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Abstract

We show that much of the theory of finite tight frames can be generalised to vec-
tor spaces over the quaternions. This includes the variational characterisation, group
frames and the characterisations of projective and unitary equivalence. We are partic-
ularly interested in sets of equiangular lines (equi-isoclinic subspaces) and the groups
associated with them, and how to move them between the spaces RY, C4 and HY. We
discuss what the analogue of Zauner’s conjecture for equiangular lines in HY might
be.
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1 Introduction

Tight frames are a notion of redundant orthonormal bases which is of both theoretical
and practical interest [33]. Their recent development has been driven by connections
with algebraic combinatorics and applications to quantum physics, signal analysis and
engineering. In all of these settings, tight frames for which the vectors/lines are “well
spread out” are desired, with equiangular tight frames being of the most interest.

We consider tight frames over the quaternions, motivated by equiangular tight
frames in R? and C?. Given enough care, much of the theory generalises to the
quaternionic Hilbert space H?, including the variational characterisation, group frames
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and G-matrices and the characterisation of projective and unitary equivalence. We
consider in detail how to move between tight frames (and associated linear operators)
in RY, C? and H.

The maximum possible number of equiangular lines in R¥ is %d (d + 1), and in
C4, it is d*. The bound for real equiangular lines is rarely met, but for complex lines,
the bound is conjectured to hold in all cases: Zauner’s conjecture on the existence of
Weyl-Heisenberg SICs [1, 37]. For H9, the bound is 2d? — d, for a maximum of six
equiangular lines in H?, and 15 in H>. We give an elementary construction of five
equiangular lines in H? and investigate the maximal configuration of six equiangular
lines in H?2 recently obtained independently by [19] and [11]. Recently, the existence
of 15 equiangular lines in H?, viewed as a simplex in the projective space HIP?, has
been proved by [5] using a Newton-Kantorovich theorem. Based on these two data
points, and my instincts (there is a lot of space in H¢ and the beauty of the quaternions),
I had initially thought the quaternionic version of Zauner’s conjecture:

There exists 2d> — d equiangular lines in HY, for each d,

should hold. However, calculations of [5] suggest that this fails for d = 4, and the
analogous situation for the octonians is much worse. Thus, it seems that equiangular
lines in C? may be a high point for satisfying the estimates on the maximal number
of equiangular lines, with real and quaternionic equiangular lines rarely meeting the
bound (“filling up all the space”) due to algebraic limitations of the field involved,
i.e. R not being algebraically closed and H not being commutative. Still, there is
much interest in the maximal sets of equiangular lines in H¢, and for those in R?
(which have been studied for over half a century). Therefore, I present the following
conjecture, which can play the role of Zauner’s conjecture for the theory of quaternionic
equiangular lines:

Conjecture 1 There exists more than d* tight equiangular lines in H¢, for each d > 2.

We observe that:

e This says “there is something going on”, i.e. there are interesting equiangular lines
in H? (ones which cannot be viewed as lines in C¢) for every dimension d.

e This conjecture is known to hold only for d = 2, 3 and is otherwise open.

e For some d, there do exist sets of < d? tight quaternionic equiangular lines, e.g.
five equiangular lines in H? (Example 2.4) and six in H* (Example 2.5).

e It is conjectured in [5] (Conjecture 4.2) that asymptotically there exists N >
(4 — v/2)d tight equiangular lines in H?, as d — oo.

We now give the basic theory of inner product spaces over the quaternions, to a
point where we are able to define and discuss tight frames over H.

1.1 Inner products over the quaternions

The reader is assumed to be familiar with the quaternions H which are an extension
of the complex numbers x + iy to a noncommutative associative algebra over the real
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numbers (skew field) consisting of elements:
g =q1+qi+q3j+qsk =(q1+qi) + (@3 +qai)j €H, qjeR,

with the (noncommutative) multiplication given by Hamilton’s famous formula that
i?=j2=k>=ijk=—1.

Since the multiplication is not commutative, we must distinguish between left and
right vector spaces (modules) over H. Since we wish to appropriate much of matrix
theory, we take our vector spaces to be right H-vector spaces. Thus, H-linear maps L
have the form

Loy + -+ vpa,) = L(v)ag + -+ - + L(vy)ay,

and can be represented by matrices, with the usual rules for multiplication, i.e.

(AB)ji =Y ajibu,
l

where order of multiplication in aj¢b¢x cannot be reversed (see [38]). For those who
may have noticed, I apologise for using j and k above as indices for matrix entries,
and elsewhere as quaternion units (as is often done with the complex unit 7).

The conjugate and norm of a quaternion ¢ = g1 + q2i + g3j + qak € H

q=q —qi —q3j —qk, gl :=qq = \/qf +4q5 +43 +aj,

generalise the conjugate and modulus of a complex number x +iy, and allow the inner
product (and associated norm) to be extended to H as follows. We note that

ab=ba, abeH = (AB)* = B*A* (for matrices over H).
Definition 1.1 Let V be a finite-dimensional (right) vector space over F = R, C, H.

Then, an F-valued map (-, ) : V x ¥V — F is called an inner product if it satisfies

1. Conjugate symmetry: (v, w) = (w, v).
2. Linearity in the second variable: (v, wB) = (v, w)B, (u, v+w) = (u, v)+(u, w).
3. Positive definiteness: (v, v) > 0, v # 0.

for all vectors v, w, u € V and scalars 8 € F.

We will say that V is areal, complex or quaternionic inner product space (respectively).
The theory of inner product spaces evolves as in the real and complex cases, though
it is not well known, e.g. the Cauchy-Schwarz inequality

v, w)l < fvllllwll, vl == (v, v), (1.1)

holds (with equality if and only if v and w are linearly dependent), though it is not
mentioned in the monograph [25]. I think this is in part due to the fact that real and
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complex-valued inner products are often also defined on H-vector spaces. A good
treatment is given in [6] (“unitary inner products”) and [14] (“Hermitian quaternionic
scalar products”, which includes Cauchy-Schwarz). The prototype of such an inner
product is the Euclidean (or standard) inner product

(v, w) 1= v*w:Zv_jwj, v, w e HY. (1.2)

Throughout, we will use the notation (v, w) for the Euclidean inner product, sometimes
writing (v, w)r to emphasise when all the entries of vectors v and w are in F =
R, C, H. The Euclidean inner product on the entries of a matrix is the Frobenius
inner product

(A, B)F :=trace(A*B),  ||A|% = (A, A)r = ZZ lajl>. (1.3)

In light of the noncommutativity of the quaternions, we note that scalars come outside
an inner product (as we have defined it) as follows

(v, wB) = (v, w)B. (1.4)

The notion of orthogonality and the Gram-Schmidt process extends in the obvious
fashion. There is no need for notions of “left” and “right” orthogonality, since

(v,w)=0 <<= (w,v)=(v,w)=0.

The Riesz representation also extends to inner products over H, and so the adjoint
of a linear map 7 : V — W between finite-dimensional inner product spaces can be
defined as the unique linear map 7% : YW — V satisfying

(T*w,v) = (w, Tv), VYveV, weW.
If T and T* are represented as matrices [7'] and [T*] with respect to orthonormal

bases (v;) and (wy), so that v = Zj vi(vj,v), Yo € Vand w = ) ; wi(wi, w),
Yw € W, then

[Tk = (wj, Tvg) = (T wj, v) = (vr, T*w;) = [T*]y,

and hence, the matrix [7*] is the conjugate transpose of the matrix [T']. For this reason,
it is often assumed that the inner product is the standard inner product on H¢, and all
calculations are done with matrices, with A* defined to be the conjugate transpose
(or Hermitian transpose) of the matrix A, as is the case in [25]. The adjoint and
Hermitian transpose satisfy some (but not all) of the usual properties, including

(AB)* = B*A*, (A+B)*=A*+B*, (AH*=A
(A%~ = A~H* (for A invertible).
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Note that the transpose does not satisfy (AB)” = BT AT (since H is not commutative).
It can be shown that if AB = I for square matrices over H then BA = I, and so a
right inverse exists for A if and only if a left inverse exists, and these inverses are equal
(and denoted by A~D.

One subtle point, which is not obvious from the matrix formulation, is that scalar
multiplication by 8 € H\R,i.e. Rg : V — V : v > v is not an H-linear map, since

Rg(va) = (va)B = v(apf) # v(Ba) = (vB)a = (Rgv)a  (in general).

Left multiplication of H? by 8 defines an H-linear map L g HY — H : v > Bo,
but this is dependent on a choice of basis: it is the linear map which maps e; > ¢;8,
i.e. the linear map whose matrix representation with respect to the standard basis (e;)
is B1 (see the discussion of [14] §3.1). On the other hand, multiplication of a fixed
vector v € V by scalars, i.e. [v] : H - V : @ — va, is an H-linear map:

[l(Brar + paaz) = v(Brar + fraz) = (vB1)a1 + (vB2)az = (vl + ([v]B2)az.
Its adjoint [v]* : V — H s given by [v]* = (v, -), since

(o, [v]*w) = ([v]o, w) = (v, w) = a{v, w) =a(l, (v, w)) = (@, (v, w)).

The map [v] is sometimes abbreviated simply as v, especially when v € H¢ is thought
of as a column vector, i.e. as an element of H¢*!. More generally, a synthesis map

V=[,...,v H —=>V:iar~ via +- -+ va,,
for a sequence of vectors vy, ..., v, € V, has adjoint the analysis map

VEV > H v (v, 0)].

2 Tight frames

A frame for a Hilbert space H is a sequence of vectors (v;) satisfying the condition

Allvl? <)l v)* < Bloll?, Yve™H, (2.5)
J

where A, B > 0 are constants. From this, a “frame expansion” follows, which takes
a particularly simple form when A = B, i.e.

1
v:ZZvj(vj,v), Vv e H.
j

A prominent early example of the use of such “generalised orthonormal bases” is
in the theory of wavelets. Recently, frames have been considered for quaternionic
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Hilbert space, see, e.g. [22, 28] (which deal primarily with the frame operator and the
construction of dual frames), [21] (equiangular lines and Hadamard matrices) and [24]
which considers the connectedness of the algebraic variety of quaternionic frames with
given norms. Here, we consider tight frames (where the dual frame is the frame itself)
with a particular emphasis on the classification and construction of such frames. This
is related to earlier work of Hoggar [16, 18] and others, which implicitly considers
tight frames over quaternionic (and even octonionic) Hilbert spaces.

2.1 Tight frames defined and unitary equivalence

We will say that a sequence of vectors with synthesis map V = [vy, ..., v,] is a tight
frame for a (finite-dimensional) quaternionic Hilbert space H if it satisfies (2.5), where
A = B, and is normalised if A = B = 1, which can be achieved by multiplying
the vectors of a tight frame by a suitable positive scalar. The frame operator (for a
sequence of vectors) is § = V V* and the Gramian (matrix) is G = V*V.

A linear map U on H is unitary if it preserves angles, i.e. (Uv, Uw) = (v, w),
Vv, w, or, equivalently U*U = I. Unitary maps can be defined in the same way on
quaternionic Hilbert spaces. If V = [vy, ..., v,] is a frame for a quaternionic Hilbert
space, then so is any unitary image UV = [Uvy, ..., Uvy,], and these frames have
the same Gramian since (UV)*UV = V*U*UV = V*V, and we say that they are
unitarily equivalent. Tight frames are studied up to unitary equivalence (which is an
equivalence relation) and multiplication by a nonzero scalar.

The monograph [33] is a good reference for those parts of the theory of finite tight
frames which we now develop. First, we consider equivalent conditions for being a
tight frame. For this, we need the polarisation identity for quaternionic Hilbert space.
Since this is not well known, we provide it with proof.

Lemma 2.1 (Polarisation identity) For an inner product space over F = R, C, H, we

have
m—1

1
wow) = 7 37 (i + wi? = iy = wl?)ir,

r=0
where m = dimr(IF), (io,i1,1i2,13) = (1,1, j, k) and (-, ) is linear in the second
variable.

Proof We first observe that for a quaternion ¢ = qo + q1i1 + q2i2 + q3i3, ¢ € R, a
calculation gives _
irq +qi, =2q,, r=20,123, (2.6)

and we write (¢), = ¢,. Expanding, using the properties of the inner product, gives

lviy + w|? = (viy, vi,) + (Fw, Fw) + (Vir, £w) + (£w, vi,)
= [lvl? + lwl? £ iy (v, w) £ (w, V)i,

so that

lvir + wl> = viy — wl* = 2(i- (v, w) + (v, W)ir) = 4((v, w))r,
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which gives the result. O

This could also be proved by rewriting equation (3.5.1) of [25] for A = [ and

(q1,92,93) = (i, j, k).
The basic characterisations of normalised tight frames generalise.

Proposition2.1 Let V = [v1, ..., v,] be a sequence of vectors in a d-dimensional
(right) quaternionic Hilbert space H, such as He. Then, the following are equivalent:

(i) V is a normalised tight frame for 'H, i.e.

> => "1 v VYveH.

(ii) The frame operator S = VV* = I, i.e. we have the frame expansion

v:Zvj(vj,v), Yv € H.
i

(iii) The Plancherel identity
(v w) = (v}, w), Vv, weH.
J
(iv) The Gramian P = V*V isa rankd orthogonal projection, i.e. P> = P, P* = P.

Proof The implications (ii)=—=(iii))==(i) follow by taking the inner product with w
and then letting w = v, respectively. Suppose that (i) holds. By Lemma 2.1 and (2.6),
we have

4w, w))y = i+ wl? = oy = wl? = 37 (10w;, vir + w) 2 = {0y, viy — w)I?)
J

:Z(zmv,uj)(v,, w) + 20w, v;) (v}, v ')_4Z(u v;) (v}, W),
7

Thus (by the Riesz representation, or since the orthogonal complement of H¢ is {0}),
(v,w):Z(vj, Yvj, w ZUJ(UJ’ ), - v:Zvj(vj,v),
J j
which is (ii).
We now show (iii) <= (iv). We observe that by construction P = ({(v;, vk)); x is
Hermitian. The condition P2 = P can be written entrywise as

(vj, k) = Pjr = ZPjEPZk = Z(vj, ve){ve, Vi),

14 14
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which is the Plancherel identity for v = v; and w = wv;. The implications then
follow by extending the Plancherel identity (using linearity and symmetry of the inner
product), and calculating rank (P) = trace(P) = Re(trace(VV*)) = d, by (ii). O

For ease of presentation, we will now consider H¢, rather than saying let H be a
quaternionic Hilbert space of dimension d. We also write F¢, with F = R, C, H. The
following characterisation extends the real and complex cases (see [33] Theorem 2.1).

Proposition 2.2 Ann x n matrix P is the Gramian matrix of a normalised tight frame
V =[v1, ..., v, for H ifand only if it is an orthogonal projection matrix of rank d.

Proof We have already seen that a normalised tight frame is determined by its Gramian,
which is an orthogonal projection of rank d (Proposition 2.1). It remains only to show
that such a matrix P corresponds to a normalised tight frame. Let v; = Pe;. Then,
with the Euclidean norm on H", we have that

(vj, vk) = (Pej, Pex) = (ej, Pex) = P,

so that (v;) is such a tight frame (for its d-dimensional span). O

A finite sequence of unit vectors (v;) (or the lines they represent) is said to be
equiangular if
l(j, i) = A = ¢* = (cosB)?,  Vj #k. (2.7)

The constants A, ¢ and 6 all occur in the literature and are called the (common) angle.

Example 2.1 Four equiangular lines in H? with A = % are given in [18], namely

0= () =t

e L («/5+J§+i) o — <ﬁ—d§+i>
T oA \WVZ - VB k)T T a3 \V2i VB k)

The Gramian of these vectors (which are a tight frame for H?) has only complex

entries, and so they are unitarily equivalent to an equiangular tight frame for C2. They

have the same Gramian as the Weyl-Heisenberg SIC v; = v, v = Sv, vz = Qu,
vg4 = i SQu, where

1 3+43 01 10

= — , S= , Q= .
’ ﬁ(%(uws—ﬁ) <1 0) (0—1>
Therefore, there is a unitary map U with v; = Uw;, which we calculate as
U (zl—jzl) V3V VBV V3+VE V3- B,
= R 1 = N 2 = — .
22 —kz2 24/3 24/3 24/3 24/3

Though this first example of quaternionic equiangular lines is not “quaternionic”,
we will see that such lines do exist, and they are very intriguing.
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2.2 The variational characterisation of tight frames

We now seek to extend the variational characterisation for tight frames [2, 31]. For
C4, this is most easily and transparently proved from the spectral decomposition of
the frame operator using trace(A B) = trace(BA) (see [33], Theorem 6.1). This trace
formula no longer holds over the quaternions, even for 1 x 1 matrices. Instead, we
will use the fact

Re(trace(AB)) = Re(trace(BA)), (2.8)

which follows from the special case Re(ab) = Re(ba), VYa, b € H.
The general spectral theory of matrices over H is fraught (see [25]), since

Av=vA — Ava)= (voz)ot_l)»oe,

so that if v is a (right) eigenvector for A, then v is an eigenvector for eigenvalue
o '1a. However, Hermitian matrices (those with A* = A) have real eigenvalues
and are unitarily diagonalisable, as in the complex case.

Lemma2.2 Let V = [vy, ..., v,] be vectors in T4, with frame operator S = VV*
and Gramian G = V*V. Then, trace(Sk) = trace(Gk), k=1,2,.... Inparticular,

trace(S) = Y _[lv;l%,  trace(S?) =D > |(vj. vi)l*. (2.9)
j jok

Proof The trace of an Hermitian matrix A is real, since (Ax, x) = (x, Ax) = (Ax, x).
Since $¥ and G¥ are Hermitian, they have real trace, and so by (2.8), we have

trace(S%) = Re(trace(V V*(V V*)F~1)) = Re(trace(V*(VV*)¥~1v))
= Re(trace((V*V)*)) = trace(G").
The formulas for trace(G) and trace(G?) given on the left-hand side of (2.9) are easily
calculated from (G) jx = (v;, vg). O

Theorem 2.1 (Variational characterisation) Let vy, ..., v, be vectors in F9, which
are not all zero. Then,

n n

>y |<v,‘,vk>|22l > v, l? ’ (2.10)
a\ 1
]:

j=1k=1

with equality if and only if(v.,');'.:1 is a tight frame for F.
Proof Let V = [v;]. Since S = V' V* is positive definite, it is unitarily diagonalisable

S =UAU*, A = diag(2 ), with real eigenvalues A1, ..., Ay > 0. From (2.8), we
have

trace(S¥) =Re(trace(U A¥U*)) =Re(trace (A U*U)) =Re(trace (A¥)) = trace (A%).
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Thus, the Cauchy-Schwarz inequality gives

trace(S)* (ZM (D), 0 < IIPIGPIZ =d Y245 = d trace(S?),

J
which, by (2.9), is (2.10), with equality if and only if A; = A, Vj, A > 0, i.e.
S=UADU*=Al <= (vj)isatight frame for F¢.

Note above, since one vector is nonzero, § = Z v ]v # 0,and so A # 0. O

This variational characterisation of tight frames depends only on the Gramian,
hence the frame up to unitary equivalence. It is easy to verify and plays a key role in
Theorems 3.1 and 3.2. We now consider its implications for equiangular lines.

2.3 Bounds on equiangular lines
We recall that unit vectors (v;) in [F4 are equiangular if they satisfy (2.7), i.e.
| v)|> = A =c" = (cos0)’,  Vj#k.

Those of the most interest have the maximum separation of the corresponding lines,
ie. A = 2 small, or, equivalently, 0 < 6 < % large. Examples that exist in every
dimension d are orthonormal bases of n = d vectors (A = 0, & = 90°) and the

= d + 1 vertices of a regular simplex (A = d—lz). The formula for the chordal
distance

pj, vp) = /1= (v, )%,

gives a metric on the lines in H?, and accordingly, [5] calls sets of (tight) equiangular
lines “(tight) simplices in projective space” (points an equal distance from each other).
As an example of Theorem 2.1, we have the following bound.

Example 2.2 If all the n vectors (v;) in ¥ have unit norm, then (2.10) reduces to

2 2

S Y ol = ()

j=1k=1 j=1

Moreover, if the (v;) are equiangular, then the left-hand side is (n2 —n)A+n, and the

inequality rearranges to
—d
A> 4 2.11)
din—1)
with equality (and maximum possible separation) when the vectors are a tight frame,
and for A < % it rearranges to the relative bound for equiangular lines

11— 1
n<-y , A<=
7 A
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The next bound (which is well known for F = R, C) depends on the underlying
field.

Theorem 2.2 Suppose d > 1. Let (v;) be a sequence of n non-parallel unit vectors in
F? giving a set of n equiangular lines, then the orthogonal projections

* .
szvjvj.v|—>vj(vj,v), j=1,...,n,

are linearly independent over R, and hence

fdd+1), F=R;
n<1d?, F = C; (2.12)
2d> —d, TF=H,

with equality if and only if (Pj) is a basis for the R-vector space of Hermitian matrices.

In these cases, the angle is
1

2 I
A= W F=C,; (2.13)
o F=H.

Proof Since d > 1, the equiangularity constant A is less than 1. Using (2.8), we
calculate
Re(trace(P; Py)) = Re(trace(vjvjvkv,f))
= Re(trace(vjvrviv))) = [(v;, v)lP =1, j#k

The R-linear combination i€ P; is Hermitian, and hence its Frobenius norm sat-
isfies

1Y " c;PjllF =Re(trace(Y "c;P; > ckPi)) =Y Y cjcx Re(trace(P; Py))
j j k j ok

= ZZC/C](A + ZCjC‘/(l —A) = )‘(Zc.i)z + (1= )‘)ZC?’
ik J Y

J

which is zero only for the trivial linear combination.

The n projections { P;} belong to the real vector space of d x d Hermitian matrices
which has dimension given by the right-hand side of (2.12). For example, for F = H,
the Hermitian matrices are determined by their real diagonal, and the entries above it
which can be any quaternions, giving a dimension of d + %(af2 —d)-4=2d*>—-dno

This result for H, the inequality (2.12), is given in [15], without proof, and as
Proposition 2.2 in [5] (which also includes the octonionic case O%).
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We are now in a position to discuss quaternionic equiangular lines. We first observe
the following:

e Quaternionic equiangular lines do exist (for A < 1,d > 1).

You will recall from Example 2.1 that Hoggar’s example of four equiangular lines
in H? was in fact lines in C? (most likely the very first occurrence of a SIC in the
literature). For d = 1, any sequence of unit quaternions is an equiangular tight frame
(with A = 1), which is quaternionic if any ratio of the quaternions is not a complex
number. Even though this is a trivial example, we will be able to use such frames to
construct unit-norm tight frames in C> and R* (Example 3.5). We now give a simple
example in H?.

Example 2.3 (Five equiangular lines in H?). Fix 0 < 7 < 1, and consider the four unit
vectors

t . . . .
vr:(mir>a l]:l, =1, l3=J’ l4=k'

These are equiangular, with
(o) P=a=1"+ (1A=  j#k,

where % < A < 1. By Theorem 2.2, the maximal number of equiangular lines in C? is
four, with A = %, so these lines are quaternionic. For the maximal separation A = %,
we may add a fifth equiangular line, to obtain five equiangular lines in H? given by

50 50 50 50 Qely o

These lines are not tight, since they do not give equality in (2.11), i.e.

1 3
X:—>—:
2 8

5-2 n—d
26-1) dn—=1"

They appear exactly as above in [11], for the parameter choice ¢ = \L@ w=7,a=0

andy = 7.
Taking the five lines of (2.14) and their orthogonal complement gives five MUBs

(mutually unbiased bases) in HZ2, which is a tight frame of ten vectors (see [4]).

Another method to obtain tight equiangular lines is via the complementary tight
frame. The construction is as follows. Let G be the Gramian of n > d equiangular unit
vectors in F¥ at an angle A = d?n;—dl) # 0,sothat P = %G is an orthogonal projection
matrix (Proposition 2.1). The complementary orthogonal projection Q = I — P gives

an equiangular tight frame of n vectors for F~¢ with Gramian G, given by

n d
G, = I—
n—d n—d

Ga
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2 . . .
and common angle A, = (nf e = d)d(nil) . The equivalent construction for lines

is called the Gale dual in [5] (see Corollary 2.12).
Let ¢4 be the right-hand side of (2.12), which we can write as

1
cd =d—|—§d(d— 1) -m, m := dimpg (F).

Since the complementary tight frame also must satisfy the bound (2.12), forn—d # 1,
we have that an equiangular tight frame of n > d + 1 unit vectors in F¢ must satisfy

n < minfcg, cp_al- (2.15)

This gives the following (see Theorem 2.18 of [19]).

Proposition 2.3 Let d > 2. An equiangular tight frame of n > d + 1 vectors for F¢

satisfies
| B, %d"'l m
d+§+T <n §d+3d(d— 1), m =dimg(F), (2.16)
so that m
n>d+2+j, for d>3(j+1)(j+2). (2.17)

Proof The condition n < ¢;,_4 in (2.15) can be written as
) 2
n“—QRd+l)n+dd+1)— —d > 0.
m

By considering the roots of this quadratic polynomial in 7, this is satisfied if and only

if
1 J3d+1 1 JEd+1
n§d+§—T<d, or l’lZd+§+T,

which gives the lower bound in (2.16). The upper bound is the condition n < c4.
Rearranging the right-hand inequality in

Jad+1

2

DN | —

n>d+ -+ =d+2+],

gives
m . 2 m .
d2§«%+ﬁ)—l%=30+4XJ+D,
which gives (2.17). O

The lower bound in (2.16) is a decreasing function of m, and the upper bound is an
increasing function of m. This says that there is more room in H¢ for tight equiangular
lines than there is in (Cd, and in turn RY.
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Example 2.4 (Five tight equiangular lines in H?) By Proposition 2.3, there cannot be
five tight equiangular lines in R? or C3, but they could exist in H>. We now construct
such lines as a complementary tight frame. The following five tight equiangular lines
in H? with A = % are given by [11]

V= 22 2V2 22 2./2
_Oﬁ J§+ﬁ~ 5 ﬁi+ﬁ- V5 5. A5

The complementary tight frame therefore gives five equiangular lines in H? at angle
A= %. A concrete presentation of these lines is

1 1 1 1
5 5 5. 5 5 . 5. 5 5 . 5 .
W=10 % _ﬁf_ 33 _ﬁ;ﬁi; 6 J _ﬁ;ﬁ? 6/
5 5 5 5 5
0 0 2 _T+ﬂk _T_ﬂk

This was obtained by the following general method. The condition VV* = AT for V
to be a tight frame is that the entrywise conjugates of the rows of V are orthogonal
and of equal length, i.e. V* has orthogonal columns of equal length. By using Gram-
Schmidt, add orthogonal columns of equal length to obtain [V*, W*], a scalar multiple
of a unitary matrix. Then, W is a tight frame, which is the complement of V, since

1%

(V* W) (v W*)* = (V* W¥) <W

>=V*V+W*W:AI.

Above, we used the fact that the columns of the square matrix (V* W*) over H
are orthogonal. For frames over C, this is equivalent to the rows being orthogonal.
For frames over the quaternions, it is necessary to make this distinction. Indeed, there
exist unitary matrices (orthogonal columns) whose rows are not orthogonal, e.g.

._L 1i * _ * __ 10 T\ * TN __ lj
U._ﬁ<jk>, UU_UU_(OI), (U)(U)_<_j1).

Example 2.5 By Proposition 2.3, there cannot be six tight equiangular lines in R* or
C*, but they do exist in H*, by taking the complementary tight frame to the six tight
equiangular lines in H? of [11, 19] (obtained independently).

We now consider tight equiangular lines in general, before giving a striking sum-
mary of the known results for two dimensions. For n tight equiangular lines in H? (or
e, Rd), the angle is

—d
A= n— n>d,
din—1)
with the following specific cases (in order of the number of vectors)
. 1 . .
A =0 (orthonormal basis), A= 7 (vertices of a simplex),
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and sets of lines giving the bounds of Theorem 2.2

1
A= ——, r=—— (SIO), A= (maximal set of lines in Hd).

d+2 d+1 %

The theory as is stands does not preclude the bounds above being reached by lines
from a larger space, e.g. n = %d (d 4+ 1) complex or even quaternionic lines in H<.
This does not occur for two dimensions. Since

oA d—1
(1), = gt o
on/d  dn —1)2
A increases with the number of tight equiangular lines n (for d fixed), taking the

possible values

1 1 1 2
PR R e RERRE e

Equiangular lines are classified up to projective unitary equivalence (see Section 5).

In two dimensions, the tight equiangular lines given by an orthonormal basis, the
Mercedes-Benz frame and the SIC (two, three and four vectors, respectively) are well
known, as is their uniqueness in C2. Putting these examples together with the five and
six sets of equiangular lines of [11, 19] gives a complete characterisation of equiangular
lines in HZ.

Theorem 2.3 There is a unique set of n tight equiangular lines in H? for n =

2,3,4,5, 6, with corresponding angles » = 0, %, % %, %

2.4 Equi-isoclinic and equichordal subspaces

We now consider generalisations of equiangularity of lines to r-subspaces (r-
dimensional subspaces). Let P; and Py be the orthogonal projections onto r-subspaces
V; and Vi. Then,

| Pj — Pyl|% = trace((P; — Py)*) = 2r — trace(P; Py + Py P;) > 0.
For F? = R?, C?, we have trace(P; Py) = trace(PyP;) € R, and a collection of
r-subspaces is said to be equichordal (see [13]) if the corresponding orthogonal
projections satisfy

(P, Pr)F =trace(P;Py) = Ar,  j #k,

which reduces to the equiangularity condition (2.7) in the case of lines (r = 1).
For HY, trace(P; Py) need not be real, nor equal to trace( Py Pj), e.g. for

1 11 U (1—k—i—j
P_§<il) Q‘E(jl)’ PQ_ZQ+j1—k)
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and trace(P Q) = %(1 —k) # %(1 + k) = trace(Q P). However, by (2.8), we do have
trace(P; Py + P Pj) = Re(trace(P; Py + P P;)) = 2 Re(trace(P; Py)),
and so we say that r-subspaces in H¢ (or R¢, C%) are equichordal if
Re(trace(P; Py)) = Ar, j#k < ||P]-—Pk||%F =2(1-Mr, j#k. (2.18)

Two r-subspaces V; and Vi, j # k, are isoclinic with parameter 0 < 1 < 1 (see
[23], [18], [12]) if the orthogonal projection Pj; onto V; + Vy satisfies

(1 =) Pjx = (Pj — Pu)*.
An equivalent condition to being isoclinic is
PP Pj =AP;, PPjP=\P., j#k, (2.19)
which follows from the observation
(1-MP; = (P; — P)*P; <= PjPPj=2LP;.

Hoggar [18] claims that just one of the conditions (2.19) is required (over H), which
follows by writing P; = V; V¥, VV; = I, and the implications

PiPPj=iP; = (VIVOWVFV)=r <= VIViViVi=il < PPiP =P

Subspaces (V) are said to be equi-isoclinic with parameter 0 < A < 1if (2.19)
holds. Equi-isoclinic subspaces are equichordal, since

PjPyP;j = AP; — Re(trace(P;P;)) = Re(trace(P; P Pj)) = trace(AP;) = Ar.
The orthogonal complement (le) of equichordal subspaces is equichordal, since
Re(trace((I — Pj)(I — Py))) =d —r —r+Re(trace(P; Py)) =d —2r+Ar, j #k.

However, the orthogonal complements (Vi) of equi-isoclinic subspaces (V}) are not
in general equi-isoclinic, as the following example shows.

Example 2.6 (Two isoclinic planes do not exist in R?). Consider the equi-isoclinic
1-dimensional subspaces given by

1
vi=|10], v=
0
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The orthogonal projections Qj = I —v; v;’.‘ onto the complementary subspaces satisfy

0 O 0 000
010:01=(01-a* —ab |, Q1=[010
0 —ab 1-10? 001

Hence, for VlL and V2J- to be isoclinic, we must have thata = b = 0,i.e. V| = V5.
Thus, there cannot be two (non-equal) isoclinic planes in R?, despite the fact that there
can be up to six equi-isoclinic lines in R3.

3 From R to C and C to H], and back

There is a natural inclusion R ¢ C C H and hence of R¢ ¢ C? ¢ H?. Since tight
frames are determined up to unitary equivalence by their Gramians:

e There is a unitary map of a tight frame to R? if and only if its Gramian has real
entries, and we say the tight frame is real.

e There is a unitary map of a tight frame to C¢ if and only if its Gramian has complex
entries, and we say the tight frame is complex if its Gramian has a nonreal entry.

o If the Gramian of a tight frame has a noncomplex entry, then we say that it is a
quaternionic tight frame.

As an example, the four equiangular lines in H? of Hoggar [18] are lines in C? (see
Example 2.1). For tight frames up to projective unitary equivalence, i.e. thought of as
lines, the corresponding analogue is more involved (see Section 5).

There is also a natural identification of a point z = x 4+ iy € C (in the complex
plane) with a point (x, y) € R? (in the plane). We generalise this by defining an
invertible R-linear map

Rev) = pev =2 mu=""" @320
2 2i

. rd 2d .
[lr:C* - R 'U'_)(Imv

Based on a thorough analysis of this, we will then define an analogous map H¢ — C2¢.
The first subtle point is that [-]g maps k-dimensional complex-subspaces of C to real
(2k)-dimensional subspaces of R??. To see why this is, we first calculate the image of
a complex scalar multiple @ 4 i 8 of a vector v = x + iy

(x+if)v=(x+iB)(x +iy) =ax — By +i(ay+ Bx),

which gives

[(@+iple =a (ﬁf ”) +5 (}Iﬁ)”) = alvlg + Blivle. (3.21)

v
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Thus, the one-dimensional complex subspace spanned by v € C? is mapped to the
real two-dimensional subspace

. Rev —Imv . od
[spanc{v}]r = spang{ (Im v> , ( Re v )} (orthogonal vectors in R“%).

The general result then follows from the correspondence between linear dependencies

Y tipou=0 = Ylu (Eﬁ ,'fﬁ) + e (]&Z’Z)} =0
4

14

We also calculate

(v, w) = (Rev+iImv, Rew + i Im w)
= (Rev,Rew) + (Imv, Imw) + i((Re v, Imw) — (Im v, Re w)),

so that
Re((v, w)c) = ([vIr, [wlr)r, Im((v, w)c) = ([iv]r, [W]R)R, (3.22)

([v]r, [ivlr)r = 0. (3.23)

Let A : C" — C™ a C-linear map be represented as an R-linear map [A]g : R*" —
R2™ ynder this identification, i.e. [A]g := [']RA[']H_%I' Then,

A(u+iv) = (Re(A) +iIm(A))(u +iv)
=Re(A)u —Im(A)v + i Im(A)u +iRe(A)v, u,veR",

and Re(A*) = Re(A)T, Im(4*) = — Im(A)T, so that

_ (Re(A) —Im(A) _
[Alr = (Im(A) Re(A) ) , rank([A]g) = 2rank(A),

. Re(4A)T Im(A)T

The usual rules for matrix multiplication follow, e.g. [A]r[B]r = [AB]r. One must
be careful if a vector v € C¢ is being thought of as a d x 1 matrix, i.e. the linear map
[v] : C > C?: a > av, since [v]g € RZ*! [[v]]g € R2*2 In particular, the
familiar formula P = vv* for the orthogonal projection onto a unit vector v € C?, is
P = [v][v]*, which maps as follows:

Imv Rev

[Plp = [[VIIR[[V]* IR = (V][] (V]I = <Re v lm ”) ,
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This is the orthogonal projection onto

Imv Rev

[spanc{v}lr = spang{[vir, [ivlr},  [vir = (Re v) . livle = (_ Im U) _

The identification [-]r preserves various properties of linear maps (see Theorem 3.3).
In particular, orthogonal projections map to orthogonal projections, and hence:

e Equi-isoclinic subspaces of dimension r in C¢ correspond to equi-isoclinic sub-
spaces of dimension 2r in R??, and similarly for equichordal subspaces.

We now consider the situation for tight frames, which is somewhat more involved,
e.g. a basis for C? does not correspond to a basis for R> (which has twice the
dimension).

Let V = Vi +iV> be the synthesis map for a sequence of vectors vy, ..., v, € ce,
and Vg be the corresponding map for the sequence [vi]g, ..., [v.]r € R*?, i.e.

Ve = (g) € R¥xn,
Then, V gives a tight frame for C? if and only if
VV = (Vi +iVo) (V] —iVy) = ViV + WV +i(L V]| — Vi Vy) = Al
where dA := Zj ||vj||2 = trace(VV™*) = trace(VRVRT) =, i.e.
vl +wvl =a1,  wvl —wv] =o,

and Vi gives a tight frame for R?? if and only if
« (W ryry _ (ViVEVivyy _ 1, (10
VRVR - <V2 (V] V2 ) - VZVIT VZVZT - 2A 0 I ’

1
vl =wv] = SAL Vi v =wvl =o. (3.24)

i.e.

Thus, all tight frames for R?? map to tight frames for C?, and a tight frame for C?
gives a tight frame for R?? if and only if (3.24) holds. This condition says that V; and
V, are tight frames for R? (with the same frame bound) which are orthogonal (see
[33] §3.5). We now show that (3.24) depends only on V up to unitary equivalence.

LetU = U;+iU, beunitary, thenUU* = U U] + DL, UL +i (U, UL -0 UT) =1,
which is equivalent to

unul +uuf =1, vul —vu! =o. (3.25)
Suppose that V satisfies (3.24), then

UV =[Uvy,...,Uv] = Ui+iU)(Vi+iV2) = (U1 Vi=Ua Vo) +i(U2Vi+U1 V2),
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A= Zj ||vj||2 = Zj ||Uvj||2, and using (3.25), we calculate

1 1
Re(UV)Re(UV)T = UV, — hVo)(V Ul —v]Iul = EA(Ul ul + vl = 5AL

1 1
mUV)ImU V)T = v + UiV (VI UE +vIul) = —awu! +uuly = - A1,

2 2
1
Re(UV)Im(U V)T = (U, V) — UaVo)(VIUT + vIUT) = SAW ul —uulh =o,

so that UV satisfies (3.24).

Since the condition for a tight frame for C? to be a tight frame for R?>? depends
only on V up to unitary equivalence, it follows that this condition can be written in
terms of the Gramian of V. The Gramians of V and VR are

VRV = (Vi —iVH Vi +iVa) = VIV + VI va+i (V] Vo = V) W),

v
Vive = (V]I V) (VD =vivi+v]v.

The variational characterisation for being a tight frame for C? and for R*? are
* 2 1 * 2 * 2 1 * 2
IV*VIE = g(trace(V )t Ve VrllE = ﬁ(trace(V]R \%:3) f

Since trace(V*V) = trace(VlT Vi+ V2T V2) = trace(Vy Vr), a tight frame for C4 gives
a tight frame for R/ if and only if

2\ VEVelz: — IV*VIE =0. (3.26)

By writing this explicitly in terms of V*V (cf. [35]), we obtain the following.

Theorem 3.1 Let [[]g : C¢ — R pe the correspondence (3.20) between C? and
R4 Then,

1. Tight frames for R* correspond to tight frames for C.
2. Atight frame V = [vy, ..., v,] for C¢ corresponds to a tight frame for R*? if and

only if it satisfies
DS wju)? =0, (3.27)
ik

which can also be written as

DO Re(y u)? =) (Am(vy, i) (3.28)
j ok j ok
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Proof In light of our previous discussion, it remains only to show that (3.26) can be
written as (3.27) and (3.28). Using (3.22), we have

IVEVRIE — IV* qu—zZZ N ZD vj, v
—ZZZ(Re (vj, v))? —Zzh)j,vk =

By taking z = (v;, v¢) in

2+7\2 _ 1 2, =2
5 ) ZZ—Z(Z +79),

2(Re(2))? — |z = 2(

we see that this condition can be written as

%ZZ((W, ve) + (o, v))?) = ZZ(v;, ve)? = 0.
ik

j ok

which gives (3.27). By substituting in |(v;, vk)|? = (Re(v;, ve))? + (Im(v;, v)?,
we obtain (3.28). O

Example 3.1 A tight frame (z;) for C corresponds to a tight frame for R? if and only
if

I (Zzi)(gkjaz) =X =0 = ¥2=0

The complex number z? = (xj+iy j)2 corresponding to a point (x;, y;) is sometimes
called a diagram vector, and the condition that a frame for R? is tight if and only if its
diagram vectors sum to zero is well known.

We now give a map HY — C2¢ that has similar properties to [-]Jg : C¢ — R,

This is based on the following analogue of the polar decomposition for C, the Cayley-
Dickson construction, that every quaternion ¢ € H can be written uniquely

q=z+wj, z,w e C. (3.29)
Moreover, we observe the “commutativity” relation
jz=17zj, VzeC,

which implies .
JA=Aj, VA € C"™*",
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Let H? be a right vector space, and define a C-linear map
[e:HY — C¥ 7+ wj > (%) (3.30)

The conjugation w is necessary for C-linearity: (z + wj)o = zo + wjo = zo + war j
gives

[z +wjale = <Za> = (%)a =[z+wjlca Va eC.

wo

Let Coj and Co, be the C-linear maps HY — C? giving the “complex coordinates”
ofg =z+4+ wj,ie.

Coi(z+wj):=z, Corz+wj):=w.
We note in particular that
lqI* =1Coi(g)* + | Cox(g) .

From

(v, wyg = (V1 + v2j, w1 + waj)
= (vi, wi) — j(v2, w2)j — j(v2, wi) + (vi, w2)j,
= (v1, wy) + (v2, w2) — ((v2, w1) + (v, —w2))J,
= ([vlc, [wlc)c — ([vlc, [wilc)c

we get the analogues of (3.22) and (3.23)
Coi((v, w)m) = ([vlc, [wlc)e,  Cor((v, wim) = —([vlc, [wjlc)e.  (3.31)

([vlc, [vjlc)c = 0. (3.32)
The analogue of (3.21) for v = z + wj is

[v(@ + B)]c = v + vBjlc = [va + vjBlc = [vlce + [vjlef,  «, B €C,

(3.33)
[vle = <;> . Tjle = (‘5") . (e Ivjle)e = 0.

Thus, [-]c maps k-dimensional H-subspaces of H¢ to (2k)-dimensional C-subspaces
of C%,

Let L : H* — H™ be an H-linear map be represented as a C-linear map [L]c :
C?" — C*™ under this identification, i.e. [L]c := [-]cL[ ¢ ! In view of (3.29), its
standard matrix [L]yg € H™*" has a unique decomposition

where

[Llu = A+ Bj, A, BeC"™",
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We have
L(z+wj)=(A+ Bj)(z+wj) =Az+ Awj + Bjz + Bjwj
= Az + Awj + BZj — Bw = Az — Bw + (Bz + Aw) ,

and
[L*lm = (A + Bj)* = A* + (—j)B* = A* — B*j = A* — BT ],
so that

B A

* T
[L*]c = (_AB* ﬁT) = L.

[Llc = (A —B ) . rank([L]c) = 2rank((L]),

The other observations for the previous case also hold (see Theorem 3.3), in particular

e Equi-isoclinic subspaces of dimension r in H? correspond to equi-isoclinic sub-
spaces of dimension 2r in C?¢, and similarly for equichordal subspaces.

We now seek the analogue of Theorem 3.1, this time starting with the development

in terms of the Gramian. The variational characterisation for V = [vy, ..., v,] being
a tight frame for H4 and for Ve = [[Ul](c, e, [v,,](c] being a tight frame for C are
1 1
IV*V|% = E(trace(V*V))z, IVEVell%: = g(trace(VC* Vo))t

Since trace(V*V) = trace(V{ Vi), a tight frame for H? gives a tight frame for C>¢ if
and only if
20VEVelz — IV VIE =0. (3.34)

Writing this explicitly in terms of the Gramian V*V gives the following.

Lemma3.1 Let V = [v,...,v,] = Vi + Voj € HY" Then, the following are
equivalent

. V . .
(i) Ve =[lvilc. ... vlc] = <Vl) € C¥* is g tight frame for C*.
2
(i1)
1 1
* * T __ T _ o 2
Vivii=Wwv, _EAL ivy, =WV =0, A.—EZHUJH .
J
(iii)
— 1 — 1
(Vl*Vl + VZTVZ)2 = EA (Vl*Vl + VZTVZ)a A= E Z ||Uj||2
J

(iv)
1 2
ICortv Vol = 32371 Conty, w = g(% loil?)”

J
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Proof In terms of the frame operator, the condition (i) is

*
V. * T 1
ﬂ ﬁ = (1 (Vfk VzT)* = ﬂvl* nV2T =ZA Lo )
1% %3 %3 WV Wy, 2 017
where dA = ) j lv; |12, which is clearly equivalent to (ii).
In terms of the Gramian V& Ve = V"V + VZTVZ being (a multiple of) an orthogonal

projection matrix (Proposition 2.1), the condition (i) is (iii).
In terms of the variational characterisation (Theorem 2.1), the condition (i) is

3 vl fude) P = % (||[v,»]<c||2)2,
J ok J

which can be written as (iv), since ([v]c, [w]c)c = Coi({v, w)m) and ||[vic| =
lvlle- a

We observe that condition (iv) depends only on V up to unitary equivalence, and
so the others do also.

Theorem 3.2 Let [-]c : HY — C% be the correspondence (3.30) between HY and
C2 . Then,

1. Tight frames for C*? correspond to tight frames for H.
2. Atightframe V = [vy, ..., v,] for H¢ corresponds to a tight frame for C*? if and
only if it satisfies

DY ICoiv, Dl =YY 1 Coa((vj, vl (3.35)
J ok i k

Proof The sequence V = V| + V5] is a tight frame for H¢ if and only if
VVE = (Vi + V) (Vi = V) j) = (VVE+ V) + BV = viv))j = Al

which is clearly satisfied if V corresponds to a tight frame for C>¢ (by Lemma 3.1).
The variational characterisation for being a tight frame for H¢ and for C*¢ are

1 2 1 2
VG =< () 1oV v = 55 (3 1?)
J J

Hence, if V gives a tight frame for H, then it gives a tight frame for C>¢ if and only
if
2/l Cor (VW) = IV*VIE = 0.

Since | (v, vi) > = | Co1({v, v))|* + | Coa({v;, v))|?, this is (3.35). O

@ Springer



Tight frames over the quaternions and equiangular lines Page250f37 49

The conditions (3.28) and (3.35) can be written insightfully as
[Re(V*V)lr = IIm(V*V)|lp,  [[Cor(V*V)|F = || Coa(VV)| F.

Example 3.2 Let V =[1, 1, j, k], which is a tight frame for H. The Gramian is

ik 1§00 00 1

vo =it Sk =100 0 0 —il

VVi=1_ik 1 %] looi=i|T|=1i ool
Ck—j i1 00i 1 i =100

so this gives a tight frame for C2%i.e. W = [ey, ie], 3, iea], with Gramian

1i00 1000 0100
v |-ito00o| [o1o0] .[-1000
WW=1001; o010l looo 1]

00—il 000 1 00-10

so that this in turn gives a tight frame for R4, ie. [e], e3, e, eq].

Example 3.3 Consider the Gramian of the SIC of four vectors in C? (Example 2.1).
The contribution to || V*V || ¢ of the diagonal entries, which are all real, is 4, and for the
off-diagonal entries it is 121 = 4. Thus, the SIC corresponds to a tight frame for R*
if and only if its vectors can be scaled so that the off-diagonal entries of the Gramian
are pure imaginary. This can in fact be done, e.g. take V = [v, i Sv, iQv, —SQuv], to
obtain

a—b 0 b
Re(V)) _|b 0 b —a _Y3+V3,_V3-V3
mv))~obs a v | ‘T & T 2/
b a —-b 0

This is an orthonormal basis, by Proposition 2.1, or directly by using (3.22). Hence,
there is a norm-preserving (invertible) R-linear map C> — R* which maps the SIC
to an orthonormal basis.

We now summarise some basic results about [-]g, F = R, C, and the associated
linear maps, in a unified form. We first observe that in the literature, there is some
variation in the definitions, in particular, the ordering of [v]r can be either of

Re(vy)
Im(vy)

_ (Re(v)
R I
e(vg
Im(vq)
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and similarly for [v]c. In the latter case (cf. [18, 25] for [v]¢), the matrix representation
[A]R is then obtained by replacing the entry aj of the matrix A by the matrix

(Re(a,,k) ~ Im(a,,k>) .

Im(ajr) Re(ajr)

Our choice of the former was governed by the simpler formulas (cf. [6]). Indeed, with
L = A+iB, A+ Bj (respectively), we have the explicit formulas

_ * T
we=(57) we=(l0r) - ForC G0

Theorem 3.3 The F-linear maps [-1r, F = R, C given by (3.20) and (3.30) have the
following properties:

(a) They map r-dimensional subspaces to (2r)-dimensional subspaces.

(b) They preserve the Euclidean norm of a vector.

(¢c) They map orthogonal vectors to orthogonal vectors.

(d) They map tight frames satisfying (3.28) and (3.35), respectively, to tight frames.
(e) They map equi-isoclinic r-subspaces to equi-isoclinic (2r)-subspaces.

(f) They map equichordal r-subspaces to equichordal (2r)-subspaces.

Moreover, the associated F-linear maps L +— [L]r to matrices over F satisfy

() [ABlr = [Alr[Blr, [AAlr = A[Alr, » € R, and [A*]r = [Alf.
(i) They map rank r linear maps to rank 2r linear maps.
(iii) They map invertible linear maps to invertible linear maps, with A~y = [A]IBTI.
(iv) They map self-adjoint operators to self-adjoint operators.
(v) They map unitary operators to unitary operators.
(vi) They map orthogonal projections to orthogonal projections, and in particular
the identity to the identity.

Proof For the first part, (a) has already been observed, (b) and (c) follow directly from
(3.22) and (3.31), (d) follows from Theorems 3.1 and 3.2 and (e) and (f) follow from
the definitions (2.19) and (2.18), and the facts (i), (ii) and (vi).

Now the second part. The first part of (i) follows from the definition, and the second
part was a calculation that we did in each case. For (ii), we have ker ([ L]r) = [ker(L)]r,
and the result follows from (a), with (iii) being a special case. If A is invertible, then (i)
gives I = [Ilr = [AA™ ']z = [A]r[A~!]r, which gives the formula for the inverse.
The properties (iv), (v) and (vi) are straightforward calculations using (3.36). O

Example 3.4 From the observation
JAL+ Arj) = (A1 + Azj)j. A1, Ay e C",

it follows that the image of the m x n matrices over H is

[H" " = {A € C2mx2n . JnA = Z.ln}, Jo:=11jledc = <Z _()I€> .
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Example 3.5 If G is a group of d x d matrices over C or H, then it follows from
Theorem 3.3 that [G]r = {[g]r : ¢ € G} is an isomorphic group of (2d) x (2d)
matrices. As an example, the quaternions Qg = {41, £i, &=, -k} are generated by i
and j, and so the groups of unitary matrices [Qg]c and [[Qg]c]r are generated by

lile = (g _Ol.> ke = ((1) —01> ,

00 -10 0-100
il =1 o0 ool Wiek={g 00l
0-100 0010
respectively. These representations of Qg are well known.
Example3.6 If V = [vy, ..., v,] € HY*" gives a tight frame of n vectors for H¢, i.e.

VV* = AI, then
[Vic = [[vilc. - ... [vale. [vifle, - .- [vajlc]

gives a tight frame of 2n vectors for C2.

The equiangular lines in H? of [11] were obtained by considering equi-isoclinic
planes in C*. We now explain the mechanism.

Example 3.7 Associated with a unit vector v, € H?, we have
Vo := [[valc, [vajlc] € C***2,

with orthonormal columns which span a plane in C>¢. The entries of the “block
Gramian” for V = [Vi, ..., V] are V'V, (with V'V, = I). These satisfy

RS TaTE _ [ Kva, Uh>H|2 0
Vo V)" (V, Vp) = ( 0 v, vb>H|2> ) (3.37)

so that
e, vp) > =2 = (VS Vp)*(V)Vp) = Al

Thus, (v,) gives a set of equiangular lines in H if and only if the off-diagonal entries
of the block Gramian [V1, ..., V,]*[Vi, ..., V,] are unitary matrices, up to a fixed
scalar. An n x n block matrix with this structural form (2 x 2 blocks, positive semi-
definite of rank 2d), which corresponds to equi-isoclinic planes in C2¢, can then be
mapped back (under [-](El) to the Gramian of n equiangular lines in HY (see Theorem
13 [11]).
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Equation (3.37) follows by a direct calculation, e.g. using (3.31), we have

Ve VaVi Vi = [plgvalclvaglvele + [plglva jlcva j15[vsle
= ([vplc, [valc)ellvale, [vple)e + ([vsle, [vajle)c(lvajle, [vsle)c

= | Co1({(va, vo)r)|* + | Cor((va, o)) |* = [(vas vp)ml%

(VyVaVi Vi = [plgvalelvalglvs jle + [uplE [va jlcva j1G v flc
= ([vplc, [valc)cllvalc, [vpjlc)c + ([vplc, [vajlc)c(lvajle, [upjlc)c
= Co1((vp, va)m) (— Co2((va, vp)r)) — Co2({vp, va)m) Coi1({vaj, vbJj)m)
= — Co1((vp, va)m) Co2({va, vp)m) + Co2({vp, va)m) Co1((vp, va)m) = 0,

where in the second to last equality we used Coz(g) = — Coa(gq), g € H.
Here is a construction of equiangular lines going in the opposite direction.

Example 3.8 We consider the construction of 64 equiangular lines in C® by [17].
These were obtained by finding 64 unit vectors in H* with angles %, % (as vertices of
a quaternionic polytope). These were then mapped by [-]c to 64 equiangular vectors
in C3. We note that for v, w € HY, o € H, (3.31) gives

(lvale, [wlc)c = Coi((var, w)m) = Coi((v, w)na)
= Coi () Co1 ((v, w)m) — Coz()Co2((v, w)m),

so that multiplying vectors in H? by noncomplex unit scalars in H can change the
angle between their images in C%¢.

4 Group frames and G-matrices

Many tight frames of interest are the orbit of one or more vectors under the unitary
action of a group, e.g. the Weyl-Heisenberg SICs. There is a well-developed theory of
such group frames based in the theory of group representations (over R and C) [29,
30, 32, 33]. We now give an indication of how this theory extends to representations
over H (see [26]).

A representation of a finite abstract group G on H is a group homomorphism
p:G— GL(H?) from G to the invertible d x d matrices over H, with equivalence
defined in the usual way. We will consider only unitary representations, i.e. those
where the matrices p(g) are unitary. For these, we will write the unitary action as
gv = p(g)v, and we note that g*v = g~ 'v. A frame (sequence of vectors) of the
form (gv),ec is said to be a group frame (or G-frame) [34]. The frame operator of
a group frame (gv),ec commutes with the frame operator, i.e.

S(hv) =Y gu(gv.hv) =h Y h™'gu(h~'gv.v) =hS(), heG, veH’

geG geG
(4.38)
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The Gramian of a group matrix has entries of the form
(hv, gv) = (g " hv, v).

A matrix A = [agnlg nec € HE*C is a G-matrix (or group matrix) if there exists a
function v : G — H such that

agp = v(g_lh), Veg,h €G.

The Gramian of a G-frame is a G-matrix, and conversely, if the Gramian of a frame
(vg)gec with vectors indexed by G is a G-matrix, then it is a G-frame (adapt the
proof of [33] Theorem 10.3). An action (representation) of G on H? is irreducible if
the only G-invariant subspaces of H¢ are 0 and H¢, i.e. spany {gv}gec = H¢, for all
v #O0.

The theory of G-frames for real and complex actions begins with irreducible actions,
where it takes its simplest form. This extends without issue.

Proposition 4.1 Suppose that a unitary action of a group G onH¢ is irreducible. Then,
(8v)gec is a tight G-frame for H for any v # 0, i.e.

d 1
X =—
|G| [lv]1?

ng(gv,x), Vx € HY.
geG

Proof Fix v # 0, and let S be the frame operator of (gv),eg. Since S is nonzero and
positive semi-definite, it has an eigenvalue A > 0, with corresponding eigenvector w.
By (4.38), S commutes with the action of g € G, so that

S(gw) = g(Sw) = g(wi) = (gw)A,

so that gw is an eigenvector for A. But (gw)geG spans H9, sothat S = A, i.e. (8V)gec
is a tight frame. Since S is Hermitian, taking the trace gives

trace(S) = Re(trace(S)) = Z lgvl> = |G| |v)|* = trace(A]) = dx,
8

which gives the value of A. O

The general theory [30, 33], which allows for multiple orbits, involves the decom-
position of the vector space into irreducible G-invariant subspaces.

Example 4.1 Each finite subgroup of H* corresponds to a (faithful) irreducible action
on H'. These subgroups were classified by Stringham [27]. They are the infinite
families of cyclic groups (generated by the n-th roots of unity) and binary dihedral
groups, together with the binary tetrahedral, octahedral and icosahedral groups.
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Example 4.2 The group generated by the matrices

01 10 10
(1) 67) (63)
has an irreducible unitary action on H?. It consists of all 128 invertible matrices with
two zero entries and two entries in Qg. It contains the scalar matrices from Qg and
its centre is 2-1. Thus, each orbit can be viewed as 16 lines in H? (as a left vector
space). This is an example of a (quaternionic) reflection group, i.e. a finite group
generated by reflections (linear maps which act as the identity on a hyperplane). The

finite irreducible quaternionic reflection groups have been classified (up to conjugacy)
by Cohen [6].

Itis expected that the highly symmetric tight frames of [3] corresponding to complex
reflection groups could be extended to the quaternionic reflection groups. In this regard,
we note the regular quaternionic polytopes have been classified by [7].

For G abelian, there are a finite number of tight G-frames (called harmonic frames)
that can be obtained by “taking rows of the character table” (see [29], [8]). We now
give an example to show how this can be extended to the quaternionic setting.

Example 4.3 (Quaternionic harmonic frames). The irreducible representations over C
for an abelian group G are all one-dimensional (this characterises abelian groups), and
these “rows” of the character table are orthogonal, so by taking a set of rows of the
character table, one obtains a tight G-frame. Consider the quaternion group G = Qsg.
This has four 1-dimensional and one 2-dimensional irreducible representations over C.
The 2-dimensional absolutely irreducible representation splits into four 1-dimensional
representations over H, corresponding to the outer automorphisms of the quaternions.
In this way, one obtains a character table

geQgl—1 i —i j —j k —k
X1 11 1 1 1 1 1 1
X 11 1 1 —1—-1-1-1
X3 11 -1-11 1 —1-1
x4 11 -1-1-1-11 1
Xs 1-1 i —i j —j k —k
X6 1-1 j —j i —i —k k
P 1—1—i i k —k j —j
X8 1-1 k —k—i i —j j

where the rows are orthogonal (cf. [26]). Taking rows gives a G-frame. The columns
of the character table are also orthogonal, so taking columns also gives a tight frame,
but these are not G-frames, in general (as follows for abelian groups by Pontryagin
duality). As an example, the frame obtained by taking the characters x| and x5 (rows 1
and 5 of the character table) gives a (unit-norm) tight Qg-frame for H2, with the inner
products {1 £ 1,1+, 1 £ j, 1 £k} occurring exactly once in every row (column) of
the Gramian. This frame has two angles: each vector is orthogonal to one other and
makes a fixed angle with all the others.
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5 Projective unitary equivalence

Finally, we consider the equivalence of vectors thought of as lines in H¢. Here, the
noncommutativity of scalar multiplication considerably complicates the theory.

We say that two sequences of vectors (v;) and (w;) in H¢ are projectively unitarily
equivalent if there exists a unitary U and unit norm scalars o; with

ij(UUj)Olj, Vj.

Clearly, projective unitary equivalence is an equivalence relation. Moreover, one can
define a projective unitary symmetry group of (v;);cs to be all the permutations
o : J — J for which (v;) and (v, ;) are projectively unitarily equivalent (cf. [10]).

To make a workable theory, one now needs a way to recognise projective unitary
equivalence. In terms of the Gramians V = [v;] and W = [w}], the formal definition
says that

W*W = C*V*U*UVC = C*V*VC, C = diag(a;),
i.e.
(wj, w) = ag(vj, ve)a;. (5.39)

This leads to a “linear system” C(W*W) = (V*V)C in the scalars o ;. However, due to
the noncommutativity of the quaternions, this can not be solved by Gauss elimination,
unless one first converts it to a linear system over R (in the coordinates of the ¢ ;). What
is usually done in the real and complex cases is to consider a collection of invariants:
the m-products, which completely characterise projective unitary equivalence [9]. We

now look at the analogue of these (also, see [20] for subspaces of C¢).
For a sequence of vectors (v;) in H, the m-products are

Ajps Vjys e ) = (Vs U Vs V) (Vs Vjy) -+ (v, vy ) € HL

The 1-products and 2-products are clearly projective unitary invariants, since
— 2 _ 2
Aj) = lvills, AW, v) = vy, vl

From these, we can define the frame graph of (v;) to be the graph with vertices {v;}
and an edge between v; and vi (j # k) if and only if (v;, v¢) # 0.
Further, since

A(WUvj)ej,, (Uvjaj, ..., (Uvj)aj,)
={(Wvj)aj, Uvpap)((Uvp)aj,, (Uvpag) - (Uv,)aj,, Uvj)aj)
=0 (V)i Vjp)o @ (U, Vi) @, (v, V) )y
=0, AW, Vjy, o0, V)0
=aj_llA(vj1, Vjps vy Vjp, )0y,

the m-products are projective unitary invariants of (v;) up to similarity (congruence),
and real frames are characterised by having real m-products. Since a quaternion ¢ is
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determined up to similarity (conjugation in H \ {0}, which is equivalent to conjugation
by unit scalars) by its real part Re(g) and its norm |g|, we can define (reduced) m-
products as a pair of real numbers

Ay (U, Vjy, ..., 05,) == (Re(g), lg), q =AWj,vj, ..., 0j,).

These are projective unitary invariants. For the complex case, the m-products are
projective unitary invariants, which depend only on the cycle (ji, . .., ju), and a small
set of m-products corresponding to a basis for the cycle space of the frame graph of
(v;) provide a set of invariants which characterise projective unitary equivalence (see
[9]). We can not yet make a similar claim in the quaternionic case, though we do
imagine that the m-products do characterise projective unitary equivalence.

The dependence of m-products on only the associated m-cycle in the frame graph
does follow, by the calculation (for nonzero m-products)

—1 (vj, vjp)
a AW, vj,, ..., Vj,)a =AW, vj, ..., 0, Vj), a=_———,
|<v/1» U/2>|

and so, in addition to the 1-products and 2-products, we need only consider the m-
products for m > 3 which correspond to m-cycles in the frame graph, i.e. are nonzero.
To check that the m-products for two sequences are equal (up to conjugation), it suffices
to consider only the m-products corresponding to a cycle basis for the cycle space of
the (common) frame graph:

Lemma 5.1 (Cycle decomposition) For 1 <k <m, n > 1, we have
AWk, Ukt 1y v v s Uy ULy ey U 1) AUy o0, V1, WL .0, Wy)
2 2 2
= [{vr, v2)|7[{v2, v3) 7+ - V=1, Vi “A(Vk, Vit 1s- - oy Uy U1, W1, W2,. ., Wy

Proof Expanding the left-hand side gives

(ks V1) {Uk415 Viet2) - - {Vm—15 U ) {Um, v1)(V1, 02) -+ - (Vk—2, Vk—1){Vk—1, Vk)
X AUk, Vk—1){Vk—1, Vk—2) - - - {(v2, v1){v1, wi){wi, w2) - - (W1, Wp)(Wa, Vk),

which simplifies to the right-hand side, since (v;_1, v;)(vj, vj_1) = [{vj_1, vj)l2 €
R commutes with any quaternion. O

This gives the following condition for projective unitary equivalence.

Theorem 5.1 A necessary condition for sequences (v;) and (w;) of n vectors in He
to be projectively unitarily equivalent is that the m-products corresponding to a cycle
basis for the frame graph are equal (up to conjugation).

In the complex setting, this says that the m-products are equal, and the converse
is proved by explicitly constructing scalars «; which satisfy (5.39). The difficulties
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in extending this converse to the quaternionic setting include the fact that for w; =
Ovj)ej,
AWj, Wiy, .oy w),) =05 AW, Vjyy ooy V), ), (5.40)

which puts further constraints on the «; (for m > 3 and the m-product nonzero).
Indeed, in the complex setting, one can assume that any «; is 1, simply by replacing
U by the unitary matrix «;U. Nevertheless, those parts of the theory that we do have
allow us to investigate such things as the symmetries of lines, as our final example
shows.

Example 5.1 Consider the six tight equiangular lines in H? at angle A = ¢ = % of
(1]
N e (B) oo £ 8
— 5 — 5
U1—<0>7U2— V& , U3 = f—i—gl , V4 = _ﬁ_l' L
NG 45 a5 @ f
V2 V2
— V5 - 5
v VAT PR _|_fk Vo= VAT PR WAFRVA I
N 2[1 w5 ATl T
which are said to have “‘symmetry group” Ag. The reduced m-products A, (vj,, ..., vj,)

of distinct vectors for m = 1, 2, 3, 4, 6 are all equal, taking the values

2 1 1 11
1.1 Z 2 3 A 5
(L, D), (576)7 (107(3)7 ( 5090)7 ( 25070)

respectively, which puts no restriction on the possible projective symmetry group of
the lines. However, the reduced 5-products (of distinct vectors) take two values

25+ 95 5)
———=nn )
500
and the permutations of the vectors which preserve these 5-products is indeed Asg.
Thus, the projective symmetry group is a subgroup of Ag. With the present theory,
this does not yet establish that Ag is the projective symmetry group.

We now seek a corresponding projective unitary symmetry for each o € Ag, i.e. a
unitary matrix U, and corresponding scalars «; (also depending on o) for which

wjzvng(UO—Uj)Olj, Vj.

Once the unit scalars o corresponding to a basis [v;]jes of vectors from (v;) are
known, the matrix U, is uniquely determined by

UU[U./a./]./GJ = [UU,/],/EJ = U, = [UG/]/GJ[U aj]jejv
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and it can then be checked whether or not the U, is unitary and permutes the other
lines. By (5.40), for j, k, £ distinct, the unit scalar «; satisfies

ajA(vOja Vok, U(TZ) = A(Ujﬂ Uk, U()(Xj,

which gives a homogeneous linear system of four equations for the four real coor-
dinates of «;. In the cases considered, this had a unique solution of unit norm up to
a choice of sign, which was made in order to obtain a unitary matrix U,. For the
generators

a = (12)(34) (order 2), b = (1235)(46) (order 4)

for Ag, we obtained

2 N2 N2 L
cw e Y2 Ly s AT A Ul — g
o1 = ﬁl+ﬁ’ a ﬁ'_L'_L'_i_ﬁ' ’ a >
T Tt T s
and

1 V5, 3-45, ﬁ+1k V5013541 V51
, o

+—=i— - =t —i- - ,
22 a6 av3 ' 4 TATAA T 4 T A

o=

B B eV e S ARV IS IS ==V S RNRVA B
U,,:(%frzf +2f[]+z§k 210 2“1ﬂ+34f5/ syfl ) Ul = 1.
; 5+
W+2«f’+ 4fj+ fk_7+7 ~ 10v6 +2«Fk

These unitary matrices U, and U}, do give the projective unitary symmetries supposed.
Moreover, they generate the double cover 2 - Ag of Ag, and so we have verified that Ag
is indeed the projective symmetry group of the six equiangular lines in HZ?. We note
that our method did not require prior knowledge of what the symmetry group was.

The action group of the faithful representation of 2 - Ag obtained in Example 5.1
contains 40 reflections (of order 3), and it is an irreducible reflection group which
appears on the list of [6]. The vectors giving the lines are eigenvectors of nontrivial
elements of the group, and so the six equiangular lines in H? can be constructed
directly from the reflection group as a group frame (or even from the abstract group
2 - Ag) [36].

The sets of five and six equiangular lines in H? were first calculated in [ 19] using the
Hopf map. Though this technique does not immediately generalise to other dimensions,
like that of [ 11], we recount the essential details, as it sheds further light on the geometry
of these lines. The Hopf map v maps a point @ = (ay, ..., as) on the unit sphere in
IR’ to a line in the projective space HP!, i.e. a the unit vector v € H? in the line with
vy > 0, and is given by (0,0, 0,0, 1) := (1, 0) and

Y(a) = <5Li5> a:=ay+ayi+azj+ask, as #1.

V2
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A calculation shows that

.

) _ 1+ @b

> va, b, (5.41)

(@), ¥ (b)) u|

so the n > 3 unit vectors (v;), v; = ¥ (v)) € H?, give tight equiangular lines if and
only if

1+ (v, vk) n—2 L. 1
(), )P = —— ==y & Wi =-

n—1

This latter condition says that the vectors (v}) are the vertices of a regular n-vertex
simplex embedded in the unit sphere in RS, which can be done forn = 3, 4, 5, 6, with
the corresponding image (v;) giving n tight equiangular lines in H?2. Moreover, for
n = 3, we get real lines by choosing the simplex in {x : x = (x1, 0,0, 0, x5)}, and
complex lines for n = 4 by choosing the simplex in {x : x = (x1, x2, 0, 0, x5)}.

5.1 Concluding remarks

We have shown how much of the theory of tight frames extends to quaternionic Hilbert
space, with the characterisation of projective unitary equivalence of frames being the
aspect that most depends intrinsically on the commutativity of the complex numbers.
The notions of canonical coordinates and the canonical Gramian [33] also extend to
H-vector spaces. In particular, there is a unique H-inner product for which a finite
spanning set for an H-vector space becomes a normalised tight frame.

Our focus has been on group frames and equiangular lines. The maximal set of six
equiangular lines in H? comes as the orbit of a quaternionic reflection group, just as the
SIC of four equiangular lines in C? is the orbit of a complex reflection group. However,
the known SICs in C¢ (with one exception) are orbits of the Weyl-Heisenberg group,
which is not a reflection group for d > 3. The key to constructing quaternionic equian-
gular lines in this way will be knowing “the right group”. This group might come from
numerical constructions, using the techniques of this last section, or from the theory of
group representations over H (which is in its infancy). The construction of sets of tight
quaternionic lines may also offer insight into Zauner’s conjecture. Another direction
of similar interest is that of optimal packings in quaternionic projective space HIP¥.

Many of our results say, in some sense, that “there is more room in H? than in
C4”. In particular, we offer the following variation of Conjecture 1, which does not
implicitly reference Zauner’s conjecture.

Conjecture 2 The maximal number of quaternionic equiangular lines in H is strictly
larger than the maximal number of complex equiangular lines in C%, for each d > 2.
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