11 (z)+Q

(d)
20 (z) =

1

2
d(d+1)

(
z2+2zz+z2−2

d

)
= 2d(d+1)

(
<(z)2− 1

2d

)
.

Since this potential is zero if and only if (vj) is tight frame for R2d, we have the following.

Proposition 5.2 Let (vj) be a sequence of n vectors in Cd, not all zero. Then (vj) is
tight frame for Cd if and only if there is equality in the inequality∑

j

∑
k

|〈vj, vk〉|2 ≥
1

d

(∑
`

‖v`‖2
)2

.

Moreover, it is also a tight frame for R2d if and only if, in addition, there is equality in
the inequality ∑

j

∑
k

〈vj, vk〉2 ≥ 0.
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Proof: The first statement is just the variational characterisation of tight frames for
Cd given in Example 5.2. For the vectors (vj) in Cd to be a tight frame for R2d the
potentials AH(1,1)(Φ) and AH(2,0)(Φ) = AH(0,2)(Φ) must be minimised for the 2-weights.
The first is minimised by being a tight frame for Cd, and the second if and only if there
is equality in

AH(2,0)(Φ) =
1

2
d(d+1)

∑
j

∑
k

‖vj‖2

C

‖vk‖2

C
〈 vj
‖vj‖

,
vk
‖vk‖

〉2 =
d(d+ 1)

2C2

∑
j

∑
k

〈vj, vk〉2 ≥ 0,

where C =
∑

` ‖v`‖2 > 0.

This result appears in [Wal25] (Theorem 3.1) where it is obtained in a similar way.

Example 5.3 For vj = zj = xj + iyj ∈ C, not all zero, (vj) is a tight frame for C (since
the first inequality holds). The condition for the vectors (xj, yj) to be a tight frame for
R2 is that ∑

j

∑
k

(zjzk)
2 =

(∑
j

z2
j

)(∑
k

zk
2
)

=
∣∣∣∑

j

z2
j

∣∣∣2 = 0,

i.e.,
∑

j z
2
j = 0. This characterisation of tight frames for R2 (in polar form) is given in

[Fic01] and [HKLW07] (where the vectors z2
j are called diagram vectors).

The potentials for P = Hom(2, 2) = H(2, 2)⊕H(1, 1)⊕H(0, 0) are given by

F (z) = c1Q
(d)
11 (z) + c2Q

(d)
22 (z)

= c1(d+ 1)(d|z|2 − 1) + c2
1

4
d(d+ 3)

(
(d2 + 3d+ 2)|z|4 − 4(d+ 1)|z|2 + 2

)
.

The F (z) for the canonical potential (c1 = c2 = 1) has nonzero terms in 1, |z|2, |z|4.
The term in |z|2 can be cancelled by choosing c1 = (d+ 3)c2, which gives

F (z) = |z|4 − 2

d(d+ 1)
.

We now seek a similar ‘telescoping’ sum for a general Hom(p, q), to obtain an analogue
of Lemma 4.1.

Lemma 5.1 A direct calculation gives

min{p,q}∑
j=0

(d− 1)!p!q!

j!(p+ q + d− 1− j)!
Q

(d)
p−j,q−j(z) = zpzq. (5.27)

The complex analogue of (4.15) is

bp,q(Cd) :=

∫
S

∫
S
〈z, w〉p〈z, w〉

q
dσ(z) dσ(w) =

{
0, p 6= q;
(d−1)!p!
(d−1+p)!

, p = q.
(5.28)
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Theorem 5.1 A potential for Hom(p, q) = Homp,q(Cd) is given by

F (z) = zpzq − bp,q(Cd), (5.29)

where bp,q(Cd) is given by (5.28), and a potential for Homm(Cd) is given by

F (z) = (z + z)m − 2mbm(R2d) = 2m
{
<(z)m − bm(R2d)

}
. (5.30)

where bm(R2d) is given by (4.15).

Proof: We note that all the coefficients in the expansion (5.27) are positive. Hence,
for p 6= q, this gives a potential for Hom(p, q) = ⊕jH(p− j, q− j), and for p = q, this is

a potential for Hom(p, p) plus the Q
(d)
00 (z) constant term

(d− 1)!p!p!

p!(p+ d− 1)!
Q

(d)
00 (z) =

(d− 1)!p!

(p+ d− 1)!
=

1(
p+d−1
p−1

) = bp,p(Cd).

This gives (5.29) in both cases.
A potential for Homm(Cd) =

⊕
j Hom(j,m− j) is given by

F (z) =
m∑
j=0

(
m

j

)(
zjzm−j − bj,m−j(Cd)

)
= (z + z)m −

m∑
j=0

(
m

j

)
bj,m−j(Cd).

The constant term subtracted above is zero, unless m is even, in which case it is(
m
m
2

)
bm

2
,m
2

(Cd) =
m!

(m
2

)!(m
2

)!

(d− 1)!(m
2

)!

(d− 1 + m
2

)!
= 2m

m!

2
m
2 (m

2
)!

(d− 1)!

2
m
2 (d− 1 + m

2
)!

= 2mbm(R2d).

Hence we obtain (5.30).

The nonnegativity of the potential AF,w(Φ) given by (5.29) is given as Lemma 3.3 in
[RS14], with equality asserted when it holds for all (p, q) in a lower set τ for a unit-norm
τ -design Φ. The complex spherical designs for the special case Hom(p, p) are “projective
designs”, which we will discuss in the next section.

Example 5.4 A potential for the holomorphic polynomials Hom(k, 0) = H(k, 0) is given
by F (z) = zk, and for the holomorphic polynomials of degree ≤ k a potential is given by
any linear combination of z, z2, . . . , zk with positive coefficients.

We now give the weighted version of Theorem 5.1.

Theorem 5.2 Let m = p+ q. For any vectors v1, . . . , vn in Cd, not all zero, we have

n∑
j=1

n∑
k=1

〈vj, vk〉p〈vj, vk〉
q
≥ bp,q(Cd)

( n∑
`=1

‖v`‖p+q
)2

, (5.31)

with equality if and only (vj) is an m-weighted spherical design for Hom(p, q), and

n∑
j=1

n∑
k=1

(<〈vj, vk〉)m ≥ bm(R2d)
( n∑
`=1

‖v`‖m
)2

, (5.32)

with equality if and only if (vj) is an m-weighted spherical half-design of order m.
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Proof: Let m = p + q, and C =
∑

` ‖v`‖m > 0. Then the potential given by (5.29)
for the m-weights is

AF,w(Φ) =
∑
j

∑
k

‖vj‖m‖vk‖m

C2

{
〈 vj
‖vj‖

,
vk
‖vk‖

〉p〈 vj
‖vj‖

,
vk
‖vk‖

〉
q

− bp,q(Cd)
}

=
1

C2

∑
j

∑
k

〈vj, vk〉p〈vj, vk〉
q
− bp,q(Cd).

Multiplying this by C2 and rearranging gives (5.31).
For P = Hom(m) = Homm(Cd) a similar argument using (5.30) gives (5.32).

We will refer to spherical designs for Hom(p, q) as spherical (p, q)-designs, which
generalises the definition of complex spherical (t, t)-designs. We now show that the
canonical potential for these has a simple form.

Lemma 5.2 The complex Gegenbauer polynomials satisfy

min{p,q}∑
j=0

Q
(d)
p−j,q−j(z) =

d

p+ q + d
Q(d+1)
pq (z), (5.33)

equivalently,

Q(d)
p,q(z) =

d

p+ q + d
Q(d+1)
pq (z)− d

p+ q + d− 2
Q

(d+1)
p−1,q−1(z). (5.34)

Proof: The equivalence of (5.33) and (5.34) is obvious. Thus it suffices to prove
(5.34) by direct calculation from (5.23), i.e., by equating coefficients.

From Lemma 5.2, we have

Example 5.5 (Spherical (p, q)-designs) The canonical potential for spherical (p, q)-designs,
i.e., P = Hom(p, q) = Homp,q(Cd) is given by

min{p,q}∑
j=0

Q
(d)
p−j,q−j(z) =

d

p+ q + d
Q(d+1)
pq (z).

6 Projective spherical designs

We will say that a (weighted) spherical design (vj) for the polynomial space P is a
projective spherical design if (cjvj) is a spherical design for all choices of unit scalars
cj. Clearly such a design can be thought of as a sequence of lines. Since a projective
design depends on the (vj) up to unitary equivalence and multiplication by unit scalars,
it follows from [CW16] that it can be characterised in terms of its m-products

∆(vj1 , . . . , vjm) := 〈vj1 , vj2〉〈vj2 , vj3〉 · · · 〈vjm , vj1〉, 1 ≤ j1, . . . , jm ≤ n.

Hence the reproducing kernels K(x, y) which are invariant under this equivalence, i.e.,
replacing (x, y) with (cxUx, cyUy), where U is unitary and cx, cy are unit scalars, are
those which are functions of 〈x, y〉2 and |〈x, y〉|2, respectively. Thus the polynomial
spaces giving projective spherical designs in the real and complex cases are
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� The spaces PL consisting of even polynomials on Rd, i.e., L ⊂ {0, 2, 4, . . .}.

� The spaces Pτ of polynomials on Cd, where τ = τ ∗ ⊂ {(0, 0), (1, 1), . . .}.

This notion of projective designs generalises to designs on the Grassmannian [EG19].
It follows from the multiplication rules for Gegenbauer polynomials (Theorem 8.1),

that the univariate functions F giving potentials for projective designs are closed under
multiplication.

The projective spherical designs for the (projectively unitarily invariant) spaces

PL = Hom(2t) = Harm(0)⊕ Harm(2)⊕ · · · ⊕ Harm(2t), L = 0, 2, . . . , 2t,

Pτ = Hom(t, t) = H(0, 0)⊕H(1, 1)⊕ · · · ⊕H(t, t), τ = {(0, 0), (1, 1), . . . , (t, t)},

are of particular interest. In the real case, these are the spherical half-designs of order
2t [KP11] and the real spherical (t, t)-designs [Wal17]. In the complex case, they are
known as projective t-designs on Delsarte spaces [Hog90],[Wal20], complex spherical
semi-designs of order 2t [KP17], and complex spherical (t, t)-designs [Wal17]. The
potentials of Lemma 4.1 and Theorem 5.1 for these are

F (x) = x2t − b2t(Rd), F (z) = |z|2t − bt,t(Cd).

We may combine the characterisations of Theorem 4.2 and Theorem 5.2 to obtain

Example 6.1 For any vectors v1, . . . , vn in Fd, not all zero, we have

n∑
j=1

n∑
k=1

|〈vj, vk〉|2t ≥ ct(Fd)
( n∑
`=1

‖v`‖2t
)2

,

where

ct(Rd) := b2t(Rd) =
1 · 3 · 5 · · · (2t− 1)

d(d+ 2) · · · (d+ 2t− 2)
, ct(Cd) := bt,t(Cd) =

1(
t+d−1
t

) ,
with equality if and only if (vj) ⊂ Fd is a spherical (t, t)-design for Fd.

This characterisation is given in [KP11],[KP17] and [Wal17], and the inequalities were
first given by Sidel’nikov [Sid74] and Welch [Wel74].

In Table 1, we summarise our calculations of potentials from Sections 4, 5 and 6.
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Table 1: Selected real and complex spherical P -designs and their potentials. The inclusion of
zero or not in the index set is for aesthetics. Those marked with a * are canonical potentials.

P -design P and the index set L or τ Potential F Comments

harmonic index m Harmm(Rd) Q
(d)
m (x) Example 4.1 *

{m}
real tight frame Hom2(Rd) x2 − 1

d Example 4.2 *

{2}
real half-design Homm(Rd) xm − bm(Rd) Lemma 4.1

{m,m− 2, . . .} C
( d
2 )

m (x)− 1, m even Example 4.3 *

C
( d
2 )

m (x), m odd

spherical t-design Πt(Rd) C
( d
2 )

t (x) + C
( d
2 )

t−1(x)− 1 Corollary 4.1 *

{1, 2, . . . , t}
∑

m=t,t−1
cm
(
xm − bm(Rd)

)
Theorem 4.1

harmonic index (p, q) H(p, q) Q
(d)
pq (z) Equation (5.23) *

{(p, q)}
complex tight frame Hom1,1(Cd) |z|2 − 1

d Example 5.2 *

{(1, 1)}
spherical (p, q)-design Homp,q(Cd) zpzq − bp,q(Cd) Theorem 5.1

{(p, q), (p− 1, q − 1), . . .} d
p+q+dQ

(d+1)
pq (z), p 6= q Example 5.5 *

spherical (t, t)-design Homt,t(Cd) |z|2t − ct(Cd) Example 6.1

{(1, 1), . . . (t, t)}
complex half-design Homm(Cd) <(z)m − bm(R2d) Theorem 5.1

{(p, q) : p+ q = m,m− 2, . . .}
spherical t-design Πt(Cd)

∑
m=t−1,t

cm
(
<(z)m − bm(R2d)

)
Theorem 5.1

{(p, q) : p+ q = 1, 2, . . . , t}
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7 Orthogonality of the Gegenbauer polynomials

The polynomials Q
(d)
k of (4.10) that give the reproducing kernel for Harmk(Rd) are

orthogonal with respect to the Gegenbauer weight (1− x2)
d−2
2
− 1

2 on [−1, 1]. Indeed

〈Qj, Qk〉geg =

{
Qj(1) = dim(Harmk(Rd)), j = k;

0, j 6= k,
(7.35)

where

〈f, g〉geg :=
Γ(1

2
d)

√
πΓ(1

2
d− 1

2
)

∫ 1

−1

f(x)g(x) (1− x2)
d−3
2 dx.

We will refer to these, and the polynomials Q
(d)
pq of (5.23) giving the reproducing kernel

for H(p, q) as (real or complex) Gegenbauer polynomials. The terms “Jacobi” and
“disk” polynomial are sometimes used for the latter [RS14], [MOP11].

We now show the polynomials Q
(d)
pq are orthogonal with respect to the Gegenbauer

weight (1− |z|2)d−2 on the unit disc D = {z ∈ C : |z| ≤ 1} in C (cf. [MOP11]).

Proposition 7.1 For d > 1, the (complex) Gegenbauer polynomials Q
(d)
pq of (5.23) are

orthogonal with respect to the inner product

〈f, g〉D,d :=
d− 1

π

∫
D
f(z)g(z)(1− |z|2)d−2 dA(z)

=
d− 1

π

∫ 1

0

∫ 2π

0

f(reiθ)g(reiθ) (1− r2)d−2r dr dθ,

where A is the area measure on C = R2, and

〈Qpq, Qk`〉D,d =

{
Qpq(1) = dim(H(p, q)), (p, q) = (k, `);

0, (p, q) 6= (k, `).
(7.36)

Proof: We write z = reiθ, so that

Q(d)
pq (z) = c(d)

pq (reiθ)p−m(reiθ)q−m
P

(d−2,|p−q|)
m (2r2 − 1)

P
(d−2,|p−q|)
m (1)

, m := min{p, q}.

By integrating in θ first, we see that 〈Q(d)
pq , Q

(d)
p′q′〉D,d = 0, except when p− q = p′− q′. In

this case, we may suppose, without loss of generality, that p− q = p′ − q′ = k ≥ 0, i.e.,
m = q, m′ = q′, so that (reiθ)p−m(reiθ)q−m(reiθ)p

′−m′(reiθ)q
′−m′ = r2k, and

〈Q(d)
pq , Q

(d)
p′q′〉D,d = 2c(d)

pq c
(d)
p′q′

∫ 1

0

r2kP (d−2,k)
m (2r2 − 1)P

(d−2,k)
m′ (2r2 − 1) (1− r2)d−2 r dr.

By making the change of variables x = 2r2 − 1, the integral in r above becomes∫ 1

−1

(
1 + x

2

)k
P (d−2,k)
m (x)P

(d−2,k)
m′ (x)

(
1− x

2

)d−2
1

4
dx,

which is zero, unless m = m′, in which case (p, q) = (p′, q′). The calculation of the
constant for the nonzero inner product is a straight forward calculation.
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This orthogonality of the polynomials Q
(d)
pq can also be proved from the reproducing

kernel property, by using the orthogonality of the H(p, q), and the result (see §1.4.5 of
[Rud80]) that for S the unit ball in Cd and f a univariate function∫

S
f(〈z, w〉) dσ(w) =

d− 1

π

∫
D
f(ζ)(1− |ζ|2)d−2 dA(ζ), z ∈ Cd, ‖z‖ = 1.

In particular, we can calculate the orthogonality constant

Q(d)
pq (1) = Q

(d)
pq (〈z, z〉) =

∫
S
Q(d)
pq (〈z, w〉)Q(d)

pq (〈z, w〉) dσ(w)

=
d− 1

π

∫
D
|Q(d)

pq (ζ)|2(1− |ζ|2)d−2 dA(ζ) = 〈Q(d)
pq , Q

(d)
pq 〉D,d.

Since Harmk(Cd) =
⊕
p+q=k

H(p, q), we have

Q
(2d)
k

(
(x, y)

)
=
∑
p+q=k

Q(d)
pq (z), z = x+ iy ∈ Cd.

For d = 1, the polynomials Q
(1)
pq (z) can be viewed as being orthogonal with respect to

the “singular Gegenbauer weight”

〈f, g〉D,d =
1

2π

∫ 2π

0

f(eiθ)g(eiθ) dθ.

8 Products of the Gegenbauer polynomials

To construct positive functions F giving a potential for a spherical design, it is useful to
know the Gegenbauer expansion for a product of Gegenbauer polynomials. In the real
case, there is the following celebrated formula dating back to Rogers (1895)

Q
(d)
k Q

(d)
l =

min{k,l}∑
j=0

(k + ν)(l + ν)(k + l − 2j)!(ν)j(ν)k−j(ν)l−j(2ν)k+l−j

ν(k + l + ν − j)j!(k − j)!(l − j)!(ν)k+l−j(2ν)k+l−2j

Q
(d)
k+l−2j, (8.37)

where ν := d−2
2

, (ν)j is the Pochhammer symbol, and the coefficients are clearly positive.
We will denote by k · l the degrees of the Gegenbauer polynomials occuring in (8.37),
i.e.,

k · l := {k + l − 2j : 0 ≤ j ≤ m}, m := min{k, l}, (8.38)

which we extend to subsets in the natural way

K · L :=
⋃
k∈K
l∈L

k · l. (8.39)

As an example, for L = {1, 4}, we have L · L = {0, 2, 3, 4, 5, 6, 8}.

Lemma 8.1 If F and G give potentials for PL and PK (on the real sphere), then FG
gives a potential for PL·K.

Proof: Multiply out the Gegenbauer expansions for F and G and use (8.37).
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We now present the analogue of Lemma 8.1 for the product of complex Gegenbauer
polynomials. It can be shown (see [Rud80]) that

H(p, q)H(r, s) ⊂
µ∑
j=0

H(p+ r − j, q + s− j), µ := min{p, s}+ min{q, r}, (8.40)

where there is equality for d ≥ 3. Motivated by this, for indices (p, q) and (r, s), we
define the operation

(p, q) · (r, s) :=

µ⋃
j=0

{(p+ r − j, q + s− j)}, µ := min{p, s}+ min{q, r}, (8.41)

which we extend to subsets of indices as in (8.39). As examples, we have

(p, q) · (q, p) = {(0, 0), (1, 1), . . . , (k, k)}, k = p+ q,

so that (0, 0) ∈ U · U rev, when U is nonempty, and

(p, q) · (p, q) = {(2p, 2q), (2p− 1, 2q − 1), . . . , (2p− 2m, 2q − 2m)}, m = min{p, q}.

In view of (8.40) and (8.41), it follows that

PLPK ⊂
∑

(p,q)∈L·K

H(p, q).

The corresponding analogue of the Roger’s formula (8.37) is

Q(d)
pq Q

(d)
rs =

µ∑
j=0

c
(d)
p+r−j,q+s−jQ

(d)
p+r−j,q+s−j, µ := min{p, s}+ min{q, r},

with nonnegative coefficients (see [CW18]). The nonnegativity of the coefficients follows
from the Schur product theorem. This gives the complex analogue of Lemma 8.1.

Theorem 8.1 The product of functions giving a potential for the real or complex sphere
gives a potential. Indeed, if F and G are give potentials for PU and PV , then FG gives a
potential for a subspace of PU·V , which is all of PU·V for the real sphere and the complex
sphere when d ≥ 3.

The following particular case will be useful.

Corollary 8.1 If F =
∑

(p,q) fpqQpq, fpq ≥ 0 is a potential for the complex sphere, then

G = QabF/Qab(1) is a potential with constant term g0 = 〈G, 1〉D,d = fab.

Proof: Since Qab = Qba, G is a potential, and its constant term is

g0 = 〈QabF/Qab(1), 1〉D,d =
1

Qab(1)
〈
∑
(p,q)

fpqQpq, Qab〉D,d =
fab

Qab(1)
〈Qab, Qab〉D,d = fab,

as desired.
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Example 8.1 Since z = Q10(z)/Q10(1), we have that if F is a potential for the complex
sphere, then G(z) = zF (z) is a potential with constant term g0 = f10.

Remark 8.1 It is shown in [Rud80] (Theorem 12.5.10), that for d = 2 the only time
there is not equality in (8.40) is when (p, q) = (r, s), in which case

H(p, q)H(r, s) =

µ∑
j=0
j even

H(p+ r − j, q + s− j), µ = 2 min{p, q}.

If the product · of (8.41) is modified in this case to ·2, with

(p, q) ·2 (p, q) :=

µ⋃
j=0
j even

{(2p− j, 2q − j)} ⊂ (p, q) · (p, q), µ := 2 min{p, q},

then the product FG of Theorem 8.1, is a potential for (all of) PU·2V .

9 Bounds for real and complex spherical designs

Here we consider the relationship between our results on potentials and the seminal
paper [DGS77] on codes and spherical designs. In particular, we seek to understand the
given bounds on the number of vectors in real spherical designs, and then extend them
in a natural way to complex spherical designs.

It is now convenient to allow the univariate polynomial F giving a potential for real
or complex spherical designs Φ = (vj)

n
j=1 to have a (possibly nonzero) constant term f0

in its Gegenbauer expansion, so that the potential (with constant) satisfies

n2AF (Φ) =
∑
j

∑
k

F (〈vj, vk〉) ≥ n2f0,

with equality if and only if (vj) is a design. A very specific way equality can be achieved
is by having each nondiagonal term in the sum be constant, i.e.,

F (〈vj, vk〉) = c, ∀j 6= k. (9.42)

The value of the constant c depends strongly on the choice of F , indeed

n2AF (Φ) = nF (1) + (n2 − n)c = n2f0 =⇒ c =
nf0 − F (1)

n− 1
.

In actuality, the number of equations in (9.42) depends on the number of angles of Φ,
i.e., size of the set of inner products

Ang(Φ) := {〈vj, vk〉 : vj 6= vk} ⊂ [−1, 1),

and the value of the potential depends on these angles and their multiplicities. i.e.,

n2AF (Φ) = nF (1) +
∑

α∈Ang(Φ)

mαF (α) ≥ n2f0, (9.43)
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where mα > 0 is the multiplicity of the angle α as an entry of the Gramian [〈vj, vk〉].
We are now in a position to give a transparent statement and proof of Theorem 4.3

of [DGS77]. This is the key result which gives upper bounds for the number of points
in codes and designs, given a suitable choice of potential F .

Let A ⊂ [−1, 1). A finite set X = (vj) of n unit vectors in Rd is an A-code if its
angles Ang(X) are contained in A.

Theorem 9.1 (Upper bound) Let F =
∑

k fkQk be a polynomial with fk ≥ 0, f0 > 0,
i.e., a potential with a positive constant f0, for which

F (α) ≤ 0, α ∈ A ⊂ [−1, 1). (9.44)

Then the size n of any A-code X satisfies

n ≤ F (1)

f0

, (9.45)

with equality if and only if the angles of X are roots of F , and X is a spherical P -design
for

P = PL =
⊕
k∈L

Harmk(S), L = {k : fk > 0}.

Proof: Suppose that X is an A-code. Then applying (9.44) to (9.43) gives

n2f0 ≤ n2AF (Φ) = nF (1) +
∑

α∈Ang(Φ)

mαF (α) ≤ nF (1),

which gives the inequality (9.45). There is equality above when F (α) = 0, α ∈ Ang(X),
and AF (Φ) = f0, i.e., X is a spherical design for the potential F , i.e., for P = PL.

The weighted version of (9.43) is

AF (Φ) = F (1)
(∑

j

w2
j

)
+
∑
α∈A

F (α)
( ∑

j,k
〈vj,vk〉=α

wjwk

)
≥ f0,

which allows Theorem 9.1 to be generalised, with (9.45) becoming

n ≤ F (0)

f0

(
n
∑
j

w2
j

)
.

Before giving examples of Theorem 9.1, we consider the corresponding lower bound
on n given by Theorem 5.10 of [DGS77], which can be established using a similar method,
where F is a difference of potentials. For F =

∑
k fkQk a univariate polynomial, with

Gegenbauer coefficients fk ∈ R, we call

F = f0 + F+ − F−, F+ :=
∑
k 6=0
fk>0

fkQk, F− := −
∑
k 6=0
fk<0

fkQk,

its decomposition into potentials. We have the following version of (9.43)∑
j

∑
k

F (〈vj, vk〉) = n2f0 +n2AF+(Φ)−n2AF−(Φ) = nF (1) +
∑

α∈Ang(Φ)

mαF (α). (9.46)
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Theorem 9.2 (Lower bound) Let P = PL be a unitarily invariant space of polynomials,
and F =

∑
k fkQk a be a univariate polynomial with

{k : fk > 0} = L ∪ {0}. F (α) ≥ 0, ∀α ∈ [−1, 1].

Then the size n of any P -design Φ satisfies

n ≥ F (1)

f0

, (9.47)

with equality if and only if the angles of Φ are roots of F , and Φ is a spherical PK-design
for K = {k : fk < 0}.

Proof: By assumption, F+ is a potential for P = PL, and so AF+(Φ) = 0. Thus
(9.46) reduces to

n2f0 − n2AF−(Φ)− nF (1) =
∑

α∈Ang(Φ)

mαF (α).

Since F (α) ≥ 0, we obtain the inequality

n2f0 − nF (1) ≥ n2AF−(Φ),

with equality when F (α) = 0, α ∈ Ang(Φ). Since F− is a potential for PK and f0 > 0,
we have

n2f0 − nF (1) ≥ n2AF−(Φ) ≥ 0 =⇒ n ≥ F (1)

f0

,

which gives (9.47). Moreover, there is equality above when AF−(Φ) = 0, i.e., when Φ is
a spherical PK-design.

The original statement of Theorem 9.2 in [DGS77] (Theorem 5.10) was for spherical
t-designs, i.e., L = {0, 1, 2, . . . , t} (see Example 9.1). The weighted version of this result
can be obtained, in the obvious way, giving the lower bound

n ≥ F (0)

f0

(
n
∑
j

w2
j

)
.

The easiest way to find an F satisfying F (x) ≥ 0 on [−1, 1], which we will refer to as
a “nonnegative potential”, is to take the square of an appropriate univariate polynomial.

Corollary 9.1 Let E ⊂ N be a nonempty finite set of indices, and L = E · E. Then

F :=
(∑
k∈E

Qk

)2

, (9.48)

gives a nonnegative potential for PL, and the number of points n in a PL-design satisfies

n ≥ F (1)

f0

=
∑
k∈E

Qk(1) =
∑
k∈E

dim(Harmk(Rd)). (9.49)
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Proof: Clearly, F is nonnegative, and by Lemma 8.1, it is a potential for L = E ·E.
Thus, we may apply Theorem 9.2. By the orthogonality relations (7.35), we have

f0 = 〈F, 1〉geg = 〈
(∑
k∈E

Qk

)2

, 1〉geg = 〈
∑
k∈E

Qk,
∑
`∈E

Q`〉geg =
∑
k∈E

〈Qk, Qk〉geg =
∑
k∈E

Qk(1),

so that
F (1)

f0

=
∑
k∈E

Qk(1) =
∑
k∈E

dim(Harmk(Rd)),

and we obtain the desired estimate.

Corollary 9.2 Let E ⊂ N be a finite set of even indices or of odd indices, and

F :=
(Q1

d
+ 1
)(∑

k∈E

Qk

)2

, L = {0, 1} · (E · E). (9.50)

Then F gives a nonnegative potential for PL, and the number of points n in a PL-design
satisfies

n ≥ F (1)

f0

= 2
∑
k∈E

Qk(1) = 2
∑
k∈E

dim(Harmk(Rd)). (9.51)

Proof: The proof is similar to that of Corollary 9.1. The first factor of F satisfies

Q1(x)

d
+ 1 = x+ 1 ≥ 0, x ∈ [−1, 1],

and so F gives a nonnegative potential for L. The polynomial Q1(
∑

kQk)
2 is odd, so

has zero integral with respect to the Gegenbauer weight, and we have

f0 = 〈F, 1〉geg = 〈
(Q1

d
+ 1
)(∑

k∈E

Qk

)2

, 1〉geg = 〈
(∑
k∈E

Qk

)2

, 1〉geg =
∑
k∈E

Qk(1) > 0.

Further,

F (1) = 2
(∑
k∈E

Qk(1)
)2

,

and so we obtain the desired estimate from Theorem 9.2.

We observe that the choice of the polynomial
∑

k∈E Qk in Corollaries 9.1 and 9.2 is
optimal. Indeed, if a different convex combination

∑
k ckQk is taken in the potential F ,

then term
∑

kQk(1) in the lower estimate becomes

M =

(∑
k ckQk(1)

)2∑
k c

2
kQk(1)

.

By Cauchy-Schwarz, we have(∑
k

ckQk(1)
)2

=
(∑

k

ck
√
Qk(1)

√
Qk(1)

)2

≤
(∑

k

c2
kQk(1)

)(∑
k

Qk(1)
)
,
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so that
M ≤

∑
k

Qk(1),

with equality if and only if ck = 1, ∀k.
Spherical designs which give equality in one of the bounds of Theorems 9.1 and

9.2, are said to be tight (not to be confused with tight frames). Such designs are very
special, and have played a prominent role in the theory of spherical designs: since the
angles of tight designs are roots of F , it is possible to investigate their existence.

This following example is Theorems 5.11 and 5.12 of [DGS77].

Example 9.1 (Spherical t-designs) These are given by L = {0, 1, 2, . . . , t}, which can
be obtained by the following choices (for t even and odd).

t = 2e : L = E · E, E = {0, 1, 2, . . . , e},
t = 2e+ 1 : L = {0, 1} · (E · E), E = {e, e− 2, e− 4, . . .}.

The corresponding estimates (9.49) and (9.51) are

n ≥
e∑

k=0

dim
(
Harmk(Rd)

)
= dim(Πe(Rd)|S) =

(
e+ d− 1

d− 1

)
+

(
e+ d− 2

d− 1

)
, t = 2e,

n ≥ 2
∑

0≤j≤e/2

dim
(
Harme−2j(Rd)

)
= 2 dim(Home(Rd)|S) = 2

(
e+ d− 1

d− 1

)
, t = 2e+ 1.

In [BRV13], it is shown that there exist spherical t-designs whose number of points has
this order of growth in t, i.e., with n ≥ cdt

d−1.

Example 9.2 (Spherical half-designs) The spherical half-designs of even order m = 2t
are given by

L = {2t, 2t− 2, 2t− 4, . . .} = E · E, E = {t, t− 2, t− 4, . . .}.

By applying Corollary 9.1, we obtain the estimate

n ≥
∑

0≤j≤t/2

dim
(
Harmt−2j(Rd)

)
= dim(Homt(Rd)|S) =

(
t+ d− 1

d− 1

)
.

In [DGS77], it is shown that for t = 2m + 1 odd, a tight spherical t-design consists the
vectors of a tight spherical-half design of order 2m, and its negatives.

A second natural way to try and find suitable potentials, is to optimise over all
possible such potentials. This is the “linear programming method” of [DGS77], e.g.,
from Theorem 9.2, one has the lower bound for PL-designs

n ≥ max
{F (1)

f0

: F =
∑
k

fkQk, {k : fk > 0} = L ∪ {0}, F ≥ 0 on [−1, 1]
}
,

and the following example.
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Example 9.3 (Spherical designs of harmonic index t) A polynomial F giving potential
for the spherical designs for PL = Harmt(Rd) (and no larger space), to which we can
apply Theorem 9.2, has the form F = Qt + c, for c ≥ b := −minx∈[−1,1]Qk(x) > 0. The
corresponding estimate n ≥ F (1)/f0 = Qt(1)/c + 1 is optimised by taking c = b. This
estimate, and variants of it, can be found in [ZBB+17].

The linear programming method has recently been applied to real spherical (t, t)-
designs [Boy20], [BBD+25a], [BBD+25b] (weighted designs).

We now consider bounds for complex designs. As before, we will take polynomials
of the form

F =
∑
(p,q)

fpqQpq, fpq ∈ R.

These are polynomials of a complex variable with real coefficients, and so take complex
values in general (unless fpq = fqp, ∀(p, q)). Nevertheless, they do have F (1), f0 ∈ R,
and, most importantly, ∑

α∈A

F (α)mα =
∑
α∈A

<(F (α))mα. (9.52)

The last equation follows since F (z) = F (z), and an angle α and α appear with the
same multiplicity mα = mα in (9.43), so the sum of the corresponding pair of terms is

mαF (α) +mαF (α) = mαF (α) +mαF (α) = 2mα<(F (α))

= mα<(F (α)) +mα<(F (α)) = mα<(F (α)) +mα<(F (α)).

In view of (9.52), the extension of Theorems 9.1 and 9.2 to the complex case become
obvious, and we combine them.

Theorem 9.3 (Upper and Lower bounds) Let F =
∑

(p,q) fpqQpq be a polynomial with

fpq ∈ R, f0 = f00 > 0, τ = τ+ := {(p, q) : fpq > 0}, τ− := {(p, q) : fpq < 0},

and A ⊂ {z ∈ C : |z| ≤ 1, z 6= 1}. Then

(i) If F is a potential, i.e., τ− = {}, and <(F (α)) ≤ 0, ∀α ∈ A, then the size n of
any A-code X satisfies

n ≤ F (1)

f0

,

with equality if and only if the angles of X are roots of F , and X is a τ -design

(ii) If <(F (α)) ≥ 0, α ∈ {z ∈ C : |z| ≤ 1}, then the size n of any spherical τ -design
X satisfies

n ≥ F (1)

f0

,

with equality if and only if the angles of X are roots of F , and X is a τ−-design.
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This result can be found in [RS14], but with F (α) in place of our <(F (α)), as the
subtlety that F (α) can be complex was not considered. For a finite set of indices E ,

QE :=
∑

(p,q)∈E

Qpq. (9.53)

As for real designs, we will say that a complex spherical design X is tight if it meets
one of the bounds of Theorem 9.3, i.e.,

n = |X| = F (1)

f0

, the angles of X are roots of F .

Corollary 9.3 Let E ⊂ N2 be a nonempty finite set of indices. Then

F := |QE |2 =
( ∑

(p,q)∈E

Qpq

)( ∑
(r,s)∈Erev

Qrs

)
≥ 0, (9.54)

is a potential for PE·Erev , and the number of points n in a (E · E rev)-design satisfies

n ≥ dim(PE) =
∑

(p,q)∈E

dim
(
H(p, q)

)
, (9.55)

with equality if and only if the angles of the design are roots of the polynomial QE .

Proof: Since Qpq = Qqp, we have the equality in (9.54), and the multiplication rule
of Theorem 8.1 implies that F = QEQE is a potential for E · E rev, with

f00 = 〈F, 1〉D,d = 〈
∑

(p,q)∈E

Qpq,
∑

(r,s)∈E

Qrs〉D,d =
∑

(p,q)∈E

〈Qpq, Qpq〉D,d =
∑

(p,q)∈E

Qpq(1).

Since F = |QE |2 ≥ 0, by construction, Theorem 9.3 gives the estimate

n ≥ F (1)

f00

=
|QE(1)|2

QE(1)
= QE(1) =

∑
(p,q)∈E

Qpq(1) =
∑

(p,q)∈E

dim
(
H(p, q)

)
= dim(PE),

with equality if and only if the angles are roots of QE .

The inequality (9.55) is given in [RS14] (Theorem 4.2) for U a lower set, via a
different argument. We now explain, and give the argument, which is classical and neat.
A “convolution” product ∗ on indices (and sets of indices) is given in [RS14] by

E ∗ E := E + E rev ⊂ E · E rev.

For E a lower set, one has E ∗E = E · E rev, and so Theorem 9.3 can be applied. Let X be
a spherical (E · E rev)-design, and (fj) be an orthonormal basis for PE = ⊕(p,q)∈EH(p, q).
It follows from (8.40) that

fjfk ∈
( ⊕

(p,q)∈E

H(p, q)
)( ⊕

(r,s)∈Erev
H(r, s)

)
⊂

⊕
(p,q)∈E·Erev

H(p, q),
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and so we have, by the cubature rule, that

1

|X|
∑
x∈X

fj(x)fk(x) =

∫
S
fjfk dσ = δjk,

i.e., (fj|X) is orthonormal in CX , and hence n = |X| ≥ dim(PE).
We observe that the sets U = E · E rev = E rev · E = E rev · (E rev)rev in Corollary 9.3 are

“symmetric” in the sense that U = U rev, i.e.,

(p, q) ∈ E · E rev ⇐⇒ (q, p) ∈ E · E rev.

The indices (p, p), which give the projective designs, are called projective indices.
Here is an example where E is not a lower set.

Example 9.4 (Projective indices) For any E of the form

E = {(p, q), (p− 1, q − 1), . . . , (p−m, q −m)}, 0 ≤ m ≤ min{p, q}, (9.56)

we have
E · E rev = {(0, 0), (1, 1), . . . , (t, t)}, t = p+ q,

a sequence of consecutive projective indices. Hence for any U , we have

{(0, 0), (1, 1), . . . , (t, t)} ⊂ U · U rev, t := max
(p,q)∈U

(p+ q).

Since we can take E = {(p, q)}, a single point, we observe that U · U rev cannot be a
“small” set.

Example 9.5 (Spherical (t, t)-designs) Applying Corollary 9.3 for the set E of (9.56)
for p+ q = t and m = min{p, q}, gives the estimate

n ≥
min{p,q}∑
j=0

dim
(
H(p− j, q − j)

)
= dim

(
Hom(p, q)

)
=

(
p+ d− 1

d− 1

)(
q + d− 1

d− 1

)
,

for n the number of points in a spherical (t, t)-design for Cd. The best estimate from
those above is obtained for the choice p = b t

2
c, which gives

n ≥

{(
k+d−1
d−1

)2
, t = 2k;(

k+d−1
d−1

)(
k+d
d−1

)
, t = 2k + 1.

(9.57)

This estimate improves that given in [Wal18] (Exercise 6.22), [Boy20], i.e.,

n ≥
(
t+ d− 1

d− 1

)
.
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The bound, and function QE with F = |QE |2, for the first few values of t are (respectively)

t = 1 : n ≥ d, Q10(z) = dz,

t = 2 : n ≥ d2, Q11(z) +Q00(z) = d
(
(d+ 1)|z|2 − 1

)
,

t = 3 : n ≥ 1

2
d2(d+ 1), Q21(z) +Q10(z) =

1

2
d(d+ 1)z

(
(d+ 2)|z|2 − 2

)
.

The reverse inequality appears in [Hog82] (Theorem 3.2) as an absolute bound. The roots
of the above polynomials give the absolute value |z| of the angles for “tight” designs. The
possible values for |z|2 in a tight design for t = 1, 2, . . . , 5 are

{0}, { 1

d+ 1
}, {0, 2

d+ 2
}, {

√
2(d+ 1)/(d+ 2)± 2

d+ 3
}, {0,

√
3(d+ 1)/(d+ 3)± 3

d+ 4
}.

Tight designs exist for t = 1 (orthonormal bases) and t = 2 (complex equiangular lines).
There are also known examples for t = 3 of 6 lines at “angles” |z|2 = 0, 1

2
in C2, 40 lines

at angles 0, 1
3

in C4 and 126 lines at angles 0, 1
4

in C6 (see [Hog82], [HW21]). For t = 5,
an example of 12 lines in C2 was given in [HW21], with angles 1

2
( 1√

5
± 1).

Here is an example where E is a lower set.

Example 9.6 (The simplex) Let E = {(0, 0), (1, 0)}, which is a lower set. Then

τ = E · E rev = {(0, 0), (0, 1), (1, 0), (1, 1)},

and the bound and polynomial QE for the class of τ -designs given by Corollary 9.3 is

n ≥ d+ 1, QE(z) = Q00(z) +Q10(z) = dz + 1.

Here the τ -designs are the balanced unit norm tight frames (see Examples 5.1 and 5.2).
For such a design to be tight, it must have d + 1 vectors with angles −1

d
. There is a

unique such configuration, given by the d+ 1 vertices of the regular simplex in Rd ⊂ Cd.

The polynomials of Example 9.5, i.e., QEt(z) where

Et = {(k + ε− j, k − j)}0≤j≤k, t = 2k + ε, ε = 0, 1,

appear, implicitly, in [Hog82]. We now explain this connection, and show that they are
Jacobi polynomials, which has implications for the location and spacing of their roots.
Hoggar defines polynomials of degree k by

Qε
k(x) :=

(md)2k+ε

(m)k+εk!

k∑
i=0

(−1)i
(
k

i

)
i(k +m+ ε− 1)

i(2k +md+ ε− 2)
xk−i, ε = 0, 1, (9.58)

i(x) = x(x− 1) · · · (x− i+ 1), (x)i = x(x+ 1) · · · (x+ i− 1),
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which depend on ε = 0, 1, and a parameter m, with m = 1
2

being the real case, and
m = 1 the complex case. It is easily verified that these are related to our Gegenbauer
polynomials as follows

Q2k+ε(x) = xεQε
k(x

2), m =
1

2
,

Qk+ε,k(z) = zεQε
k(|z|2), m = 1.

It follows from the orthogonality relations for the Gegenbauer polynomials that the Qε
k

are orthogonal polynomials of degree k on [0, 1], for a Jacobi weight (depending on ε).
The polynomial QEt(z) = QE2k+ε(z) appears in [Hog82] as zεRε

k(|z|2), and, by Lemma
5.2, and (5.23), it can be expressed as

Q
(d)
E2k+ε(z) =

k∑
j=0

Q
(d)
j+ε,j(z)

=
d

2k + ε+ d
Q

(d+1)
k+ε,k(z)

= dim
(
Hom(k + ε, k)

)
zε
P

(d−1,ε)
k (2|z|2 − 1)

P
(d−1,ε)
k (1)

=
1

(d− 1)!

k∑
j=0

(−1)j
(d+ 2k + ε− j − 1)!

j!(k − j)!(k + ε− j)!
zε(|z|2)k−j. (9.59)

We now give a complex analogue of Corollary 9.2. Let

S1 := {(0, 0), (1, 0), (0, 1)}.

Corollary 9.4 Let E be a finite set of indices, with the property that

(p± 1, q), (p, q ± 1) 6∈ E , ∀(p, q) ∈ E ,

and τ = S1 · (E · E rev). Then the number of points n in a spherical τ -design satisfies

n ≥ 2 dim(PE) = 2
∑

(p,q)∈E

dim
(
H(p, q)

)
,

with equality if and only if the angles are −1 or the roots of QE =
∑

(p,q)∈E Qpq.

Proof: Since z = 1
d
Q10(z) and z = 1

d
Q01(z), it follows from Theorem 8.1 that a

potential for the τ -designs is given by

F (z) :=
(z + z

2
+ 1
)
|QE |2 ≥ 0.

Let (p, q) ∈ E . Since (1, 0) · (p, q) = {(p+ 1, q), (p, q − 1)}, (8.40) gives

zQpq(z) =
1

d
Q10(z)Qpq(z) ∈ H(p+ 1, q)⊕H(p, q − 1) ⊥ PE ,
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i.e., zQpq(z) is orthogonal to PE , and similarly for zQpq(z), so that

f00 = 〈F, 1〉D,d = 〈
(z + z

2
+ 1
)
QE , QE〉D,d =

∑
(p,q)∈E

〈Qpq, Qpq〉D,d =
∑

(p,q)∈E

Qpq(1).

Thus, by Theorem 9.3, we have the estimate

n ≥ F (1)

f00

=
2|QE(1)|2

QE(1)
= 2QE(1) = 2 dim(PU),

with the equality as stated.

10 Absolute and special bounds for complex designs

We now give an important variant of the upper bound in Theorem 9.3, where

� The condition that F be a potential, or even have real Gegenbauer coefficients, is
weakened.

� The condition F (α) ≤ 0, ∀α ∈ A is strengthened to F (α) = 0, ∀α ∈ A.

� The set A and F depend on each other.

� The upper bound only depends on which Gegenbauer coefficients of F are nonzero.

Theorem 10.1 Let X = (vj) be a sequence of n unit vectors in Cd, and

F =
∑
(p,q)

fpqQpq, fpq ∈ C,

be a polynomial with

F (1) = 1, A := {z ∈ C : |z| ≤ 1, F (z) = 0}, τ := {(p, q) : fpq 6= 0}.

Then the n× n matrix M = [F (〈vj, vk〉)]nj,k=1 satisfies

rank(M) ≤ min
{
n,
∑

(p,q)∈τ

dim(H(p, q))
}
. (10.60)

In particular, if X is an A-code, i.e., F (〈vj, vk〉) = 0, j 6= k, then

n ≤
∑

(p,q)∈τ

dim(H(p, q)), (10.61)

with equality if and only if

F =
1

n

∑
(p,q)∈τ

Qpq, (10.62)

in which case the angles of X are roots of F , and X is a spherical τ -design if and only
if (0, 0) ∈ τ .
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Proof: Let Hpq = (W
(p,q)
j ) be a row vector whose entries are an orthonormal basis

for H(p, q), then the reproducing kernel for H(p, q) is

Kpq(ξ, η) =
∑
j

W
(p,q)
j (ξ)W

(p,q)
j (η) = Hpq(ξ)Hpq(η)∗ = Qpq(〈ξ, η〉).

Using this, we may write M as a product of matrices

M = HX diag(fpqIdim(H(p,q))(p,q)∈τH
∗
X , HX := [Hpq(vj)]1≤j≤n,(p,q)∈τ .

The
∑

(p,q)∈τ dim(H(p, q)) columns of HX are an (appropriately ordered) orthonormal

basis for Pτ = ⊕(p,q)∈τH(p, q) sampled at the n points vj ∈ X. Given the size of HX , we
obtain (10.60) from rank(M) ≤ rank(HX).

Now suppose that X is an A-code. Then M = I, which is rank n, and (10.60) implies
(10.61). Further, suppose that there is equality in (10.61), i.e., HX is square, and hence
invertible. Since diag(fpqIdim(H(p,q))(p,q)∈τ is congruent to I, by Sylvester’s law of inertia,
its eigenvalues are all positive, i.e., fpq > 0, ∀(p, q) ∈ τ . Thus F is a potential for τ . By
Corollary 8.1, G = FQpq = FQqp is a potential, with constant g00 = fpqQpq(1). Thus
FQpq − fpqQpq(1) is a potential, with zero constant, and we have∑
j

∑
k

(
FQpq−fpqQpq(1)

)
(〈vj, vk〉) = nF (1)Qpq(1)−n2fpqQpq(1) = nQpq(1)(

1

n
−fpq) ≥ 0,

which implies that

fpq ≤
1

n
, (p, q) ∈ τ. (10.63)

This gives

1 = F (1) =
∑

(p,q)∈τ

fpqQpq(1) ≤ 1

n

∑
(p,q)∈τ

Qpq(1) =
1

n

∑
(p,q)∈τ

dim(H(p, q)) = 1,

so we must have equality in (10.63) throughout, and we obtain (10.62). Finally, we
observe that G = F − f00 is a potential for τ -designs, with zero constant, and calculate

∑
j

∑
k

G(〈vj, vk〉) = nF (1)− n2f00 = n2(
1

n
− f00) =

{
0, (0, 0) ∈ τ ;

n, (0, 0) 6∈ τ,

so that X is a τ -design if and only if (0, 0) ∈ τ .

We will refer to any sequence (vj) of unit vectors in Cd as “a design”, which is
warranted since it is indeed a {(0, 0)}-design. The obvious way to apply Theorem 10.1
is for an F constructed to vanish at certain prescribed angles. In this regard, we say that
a polynomial F is an annihilator (polynomial) for a design, or a collection of designs, if
F (1) = 1 and all angles of the designs are roots of F . Sometimes the condition F (1) = 1
is replaced by F (1) 6= 0. Heuristically, we desire that

� F has a large zero set, i.e., the collection of designs that it annihilates is large.
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� F ∈ Pτ , for some Pτ of small dimension (thereby giving a good bound).

Corollary 10.1 If F =
∑

(p,q) fpqQpq is an annihilator polynomial of a design X, then

n = |X| ≤ dim(Pτ ) =
∑

(p,q)∈τ

dim(H(p, q)), τ := {(p, q) : fpq 6= 0},

with equality if and only if the angles of X are roots of
∑

(p,q)∈τ Qpq.

This result appears in [RS14] Theorem 4.2, for τ = S a lower set. There, a design
with an annihilator polynomial in span{zpz : (p, q) ∈ S} (which equals PS , for S a
lower set) is called an S-code. Bounds which follow from Corollary 10.1 will be called
absolute bounds, as they are in the real and projective cases.

We start with an obvious example (see [RS14] Corollary 4.3).

Example 10.1 Let X be a design with m = |A| angles A ⊂ {z ∈ C : |z| ≤ 1, z 6= 1}.
Then

F (z) :=
∏
α∈A

z − α
1− α

=
m∑
k=0

fk0Qk0(z),

gives the estimate

n = |X| ≤
m∑
k=0

dim(H(k, 0)) =
m∑
k=0

(
k + d− 1

d− 1

)
=

(
m+ d

d

)
.

Complex codes X with two and three angles (inner products) have been studied by
[NS16], [NS18]. For two angles [RS14], [NS16] gives the bound

n = |X| ≤

{
2d+ 1, d is odd;

2d, d is even,
(10.64)

which is clearly better than that of Example 10.1 (m = 2), i.e.,

n = |X| ≤ 1

2
(d+ 1)(d+ 2).

Interestingly, the only case where these two bounds coincide is for d = 1, in which case

F (z) =
1

3

(
Q

(1)
20 (z) +Q

(1)
10 (z) +Q

(1)
00 (z)

)
=

1

3
(z2 + z + 1).

The zeros of this polynomial are the primitive third roots of unity, and the third roots
of unity X = {1, ω, ω2} gives the unique three-vector two angle code for C1 attaining
the bound (see Table 1, [NS16]).

If α is an angle of design, then so is its conjugate α, i.e., two-angle designs have
angles {α, α}. These have the same real part, and so are both roots of the polynomial

F (z) = <(z)−<(α) =
z + z

2
− α + α

2
=
Q10(z)

2d
+
Q01(z)

2d
−<(α)Q00(z).

Thus, by applying Theorem 10.1, we obtain essentially the bound of (10.64).
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Example 10.2 The collection of designs X whose angles have a fixed real part a ∈ R,
e.g., two-angle designs with angles {α, α}, where <(α) = a, satisfy the bound

n = |X| ≤

{
2d+ 1, a 6= 0;

2d, a = 0.

Further, if there is equality above for a 6= 0, then

Q10(α) +Q01(α) +Q00(α) = dα + dα + 1 = 2d<(α) + 1 = 0 =⇒ a = <(α) = − 1

2d
.

The two-angle complex designs are an example of complex equiangular lines. The Gramian
matrix which determines a two-angle complex design has a particularly simple form,
which can be associated naturally with a graph (on its elements) via a conference matrix.
In this way, the two-angle complex designs have been classified in [NS16] (also see the
corresponding complex equiangular lines in [Ren07], [Wal18] Exercises 12.11 and 12.12).

If a design X has three angles, then they must be a complex conjugate pair α, α,
with a = <(α) = <(α), and a real angle b ∈ R. Since b is a root of the polynomial z− b,
we have the following annihilator polynomial

F (z) = (<(z)−<(α))(z − b) (10.65)

=
Q20(z)

d(d+ 1)
+

Q11(z)

2d(d+ 1)
−
( b

2
+ a
)Q10(z)

d
− bQ01(z)

2d
+
(
ab+

1

2d

)
Q00(z).

For a generic a, b (all coefficients above nonzero) this gives

n ≤ Q20(1) +Q11(1) +Q10(1) +Q01(1) +Q00(1) =
d(3d+ 5)

2
. (10.66)

The bound given in [NS16] for three angle complex designs is

n = |X| ≤

{
4, d = 1;

d(d+ 2), d ≥ 2.
(10.67)

These agree for d = 1 (n ≤ 4), where the F for four vectors meeting the bound (10.66)
becomes

F (z) =
1

4
(z2 + 2|z|2 − 1 + z + z),

which has roots −1, i,−i, which are the three angles of X = {1,−1, i,−i} ⊂ C1.
For d ≥ 2, the bound (10.67) improves the generic bound (10.66). In particular, for

d = 2, the bounds are n ≤ 8 and n ≤ 11. By specifying a particular form for the three
angle design, the number of terms in (10.65) can be reduced, giving a sharper bound.
To get n ≤ 8, one must choose

b

2
+ a = 0, ab+

1

2d
= 0 =⇒ a = ± 1

2
√
d
, b = ∓ 1√

d
(d = 2).
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Given that [NS16] show that there is a unique three-angle design of eight vectors in C2

given by the two-angle design of four vectors with a = 0 (equiangular lines) multiplied
by ±1 (b = −1), there can be no three-angle design with the above parameters.

For d = 3 the bounds are n ≤ 15 and n ≤ 21, whilst the maximal number of vectors
in a three-angle design is calculated to be n = 9 (one can take an orthonormal basis
multiplied by the three roots of unity, a = −1/2, b = 0). Moreover, [NS16] Theorem 14
shows that equality in (10.67) can only be obtained for d = 1, 2 (where b = −1).

Theorem 10.2 Let X be a design for which the real part of its angles can take s possible
values. This includes the complex designs with m = 2s angles, none real. Then

n = |X| ≤
∑
p+q≤s

dim(H(p, q)) =

(
s+ 2d− 1

2d− 1

)
+

(
s+ 2d− 2

2d− 1

)
. (10.68)

Proof: Let a1, . . . , as ∈ R be the possible real parts of the angles. Then

F (z) =
s∏
j=1

<(z)− aj
1− aj

=
s∏
j=1

z+z
2
− aj

1− aj
=
∑
p+q≤s

fpqQpq(z),

is an annihilator polynomial for X. The Gegenbauer expansion above follows because
the

(
s+2

2

)
polynomials (Q

(d)
pq (z))p+q≤s are linearly independent, and hence are a basis for

the space of polynomials of degree s in the variables z and z. Applying Corollary 10.1,
then gives the result, where the upper bound is calculated via∑

p+q≤s

dim(H(p, q)) = dim(Homs(R2d)) + dim(Homs−1(R2d))

=

(
s+ 2d− 1

2d− 1

)
+

(
s− 1 + 2d− 1

2d− 1

)
.

For s = 1, we recover Example 10.2.

Example 10.3 (s = 2) For four-angle designs (10.68) gives the estimate

n = |X| ≤ d(2d+ 3),

which has the same growth in d as the estimates for three-angle designs. As for the case
s = 1, better estimates can be obtained if the values of the angles are constrained. Indeed

(<(z)−a)(<(z)− b) =
Q20(z) +Q11(z) +Q02(z)

2d(d+ 1)
− a+ b

2d
{Q10(z)+Q01(z)}+

(
ab+

1

2d

)
,

so that if a 6= b are the real parts of the angles, then

n ≤

{
d(2d+ 1), b = −a;

d(2d+ 1)− 1, b = −a = ± 1√
2d
.
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We conclude this section, by showing that the estimates for the number of lines in
Cd (projective designs) naturally follow from Corollary 10.1. For lines, or projective
designs, there is no meaningful notion of angle 〈vj, vk〉 ∈ C, but rather the projective
invariants

|〈vj, vk〉|2 = a,

are of interest. These are sometimes referred to as angles (particularly for projective
designs), e.g., as in “complex equiangular lines”. Fortunately, there simple and natural
annihilator polynomials for this “angle”, i.e.,

F (z) = |z|2 − a, a 6= 0, F (z) = z, F (z) = z, a = 0.

Let X = (vj) be unit vectors giving a set of lines in Cd. If the angles |〈vj, vk〉|2,
j 6= k, take s possible values A ⊂ [0, 1), then an annihilator polynomial for X is given
by

F (z) := zε
∏

a∈A\{0}

|z|2 − a
1− a

=
s−ε∑
j=0

fj+ε,jQj+ε,j(z), ε = ε(A) :=

{
0, 0 6∈ A;

1, 0 ∈ A.

Such configurations are said to be an A-set or s-angular. We may apply Corollary
10.1, to obtain the estimate for A-sets given in [DGS77] (Theorem 6.1), i.e.,

n = |X| ≤
s−ε∑
j=0

dim(H(j + ε, j)). (10.69)

Theorem 10.3 Let X = (vj) be unit vectors giving a set of s-angular lines in Cd, i.e.,
whose the angles x = |z|2 = |〈vj, vk〉|2, j 6= k, take s possible values A ⊂ [0, 1). Then

n = |X| ≤
(
s+ d− 1

d− 1

)(
s− ε+ d− 1

d− 1

)
, ε = ε(A) :=

{
0, 0 6∈ A;

1, 0 ∈ A.
(10.70)

Further, the angles of the sets of s-angular lines giving equality in (10.70) are roots of

f(x) = xεP
(d−1,ε)
s−ε (2x− 1). (10.71)

Proof: The upper bound of (10.69) simplifies, using Lemma 5.2 and (5.24), to

s−ε∑
j=0

Q
(d)
j+ε,j(1) =

d

2s− ε+ d
Q

(d+1)
s,s−ε (1)

=
d

2s− ε+ d

(2s− ε+ d)(s+ d− 1)!(s− ε+ d− 1)!

s!(s− ε)!d!(d− 1)!

=

(
s+ d− 1

d− 1

)(
s− ε+ d− 1

d− 1

)
,
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which gives (10.70). The (tight) s-angular designs giving equality in (10.70) have inner
products z = 〈vj, vk〉, j 6= k, which are roots of the polynomial

s−ε∑
j=0

Q
(d)
j+ε,j(z) =

d

2s− ε+ d
Q

(d+1)
s,s−ε (z). (10.72)

Therefore, in view of (9.59), the s distinct possible angles x = |z|2 = |〈vj, vk〉| are roots
of the polynomial (10.71).

By way of comparison with (10.70), the bound (9.57) for spherical (t, t)-designs can
be written as

n = |X| ≥
(
s+ d− 1

d− 1

)(
s− ε+ d− 1

d− 1

)
, t = 2s− ε, ε = 0, 1,

where the angles |z| = |〈vj, vk〉| of the tight spherical (t, t)-designs are roots of the same
polynomial (10.72). In this way,

� There is a 1–1 correspondence between the tight complex spherical (t, t)-designs
with t = 2s− ε, ε = 0, 1, and the tight s-angular designs which have 0 as an angle
if and only if ε = 1.

Upper bounds obtained from annihilator polynomials which are potentials are known
as special bounds. We now show, by example, how the special and absolute bounds
for s-angular lines (projective designs) can be obtained directly from our general results.

The annihilator polynomial for one angle

F (z) = (|z|2 − a) =
Q11(z)

d(d+ 1)
+

1− ad
d

Q00(z),

gives the absolute bounds

n ≤ Q11(1) +Q00(1) = d2, a 6= 1

d
, n ≤ Q21(1) = d2 − 1, a =

1

d
.

We observe that for d = 2 there are tight such designs, four complex equiangular lines
and the vertices of the equilateral triangle, respectively. We may apply Theorem 9.3,
subject to the condition that the above F is a potential, to obtain the special bounds

n ≤ F (1)

f0

=
1− a
1−ad
d

=
d(1− a)

1− da
, a >

1

d
.

The special bound holds for a = 0, as n ≤ d, which is considerably sharper than
the absolute bound, but this cannot be proved by taking the limit a → 0. It can be
proved using Example 8.1 applied to annihilator polynomial F (z) = z. We illustrate
this general process for 2-angular lines. Consider the following annihilator polynomials
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lines with angles {0, a} and {a, b}

F (z) = z(|z|2 − a)

=
Q21(z)

1
2
d(d+ 1)(d+ 2)

+
Q10(z)

d

( 2

d+ 1
− a
)
,

F (z) = (|z|2 − a)(|z|2 − b)

=
Q22(z)

1
4
d(d+ 1)(d+ 2)(d+ 3)

+
(
−a− b+

4

d+ 2

) Q11(z)

d(d+ 1)

+
d(d+ 1)ab− (d+ 1)(a+ b) + 2

d(d+ 1)
Q00(z).

By using Example 8.1, and applying Theorem 9.3 to the potential zF (z), the first gives
the special bound

n ≤ F (1)

f10

=
1− a

1
d
( 2
d+1
− a)

=
d(d+ 1)(1− a)

2− (d+ 1)a
, a <

2

d+ 1
, (10.73)

for sets with angles {0, a}. For sets with angles {a, b}, direct application of Theorem 9.3
to the second potential F gives the special bounds

n ≤ F (1)

f00

=
(1− α)(1− β)

d(d+1)ab−(d+1)(a+b)+2
d(d+1)

=
d(d+ 1)(1− α)(1− β)

d(d+ 1)ab− (d+ 1)(a+ b) + 2
, (10.74)

which holds for

a+ b ≤ 4

d+ 2
, d(d+ 1)ab− (d+ 1)(a+ b) + 2 > 0.

We observe that the limit β → 0 of this bound, gives the bound for angles {0, α}, but
does not prove it. The bounds (10.73) and (10.74) were originally obtained using the
polynomials Qε

k of (9.58) (see [DGS91], [Hog92]).
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