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1. IntroductionThere has recently been considerable progress in the problem of estimating the bestconstant C in the inequalitykDj (f �H�f)kp � C (b � a)n�j+ 1p� 1q kDnfkq ; 8f 2Wnq ; (1:1)where H�f is the Hermite interpolant to f at the some multiset � of n points in [a; b], and0 � j < n. In Shadrin [S95], the best constant was determined for p = q =1, 0 � j < n,and all �. The remaining estimates in the extensive literature on this problem wereextended and put within a uni�ed framework based on a single `basic estimate' in Waldron[W96]. Inequalities of the form (1.1) belong to the class of Wirtinger(-Sobolev) inequalities(also called Poincar�e inequalities), see, e.g., Fink, Mitrinovi�c and Pe�cari�c [FMP91:p66].Towards a better understanding of what, if any, improvements to these estimatesmight be possible (for p; q 6= 1), the best constant in (1.1) is computed in the simplestcase, when n = 1 (j = 0), for 1 � p; q �1. Here � = f�g, a single point in [a; b], andH�f = f(�); (1:2)the constant polynomial which matches f at �.Since f(x) �H�f(x) = f(x) � f(�) = Z x� Df(t) dt; (1:3)�nding the best constant in (1.1) is equivalent to computing the norm of the linear mapA : Lq[a; b]! Lp[a; b]given by Af(x) := Z x� f(t) dt;and since Df = D(f � f(�)) = D(f �H�f);it is also equivalent to �nding the best constant C in the inequality: for f 2 W 1q withf(�) = 0, kfkp � C (b � a)1+ 1p� 1q kDfkq : (1:4)It is the last of these equivalencies which appears most commonly, and we will solve theproblem in these terms. The solution is given in Theorem 4.9.The rest of the paper is set out as follows. In Section 2, the (standard) variationalapproach to �nding the best constant in (1.4) is outlined. In Section 3, the `elementaryargument' which allows the problem to be split into two problems with boundary conditionsof the form f(a) = 0 (equivalently f(b) = 0) and thereby reduced to a `maximisationproblem' of 1 variable is given. In Section 4, the `maximisation problem' is solved andthe best constant and corresponding extremal functions (when they exist) are computed.1



In Section 5, it is shown how a number of related results concerning extremal problemsand n-widths can be obtained from an inequality of Schmidt 1940 [Sc40] by using simplegeometric arguments (such as those in this paper).2. The variational approachLet Wnp := Wnp [a; b] be the Sobolev space of functions f with Dn�1f absolutelycontinuous on [a; b] and Dnf 2 Lp := Lp[a; b]. To solve isoperimetric extremal problemssuch assupf 6=0� kfkpkDfkq : f(�) = 0; f 2W 1q� = sup�kfkp : f(�) = 0; kDfkq = 1; f 2W 1q 	 ; (2:1)the standard approach is to use the calculus of variations to �nd conditions for f to be astationary point of the (Rayleigh) functionalJ : f 7! kfkpkDfkq ; f 2W 1q ; f(�) = 0; kDfkq = 1: (2:2)Since, for 1 � q � 1, W 1q � Lp; 0 < p �1;it is possible to investigate (2.1) for 0 < p � 1 also, and we will do so.To describe the Euler-Lagrange equation for (2.1) it is convenient to de�ne the non-linear operator Qp : f 7! jf jp�1 sign(f); 0 < p <1;which satis�es D(jf jp) = pQp(f)Df; (2:3)and occurs when describing the cases of equality in H�older's inequality. The notationf(p) := Qpf is used by some authors.By di�erentiating under the integral kfkpp = R ba jf jp, and using (2.3), it follows thatdd� kf + �gkp = kf + �gk1�pp hQp(f + �g); gi; 0 < p <1; (2:4)where hf; gi := Z ba fg:Let 0 < p <1, 1 � q <1. The condition for (2.2) to have a stationary point is thatdd�J(f + �g) �=0 = 0; (2:5)2



for all g 2W 1q with g(�) = 0. Using the quotient rule for di�erentiation and (2.4) it followsthat (2.5) is equivalent tokDfkqkfk1�pp hQpf; gi � kfkpkDfk1�qq hQqDf;Dgi = 0;which can be rewritten as hQpf; gi � �phQqDf;Dgi = 0; (2:6)where � = kfkp and kDfkq = 1. In Buslaev and Tikhomirov [BT85], such a pair (f; �)is termed a spectral pair for the extremal problem (2.1) (there they use 1=� in place of�). Some questions of existence and uniqueness of spectral pairs (for 1 < p; q < 1) areinvestigated in Buslaev [B95].Further information about the spectral pairs for (2.1) can be extracted from (2.6) asfollows. Integrating (2.6) by parts giveshQpf; gi � �pf(QqDf)gjba � hD(QqDf); gig = 0:Since this equation holds for all g 2 C10 (a; b) with g(�) = 0, it follows thatQpf + �pD(QqDf) = 0 (2:7)on (a; b) n f�g, and (in particular) f is C1 on [a; �] and [�; b]. For q = 1 (p 6=1) equation(2.7) reduces to Qpf = 0;which has solution f = 0, indicating that there are no extremals for (2.1) in this case (seelater this section for more detail). In addition to satisfying (2.7), the spectral pairs (f; �)must satisfy the boundary condition that(QqDf)gjba = 0; (2:8)for all g 2W 1q with g(�) = 0.In the special case � = a, the boundary condition (2.8) simply reduces to the `dual'condition that Df(b) = 0 (2:9)(similarly for � = b), and it is possible (for q 6= 1) to integrate (2.7) to obtain a spectralpair with `eigenvalue' � giving the solution of (2.1). Crucial to performing this integrationis the fact that for the spectral pair (f; �) giving the solution of (2.1) it can, by (1.3), beassumed that Df � 0. This integration is outlined at the end of this section.For � 6= a; b the boundary condition (2.8) reduces toDf(a) = Df(b) = 0; (2:10)and the Euler-Lagrange equation splits into a pair of equations of the type � = a, whichare connected by the common parameter �. In principle, this pair of equations can be3



solved by using the solution for when � = a. Instead, we perform e�ectively this argumentin terms of the inequalities (1.4). This is our `elementary argument', and it provides theextremals in the cases when they exist { such as for 0 < p < 1, 1 < q < 1 when theysatisfy (2.7). It requires the solution of (2.1) for � = a which is stated in Lemma 2.14below. The solution for � = a; bAdopting the notation of Schmidt [Sc40], let G : [0;1) ! IR be the continuousfunction given by G(u) := � euu�u�(u+ 1); u > 01; u = 0 (2:11)where � is the Gamma function. Using the fact that�(1=2) = p�;it is possible to compute G at the half integersG(0) = 1; G(1=2) =r�2 e 12 ; G(1) = e; G(3=2) =r�6 e 32 ; G(2) = 12e2; : : : (2:12)and so forth.Then, for 0 < p � 1, 1 � q � 1, letC(p; q) := G(1=p + 1=q0)G(1=p)G(1=q0) = (1p + 1q0 )� 1p� 1q0(1p)� 1p ( 1q0 )� 1q0 �(1 + 1p + 1q0 )�(1 + 1p)�(1 + 1q0 ) ; (2:13)where q0 denotes the conjugate exponent of q, and 1=1 is to be interpreted (in the usualway) as 0. Observe that 0 < C(p; q) � 1:Using (2.12), we compute thatC(1; 1) = C(1;1) = 1; C(1; 2) = C(2;1) = 1=p3; C(1;1) = 1=2;C(2; 1) = C(1; 2) = 1; C(2; 2) = 2=�:More generally, for 0 < p �1, 1 � q �1,C(p; 1) = C(1; q) = 1; C(p;1) = � 1p+ 1�1=p ; C(1; q) = �1� 1=q2� 1=q�1� 1q :4
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Fig. 2.1. The graph of (p; q) 7! C(p; q) over (0; 15]� [1; 15]. Notice that C(p; 1) = 1.The following result is essentially due to Schmidt [Sc40:(20),p306] (see Section 5).Lemma 2.14. Let 0 < p � 1, 1 � q � 1. Then, for all f 2W 1q [a; b] satisfyingf(a) = 0; (equivalently f(b) = 0) (2:15)there is the sharp inequalitykfkp � C(p; q) (b � a)1+ 1p� 1q kDfkq ; (2:16)where C(p; q) is de�ned by (2.13).In the cases 0 < p < 1, 1 < q < 1, for [a; b] = [0; 1], equality holds in (2.16) if andonly if f is a scalar multiple of the 1-1 and onto functionEp;q : [0; 1]! [0; 1]de�ned as the (unique) solution of the initial value problemDf = Ip;q(1� fp) 1q ; f(0) = 0; (2:17)where Ip;q := Z 10 d�(1� �p)1=q = �(1p)�( 1q0 )p�( 1p + 1q0 ) = �( 1p + 1)�( 1q0 )�(1p + 1q0 ) : (2:18)5



These extremal functions come from the solution of (2.7) (see the end of this section), andtheir uniqueness (for 1 < p; q < 1) is a special case of Buslaev [B95:Th.4]. From (2.17),it is easily seen that Ep;q is strictly increasing, concave, and satis�esEp;q(0) = 0; Ep;q(1) = 1;DEp;q(0) = Ip;q; DEp;q(1) = 0:Further, for the case p = q = 2, E2;2(x) = sin(�2 x):This example provides motivation for the nonlinear spectral theory developed by Buslaevand Tikhomirov [BT85] (and others) to describe the stationary points of functionals suchas (2.2). The functions Ep;q can be expressed as the p-th power of the inverse of anincomplete Gamma function.The numerical solution of (2.17) provides no obstacles. In our case, the graphs ofEp;q appearing in this paper were done using MATLAB to compute the values of Ep;q (atequally spaced points) by the Runge-Kutta method of order 4.Extremals exist unless q = 1, p 6=1In the cases p =1 and q = 1;1 it is possible to identify extremal functions for (2.16),when they exist, by taking the appropriate limits of the initial value problem (2.17), asfollows. As before, let [a; b] = [0; 1].
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Fig. 2.2. The graph of (p; q) 7! Ip;q = DEp;q(0) over [1; 5]� [1:1; 5] indicating6



the assymptote at q = 1.For the cases p =1, or q =1, observe thatlimp!1 Ip;q = 1; limq!1 Ip;q = 1;and the linear polynomialE1;q(x) := Ep;1(x) := x; 0 < p � 1; 1 � q �1; (2:19)which is the solution of the initial value problemDf = 1; f(0) = 1;gives equality in (2.16). This is the only extremal (upto a scalar multiple) in these cases.Ip;q1
0 1Fig. 2.3. Graphs of the extremals Ep;q showing the behaviour as q ! 1+ (thinner lines).The example depicted is p = 2, q = 1:4; 1:3; 1:2; 1:1; 1:05; 1:01.For q = 1 and p 6=1, limq!1+ Ip;q =1;and no extremal functions for (2.16) exist. Suppose to the contrary, that there was afunction f 2W 1q [0; 1] � C[0; 1] withf(0) = 0; kDfkq = 1; kfkp = C(p; 1) = 1:Then, jf(x)j = ����Z x0 Df���� � Z 10 jDf j = 1:But, the only continuous functions with jf j � 1 and kfkp = 1, 0 < p < 1 are f = �1,neither of which satis�es f(0) = 0. 7



Thus, extremals Ep;q exist for (2.16) unless q = 1, p 6=1. In Fink [F74:Lem.2], it isclaimed incorrectly that (for 1 � p; q � 1) extremals exist unless (p; q) = (1; 1) or (1;1).The argument given there mistakenly concludes that sinceC(p; q) = C(q0; p0)(which the use G in (2.13) emphasizes), if extremals exist for the choice of norms (p; q),then they must exist for the choice (q0; p0).Integrating the Euler-Lagrange equation for � = a.In this subsection we outline how the Euler-Lagrange equation (2.7) can be integratedin the case that � = a (where (2.7) holds on [a,b]), and q 6= 1. As before, let [a; b] = [0; 1].The standard way of doing this, see, e.g. Fink [F74] and Tikhomirov [T76], is to usethe `dual' boundary condition (2.9) to write (2.7) as a pair of di�erential equations in fand y, where y is de�ned by Dy = 1�pQpf; y(1) = 0(or some variation thereof). In this case one obtainsy +QqDf = 0; Dy = 1�pQpf; f(0) = 0; y(1) = 0; (2:20)which Tikhomirov and Buslaev [BT85] term a `canonical system' of equations (for theextremal problem). The solution is then obtained by performing (e�ectively) the followingintegration.By (2.3), D(QqDf) = (q � 1)jDf jq�1D2f;so that (2.7) can be written asQpf + �p(q � 1)jDf jq�1D2f = 0: (2:21)Multiplying (2.21) by Df gives(Qpf)Df + �p(q � 1)Qq(Df)D2f = 0; (2:22)where f satis�es the boundary conditionsf(0) = 0; Df(1) = 0: (2:23)Using (2.3) equation (2.22) can be integrated to obtainjf jpp + �p(q � 1) jDf jqq = H�p: (2:24)8



To determine the constant H, integrate (2.24) over [0; 1] to obtain1p + q � 1q = 1p + 1q0 = H: (2:25)By (1.3), it can be assumed that Df � 0, and so the extremal function f is nonnega-tive. To simplify calculations we normalise f to obtain an extremal E withE(1) = 1:Evaluating (2.24) at 1 gives f(1) = (Hp)1=p�;and so E := Ep;q := f(Hp)1=p� :This (normalised) extremal then satis�esDE(1�Ep)1=q = 1�H1� 1q0� 1p (q0)1=qp1=p :Integrating the above from 0 to 1 gives1�H1� 1q0� 1p (q0)1=qp1=p = Z 10 d�(1� �p)1=q = �( 1p)�( 1q0 )p�( 1p + 1q0 ) = Ip;q;where Ip;q is de�ned by (2.18). In particular, one obtains that� = (1p + 1q0 )� 1p� 1q0(1p )� 1p ( 1q0 )�1q0 �(1 + 1p + 1q0 )�(1 + 1p )�(1 + 1q0 ) = C(p; q);and E is the solution of (2.17).3. The elementary argumentThe key to solution of (2.1) for a < � < b presented below is the observation thatfunctions f 2W 1q [a; b] with f(�) = 0 are of the formf(x) = � g(x); a � x � �h(x); � � x � b (3:1)where g 2W 1q [a; �] with g(�) = 0;9



h 2W 1q [�; b] with h(�) = 0;together with the fact thatZ ba jf jp = Z �a jgjp + Z b� jhjp; 0 < p <1;Z ba jDf jq = Z �a jDgjq + Z b� jDhjq; 1 � q <1:f
a g � h bFig. 3.1. The splitting of f into g and h (thicker).It will be convenient to have (2.16) in the formsupf(a)=0R ba jDfjq=� Z ba jf jp = � pqC(p; q)p(b � a)p(1+ 1p� 1q ); 0 < p <1; 1 � q <1; (3:2)where � > 0, (and the supremum is over functions in W 1q [a; b]). It is to be understoodthat (3.2) also holds when the condition f(a) = 0 is replaced by f(b) = 0.For simplicity, assume without loss of generality that [a; b] = [0; 1]. Let 0 � � � 1 and0 < p <1, 1 � q <1. Then, by using the splitting (3.1) and (3.2), we compute that thesolution of (2.1) satis�essup�kfkp : f(�) = 0; kDfkq = 1; f 2W 1q 	= sup0�A�1��Z �0 jgjp + Z 1� jhjp� 1p : g(�) = h(�) = 0; �s0 jDgjq = A; 1s� jDhjq = 1�A�= sup0�A�1� supg(�)=0R �0 jDgjq=A Z �0 jgjp + suph(�)=0R 1� jDhjq=1�A Z 1� jhjp�1=p= C(p; q) max0�A�1 �A pq �p(1+ 1p� 1q ) + (1 �A) pq (1� �)p(1+ 1p� 1q )�1=p : (3:3)10



Thus, the problem (2.1) has been reduced to the maximisation problem of 1 variableof �nding M(p; q; �)p := max0�A�1 f(A); (3:4)where f := fp;q;� : A 7! A pq �p(1+ 1p� 1q ) + (1 �A) pq (1 � �)p(1+ 1p� 1q ): (3:5)This maximum is found in the next section.Application to Hardy-type inequalitiesThe careful reader will notice that the argument just outlined also applies to a varietyof similar situations { some of interest.One such example is when k � kp, k � kq are replaced by weighted p; q norms k � k�p, k � k�q.The corresponding inequalitieskfk�p � C kDfk�q ; 8f 2W 1q ; (3:6)where f(a) = 0, analogous to (2.16), are called Hardy-type inequalities. The originalHardy's inequality is the case p = q > 1, wherekfk�p := �Z 10 ��f(x)x ��p dx�1=p; kfk�q := kfkLp[0;1); 1 < p <1;with the condition f(0) = 0. Here the best constant is C = p=(p � 1). Often Hardy'sinequality is stated with f in the formf(x) = Z x0 g(t) dt:There is considerable interest in Hardy-type inequalities, see, e.g., the monograph of Opicand Kufner [OK90]. The author has made no attempt to translate the various conditionsfor the existence of an inequality of the form (3.6) and estimates for the best constant towhen the condition f(a) = 0 is replaced by f(�) = 0 with � some point inside the intervalof interest (which has left endpoint a).Another situation of interest where the argument applies is higher order Wirtingerinequalities kfkp � C (b � a)n+ 1p� 1q kDnfkq; 8f 2Wnq ;where f satis�es boundary conditions at a single point �, a < � < b, to which couldbe added boundardy conditions at the endpoints (same conditions at both points). Aparticular case of note is when f vanishes to order n at �. For � = a this extremal problemhas recently been investigated by Buslaev [B95].11



4. The best constantIn this section, the solution of (2.1) is completed by �nding the points A� where themaximum (3.4) is attained, and by treating the cases p = 1, q = 1 using `continuity'arguments.We require the maximum over 0 � A � 1 off := fp;q;� : A 7! A pq �p(1+ 1p� 1q ) + (1 �A) pq (1 � �)p(1+ 1p� 1q ); (3:5)where 0 < � < 1. Since the second derivative of f isD2f(A) = pq �pq � 1�nA pq�2�p(1+ 1p� 1q ) + (1 �A) pq�2(1� �)p(1+ 1p� 1q )o ;where the term inside the f g is positive, f is either convex, linear, or concave, dependingon the values of p; q.To describe the extremal functions we need the following. Suppose 0 < p � 1,1 < q � 1 or p =1, q = 1. For 0 � � < 1, letE�+p;q(x) := � 0; 0 � x � �Ep;q�x��1�� �; � � x � 1 (4:1)which is the continuous function supported on [�; 1] obtained from Ep;q by an a�ne changeof variables. Here Ep;q is de�ned by (2.17) and (2.19). Similarly, for 0 < � � 1, letE��p;q(x) := �Ep;q� ��x� �; 0 � x � �0; � � x � 1 (4:2)which is supported on [0; �]. The case 1 � q � p <1Since f is convex when p > q, and linear when p = q, it attains its maximum at anendpoint given by A� =8><>: 0; 0 � � < 1=20; 1; � = 1=2, p > q[0; 1]; � = 1=2, p = q1; 1=2 < � � 1.Thus, since maxf�; 1 � �g = 1=2 + j1=2� �j;we obtain M(p; q; �) = (1=2 + j1=2� �j)1+ 1p� 1q ; 1 � q � p <1: (4:3)For 0 � � < 1=2, q 6= 1, the corresponding extremal function is E�+p;q , and this isthe unique extremal upto a multiplication by a constant. Similarly, for 1=2 < � � 1, the12



extremal function is E��p;q . For � = 1=2, 1 < q < p, there are two extremal functionsE1=2+p;q and E1=2�p;q (corresponding to A� = 0; 1 respectively). For � = 1=2, p = q > 1, any(nontrivial) linear combination of E1=2+p;q and E1=2�p;q is an extremal.1
0 1E�+p;q

Fig. 4.1. Behaviour of the extremal function E�+p;q when 0 < � < 1=2 and p > q > 1.The example depicted is � = 1=5, p = 5, q = 2.The case 0 < p < q <1, 1 � q <1If p < q, then f is concave, and so we need to compute any local maxima of f . Sincethe �rst derivative of f isDf(A) = pqA pq�1�p(1+ 1p� 1q ) � pq (1 �A) pq�1(1 � �)p(1+ 1p� 1q );f has a stationary point whenA���� = (1�A)��(1 � �)� ;where � := 1� p=q > 0; � := p(1 + 1=p� 1=q) > 0:This has one solution A� = (1� �)��=����=� + (1� �)��=� ;which is inside (0; 1) (since 0 < � < 1). Thus, f has a maximum at A� given byf(A�) = (1� �)��(1��)=��� + ���(1��)=�(1 � �)�(���=� + (1 � �)��=�)1�� = ���=� + (1 � �)�=��� ;and we obtainM(p; q; �) = ��1+1=( 1p� 1q ) + (1� �)1+1=( 1p� 1q )� 1p� 1q ; p < q: (4:4)13



Let f = g + h given byg := GE��p;q ; G > 0; h := H E�+p;q ; H > 0;be the extremal function which attains the supremum in (3.3). ThenZ �0 jDgjq = Gq�1�qkEp;qkqq = A�; Z 1� jDhjq = Hq(1� �)1�qkEp;qkqq = 1�A�;so that GH = � A�1�A� (1� �)1�q�1�q �1=q = � �1� ��1+ pq�p :Thus, the extremal functions are (scalar multiples of)�1+ pq�pE��p;q � (1� �)1+ pq�pE�+p;q : (4:5)0:5
0 1

f
Fig. 4.2. Behaviour of the extremal function f := �1+ pq�pE��p;q + (1� �)1+ pq�pE�+p;q when0 < � < 1=2 and p < q. The example depicted is � = 3=10, p = 2, q = 3.The cases p =1, q =1From (4.3), (4.4) we see that for 0 < p < 1, 1 � q < 1 the maximum M(p; q; �)depends only on 1=p� 1=q and �, i.e.,M(p; q; �) =W (1p � 1q ; �);where W (t; �) := � (1=2 + j1=2� �j)1+t; �1 � t � 0(�1+ 1t + (1 � �)1+ 1t )t; 0 < t <1 (4:6)It is easily seen from (2.17) that the extremal functions do not depend only on 1=p� 1=qand �. Similary, C(p; q) is not a function of 1=p� 1=q.14
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� �t = 1=q � 1=pFig. 4.3. Graph of (t; �) 7!W (t; �) for �1 � t � 1. This range of t correspondsto the values 1 � p; q � 1.Notice that the values t = �1; 0; 1 correspond to the following values of p, qp =1; q = 1 (t = �1)p = q (t = 0)p = 1; q =1 (t = 1)Below are the corresponding functions � 7!W (t; �).

t = �1 (p =1, q = 1) t = 0 (p = q) t = 1 (p = 1, q =1)
� 7! 1 � 7! 1=2 + j1=2� �j � 7! �2 + (1� �)2

Fig. 4.4. The graph of � 7!W (t; �) when t = �1; 0; 1.Since the solution of (2.1) is a bounded and continuous function of 0 < p < 1,1 � q < 1, it would be expected the remaining values (p = 1 and q = 1) could beobtained by taking the appropriate limits. The argument is as follows.15



The case p =1, 1 � q <1. For f 2W 1q with f(�) = 0, there is the sharp inequalitykfkp� �W ( 1p� � 1q ; �)C(p�; q) kDfkq ; (4:7)where 0 < p� <1 is �xed. Since f 2W 1q � Lp�, for all 0 < p� � 1, the limit of (4.7) asp� !1 can be taken to obtainkfk1 �W ( 11 � 1q ; �)C(1; q) kDfkq ;which is sharp, since for each p� <1 an f with kDfkq = 1 which gives as close to equalityin (4.7) as desired can be chosen.The case 1 � p � 1, q =1. For f 2W 11 with f(�) = 0, there is the sharp inequalitykfkp �W (1p � 1q� ; �)C(p; q�) kDfkq� ; (4:8)where 1 � q� < 1. As before, the limit as q� ! 1 can be taken to obtain the sharpinequality kfkp �W (1p � 11 ; �)C(p;1) kDfk1 :Summary of the resultsThese cases just considered combine to give the main result.Theorem 4.9. Let 0 < p � 1, 1 � q � 1 and a � � � b. Then, for all f 2 W 1q [a; b]satisfying f(�) = 0;there is the sharp inequalitykfkp �W �1p � 1q ; � � ab� a �C(p; q) (b � a)1+ 1p� 1q kDfkq ; (4:10)where 1=2 �W � 1 is de�ned by (4.6), and 0 < C � 1 is de�ned by (2.13).The inequality (4.10) will be referred to as Schmidt's inequality (see below). In-equalities of this type are used in the spectral analysis of certain ordinary di�erentialequations (see, e.g., Brown, Hinton and Schwabik [BHS95]).The case when � is the midpoint of the interval [a; b]The only case where the best constant in (4.10) has been investigated for � 6= a; b isin Tikhomirov [T76:x2:5:2], where � = a + b2 ;16



the midpoint of the interval, and 1 < p < 1, 1 � q < 1. Tikhomirov used this bestconstant in his calculation of the n-width sn(B1q ; Lp) given in Theorem 5.21.For simplicity, suppose that [a; b] = [0; 1] and � = 1=2. For this choice of �, we havefrom (4.6), that W (1p � 1q ; 12) = ( 12 ; p < q�12�1+ 1p� 1q ; p � q, (4:11)for 0 < p � 1, 1 � q � 1. For 1 < p � q <1, this agrees with the result of Tikhomirov[T76:p127]. But, for 1 � q < p <1, Tikhomirov claims the best constant (4.10) is12C(p; q); (4:12)rather than the larger constant �12�1+ 1p� 1q C(p; q);given by (4.11). Tikhomirov's constant (4.12) would be correct, if it could be assumedthat the extremal function was symmetric about � = (a+ b)=2 (as it is in the case p � q).However, as we have seen, for 1 < q < p � 1 the extremal function is only supported onhalf of the interval [0; 1]. Indeed, we compute that the best constant in (4.10) must be atleast as large askE1=2+p;q kpkDE1=2+p;q kq = (1=2)1=pkEp;qkp(1=2)1=q�1kDEp;qkq = �12�1+ 1p� 1q C(p; q); 1 < q < p �1;where 12 < �12�1+ 1p� 1q < 1;and this is the best constant.The cases when the extremal functions are splinesWith a mind to identifying phenomenon that might also hold for other Wirtingerinequalities of the form (1.1), we now consider those cases where the extremals for (2.1)are (polynomial) splines. This occurs only whenp = 1; q = 2 (quadratic splines)p =1; or q =1 (linear splines).For 0 < p <1, 1 < q <1, the extremal is a spline if and only if Ep;q the solution of(2.17) is a polynomial. Originally, I had hoped to show this was the case only when p = 1,q = 2, by showing that for other values of p; q a polynomial could not satisfy the di�erential17



equation assymptotically. But, since there is no reason (for general p; q) why a polynomialsolution should satisfy (2.17) outside the interval [0; 1], this argument fails. However, EvseiDyn'kin pointed out that, by considering analytic continuations of a (polynomial) solutionthat satis�es (2.17), it is possible to show the solution is a polynomial only in the casep = 1, q = 2. Here is that argument.Let 0 < p < 1, 1 < q < 1. Ep;q is the (unique) solution of the di�erential equation(2.17), which can be rewritten asDf = F (f); f(0) = 0;where F : [0; 1]! C : y 7! Ip;q(1� yp)1=q :Suppose that E := Ep;q = f j[0;1];where f is a polynomial of degree n.Since Df(0) 6= 0, it is possible to choose a closed path 1 : [0; 1] ! C winding oncearound 0 which is su�ciently small that �1 := f �1 (its image under f) winds once around0 and doesn't pass through 1. Since �1 doesn't pass through 0 or 1 (the branch pointsof the function F ), there is an analytic continuation ~F of F to �1([0; 1]). As a point w1moves once around the curve �1 , the value ~F (w1) remains unchanged, i.e.,(1� wp1)1=q = (1� e2�ipwp1)1=q;where the powers of p and 1=q denote the unique branches giving the continuation ~F . Inparticular, this implies e2�ip = 1, i.e., p is an integer.Next, a similar argument is performed at 1 (the other branch point of F ). Let g bethe polynomial of degree n de�ned by g := f � 1:Since p is an integer, by the binomial expansion1� fp = 1� (1 + g)p = �pg � pXi=2 � pi � gi;and so g satis�es Dg = G(g) on [0; 1];where G : [0; 1]! C : y 7! Ip;q y1=q(�p� pXi=2 yi�1)1=q:Let z0 be a zero of g of multiplicity 1 � m � n (one such zero is 1). If 2 : [0; 1] ! C isa closed path making a su�ciently small loop around 0 and not passing through any of(the �nite number of) points where 1+ (1 + g)p = 0, then �2 := g � 2 (its image under g)18



contains a point in [0; 1] and passes through no branch points of G, and hence G has ananalytic continuation ~G to �2 . Thus, ~G � g provides an analytic continuation of Dgj[0;1] to2, and so, by the uniqueness of analytic continuations,Dg = ~G � g on 2([0; 1]): (4:13)In particular, Dg(z2) = 0, so that m > 1. From the assymptotic expansion of each side of(4.13) as z ! z0, it follows that m� 1 = mq ; (4:14)so m depends only on q, and hencem = nk ; for some integer k.Similarly, taking the assyptotic expansion (about z0) as jzj ! 1 givesn� 1 = npq : (4:15)Combining (4.14) and (4.15) givesp = n� 1n q = mk � 1mk mm� 1 = 1 + k � 1k(m� 1) ;which is an integer only if k � 1k(m� 1) = 0;i.e., if p = 1, q = 2. In this case E1;2(x) = �x(x � 2);a quadratic polynomial with zeros at x = 0; 2.Thus, for 0 < p < 1, 1 < q < 1, the extremal function (4.5) is a spline only whenp = 1, q = 2, giving the extremalf(x) := � �2 � x2; 0 � x � ��((1 � �)2 � (1� x)2); � � x � 1. (4:16)These are perfect quadratic splines with a double knot at � satisfyingDf(0) = Df(1) = 0;and giving the best constant 1p3p�3 + (1 � �)3:19



100:3Fig. 4.5. Graph of an extremal for p = 1, q = 2 showing the quadratic pieces.For p =1, motivated by the limiting case of the extremal for when 1 � q � p <1,we observe that for 0 � � � 1=2 the linear splineE�+1;q(x) = � 0; 0 � x � �x��1�� ; � � x � 1is an extremal giving the best constant(1� �)1�1=qin (4.10). Similarly, for 1=2 � � � 1 the linear splineE��1;q(x) = � ��x� ; 0 � x � �0; � � x � 1is an extremal. It does not appear that the fact this extremal is a spline is a special case ofsome more general result. For example, in Waldron [W96�] it is shown that for 1 < q <1the extremal giving the best constant in the Wirtinger inequalitykf �H�fk1 � C kDnfkq ; 8f 2Wnq ;where H�f is the Hermite interpolant to f at a multiset � of n points in [a; b], is a splineif and only if #� = 1 (the case just considered) orq = 2; 32 ; 43 ; 54 ; : : :(equivalently when q0 is an integer).For q =1, we observe that the linear polynomialf(x) := x� �20



is an extremal (as is jf j) giving the best constantkfkp = � 1p + 1�1=p (�1+p + (1� �)1+p)1=p:This is a special case of a more general result in Waldron [W96:Th.4.1].For q = 1, p 6= 1 there is no extremal function for (4.10). If there were, then by thecomputation of the best constant, the part supported on the largest of the intervals [0; �]and [�; 1] would be (after an a�ne change of variables) an extremal for the case � = 0, forwhich we earlier showed no extremal exists.5. Schmidt's inequalityThere are several inequalities of the formkfkp � C (b� a)1+ 1p� 1q kDfkqwhere f belongs to some class of functions, with best constant and extremals related toC(p; q) and Ep;q respectively, which are closely related to the following result of Schmidt.Schmidt's inequality([Sc40:(4),p302]) 5.1. Let 0 < p � 1, 1 � q �1. Then, for allf 2W 1q [a; b] satisfying f(a) = f(b); maxt2[a;b] f(t) + mint2[a;b] f(t) = 0; (5:2)there is the sharp inequalitykfkp � 14C(p; q) (b � a)1+ 1p� 1q kDfkq ; (5:3)where C(p; q) is de�ned by (2.13).Under the same hypotheses as in 5.1, Schmidt also proves the sharp inequality1b� a Z ba log jf j � log� 14G(1=q0) (b � a)1� 1q kDfkq� ;where G is de�ned by (2.11).Schmidt's proof of 5.1 does not use the calculus of variations, but instead uses H�older'sinequality in a very clever way. We now outline this nice argument.Schmidt's H�older inequality argumentWe may assume without loss of generality that [a; b] = [0; 1], and the (periodic)function f has been normalised to obtain � withmax � = 1; min � = �1 (multiplying by a constant)21



and �(0) = 0; �(�) = 1; �(�0) = 0; �(�0) = �1; �(1) = 0; (by shifting)where 0 < � < �0 < �0 < 1.0 � �0 �0 11
�1Fig 5.1. Graph showing the behaviour of � at the points 0 < � < �0 < �0 < 1.If � : [�1; 1]! [0;1)is a nonnegative even function, then the area under it over the intervals [�1; 0] and [0; 1]are equal. This area F (for Fl�ache) can be expressed by using lengths of the curve t 7! �(t)as parameterisations for [�1; 0] and [0; 1] givingF := Z 10 � = Z �0 (� � �)D� = �Z �0� (� � �)D� = �Z �0�0 (� � �)D� = Z 1�0 (� � �)D�;which leads to 4F � Z 10 (� � �)jD�j: (5:4)Since q � 1, H�older's inequality can be applied to (5.4), giving1 � 14F k� � �kq0kD�kq: (5:5)Let A := Z 10 j�jp = k�kpp < 1:Then, for q > 1 and p <1, choosing � : x 7! �(x) to be the curve given byjxjp + �(x)q0 = 1; (5:6)22



gives k� � �kq0 = (1�A)1=q0 :With this choice of �, (5.5) can be rewritten ask�kp = A1=p � 14F (1�A)1=q0A1=p kD�kq ;giving k�kp � Mp;q4Fp;q kD�kq ; (5:7)where Fp;q is the area under one arc of the curve given by (5.6), andMp;q := max0�u�1(1� u)1=q0u1=p: (5:8)This inequality (5.7) is precisely (5.3).
�1 0 1 x1 � Fp;qFig 5.2. Graph of the curve jxjp + �q0 = 1 showing the area Fp;q.The example depicted is p = 1, q = 2.For the recordFp;q = Z 10 � = Z 10 (1� �p)1=q0 d� = �(1 + 1p )�(1 + 1q0 )�(1 + 1p + 1q0 ) ;and the maximum in (5.8) occurs for u = 1p1p + 1q0giving (after simpli�cation) Mp;q = (1p + 1q0 )� 1p� 1q0(1p )� 1p ( 1q0 )� 1q0 :23



The cases q = 1;1 and p =1 are obtained by simple `continuity' arguments.Extremals exist unless q = 1, p 6=1To obtain the sharpness of (5.7), Schmidt determines the extremal functions for (5.3)(when q > 1) by considering the conditions for equality in (5.4), namelyD� � 0 on (0; �) [ (�0; 1); D� � 0 on (�; �0) [ (�0; �0);and in H�older's inequality (5.5), thatj� � �jq0kD�kqq = jD�jqk� � �kq0q0 a:e:This leads to the conclusion that� = 14 ; �0 = 12 ; �0 = 34 ;and the corresponding extremal function S := Sp;q satis�es the di�erential equationjDSj = 4Ip;q(1 � jSjp)1=q; (5:9)where Ip;q is given by (2.18). (The notation � = 1=(4Ip;q) is used in Schmidt's paper).From (2.17) we observe that S = Ep;q(4 �) on [0; 1=4]:Similar considerations (taking account of the sign of S, DS) for the intervals [1=4; 1=2],[1=2; 3=4] and [3=4; 1] show that S = E�p;q(4 �) on [0; 1];where E�p;q : IR! [�1; 1]is the extension of Ep;q to a 4-periodic function determined by the conditions thatE�p;q(x) = �E�p;q(�x) (it is odd);E�p;q(1 + x) = E�p;q(1� x) (it is even about 1): (5:10)For p = 1 and q = 1 also de�ne E�p;q using (2.19) and (5.10). In the case p = 1, q = 2,when Ep;q is a quadratic, the extension is (a shift of) the quadratic Euler spline E2 de�nedby E2 := E�1;2(�+ 1);which is an extremal for certain Landau{Kolmogorov inequalities.24



E�p;q�1 0 1 2 3 41�1Fig 5.3. E�p;q the `symmetrisation' of Ep;q (thick line). This example is p = 1, q = 2(a shift of the Euler spline E2).Thus, (by considering the limit cases p!1 and q !1), it follows that for 0 < p �1, 1 < q � 1 or p =1, q = 1 equality holds in (5.3) if and only if f is a scalar multipleof E�p;q(4 � �t)j[0;1]; t 2 IR;and there is strict inequality for q = 1, p 6=1.An immediate consequence of Schmidt's inequality 5.1 is the following.Corollary([MLV96:Prop.6.8,p431]) 5.11. Let 1 � p � q � 1. Then for all f 2W 1q [��; �] satisfying f(��) = f(�) = 0 (f is periodic)and f(t + �) = �f(t) (5:12)there is the sharp inequalitykfkp � 14C(p; q) (2�)1+ 1p� 1q kDfkq ; (5:13)where C(p; q) is de�ned by (2.13).Proof: The condition (5.12) implies thatmax f +minf = 0;and so, by Schmidt's inequality 5.1, the inequality (5.13) holds. The sharpness followssince the functions E�p;q( 42� �)j[�pi;�]giving equality (or near equality as q ! 1) in (5.3) satisfy the condition (5.12).Other Schmidt inequalitiesSchmidt indicates that the argument just outlined can be modi�ed to obtain otherinequalities. The �rst of these is the following.25



Theorem([Sc40:(13),p304]) 5.14. Let 0 < p � 1, 1 � q � 1. Then, for all f 2W 1q [a; b] satisfying f(a) = f(b) = 0; (5:15)there is the sharp inequalitykfkp � 12C(p; q) (b � a)1+ 1p� 1q kDfkq ; (5:16)where C(p; q) is de�ned by (2.13).This result is stated for 1 � p; q � 1 with the value of C(p; q) given incorrectly (dueto a slight error in its proof) in Fink [F74:p408] (see the constant D(1; 1; p; q)), and isstated correctly for 1 � p < 1, 1 < q < 1 (together with the extremal functions) butwithout proof in Talenti [Ta76:p357] (there it is mentioned as a 1-dimensional analogueof a Sobolev inequality for functions in W 1q (IRm)). Neither author makes reference toSchmidt [Sc40].In Schmidt's statement of Theorem 5.14, the condition (5.15) is given asf(a) = f(b); f has (at least) one zero on [a; b]:It's proof di�ers from that of 5.1 in that f is normalised to obtain � withmax � = 1and �(0) = 0; �(�) = 1; �(1) = 0;where 0 < � < 1. This leads toF = Z �0 (� � �)D� = �Z 1� (� � �)D�;giving (instead of (5.4)) 2F � Z 10 (� � �)jD�j; (5:17)then as before (with the condition for equality in (5.17) giving � = 1=2, and the constant4 in (5.9) being replaced by 2).Equality holds in (5.16) if and only if 0 < p � 1, 1 < q � 1 or p =1, q = 1 and fis a scalar multiple of E�p;q(2 � � ab� a )j[a;b]:It is not di�cult to see that a variation of the `elementary argument' where f is splitby (3.1) into functions g and h withg(a) = g(�) = h(�) = h(b) = 026



can be used, together with Theorem 5.14, to compute the best constant in the inequalitykfkp � 12C(p; q) (b � a)1+ 1p� 1q kDfkq ; (5:18)where f 2W 1q satis�es f(a) = f(�) = f(b):More generally, by using similar variations of the `elementary argument' and induction, itis (in principle) possible to compute the best constant in (5.18) where f 2W 1q satis�esf(�1) = f(�2) = � � � = f(�n) = 0;for some choice a � �1 < �2 < � � � < �n � b;together with the extremal functions, which exist except when q = 1, p 6= 1, and areconstructed from Ep;q { in a similar manner to those for (5.16). A typical example of suchan inequality is the upper bound of the n-width sn(B1q ; Lp) given in Theorem 5.21.Remarks on Lemma 2.14A third result mentioned by Schmidt [Sc40:(20),p306] is the inequality that: for f 2W 1q with f(a) = 0, kfkp � C(p; q) (b � a)1+ 1p� 1q kDfkq ; (5:19)which was stated earlier as Lemma 2.14.The special case of this result whenp = q = 2k an even integerwas given by Hardy and Littlewood [HL32:Th.5] (see also [HLP34:256,p182]) using whatthey describe as a proof of `type C' (depends essentially on the calculus of variations).They refer to the extremal functions E2k;2k (for [a; b] = [0; 1]) as hyperelliptic curves andcompute C(2k; 2k) = � 12k � 1�1=2k �2k� sin �2k� :This example motivated Schmidt to give his proof of `type A' (strictly elementary).To quote Hardy and Littlewood [HL32] (and [HLP34]): (their) \proof is of `type C' and(in view of the di�culty of calculating the slope-function) is might be di�cult to constructa much more elementary proof" (either of `type B' or simpler still of `type A'). There isfurther discussion of the results of Schmidt in Levin and Stechkin's supplement [LS48] tothe Russian edition of Hardy, Littlewood and P�olya's book on inequalities [HLP48].For 1 � p; q � 1 Lemma 2.14 is given in [F74:p407]. There C(p; q) is denoted byC(1; 1; p; q) and it is given incorrectly (due to a slight error in the proof). Fink was unawareof the earlier result of Schmidt. 27



The statement of Lemma 2.14 given by Schmidt is infact slightly stronger. It assertsthe sharp inequality in (5.19) where the condition (2.15) is replaced byf has (at least) one zero on [a; b](and the discussion of the extremals shows the sharpness occurs only when the zero is ata or b). A quantative form of this result is given by our Theorem 4.9.The H�older inequality argument, if given, would involve the normalisation of f toobtain � with �(�) = 0; �(1) = 1;where 0 � � < 1 (if �(0) = �(1) = 0, then (5.16) holds). This leads toF = Z 1� (� � �)D�giving F � Z 10 (� � �)jD�j (5:20)with the remainder of the argument as before (with � = 0 necessary for equality in (5.20),which leads to (2.17) for the extremal). In particular, (as has already been discussed)equality holds in (5.19) if and only if 0 < p � 1, 1 < q � 1 or p = 1, q = 1 and f is ascalar multiple of Ep;q( � � ab � a ):n-widthsThe constant C(p; q) naturally occurs in the computation of the n-widths of the setB1q := ff 2W 1q : kDfkq � 1gin Lp, since for 1 � p � q � 1 an optimal linear operator of rank n is given by Lagrangeinterpolation by piecewise constants (cf (1.2)).Recall (see, e.g., Pinkus [P85]), the following de�nitions. Let A be a subset of anormed linear space X. The Kolmogorov n-width of A in X isdn(A;X) := infXn supa2A infx2Xn ka� xkwhere the in�mum is taken over all n-dimensional subspacesXn ofX. The linear n-widthof A in X is �n(A;X) := infPn supa2A ka� Pnakwhere the in�mum is taken over all (continuous) linear operators Pn : X ! X of rank n.The Gel'fand n-width of A in X isdn(A;X) := infLn supx2A\Ln kxkwhere the in�mum is taken over all subspaces Ln of codimension n. In the case when thesewidths are all equal, we use the notationsn(A;X) := dn(A;X) = �n(A;X) = dn(A;X)to denote their common value. With this notation, the following is known.28



Theorem ([T70]) 5.21. Let [a; b] = [0; 1]. Then, for 1 � p � q �1sn(B1q ; Lp) = 12C(p; q) 1n; n = 1; 2; 3; : : : : (5:22)The space Fn consisting of step functions with break points1n; 2n; : : : ; n� 1nis an optimal n-dimensional subspace, and the operator Ln of Lagrange interpolation fromFn at the points 12n; 32n; 52n : : : 2n� 12n (the midpoints of each step)is an optimal linear operator of rank n.
0 1Fig 5.4. Example of the Lagrange interpolant Lnf (thick) to ffrom the space of step functions Fn (n=10).Since the linear n-width �n(B1q ; Lp) is the largest of the three, we need only show theupper bound (5.22) for it. This is done as follows. Firstly, suppose that 1 � p � q < 1.On each of the intervals [(i � 1)=n; i=n]; i = 1; : : : ; nthe function f �Lnf is zero at the midpoint (where Lnf interpolates f) and has derivativeDf (since Lnf is piecewise constant). Thus, from Theorem 4.9, with � the midpoint, oneobtainsZ[(i�1)=n;i=n] jf � Lnf jp � (12C(p; q)� 1n�1+ 1p� 1q �Z[(i�1)=n;i=n] jDf jq� 1q)p :Summing over i leads tokf � Lnfkp � 12C(p; q)� 1n�1+ 1p� 1q k(i)ni=1k`p ;29



where i :=  Z[(i�1)=n;i=n] jDf jq!1=q :By H�older's inequality k(i)k`p � n 1p� 1q k(i)k`q = n 1p� 1q kDfkq ;giving the upper bound kf � Lnfkp � 12C(p; q) 1n kDfkq ; (5:23)which (by the usual continuity argument) also holds when q (and p) becomes in�nite. Theabove argument also works if [0; 1] is split into 2n intervals of length 1=(2n) on whichf � Lnf is zero at one endpoint.The sharp bound (5.23) can also be obtained using inequality (5.14) and a varia-tion of the `elementary argument', instead of the above argument (of Tikhomirov). Thisalternative approach also extends to the case q < p.A simple proof of the lower bound based on Borsuk's antipodality theorem was givenby Markovoz [M72:Th.2]. For a general form of Markavoz's lower bound together with itsapplication to Theorem 5.21 see Lorentz, Golitscheik and Makovoz [MLV96:Th.5.1].Further developements of this circle of ideas can be found in, e.g., Buslaev andTikhomirov [BT92], Buslaev and Yashina [BY94] (numerical computations), and Tikhomirov[T94] (multivariate generalisations).AcknowledgementI would like to thank Evsei Dyn'kin for many helpful conversations related to thispaper, including his clever argument for determining when Ep;q is a polynomial. Thiswork was supported by the Israel Council for Higher Education through its PostdoctoralFellowship Scheme.
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6. Some details not included in the paper1. The simpli�cation off(A�) = (1� �)��(1��)=��� + ���(1��)=�(1� �)�(���=� + (1� �)��=�)1��was done as follows.Let a := ��; b := (1� �)� :Then f(A�) = ab 1��� + ba1���� 1a1=� + 1b1=� �1��= � a1=�+b1=�a1��� b1��� ��a1=�+b1=�a1=�b1=� �(1��)= (a1=� + b1=�)�:This impliesW (p; q; �) = (a1=� + b1=�)�=p = (��=� + (1 � �)�=�)�=p:Since �=� = 1 + pqq � p ; �=p = 1p � 1qW (p; q; �) = ��1+ pqq�p + (1 � �)1+ pqq�p � 1p� 1q :2. Solution of (2.17) for p = q = 2. By �(1=2) = p�, see Jones [J93], we calculateI2;2 = �(1=2)�(1=2)2�(1) = �2 :So the di�erential equation (2.17) becomesDfp1� f2 = �2 ;which integrates to sin(�1f(x)) = �2x;giving E2;2(x) = sin(�2 x):i



3. An integral. By making the substitution u = yp, one computesZ 10 (1� yp)� = 1p Z 10 (1� u)�u1=p�1 du= 1p �(�+ 1)�(1=p)�(� + 1+ 1=p) = �(� + 1)�(1 + 1=p)�(�+ 1 + 1=p) ; � + 1 > 0; 1 + 1=p > 0:4. Ep;q is the p-th power of the inverse of an incomplete Beta function. Let I(p; q) bethe (normalised) incomplete Beta function (see, e.g., [EMOT53])I(p; q) : [0; 1]! [0; 1] : x 7! Bx(p; q)=B1(p; q);where Bx(p; q) := Z x0 tp�1(1 � t)q�1 dt;and I�1(p; q) be the inverse function. ThenEp;q = (I�1(1=p; 1=q0))p:5.C(q; p; 1) = ��2� (1 � 1q + 1p )1=q�1=p � 12��1=q�1=p (q0) 1q p�1=p �(1p + 1q0 )�(1 + 1p )�( 1q0 )= 14(2�)1+ 1p� 1q (1p + 1q0 )� 1p�(1� 1q )(1p )� 1p ( 1q0 )�1q0 �(1 + 1p + 1q0 )�(1 + 1p)�(1 + 1q0 )= 14C(p; q) (2�)1+1=p�1=q6. C(2k; 2k) = � 12k� 12k �2k � 12k �1� 12k �(2)�(1 + 12k )�(1 + 1� 12k )= � 12k � 1� 12k 2k 1=(2k)�(1 + 12k ) 1� 1=(2k)�(1 + 1� 12k )= � 12k � 1� 12k 2k�( 12k )�(1 � 12k )= � 12k � 1� 12k �2k� sin �2k�ii



using the fact that �(a)�(1 � a) = �sin�a7. Check (4.5) satis�es the Euler-Lagrange equation.8. Details for showing � = 14 ; �0 = 12 ; �0 = 34 :Since 1jDSj = ��(jSj)� 1q�1 ;one has � = Z �0 dt = Z 10 dtdS dS = �Z 10 �(jSj)� 1q�1 dS = �0 � �:Similarly, �0 � �0 = 1� �0 = �Z 0�1 �(jSj)� 1q�1 dS:Additional references[Be71] P. R. Beesack, Integral inequalities involving a function and its derivative, Amer.Math. Monthly 78(1971), 705{740.[EMOT53] A. Erd�elyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher tran-scendental functions, McGraw-Hill, New York, 1953.[J93] F. Jones, Lebesgue integration on Euclidean space, Jones and Bartlett, Boston, 1993.[F99] S. Finch, Favorite Mathematical Constants, http://www.mathsoft.com/cgi-shl/constant.bat,1999.[T70] V. M. Tikhomirov, Some problems in approximation theory, dissertation, MoscowState University, 1970.(English translation of abstract for [T70])[T71] V. M. Tikhomirov, Some problems in approximation theory, Math. Notes 9(1971),343{350.
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