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ABSTRACT

The main result is the computation of the best constant in the Wirtinger Sobolev
inequality

||f||p < Cp,qﬂ (b - ”’)H—;iaHDqua

where

and 6 is some point in [a,b], or, equivalently, the determination of the norm of the
(bounded) linear map

A: Lya,b] — Lyla,b]
given by

Afte) = | iyt

This and other results are seen to be closely related to an inequality of Schmidt 1940.

The method of proof is elementary, and should be the main point of interest for most
readers since it clearly illustrates a technique that can be applied to other situations.
These include the generalisations of Hardy’s inequality where 6 = a and || - ||,, || - Il
are replaced by weighted L,, L, norms, and higher order Wirtinger Sobolev inequalities
involving boundary conditions at a single point.
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1. Introduction

There has recently been considerable progress in the problem of estimating the best
constant C' in the inequality

ID7(f ~ Hof)l, < C(b—a)" 75 %D fll,.  ¥feW,, (1)

where Hg f is the Hermite interpolant to f at the some multiset © of n points in [a, b], and
0 < j < n. In Shadrin [S95], the best constant was determined for p=¢ = 00, 0 < j < n,
and all ®. The remaining estimates in the extensive literature on this problem were
extended and put within a unified framework based on a single ‘basic estimate’ in Waldron
[W96]. Inequalities of the form (1.1) belong to the class of Wirtinger( Sobolev) inequalities
(also called Poincaré inequalities), see, e.g., Fink, Mitrinovi¢ and Pecari¢ [FMP91:p66].
Towards a better understanding of what, if any, improvements to these estimates
might be possible (for p,q # o0), the best constant in (1.1) is computed in the simplest
case, when n =1 (j =0), for 1 < p,¢ < co. Here @ = {6}, a single point in [a, b], and

He f = f(6), (1.2)

the constant polynomial which matches f at 6.
Since

ﬂwmﬁm—fwﬂw—éﬂwww, (1.3)

finding the best constant in (1.1) is equivalent to computing the norm of the linear map
A: Lya,b] — Lyla,b]

given by N
Afte) = [ s

and since
Df = D(f — f(0)) = D(f — Hef),

it is also equivalent to finding the best constant C' in the inequality: for f € W(; with
£(6) = 0. o
Flly < C(b—a)™> < |IDfl,. (1.4)

It is the last of these equivalencies which appears most commonly, and we will solve the
problem in these terms. The solution is given in Theorem 4.1.

The rest of the paper is set out as follows. In Section 2, the (standard) variational
approach to finding the best constant in (1.4) is outlined. In Section 3, the ‘elementary
argument’ which allows the problem to be split into two problems with boundary conditions
of the form f(a) = 0 (equivalently f(b) = 0), and thereby reduced to a ‘maximisation
problem’ of one variable, is given. In Section 4, the ‘maximisation problem’ is solved and
the best constant and corresponding extremal functions (when they exist) are computed.
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In Section 5, a number of related results concerning extremal problems and n-widths which
can be obtained from an inequality of Schmidt 1940 by using simple geometric arguments
(such as those in this paper) are discussed.

2. The variational approach

Let, W; = W; [a, b] be the Sobolev space of functions f which are absolutely continuous
on [a,b], with D' f € L, := L,[a,b]. To solve isoperimetric extremal problems such as

p{ LAl gy — o, .feW;}—sup{llfllp:f(F))—& IDfl =1, feW!}, (21)
f#0 ||Df||q

the standard approach is to use the calculus of variations.
For 6§ = a,b the Euler Lagrange equation for (2.1) has been solved. The following
result is essentially due to Schmidt [Sc40:(20),p306].

Lemma 2.2. Let 0 < p< oo, 1 < g <oo. Then, for all f € W(; [a,b] satisfying

fla) =0, (equivalently f(b) =0) (2.3)

there is the sharp inequality

1£1ly < Clp,a) (b —a)' "7 [[Df],, (2.4)
where 0 < C(p,q) < 1 is defined by
1 1y % o 1 1
~4+ =) r 4 'il+-+ -
() 7(7) I+ ,)T1+ )

with ¢’ the conjugate exponent of q, and 1/oc is to be interpreted (in the usual way) as 0.

(2.5)

3=

For 6§ # a,b the Euler Lagrange equation for (2.1) splits into a pair of equations,
similar to that for the case § = a, which are connected by a common parameter. In
principle, this pair of equations can be solved by using the solution for when 6 = a.
Instead, we perform effectively this argument in terms of the inequalities (1.4). This is our
‘elementary argument’. Tt provides the extremals in the cases when they exist, by using
the following.

For all values of p,¢ in Lemma 2.2, except ¢ = 1, p # o0, extremals exist for (2.4),
and are given by the scalar multiples of E, , ((- — a)/(b — a)), where

Equ : [07 1] — [07 1]
is defined as the (unique) solution of the initial value problem
Df = [p,q(l - .fp)aa f(()) =0, (2-6)
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Fig. 2.1. The graph of (p,q) — C(p,q) over (0,15] x [1,15]. Note C(p,1) = 1.

where

| -

o de TGN TGHDT()
e =) pr+3) TGty 21)

with I, , interpreted as 1 when p = oo or ¢ = co. From (2.6), it is easily seen that E, , is

=3 =

strictly increasing, concave, and satisfies
Epq(0) =0, E,,1)=1, DE, ((0) =14, DE,4(1) =0,

with

T

Es5(x) = Sin(§f17).

The functions E, , can be expressed as the p th power of the inverse of an incomplete
Gamma function. It is claimed incorrectly in Fink [F74:Lemma 2] that extremals for (2.4)
exist unless (p,q) = (1,1) or (oo, 00). The argument given there mistakenly concludes that
since C(p,q) = C(q',p'), if extremals exist for the choice of norms (p, ¢), then they must

]

The numerical solution of (2.6) provides no obstacles. In our case, the graphs of E, ,
appearing in this paper were done using MATLAB to compute the values of E, , (at equally
spaced points) by the Runge-Kutta method of order 4.

exist for the choice (¢',p"). For fixed p, E, , — X (0. pointwise as ¢ — 17.



p=2
g=2, 1.5, 1.25, 1.125, 1.0625, 1.03125

0 1
Fig. 2.2. The asymptotic behaviour of E, , as ¢ — 17.
3. The elementary argument

The key to solution of (2.1) for a < 6 < b presented below, is the observation that
functions f € W(; [a,b] with f(#) = 0 are of the form

oy = {4 sy (3.1)
where

1 . 1 .
g € W,la, 0], with g(8) = 0, h € W, [0,b], with h(#) =0,
together with the fact that

b g b
/Wﬂ%—/mw+/vw, 0 < p< oo,
oJ (1 oJ (1 ». 9

b g b
/IDﬂ“—/IDﬂ“+/IDM% | < g< o
o o ». 9

a ] b
Fig. 3.1. The splitting of f into g and A (thicker).



It will be convenient to have (2.4) in the form

b
wp [P = 0E a0 T, 0<p<o 1<, (32)
f(a)=0 Ja

f:mﬂq:a

where o > 0, (and the supremum is over functions in W(; [a,b]). Tt is to be understood
that (3.2) also holds when the condition f(a) = 0 is replaced by f(b) = 0.

For simplicity, assume without loss of generality that [a,b] = [0,1]. Let 0 < 8§ < 1,
and 0 < p < 00, 1 < ¢ < co. Then, by using the splitting (3.1) and (3.2), we compute that
the solution of (2.1) satisfies

sup {|fll,  £(8) = 0, | Dflly =1, feW,}

[ 1 1 0 |
= s {([ o+ [ )" a6 = 1@ = 0. [1Dglt = . |DH =1 - )
J0o J o 0 4

0< A<

f 1 1/p
= sup ( sup / lg|” + sup / |h|p>
o<a<i\ ae)=0 Jo o= g
Js

4
[ |Dgl9=A |Dh|9=1—A
Jo
t/p

- Fgr(+3-9) AR P<1+%*%>>
Clp.q) max, (A 0 +(1-A)(1-90) -

Thus, the problem (2.1) has been reduced to the maximisation problem of 1 variable

of finding

| L—
M(p,q.9)" := max f(A), (3.4)
where o .
FomFpgo: Ay ATPUTET0) L (1 - A)T(1 - o)), (3.5)

This maximum is found in the next section.

Application to Hardy—type inequalities

The careful reader will notice that the argument just outlined also applies to a variety
of similar situations some of interest.

One such example is when || - |[,, || - ||, are replaced by weighted L, L, norms || - |7,
| - |5 respectively. The corresponding inequalities
Ifll, <CIDflly,  Yfew,, (3.6)

where f(a) = 0, analogous to (2.4), are called Hardy type inequalities. The original Hardy’s
inequality is the case p = ¢ > 1, where

[ *
5= [ P = Wl 1< <o
‘0 ok



with the condition f(0) = 0. Here the best constant is C = p/(p — 1). Often Hardy’s
inequality is stated with f in the form

There is considerable interest in Hardy type inequalities, see, e.g., the monograph of Opic
and Kufner [OK90]. The author has made no attempt to translate the various conditions
for the existence of an inequality of the form (3.6) and estimates for the best constant to
when the condition f(a) = 0 is replaced by f(6) = 0 with 6 some point inside the interval
of interest (which has left endpoint a).

Another situation of interest where the argument applies is higher order Wirtinger
inequalities

1fll, <C(b—a)"" > a||D"fll,,  VfeW],

where f satisfies boundary conditions at a single point 8, a < 6 < b, to which could
be added boundardy conditions at the endpoints (same conditions at both endpoints). A
particular case of note is when f vanishes to order n at 6. For § = a, this extremal problem
has recently been investigated by Buslaev [B95].

4. The best constant

In this section, the solution of (2.1) is completed by finding the points A* where the
maximum (3.4) is attained, and by treating the cases p = oo, ¢ = oo using ‘continuity’
arguments. This leads to the main result, which is the following.

Theorem 4.1. Let 0 < p < oo, 1 < ¢ < oo, and a <6 <b. Then, for all f € W[a,b]
satistying

there is the sharp inequality

1

1 1 8—a 411
— )C(p,q) (b —a) "5 | Dfl,, (4.2)

<W -
£l < W o

where 1/2 < W <1 is defined by

(1/241/2 - 8))'*", —1<t<0;

W(t,6) :—{(91+%+(19)1+%)t7 0<t<oo (4.3)

and 0 < C <1 is defined by (2.5).

The inequality (4.2) will be referred to as Schmidt’s inequality (see Section 5).
Inequalities of this type are used in the spectral analysis of certain ordinary differential

equations (see, e.g., Brown, Hinton and Schwabik [BHS96]).
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which is continuous and supported on [8, 1], and, for 0 < 8 < 1, let

f— — EP#(%)’ 0<az<8;
B (2) = {07 oo (4.7)

which is supported on [0, 6].

We now complete the proof of Theorem 4.1, and give the extremals, by finding the
maximum of (4.4) for the various values of p, q.

The case 1 < g <p <

By (4.5), f is convex when p > ¢, and linear when p = ¢, and so it attains its maximum
at an endpoint given by
0, 0<68<1/2
a* 0,1, 6=1/2,p>q
- [71]7 9:1/27]?:(]
1, 1/2<6<1.

Thus, since

max{f,1 -6} =1/2+1(1/2 46|,

we obtain

M(p,q,0) = (1/2+[1/2—6)'F 7 7,  1<q¢<p<oc. (4.8)

. . . 9_‘_ . .
For 0 < 6 < 1/2, ¢ # 1, the corresponding extremal function is EJ7, and this is

the unique extremal upto a multiplication by a constant. Similarly, for 1/2 < # < 1, the
extremal function is Eg;. For §# = 1/2, 1 < ¢ < p, there are two extremal functions

E;/q2+ and E;,’/(,Qf (corresponding to A* = 0,1 respectively). For § =1/2, p=¢ > 1, any

.. ) . 1/24 1/9— .
(nontrivial) linear combination of Ep/q and Ep/q is an extremal.

0 1
Fig. 4.3. Behaviour of the extremal function Egj; for0<f<1/2andp>q>1.



The case 0 < p<g< oo, 1 <g< oo

By (4.5), if p < ¢, then f is concave, and so we need to compute any local maxima of
f. Since the first derivative of f is

Df(4) = ZATTO0FSTR L - 4)E (), (4.9)

f has a stationary point when
AT0% = (1 - A)"(1 - 6)°,

where
a:=1-p/g>0,  B:=p(l+1/p—1/q)>0.
This has one solution (for 0 < 6 < 1)

B (1 79)76/(y
g Ble 4 (1 6) Bl

A* € (0,1).

Thus, f has a maximum at A* given by

(1 g)fﬁ(Pw)/wgﬁ + 976(17w)/w(1 —8)8

A7) = (BB 4 (1 — ) B/o)i-a = <96/(y +(1— 9)6/”> .

and we obtain
M(p,q.0) = (0'TVG D 110 H/G- vy (4.10)
Let f = g+ h given by
g:=GE  G>0, h:=HE" H>0,

P,q’ P,q’

be the extremal function which attains the supremum in (3.3). Then

g 1
/IHN—GW1WEMM—Ai Auww—ﬂﬁlewﬂmmm—lm,
JO .

G AT (1—g) o\ 6 \'tTr
E_<1A* I ) _<19> ‘

Thus, the extremal functions are (scalar multiples of)

so that

o't B £ (1—6) T Bl (4.11)

9
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P

Fig. 4.4. Behaviour of the extremal function f := ' ta—» Ez;; +(1— 9)1+#Egﬂ;
for 0 <A <1/2 and p < q.

The cases p = o0, ¢ =

From (4.8), (4.10) we see that for 0 < p < oo, 1 < ¢ < oo the maximum M(p, g, 6)
depends only on 1/p — 1/q and 6, i.e.,

1 1
M(p7Q79) = W(_ o _79)7
P q

where W (t,80) is defined by (4.3). Tt is easily seen from (2.6) that the extremal functions
do not depend only on 1/p — 1/¢ and . Similary, C(p,q) is not a function of 1/p — 1/q.
Since the solution of (2.1) is a bounded and continuous function of 0 < p < oo,
1 < ¢ < oo, it would be expected the remaining values (p = oo and ¢ = oo0) could be
obtained by taking the appropriate limits. The argument is as follows.
The case p =00, 1 < g < oo. For f € W(; with f(68) = 0, there is the sharp inequality

I1f

1 1

where () < p* < oo is fixed. Since f € W(; C Ly«, for all 0 < p* < oo, the limit of (4.12) as
p* — oo can be taken to obtain

1 1
7l < W2 = 2.8)C (0. ) D1 .

which is sharp, since for each p* < oo an f with ||Df||, = 1 which gives as close to equality
in (4.12) as desired can be chosen.
The case 1 < p < 0o, ¢ = co. For f € WL with f(#) = 0, there is the sharp inequality

11
1fllp < W(= — —.0)C(p,q") | Df
P oq

- (4.13)

10



where 1 < ¢* < oo. As before, the limit as ¢* — oo can be taken to obtain the sharp

inequality
1 1
-8

1Fll» < W(p )C (P, 00) | D f oo

This completes the proof of Theorem 4.1.

Remarks

With a mind to identifying phenomenon that might also hold for other Wirtinger
inequalities of the form (1.1), it is of interest to know when the extremals for (2.1) are
(polynomial) splines. It can be shown that this occurs only when

p=1,¢g=2 (quadratic splines)

p=o00, Oor =00 (linear splines).

The only case where the best constant in (4.2) has been investigated for  # a,b is in
Tikhomirov [T76:§2.5.2], where

the midpoint of the interval, and 1 < p < 00, 1 < ¢ < oco. Tikhomirov used this best
constant in his calculation of the n-width Sn(B;ij), which is given in Theorem 5.9.

For simplicity, suppose that [a,b] = [0,1] and § = 1/2. For this choice of 8, we have
from (4.3), that

1

1 11 5 <

W= =)= . (4.14)
poq 2 (3) 7 7. p>aq,

for0 < p<oo, 1 <qg<oo. For 1 < p<gq < oo, this agrees with the result of Tikhomirov
[T76:p127]. But, for 1 < ¢ < p < oo, Tikhomirov claims the best constant (4.2) is

5C(0.0) (4.15)

rather than the larger constant

I\ e
<§> C(p.q),

given by (4.14). Tikhomirov’s constant (4.15) would be correct, if it could be assumed
that the extremal function was symmetric about § = (a + b)/2 (as it is in the case p < ¢q).
However, as we have seen, for 1 < ¢ < p < oo the extremal function is only supported on
half of the interval [0, 1]. Indeed, we compute that the best constant in (4.2) must be at
least as large as

1/24 1+1 -1
1B (/2P _(1) v

N T \2 C I<g<p<
||DE719,/(72+ (1/2)1/q71||DEp7q||q (p7Q)7 q pi 007

g 2

11



Q=

where 1/2 < (1/2)14—%7 < 1, and this is the best constant.

5. Schmidt’s inequality
There are several inequalities of the form
11
Ifllp <€ (b —a) "7 7|Df|,
where f belongs to some class of functions, with the best constant and extremals related to
C(p,q) and E, , respectively, which are closely related to the following result of Schmidt.
Schmidt’s inequality([Sc40:(4),p302]) 5.1. Let 0 < p < oo, 1 < g < co. Then, for all
fe W(; [a,b] satisfying

fla) = f(b), max f(#) + min f(t) =0, (5.2)

t€fa,b] t€fa,b]

there is the sharp inequality

1 411
Ll < 3C(p.a) (b~ a) > 7D, (5.3)

where C(p, q) is defined by (2.5).

Schmidt’s proof of 5.1 does not use the calculus of variations, but instead uses Holder’s
inequality in a very clever way. Schmidt indicates that this argument can be modified to
obtain other inequalities. The first of these is the following.

Theorem([Sc40:(13),p304]) 5.4. Let 0 < p < 0o, 1 < g < oo. Then, forall f € W [a,b]
satistying

Fa) = £(b) = 0, (5.5)
there is the sharp inequality

1 411
Ll < 5C(P.a) (b~ a)' > 7D, (5.6)

where C(p, q) is defined by (2.5).

This result is stated for 1 < p, ¢ < oo with the value of C(p, q) given incorrectly (due
to a slight error in its proof) in Fink [F74:p408] (see the constant D(1,1,p,q)), and is
stated correctly for 1 < p < oo, 1 < ¢ < oo (together with the extremal functions) but
without proof in Talenti [Ta76:p357] (there it is mentioned as a 1-dimensional analogue
of a Sobolev inequality for functions in W(; (IR™)). Neither author makes reference to

Schmidt [Sc40].

In Schmidt’s statement of Theorem 5.4, the condition (5.5) is given as

fla) = f(b), f has (at least) one zero on [a, b].

12



It is not difficult to see that a variation of the ‘elementary argument’ where f is split by
(3.1) into functions ¢ and h with

can be used, together with Theorem 5.4, to compute the best constant in the inequality

1 411
Ll < 5C(P.a) (b~ a)' > 7D, (5.7)

where f € W(; satisfies
fla) = f(8) = f(b).

More generally, by using similar variations of the ‘elementary argument’ and induction, it
is (in principle) possible to compute the best constant in (5.7) where f € W(; satisfies

f(91):f(92):“‘:f(9n>:07

for some choice
a < 6, <92<<9n§b7

together with the extremal functions, which exist except when ¢ = 1, p # oo, and can be
constructed from E, ,.

A third result mentioned by Schmidt [Sc40:(20),p306] is the inequality that: for f €
W(; with f(a) =0,

I£ll, < C(p.a)(b—a)'*5 5|[Df|,, (5.8)

which was stated earlier as Lemma 2.2.
The special case of this result when

p=gqg=2k an even integer

was given by Hardy and Littlewood [HL32:Th.5] (see also [HLP34:256,p182]) using what
they describe as a proof of ‘type C’ (depends essentially on the calculus of variations).
They refer to the extremal functions Eop 2x (for [a,b] = [0,1]) as hyperelliptic curves and

1 N\ x
C(2k72k>_<2k1> <?smﬁ>.

This example motivated Schmidt to give his proof of ‘type A’ (strictly elementary).
To quote Hardy and Littlewood [HL32] (and [HLP34]): (their) “proof is of ‘type C’ and
(in view of the difficulty of calculating the slope-function) is might be difficult to construct

compute

a much more elementary proof” (either of ‘type B’ or simpler still of ‘type A’). There is
further discussion of the results of Schmidt in Levin and Stechkin’s supplement [L.S48] to
the Russian edition of Hardy, Littlewood and Pdélya’s book on inequalities [HL.P48].

For 1 < p,q¢ < oo Lemma 2.2 is given in [F74:p407]. There C(p,q) is denoted by
C(1,1,p,q) and it is given incorrectly (due to a slight error in the proof). Fink was
unaware of the earlier result of Schmidt.

13



The statement of Lemma 2.2 given by Schmidt is infact slightly stronger. It asserts
the sharp inequality in (5.8) where the condition (2.3) is replaced by

f has (at least) one zero on [a, b

(and the discussion of the extremals shows the sharpness occurs only when the zero is at
a or b). A quantative form of this result is given by our Theorem 4.1.

The constant C(p, ¢) also naturally occurs in the computation of the n-widths of the
set

Bl :={fe W :|Dfl, <1}

in L,, since for 1 < p < ¢ < oo an optimal linear operator of rank n is given by Lagrange
interpolation by piecewise constants (cf (1.2)).

Theorem ([T70]) 5.9. Let [a,b] =[0,1]. Then, for 1 <p <¢q < oo

1 1
sn(By, Ly) = §C(p,q)z, n=1,273,..., (5.10)

where sn(B;ij) denotes the common value of the Kolmogorov, linear and Gel'fand n-
widths. The space F,, consisting of step functions with break points

1 2 n—1
n n 7 n

is an optimal n-dimensional subspace, and the operator L,, of Lagrange interpolation from
F,, at the points

1 3 5) 2n — 1
o’ 2n’ 2n " 2n

is an optimal linear operator of rank n.

(the midpoints of each step)

0 1

Fig. 5.4. Example of the Lagrange interpolant L, f to f from the space of step
functions F,, (n=10).
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