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1. IntroductionThere has recently been considerable progress in the problem of estimating the bestconstant C in the inequalitykDj (f �H�f)kp � C (b � a)n�j+ 1p� 1q kDnfkq ; 8f 2Wnq ; (1:1)where H�f is the Hermite interpolant to f at the some multiset � of n points in [a; b], and0 � j < n. In Shadrin [S95], the best constant was determined for p = q =1, 0 � j < n,and all �. The remaining estimates in the extensive literature on this problem wereextended and put within a uni�ed framework based on a single `basic estimate' in Waldron[W96]. Inequalities of the form (1.1) belong to the class of Wirtinger({Sobolev) inequalities(also called Poincar�e inequalities), see, e.g., Fink, Mitrinovi�c and Pe�cari�c [FMP91:p66].Towards a better understanding of what, if any, improvements to these estimatesmight be possible (for p; q 6= 1), the best constant in (1.1) is computed in the simplestcase, when n = 1 (j = 0), for 1 � p; q �1. Here � = f�g, a single point in [a; b], andH�f = f(�); (1:2)the constant polynomial which matches f at �.Since f(x) �H�f(x) = f(x) � f(�) = Z x� Df(t) dt; (1:3)�nding the best constant in (1.1) is equivalent to computing the norm of the linear mapA : Lq[a; b]! Lp[a; b]given by Af(x) := Z x� f(t) dt;and since Df = D(f � f(�)) = D(f �H�f);it is also equivalent to �nding the best constant C in the inequality: for f 2 W 1q withf(�) = 0, kfkp � C (b � a)1+ 1p� 1q kDfkq : (1:4)It is the last of these equivalencies which appears most commonly, and we will solve theproblem in these terms. The solution is given in Theorem 4.1.The rest of the paper is set out as follows. In Section 2, the (standard) variationalapproach to �nding the best constant in (1.4) is outlined. In Section 3, the `elementaryargument' which allows the problem to be split into two problems with boundary conditionsof the form f(a) = 0 (equivalently f(b) = 0), and thereby reduced to a `maximisationproblem' of one variable, is given. In Section 4, the `maximisation problem' is solved andthe best constant and corresponding extremal functions (when they exist) are computed.1



In Section 5, a number of related results concerning extremal problems and n-widths whichcan be obtained from an inequality of Schmidt 1940 by using simple geometric arguments(such as those in this paper) are discussed.2. The variational approachLetW 1p :=W 1p [a; b] be the Sobolev space of functions f which are absolutely continuouson [a; b], with D1f 2 Lp := Lp[a; b]. To solve isoperimetric extremal problems such assupf 6=0� kfkpkDfkq : f(�) = 0; f 2W 1q� = sup�kfkp : f(�) = 0; kDfkq = 1; f 2W 1q 	 ; (2:1)the standard approach is to use the calculus of variations.For � = a; b the Euler{Lagrange equation for (2.1) has been solved. The followingresult is essentially due to Schmidt [Sc40:(20),p306].Lemma 2.2. Let 0 < p � 1, 1 � q � 1. Then, for all f 2W 1q [a; b] satisfyingf(a) = 0; (equivalently f(b) = 0) (2:3)there is the sharp inequalitykfkp � C(p; q) (b � a)1+ 1p� 1q kDfkq ; (2:4)where 0 < C(p; q) � 1 is de�ned byC(p; q) := (1p + 1q0 )� 1p� 1q0(1p )� 1p ( 1q0 )� 1q0 �(1 + 1p + 1q0 )�(1 + 1p )�(1 + 1q0 ) ; (2:5)with q0 the conjugate exponent of q, and 1=1 is to be interpreted (in the usual way) as 0.For � 6= a; b the Euler{Lagrange equation for (2.1) splits into a pair of equations,similar to that for the case � = a, which are connected by a common parameter. Inprinciple, this pair of equations can be solved by using the solution for when � = a.Instead, we perform e�ectively this argument in terms of the inequalities (1.4). This is our`elementary argument'. It provides the extremals in the cases when they exist, by usingthe following.For all values of p; q in Lemma 2.2, except q = 1, p 6= 1, extremals exist for (2.4),and are given by the scalar multiples of Ep;q ((� � a)=(b � a)), whereEp;q : [0; 1]! [0; 1]is de�ned as the (unique) solution of the initial value problemDf = Ip;q(1� fp) 1q ; f(0) = 0; (2:6)2
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Fig. 2.1. The graph of (p; q) 7! C(p; q) over (0; 15]� [1; 15]. Note C(p; 1) = 1.where Ip;q := Z 10 d�(1� �p)1=q = �(1p)�( 1q0 )p�( 1p + 1q0 ) = �( 1p + 1)�( 1q0 )�(1p + 1q0 ) ; (2:7)with Ip;q interpreted as 1 when p =1 or q =1. From (2.6), it is easily seen that Ep;q isstrictly increasing, concave, and satis�esEp;q(0) = 0; Ep;q(1) = 1; DEp;q(0) = Ip;q; DEp;q(1) = 0;with E2;2(x) = sin(�2 x):The functions Ep;q can be expressed as the p{th power of the inverse of an incompleteGamma function. It is claimed incorrectly in Fink [F74:Lemma 2] that extremals for (2.4)exist unless (p; q) = (1; 1) or (1;1). The argument given there mistakenly concludes thatsince C(p; q) = C(q0; p0), if extremals exist for the choice of norms (p; q), then they mustexist for the choice (q0; p0). For �xed p, Ep;q ! �(0;1] pointwise as q ! 1+.The numerical solution of (2.6) provides no obstacles. In our case, the graphs of Ep;qappearing in this paper were done using MATLAB to compute the values of Ep;q (at equallyspaced points) by the Runge-Kutta method of order 4.3



Ep;q1
0 1p = 2q = 2; 1:5; 1:25; 1:125; 1:0625; 1:03125Fig. 2.2. The asymptotic behaviour of Ep;q as q ! 1+.3. The elementary argumentThe key to solution of (2.1) for a < � < b presented below, is the observation thatfunctions f 2W 1q [a; b] with f(�) = 0 are of the formf(x) = � g(x); a � x � �;h(x); � � x � b, (3:1)where g 2W 1q [a; �]; with g(�) = 0; h 2W 1q [�; b]; with h(�) = 0;together with the fact thatZ ba jf jp = Z �a jgjp + Z b� jhjp; 0 < p <1;Z ba jDf jq = Z �a jDgjq + Z b� jDhjq; 1 � q <1:f

a g � h bFig. 3.1. The splitting of f into g and h (thicker).4



It will be convenient to have (2.4) in the formsupf(a)=0R ba jDfjq=� Z ba jf jp = � pqC(p; q)p(b � a)p(1+ 1p� 1q ); 0 < p <1; 1 � q <1; (3:2)where � > 0, (and the supremum is over functions in W 1q [a; b]). It is to be understoodthat (3.2) also holds when the condition f(a) = 0 is replaced by f(b) = 0.For simplicity, assume without loss of generality that [a; b] = [0; 1]. Let 0 � � � 1,and 0 < p <1, 1 � q <1. Then, by using the splitting (3.1) and (3.2), we compute thatthe solution of (2.1) satis�essup�kfkp : f(�) = 0; kDfkq = 1; f 2W 1q 	= sup0�A�1��Z �0 jgjp + Z 1� jhjp� 1p : g(�) = h(�) = 0; �s0 jDgjq = A; 1s� jDhjq = 1�A�= sup0�A�1� supg(�)=0R �0 jDgjq=A Z �0 jgjp + suph(�)=0R 1� jDhjq=1�A Z 1� jhjp�1=p= C(p; q) max0�A�1 �A pq �p(1+ 1p� 1q ) + (1 �A) pq (1� �)p(1+ 1p� 1q )�1=p : (3:3)Thus, the problem (2.1) has been reduced to the maximisation problem of 1 variableof �nding M(p; q; �)p := max0�A�1 f(A); (3:4)where f := fp;q;� : A 7! A pq �p(1+ 1p� 1q ) + (1 �A) pq (1 � �)p(1+ 1p� 1q ): (3:5)This maximum is found in the next section.Application to Hardy{type inequalitiesThe careful reader will notice that the argument just outlined also applies to a varietyof similar situations { some of interest.One such example is when k � kp, k � kq are replaced by weighted Lp; Lq norms k � k�p,k � k�q respectively. The corresponding inequalitieskfk�p � C kDfk�q ; 8f 2W 1q ; (3:6)where f(a) = 0, analogous to (2.4), are calledHardy{type inequalities. The original Hardy'sinequality is the case p = q > 1, wherekfk�p := �Z 10 ��f(x)x ��p dx�1=p; kfk�q := kfkLp[0;1); 1 < p <1;5



with the condition f(0) = 0. Here the best constant is C = p=(p � 1). Often Hardy'sinequality is stated with f in the formf(x) = Z x0 g(t) dt:There is considerable interest in Hardy{type inequalities, see, e.g., the monograph of Opicand Kufner [OK90]. The author has made no attempt to translate the various conditionsfor the existence of an inequality of the form (3.6) and estimates for the best constant towhen the condition f(a) = 0 is replaced by f(�) = 0 with � some point inside the intervalof interest (which has left endpoint a).Another situation of interest where the argument applies is higher order Wirtingerinequalities kfkp � C (b � a)n+ 1p� 1q kDnfkq; 8f 2Wnq ;where f satis�es boundary conditions at a single point �, a < � < b, to which couldbe added boundardy conditions at the endpoints (same conditions at both endpoints). Aparticular case of note is when f vanishes to order n at �. For � = a, this extremal problemhas recently been investigated by Buslaev [B95].4. The best constantIn this section, the solution of (2.1) is completed by �nding the points A� where themaximum (3.4) is attained, and by treating the cases p = 1, q = 1 using `continuity'arguments. This leads to the main result, which is the following.Theorem 4.1. Let 0 < p � 1, 1 � q � 1, and a � � � b. Then, for all f 2 W 1q [a; b]satisfying f(�) = 0;there is the sharp inequalitykfkp �W �1p � 1q ; � � ab� a �C(p; q) (b � a)1+ 1p� 1q kDfkq ; (4:2)where 1=2 �W � 1 is de�ned byW (t; �) := � (1=2 + j1=2� �j)1+t; �1 � t � 0;(�1+ 1t + (1 � �)1+ 1t )t; 0 < t <1, (4:3)and 0 < C � 1 is de�ned by (2.5).The inequality (4.2) will be referred to as Schmidt's inequality (see Section 5).Inequalities of this type are used in the spectral analysis of certain ordinary di�erentialequations (see, e.g., Brown, Hinton and Schwabik [BHS96]).6
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W (t; �)
� �t = 1=q � 1=pFig. 4.1. Graph of (t; �) 7!W (t; �) for �1 � t � 1. The range of �t correspondsto the values 1 � p; q � 1.t = �1 (p =1, q = 1) t = 0 (p = q) t = 1 (p = 1, q =1)� 7! 1 � 7! 1=2 + j1=2� �j � 7! �2 + (1� �)2

Fig. 4.2. The graph of � 7!W (t; �) for the values t = �1; 0; 1.To prove Theorem 4.1, we require the maximum over 0 � A � 1 off := fp;q;� : A 7! A pq �p(1+ 1p� 1q ) + (1 �A) pq (1 � �)p(1+ 1p� 1q ); (4:4)where 0 < � < 1. Since the second derivative of f isD2f(A) = pq �pq � 1�nA pq�2�p(1+ 1p� 1q ) + (1 �A) pq�2(1� �)p(1+ 1p� 1q )o ; (4:5)where the term inside the f g is positive, f is either convex, linear, or concave, dependingon the values of p; q.To describe the extremal functions we need the following. Recall Ep;q is de�ned by(2.6). For 0 � � < 1, let E�+p;q(x) := � 0; 0 � x � �;Ep;q�x��1�� �; � � x � 1, (4:6)7



which is continuous and supported on [�; 1], and, for 0 < � � 1, letE��p;q(x) := �Ep;q���x� �; 0 � x � �;0; � � x � 1, (4:7)which is supported on [0; �].We now complete the proof of Theorem 4.1, and give the extremals, by �nding themaximum of (4.4) for the various values of p; q.The case 1 � q � p <1By (4.5), f is convex when p > q, and linear when p = q, and so it attains its maximumat an endpoint given by A� =8><>: 0; 0 � � < 1=20; 1; � = 1=2, p > q[0; 1]; � = 1=2, p = q1; 1=2 < � � 1.Thus, since maxf�; 1 � �g = 1=2 + j1=2� �j;we obtain M(p; q; �) = (1=2 + j1=2� �j)1+ 1p� 1q ; 1 � q � p <1: (4:8)For 0 � � < 1=2, q 6= 1, the corresponding extremal function is E�+p;q , and this isthe unique extremal upto a multiplication by a constant. Similarly, for 1=2 < � � 1, theextremal function is E��p;q . For � = 1=2, 1 < q < p, there are two extremal functionsE1=2+p;q and E1=2�p;q (corresponding to A� = 0; 1 respectively). For � = 1=2, p = q > 1, any(nontrivial) linear combination of E1=2+p;q and E1=2�p;q is an extremal.1
0 1E�+p;q = E0:2+5;2

Fig. 4.3. Behaviour of the extremal function E�+p;q for 0 < � < 1=2 and p > q > 1.8



The case 0 < p < q <1, 1 � q <1By (4.5), if p < q, then f is concave, and so we need to compute any local maxima off . Since the �rst derivative of f isDf(A) = pqA pq�1�p(1+ 1p� 1q ) � pq (1 �A) pq�1(1 � �)p(1+ 1p� 1q ); (4:9)f has a stationary point whenA���� = (1�A)��(1 � �)� ;where � := 1� p=q > 0; � := p(1 + 1=p� 1=q) > 0:This has one solution (for 0 < � < 1)A� = (1� �)��=����=� + (1� �)��=� 2 (0; 1):Thus, f has a maximum at A� given byf(A�) = (1� �)��(1��)=��� + ���(1��)=�(1 � �)�(���=� + (1 � �)��=�)1�� = ���=� + (1 � �)�=��� ;and we obtainM(p; q; �) = ��1+1=( 1p� 1q ) + (1� �)1+1=( 1p� 1q )� 1p� 1q ; p < q: (4:10)Let f = g + h given byg := GE��p;q ; G > 0; h := H E�+p;q ; H > 0;be the extremal function which attains the supremum in (3.3). ThenZ �0 jDgjq = Gq�1�qkEp;qkqq = A�; Z 1� jDhjq = Hq(1� �)1�qkEp;qkqq = 1�A�;so that GH = � A�1�A� (1� �)1�q�1�q �1=q = � �1� ��1+ pq�p :Thus, the extremal functions are (scalar multiples of)�1+ pq�pE��p;q � (1� �)1+ pq�pE�+p;q : (4:11)9



0:5
0 1� = 0:3p = 2; q = 3f

Fig. 4.4. Behaviour of the extremal function f := �1+ pq�pE��p;q+(1��)1+ pq�pE�+p;qfor 0 < � < 1=2 and p < q.The cases p =1, q =1From (4.8), (4.10) we see that for 0 < p < 1, 1 � q < 1 the maximum M(p; q; �)depends only on 1=p� 1=q and �, i.e.,M(p; q; �) =W (1p � 1q ; �);where W (t; �) is de�ned by (4.3). It is easily seen from (2.6) that the extremal functionsdo not depend only on 1=p� 1=q and �. Similary, C(p; q) is not a function of 1=p� 1=q.Since the solution of (2.1) is a bounded and continuous function of 0 < p < 1,1 � q < 1, it would be expected the remaining values (p = 1 and q = 1) could beobtained by taking the appropriate limits. The argument is as follows.The case p =1, 1 � q <1. For f 2W 1q with f(�) = 0, there is the sharp inequalitykfkp� �W ( 1p� � 1q ; �)C(p�; q) kDfkq ; (4:12)where 0 < p� <1 is �xed. Since f 2W 1q � Lp� , for all 0 < p� �1, the limit of (4.12) asp� !1 can be taken to obtainkfk1 �W ( 11 � 1q ; �)C(1; q) kDfkq ;which is sharp, since for each p� <1 an f with kDfkq = 1 which gives as close to equalityin (4.12) as desired can be chosen.The case 1 � p � 1, q =1. For f 2W 11 with f(�) = 0, there is the sharp inequalitykfkp �W (1p � 1q� ; �)C(p; q�) kDfkq� ; (4:13)10



where 1 � q� < 1. As before, the limit as q� ! 1 can be taken to obtain the sharpinequality kfkp �W (1p � 11 ; �)C(p;1) kDfk1 :This completes the proof of Theorem 4.1.RemarksWith a mind to identifying phenomenon that might also hold for other Wirtingerinequalities of the form (1.1), it is of interest to know when the extremals for (2.1) are(polynomial) splines. It can be shown that this occurs only whenp = 1; q = 2 (quadratic splines)p =1; or q =1 (linear splines).The only case where the best constant in (4.2) has been investigated for � 6= a; b is inTikhomirov [T76:x2:5:2], where � = a + b2 ;the midpoint of the interval, and 1 < p < 1, 1 � q < 1. Tikhomirov used this bestconstant in his calculation of the n-width sn(B1q ; Lp), which is given in Theorem 5.9.For simplicity, suppose that [a; b] = [0; 1] and � = 1=2. For this choice of �, we havefrom (4.3), that W (1p � 1q ; 12) = ( 12 ; p < q�12�1+ 1p� 1q ; p � q, (4:14)for 0 < p � 1, 1 � q � 1. For 1 < p � q <1, this agrees with the result of Tikhomirov[T76:p127]. But, for 1 � q < p <1, Tikhomirov claims the best constant (4.2) is12C(p; q); (4:15)rather than the larger constant �12�1+ 1p� 1q C(p; q);given by (4.14). Tikhomirov's constant (4.15) would be correct, if it could be assumedthat the extremal function was symmetric about � = (a+ b)=2 (as it is in the case p � q).However, as we have seen, for 1 < q < p � 1 the extremal function is only supported onhalf of the interval [0; 1]. Indeed, we compute that the best constant in (4.2) must be atleast as large askE1=2+p;q kpkDE1=2+p;q kq = (1=2)1=pkEp;qkp(1=2)1=q�1kDEp;qkq = �12�1+ 1p� 1q C(p; q); 1 < q < p �1;11



where 1=2 < (1=2)1+ 1p� 1q < 1; and this is the best constant.5. Schmidt's inequalityThere are several inequalities of the formkfkp � C (b� a)1+ 1p� 1q kDfkqwhere f belongs to some class of functions, with the best constant and extremals related toC(p; q) and Ep;q respectively, which are closely related to the following result of Schmidt.Schmidt's inequality([Sc40:(4),p302]) 5.1. Let 0 < p � 1, 1 � q �1. Then, for allf 2W 1q [a; b] satisfying f(a) = f(b); maxt2[a;b] f(t) + mint2[a;b] f(t) = 0; (5:2)there is the sharp inequalitykfkp � 14C(p; q) (b � a)1+ 1p� 1q kDfkq ; (5:3)where C(p; q) is de�ned by (2.5).Schmidt's proof of 5.1 does not use the calculus of variations, but instead uses H�older'sinequality in a very clever way. Schmidt indicates that this argument can be modi�ed toobtain other inequalities. The �rst of these is the following.Theorem([Sc40:(13),p304]) 5.4. Let 0 < p � 1, 1 � q �1. Then, for all f 2W 1q [a; b]satisfying f(a) = f(b) = 0; (5:5)there is the sharp inequalitykfkp � 12C(p; q) (b � a)1+ 1p� 1q kDfkq ; (5:6)where C(p; q) is de�ned by (2.5).This result is stated for 1 � p; q � 1 with the value of C(p; q) given incorrectly (dueto a slight error in its proof) in Fink [F74:p408] (see the constant D(1; 1; p; q)), and isstated correctly for 1 � p < 1, 1 < q < 1 (together with the extremal functions) butwithout proof in Talenti [Ta76:p357] (there it is mentioned as a 1-dimensional analogueof a Sobolev inequality for functions in W 1q (IRm)). Neither author makes reference toSchmidt [Sc40].In Schmidt's statement of Theorem 5.4, the condition (5.5) is given asf(a) = f(b); f has (at least) one zero on [a; b]:12



It is not di�cult to see that a variation of the `elementary argument' where f is split by(3.1) into functions g and h withg(a) = g(�) = h(�) = h(b) = 0can be used, together with Theorem 5.4, to compute the best constant in the inequalitykfkp � 12C(p; q) (b � a)1+ 1p� 1q kDfkq ; (5:7)where f 2W 1q satis�es f(a) = f(�) = f(b):More generally, by using similar variations of the `elementary argument' and induction, itis (in principle) possible to compute the best constant in (5.7) where f 2W 1q satis�esf(�1) = f(�2) = � � � = f(�n) = 0;for some choice a � �1 < �2 < � � � < �n � b;together with the extremal functions, which exist except when q = 1, p 6= 1, and can beconstructed from Ep;q.A third result mentioned by Schmidt [Sc40:(20),p306] is the inequality that: for f 2W 1q with f(a) = 0, kfkp � C(p; q) (b � a)1+ 1p� 1q kDfkq ; (5:8)which was stated earlier as Lemma 2.2.The special case of this result whenp = q = 2k an even integerwas given by Hardy and Littlewood [HL32:Th.5] (see also [HLP34:256,p182]) using whatthey describe as a proof of `type C' (depends essentially on the calculus of variations).They refer to the extremal functions E2k;2k (for [a; b] = [0; 1]) as hyperelliptic curves andcompute C(2k; 2k) = � 12k � 1�1=2k �2k� sin �2k� :This example motivated Schmidt to give his proof of `type A' (strictly elementary).To quote Hardy and Littlewood [HL32] (and [HLP34]): (their) \proof is of `type C' and(in view of the di�culty of calculating the slope-function) is might be di�cult to constructa much more elementary proof" (either of `type B' or simpler still of `type A'). There isfurther discussion of the results of Schmidt in Levin and Stechkin's supplement [LS48] tothe Russian edition of Hardy, Littlewood and P�olya's book on inequalities [HLP48].For 1 � p; q � 1 Lemma 2.2 is given in [F74:p407]. There C(p; q) is denoted byC(1; 1; p; q) and it is given incorrectly (due to a slight error in the proof). Fink wasunaware of the earlier result of Schmidt. 13



The statement of Lemma 2.2 given by Schmidt is infact slightly stronger. It assertsthe sharp inequality in (5.8) where the condition (2.3) is replaced byf has (at least) one zero on [a; b](and the discussion of the extremals shows the sharpness occurs only when the zero is ata or b). A quantative form of this result is given by our Theorem 4.1.The constant C(p; q) also naturally occurs in the computation of the n-widths of theset B1q := ff 2W 1q : kDfkq � 1gin Lp, since for 1 � p � q � 1 an optimal linear operator of rank n is given by Lagrangeinterpolation by piecewise constants (cf (1.2)).Theorem ([T70]) 5.9. Let [a; b] = [0; 1]. Then, for 1 � p � q � 1sn(B1q ; Lp) = 12C(p; q) 1n; n = 1; 2; 3; : : : ; (5:10)where sn(B1q ; Lp) denotes the common value of the Kolmogorov, linear and Gel'fand n-widths. The space Fn consisting of step functions with break points1n; 2n; : : : ; n� 1nis an optimal n-dimensional subspace, and the operator Ln of Lagrange interpolation fromFn at the points 12n; 32n; 52n : : : 2n� 12n (the midpoints of each step)is an optimal linear operator of rank n.
0 1Fig. 5.4. Example of the Lagrange interpolant Lnf to f from the space of stepfunctions Fn (n=10).AcknowledgementI would like to thank Evsei Dyn'kin for many helpful conversations related to thispaper. This work was supported by the Israel Council for Higher Education through itsPostdoctoral Fellowship Scheme. 14
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