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Abstract

Here we consider the construction of tight frames for rational vector spaces.
This is a subtle question, because the inner products on Qd are not all isomorphic.
We show that a tight frame for Cd can be arbitrarily approximated by a tight frame
with vectors in (Q+ iQ)d, and hence there are many tight frames for rational inner
product spaces. We investigate the “minimal field” for which there is tight frame
with a given Gramian. We then consider the rational vector space given the
cyclotomic field Q(ω), with ω a primitive n–th root of unity. We give a simple
formula for the unique inner product which makes the n–th roots 1, ω, ω2, . . . , ωn−1

into a tight frame for Q(ω). From this, we conclude that the associated “canonical
coordinates” have many nice properties, e.g., multiplication in Q(ω) corresponds
to convolution, which makes them well suited to computation. Along the way, we
give a detailed description of the space of Q–linear dependencies between the n–th
roots, which includes a cyclically invariant tight frame.

Key Words: finite tight frames, vector spaces over the rationals, Gramian, canoni-
cal coordinates, Cayley transform, least squares (minimum norm) solutions, cyclotomic
fields
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1 Introduction

Let H be a d–dimensional real or complex inner product space. A finite sequence of
vectors (fj)j∈J in H is a tight frame for H if (for some A > 0)

f =
1

A

∑

j∈J
〈f, fj〉fj, ∀f ∈ H. (1.1)

These generalisations of orthonormal bases have recently found many applications, e.g.,
signal analysis [GKK01], quantum information theory [RBKSC04] and orthogonal poly-
nomials of several variables [VW05]. One of the key motivations is that for inner product
spaces with additional structure it may be possible for a tight frame to have certain de-
sirable properties which it is impossible for a basis to have. In the infinite dimensional
setting, this has been played out in the theories of wavelets and Gabor systems [Chr03],
[Grö01], to construct systems with good time–frequency localisation.

The theory of finite tight frames is still in its foundational stages [CK13]. There is
an ongoing effort to construct tight frames with certain properties. Most notably, a set
of d2 equiangular lines in Cd [SG10], i.e., d2 unit vectors (fj) in Cd with

|〈fj, fk〉| =
1√
d+ 1

, j 6= k.

Central to such constructions (Zauner’s conjecture, the SIC problem, spherical 2–designs
with the maximal number of vectors) is a description of a subfield of C in which the
inner products lie.

The purpose of this paper is to investigate tight frames for inner product spaces
where the field F is a subfield of C, most notably the rationals F = Q. This is closely
related to the above question of what is the smallest field that a unitary image of a
given frame can lie in (so that symbolic calculations can be done). We motivate these
questions, and our answers to them, by a careful consideration of the Mercedes–Benz
frame (three equally spaced unit vectors in R2). Key results and observations include:

• Inner products on Q–vector spaces may not be isomorphic (unlike those for C

and R). Nevertheless, a tight frame for a rational inner product space is still
determined (up to unitary equivalence) by its Gramian.

• An n×n matrix Q with entries in a subfield F ⊂ C is the Gramian of a tight frame
of n vectors for a d–dimensional inner product space if and only if it is a positive
scalar multiple of a rank d orthogonal projection matrix. Such a tight frame can
be constructed

1. In an F–inner product space, by considering the columns of Q.

2. In Ed, with the Euclidean inner product, where E is possibly larger than F,
by considering the rows of Q.

• A tight frame for Cd can be arbitrarily approximated by one in (Q+ iQ)d.
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• We consider the minimal fields E for which there is a tight frame in Ed (with the
Euclidean inner product) with a given Gramian. This may be larger than the field
generated by the entries of the Gramian.

• We prove certain basic results about the tight frame for the cyclotomic field Q(ω)
(as a rational vector space) obtained from the canonical coordinates of [Wal11].

2 Inner products on rational vector spaces

Rational vector spaces, and inner products on them [ER49], [ER50] have important
applications in algebraic systems theory [For75]. Here we extend real and complex inner
products to vector spaces over a subfield F of C. We show that two such inner products
may not be isomorphic, e.g., when F = Q.

Definition 2.1 An inner product on an F–vector space H is a map 〈·, ·〉 : H×H → F

satisfying

1. 〈x, x〉 ≥ 0, ∀x ∈ H, with 〈x, x〉 = 0 if and only if x = 0.

2. 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉, ∀α, β ∈ F, ∀x, y, z ∈ H.

3. 〈x, y〉 = 〈y, x〉, ∀x, y ∈ H.

We say H is an inner product space over F, or an F–inner product space.

The conjugate–linearity in the second variable implies that F = F (when H 6= 0).

Example 2.1 The Euclidean inner product

〈〈〈x, y〉〉〉 := x1y1 + · · ·+ xdyd, x, y ∈ Cd

restricted to Fd is an inner product on the F–vector space Fd.

Definition 2.2 The Gramian (Gram matrix) of a sequence of vectors (v1, . . . , vn)
in an F–inner product space H is the matrix

[〈vk, vj〉]nj,k=1,

For the Euclidean inner product on Fd, the Gramian is given by

V ∗V = [〈〈〈vk, vj〉〉〉]nj,k=1,

where V is the synthesis map

V = [v1, . . . , vn] : F
n → H : a 7→ a1v1 + · · ·+ anvn,

and V ∗ is the Hermitian transpose of the matrix V .
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Proposition 2.1 All inner products on a d–dimensional F–vector space H have the
form

〈x, y〉 = 〈〈〈[x],M [y]〉〉〉, (2.2)

where M ∈ Fd×d is a positive definite matrix, 〈〈〈·, ·〉〉〉 is the Euclidean inner product, and

[x] = B−1x, B : Fd → H : a 7→ a1w1 + · · · adwd,

are the coordinates of x ∈ H with respect to any fixed basis (w1, . . . , wd) for H. In
particular, the Gramian of a sequence of vectors in H is a positive semidefinite matrix.

Proof: Let K be the closure of F in C, which is either R or C. Let K be the
extension of H to a d–dimensional K–vector space (in the usual way), and

[x]K = B−1
K x, BK : Kd → K : a 7→ a1w1 + · · · adwd.

By a density argument, there is an extension of the inner product 〈·, ·〉 to the K–vector
space K, which we denote by 〈·, ·〉K. Since K is C or R, there is a unique positive definite
matrix M ∈ Kd×d with

〈x, y〉K = 〈〈〈[x]K,M [y]K〉〉〉, x, y ∈ K.

Take x = vj = BKej and y = vk = BKek, to obtain

〈vj, vk〉 = 〈vj, vk〉K = 〈〈〈ej,Mek〉〉〉 = mjk = mkj ∈ F.

Conversely, let B : Fd → H be a fixed basis map, then (2.2) defines a different inner
product on H for each positive definite M ∈ Fd×d.

The Gramian of a sequence of vectors v1, . . . , vn in H is

[〈vk, vj〉] = [〈〈〈[vk],M [vj ]〉〉〉] = [〈〈〈M 1

2B−1vk,M
1

2B−1vj〉〉〉] = W ∗W,

where W = [M
1

2B−1v1, . . . ,M
1

2B−1vn] ∈ Fd×n, and hence is positive semidefinite.

Definition 2.3 We say F–inner product spaces H1 and H2 with inner products 〈·, ·〉j
are isomorphic if there is an invertible F–linear map σ : H1 → H2 with

〈f, g〉1 = 〈σf, σg〉2, ∀f, g ∈ H1.

Theorem 2.1 Inner product spaces H1 and H2 over a subfield F of C are isomorphic if
and only if the Gramian matrices M1 and M2 for any choice of bases are ∗–conjugate,
i.e.,

M1 = C∗M2C, C ∈ Fd×d.

In particular, H1 is isomorphic to Fd (with the Euclidean inner product) if and only if
M1 is the Gramian of a sequence of vectors in Fd.
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Proof: By Proposition 2.1, the inner products have the form

〈x, y〉ℓ = 〈〈〈B−1
ℓ x,MℓB

−1
ℓ y〉〉〉,

where Bℓ : F
d → Hℓ is a basis map, and Mℓ is positive definite with entries

(Mℓ)jk = 〈〈〈ek,Mℓej〉〉〉 = 〈Bℓek, Bℓej〉 ∈ F.

These inner products are equivalent if and only if

〈x, y〉1 = 〈σx, σy〉2 ⇐⇒ 〈〈〈B−1
1 x,M1B

−1
1 y〉〉〉 = 〈〈〈B−1

2 σx,M2B
−1
2 σy〉〉〉

⇐⇒ M1 = C∗M2C, where C = B−1
2 σB1 ∈ Fd×d,

i.e., the Gramians M1 and M2 are ∗–conjugate (the term conjunctive is also used).
Now suppose H2 = Fd (with the Euclidean inner product). Take the standard

orthonormal basis for H2, to obtain the condition M1 = C∗M2C = C∗IC = C∗C, i.e.,
M1 is the Gramian matrix of the columns of C.

Example 2.2 For F1, the F–inner products have the form

〈x, y〉a = a x1y1, a > 0, a ∈ F.

Two such inner products for a = a1, a2 are isomorphic via C = [c11] if and only if

a1 = c11a1c11 = |c11|2a2,

i.e., F has an element with modulus
√

a1
a2
. For example,

〈x, y〉1 = x1y1, 〈x, y〉2 = 2x1y1

do not give isomorphic Q–inner products.

Example 2.3 The inner product on Q2 given by

〈u, v〉 := 〈〈〈u,Mv〉〉〉, M :=

(

1 −1
2

−1
2

1

)

is not isomorphic to the Euclidean inner product, since

M = C∗C, C =

(

x a
y b

)

=⇒ x = −a

2
±

√
3

2
b.

Proposition 2.2 If F∩R is closed under taking square roots, then all F–inner products
on a d–dimensional space are isomorphic.

Proof: LetH be a d–dimensional F–vector space. For any inner product 〈·, ·〉 on
H, the Gram–Schmidt process allows us to construct an orthogonal basis for H, and this
can be normalised, since for any v ∈ H, 〈v, v〉 ∈ F∩R, and so ‖v‖ =

√

〈v, v〉 ∈ F. Hence,
for inner products 〈·, ·〉1 and 〈·, ·〉2 on H, we can find orthonormal bases (v1, . . . , vd) and
(w1, . . . , wd) for H. The map σ : vj 7→ wj is an isomorphism between the inner product
spaces given by 〈·, ·〉1 and 〈·, ·〉2.
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3 Tight frames and their construction from the Gramian

Here we show that Q ∈ Fn×n is the Gramian of a tight frame for a d–dimensional F–inner
product space H if and only if Q is a positive scalar multiple of a rank d orthogonal
projection matrix. We then show how to construct such a tight frame from the columns
of Q, and how to construct a tight frame for Ed, with the Euclidean inner product and
E a field containing F, with Gramian Q from the rows of Q.

Our results are motivated by a careful consideration of the Mercedes–Benz frame
which consists of three equally spaced equal norm vectors in R2, e.g., the columns of

V =

(

1 −1
2

−1
2

0
√
3
2

−
√
3
2

)

, (3.3)

which has Gramian

V ∗V =





1 −1
2

−1
2

−1
2

1 −1
2

−1
2

−1
2

1



 . (3.4)

Figure 1: The Mercedez–Benz frame of three equally spaced vectors with equal length.

The tight frame definition (1.1) extends to an inner product space H over F. By the
polarisation identity, this is equivalent to the more standard definition

‖f‖2 = 1

A

∑

j∈J
|〈f, fj〉|2, ∀f ∈ H.

It follows from (1.1) that a tight frame spans H, and the frame bound A belongs to

F. When A is taken to be 1 (replace fj by
fj√
A
) a tight frame is said to be normalised.

Remark 3.1 If R 6⊂ F, then it may not be possible to normalise a tight frame (fj), on
account of

√
A not being in F. For example, the three equally spaced unit vectors (3.3) lie

in F2, F = Q(
√
3), with A = 3

2
, so that

√
A 6∈ F. Nevertheless, the tight frame expansion

(1.1) allows the identity to be written as a linear combination of rank one orthogonal
projections

I =
∑

j∈J
cjPj, ∀f ∈ H, (3.5)
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where Pj =
fjf

∗

j

‖fj‖2 , cj =
‖fj‖2
A

. The pair (cj), (Pj) is known as a fusion frame [CKL08].

For the three equally spaced unit vectors (3.5) gives

(

1 0
0 1

)

=
2

3

(

1 0
0 0

)

+
2

3

(

1
4

−
√
3
4

−
√
3
4

3
4

)

+
2

3

(

1
4

√
3
4√

3
4

3
4

)

.

Remark 3.2 Tight frames (fj)j∈J for H are characterised by the following variational
condition [Wal03]

∑

j∈J

∑

k∈J
|〈fj, fk〉|2 =

1

d

(

∑

j∈J
〈fj, fj〉

)2

, d = dim(H), (3.6)

where the constant A is given by

dA =
∑

j∈J
‖fj‖2. (3.7)

Thus a tight frame for an F–inner product space H is tight frame for the K–inner product
space K, K = R or C (the closure of F in C), as detailed in the proof of Proposition 2.1,
and for the complexification of K. For example, a tight frame for Qd (with the Euclidean
inner product) is a tight frame for Rd and Cd.

Theorem 3.1 (Characterisation, column construction) An n×n matrix Q with entries
in a subfield F of C is the Gramian of a tight frame for a d–dimensional inner product
space H over F if and only if

P =
d

trace(Q)
Q

is an orthogonal projection matrix of rank d. Moreover, the vectors of the tight frame
may be taken to be the columns of Q, where H = col(Q) ⊂ Fn with

〈·, ·〉 = d

trace(Q)
〈〈〈·, ·〉〉〉.

Proof: (=⇒) Let (fj) be a tight frame for a d–dimensional F–inner product
space H, with Gramian Q. Take f = fℓ in (1.1), then the inner product with fk, to get

fℓ =
1

A

∑

j

〈fℓ, fj〉fj =⇒ 〈fk, fℓ〉 =
1

A

∑

j

〈fk, fj〉〈fj, fℓ〉,

i.e., Q = 1
A
Q2. By (3.7), dA = trace(Q), and so P 2 = P , i.e., P (which is positive

semidefinite) is an orthogonal projection matrix.
(⇐=) Suppose that Q (of size n) has entries in F, and P = d

trace(Q)
Q is a rank d

orthogonal projection matrix. Let H be the d–dimensional subspace of Fn spanned by
(Qej) (the columns of Q), and define an F–inner product on H by

〈f, g〉 := d

trace(Q)
〈〈〈f, g〉〉〉, ∀f, g ∈ H.
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Since f = Pf , f ∈ H, we can expand

f = Pf = P
(

∑

j

〈〈〈Pf, ej〉〉〉ej
)

=
∑

j

〈〈〈f, Pej〉〉〉Pej =
d

trace(Q)

∑

j

〈f,Qej〉Qej.

Thus (Qej) is a tight frame for H, whose Gramian matrix has entries

〈Qej, Qek〉 =
d

trace(Q)
〈〈〈Qej, Qek〉〉〉 = 〈〈〈Pej, Qek〉〉〉 = 〈〈〈ej, PQek〉〉〉 = 〈〈〈ej, Qek〉〉〉 = Qjk,

i.e., there is tight frame for H with Gramian Q.

Corollary 3.1 If the Gramian of a tight frame has rational entries, then there is a
Q–inner product space and a tight frame for it which has this Gramian.

Example 3.1 Let Q be the Gramian (3.4) of three equally spaced vectors in R2. This
has rational entries, and so it columns

w1 =





1
−1

2

−1
2



 , w2 =





−1
2

1
−1

2



 , w3 =





−1
2

−1
2

1



 ,

form an equiangular tight frame for H = spanQ{w1, w2, w3} with the Q–inner product
〈·, ·〉 = 2

3
〈〈〈·, ·〉〉〉, which has Gramian Q. For example,

〈w1, w1〉 =
2

3
〈〈〈





1
−1

2

−1
2



 ,





1
−1

2

−1
2



〉〉〉 = 1, 〈w1, w2〉 =
2

3
〈〈〈





1
−1

2

−1
2



 ,





−1
2

1
−1

2



〉〉〉 = −1

2
.

We can represent 〈·, ·〉 as in inner product on Q2 using (2.2). Choose w1, w2 (the
first two columns of Q) as a basis for H, so that

B : Q2 → H : a 7→ a1w1 + a2w2, [w1] =

(

1
0

)

, [w2] =

(

0
1

)

, [w1] =

(

−1
−1

)

,

and

〈x, y〉 = 〈〈〈[x],M [x]〉〉〉, M =

(

1 −1
2

−1
2

1

)

,

where [x] = B−1x, and M was calculated by

〈wj, wk〉 = 〈〈〈[wj],M [wk]〉〉〉 = 〈〈〈ej,Mek〉〉〉 = mjk, 1 ≤ j, k ≤ 2.

We now show how to construct (realise) a tight frame with a given Gramian in
Euclidean space.

Theorem 3.2 (Row construction) Let Q ∈ Cn×n be a positive scalar multiple of an
orthogonal projection matrix of rank d. The columns of V = [v1, . . . , vn] ∈ Cd×n are a
tight frame for Cd with Gramian Q if and only if the rows of V are an orthogonal basis
for the row space of Q and have length

√
A, A = trace(Q)/d.
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Proof: Suppose that (vj) is a tight frame. The tight frame condition (1.1) can
be written in matrix form as I = 1

A
V V ∗, i.e., the rows of V are orthogonal with length√

A. The condition V V ∗ = AI implies that the row space of the Gramian V ∗V satisfies

row(V ∗V ) ⊂ row(V V ∗V ) = row(AV ) = row(V ) ⊂ row(V ∗V ),

and hence is equal to the row space of V .
Conversely, suppose that Q is a nonzero scalar multiple of an orthogonal projection

of rank d, and V has orthogonal rows of length
√
A, A = 1

d
trace(Q) which span row(Q).

Then

(
1

A
V ∗V )2 =

1

A2
V ∗(V V ∗)V =

1

A2
V ∗(AI)V =

1

A
V ∗V,

so that 1
A
V ∗V is an orthogonal projection matrix, with the same row space, and hence

column space, as the orthogonal projection P = 1
A
Q, and hence they are equal, i.e.,

Q = V ∗V .

If Q ∈ Cn×n is a positive scalar multiple of an orthogonal projection matrix, then we
call any V = [v1, . . . , vn] ∈ Cd×n (or the tight frame given by its columns) with Q = V ∗V
a realisation of the “Gramian” Q (in the field E generated by the entries of V ).

Example 3.2 Let Q be the Gramian (3.4) of three equally spaced vectors in R2. Then
applying Gram–Schmidt to the first two rows (1,−1

2
,−1

2
), (−1

2
, 1,−1

2
) of Q gives

V =

[

1 −1
2

−1
2

0
√
3
2

−
√
3
2

]

, (3.8)

with Q = V ∗V . Here the entries of the vectors lie in the field Q(
√
3).

Example 3.3 Consider the four equiangular unit vectors in C2 given by the columns of

V = [v, Sv,Ωv, SΩ],

where

v :=
1√
6

[ √

3 +
√
3

1√
2
(1 + i)

√

3−
√
3

]

, S :=

(

0 1
1 0

)

, Ω :=

(

1 0
0 −1

)

.

This tight frame has Gramian

Q =











1 1√
3

1√
3

− i√
3

1√
3

1 − i√
3

1√
3

1√
3

i√
3

1 − 1√
3

i√
3

1√
3

− 1√
3

1











.

Applying Gram–Schmidt to the first two rows of Q gives the tight frame

W =

[

1 1√
3

1√
3

− i√
3

0
√
2√
3

− i√
2
− 1√

2
√
3

1√
2
+ i√

2
√
3

]

,

9



which has Gramian Q. The entries of the vectors lie in the field

Q(
√
3, i,

√
2) = Q(

√
3, i,

√

3 +
√
3) = Q(

√
d, a), d = 2, a =

√

(d− 3)(d+ 1) =
√
−3.

The presentation Q(
√
d, a) fits into the general theory for SICs proposed by [AYAZ13].

There is no tight frame of three equally spaced unit vectors in Q2 with the Euclidean
inner product, i.e., having the Gramian (3.4). This follows, since if (a, b) and (x, y) are
equally spaced unit vectors (in Q2), then

〈〈〈
(

a
b

)

,

(

x
y

)

〉〉〉 = ax+ by = −1

2
=⇒ x = −a

2
±

√
3

2
b. (3.9)

Thus the smallest field F for which there are three equally spaced unit vectors in F2 is
Q(

√
3), we will investigate this “minimal field” next (Section 4). We will also show that

there are tight frames in Q2 which arbitrarily approximate the three equally spaced unit
vectors (Section 5).

4 The minimal field of a tight frame

Given a d–dimensional tight frame with n × n Gramian Q, we call the field generated
by its inner products (the entries of Q) the Gramian field. If F is the Gramian field,
then there exists an inner product on Fn and vectors in Fn with this Gramian (Theorem
3.1). Scaling the vectors in a frame can change the Gramian field. The base field of
a tight frame is the Gramian field of the associated normalised tight frame, which has
Gramian

P =
d

trace(Q)
Q.

The base field is

• The unique smallest Gramian field that can be obtained by multiplying a frame
by a nonzero scalar.

• The field generated by the ratios of the entries of the Gramian (which are invariant
under scaling).

• The Gramian field when any entry of the Gramian is rational.

For the three equally space unit vectors with Gramian




1 −1
2

−1
2

−1
2

1 −1
2

−1
2

−1
2

1



 ,

the Gramian field and the base field are Q.
We define a minimal field for a d–dimensional frame with Gramian Q to be a

smallest field E for which there is a realisation of Q, i.e., a V ∈ Ed×n with

Q = V ∗V.

We observe that

10



• Minimal fields exist, and they contain the base field (Theorem 3.2).

• Minimal fields need not be unique, e.g., if Q = [2], then V = [
√
2] and V = [1 + i]

are realisations of Q, which give minimal fields Q(
√
2) and Q(i).

Example 4.1 For the three equally spaced unit vectors, the calculation (3.9) shows that
the base field is Q, and that there is a unique minimal field Q(

√
3).

This argument extends to the n ≥ 3 equally spaced unit vectors in R2 given by the
columns of

V =

[

1 cos θ cos 2θ · · · cos(n− 1)θ
0 sin θ sin 2θ · · · sin(n− 1)θ

]

, θ :=
2π

n
.

Since cos jθ cos kθ + sin jθ sin kθ = cos(j − k)θ, the Gramian matrix is given by

Q = V ∗V = [cos(j − k)θ]nj,k=1, (4.10)

and so the base field is Q(cos θ). For unit vectors (a, b) and (x, y), we have

〈〈〈
(

a
b

)

,

(

x
y

)

〉〉〉 = ax+ by = cos θ =⇒ x = (cos θ)a± (sin θ)b, (4.11)

and so a minimal field for the n equally spaced vectors is Q(cos θ, sin θ), θ = 2π
n
.

Example 4.2 For the four equiangular unit vectors of Example 3.3, the base field is
Q(

√
3, i), and since V and W give realisations, a minimal field is contained within

Q(
√
2,
√
3, i). Left multiplying W by the unitary matrix U =

(

1 0
0 1√

2
(1 + i)

)

gives the

realisation

UW =

[

1 1√
3

1√
3

− i√
3

0 1+i√
3

1−i
2

− 1+i

2
√
3

1+i
2

+ i−1
2
√
3

]

,

and so we conclude that the base field Q(
√
3, i) is the unique minimal field. This reali-

sation of the d = 2 SIC is new: all the other known realisations are in Q(
√
2,
√
3, i).

The Example 4.2 shows that a realisation of some Q obtained by Gram–Schmidt
orthogonalisation of its rows need not give a minimal field, even if it is unique. This is
still the case if symmetric (Löwdin) Gram–Schmidt is used, e.g., applying this to the
first two rows of the W in Example 4.2 gives the realisation

1

6

[
√

18 + 6
√
6
√

18− 6
√
6

√

9 + 3
√
6 + i

√

9− 3
√
6 −

√

9− 3
√
6− i

√

9 + 3
√
6

√

18− 6
√
6
√

18 + 6
√
6 −

√

9− 3
√
6− i

√

9 + 3
√
6

√

9 + 3
√
6 + i

√

9− 3
√
6

]

The following is another example.

Example 4.3 Consider the harmonic frame [CW11] of three vectors for C2 given by
the columns of

W =

[

1 1 1
1 ω ω2

]

, ω := e
2πi
3 = −1

2
+

√
3

2
i.

11



Gram–Schmidt applied to the Gramian

Q = W ∗W =





2 ω + 1 −ω
−ω 2 ω + 1
ω + 1 −ω 2





gives the realisation

V =

[√
2 ω+1√

2
−ω√
2

0
√
3√
2

√
3√
2
(ω + 1)

]

.

The entries of V generate the field Q(
√
2, ω), which is not a minimal field, since the

entries of W generate the base field Q(ω), which is therefore the unique minimal field.

In view of these examples, finding a minimal field amounts to finding an orthogonal
basis of vectors (of a fixed length

√
A) for the d–dimensional subspace row(Q) of Cn

with components in as small as possible field. This appears to be a difficult problem in
general.

It is interesting to observe that Gram–Schmidt applied to the rows of the Gramian
does gives the minimal field for n equally spaced unit vectors.

Example 4.4 Applying Gram–Schmidt to the first two rows

w1 = (1, cos θ, cos 2θ, . . .), w2 = (cos θ, 1, cos θ, cos 2θ, . . .),

of the Gramian (4.10) for n equally spaced unit vectors gives the following row which is
orthogonal to w1

w′
2 := w2 − (cos θ)w1 = (0, 1− cos θ cos θ, cos θ − cos θ cos 2θ, cos 2θ − cos θ cos 3θ, . . .).

Since 1− cos2 θ = sin2 θ and (w2)1 = 0, the rows w1 and (1/ sin θ)w′
2 are an orthogonal

basis for col(Q) with length
√
A. The corresponding V with these rows has components

in Q(cos θ, sin θ), which is a minimal field.

5 The density of rational frames

The variational condition (3.6) implies that the V = [v1, . . . , vd] ∈ Cd×n giving tight
frames form an algebraic variety [CS13]. The subvariety obtained by imposing the equal
norm condition ‖v1‖ = · · · = ‖vn‖ is of particular interest for applications, e.g., [CMS13]
considers its path connectedness.

Here we show that the rational points are dense on the algebraic variety of of tight
frames, i.e., each tight frame of n vectors for Cd can be arbitrarily well approximated by
a tight frame with vectors in (Q+ iQ)d. This a nontrivial result, since the perturbation
of a tight frame is not a tight frame (in general).

In view of Theorems 3.1 and 3.2, up to a scalar, a tight frame V = [v1, . . . , vn] ∈ Cd×n

is equal to a d× n submatrix of an n× n unitary matrix. Thus to approximate a tight
frame by one with entries in Q, it suffices to approximate an appropriate unitary matrix
by one with entries in Q. This can be done using the Cayley transform (cf. [LO91]).

12



Let A ∈ Cn×n be skew Hermitian, i.e.,

A∗ = −A.

Then A+ I is invertible, and

U :=
I − A

I + A

is a unitary matrix, called the Cayley transform of A. If U is unitary, and does not
have −1 as an eigenvalue (so that I + U is invertible), then

A :=
I − U

I + U

is skew Hermitian. These maps are inverses of each other, and so the unitary matrices
(without eigenvalue −1) can be parametrised by the skew Hermitian matrices. Cayley’s
original presentation (1846) was in the real case, where the skew Hermitian matrices are
called skew symmetric matrices, and unitary matrices are called orthogonal matrices.

Theorem 5.1 (density) Each tight frame V = [v1, . . . , vn] for Cd can be approximated
arbitrary closely by one with vectors in (Q+ iQ)d.

Proof: Suppose, without loss of generality, that V is normalised (so that its
rows are orthonormal). Extend the orthonormal rows of V to obtain a unitary matrix U .
We can ensure that U does not have eigenvalue −1 by scaling the vectors vj (columns of
V ) and the rows added to obtain U if necessary. Let A be the (inverse) Cayley transform
of U . Since A is skew Hermitian, it can be parametrised by its its 1

2
n(n − 1) strictly

upper triangular entries, and its n purely imaginary diagonal entries. In the case of
real matrices (A is skew symmetric) this reduces to 1

2
n(n− 1) real parameters. Taking

the Cauchy transform of such a parametrised matrix gives a unitary matrix with entries
in the same field as the parameters. We can therefore approximate the parameters
as closely as desired by elements in Q + iQ (which is dense in C), and the transform
of the skew Hermitian matrix Ã given by these approximate parameters is a unitary
matrix Ũ , which arbitrarily approximates the unitary matrix U . If the first d rows of
U are a normalised tight frame V , then the first d rows Ũ are a normalised tight frame
Ṽ ∈ (Q+ iQ)d×n, which arbitrarily closely approximates V .

We now illustrate the proof of Theorem 5.1 for the tight frame of three equally
spaced vectors. The 3× 3 skew symmetric matrices A have three real parameters

A =





0 a b
−a 0 c
−b −c 0



 , a, b, c ∈ R.

The Cauchy transform is the symmetric matrix

U =
I − A

I + A
=







1−a2−b2+c2

1+a2+b2+c2
−2(a+bc)

1+a2+b2+c2
2(ac−b)

1+a2+b2+c2
2(a−bc)

1+a2+b2+c2
1−a2+b2−c2

1+a2+b2+c2
−2(c+ab)

1+a2+b2+c2
2(ac+b)

1+a2+b2+c2
−2(ab−c)

1+a2+b2+c2
1+a2−b2−c2

1+a2+b2+c2






. (5.12)

13



Taking any 2 × 3 submatrix V of the above U gives a parametrisation by (a, b, c) ∈ R3

of the normalised tight frames of three vectors for R2. Conversely, starting with the
particular normalised tight frame V of three equally spaced vectors, we may extend it
to a unitary U , as follows

V =

√
2√
3

(

1 −1
2

−1
2

0
√
3
2

−
√
3
2

)

−→ U =







√
2√
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2

1√
3

1√
3

1√
3






.

Applying the (inverse) Cauchy transform to U gives the parameter values

a = −2−
√
3 +

√
2
√
3 +

√
2, b =

√
3−

√
2, c =

√
2− 1.

We can approximate these to 5 decimal places by rationals

ã ≈ 13165

100000
, b̃ ≈ 31784

100000
, c̃ ≈ 41421

100000
.

The corresponding skew symmetric matrix and its Cauchy transform are

Ã =





0 2633
20000

3973
12500

− 2633
20000

0 41421
100000

− 3973
12500

− 41421
100000

0



 , Ũ =





5266079680
6449619561

−2633025064
6449619561

−2633092535
6449619561

− 25064
6449619561

4560603095
6449619561

−4560536360
6449619561

3723707465
6449619561

3723663640
6449619561

3723697664
6449619561



 .

Taking the first two rows of Ũ gives the tight frame

Ṽ =

[

5266079680
6449619561

−2633025064
6449619561

−2633092535
6449619561

− 25064
6449619561

4560603095
6449619561

−4560536360
6449619561

]

, (5.13)

which approximates the three equally spaced vectors of V to 5 decimal places.
Given Theorem 5.1, a natural question is whether the tight frames with rational

entries are dense in the algebraic varieties of equal norm and unit norm tight frames.
The answer for real frames is no, as we now explain. Up to multiplication of the vectors
by ±1, all tight frames of three vectors for R2 are given by the 2 × 3 submatrix V of
the U of (5.12) given by its first two rows. These vectors have equal norms if and only
if the entries of the third row of U have equal moduli. Imposing this condition implies
that these entries must be ± 1√

3
. This in turn implies that V is given by a finite number

of choices, each indexed by a single variable a, e.g.,

V =





a2−4a+2
√
3a−1

(−3+
√
3)(1+a2)

−2a2+
√
3a2+2∗a+2−

√
3

(−3+
√
3)(1+a2)

−(2a−1+a2)(
√
3−1)

(−3+
√
3)(1+a2)

−2a2+
√
3a2−2a+2−

√
3

(−3+
√
3)(1+a2)

a2+4a−2
√
3a−1

(−3+
√
3)(1+a2)

−(a2−2a−1)(
√
3−1)

(−3+
√
3)(1+a2)



 .

For each one of these, the inner product between the vectors (scaled to unit length)
is ±1

2
, and so it follows by a variation of (3.9b) that a cannot be chosen so that V

has all entries rational. Thus tight frames with rational entries are not dense in the
equal norm and unit norm tight frames of three vectors for R2. Alternatively, the above
calculation shows that there is just one equal norm tight frames of three vectors for R2

up to projectively unitary equivalence, namely the three equally spaced vectors, which
we already know do not have Q as a minimal field.
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6 Canonical coordinates for cyclotomic fields

Let ω be the primitive n–th root of unity

ω := e
2πi
n .

The cyclotomic field Q(ω) is a Q–vector space of dimension d = ϕ(n), where ϕ is the
Euler Phi function. The number of primitive n–th roots is ϕ(n), but they do form a basis
forQ(ω) in general, e.g., the primitive 4–th roots are±i, which areQ–linearly dependent.
For n square free the primitive n–th roots are a basis. When the primitive roots are
not a basis, bases with additional properties can be constructed in a noncanonical way.
Most prominently used are the integral bases (each element of the ring of integers has
its coefficients in Z), and power bases (these have the form {1, z, z2, · · · , , zd−1}).

A natural spanning sequence for Q(ω) is given by the n–th roots themselves. Here
we outline how Q(ω) can be endowed with a unique Q–inner product for which the n–th
roots are a tight frame. The corresponding coordinates naturally inherit the geometric
structure of the roots, e.g., multiplication by ω corresponds to a cyclic shift.

Given a finite spanning set Φ = (vj) for an F–vector space X, a vector x ∈ X may
be written as a linear combination

x = c1v1 + · · ·+ cnvn, c1, . . . , cn ∈ F.

The set of such (cj) is an affine subspace of Fn, which consists of a single point (the
coordinates) when (vj) is a basis, and infinitely many points otherwise. We call a ∈ Fn

a dependence of Φ, for short a ∈ dep(Φ) if

a1v1 + · · ·+ anvn = 0.

For F a subfield C which is closed under conjugation, [Wal11] showed there is a
unique choice of (cj) with minimal ℓ2–norm, called the canonical coordinates, denoted
by c(x) = cΦ(x). We now investigate these coordinates for the spanning sequence

Φ = (ωj)j∈Zn = (1, ω, ω2, · · · , ωn−1).

for the Q–vector space Q(ω), which we refer to as “the canonical coordinates for Q(ω)”.
For simplicity, we index the canonical coordinates cj(z) of z ∈ Q(ω) by j ∈ Zn. For

z = a0 + a1ω + · · ·+ an−1ω
n−1, a0, . . . , an−1 ∈ Q,

we have

ωz = a0ω + a1ω
2 + · · ·+ an−1ω

n, z = a0 + a1ω
n−1 + · · ·+ an−1ω,

and so the canonical coordinates satisfy

cj(ωz) = cj+1(z), (6.14)

cj(z) = c−j(z), (6.15)
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i.e., multiplication by ω corresponds to a forward cyclic shift of coordinates, and complex
conjugation to the permutation j 7→ −j of the indices.

Let µ be the Möbius Function

µ(n) :=











1, n = 1;

(−1)n, n is square free;

0, otherwise

which satisfies
∑

j∈Z∗

n

ωj = µ(n). (6.16)

Theorem 6.1 (Calculation). Suppose that a ∈ Qn are coordinates for z ∈ Q(ω) with
respect to Φ = (1, ω, ω2, · · · , ωn−1), i.e.,

z = a0 + a1ω + a2ω
2 + · · ·+ an−1ω

n−1,

then the canonical coordinates are given by

c(z) = cΦ(z) = PΦa,

where PΦ is the rank d = ϕ(n) orthogonal projection matrix, with kernel dep(Φ), given
by

PΦ =
1

n

∑

j∈Z∗

n

χjχ
∗
j , χj := (1, ωj, ω2j, . . . , ω(n−1)j)T , (6.17)

which has entries

(PΦ)jk =
1

n

∑

a∈Z∗

n

ωa(j−k) =
1

n
ϕ(g)µ

(n

g

)

, g := gcd(j − k, n).

Proof: In [Wal11], it was shown that such a PΦ is given by

PΦ = (ΛV )+ΛV, V : Qn → Q(ω) : a 7→ a1 + a1ω + · · ·+ an−1ω
n−1,

where Λ = (λk)
m
k=1 : Q(ω) → Qm is any injective linear map, i.e., λ1, . . . , λm span the

algebraic dual of Q(ω), and A+ is the pseudoinverse of A. Without giving an explicit
basis for Q(ω), it is not immediately obvious what the Q–linear functionals on Q(ω) are,
and so we show that PΦ must have the form suggested.

Since the columns of PΦ are the canonical coordinates of 1, ω, . . . , ωn−1, respectively,
it follows from (6.14) that PΦ is a circulant matrix, and hence it is diagonalisable by the
Fourier matrix (characters of the cyclic group of order n), i.e.,

PΦ =
1

n

∑

j∈Zn

λjχjχ
∗
j ,

where λj are the eigenvalues. Since PΦ is a rank d orthogonal projection, exactly d of
the eigenvalues are 1, with the others being 0. This motivates the formula in (6.17),
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indeed it gives a rank d orthogonal projection, and it only remains to show it has the
same kernel as PΦ, i.e., dep(Φ). Suppose that a ∈ dep(Φ), i.e.,

χ∗
−1a = a0 + a1ω + · · · an−1ω

n−1 = 0,

then applying the Galois action ω−1 7→ ωj, j ∈ Z∗
n, which fixes Q, gives

χ∗
ja = a0 + a1ω

−j + · · ·+ an−1ω
−(n−1) = 0,

and so we have

ker(PΦ) = dep(Φ) ⊂ ker
( 1

n

∑

j∈Z∗

n

χjχ
∗
j

)

.

Both of the subspaces above have dimension n− d, so they are equal, which establishes
the formula (6.17).

Evaluating entries gives the Ramanujan sum

(PΦ)jk = e∗j
1

n

∑

a∈Z∗

n

χaχ
∗
aek =

1

n

∑

a∈Z∗

n

ω−ake∗jχa =
1

n

∑

a∈Z∗

n

ωa(j−k).

Using (6.16), and ϕ(n) = ϕ(g)ϕ(n
g
), this can be simplified to

1

n

∑

a∈Z∗

n

ωag
j−k
g =

1

n

∑

a∈Z∗

n

ωag =
1

n
ϕ(g)

∑

b∈Z∗

n/g

(ωg)b =
1

n
ϕ(g)µ

(n

g

)

.

The argument above shows that the complementary orthogonal projection QΦ, onto
dep(Φ), is given by

QΦ = I − PΦ =
1

n

∑

j 6∈Z∗

n

χjχ
∗
j . (6.18)

Example 6.1 For n = 2k the canonical decomposition of ωj is

ωj =
1

2
ωj − 1

2
ωj+n

2 .

More generally, for n = pk, p a prime, the canonical decomposition of ωj is

ωj =
1

p

{

(p− 1)ωj − ωj+n
p − ωj+2n

p − · · · − ωj+(p−1)n
p
}

.

These canonical coordinates have norm

‖c(ωj)‖2 =
1

p

√

(p− 1)2 + (p− 1) =

√

1− 1

p
< 1.
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Proposition 6.1 The canonical coordinates satisfy

c(αx+ βy) = αc(x) + βc(y), α, β ∈ Q, x, y ∈ Q(ω), (6.19)

c(xy) = c(x) ∗ c(y), x, y ∈ Q(ω), (6.20)

where a ∗ b is the cyclic convolution of a and b over Zn, which is given by

(a ∗ b)k :=
n−1
∑

j=0

ajbk−j.

Proof: The first is immediate. For the second, observe that if M is a circulant
matrix (such as PΦ), then

M(a ∗ b) = (Ma) ∗ b = a ∗ (Mb).

Let a, b ∈ Qn be coordinates for x, y, then

xy =
(

∑

s

asω
s
)(

∑

r

brω
r
)

=
∑

s

∑

r

asbrω
s+r =

∑

k

∑

j

ajbk−jω
k =

∑

k

(a ∗ b)kωk,

so that a ∗ b are coordinates for xy, and we have

c(xy) = PΦ(a ∗ b) = (PΦa) ∗ b = c(x) ∗ b = c(x) ∗ c(y),

where for the last equality, we made the particular choice b = c(y).

Example 6.2 The orthogonal projection matrices PΦ for n = 3, 4, 5 are

1

3





2 −1 −1
−1 2 −1
−1 −1 2



 ,
1

4









2 0 −2 0
0 2 0 −2
−2 0 2 0
0 −2 0 2









,
1

5













4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4













.

We can now define a Q–inner product on Q(ω) which makes the n–th roots of unity
a tight frame.

Proposition 6.2 (normalised tight frame) The unique inner product on Q(ω) for which
the n–th roots Φ are a normalised tight frame is given by

〈x, y〉 := 〈〈〈c(x), c(y)〉〉〉, (6.21)

i.e., the Euclidean inner product between the canonical coordinates. This satisfies

〈xy, z〉 = 〈y, xz〉, (6.22)

〈z, z〉 = ϕ(n)

n
|z|2. (6.23)

In particular, multiplication by any z ∈ Q(ω) of unit modulus is a unitary operation.
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Proof: The existence of a unique inner product on Q(ω) making the n–th roots
into a normalised tight frame, which is given by (6.21), follows from [Wal11] (Theorem
4.9).

We now prove (6.22) and (6.23). In view of (6.15) and (6.20), the first amounts to
showing

〈〈〈a ∗ b, w〉〉〉 = 〈〈〈b, ã ∗ w〉〉〉, ã = (a−j),

where a = c(x), b = c(y) and w = c(z). This holds for all a, b, w by direct calculation:

〈〈〈a ∗ b, w〉〉〉 =
∑

k

(

∑

j

ajbk−j

)

wk =
∑

j

∑

k

ajbk−jwk,

〈〈〈b, ã ∗ w〉〉〉 =
∑

k

bk

(

∑

j

a−jwk−j

)

=
∑

j

∑

k

ajbkwk+j =
∑

j

∑

k

ajbk−jwk.

Finally, since |z|2 ∈ Q, we have

〈z, z〉 = 〈zz, 1〉 = 〈|z|21, 1〉 = |z|2〈1, 1〉.

In particular, all the n–roots have the same norm, and so the condition (3.7) for the
normalised tight frame Φ (A = 1) gives

dim(Q(ω)) = ϕ(n) =
∑

j

〈ωj, ωj〉 = n〈1, 1〉.

Combining these gives (6.23).

Remark 6.1 In general, this inner product is different from the one induced by viewing
the n–th roots of unity as vectors in R2 (with the Euclidean inner product), which gives
a tight frame for R2. For example, when d = 5

〈1, ω〉 = −1

5
, 〈〈〈

(

1
0

)

,

(

cos 2π
5

sin 2π
5

)

〉〉〉 = cos
2π

5
6∈ Q.

Here the coordinates for 1 with the Euclidean norm (minimising 〈〈〈c, c〉〉〉 over c ∈ Rn),
the canonical coordinates (minimising 〈〈〈c, c〉〉〉 over c ∈ Qn), and coordinates given by
1 = 1.1 + 0ω + · · ·+ 0.ωn−1 are













2
5

2
5
cos 2π

5
2
5
cos 4π

5
2
5
cos 6π

5
2
5
cos 8π

5













, c(1) =













4
5

−1
5

−1
5

−1
5

−1
5













,













1
0
0
0
0













,

which have norms

2

5

√

1 + 2 cos2
2π

5
+ 2 cos2

4π

5
≈ 0.63246,

2√
5
≈ 0.89442, 1.
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Example 6.3 We observe that

ωj is orthogonal to ωk ⇐⇒ µ
(n

g
) = 0, g = gcd(j − k, n),

and so two n–th roots cannot be orthogonal if n is square free.

Canonical bases for Q(ω) for efficient computation were considered in [Bos90]. In
particular, from these representations it is immediately apparent what is the small cyclo-
tomic field an element lies in. The following example indicates how similar conclusions
can be drawn from our canonical coordinates.

Example 6.4 Let n = 8, ω =
√
i = e

2πi
8 . Then Q(ω) is 4–dimensional, with cyclotomic

subspaces
Q ⊂ Q(i) ⊂ Q(

√
i).

We have the canonical coordinates

c(1) =

























1
2

0
0
0
1
2

0
0
0

























, c(i) = c(ω2) =

























0
0
1
2

0
0
0
1
2

0

























, c(
√
i) = c(ω) =

























0
1
2

0
0
0
1
2

0
0

























, c(i
√
i) = c(ω3) =

























0
0
0
1
2

0
0
0
1
2

























.

Therefore one can determine what is the smallest cyclotomic subfield of Q(
√
i) a given

element lies in by considering which of its canonical coordinates are zero.

Theorem 6.2 (Irreducibility) For any nonzero z ∈ Q(ω), the vectors (z, ωz, . . . , ωn−1z)
are a tight frame for Q(ω), i.e.,

x =
1

|z|2
∑

j∈Zn

〈x, ωjz〉ωjz, ∀x ∈ Q(ω). (6.24)

In particular, the natural action of the cyclic group Cn = 〈a〉 on Q(ω) on the Q–vector
space Q(ω) given by a · ωj = ωj+1 is irreducible.

Proof: Using (6.22) and the fact (1, ω, . . . , ωn−1) is a normalised tight frame,
we calculate

∑

j

〈x, ωjz〉ωjz =
(

∑

j

〈zx, ωj〉ωj
)

z = (zx)z = |z|2x.
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Let S be the (forward) cyclic shift operator on Qn, which is given by

Sej := ej+1, j ∈ Zn,

and defines a natural action of Cn = 〈a〉 on Qn via

a · v = Sv.

The condition (6.14) for canonical coordinates can be written

c(ωz) = Sc(z).

We denote by can(Φ) the subspace Qn given by the canonical coordinates

can(Φ) := ran(PΦ) = {cΦ(x) : x ∈ Q(ω)}.
The canonical coordinates can(Φ) and the dependencies dep(Φ) are orthogonal shift
invariant subspaces of Qn. It follows from (6.24), that the action of S on can(Φ) is
irreducible.

Corollary 6.1 The shifts of any nonzero b ∈ can(Φ) are a tight frame for can(Φ), i.e.,

a =
ϕ(n)

n

1

〈〈〈b, b〉〉〉
∑

j∈Zn

〈〈〈a, Sjb〉〉〉Sjb, ∀a ∈ can(Φ).

The structure of the space dep(Φ) of linear dependencies between the n–roots is more
complicated than that of can(Φ). For n not a prime, the there is a proper 1–dimensional
shift invariant subspace spanned by (1, 1, . . . , 1). Nevertheless, we are able to give an
single linear dependence aΦ whose shifts give a tight frame for dep(Φ).

Theorem 6.3 Let aΦ ∈ Zn be n times the first column of QΦ, the orthogonal projection
matrix onto dep(Φ), i.e.,

aΦ =
∑

j 6∈Z∗

n

χjχ
∗
j .

Then the shifts of aΦ are a tight frame for dep(Φ), i.e.,

x =
n− ϕ(n)

n

1

〈〈〈aΦ, aΦ〉〉〉
∑

j∈Zn

〈〈〈x, SjaΦ〉〉〉SjaΦ, ∀x ∈ dep(Φ). (6.25)

Proof: By (6.18), QΦ is the circulant matrix given by

1

n

∑

j 6∈Z∗

n

χjχ
∗
j =

1

n
[aΦ, SaΦ, S

2aΦ, . . . , S
n−1aΦ].

By Theorem 3.1, its columns are a normalised tight frame for its range dep(Φ), i.e.,

x =
1

n2

∑

j∈Zn

〈〈〈x, SjaΦ〉〉〉SjaΦ, ∀x ∈ dep(Φ).

The condition (3.7) for normalised tight frames gives

dim(dep(Φ)) = n− ϕ(n) =
∑

j∈Zn

〈〈〈 1
n
SjaΦ,

1

n
SjaΦ〉〉〉 =

1

n
〈〈〈aΦ, aΦ〉〉〉.

Combining these gives (6.25).
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Calculations suggest that the first n− φ(n) columns of QΦ are a basis for dep(Φ).
There is a large body of research on the dependencies (over Z) of the n–th roots

of unity, largely concerned with finding vanishing sums with minimal numbers of terms
(cf. [LL00], [Ste08]). To the best of our knowledge the spanning sequence {SjaΦ}j∈Zn is
new.

Example 6.5 For n = 6, Z∗
6 = {1, 5}, and so PΦ = 1

6
(χ1χ

∗
1 + χ5χ

∗
5) and QΦ = I − PΦ

are given by

PΦ =
1

6

















2 1 −1 −2 −1 1
1 2 1 −1 −2 −1
−1 1 2 1 −1 −2
−2 −1 1 2 1 −1
−1 −2 −1 1 2 1
1 −1 −2 −1 1 2

















, QΦ =
1

6

















4 −1 1 2 1 −1
−1 4 −1 1 2 1
1 −1 4 −1 1 2
2 1 −1 4 −1 1
1 2 1 −1 4 −1
−1 1 2 1 −1 4

















.

Thus aΦ = (4,−1, 1, 2, 1,−1)T , and the dependencies between the roots can be expressed
as

4ωj − ωj+1 + ωj+2 + 2ωj+3 + ωj+4 − ωj+5 = 0, 0 ≤ j < 6.

The shift invariant subspace dep(Φ) can be decomposed if n is not prime, e.g., for
n = 6, this 4–dimensional subspace of Q6 decomposes into two 1–dimensional and one
2–dimensional orthogonal shift invariant subspaces generated by

(1, 1, 1, 1, 1, 1)T , (1,−1, 1,−1, 1,−1)T , (0, 1,−1, 0, 1,−1)T ,

respectively. The a = aΦ of Example 6.5 can be decomposed as follows

a =

















4
−1
1
2
1
−1

















=

















1
1
1
1
1
1

















+

















1
−1
1
−1
1
−1

















+

















2
−1
−1
2
−1
−1

















.

Theorem 6.18 of [VW05] shows that, up to a scalar multiple, all the vectors v ∈ dep(Φ)
for which (Sjv)j∈Zn is a tight frame for dep(Φ) are given by

v =

















1
1
1
1
1
1

















±

















1
−1
1
−1
1
−1

















+ α

















2
−1
−1
2
−1
−1

















+ β

















0
1
−1
0
1

−11

















,
α, β ∈ Q,

3α2 + β2 = 3.
(6.26)

As an example, taking +, α = 1
7
, β = 12

7
gives v = 1

7
(16, 11, 1, 2, 25,−13)T .
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The usual way to study dep(Φ) is to observe that each a ∈ dep(Φ) corresponds to a
polynomial p given by

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x,

where p(ω) = 0. All such p have the form

p = Qnr,

where Qn is the n–the cyclotomic polynomial (which has integer coefficients)

Qn(x) =
∏

j∈Z∗

n

(

x− ωj
)

,

r has degree n − ϕ(n) − 1. By taking r from some basis for the polynomials of degree
n− ϕ(n)− 1, one obtains a basis for dep(Φ). For n = 6,

Q6(x) = x2 − x+ 1,

and taking r to be the monomials 1, x, x2, x3 gives the basis

(1,−1, 1, 0, 0, 0)T , (0, 1,−1, 1, 0, 0)T , (0, 0, 1,−1, 1, 0)T , (0, 0, 0, 1,−1, 1)T

for dep(Φ). This consists of some of the shifts of a single dependence. In view of (6.26),
the set of all shifts is not a tight frame for dep(Φ).
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