TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
DEPARTMENT OF MATHEMATICS

Schmidt’s Inequality

Shayne Waldron* (waldron@math.auckland.ac.nz)

Technical Report
January 1996

ABSTRACT

The main result is the computation of the best constant in the Wirtinger-Sobolev
inequality

||f||p < Cp,qﬂ (b - ”’)H—;iaHDqua

where

and 6 is some point in [a,b], or, equivalently, the determination of the norm of the
(bounded) linear map

A: Lya,b] — Lyla,b]
given by

Afte) = | iyt

This and other results are seen to be closely related to an inequality of Schmidt 1940.

The method of proof is elementary, and should be the main point of interest for most
readers since it clearly illustrates a technique that can be applied to other situations. These
include the generalisations of Hardy’s inequality where § = a and ||-||,, ||- || are replaced by
weighted p, ¢ norms, and higher order Wirtinger-Sobolev inequalities involving boundary
conditions at a single point.
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1. Introduction

There has recently been considerable progress in the problem of estimating the best
constant C' in the inequality

ID7(f ~ Hof)l, < C(b—a)" 75 %D fll,.  ¥feW,, (1)

where Hg f is the Hermite interpolant to f at the some multiset © of n points in [a, b], and
0 < j < n. In Shadrin [S95], the best constant was determined for p=¢ = 00, 0 < j < n,
and all ®. The remaining estimates in the extensive literature on this problem were
extended and put within a unified framework based on a single ‘basic estimate’ in Waldron
[W96]. Inequalities of the form (1.1) belong to the class of Wirtinger(-Sobolev) inequalities
(also called Poincaré inequalities), see, e.g., Fink, Mitrinovi¢ and Pecari¢ [FMP91:p66].
Towards a better understanding of what, if any, improvements to these estimates
might be possible (for p,q # o0), the best constant in (1.1) is computed in the simplest
case, when n =1 (j =0), for 1 < p,¢ < co. Here @ = {6}, a single point in [a, b], and

He f = f(6), (1.2)

the constant polynomial which matches f at 6.
Since

ﬂwmﬁm—fwﬂw—éﬂwww, (1.3)

finding the best constant in (1.1) is equivalent to computing the norm of the linear map
A: Lya,b] — Lyla,b]

given by N
Afte) = [ s

and since
Df = D(f — f(0)) = D(f — Hef),

it is also equivalent to finding the best constant C' in the inequality: for f € W(; with
£(6) = 0. o
Flly < C(b—a)™> < |IDfl,. (1.4)

It is the last of these equivalencies which appears most commonly, and we will solve the
problem in these terms. The solution is given in Theorem 4.9.

The rest of the paper is set out as follows. In Section 2, the (standard) variational
approach to finding the best constant in (1.4) is outlined. In Section 3, the ‘elementary
argument’ which allows the problem to be split into two problems with boundary conditions
of the form f(a) = 0 (equivalently f(b) = 0) and thereby reduced to a ‘maximisation
problem’ of 1 variable is given. In Section 4, the ‘maximisation problem’ is solved and
the best constant and corresponding extremal functions (when they exist) are computed.
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In Section 5, it is shown how a number of related results concerning extremal problems
and n-widths can be obtained from an inequality of Schmidt 1940 [Sc40] by using simple
geometric arguments (such as those in this paper).

2. The variational approach

Let W} := W} a,b] be the Sobolev space of functions f with D" f absolutely
continuous on [a,b] and D" f € L, := Ly[a,b]. To solve isoperimetric extremal problems
such as

p{ L7 vy — o, .feW;}—sup{llfllp:f(F))—& IDfl, =1, Few!), (2.0)
f#0 ||Df||q

the standard approach is to use the calculus of variations to find conditions for f to be a
stationary point of the (Rayleigh) functional

£l

J: ,
USATHY

few,, f() =0, |Dfll, =1. (2.2)

Since, for 1 < ¢ < oo,
W, C L, 0 < p < oo,

it is possible to investigate (2.1) for 0 < p <1 also, and we will do so.
To describe the Euler-Lagrange equation for (2.1) it is convenient to define the non-
linear operator

Qp: f = |fIP "sign(f),  0<p<oo,

which satisfies

D([f1") = pQp(f)DF, (2.3)

and occurs when describing the cases of equality in Holder’s inequality. The notation
fpy = Qpf 1s used by some authors.

By differentiating under the integral || f||b = fab |f|7, and using (2.3), it follows that

d
%Il.f +n4lly = If +ngll, "(Qp(f +n9).9), 0<p< oo, (2.4)

where

b
(ro) = [ 1o
Let 0 < p < 0o, 1 < ¢ < oo. The condition for (2.2) to have a stationary point is that

d
%-T(f +ng)

— 0, (2.5)

n=0



forall g € W(; with ¢(#) = 0. Using the quotient rule for differentiation and (2.4) it follows
that (2.5) is equivalent to

ID LA (@ fog) — IFILIIDFIly"(QqDf, Dg) =0,

which can be rewritten as

where A = || f||, and [|[Df||, = 1. In Buslaev and Tikhomirov [BT85], such a pair (f,\)
is termed a spectral pair for the extremal problem (2.1) (there they use 1/ in place of
A). Some questions of existence and uniqueness of spectral pairs (for 1 < p,¢ < oo) are
investigated in Buslaev [B95].

Further information about the spectral pairs for (2.1) can be extracted from (2.6) as
follows. Integrating (2.6) by parts gives

(Qpf.9) — N{(QDf)gls — (D(QqDf),9)} = 0.

Since this equation holds for all ¢ € C§°(a,b) with ¢(8) = 0, it follows that

Qpf +A"D(Q,Df) =0 (2.7)

n (a,b) \ {#}, and (in particular) f is C'"' on [a,#] and [#,b]. For ¢ = 1 (p # o) equation
(2.7) reduces to
Qp.f - 07

which has solution f = 0, indicating that there are no extremals for (2.1) in this case (see
later this section for more detail). In addition to satisfying (2.7), the spectral pairs (f, \)
must satisfy the boundary condition that

(QqDf)gli, =0, (2.8)

for all g € W(; with ¢(6) = 0.
In the special case § = a, the boundary condition (2.8) simply reduces to the ‘dual’
condition that

Df(b) = 0 (2.9)

(similarly for # = b), and it is possible (for ¢ # 1) to integrate (2.7) to obtain a spectral
pair with ‘eigenvalue’ A giving the solution of (2.1). Crucial to performing this integration
is the fact that for the spectral pair (f, ) giving the solution of (2.1) it can, by (1.3), be
assumed that Df > (0. This integration is outlined at the end of this section.

For 6 # a,b the boundary condition (2.8) reduces to

Df(a) = DF(b) =0, (2.10)

and the Fuler-Lagrange equation splits into a pair of equations of the type 8 = a, which
are connected by the common parameter A. In principle, this pair of equations can be
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solved by using the solution for when 6 = a. Instead, we perform effectively this argument
in terms of the inequalities (1.4). This is our ‘elementary argument’, and it provides the
extremals in the cases when they exist such as for 0 < p < 00, 1 < ¢ < oo when they
satisfy (2.7). It requires the solution of (2.1) for # = a which is stated in Lemma 2.14
below.

The solution for 6 = a.b

Adopting the notation of Schmidt [Sc40], let G : [0,00) — TR be the continuous
function given by

"u"T(u+1), u>0
) 1= ’ 2.11
Gy = { v>0 (211)

where I' is the Gamma function. Using the fact that
r(1/2) = V.
it is possible fo comptite G at the half integers
Gy =1, G(1/2) - \/ge%, G1) =, G(3/2) - \/gp G(2) - %ea L (212)

and so forth.
Then, for 0 < p < oo, 1 < g < 00, let

GOt (DT T+l
T E ) gy F e

where ¢’ denotes the conjugate exponent of ¢, and 1/o00 is to be interpreted (in the usual
way) as 0. Observe that

0<C(p,g) <1

Using (2.12), we compute that

C(1,1) = C(oo,00) = 1, C(1,2) = C(2,00) = 1/V/3, C(1,00) = 1/2,
C(2,1)=C(0,2) =1, C(2,2)=2/x.

More generally, for 0 < p < oo, 1 < g < oo,

Clp.1) = Cloorg) =1, Clp.oo) = (p#)/ ca = (5 1;2)




4
(G /
0.6 S5
. SIS,
e,
A7 55%
i g s
Uittty Uty s tag gy s s
0.5 e 58 e
g
b e
ittty i g g s g
II//,,I”/II/ g 7%
A A e
it gy e gt
0.4 //I///I”//I //II[,/ //III/,, e
. l//////II/// T 74
I g i i
15 ””Mmff/,%’}flf/ﬁ%ﬁ%%ﬁ%%%%%l
Jrhdiay
i i iy
ity

ity //l/‘
1

15

Wiyt
Wi g
U

10

Fig. 2.1. The graph of (p,q) — C(p, q) over (0,15] x [1,15]. Notice that C(p,1) = 1.

The following result is essentially due to Schmidt [Se40:(20),p306] (see Section 5).

Lemma 2.14. Let 0 < p < o0, 1 < g < oo. Then, for all f € W(; [a,b] satisfying
fla) =0, (equivalently f(b) =0) (2.15)
there is the sharp inequality

I£ll, < C(p.a)(b—a)'*5 5|[Df|,, (2.16)

where C(p, q) is defined by (2.13).

In the cases 0 < p < 00, 1 < ¢ < o0, for [a,b] = [0, 1], equality holds in (2.16) if and
only if f is a scalar multiple of the 1-1 and onto function

Equ : [07 1] — [07 1]
defined as the (unique) solution of the initial value problem
Df=1,,1—f")7, f(0) =0, (2.17)

where

v (2.18)



These extremal functions come from the solution of (2.7) (see the end of this section), and
their uniqueness (for 1 < p,g < oo) is a special case of Buslaev [B95:Th.4]. From (2.17),
it is easily seen that E, , is strictly increasing, concave, and satisfies

Ep,q(()) =0, Ep,q(l) =1,
DEp,q(()) = [p,qv DEp,q(l) = 0.

Further, for the case p = ¢ = 2,

Es5(x) = Sin(gm).
This example provides motivation for the nonlinear spectral theory developed by Buslaev
and Tikhomirov [BT85] (and others) to describe the stationary points of functionals such
as (2.2). The functions E,, can be expressed as the p-th power of the inverse of an
imcomplete Gamma function.

The numerical solution of (2.17) provides no obstacles. In our case, the graphs of
E, , appearing in this paper were done using MATLAB to compute the values of E, , (at
equally spaced points) by the Runge-Kutta method of order 4.

Extremals exist unless ¢ =1, p #

In the cases p = oo and ¢ = 1, 0o it is possible to identify extremal functions for (2.16),
when they exist, by taking the appropriate limits of the initial value problem (2.17), as
follows. As before, let [a,b] = [0,1].
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Fig. 2.2. The graph of (p,q) — I, , = DE, ,(0) over [1,5] x [1.1,5] indicating
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the assymptote at ¢ = 1.

For the cases p = 0o, or ¢ = oo, observe that

ph_)n(r)lo[%q =1, qlggo I,,=1,
and the linear polynomial
Ew y(2) := E, o) := 2, 0<p<oo, 1 <qg<oo, (2.19)

which is the solution of the initial value problem

gives equality in (2.16). This is the only extremal (upto a scalar multiple) in these cases.

I

P.q

0 1
Fig. 2.3. Graphs of the extremals E, , showing the behaviour as ¢ — 17 (thinner lines).
The example depicted is p=2, ¢ = 1.4, 1.3, 1.2, 1.1, 1.05,1.01.

For ¢ =1 and p # oo,
lim I,, =00
q 1+ P,4q ?

and no extremal functions for (2.16) exist. Suppose to the contrary, that there was a

function f € W 0,1] C C0,1] with

FO) =0, DSl =1, [Ifll, = C(p,1) = 1.

/Df‘ < / Df| = 1.

But, the only continuous functions with |[f| < 1 and ||f]|, =1, 0 < p < oo are f = +1,
neither of which satisfies f(0) = 0.

Then,
[f ()] =




Thus, extremals E, , exist for (2.16) unless ¢ = 1, p # co. In Fink [F74:Lem.2], it is
claimed incorrectly that (for 1 < p, ¢ < 0o) extremals exist unless (p,¢) = (1,1) or (oo, 00).
The argument given there mistakenly concludes that since

C(p,q) =C(d.p)
(which the use G in (2.13) emphasizes), if extremals exist for the choice of norms (p, q),

then they must exist for the choice (¢’, p').

Integrating the Euler-Lagrange equation for 6 = a.

In this subsection we outline how the Euler-Lagrange equation (2.7) can be integrated
in the case that # = a (where (2.7) holds on [a,b]), and ¢ # 1. As before, let [a,b] = [0, 1].

The standard way of doing this, see, e.g. Fink [F74] and Tikhomirov [T76], is to use
the ‘dual” boundary condition (2.9) to write (2.7) as a pair of differential equations in f
and y, where y 1s defined by

by Lo o

(or some variation thereof). In this case one obtains

Y+ QDF =0, Dy= Qf. fO) =0, ym=o. (220

which Tikhomirov and Buslaev [BT85] term a ‘canonical system’ of equations (for the
extremal problem). The solution is then obtained by performing (effectively) the following
integration.
By (2.3),
D(Q,Df) = (¢ - )IDfI" ' D*f,

so that (2.7) can be written as
Qpf + (g~ 1)|DfI" 'D*f =0. (2:21)
Multiplying (2.21) by Df gives
(Quf)Df + (¢ — 1)Qq(Df)D* f =0, (2.22)
where f satisfies the boundary conditions
F0)=0.  Df1) =0 (2.23)
Using (2.3) equation (2.22) can be integrated to obtain

F17

p

q

— H). (2.24)



To determine the constant H, integrate (2.24) over [0, 1] to obtain

1 ¢—1 1 1
S S N 3 (2.25)
p q P g

By (1.3), it can be assumed that Df > 0, and so the extremal function f is nonnega-
tive. To simplify calculations we normalise f to obtain an extremal F with

Evaluating (2.24) at 1 gives

and so

DE 11 (g
—_— —H ql 14
(1—Er)'/a X p!/p
Integrating the above from 0 to 1 gives
Ly s /1 € I
1 o - 1 o 1 1y b
A prr o (L) (5 + o)

where I, , is defined by (2.18). In particular, one obtains that

1 1 7177(11_’ 1 1

(L+5) T+ 1+
2 = 1 1

(5) ()7 T+ T+ 50)

= C(p, q),

and F is the solution of (2.17).

3. The elementary argument

The key to solution of (2.1) for @ < 6 < b presented below is the observation that
functions f € W(; [a,b] with f(#) = 0 are of the form

o= (i) 55158 o

where

1 .
geW'a6]  with  g(8) =0,



heW,[6,b] with h(6) =0,
together with the fact that

/‘mp—/‘mp /|mp 0<p< oo,
b g b
[ s = [Cpglr+ [Cpnp. 1<g<o.
o o ». 9

; ; :
Fig. 3.1. The splitting of f into ¢ and h (thicker).

It will be convenient to have (2.16) in the form

sup /LWhnﬁcwﬂvww“W%%% 0<p<oo, 1<g<oo, (3.2)

f(a)=0

IR

where a > 0, (and the supremum is over functions in W [a,b]). Tt is fo be understood

that (3.2) also holds when the condition f(a) =0 is replaced by f(b) =
For simplicity, assume without loss of generality that [a,b] = [0, 1]. Lef 0<6<1and

0<p<oo,1<¢g<oo. Then, by using the splitting (3.1) and (3.2), we compute that the
solution of (2.1) satisfies

sup {Ill,  £(6) = 0, DI, =1, f € W)}
6 1 1 9 1
= s L( [+ [ 1) a6y = 06 = 0. [igle = 4, Fpnie =1 4l

f 1 1/p
= sup ( sup / lg|” + sup / |h|p>
0< A< ay=0 Jo ney—o  Jg

f:mmq:A ,[9 [Dh|d=1— A
P 1 1 P 1 1/79
= , Aqpr(+5—3) 1— A\e(1 — gyr0+5 )>
C(p,q) 0r<n§§1< + )e( )

(3.3)

10



Thus, the problem (2.1) has been reduced to the maximisation problem of 1 variable

of finding
M(p,q,0)" = max f(A) (3.4

where

Qs
—~
—_
S
Sa—
=
—
—
+
=
\
Q=
—
—~
W
@
Sa—

Fi=fran it A AsePUT53) 4 (1 - A4)
This maximum is found in the next section.
Application to Hardy-type inequalities

The careful reader will notice that the argument just outlined also applies to a variety
of similar situations some of interest.

One such example is when || - |[,, || - ||, are replaced by weighted p, ¢ norms |- [|7, || - ||
The corresponding inequalities
£l <CIDAE.  vFew). (56)

where f(a) = 0, analogous to (2.16), are called Hardy-type inequalities. The original
Hardy’s inequality is the case p = ¢ > 1, where

[ *
5= [ P = Wl 1< <o
. 0 ok

with the condition f(0) = 0. Here the best constant is C = p/(p — 1). Often Hardy’s
inequality is stated with f in the form

flz) = /Orq(f) dt.

There is considerable interest in Hardy-type inequalities, see, e.g., the monograph of Opic
and Kufner [OK90]. The author has made no attempt to translate the various conditions
for the existence of an inequality of the form (3.6) and estimates for the best constant to
when the condition f(a) = 0 is replaced by f(6) = 0 with 6 some point inside the interval
of interest (which has left endpoint a).

Another situation of interest where the argument applies is higher order Wirtinger
inequalities

Ifll, < C(b—a)™ 5 D" flly,  VfeW,,

where f satisfies boundary conditions at a single point 8, a < 6 < b, to which could
be added boundardy conditions at the endpoints (same conditions at both points). A
particular case of note is when f vanishes to order n at . For # = a this extremal problem
has recently been investigated by Buslaev [B95].
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4. The best constant

In this section, the solution of (2.1) is completed by finding the points A* where the
maximum (3.4) is attained, and by treating the cases p = oo, ¢ = oo using ‘continuity’
arguments.

We require the maximum over ) < 4 <1 of

1

Frimfrao: A ATPUF5 D L1 - )51 — e D), (3.5)
where () < € < 1. Since the second derivative of f is

D*f(4) = §<§ —1) {as et (- aE et D

where the term inside the { } is positive, f is either convex, linear, or concave, depending
on the values of p, q.

To describe the extremal functions we need the following. Suppose 0 < p < oo,
l<g<oocorp=oc,qg=1. For) <€ <1, let

0 0<zr<8@
o) .— 0 ==
Byql(r) = {EM(—T‘)), H<z<1 (4.1)

which is the continuous function supported on [6, 1] obtained from E, , by an affine change

of variables. Here E, , is defined by (2.17) and (2.19). Similarly, for 0 < 8 <1, let
_ E, (&%), 0<x<4
By ey = { 5500 020 (12)

which is supported on [0, 6].

The case 1 < g <p <

Since f is convex when p > ¢, and linear when p = ¢, it attains its maximum at an

endpoint given by
0, 0<68<1/2
a0 6=1/2,p>q
[71]7 9:1/27]9:(]
1, 1/2<6<1.
Thus, since

max{f,1 -6} =1/2+1(1/2 46|,

we obtain

M(p,q,0) = (1/2+[1/2—6)'F 7 7,  1<q¢<p<oc. (4.3)

For 0 < 8 < 1/2, ¢ # 1, the corresponding extremal function is E‘H'7 and this is
the unique extremal upto a mul’rlphca’rlon by a constant. Similarly, for 1/2 < # <1, the

12



extremal function is E? . For § = 1/2, 1 < ¢ < p, there are two extremal functions

Pq
E;/qﬂ_ and E;/fﬁ (corresponding to A* = 0,1 respectively). For § =1/2, p=¢ > 1, any

. . o 1/2+ /2 .
(nontrivial) linear combination of Ep/q and Ep/q is an extremal.

IR
Equ

0 1

Fig. 4.1. Behaviour of the extremal function Egj; when 0 <8< 1/2and p>q>1.
The example depicted is § = 1/5, p=15, g = 2.

The case 0 < p<g< oo, 1 <g< oo

If p < g, then f is concave, and so we need to compute any local maxima of f. Since
the first derivative of f is

Df(A) = %?A%19P(1+1;15) o g(l o A)§f1(1 . 9)73(14_1;,15 :

f has a stationary point when
AT0% = (1 - A)"(1 - 6)°,
where

o:=1-p/¢g>0,  [B:=pl+1/p—1/q) >0.

This has one solution

B (1-—6)-Ble
T 9Bl (1—6) Bl

A*
which is inside (0,1) (since 0 < # < 1). Thus, f has a maximum at A* given by

(1 g)fﬁ(Pw)/wgﬁ + 976(17w)/w(1 —8)8
(6577 (1 @) -6/)T—=

f(AT) = = (071 (1 0)1)"

and we obtain

1 1 1

M(p,q.60) = (0TG24 (1—0)F/G-Nr v p<cq (4.4)

13



Let f = g+ h given by

—GE’ ., G>0, h:=HE" H>0,

P,q’ P,q’

be the extremal function which attains the supremum in (3.3). Then

g 1
/ Dglt = GU6' ||, ,||Y = A*, / Dh|T = HI(1— 0) 1||B, [ =1 A",
JO .

G A (1—g)\ 6 \'t7r
E_<1A* I ) _<19>

Thus, the extremal functions are (scalar multiples of)

so that

0 TTIE + (1 6) T (4.5)

0 1

Fig. 4.2. Behaviour of the extremal function f := g +WE97 + (1 — 9)1 P E9+ when
0 <6 <1/2and p< q. The example depicted is 9 =3/10,p=2, ¢ = 3.

The cases p = o0, ¢ =

From (4.3), (4.4) we see that for 0 < p < 00, 1 < ¢ < oo the maximum M(p, g, 6)
depends only on 1/p — 1/q and 6, i.e.,

1
M(p7Q79) = W(]; - _79)7

where
(1/2—|—|1/2—9|)H""7 -1 <t <0

1 1 4.6
@7 +(1-6)'T) 0<t<oo (4.6)

W(t,6) := {

It is easily seen from (2.17) that the extremal functions do not depend only on 1/p — 1/¢
and 6. Similary, C(p, q) is not a function of 1/p — 1/q.
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Notice that the values + = —1,0,1 correspond to the following values of p, ¢
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~1(p=o0,¢=1)

t=0(p=q)
Fig. 4.4. The graph of § — W(¢,6) when t = —1,0, 1.

Since the solution of (2.1) is a bounded and continuous function of 0 < p < oo,
1 < ¢ < oo, it would be expected the remaining values (p

= oo and ¢ = oo) could be
obtained by taking the appropriate limits. The argument is as follows.

15



The case p =00, 1 < g < oo. For f € W(; with f(68) = 0, there is the sharp inequality

1 1

[fllpe <W(— —=.6)C(p*,q) [ Dfllq, (4.7)
P*q

where () < p* < oo is fixed. Since f € W(; C Ly, for all 0 < p* < oo, the limit of (4.7) as
p* — oo can be taken to obtain
1 1
[ flloc < W(— = —.,0)C(c0,q) [|Dfl4,
S q
which is sharp, since for each p* < oo an f with ||Df||, = 1 which gives as close to equality

in (4.7) as desired can be chosen.
The case 1 < p < 00, ¢ = oo. For f € WL with f() = 0, there is the sharp inequality

11
1fllp < W(= = —.0)C(p,q") | Df
P oq

s (4.8)

where 1 < ¢* < oo. As before, the limit as ¢* — oo can be taken to obtain the sharp

inequality
1 1
-8

1Fll» < W(p )C (P, 00) | D f oo

Summary of the results

These cases just considered combine to give the main result.

Theorem 4.9. Let 0 < p < oo, 1 < g< oo and a < 6 <b. Then, for all f € W(; [a, D]
satistying

f(8) =0,
there is the sharp inequality
1 1 60—a 11
LAl < W (=~ o—)C(p,q) (b~ a) "% < |IDf]l,, (4.10)
P g a

where 1/2 < W <1 is defined by (4.6), and 0 < C < 1 is defined by (2.13).

The inequality (4.10) will be referred to as Schmidt’s inequality (see below). In-
equalities of this type are used in the spectral analysis of certain ordinary differential

equations (see, e.g., Brown, Hinton and Schwabik [BHS95]).

The case when 6 is the midpoint of the interval [a, b]

The only case where the best constant in (4.10) has been investigated for 6 # a,b is
in Tikhomirov [T76:§2.5.2], where




the midpoint of the interval, and 1 < p < 00, 1 < ¢ < oco. Tikhomirov used this best
constant in his calculation of the n-width sn(B;?Lp) given in Theorem 5.21.

For simplicity, suppose that [a,b] = [0,1] and § = 1/2. For this choice of 8, we have
from (4.6), that

1

1 11 2 <

W= =)= . (4.11)
poq 2 (3) 7 7. p>aq,

for0 < p<oo, 1 <qg<oo. For 1 < p<gq < oo, this agrees with the result of Tikhomirov
[T76:p127]. But, for 1 < ¢ < p < oo, Tikhomirov claims the best constant (4.10) is

5C(p.a). (412

rather than the larger constant

I\ e
<§> C(p.q),

given by (4.11). Tikhomirov’s constant (4.12) would be correct, if it could be assumed
that the extremal function was symmetric about § = (a + b)/2 (as it is in the case p < ¢q).
However, as we have seen, for 1 < ¢ < p < oo the extremal function is only supported on
half of the interval [0, 1]. Indeed, we compute that the best constant in (4.10) must be at
least as large as

Q=
Q=

C(p,q), 1<g<p<oo,

1/2+ T+
1B (12 1Byl _(1)
2

\DEH. (127 DB, ],

where

and this is the best constant.

The cases when the extremal functions are splines

With a mind to identifying phenomenon that might also hold for other Wirtinger
inequalities of the form (1.1), we now consider those cases where the extremals for (2.1)
are (polynomial) splines. This occurs only when

p=1,¢g=2 (quadratic splines)

p=o00, Oor =00 (linear splines).

For 0 < p < 00, 1 < ¢ < 00, the extremal is a spline if and only if F, , the solution of
(2.17) is a polynomial. Originally, T had hoped to show this was the case only when p = 1,
q = 2, by showing that for other values of p, ¢ a polynomial could not satisfy the differential
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equation assymptotically. But, since there is no reason (for general p, ¢) why a polynomial
solution should satisfy (2.17) outside the interval [0, 1], this argument fails. However, Evsei
Dyn’kin pointed out that, by considering analytic continuations of a (polynomial) solution
that satisfies (2.17), it is possible to show the solution is a polynomial only in the case
p =1, g = 2. Here is that argument.

Let 0 < p<oo,1<q<oo. E,,is the (unique) solution of the differential equation
(2.17), which can be rewritten as

Df =F(f),  f(0)=0,

where

F:10,1]-C:y—1,,01 —yp)1/q.

Suppose that
E = Ep,q = .f|[0,1]7

where f is a polynomial of degree n.

Since Df(0) # 0, it is possible to choose a closed path 1 : [0,1] = C winding once
around 0 which is sufficiently small that ~7 := fo~y (its image under f) winds once around
0 and doesn’t pass through 1. Since ~; doesn’t pass through 0 or 1 (the branch points
of the function F), there is an analytic continuation F of F to ¥([0,1]). As a point wy
moves once around the curve 77, the value F(Uh) remains unchanged, i.e.,

(1-— wf)”q = (1 6)27”779“)49)1/117

where the powers of p and 1/¢ denote the unique branches giving the continuation F. In
particular, this implies 2™ = 1, i.e., p is an integer.

Next, a similar argument is performed at 1 (the other branch point of F'). Let ¢ be
the polynomial of degree n defined by

g==f—L

Since p is an integer, by the binomial expansion

1fp—1(r+mp—pg§:<€>¢7

1=2

and so ¢ satisfies

Dg=G(g) on  [0,1],

where
p

G:[0,1] = €y Lyy (- Yoy

1=2

Let zg be a zero of ¢ of multiplicity 1 < m < n (one such zero is 1). If v : [0,1] — C is
a closed path making a sufficiently small loop around 0 and not passing through any of
(the finite number of) points where 14 (14 ¢)? = 0, then ~3 := g o v, (its image under g)

18



contains a point in [0, 1] and passes through no branch points of GG, and hence G has an
analytic continuation G to v5. Thus, G o g provides an analytic continuation of Dgl|jg 17 to
72, and so, by the uniqueness of analytic continuations,

Dg=Gog on ([0, 1]). (4.13)

In particular, Dg(z3) = 0, so that m > 1. From the assymptotic expansion of each side of
(4.13) as z = zp, it follows that

m—1=", (4.14)
q
so m depends only on ¢, and hence
n .
m= o for some integer k.
Similarly, taking the assyptotic expansion (about zq) as |z| = oo gives
n—1="2 (4.15)
q
Combining (4.14) and (4.15) gives
~n—=1 mk—-1 m 1y E—1
P T T 1 E(m — 1)
which is an integer only if
E—1 0
k(m—1) 7

ie.,if p=1, ¢ = 2. In this case
Eqo(x) = —x(x —2),

a quadratic polynomial with zeros at @ = 0, 2.
Thus, for 0 < p < o0, 1 < ¢ < oo, the extremal function (4.5) is a spline only when
p=1, g =2, giving the extremal

o ={ 5" bor st (416

L1602 (1-2)?), 6<z<L.
These are perfect quadratic splines with a double knot at € satisfying
DF(0) = DF(1) =0,
and giving the best constant
% 6% 4+ (1 — 6)3.
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Fig. 4.5. Graph of an extremal for p = 1, ¢ = 2 showing the quadratic pieces.

For p = oo, motivated by the limiting case of the extremal for when 1 < ¢ < p < o0,
we observe that for 0 < 8§ < 1/2 the linear spline

<
ot B <<
Bl (r) = { =0 <<
is an extremal giving the best constant
(1—6) /a

in (4.10). Similarly, for 1/2 < 8 <1 the linear spline

0—x
B ()= 7 0=sr=f
0, f<zr<l1

is an extremal. It does not appear that the fact this extremal is a spline is a special case of
some more general result. For example, in Waldron [W96*] it is shown that for 1 < ¢ < oo
the extremal giving the best constant in the Wirtinger inequality

If = Hoflloo < CIID"flly,  VFeW],

where Hg f is the Hermite interpolant to f at a multiset © of n points in [a, b], is a spline
if and only if #0 = 1 (the case just considered) or

q:27 b ottt

i | Ot

4
37

N W

equivalently when ¢’ is an integer).
q Yy q g
For ¢ = 0o, we observe that the linear polynomial

Flr) =8
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is an extremal (as is |f|) giving the best constant
1 r 1+ T4py1/
= P+ (1—8) PP
Il = (45) @)
This is a special case of a more general result in Waldron [W96:Th.4.1].
For ¢ = 1, p # oo there is no extremal function for (4.10). If there were, then by the
computation of the best constant, the part supported on the largest of the intervals [0, 6]

and [, 1] would be (after an affine change of variables) an extremal for the case # = 0, for
which we earlier showed no extremal exists.

5. Schmidt’s inequality

There are several inequalities of the form
11
I£l, < € (b—a) v <|[Df],

where f belongs to some class of functions, with best constant and extremals related to
C(p,q) and E, , respectively, which are closely related to the following result of Schmidt.

Schmidt’s inequality([Sc40:(4),p302]) 5.1. Let 0 < p < oo, 1 < g < co. Then, for all
fe W(; [a,b] satisfying

fla) = f(b), max f(#) + min f(t) =0, (5.2)

t€fa,b] t€fa,b]

there is the sharp inequality

1 g4l
£y < 7€ (p.q) (b —a) T DS, (5-3)

where C(p, q) is defined by (2.13).
Under the same hypotheses as in 5.1, Schmidt also proves the sharp inequality

1 1
ﬁ/ log | f| <log (b—a)' qHDqu)a

1
(40(1/61’)
where G is defined by (2.11).

Schmidt’s proof of 5.1 does not use the calculus of variations, but instead uses Holder’s
inequality in a very clever way. We now outline this nice argument.

Schmidt’s Holder inequality argument

We may assume without loss of generality that [a,b] = [0,1], and the (periodic)
function f has been normalised to obtain £ with

max ¢ = 1, miné = —1 (multiplying by a constant)
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and

§0)=0, &o)=1, £(og)=0, &0')=—-1, £1)=0,  (by shifting)

where 0 < 0 < 09 < 0’ < 1.

14

Fig 5.1. Graph showing the behaviour of £ at the points 0 < 0 < 0¢g < ¢’ < 1.

If
n:[—1,1] = [0,00)

is a nonnegative even function, then the area under it over the intervals [—1,0] and [0, 1]
are equal. This area F' (for Flache) can be expressed by using lengths of the curve t — £()
as parameterisations for [—1,0] and [0, 1] giving

1

Zﬁj[n—A%wOm—lf@%ﬂE—ij%W€—/WOOW7

which leads to 1
iF < [ oD (5.4)
Jo

Since ¢ > 1, Holder’s inequality can be applied to (5.4), giving

1
1< =lno €lly 1Dl (5.5)

Let, 1
Ae/Ww—Mm<L
JO

Then, for ¢ > 1 and p < oo, choosing 1 : = — n(x) to be the curve given by
[o]? + ()" =1, (5.6)
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gives ,
lnoélly = (1—A)7.
With this choice of 1, (5.5) can be rewritten as

€]l = AP < (1~ A)'/7 A7 || De,,

e
Sl

giving

M
€]l < 72 [1DE ]l (5.7)
P T 4F,, “

where F), , is the area under one arc of the curve given by (5.6), and

M, , = 0211?%(1(1 — 7/,)1/‘717/,1/7’. (5.8)

This inequality (5.7) is precisely (5.3).

P,q

r

1 0 1
Fig 5.2. Graph of the curve |z|? + n? = 1 showing the area F, ,.
The example depicted is p =1, g = 2.

For the record
! ! , T+ Hra + &
qu—/n—/(lg?’ﬁ/q&— Sl 1(,)7
Jo Jo q

and the maximum in (5.8) occurs for

1
P
L I
p T
giving (after simplification)
1T 1y 5=
-+ ) 7 9
My.q = (791 ,Z )1 -5
(5) ”(?) ?



The cases ¢ = 1,00 and p = oo are obtained by simple ‘continuity’ arguments.

Extremals exist unless ¢ =1, p #

To obtain the sharpness of (5.7), Schmidt determines the extremal functions for (5.3)
(when g > 1) by considering the conditions for equality in (5.4), namely

DE>0 on (0,0) U (0',1), DE <0 on (0,00) U (0qg,0"),
and in Holder’s inequality (5.5), that

In o €17 IIDENS = IDEIIno €l ae.

This leads to the conclusion that

1 1 , 3
o= -, oo = =, o= -,
4 2 4
and the corresponding extremal function S := 5, , satisfies the differential equation
|DS| =4I, ,(1 — |S|")"/1, (5.9)

where I, , is given by (2.18). (The notation y = 1/(4I,,) is used in Schmidt’s paper).
From (2.17) we observe that

S=FE,,4-) on[0,1/4].

Similar considerations (taking account of the sign of S, DS) for the intervals [1/4,1/2],
[1/2,3/4] and [3/4, 1] show that

S=E; (4-) on[0,1],

where

B R = [1,1]

is the extension of E, , to a 4-periodic function determined by the conditions that

E;,q(m> = *E;q(*fﬂ) (it is odd),

5 ) o (5.10)
qu(l + ) = qu(l — ) (it is even about 1).

For p = oo and ¢ = oo also define E using (2.19) and (5.10). In the case p = 1, ¢ = 2,
when FE, , is a quadratic, the extension is (a shift of ) the quadratic Euler spline & defined
by

&y 1= E1*,2(' + 1)7

which is an extremal for certain Landau Kolmogorov imequalities.
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*
1** P,q

-1+

Fig 5.3. E;  the ‘symmetrisation’ of F, , (thick line). This example is p =1, ¢ = 2
(a shift of the Euler spline &).

Thus, (by considering the limit cases p — oo and g — o), it follows that for 0 < p <
00, 1 < g<ooorp=oc0,q=1 equality holds in (5.3) if and only if f is a scalar multiple
of
E;7q(4 - *t)|[071]7 t E ]:R,7

and there is strict inequality for ¢ = 1, p # oo.
An immediate consequence of Schmidt’s inequality 5.1 is the following.

Corollary([MLV96:Prop.6.8,p431]) 5.11. Let 1 < p < ¢ < oo. Then for all f €
W(; [—7, 7| satisfying
Fom) = f(m) =0 (f is periodic)

and

flt+m) =—f() (5.12)
there is the sharp inequality

1 a1l
Ll < 3C(poa) (27)" "5 < Df |l (5.13)

where C(p, q) is defined by (2.13).
Proof: The condition (5.12) implies that

max f + min f = 0,

and so, by Schmidt’s inequality 5.1, the inequality (5.13) holds. The sharpness follows
since the functions

. 4

giving equality (or near equality as ¢ — 1) in (5.3) satisfy the condition (5.12).

Other Schmidt inequalities

Schmidt indicates that the argument just outlined can be modified to obtain other
inequalities. The first of these is the following.
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Theorem([Sc40:(13),p304]) 5.14. Let 0 < p < oo, 1 < ¢ < oo. Then, for all f €
W(; [a,b] satisfying
fla) = f(b) =0, (5.15)

there is the sharp inequality

1 411
Ll < 5CP.a) (b~ a)' > 7D, (5.16)

where C(p, q) is defined by (2.13).

This result is stated for 1 < p, ¢ < oo with the value of C(p, q) given incorrectly (due
to a slight error in its proof) in Fink [F74:p408] (see the constant D(1,1,p,q)), and is
stated correctly for 1 < p < oo, 1 < ¢ < oo (together with the extremal functions) but
without proof in Talenti [Ta76:p357] (there it is mentioned as a 1-dimensional analogue
of a Sobolev inequality for functions in W(; (IR™)). Neither author makes reference to

Schmidt [Sc40].
In Schmidt’s statement of Theorem 5.14, the condition (5.15) is given as

fla) = f(b), f has (at least) one zero on [a, b].
It’s proof differs from that of 5.1 in that f is normalised to obtain ¢ with
max§ =1

and

where ) < o < 1. This leads to

F—/O”(nof)Df—/;(Uof)Dfa

giving (instead of (5.4)) 1
oF < [ nog)IDe] (5.17)

then as before (with the condition for equality in (5.17) giving ¢ = 1/2, and the constant
4 in (5.9) being replaced by 2).
Equality holds in (5.16) if and only if 0 < p< oo, 1 <g<oocorp=o00,¢=1and f

is a scalar multiple of
c—a

E;,q(Qb — (]>|[a,b]

It is not difficult to see that a variation of the ‘elementary argument’ where f is split
by (3.1) into functions ¢ and h with



can be used, together with Theorem 5.14, to compute the best constant in the inequality

1 g4l
I£ll, = 5C . a) (b —a) Ty a | DA, (5.18)

where f € W(; satisfies
fla) = f(8) = f(b).

More generally, by using similar variations of the ‘elementary argument’ and induction, it
is (in principle) possible to compute the best constant in (5.18) where f € W(; satisfies

f(81) = f(62) == f(#n) =0,
for some choice
a < 6, <92<<9n§b7

together with the extremal functions, which exist except when ¢ = 1, p # oo, and are
constructed from E, , in a similar manner to those for (5.16). A typical example of such
an inequality is the upper bound of the n-width sn(B;?Lp) given in Theorem 5.21.

Remarks on Lemma 2.14

A third result mentioned by Schmidt [Sc40:(20),p306] is the inequality that: for f €
W(; with f(a) =0,

1£ly < C(p,q) (b —a)' 5 |[Df],, (5.19)

which was stated earlier as Lemma 2.14.
The special case of this result when

p=gqg=2k an even integer

was given by Hardy and Littlewood [HL32:Th.5] (see also [HLP34:256,p182]) using what
they describe as a proof of ‘type C’ (depends essentially on the calculus of variations).
They refer to the extremal functions Eop 2x (for [a,b] = [0,1]) as hyperelliptic curves and

1 N\ x
C(2k72k>_<2k1> <?smﬁ>.

This example motivated Schmidt to give his proof of ‘type A’ (strictly elementary).
To quote Hardy and Littlewood [HL32] (and [HLP34]): (their) “proof is of ‘type C’ and
(in view of the difficulty of calculating the slope-function) is might be difficult to construct

compute

a much more elementary proof” (either of ‘type B’ or simpler still of ‘type A’). There is
further discussion of the results of Schmidt in Levin and Stechkin’s supplement [L.S48] to
the Russian edition of Hardy, Littlewood and Pdélya’s book on inequalities [HL.P48].

For 1 < p,q¢ < oo Lemma 2.14 is given in [F74:p407]. There C(p,q) is denoted by
C(1,1,p, q) and it is given incorrectly (due to a slight error in the proof). Fink was unaware
of the earlier result of Schmidt.
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The statement of Lemma 2.14 given by Schmidt is infact slightly stronger. It asserts
the sharp inequality in (5.19) where the condition (2.15) is replaced by

f has (at least) one zero on [a, b

(and the discussion of the extremals shows the sharpness occurs only when the zero is at
a or b). A quantative form of this result is given by our Theorem 4.9.

The Holder inequality argument, if given, would involve the normalisation of f to
obtain £ with

(o) =0, £(1)=1,
where 0 <o <1 (if £(0) = £(1) = 0, then (5.16) holds). This leads to
1

F= [ (no&)D¢
giving 1
F< [ teolng (5.20)

with the remainder of the argument as before (with ¢ = 0 necessary for equality in (5.20),
which leads to (2.17) for the extremal). In particular, (as has already been discussed)
equality holds in (5.19) if and only if 0 < p < 00,1 <¢g<ocorp=o00,¢=1and fisa
scalar multiple of

-—a
Epql3—).
n-widths

The constant C(p, ¢) naturally occurs in the computation of the n-widths of the set
1 1
‘Bq:::{fe-m@ 2”Dquf;1}
in L,, since for 1 < p < ¢ < oo an optimal linear operator of rank n is given by Lagrange
interpolation by piecewise constants (cf (1.2)).
Recall (see, e.g., Pinkus [P85]), the following definitions. Let A be a subset of a
normed linear space X. The Kolmogorov n-width of A in X is
dp(A, X) :=infsup inf |la — 2
(4.5) 5= igfsup inf o~
where the infimum is taken over all n-dimensional subspaces X,, of X. The linear n-width
of Ain X is

dn(A, X) :=infsup ||a — P,al|
PnoacA

where the infimum is taken over all (continuous) linear operators P, : X — X of rank n.

The Gel’fand n-width of A in X is
d"(A, X) = irnf sup ||z]]

L rxeANL”
where the infimum is taken over all subspaces L™ of codimension n. In the case when these
widths are all equal, we use the notation

(A, X) 1= dy(A, X) = 6,(A, X) = d"(A, X)

to denote their common value. With this notation, the following is known.

28



Theorem ([T70]) 5.21. Let [a,b] = [0,1]. Then, for 1 <p < g < oo
1 1 1
sn(By, Lp) = C(p,q)—, n=1223,.... (5.22)
2 n

The space F,, consisting of step functions with break points

2 n — 1
n’’

1
- o

”
n

is an optimal n-dimensional subspace, and the operator L,, of Lagrange interpolation from
F,, at the points

1 3 5) 2n — 1
o’ 2n’ 2n " 2n

(the midpoints of each step)

is an optimal linear operator of rank n.

0 1

Fig 5.4. Example of the Lagrange interpolant L, f (thick) to f
from the space of step functions F,, (n=10).

Since the linear n-width 5n(B;7Lp) is the largest of the three, we need only show the
upper bound (5.22) for it. This is done as follows. Firstly, suppose that 1 < p < ¢ < co.
On each of the intervals

[(2—1)/n,i/n], i=1,....n

the function f — L, f is zero at the midpoint (where L, f interpolates f) and has derivative
Df (since L, f is piecewise constant). Thus, from Theorem 4.9, with 8 the midpoint, one
obtains

| 1\t w )’
/ |f — Lnf]P < {50(297 q) (—) </ ID.fI"> } :
J1G=1) fmi ) n JiG—1) fmoi )

Summing over 7 leads to

1 \'*trE
IF = Zafly < 5000 () 1=l
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where

1/q
- (/ |D.f|"> .
JG=1) /il

11 11
[(villle, <n7all(i)lle, =n¥ 7| D,

By Holder’s inequality

giving the upper bound
1 1
I1f ~ Laflly < 5C.0) - IDF,, (5.23)

which (by the usual continuity argument) also holds when ¢ (and p) becomes infinite. The
above argument also works if [0,1] is split into 2n intervals of length 1/(2n) on which
f — L, f is zero at one endpoint.

The sharp bound (5.23) can also be obtained using inequality (5.14) and a varia-
tion of the ‘elementary argument’, instead of the above argument (of Tikhomirov). This
alternative approach also extends to the case ¢ < p.

A simple proof of the lower bound based on Borsuk’s antipodality theorem was given
by Markovoz [M72:Th.2]. For a general form of Markavoz’s lower bound together with its
application to Theorem 5.21 see Lorentz, Golitscheik and Makovoz [MLV96:Th.5.1].

Further developements of this circle of ideas can be found in, e.g., Buslaev and
Tikhomirov [BT92], Buslaev and Yashina [BY94] (numerical computations), and Tikhomirov]]

[T94] (multivariate generalisations).
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6. Some details not included in the paper
1. The simplification of

(1 g)fﬁ(Pw)/wgﬁ + 976(17w)/w(1 _ 9)6

f(A*) = (9,5/@+(179)75/Q)1—a

was done as follows.

Let
a:= 6%, b:=(1-6)".
Then

e+ s
f(A*) — b a,Ti(y
(5= + o)’

a1/ry+b1/ry

T —a 1—a

a" @ b a
a1/oz_|_b1/oz (17”)
al/apl/a

_ ((ﬂ/(y + 51/”)”.

This implies

W(p.q.6) = (a'/* + /)17 = (9717 1 (1 )/ )/r.

Since

ma—1+fﬂ; ofp=

Q|
|

1
q

©|=

Wip.0.0) = (4775 4 (1 0)'+5)

2. Solution of (2.17) for p = ¢ = 2. By I'(1/2) = /7, see Jones [J93], we calculate

T(1/2)T(1/2) =
Ihygy= —"""F——=—.
! or(1) 2

So the differential equation (2.17) becomes

Df

vis
vy}
which integrates to
sin(~' f(r)) = S,
2
giving
Es5(x) = Sin(gm).



3. An integral. By making the substitution v = y?, one computes

1 1 1
/ (1—y")" =~ / (1— 71,)”7/,1/7971 du
J0 0

p.
AT+ DT(/p)  Tla+DTA+1/p) N
T oT(a+1+1/p)  Tla+i+i/p) ' +1>0,1+1/p>0.

4. E, , is the p-th power of the inverse of an incomplete Beta function. Let I(p, q) be
the (normalised) incomplete Beta function (see, e.g., [EMOT53])

I(p,q) : [0,1] = [0,1] : 2 = B.(p,q)/Bi(p, q),

where
r

B.(p,q) := / (1 — 1)

J0

and I~ '(p,q) be the inverse function. Then

By = (I (1/p.1/d))".

5.
“ 11 e T(;+ )
Clq.p.1 :<_> 1 = 2y/a/p (_ nLo—1/p P q
(a.p,1) = (5) (1 =2+ 7) o ()7 r(1+Hr(h)
1 1y—5-0=3) r, 1
21(277_)14—1;715(79_'_(1’) F(1+p+q’)
1 = 1 s
4 (L) F (7 Ta++ )
= —C\((Z)7 q) (271-)1_'_1/7971/(7
6.

1\ [2k 1\' % I(2
C(2k,2k) = —) ( ) i 2 i
2k 2k T+ 50T (1 +1— 5)

1 >2k 1/(2k) 1 1/(2k)
T+ 5) T+ 1 5p)

11



using the fact that

7. Check (4.5) satisfies the Euler-Lagrange equation.

8. Details for showing

1 1 , 3
o= —, oo = —, o = —.
4 2 4
Since .
— Sy =1
o7~ vallsh
one has
o 1 + 1
(r—/(]f— — dS = /77(|S|) 1 dS =09 —0
0 0 Jo
Similarly,
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