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Abstract
We show that much of the theory of finite tight frames can be generalised to vec-
tor spaces over the quaternions. This includes the variational characterisation, group
frames and the characterisations of projective and unitary equivalence. We are partic-
ularly interested in sets of equiangular lines (equi-isoclinic subspaces) and the groups
associated with them, and how to move them between the spaces Rd , Cd and Hd . We
discuss what the analogue of Zauner’s conjecture for equiangular lines in H

d might
be.
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1 Introduction

Tight frames are a notion of redundant orthonormal bases which is of both theoretical
and practical interest [33]. Their recent development has been driven by connections
with algebraic combinatorics and applications to quantum physics, signal analysis and
engineering. In all of these settings, tight frames for which the vectors/lines are “well
spread out” are desired, with equiangular tight frames being of the most interest.

We consider tight frames over the quaternions, motivated by equiangular tight
frames in R

d and C
d . Given enough care, much of the theory generalises to the

quaternionicHilbert spaceHd , including the variational characterisation, group frames
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and G-matrices and the characterisation of projective and unitary equivalence. We
consider in detail how to move between tight frames (and associated linear operators)
in Rd , Cd and H

d .
The maximum possible number of equiangular lines in R

d is 1
2d(d + 1), and in

C
d , it is d2. The bound for real equiangular lines is rarely met, but for complex lines,

the bound is conjectured to hold in all cases: Zauner’s conjecture on the existence of
Weyl-Heisenberg SICs [1, 37]. For Hd , the bound is 2d2 − d, for a maximum of six
equiangular lines in H

2, and 15 in H
3. We give an elementary construction of five

equiangular lines in H
2 and investigate the maximal configuration of six equiangular

lines in H2 recently obtained independently by [19] and [11]. Recently, the existence
of 15 equiangular lines in H

3, viewed as a simplex in the projective space HP
2, has

been proved by [5] using a Newton-Kantorovich theorem. Based on these two data
points, andmy instincts (there is a lot of space inHd and the beauty of the quaternions),
I had initially thought the quaternionic version of Zauner’s conjecture:

There exists 2d2 − d equiangular lines in Hd , for each d,

should hold. However, calculations of [5] suggest that this fails for d = 4, and the
analogous situation for the octonians is much worse. Thus, it seems that equiangular
lines in C

d may be a high point for satisfying the estimates on the maximal number
of equiangular lines, with real and quaternionic equiangular lines rarely meeting the
bound (“filling up all the space”) due to algebraic limitations of the field involved,
i.e. R not being algebraically closed and H not being commutative. Still, there is
much interest in the maximal sets of equiangular lines in H

d , and for those in R
d

(which have been studied for over half a century). Therefore, I present the following
conjecture,which canplay the role ofZauner’s conjecture for the theoryof quaternionic
equiangular lines:

Conjecture 1 There exists more than d2 tight equiangular lines inHd , for each d ≥ 2.

We observe that:

• This says “there is something going on”, i.e. there are interesting equiangular lines
in Hd (ones which cannot be viewed as lines in C

d ) for every dimension d.
• This conjecture is known to hold only for d = 2, 3 and is otherwise open.
• For some d, there do exist sets of ≤ d2 tight quaternionic equiangular lines, e.g.
five equiangular lines in H3 (Example 2.4) and six in H4 (Example 2.5).

• It is conjectured in [5] (Conjecture 4.2) that asymptotically there exists N ≥
(4 − √

2)d tight equiangular lines in H
d , as d → ∞.

We now give the basic theory of inner product spaces over the quaternions, to a
point where we are able to define and discuss tight frames over H.

1.1 Inner products over the quaternions

The reader is assumed to be familiar with the quaternions H which are an extension
of the complex numbers x + iy to a noncommutative associative algebra over the real
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numbers (skew field) consisting of elements:

q = q1 + q2i + q3 j + q4k = (q1 + q2i) + (q3 + q4i) j ∈ H, q j ∈ R,

with the (noncommutative) multiplication given by Hamilton’s famous formula that
i2 = j2 = k2 = i jk = −1.

Since the multiplication is not commutative, we must distinguish between left and
right vector spaces (modules) over H. Since we wish to appropriate much of matrix
theory, we take our vector spaces to be right H-vector spaces. Thus, H-linear maps L
have the form

L(v1α1 + · · · + vnαn) = L(v1)α1 + · · · + L(vn)αn,

and can be represented by matrices, with the usual rules for multiplication, i.e.

(AB) jk =
∑

�

a j�b�k,

where order of multiplication in a j�b�k cannot be reversed (see [38]). For those who
may have noticed, I apologise for using j and k above as indices for matrix entries,
and elsewhere as quaternion units (as is often done with the complex unit i).

The conjugate and norm of a quaternion q = q1 + q2i + q3 j + q4k ∈ H

q := q1 − q2i − q3 j − q4k, |q| := √
qq =

√
q21 + q22 + q23 + q24 ,

generalise the conjugate and modulus of a complex number x+ iy, and allow the inner
product (and associated norm) to be extended to H as follows. We note that

ab = b a, a, b ∈ H �⇒ (AB)∗ = B∗A∗ (for matrices over H).

Definition 1.1 Let V be a finite-dimensional (right) vector space over F = R,C,H.
Then, an F-valued map 〈·, ·〉 : V × V → F is called an inner product if it satisfies

1. Conjugate symmetry: 〈v,w〉 = 〈w, v〉.
2. Linearity in the second variable: 〈v,wβ〉 = 〈v,w〉β, 〈u, v+w〉 = 〈u, v〉+〈u, w〉.
3. Positive definiteness: 〈v, v〉 > 0, v 
= 0.

for all vectors v,w, u ∈ V and scalars β ∈ F.

Wewill say thatV is a real, complex or quaternionic inner product space (respectively).
The theory of inner product spaces evolves as in the real and complex cases, though
it is not well known, e.g. the Cauchy-Schwarz inequality

|〈v,w〉| ≤ ‖v‖‖w‖, ‖v‖ := √〈v, v〉, (1.1)

holds (with equality if and only if v and w are linearly dependent), though it is not
mentioned in the monograph [25]. I think this is in part due to the fact that real and
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complex-valued inner products are often also defined on H-vector spaces. A good
treatment is given in [6] (“unitary inner products”) and [14] (“Hermitian quaternionic
scalar products”, which includes Cauchy-Schwarz). The prototype of such an inner
product is the Euclidean (or standard) inner product

〈v,w〉 := v∗w =
∑

j

v jw j , v, w ∈ H
d . (1.2)

Throughout,wewill use the notation 〈v,w〉 for theEuclidean inner product, sometimes
writing 〈v,w〉F to emphasise when all the entries of vectors v and w are in F =
R,C,H. The Euclidean inner product on the entries of a matrix is the Frobenius
inner product

〈A, B〉F := trace(A∗B), ‖A‖2F = 〈A, A〉F =
∑

j

∑

k

|a jk |2. (1.3)

In light of the noncommutativity of the quaternions, we note that scalars come outside
an inner product (as we have defined it) as follows

〈vα,wβ〉 = α〈v,w〉β. (1.4)

The notion of orthogonality and the Gram-Schmidt process extends in the obvious
fashion. There is no need for notions of “left” and “right” orthogonality, since

〈v,w〉 = 0 ⇐⇒ 〈w, v〉 = 〈v,w〉 = 0.

The Riesz representation also extends to inner products over H, and so the adjoint
of a linear map T : V → W between finite-dimensional inner product spaces can be
defined as the unique linear map T ∗ : W → V satisfying

〈T ∗w, v〉 = 〈w, T v〉, ∀v ∈ V, w ∈ W.

If T and T ∗ are represented as matrices [T ] and [T ∗] with respect to orthonormal
bases (v j ) and (wk), so that v = ∑

j v j 〈v j , v〉, ∀v ∈ V and w = ∑
k wk〈wk, w〉,

∀w ∈ W , then

[T ] jk = 〈w j , T vk〉 = 〈T ∗w j , vk〉 = 〈vk, T ∗w j 〉 = [T ∗]k j ,

and hence, thematrix [T ∗] is the conjugate transpose of thematrix [T ]. For this reason,
it is often assumed that the inner product is the standard inner product on Hd , and all
calculations are done with matrices, with A∗ defined to be the conjugate transpose
(or Hermitian transpose) of the matrix A, as is the case in [25]. The adjoint and
Hermitian transpose satisfy some (but not all) of the usual properties, including

(AB)∗ = B∗A∗, (A + B)∗ = A∗ + B∗, (A∗)∗ = A,

(A∗)−1 = (A−1)∗ (for A invertible).
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Note that the transpose does not satisfy (AB)T = BT AT (sinceH is not commutative).
It can be shown that if AB = I for square matrices over H then BA = I , and so a
right inverse exists for A if and only if a left inverse exists, and these inverses are equal
(and denoted by A−1).

One subtle point, which is not obvious from the matrix formulation, is that scalar
multiplication by β ∈ H\R, i.e. Rβ : V → V : v �→ vβ is not anH-linear map, since

Rβ(vα) = (vα)β = v(αβ) 
= v(βα) = (vβ)α = (Rβv)α (in general).

Left multiplication of Hd by β defines an H-linear map Lβ : Hd → H
d : v �→ βv,

but this is dependent on a choice of basis: it is the linear map which maps e j �→ e jβ,
i.e. the linear map whose matrix representation with respect to the standard basis (e j )
is β I (see the discussion of [14] §3.1). On the other hand, multiplication of a fixed
vector v ∈ V by scalars, i.e. [v] : H → V : α �→ vα, is an H-linear map:

[v](β1α1+β2α2) = v(β1α1+β2α2) = (vβ1)α1+(vβ2)α2 = ([v]β1)α1+([v]β2)α2.

Its adjoint [v]∗ : V → H is given by [v]∗ = 〈v, ·〉, since

〈α, [v]∗w〉 = 〈[v]α,w〉 = 〈vα,w〉 = α〈v,w〉 = α〈1, 〈v,w〉〉 = 〈α, 〈v,w〉〉.

The map [v] is sometimes abbreviated simply as v, especially when v ∈ H
d is thought

of as a column vector, i.e. as an element of Hd×1. More generally, a synthesis map

V = [v1, . . . , vn] : Hn → V : a �→ v1a1 + · · · + vnan,

for a sequence of vectors v1, . . . , vn ∈ V , has adjoint the analysis map

V ∗ : V → H
n : v �→ (〈v j , v〉)nj=1.

2 Tight frames

A frame for a Hilbert space H is a sequence of vectors (v j ) satisfying the condition

A‖v‖2 ≤
∑

j

|〈v j , v〉|2 ≤ B‖v‖2, ∀v ∈ H, (2.5)

where A, B > 0 are constants. From this, a “frame expansion” follows, which takes
a particularly simple form when A = B, i.e.

v = 1

A

∑

j

v j 〈v j , v〉, ∀v ∈ H.

A prominent early example of the use of such “generalised orthonormal bases” is
in the theory of wavelets. Recently, frames have been considered for quaternionic
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Hilbert space, see, e.g. [22, 28] (which deal primarily with the frame operator and the
construction of dual frames), [21] (equiangular lines and Hadamardmatrices) and [24]
which considers the connectedness of the algebraic variety of quaternionic frameswith
given norms. Here, we consider tight frames (where the dual frame is the frame itself)
with a particular emphasis on the classification and construction of such frames. This
is related to earlier work of Hoggar [16, 18] and others, which implicitly considers
tight frames over quaternionic (and even octonionic) Hilbert spaces.

2.1 Tight frames defined and unitary equivalence

We will say that a sequence of vectors with synthesis map V = [v1, . . . , vn] is a tight
frame for a (finite-dimensional) quaternionicHilbert spaceH if it satisfies (2.5), where
A = B, and is normalised if A = B = 1, which can be achieved by multiplying
the vectors of a tight frame by a suitable positive scalar. The frame operator (for a
sequence of vectors) is S = VV ∗ and the Gramian (matrix) is G = V ∗V .

A linear map U on H is unitary if it preserves angles, i.e. 〈Uv,Uw〉 = 〈v,w〉,
∀v,w, or, equivalently U∗U = I . Unitary maps can be defined in the same way on
quaternionic Hilbert spaces. If V = [v1, . . . , vn] is a frame for a quaternionic Hilbert
space, then so is any unitary image UV = [Uv1, . . . ,Uvn], and these frames have
the same Gramian since (UV )∗UV = V ∗U∗UV = V ∗V , and we say that they are
unitarily equivalent. Tight frames are studied up to unitary equivalence (which is an
equivalence relation) and multiplication by a nonzero scalar.

The monograph [33] is a good reference for those parts of the theory of finite tight
frames which we now develop. First, we consider equivalent conditions for being a
tight frame. For this, we need the polarisation identity for quaternionic Hilbert space.
Since this is not well known, we provide it with proof.

Lemma 2.1 (Polarisation identity) For an inner product space over F = R,C,H, we
have

〈v,w〉 = 1

4

m−1∑

r=0

(
‖vir + w‖2 − ‖vir − w‖2

)
ir ,

where m = dimR(F), (i0, i1, i2, i3) = (1, i, j, k) and 〈·, ·〉 is linear in the second
variable.

Proof We first observe that for a quaternion q = q0 + q1i1 + q2i2 + q3i3, qr ∈ R, a
calculation gives

ir q + qir = 2qr , r = 0, 1, 2, 3, (2.6)

and we write (q)r = qr . Expanding, using the properties of the inner product, gives

‖vir ± w‖2 = 〈vir , vir 〉 + 〈±w,±w〉 + 〈vir ,±w〉 + 〈±w, vir 〉
= ‖v‖2 + ‖w‖2 ± ir 〈v,w〉 ± 〈w, v〉ir ,

so that

‖vir + w‖2 − ‖vir − w‖2 = 2
(
ir 〈v,w〉 + 〈v,w〉ir

) = 4(〈v,w〉)r ,
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which gives the result. ��
This could also be proved by rewriting equation (3.5.1) of [25] for A = I and

(q1, q2, q3) = (i, j, k).
The basic characterisations of normalised tight frames generalise.

Proposition 2.1 Let V = [v1, . . . , vn] be a sequence of vectors in a d-dimensional
(right) quaternionic Hilbert spaceH, such asHd . Then, the following are equivalent:

(i) V is a normalised tight frame forH, i.e.

‖v‖2 =
∑

j

|〈v j , v〉|2, ∀v ∈ H.

(ii) The frame operator S = VV ∗ = I , i.e. we have the frame expansion

v =
∑

j

v j 〈v j , v〉, ∀v ∈ H.

(iii) The Plancherel identity

〈v,w〉 =
∑

j

〈v, v j 〉〈v j , w〉, ∀v,w ∈ H.

(iv) TheGramian P = V ∗V is a rank d orthogonal projection, i.e. P2 = P, P∗ = P.

Proof The implications (ii)�⇒(iii)�⇒(i) follow by taking the inner product with w

and then letting w = v, respectively. Suppose that (i) holds. By Lemma 2.1 and (2.6),
we have

4(〈v,w〉)r = ‖vir + w‖2 − ‖vir − w‖2 =
∑

j

(
|〈v j , vir + w〉|2 − |〈v j , vir − w〉|2

)

=
∑

j

(
2ir 〈v, v j 〉〈v j , w〉 + 2〈w, v j 〉〈v j , v〉ir

)
= 4

∑

j

(〈v, v j 〉〈v j , w〉)r .

Thus (by the Riesz representation, or since the orthogonal complement of Hd is {0}),

〈v,w〉 =
∑

j

〈v j , v〉〈v j , w〉 = 〈
∑

j

v j 〈v j , v〉, w〉 �⇒ v =
∑

j

v j 〈v j , v〉,

which is (ii).
We now show (iii) ⇐⇒ (iv). We observe that by construction P = (〈v j , vk〉) j,k is

Hermitian. The condition P2 = P can be written entrywise as

〈v j , vk〉 = Pjk =
∑

�

Pj�P�k =
∑

�

〈v j , v�〉〈v�, vk〉,
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which is the Plancherel identity for v = v j and w = vk . The implications then
follow by extending the Plancherel identity (using linearity and symmetry of the inner
product), and calculating rank(P) = trace(P) = Re(trace(VV ∗)) = d, by (ii). ��

For ease of presentation, we will now consider Hd , rather than saying let H be a
quaternionic Hilbert space of dimension d. We also write Fd , with F = R,C,H. The
following characterisation extends the real and complex cases (see [33] Theorem 2.1).

Proposition 2.2 An n× n matrix P is the Gramian matrix of a normalised tight frame
V = [v1, . . . , vn] forHd if and only if it is an orthogonal projection matrix of rank d.

Proof Wehave already seen that a normalised tight frame is determined by itsGramian,
which is an orthogonal projection of rank d (Proposition 2.1). It remains only to show
that such a matrix P corresponds to a normalised tight frame. Let v j = Pe j . Then,
with the Euclidean norm on H

n , we have that

〈v j , vk〉 = 〈Pe j , Pek〉 = 〈e j , Pek〉 = Pjk,

so that (v j ) is such a tight frame (for its d-dimensional span). ��
A finite sequence of unit vectors (v j ) (or the lines they represent) is said to be

equiangular if
|〈v j , vk〉|2 = λ = c2 = (cos θ)2, ∀ j 
= k. (2.7)

The constants λ, c and θ all occur in the literature and are called the (common) angle.

Example 2.1 Four equiangular lines in H2 with λ = 1
3 are given in [18], namely

w1 = 1√
2

(
1
j

)
, w2 = 1√

6

(
1 − √

2i
j − √

2k

)
,

w3 = 1

2
√
3

( √
2 + √

3 + i√
2 j − √

3 j + k

)
, w4 = 1

2
√
3

( √
2 − √

3 + i√
2 j + √

3 j + k

)
.

The Gramian of these vectors (which are a tight frame for H2) has only complex
entries, and so they are unitarily equivalent to an equiangular tight frame forC2. They
have the same Gramian as the Weyl-Heisenberg SIC v1 = v, v2 = Sv, v3 = �v,
v4 = i S�v, where

v = 1√
6

( √
3 + √

3
1√
2
(1 + i)

√
3 − √

3

)
, S =

(
0 1
1 0

)
, � =

(
1 0
0 −1

)
.

Therefore, there is a unitary map U with v j = Uw j , which we calculate as

U =
(
z1 − j z1
z2 −kz2

)
, z1 :=

√
3 + √

3

2
√
3

+
√
3 − √

3

2
√
3

i, z2 :=
√
3 + √

6

2
√
3

−
√
3 − √

6

2
√
3

i .

Though this first example of quaternionic equiangular lines is not “quaternionic”,
we will see that such lines do exist, and they are very intriguing.

123



Tight frames over the quaternions and equiangular lines Page 9 of 37    49 

2.2 The variational characterisation of tight frames

We now seek to extend the variational characterisation for tight frames [2, 31]. For
C
d , this is most easily and transparently proved from the spectral decomposition of

the frame operator using trace(AB) = trace(BA) (see [33], Theorem 6.1). This trace
formula no longer holds over the quaternions, even for 1 × 1 matrices. Instead, we
will use the fact

Re(trace(AB)) = Re(trace(BA)), (2.8)

which follows from the special case Re(ab) = Re(ba), ∀a, b ∈ H.
The general spectral theory of matrices over H is fraught (see [25]), since

Av = vλ �⇒ A(vα) = (vα)α−1λα,

so that if v is a (right) eigenvector for λ, then vα is an eigenvector for eigenvalue
α−1λα. However, Hermitian matrices (those with A∗ = A) have real eigenvalues
and are unitarily diagonalisable, as in the complex case.

Lemma 2.2 Let V = [v1, . . . , vn] be vectors in F
d , with frame operator S = VV ∗

and Gramian G = V ∗V . Then, trace(Sk) = trace(Gk), k = 1, 2, . . .. In particular,

trace(S) =
∑

j

‖v j‖2, trace(S2) =
∑

j

∑

k

|〈v j , vk〉|2. (2.9)

Proof The trace of an Hermitian matrix A is real, since 〈Ax, x〉 = 〈x, Ax〉 = 〈Ax, x〉.
Since Sk and Gk are Hermitian, they have real trace, and so by (2.8), we have

trace(Sk) = Re(trace(VV ∗(VV ∗)k−1)) = Re(trace(V ∗(VV ∗)k−1V ))

= Re(trace((V ∗V )k)) = trace(Gk).

The formulas for trace(G) and trace(G2) given on the left-hand side of (2.9) are easily
calculated from (G) jk = 〈v j , vk〉. ��
Theorem 2.1 (Variational characterisation) Let v1, . . . , vn be vectors in F

d , which
are not all zero. Then,

n∑

j=1

n∑

k=1

|〈v j , vk〉|2 ≥ 1

d

( n∑

j=1

‖v j‖2
)2

, (2.10)

with equality if and only if (v j )
n
j=1 is a tight frame for F

d .

Proof Let V = [v j ]. Since S = VV ∗ is positive definite, it is unitarily diagonalisable
S = U�U∗, � = diag(λ j ), with real eigenvalues λ1, . . . , λd ≥ 0. From (2.8), we
have

trace(Sk)=Re(trace(U�kU∗))=Re(trace(�kU∗U ))=Re(trace(�k))= trace(�k).
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Thus, the Cauchy-Schwarz inequality gives

trace(S)2 = (
∑

j

λ j )
2 = 〈(1), (λ j )〉2 ≤ ‖(1)‖2‖(λ j )‖2 = d

∑

j

λ2j = d trace(S2),

which, by (2.9), is (2.10), with equality if and only if λ j = A, ∀ j , A > 0, i.e.

S = U (AI )U∗ = AI ⇐⇒ (v j ) is a tight frame for Fd .

Note above, since one vector is nonzero, S = ∑
j v jv

∗
j 
= 0, and so A 
= 0. ��

This variational characterisation of tight frames depends only on the Gramian,
hence the frame up to unitary equivalence. It is easy to verify and plays a key role in
Theorems 3.1 and 3.2. We now consider its implications for equiangular lines.

2.3 Bounds on equiangular lines

We recall that unit vectors (v j ) in Fd are equiangular if they satisfy (2.7), i.e.

|〈v j , vk〉|2 = λ = c2 = (cos θ)2, ∀ j 
= k.

Those of the most interest have the maximum separation of the corresponding lines,
i.e. λ = c2 small, or, equivalently, 0 ≤ θ ≤ π

2 large. Examples that exist in every
dimension d are orthonormal bases of n = d vectors (λ = 0, θ = 90◦) and the
n = d + 1 vertices of a regular simplex (λ = 1

d2
). The formula for the chordal

distance

ρ(v j , vk) :=
√
1 − |〈v j , vk〉|2,

gives a metric on the lines inHd , and accordingly, [5] calls sets of (tight) equiangular
lines “(tight) simplices in projective space” (points an equal distance from each other).

As an example of Theorem 2.1, we have the following bound.

Example 2.2 If all the n vectors (v j ) in Fd have unit norm, then (2.10) reduces to

n∑

j=1

n∑

k=1

|〈v j , vk〉|2 ≥ 1

d

( n∑

j=1

12
)2 = n2

d
.

Moreover, if the (v j ) are equiangular, then the left-hand side is (n2 −n)λ+n, and the
inequality rearranges to

λ ≥ n − d

d(n − 1)
, (2.11)

with equality (and maximum possible separation) when the vectors are a tight frame,
and for λ < 1

d , it rearranges to the relative bound for equiangular lines

n ≤ 1 − λ
1
d − λ

, λ <
1

d
.
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The next bound (which is well known for F = R,C) depends on the underlying
field.

Theorem 2.2 Suppose d > 1. Let (v j ) be a sequence of n non-parallel unit vectors in
F
d giving a set of n equiangular lines, then the orthogonal projections

Pj = v jv
∗
j : v �→ v j 〈v j , v〉, j = 1, . . . , n,

are linearly independent over R, and hence

n ≤

⎧
⎪⎨

⎪⎩

1
2d(d + 1), F = R;
d2, F = C;
2d2 − d, F = H,

(2.12)

with equality if and only if (Pj ) is a basis for theR-vector space of Hermitianmatrices.
In these cases, the angle is

λ =

⎧
⎪⎪⎨

⎪⎪⎩

1
d+2 , F = R;
1

d+1 , F = C;
1

d+ 1
2
, F = H.

(2.13)

Proof Since d > 1, the equiangularity constant λ is less than 1. Using (2.8), we
calculate

Re(trace(Pj Pk)) = Re(trace(v jv
∗
j vkv

∗
k ))

= Re(trace(v∗
j vkv

∗
k v j )) = |〈v j , vk〉|2 = λ, j 
= k.

The R-linear combination
∑

j c j Pj is Hermitian, and hence its Frobenius norm sat-
isfies

‖
∑

j

c j Pj‖2F = Re(trace(
∑

j

c j Pj

∑

k

ck Pk)) =
∑

j

∑

k

c j ck Re(trace(Pj Pk))

=
∑

j

∑

k

c j ckλ +
∑

j

c j c j (1 − λ) = λ
(∑

j

c j
)2 + (1 − λ)

∑

j

c2j ,

which is zero only for the trivial linear combination.
The n projections {Pj } belong to the real vector space of d × d Hermitian matrices

which has dimension given by the right-hand side of (2.12). For example, for F = H,
the Hermitian matrices are determined by their real diagonal, and the entries above it
which can be any quaternions, giving a dimension of d + 1

2 (d
2 − d) · 4 = 2d2 − d.��

This result for Hd , the inequality (2.12), is given in [15], without proof, and as
Proposition 2.2 in [5] (which also includes the octonionic case O3).
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We are now in a position to discuss quaternionic equiangular lines. We first observe
the following:

• Quaternionic equiangular lines do exist (for λ < 1, d > 1).

You will recall from Example 2.1 that Hoggar’s example of four equiangular lines
in H

2 was in fact lines in C
2 (most likely the very first occurrence of a SIC in the

literature). For d = 1, any sequence of unit quaternions is an equiangular tight frame
(with λ = 1), which is quaternionic if any ratio of the quaternions is not a complex
number. Even though this is a trivial example, we will be able to use such frames to
construct unit-norm tight frames in C

2 and R
4 (Example 3.5). We now give a simple

example in H2.

Example 2.3 (Five equiangular lines inH2). Fix 0 < t < 1, and consider the four unit
vectors

vr =
(

t√
1 − t2 ir

)
, i1 = 1, i2 = i, i3 = j, i4 = k.

These are equiangular, with

|〈vr , vs〉|2 = λ := t4 + (1 − t2)2, j 
= k,

where 1
2 ≤ λ < 1. By Theorem 2.2, the maximal number of equiangular lines inC2 is

four, with λ = 1
3 , so these lines are quaternionic. For the maximal separation λ = 1

2 ,
we may add a fifth equiangular line, to obtain five equiangular lines in H

2 given by

1√
2

(
1
1

)
,

1√
2

(
1
i

)
,

1√
2

(
1
j

)
,

1√
2

(
1
k

)
,

(
1
0

) (
or

(
0
1

))
. (2.14)

These lines are not tight, since they do not give equality in (2.11), i.e.

λ = 1

2
>

3

8
= 5 − 2

2(5 − 1)
= n − d

d(n − 1)
.

They appear exactly as above in [11], for the parameter choice c = 1√
2
, ω = π

4 , α = 0

and γ = π
4 .

Taking the five lines of (2.14) and their orthogonal complement gives five MUBs
(mutually unbiased bases) in H2, which is a tight frame of ten vectors (see [4]).

Another method to obtain tight equiangular lines is via the complementary tight
frame. The construction is as follows. LetG be the Gramian of n > d equiangular unit
vectors in Fd at an angle λ = n−d

d(n−1) 
= 0, so that P = d
n G is an orthogonal projection

matrix (Proposition 2.1). The complementary orthogonal projection Q = I − P gives
an equiangular tight frame of n vectors for Fn−d with Gramian Gc given by

Gc = n

n − d
I − d

n − d
G,
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and common angle λc = d2

(n−d)2
λ = d

(n−d)(n−1) . The equivalent construction for lines
is called the Gale dual in [5] (see Corollary 2.12).

Let cd be the right-hand side of (2.12), which we can write as

cd = d + 1

2
d(d − 1) · m, m := dimR(F).

Since the complementary tight frame alsomust satisfy the bound (2.12), for n−d 
= 1,
we have that an equiangular tight frame of n > d + 1 unit vectors in F

d must satisfy

n ≤ min{cd , cn−d}. (2.15)

This gives the following (see Theorem 2.18 of [19]).

Proposition 2.3 Let d ≥ 2. An equiangular tight frame of n > d + 1 vectors for Fd

satisfies

d + 1

2
+

√
8
m d + 1

2
≤ n ≤ d + m

2
d(d − 1), m = dimR(F), (2.16)

so that
n ≥ d + 2 + j, for d >

m

2
( j + 1)( j + 2). (2.17)

Proof The condition n ≤ cn−d in (2.15) can be written as

n2 − (2d + 1)n + d(d + 1) − 2

m
d ≥ 0.

By considering the roots of this quadratic polynomial in n, this is satisfied if and only
if

n ≤ d + 1

2
−

√
8
m d + 1

2
< d, or n ≥ d + 1

2
+

√
8
m d + 1

2
,

which gives the lower bound in (2.16). The upper bound is the condition n ≤ cd .
Rearranging the right-hand inequality in

n ≥ d + 1

2
+

√
8
m d + 1

2
≥ d + 2 + j,

gives

d ≥ m

8

(
(2 j + 3)2 − 1

) = m

2
( j + 1)( j + 2),

which gives (2.17). ��
The lower bound in (2.16) is a decreasing function of m, and the upper bound is an

increasing function ofm. This says that there is more room inHd for tight equiangular
lines than there is in C

d , and in turn Rd .
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Example 2.4 (Five tight equiangular lines in H
3) By Proposition 2.3, there cannot be

five tight equiangular lines in R3 or C3, but they could exist in H3. We now construct
such lines as a complementary tight frame. The following five tight equiangular lines
in H2 with λ = 3

8 are given by [11]

V =
⎛

⎝1
√
3

2
√
2

√
3

2
√
2

√
3

2
√
2

√
3

2
√
2

0
√
5

2
√
2

−
√
5

6
√
2

+
√
5
3 i −

√
5

6
√
2

−
√
5
6 i +

√
5

2
√
3
j −

√
5

6
√
2

−
√
5
6 i −

√
5

2
√
3
j

⎞

⎠ .

The complementary tight frame therefore gives five equiangular lines in H
3 at angle

λ = 1
6 . A concrete presentation of these lines is

W =

⎛

⎜⎜⎝

1 − 1√
6

− 1√
6

− 1√
6

− 1√
6

0
√
5√
6

−
√
5

3
√
6

−
√
5

3
√
3
i −

√
5

3
√
6

+
√
5

6
√
3
i −

√
5
6 j −

√
5

3
√
6

+
√
5

6
√
3
i +

√
5
6 j

0 0
√
5
3 −

√
5
6 +

√
5

2
√
3
k −

√
5
6 −

√
5

2
√
3
k

⎞

⎟⎟⎠ .

This was obtained by the following general method. The condition VV ∗ = AI for V
to be a tight frame is that the entrywise conjugates of the rows of V are orthogonal
and of equal length, i.e. V ∗ has orthogonal columns of equal length. By using Gram-
Schmidt, add orthogonal columns of equal length to obtain [V ∗,W ∗], a scalar multiple
of a unitary matrix. Then, W is a tight frame, which is the complement of V , since

(
V ∗ W ∗) (

V ∗ W ∗)∗ = (
V ∗ W ∗)

(
V
W

)
= V ∗V + W ∗W = AI .

Above, we used the fact that the columns of the square matrix
(
V ∗ W ∗) over H

are orthogonal. For frames over C, this is equivalent to the rows being orthogonal.
For frames over the quaternions, it is necessary to make this distinction. Indeed, there
exist unitary matrices (orthogonal columns) whose rows are not orthogonal, e.g.

U := 1√
2

(
1 i
j k

)
, U∗U = UU∗ =

(
1 0
0 1

)
, (UT )∗(UT ) =

(
1 j

− j 1

)
.

Example 2.5 By Proposition 2.3, there cannot be six tight equiangular lines in R
4 or

C
4, but they do exist in H

4, by taking the complementary tight frame to the six tight
equiangular lines in H2 of [11, 19] (obtained independently).

We now consider tight equiangular lines in general, before giving a striking sum-
mary of the known results for two dimensions. For n tight equiangular lines inHd (or
C
d , Rd ), the angle is

λ = n − d

d(n − 1)
, n > d,

with the following specific cases (in order of the number of vectors)

λ = 0 (orthonormal basis), λ = 1

d2
(vertices of a simplex),
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and sets of lines giving the bounds of Theorem 2.2

λ = 1

d + 2
, λ = 1

d + 1
(SIC), λ = 1

d + 1
2

(maximal set of lines in H
d).

The theory as is stands does not preclude the bounds above being reached by lines
from a larger space, e.g. n = 1

2d(d + 1) complex or even quaternionic lines in H
d .

This does not occur for two dimensions. Since

(∂λ

∂n

)

d
= d − 1

d(n − 1)2
> 0,

λ increases with the number of tight equiangular lines n (for d fixed), taking the
possible values

λ = 0,
1

d2
, . . . ,

1

d + 2
, . . . ,

1

d + 1
, . . . ,

2

2d + 1
.

Equiangular lines are classified up to projective unitary equivalence (see Section 5).
In two dimensions, the tight equiangular lines given by an orthonormal basis, the

Mercedes-Benz frame and the SIC (two, three and four vectors, respectively) are well
known, as is their uniqueness inC2. Putting these examples together with the five and
six sets of equiangular lines of [11, 19] gives a complete characterisation of equiangular
lines in H

2.

Theorem 2.3 There is a unique set of n tight equiangular lines in H
2 for n =

2, 3, 4, 5, 6, with corresponding angles λ = 0, 1
4 ,

1
3 ,

3
8 ,

2
5 .

2.4 Equi-isoclinic and equichordal subspaces

We now consider generalisations of equiangularity of lines to r -subspaces (r -
dimensional subspaces). Let Pj and Pk be the orthogonal projections onto r -subspaces
Vj and Vk . Then,

‖Pj − Pk‖2F = trace((Pj − Pk)
2) = 2r − trace(Pj Pk + Pk Pj ) ≥ 0.

For Fd = R
d ,Cd , we have trace(Pj Pk) = trace(Pk Pj ) ∈ R, and a collection of

r -subspaces is said to be equichordal (see [13]) if the corresponding orthogonal
projections satisfy

〈Pj , Pk〉F = trace(Pj Pk) = λr , j 
= k,

which reduces to the equiangularity condition (2.7) in the case of lines (r = 1).
For Hd , trace(Pj Pk) need not be real, nor equal to trace(Pk Pj ), e.g. for

P = 1

2

(
1 −i
i 1

)
, Q = 1

2

(
1 − j
j 1

)
, PQ = 1

4

(
1 − k −i − j
i + j 1 − k

)
,
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and trace(PQ) = 1
2 (1− k) 
= 1

2 (1+ k) = trace(QP). However, by (2.8), we do have

trace(Pj Pk + Pk Pj ) = Re(trace(Pj Pk + Pk Pj )) = 2Re(trace(Pj Pk)),

and so we say that r -subspaces in Hd (or Rd ,Cd ) are equichordal if

Re(trace(Pj Pk)) = λr , j 
= k ⇐⇒ ‖Pj−Pk‖2F = 2(1−λ)r , j 
= k. (2.18)

Two r -subspaces V j and Vk , j 
= k, are isoclinic with parameter 0 ≤ λ ≤ 1 (see
[23], [18], [12]) if the orthogonal projection Pjk onto V j + Vk satisfies

(1 − λ)Pjk = (Pj − Pk)
2.

An equivalent condition to being isoclinic is

Pj Pk Pj = λPj , Pk Pj Pk = λPk, j 
= k, (2.19)

which follows from the observation

(1 − λ)Pj = (Pj − Pk)
2Pj ⇐⇒ Pj Pk Pj = λPj .

Hoggar [18] claims that just one of the conditions (2.19) is required (over H), which
follows by writing Pj = VjV ∗

j , V
∗
j V j = I , and the implications

Pj Pk Pj = λPj ⇐⇒ (V ∗
j Vk)(V

∗
k Vj ) = λI ⇐⇒ V ∗

k Vj V
∗
j Vk = λI ⇐⇒ Pk Pj Pk = λPk .

Subspaces (Vj ) are said to be equi-isoclinic with parameter 0 ≤ λ ≤ 1 if (2.19)
holds. Equi-isoclinic subspaces are equichordal, since

Pj Pk Pj = λPj �⇒ Re(trace(Pj Pk)) = Re(trace(Pj Pk Pj )) = trace(λPj ) = λr .

The orthogonal complement (V⊥
j ) of equichordal subspaces is equichordal, since

Re(trace((I − Pj )(I − Pk))) = d−r −r +Re(trace(Pj Pk)) = d−2r +λr , j 
= k.

However, the orthogonal complements (V⊥
j ) of equi-isoclinic subspaces (Vj ) are not

in general equi-isoclinic, as the following example shows.

Example 2.6 (Two isoclinic planes do not exist in R
3). Consider the equi-isoclinic

1-dimensional subspaces given by

v1 =
⎛

⎝
1
0
0

⎞

⎠ , v2 =
⎛

⎝

√
1 − a2 − b2

a
b

⎞

⎠ .
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The orthogonal projections Q j = I −v jv
∗
j onto the complementary subspaces satisfy

Q1Q2Q1 =
⎛

⎝
0 0 0
0 1 − a2 −ab
0 −ab 1 − b2

⎞

⎠ , Q1 =
⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠ .

Hence, for V⊥
1 and V⊥

2 to be isoclinic, we must have that a = b = 0, i.e. V1 = V2.
Thus, there cannot be two (non-equal) isoclinic planes inR3, despite the fact that there
can be up to six equi-isoclinic lines in R

3.

3 FromR toC andC toH, and back

There is a natural inclusion R ⊂ C ⊂ H and hence of Rd ⊂ C
d ⊂ H

d . Since tight
frames are determined up to unitary equivalence by their Gramians:

• There is a unitary map of a tight frame to R
d if and only if its Gramian has real

entries, and we say the tight frame is real.
• There is a unitary map of a tight frame toCd if and only if its Gramian has complex
entries, and we say the tight frame is complex if its Gramian has a nonreal entry.

• If the Gramian of a tight frame has a noncomplex entry, then we say that it is a
quaternionic tight frame.

As an example, the four equiangular lines in H
2 of Hoggar [18] are lines in C

2 (see
Example 2.1). For tight frames up to projective unitary equivalence, i.e. thought of as
lines, the corresponding analogue is more involved (see Section 5).

There is also a natural identification of a point z = x + iy ∈ C (in the complex
plane) with a point (x, y) ∈ R

2 (in the plane). We generalise this by defining an
invertible R-linear map

[·]R : Cd → R
2d : v �→

(
Re v

Im v

)
, Re v = v + v

2
, Im v = v − v

2i
. (3.20)

Based on a thorough analysis of this, wewill then define an analogousmapHd → C
2d .

The first subtle point is that [·]R maps k-dimensional complex-subspaces ofCd to real
(2k)-dimensional subspaces of R2d . To see why this is, we first calculate the image of
a complex scalar multiple α + iβ of a vector v = x + iy

(α + iβ)v = (α + iβ)(x + iy) = αx − β y + i(αy + βx),

which gives

[(α + iβ)v]R = α

(
Re v

Im v

)
+ β

(− Im v

Re v

)
= α[v]R + β[iv]R. (3.21)
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Thus, the one-dimensional complex subspace spanned by v ∈ C
d is mapped to the

real two-dimensional subspace

[spanC{v}]R = spanR{
(
Re v

Im v

)
,

(− Im v

Re v

)
} (orthogonal vectors in R

2d ).

The general result then follows from the correspondence between linear dependencies

∑

�

(α� + iβ�)v� = 0 ⇐⇒
∑

�

{
α�

(
Re v�

Im v�

)
+ β�

(− Im v�

Re v�

)}
= 0.

We also calculate

〈v,w〉 = 〈Re v + i Im v,Rew + i Imw〉
= 〈Re v,Rew〉 + 〈Im v, Imw〉 + i(〈Re v, Imw〉 − 〈Im v,Rew〉),

so that

Re(〈v,w〉C) = 〈[v]R, [w]R〉R, Im(〈v,w〉C) = 〈[iv]R, [w]R〉R, (3.22)

〈[v]R, [iv]R〉R = 0. (3.23)

Let A : Cn → C
m a C-linear map be represented as an R-linear map [A]R : R2n →

R
2m under this identification, i.e. [A]R := [·]RA[·]−1

R
. Then,

A(u + iv) = (Re(A) + i Im(A))(u + iv)

= Re(A)u − Im(A)v + i Im(A)u + i Re(A)v, u, v ∈ R
n,

and Re(A∗) = Re(A)T , Im(A∗) = − Im(A)T , so that

[A]R =
(
Re(A) − Im(A)

Im(A) Re(A)

)
, rank([A]R) = 2 rank(A),

[A∗]R =
(

Re(A)T Im(A)T

− Im(A)T Re(A)T

)
= [A]T

R
.

The usual rules for matrix multiplication follow, e.g. [A]R[B]R = [AB]R. One must
be careful if a vector v ∈ C

d is being thought of as a d × 1 matrix, i.e. the linear map
[v] : C → C

d : α �→ αv, since [v]R ∈ R
2d×1, [[v]]R ∈ R

2d×2. In particular, the
familiar formula P = vv∗ for the orthogonal projection onto a unit vector v ∈ C

d , is
P = [v][v]∗, which maps as follows:

[P]R = [[v]]R[[v]∗]R = [[v]]R[[v]]T
R
, [[v]]R =

(
Re v − Im v

Im v Re v

)
.
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This is the orthogonal projection onto

[spanC{v}]R = spanR{[v]R, [iv]R}, [v]R =
(
Re v

Im v

)
, [iv]R =

(− Im v

Re v

)
.

The identification [·]R preserves various properties of linear maps (see Theorem 3.3).
In particular, orthogonal projections map to orthogonal projections, and hence:

• Equi-isoclinic subspaces of dimension r in C
d correspond to equi-isoclinic sub-

spaces of dimension 2r in R2d , and similarly for equichordal subspaces.

We now consider the situation for tight frames, which is somewhat more involved,
e.g. a basis for Cd does not correspond to a basis for R2d (which has twice the
dimension).

Let V = V1 + iV2 be the synthesis map for a sequence of vectors v1, . . . , vn ∈ C
d ,

and VR be the corresponding map for the sequence [v1]R, . . . , [vn]R ∈ R
2d , i.e.

VR =
(
V1
V2

)
∈ R

2d×n .

Then, V gives a tight frame for Cd if and only if

VV ∗ = (V1 + iV2)(V
∗
1 − iV ∗

2 ) = V1V
∗
1 + V2V

∗
2 + i(V2V

∗
1 − V1V

∗
2 ) = AI ,

where d A := ∑
j ‖v j‖2 = trace(VV ∗) = trace(VRV T

R
) =, i.e.

V1V
T
1 + V2V

T
2 = AI , V2V

T
1 − V1V

T
2 = 0,

and VR gives a tight frame for R2d if and only if

VRV
∗
R

=
(
V1
V2

) (
V T
1 V T

2

) =
(
V1V T

1 V1V T
2

V2V T
1 V2V T

2

)
= 1

2
A

(
I 0
0 I

)
,

i.e.

V1V
T
1 = V2V

T
2 = 1

2
AI , V1V

T
2 = V2V

T
1 = 0. (3.24)

Thus, all tight frames for R2d map to tight frames for Cd , and a tight frame for Cd

gives a tight frame for R2d if and only if (3.24) holds. This condition says that V1 and
V2 are tight frames for Rd (with the same frame bound) which are orthogonal (see
[33] §3.5). We now show that (3.24) depends only on V up to unitary equivalence.

LetU = U1+iU2 be unitary, thenUU∗ = U1UT
1 +U2UT

2 +i(U2UT
1 −U1UT

2 ) = I ,
which is equivalent to

U1U
T
1 +U2U

T
2 = I , U2U

T
1 −U1U

T
2 = 0. (3.25)

Suppose that V satisfies (3.24), then

UV = [Uv1, . . . ,Uvn] = (U1+iU2)(V1+iV2) = (U1V1−U2V2)+i(U2V1+U1V2),
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A = ∑
j ‖v j‖2 = ∑

j ‖Uv j‖2, and using (3.25), we calculate

Re(UV )Re(UV )T = (U1V1 −U2V2)(V
T
1 UT

1 − V T
2 UT

2 ) = 1

2
A(U1U

T
1 +U2U

T
2 ) = 1

2
AI ,

Im(UV ) Im(UV )T = (U2V1 +U1V2)(V
T
1 UT

2 + V T
2 UT

1 ) = 1

2
A(U2U

T
2 +U1U

T
1 ) = 1

2
AI ,

Re(UV ) Im(UV )T = (U1V1 −U2V2)(V
T
1 UT

2 + V T
2 UT

1 ) = 1

2
A(U1U

T
2 −U2U

T
1 ) = 0,

so that UV satisfies (3.24).
Since the condition for a tight frame for Cd to be a tight frame for R2d depends

only on V up to unitary equivalence, it follows that this condition can be written in
terms of the Gramian of V . The Gramians of V and VR are

V ∗V = (V ∗
1 − iV ∗

2 )(V1 + iV2) = V T
1 V1 + V T

2 V2 + i(V T
1 V2 − V T

2 V1),

V ∗
R
VR = (

V T
1 V T

2

) (
V1
V2

)
= V T

1 V1 + V T
2 V2.

The variational characterisation for being a tight frame for Cd and for R2d are

‖V ∗V ‖2F = 1

d
(trace(V ∗V ))2, ‖V ∗

R
VR‖2F = 1

2d
(trace(V ∗

R
VR))2.

Since trace(V ∗V ) = trace(V T
1 V1+V T

2 V2) = trace(V ∗
R
VR), a tight frame forCd gives

a tight frame for R2d if and only if

2‖V ∗
R
VR‖2F − ‖V ∗V ‖2F = 0. (3.26)

By writing this explicitly in terms of V ∗V (cf. [35]), we obtain the following.

Theorem 3.1 Let [·]R : Cd → R
2d be the correspondence (3.20) between C

d and
R
2d . Then,

1. Tight frames for R2d correspond to tight frames for Cd .
2. A tight frame V = [v1, . . . , vn] for Cd corresponds to a tight frame for R2d if and

only if it satisfies ∑

j

∑

k

〈v j , vk〉2 = 0, (3.27)

which can also be written as

∑

j

∑

k

(Re〈v j , vk〉)2 =
∑

j

∑

k

(Im〈v j , vk〉)2. (3.28)
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Proof In light of our previous discussion, it remains only to show that (3.26) can be
written as (3.27) and (3.28). Using (3.22), we have

‖V ∗
R
VR‖2F − ‖V ∗V ‖2F = 2

∑

j

∑

k

〈[v j ]R, [vk]R〉2 −
∑

j

∑

k

|〈v j , vk〉|2

= 2
∑

j

∑

k

(Re〈v j , vk〉)2 −
∑

j

∑

k

|〈v j , vk〉|2 = 0.

By taking z = 〈v j , vk〉 in

2(Re(z))2 − |z|2 = 2
( z + z

2

)2 − zz = 1

2
(z2 + z2),

we see that this condition can be written as

1

2

∑

j

∑

k

(〈v j , vk〉2 + 〈vk, v j 〉2
) =

∑

j

∑

k

〈v j , vk〉2 = 0.

which gives (3.27). By substituting in |〈v j , vk〉|2 = (Re〈v j , vk〉)2 + (Im〈v j , vk〉)2,
we obtain (3.28). ��
Example 3.1 A tight frame (z j ) for C corresponds to a tight frame for R2 if and only
if

∑

j

∑

k

(z j zk)
2 =

(∑

j

z2j

)(∑

k

zk
2
)

=
∣∣∣
∑

j

z2j

∣∣∣
2 = 0 ⇐⇒

∑

j

z2j = 0.

The complex number z2j = (x j + iy j )2 corresponding to a point (x j , y j ) is sometimes

called a diagram vector, and the condition that a frame for R2 is tight if and only if its
diagram vectors sum to zero is well known.

We now give a map H
d → C

2d that has similar properties to [·]R : Cd → R
2d .

This is based on the following analogue of the polar decomposition forC, the Cayley-
Dickson construction, that every quaternion q ∈ H can be written uniquely

q = z + w j, z, w ∈ C. (3.29)

Moreover, we observe the “commutativity” relation

j z = z j, ∀z ∈ C,

which implies
j A = A j, ∀A ∈ C

m×n .
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Let Hd be a right vector space, and define a C-linear map

[·]C : Hd → C
2d : z + w j �→

(
z
w

)
, (3.30)

The conjugation w is necessary for C-linearity: (z +w j)α = zα +w jα = zα +wα j
gives

[(z + w j)α]C =
(
zα
wα

)
=

(
z
w

)
α = [z + w j]Cα ∀α ∈ C.

Let Co1 and Co2 be the C-linear maps Hd → C
d giving the “complex coordinates”

of q = z + w j , i.e.

Co1(z + w j) := z, Co2(z + w j) := w.

We note in particular that

|q|2 = |Co1(q)|2 + |Co2(q)|2.

From

〈v,w〉H = 〈v1 + v2 j, w1 + w2 j〉
= 〈v1, w1〉 − j〈v2, w2〉 j − j〈v2, w1〉 + 〈v1, w2〉 j,
= 〈v1, w1〉 + 〈v2, w2〉 − (〈v2, w1〉 + 〈v1,−w2〉) j,
= 〈[v]C, [w]C〉C − 〈[v]C, [w j]C〉C j

we get the analogues of (3.22) and (3.23)

Co1(〈v,w〉H) = 〈[v]C, [w]C〉C, Co2(〈v,w〉H) = −〈[v]C, [w j]C〉C. (3.31)

〈[v]C, [v j]C〉C = 0. (3.32)

The analogue of (3.21) for v = z + w j is

[v(α + β j)]C = [vα + vβ j]C = [vα + v jβ]C = [v]Cα + [v j]Cβ, α, β ∈ C,

(3.33)
where

[v]C =
(
z
w

)
, [v j]C =

(−w

z

)
, 〈[v]C, [v j]C〉C = 0.

Thus, [·]C maps k-dimensional H-subspaces of Hd to (2k)-dimensional C-subspaces
of C2d .

Let L : Hn → H
m be an H-linear map be represented as a C-linear map [L]C :

C
2n → C

2m under this identification, i.e. [L]C := [·]CL[·]−1
C

. In view of (3.29), its
standard matrix [L]H ∈ H

m×n has a unique decomposition

[L]H = A + Bj, A, B ∈ C
m×n .
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We have

L(z + w j) = (A + Bj)(z + w j) = Az + Aw j + Bjz + Bjw j

= Az + Aw j + Bz j − Bw = Az − Bw + (Bz + Aw) j,

and
[L∗]H = (A + Bj)∗ = A∗ + (− j)B∗ = A∗ − B∗ j = A∗ − BT j,

so that

[L]C =
(
A −B
B A

)
, rank([L]C) = 2 rank([L]H),

[L∗]C =
(

A∗ BT

−B∗ AT

)
= [L]∗

C
.

The other observations for the previous case also hold (see Theorem 3.3), in particular

• Equi-isoclinic subspaces of dimension r in H
d correspond to equi-isoclinic sub-

spaces of dimension 2r in C2d , and similarly for equichordal subspaces.

We now seek the analogue of Theorem 3.1, this time starting with the development
in terms of the Gramian. The variational characterisation for V = [v1, . . . , vn] being
a tight frame forHd and for VC := [[v1]C, . . . , [vn]C

]
being a tight frame for C2d are

‖V ∗V ‖2F = 1

d
(trace(V ∗V ))2, ‖V ∗

C
VC‖2F = 1

2d
(trace(V ∗

C
VC))2.

Since trace(V ∗V ) = trace(V ∗
C
VC), a tight frame for Hd gives a tight frame for C2d if

and only if
2‖V ∗

C
VC‖2F − ‖V ∗V ‖2F = 0. (3.34)

Writing this explicitly in terms of the Gramian V ∗V gives the following.

Lemma 3.1 Let V = [v1, . . . , vn] = V1 + V2 j ∈ H
d×n. Then, the following are

equivalent

(i) VC = [[v1]C, . . . , [vn]C
] =

(
V1
V2

)
∈ C

2d×n is a tight frame for C2d .

(ii)

V1V
∗
1 = V2V

∗
2 = 1

2
AI , V1V

T
2 = V2V

T
1 = 0, A := 1

d

∑

j

‖v j‖2.

(iii)

(V ∗
1 V1 + V T

2 V2)
2 = 1

2
A (V ∗

1 V1 + V T
2 V2), A := 1

d

∑

j

‖v j‖2.

(iv)

‖Co1(V ∗V )‖2F =
∑

j

∑

k

|Co1(〈v j , vk〉)|2 = 1

2d

(∑

j

‖v j‖2
)2

.
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Proof In terms of the frame operator, the condition (i) is

(
V1
V2

)(
V1
V2

)∗
=

(
V1
V2

) (
V ∗
1 V T

2

)∗ =
(
V1V ∗

1 V1V T
2

V2V ∗
1 V2V T

2

)
= 1

2
A

(
I 0
0 I

)
,

where d A = ∑
j ‖v j‖2, which is clearly equivalent to (ii).

In terms of the Gramian V ∗
C
VC = V ∗

1 V1+V T
2 V2 being (amultiple of) an orthogonal

projection matrix (Proposition 2.1), the condition (i) is (iii).
In terms of the variational characterisation (Theorem 2.1), the condition (i) is

∑

j

∑

k

|〈[v j ]C, [vk]C〉|2 = 1

2d

∑

j

(
‖[v j ]C‖2

)2
,

which can be written as (iv), since 〈[v]C, [w]C〉C = Co1(〈v,w〉H) and ‖[v]C‖ =
‖v‖H. ��

We observe that condition (iv) depends only on V up to unitary equivalence, and
so the others do also.

Theorem 3.2 Let [·]C : Hd → C
2d be the correspondence (3.30) between H

d and
C
2d . Then,

1. Tight frames for C2d correspond to tight frames for Hd .
2. A tight frame V = [v1, . . . , vn] forHd corresponds to a tight frame for C2d if and

only if it satisfies

∑

j

∑

k

|Co1(〈v j , vk〉)|2 =
∑

j

∑

k

|Co2(〈v j , vk〉)|2. (3.35)

Proof The sequence V = V1 + V2 j is a tight frame for Hd if and only if

VV ∗ = (V1 + V2 j)(V
∗
1 − V T

2 j) = (V1V
∗
1 + V2V

∗
2 ) + (V2V

T
1 − V1V

T
2 ) j = AI ,

which is clearly satisfied if V corresponds to a tight frame for C2d (by Lemma 3.1).
The variational characterisation for being a tight frame for Hd and for C2d are

‖V ∗V ‖2F = 1

d

(∑

j

‖v j‖2
)2

, ‖Co1(V ∗V )‖2F = 1

2d

(∑

j

‖v j‖2
)2

.

Hence, if V gives a tight frame for Hd , then it gives a tight frame for C2d if and only
if

2‖Co1(V ∗V )‖2F − ‖V ∗V ‖2F = 0.

Since |〈v j , vk〉|2 = |Co1(〈v j , vk〉)|2 + |Co2(〈v j , vk〉)|2, this is (3.35). ��
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The conditions (3.28) and (3.35) can be written insightfully as

‖Re(V ∗V )‖F = ‖ Im(V ∗V )‖F , ‖Co1(V ∗V )‖F = ‖Co2(V ∗V )‖F .

Example 3.2 Let V = [1, i, j, k], which is a tight frame for H. The Gramian is

V ∗V =

⎛

⎜⎜⎝

1 i j k
−i 1 −k j
− j k 1 −i
−k − j i 1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 i 0 0
−i 1 0 0
0 0 1 −i
0 0 i 1

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

0 0 1 i
0 0 −i 1

−1 i 0 0
−i −1 0 0

⎞

⎟⎟⎠ j,

so this gives a tight frame for C2, i.e. W = [e1, ie1, e2, ie2], with Gramian

W ∗W =

⎛

⎜⎜⎝

1 i 0 0
−i 1 0 0
0 0 1 i
0 0 −i 1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ + i

⎛

⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟⎠ ,

so that this in turn gives a tight frame for R4, i.e. [e1, e3, e2, e4].
Example 3.3 Consider the Gramian of the SIC of four vectors in C

2 (Example 2.1).
The contribution to ‖V ∗V ‖F of the diagonal entries, which are all real, is 4, and for the
off-diagonal entries it is 121

3 = 4. Thus, the SIC corresponds to a tight frame for R4

if and only if its vectors can be scaled so that the off-diagonal entries of the Gramian
are pure imaginary. This can in fact be done, e.g. take V = [v, i Sv, i�v,−S�v], to
obtain

(
Re(V )

Im(V )

)
=

⎛

⎜⎜⎝

a −b 0 b
b 0 b −a
0 b a b
b a −b 0

⎞

⎟⎟⎠ , a =
√
3 + √

3√
6

, b =
√
3 − √

3

2
√
3

.

This is an orthonormal basis, by Proposition 2.1, or directly by using (3.22). Hence,
there is a norm-preserving (invertible) R-linear map C

2 → R
4 which maps the SIC

to an orthonormal basis.

We now summarise some basic results about [·]F, F = R,C, and the associated
linear maps, in a unified form. We first observe that in the literature, there is some
variation in the definitions, in particular, the ordering of [v]R can be either of

[v]R =
(
Re(v)

Im(v)

)
,

⎛

⎜⎜⎜⎜⎜⎝

Re(v1)
Im(v1)

...

Re(vd)
Im(vd)

⎞

⎟⎟⎟⎟⎟⎠
,
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and similarly for [v]C. In the latter case (cf. [18, 25] for [v]C), thematrix representation
[A]R is then obtained by replacing the entry a jk of the matrix A by the matrix

(
Re(a jk) − Im(a jk)

Im(a jk) Re(a jk)

)
.

Our choice of the former was governed by the simpler formulas (cf. [6]). Indeed, with
L = A + i B, A + Bj (respectively), we have the explicit formulas

[L]F =
(
A −B
B A

)
, [L∗]F =

(
A∗ BT

−B∗ AT

)
= [L]∗

F
, F = R,C. (3.36)

Theorem 3.3 The F-linear maps [·]F, F = R,C given by (3.20) and (3.30) have the
following properties:

(a) They map r-dimensional subspaces to (2r)-dimensional subspaces.
(b) They preserve the Euclidean norm of a vector.
(c) They map orthogonal vectors to orthogonal vectors.
(d) They map tight frames satisfying (3.28) and (3.35), respectively, to tight frames.
(e) They map equi-isoclinic r-subspaces to equi-isoclinic (2r)-subspaces.
(f) They map equichordal r-subspaces to equichordal (2r)-subspaces.

Moreover, the associated F-linear maps L �→ [L]F to matrices over F satisfy

(i) [AB]F = [A]F[B]F, [λA]F = λ[A]F, λ ∈ R, and [A∗]F = [A]∗
F
.

(ii) They map rank r linear maps to rank 2r linear maps.
(iii) Theymap invertible linear maps to invertible linear maps, with [A−1]F = [A]−1

F
.

(iv) They map self-adjoint operators to self-adjoint operators.
(v) They map unitary operators to unitary operators.
(vi) They map orthogonal projections to orthogonal projections, and in particular

the identity to the identity.

Proof For the first part, (a) has already been observed, (b) and (c) follow directly from
(3.22) and (3.31), (d) follows from Theorems 3.1 and 3.2 and (e) and (f) follow from
the definitions (2.19) and (2.18), and the facts (i), (ii) and (vi).

Now the second part. The first part of (i) follows from the definition, and the second
partwas a calculation thatwe did in each case. For (ii), we have ker([L]F) = [ker(L)]F,
and the result follows from (a), with (iii) being a special case. If A is invertible, then (i)
gives I = [I ]F = [AA−1]F = [A]F[A−1]F, which gives the formula for the inverse.
The properties (iv), (v) and (vi) are straightforward calculations using (3.36). ��
Example 3.4 From the observation

j(A1 + A2 j) = (A1 + A2 j) j, A1, A2 ∈ C
m×n,

it follows that the image of the m × n matrices over H is

[Hm×n]C = {A ∈ C
2m×2n : Jm A = AJn}, J� := [ j I�]C =

(
0 −I�
I� 0

)
.
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Example 3.5 If G is a group of d × d matrices over C or H, then it follows from
Theorem 3.3 that [G]F = {[g]F : g ∈ G} is an isomorphic group of (2d) × (2d)

matrices. As an example, the quaternions Q8 = {±1,±i,± j,±k} are generated by i
and j , and so the groups of unitary matrices [Q8]C and [[Q8]C]R are generated by

[i]C =
(
i 0
0 −i

)
, [ j]C =

(
0 −1
1 0

)
,

[[i]C]R =

⎛

⎜⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞

⎟⎟⎠ , [[ j]C]R =

⎛

⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟⎟⎠ ,

respectively. These representations of Q8 are well known.

Example 3.6 If V = [v1, . . . , vn] ∈ H
d×n gives a tight frame of n vectors forHd , i.e.

VV ∗ = AI , then

[V ]C = [[v1]C, . . . , [vn]C, [v1 j]C, . . . , [vn j]C
]

gives a tight frame of 2n vectors for C2d .

The equiangular lines in H
2 of [11] were obtained by considering equi-isoclinic

planes in C4. We now explain the mechanism.

Example 3.7 Associated with a unit vector va ∈ H
d , we have

Va := [[va]C, [va j]C] ∈ C
2d×2,

with orthonormal columns which span a plane in C
2d . The entries of the “block

Gramian” for V = [V1, . . . , Vn] are V ∗
a Vb (with V ∗

a Va = I ). These satisfy

(V ∗
a Vb)

∗(V ∗
a Vb) =

(|〈va, vb〉H|2 0
0 |〈va, vb〉H|2

)
, (3.37)

so that
|〈va, vb〉|2 = λ ⇐⇒ (V ∗

a Vb)
∗(V ∗

a Vb) = λI .

Thus, (va) gives a set of equiangular lines inHd if and only if the off-diagonal entries
of the block Gramian [V1, . . . , Vn]∗[V1, . . . , Vn] are unitary matrices, up to a fixed
scalar. An n × n block matrix with this structural form (2 × 2 blocks, positive semi-
definite of rank 2d), which corresponds to equi-isoclinic planes in C

2d , can then be
mapped back (under [·]−1

C
) to the Gramian of n equiangular lines inHd (see Theorem

13 [11]).
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Equation (3.37) follows by a direct calculation, e.g. using (3.31), we have

(V ∗
b VaV

∗
a Vb)11 = [vb]∗C[va]C[va]∗C[vb]C + [vb]∗C[va j]C[va j]∗C[vb]C

= 〈[vb]C, [va]C〉C〈[va]C, [vb]C〉C + 〈[vb]C, [va j]C〉C〈[va j]C, [vb]C〉C
= |Co1(〈va, vb〉H)|2 + |Co2(〈va, vb〉H)|2 = |〈va, vb〉H|2,

(V ∗
b VaV

∗
a Vb)12 = [vb]∗C[va]C[va]∗C[vb j]C + [vb]∗C[va j]C[va j]∗C[vb j]C

= 〈[vb]C, [va]C〉C〈[va]C, [vb j]C〉C + 〈[vb]C, [va j]C〉C〈[va j]C, [vb j]C〉C
= Co1(〈vb, va〉H)(−Co2(〈va, vb〉H)) − Co2(〈vb, va〉H)Co1(〈va j, vb j〉H)

= −Co1(〈vb, va〉H)Co2(〈va, vb〉H) + Co2(〈vb, va〉H)Co1(〈vb, va〉H) = 0,

where in the second to last equality we used Co2(q) = −Co2(q), q ∈ H.
Here is a construction of equiangular lines going in the opposite direction.

Example 3.8 We consider the construction of 64 equiangular lines in C
8 by [17].

These were obtained by finding 64 unit vectors in H4 with angles 1
9 ,

1
3 (as vertices of

a quaternionic polytope). These were then mapped by [·]C to 64 equiangular vectors
in C8. We note that for v,w ∈ H

d , α ∈ H, (3.31) gives

〈[vα]C, [w]C〉C = Co1(〈vα,w〉H) = Co1(〈v,w〉Hα)

= Co1(α)Co1(〈v,w〉H) − Co2(α)Co2(〈v,w〉H),

so that multiplying vectors in H
d by noncomplex unit scalars in H can change the

angle between their images in C2d .

4 Group frames and G-matrices

Many tight frames of interest are the orbit of one or more vectors under the unitary
action of a group, e.g. the Weyl-Heisenberg SICs. There is a well-developed theory of
such group frames based in the theory of group representations (over R and C) [29,
30, 32, 33]. We now give an indication of how this theory extends to representations
over H (see [26]).

A representation of a finite abstract group G on H
d is a group homomorphism

ρ : G → GL(Hd) from G to the invertible d × d matrices over H, with equivalence
defined in the usual way. We will consider only unitary representations, i.e. those
where the matrices ρ(g) are unitary. For these, we will write the unitary action as
gv := ρ(g)v, and we note that g∗v = g−1v. A frame (sequence of vectors) of the
form (gv)g∈G is said to be a group frame (or G-frame) [34]. The frame operator of
a group frame (gv)g∈G commutes with the frame operator, i.e.

S(hv) =
∑

g∈G
gv〈gv, hv〉 = h

∑

g∈G
h−1gv〈h−1gv, v〉 = hS(v), h ∈ G, v ∈ H

d .

(4.38)
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The Gramian of a group matrix has entries of the form

〈hv, gv〉 = 〈g−1hv, v〉.

A matrix A = [agh]g,h∈G ∈ H
G×G is a G-matrix (or group matrix) if there exists a

function ν : G → H such that

agh = ν(g−1h), ∀g, h ∈ G.

The Gramian of a G-frame is a G-matrix, and conversely, if the Gramian of a frame
(vg)g∈G with vectors indexed by G is a G-matrix, then it is a G-frame (adapt the
proof of [33] Theorem 10.3). An action (representation) of G on Hd is irreducible if
the only G-invariant subspaces of Hd are 0 and H

d , i.e. spanH{gv}g∈G = H
d , for all

v 
= 0.
The theory ofG-frames for real and complex actions beginswith irreducible actions,

where it takes its simplest form. This extends without issue.

Proposition 4.1 Suppose that a unitary action of a group G onHd is irreducible. Then,
(gv)g∈G is a tight G-frame for Hd for any v 
= 0, i.e.

x = d

|G|
1

‖v‖2
∑

g∈G
gv〈gv, x〉, ∀x ∈ H

d .

Proof Fix v 
= 0, and let S be the frame operator of (gv)g∈G . Since S is nonzero and
positive semi-definite, it has an eigenvalue λ > 0, with corresponding eigenvector w.
By (4.38), S commutes with the action of g ∈ G, so that

S(gw) = g(Sw) = g(wλ) = (gw)λ,

so that gw is an eigenvector for λ. But (gw)g∈G spansHd , so that S = λI , i.e. (gv)g∈G
is a tight frame. Since S is Hermitian, taking the trace gives

trace(S) = Re(trace(S)) =
∑

g

‖gv‖2 = |G| ‖v‖2 = trace(λI ) = dλ,

which gives the value of λ. ��
The general theory [30, 33], which allows for multiple orbits, involves the decom-

position of the vector space into irreducible G-invariant subspaces.

Example 4.1 Each finite subgroup ofH∗ corresponds to a (faithful) irreducible action
on H

1. These subgroups were classified by Stringham [27]. They are the infinite
families of cyclic groups (generated by the n-th roots of unity) and binary dihedral
groups, together with the binary tetrahedral, octahedral and icosahedral groups.
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Example 4.2 The group generated by the matrices

(
0 1
1 0

)
,

(
1 0
0 i

)
,

(
1 0
0 j

)
,

has an irreducible unitary action on H2. It consists of all 128 invertible matrices with
two zero entries and two entries in Q8. It contains the scalar matrices from Q8 and
its centre is ±I . Thus, each orbit can be viewed as 16 lines in H

2 (as a left vector
space). This is an example of a (quaternionic) reflection group, i.e. a finite group
generated by reflections (linear maps which act as the identity on a hyperplane). The
finite irreducible quaternionic reflection groups have been classified (up to conjugacy)
by Cohen [6].

It is expected that the highly symmetric tight frames of [3] corresponding to complex
reflection groups could be extended to the quaternionic reflection groups. In this regard,
we note the regular quaternionic polytopes have been classified by [7].

ForG abelian, there are a finite number of tightG-frames (called harmonic frames)
that can be obtained by “taking rows of the character table” (see [29], [8]). We now
give an example to show how this can be extended to the quaternionic setting.

Example 4.3 (Quaternionic harmonic frames). The irreducible representations overC
for an abelian groupG are all one-dimensional (this characterises abelian groups), and
these “rows” of the character table are orthogonal, so by taking a set of rows of the
character table, one obtains a tight G-frame. Consider the quaternion group G = Q8.
This has four 1-dimensional and one 2-dimensional irreducible representations overC.
The 2-dimensional absolutely irreducible representation splits into four 1-dimensional
representations overH, corresponding to the outer automorphisms of the quaternions.
In this way, one obtains a character table

q ∈ Q8 1 −1 i −i j − j k −k
χ1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 −1 −1 −1 −1
χ3 1 1 −1 −1 1 1 −1 −1
χ4 1 1 −1 −1 −1 −1 1 1
χ5 1 −1 i −i j − j k −k
χ6 1 −1 j − j i −i −k k
χ7 1 −1 −i i k −k j − j
χ8 1 −1 k −k −i i − j j

where the rows are orthogonal (cf. [26]). Taking rows gives a G-frame. The columns
of the character table are also orthogonal, so taking columns also gives a tight frame,
but these are not G-frames, in general (as follows for abelian groups by Pontryagin
duality). As an example, the frame obtained by taking the characters χ1 and χ5 (rows 1
and 5 of the character table) gives a (unit-norm) tight Q8-frame forH2, with the inner
products {1± 1, 1± i, 1± j, 1± k} occurring exactly once in every row (column) of
the Gramian. This frame has two angles: each vector is orthogonal to one other and
makes a fixed angle with all the others.
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5 Projective unitary equivalence

Finally, we consider the equivalence of vectors thought of as lines in H
d . Here, the

noncommutativity of scalar multiplication considerably complicates the theory.
We say that two sequences of vectors (v j ) and (w j ) inHd areprojectively unitarily

equivalent if there exists a unitary U and unit norm scalars α j with

w j = (Uv j )α j , ∀ j .

Clearly, projective unitary equivalence is an equivalence relation. Moreover, one can
define a projective unitary symmetry group of (v j ) j∈J to be all the permutations
σ : J → J for which (v j ) and (vσ j ) are projectively unitarily equivalent (cf. [10]).

To make a workable theory, one now needs a way to recognise projective unitary
equivalence. In terms of the Gramians V = [v j ] and W = [w j ], the formal definition
says that

W ∗W = C∗V ∗U∗UVC = C∗V ∗VC, C := diag(α j ),

i.e.
〈w j , wk〉 = αk〈v j , vk〉α j . (5.39)

This leads to a “linear system”C(W ∗W ) = (V ∗V )C in the scalarsα j . However, due to
the noncommutativity of the quaternions, this can not be solved by Gauss elimination,
unless one first converts it to a linear system overR (in the coordinates of the α j ).What
is usually done in the real and complex cases is to consider a collection of invariants:
them-products, which completely characterise projective unitary equivalence [9]. We
now look at the analogue of these (also, see [20] for subspaces of Cd ).

For a sequence of vectors (v j ) in Hd , the m-products are

�(v j1 , v j2 , . . . , v jm ) := 〈v j1 , v j2〉〈v j2 , v j3〉〈v j3 , v j4〉 · · · 〈v jm , v j1〉 ∈ H.

The 1-products and 2-products are clearly projective unitary invariants, since

�(v j ) = ‖v j‖2, �(v j , vk) = |〈v j , vk〉|2.

From these, we can define the frame graph of (v j ) to be the graph with vertices {v j }
and an edge between v j and vk ( j 
= k) if and only if 〈v j , vk〉 
= 0.

Further, since

�
(
(Uv j1)α j1, (Uv j2)α j2 , . . . , (Uv jm )α jm

)

= 〈(Uv j1)α j1, (Uv j2)α j2〉〈(Uv j2)α j2 , (Uv j3)α j3〉 · · · 〈(Uv jm )α jm , (Uv j1)α j1〉
= α j1〈v j1 , v j2〉α j2α j2〈v j2 , v j3〉α j3 · · · α jm 〈v jm , v j1〉α j1

= α j1�(v j1, v j2 , . . . , v jm )α j1

= α−1
j1

�(v j1, v j2 , . . . , v jm )α j1 ,

the m-products are projective unitary invariants of (v j ) up to similarity (congruence),
and real frames are characterised by having real m-products. Since a quaternion q is
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determined up to similarity (conjugation inH\{0}, which is equivalent to conjugation
by unit scalars) by its real part Re(q) and its norm |q|, we can define (reduced) m-
products as a pair of real numbers

�r (v j1 , v j2 , . . . , v jm ) := (Re(q), |q|), q = �(v j1 , v j2 , . . . , v jm ).

These are projective unitary invariants. For the complex case, the m-products are
projective unitary invariants, which depend only on the cycle ( j1, . . . , jm), and a small
set of m-products corresponding to a basis for the cycle space of the frame graph of
(v j ) provide a set of invariants which characterise projective unitary equivalence (see
[9]). We can not yet make a similar claim in the quaternionic case, though we do
imagine that the m-products do characterise projective unitary equivalence.

The dependence of m-products on only the associated m-cycle in the frame graph
does follow, by the calculation (for nonzero m-products)

a−1�(v j1, v j2 , . . . , v jm )a = �(v j2 , v j3 , . . . , v jm , v j1), a = 〈v j1 , v j2〉
|〈v j1 , v j2〉|

,

and so, in addition to the 1-products and 2-products, we need only consider the m-
products form ≥ 3 which correspond tom-cycles in the frame graph, i.e. are nonzero.
To check that them-products for two sequences are equal (up to conjugation), it suffices
to consider only the m-products corresponding to a cycle basis for the cycle space of
the (common) frame graph:

Lemma 5.1 (Cycle decomposition) For 1 ≤ k ≤ m, n ≥ 1, we have

�(vk, vk+1, . . . , vm, v1, . . . , vk−1)�(vk, . . . , v1, w1, . . . , wn)

= |〈v1, v2〉|2|〈v2, v3〉|2 · · · |〈vk−1, vk〉|2�(vk, vk+1,. . ., vm, v1, w1, w2,. . ., wn).

Proof Expanding the left-hand side gives

〈vk, vk+1〉〈vk+1, vk+2〉 · · · 〈vm−1, vm〉〈vm, v1〉〈v1, v2〉 · · · 〈vk−2, vk−1〉〈vk−1, vk〉
× 〈vk, vk−1〉〈vk−1, vk−2〉 · · · 〈v2, v1〉〈v1, w1〉〈w1, w2〉 · · · 〈wn−1, wn〉〈wn, vk〉,

which simplifies to the right-hand side, since 〈v j−1, v j 〉〈v j , v j−1〉 = |〈v j−1, v j 〉|2 ∈
R commutes with any quaternion. ��

This gives the following condition for projective unitary equivalence.

Theorem 5.1 A necessary condition for sequences (v j ) and (w j ) of n vectors in H
d

to be projectively unitarily equivalent is that the m-products corresponding to a cycle
basis for the frame graph are equal (up to conjugation).

In the complex setting, this says that the m-products are equal, and the converse
is proved by explicitly constructing scalars α j which satisfy (5.39). The difficulties
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in extending this converse to the quaternionic setting include the fact that for w j =
(Uv j )α j ,

�(w j1, w j2 , . . . , w jm ) = α j1�(v j1, v j2 , . . . , v jm )α j1, (5.40)

which puts further constraints on the α j (for m ≥ 3 and the m-product nonzero).
Indeed, in the complex setting, one can assume that any α j is 1, simply by replacing
U by the unitary matrix α jU . Nevertheless, those parts of the theory that we do have
allow us to investigate such things as the symmetries of lines, as our final example
shows.

Example 5.1 Consider the six tight equiangular lines in H
2 at angle λ = c2 = 2

5 of
[11]

v1 =
(
1
0

)
, v2 =

⎛

⎝
√
2√
5√
3√
5

⎞

⎠ , v3 =
⎛

⎝
√
2√
5

−
√
3

4
√
5

+ 3
4 i

⎞

⎠ , v4 =
⎛

⎝
√
2√
5

−
√
3

4
√
5

− 1
4 i + 1√

2
j

⎞

⎠ ,

v5 =
⎛

⎝
√
2√
5

−
√
3

4
√
5

− 1
4 i − 1

2
√
2
j +

√
3

2
√
2
k

⎞

⎠ , v6 =
⎛

⎝
√
2√
5

−
√
3

4
√
5

− 1
4 i − 1

2
√
2
j −

√
3

2
√
2
k

⎞

⎠ ,

which are said to have “symmetry group” A6. The reducedm-products�r (v j1, . . . , v jm )

of distinct vectors for m = 1, 2, 3, 4, 6 are all equal, taking the values

(1, 1), (
2

5
, c2), (

1

10
, c3), (− 1

50
, c4), (− 11

250
, c6)

respectively, which puts no restriction on the possible projective symmetry group of
the lines. However, the reduced 5-products (of distinct vectors) take two values

(−25 ± 9
√
5

500
, c5),

and the permutations of the vectors which preserve these 5-products is indeed A6.
Thus, the projective symmetry group is a subgroup of A6. With the present theory,
this does not yet establish that A6 is the projective symmetry group.

We now seek a corresponding projective unitary symmetry for each σ ∈ A6, i.e. a
unitary matrix Uσ and corresponding scalars α j (also depending on σ ) for which

w j = vσ j = (Uσ v j )α j , ∀ j .

Once the unit scalars α j corresponding to a basis [v j ] j∈J of vectors from (v j ) are
known, the matrix Uσ is uniquely determined by

Uσ [v jα j ] j∈J = [vσ j ] j∈J �⇒ Uσ = [vσ j ] j∈J [v jα j ]−1
j∈J ,
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and it can then be checked whether or not the Uσ is unitary and permutes the other
lines. By (5.40), for j, k, � distinct, the unit scalar α j satisfies

α j�(vσ j , vσk, vσ�) = �(v j , vk, v�)α j ,

which gives a homogeneous linear system of four equations for the four real coor-
dinates of α j . In the cases considered, this had a unique solution of unit norm up to
a choice of sign, which was made in order to obtain a unitary matrix Uσ . For the
generators

a = (12)(34) (order 2), b = (1235)(46) (order 4)

for A6, we obtained

α1 = α2 = −
√
2√
3
i+ 1√

3
k, Ua =

⎛

⎝
2√
15
i −

√
2√
15

j
√
2√
5
i − 1√

5
j√

2√
5
i − 1√

5
j − 2√

15
i +

√
2√
15

j

⎞

⎠ , U 2
a = −I ,

and

α1= 1

2
√
2
+

√
5

2
√
6
i−3 − √

5

4
√
3

j−
√
5 + 1

4
k, α2=

√
5

4
+ 1

4
√
3
i−3

√
5 + 1

4
√
6

j−
√
5 − 1

4
√
2

,

Ub =
⎛

⎝
1

2
√
5

+ 1
2
√
3
i + 3−√

5
2
√
30

j +
√
5+1

2
√
10

k
√
3

2
√
10

− 1
2
√
2
i + 3+√

5
4
√
5
j −

√
3

5+√
5
k√

3
2
√
10

+ 1
2
√
2
i + 3−√

5
4
√
5
j +

√
3

5−√
5
k − 1

2
√
5

+ 1
2
√
3
i − 3

√
5+5

10
√
6
j +

√
5−1

2
√
10

k

⎞

⎠ , U4
b = −I .

These unitary matricesUa andUb do give the projective unitary symmetries supposed.
Moreover, they generate the double cover 2 · A6 of A6, and so we have verified that A6
is indeed the projective symmetry group of the six equiangular lines in H

2. We note
that our method did not require prior knowledge of what the symmetry group was.

The action group of the faithful representation of 2 · A6 obtained in Example 5.1
contains 40 reflections (of order 3), and it is an irreducible reflection group which
appears on the list of [6]. The vectors giving the lines are eigenvectors of nontrivial
elements of the group, and so the six equiangular lines in H

2 can be constructed
directly from the reflection group as a group frame (or even from the abstract group
2 · A6) [36].

The sets of five and six equiangular lines inH2 were first calculated in [19] using the
Hopfmap.Though this techniquedoes not immediately generalise to other dimensions,
like that of [11],we recount the essential details, as it sheds further light on the geometry
of these lines. The Hopf map ψ maps a point �a = (a1, . . . , a5) on the unit sphere in
R
5 to a line in the projective space HP

1, i.e. a the unit vector v ∈ H
2 in the line with

v2 ≥ 0, and is given by ψ(0, 0, 0, 0, 1) := (1, 0) and

ψ(�a) :=
( a√

2(1−a5)√
1−a5√
2

)
, a := a1 + a2i + a3 j + a4k, a5 
= 1.
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A calculation shows that

|〈ψ(�a), ψ(�b)〉H|2 = 1 + 〈�a, �b〉R
2

, ∀�a, �b, (5.41)

so the n ≥ 3 unit vectors (v j ), v j = ψ( �v j ) ∈ H
2, give tight equiangular lines if and

only if

|〈v j , vk〉|2 = 1 + 〈 �v j , �vk〉
2

= n − 2

2(n − 1)
⇐⇒ 〈 �v j , �vk〉 = − 1

n − 1
.

This latter condition says that the vectors ( �v j ) are the vertices of a regular n-vertex
simplex embedded in the unit sphere inR5, which can be done for n = 3, 4, 5, 6, with
the corresponding image (v j ) giving n tight equiangular lines in H

2. Moreover, for
n = 3, we get real lines by choosing the simplex in {x : x = (x1, 0, 0, 0, x5)}, and
complex lines for n = 4 by choosing the simplex in {x : x = (x1, x2, 0, 0, x5)}.

5.1 Concluding remarks

We have shown howmuch of the theory of tight frames extends to quaternionic Hilbert
space, with the characterisation of projective unitary equivalence of frames being the
aspect that most depends intrinsically on the commutativity of the complex numbers.
The notions of canonical coordinates and the canonical Gramian [33] also extend to
H-vector spaces. In particular, there is a unique H-inner product for which a finite
spanning set for an H-vector space becomes a normalised tight frame.

Our focus has been on group frames and equiangular lines. The maximal set of six
equiangular lines inH2 comes as the orbit of a quaternionic reflection group, just as the
SIC of four equiangular lines inC2 is the orbit of a complex reflection group. However,
the known SICs in Cd (with one exception) are orbits of the Weyl-Heisenberg group,
which is not a reflection group for d ≥ 3. The key to constructing quaternionic equian-
gular lines in this way will be knowing “the right group”. This group might come from
numerical constructions, using the techniques of this last section, or from the theory of
group representations overH (which is in its infancy). The construction of sets of tight
quaternionic lines may also offer insight into Zauner’s conjecture. Another direction
of similar interest is that of optimal packings in quaternionic projective space HP

k .
Many of our results say, in some sense, that “there is more room in H

d than in
C
d”. In particular, we offer the following variation of Conjecture 1, which does not

implicitly reference Zauner’s conjecture.

Conjecture 2 The maximal number of quaternionic equiangular lines inHd is strictly
larger than the maximal number of complex equiangular lines in Cd , for each d ≥ 2.
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