
Pseudometrics, Distances and

Multivariate Polynomial Inequalities

Len Bos, Norm Levenberg and Shayne Waldron

Abstract. We discuss three natural pseudodistances and pseudomet-

rics on a bounded domain in IR
N based on polynomial inequalities.

Key words and phrases: pseudodistance, pseudometric, polyno-
mial inequalities

AMS-MOS classification numbers: Primary 41A17; Secondary
41A63, 26D10

§0. Introduction.

In [3], for a compact set K ⊂ IRn, we defined a Carathéodory type dis-
tance due to Dubiner [6] and a Finsler type distance based on Baran’s
generalization of the van der Corput - Schaake polynomial inequality [1],
[2]. These distances are intimately connected to the distribution of op-
timal points for multivariate polynomial interpolation, as well as to the
distribution of nodes for “good” quadrature rules (cf., the Introduction
and the references of [3]).

Let K = Ω ⊂ IRN where Ω is a domain. We expand upon the
definitions given in [3] in proving some general relationships among three

natural pseudodistances as well as three natural pseudometrics on Ω.
The classical Markov inequality, or more precisely, the van der Corput

- Schaake inequality, says that for p : IR → IR a real polynomial such that
||p||I = supx∈[−1,1] |p(x)| ≤ 1,
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which motivates the definition of the Dubiner pseudodistance (Definition
1.4).

Analogously, estimates on 1
degp

|Dyp(x)|√
1−p(x)2

for polynomials p : IRN → IR

normalized with ||p||K = supx∈K |p(x)| ≤ 1, where Dyp(x) denotes the
directional derivative of p at x in the direction y, give rise to the definition
of the Markov pseudometric (Definition 1.5).

Next, we recall for a compact set K ⊂ CN , the function

VK(z) := sup{log |p(z)|1/deg(p) : p : CN → C, deg(p) ≥ 1, ||p||K ≤ 1}

is known as the Siciak-Zaharjuta extremal function. If VK(z) is finite,
which it is for all z ∈ CN when K = Ω ⊂ IRN where Ω is a domain, then
for any polynomial p and any point z, from the definition of VK we have
the Bernstein-Walsh inequality

|p(z)| ≤ edeg(p)VK(z)||p||K.

The function VK will be utilized, in particular, in defining and analyzing
the Baran pseudometric and pseudodistance (Definition 1.6).

The organization of the paper is as follows: in section 1, we define
the notions of pseudometric and pseudodistance on domains in IRN . We
follow closely the presentation in Jarnicki-Pflug [7], but we also recom-
mend Dineen’s monograph [5]. Then we define the Dubiner, Markov and
Baran pseudodistances and pseudometrics for a bounded domain Ω ⊂ IRN

and recall the results of the relevant calculations from [3]. In section 2,
we give relationships among these pseudodistances and pseudometrics for
general Ω and we prove certain properties (monotonicity, invariance, etc.).
Finally, in the last section, we show that all three pseudometrics coincide
when K = Ω is a symmetric convex body in IRN (Proposition 3.6). The
corresponding pseudodistances are shown to coincide for symmetric con-
vex bodies in IR2 that satisfy a technical condition; we conjecture that
this additional condition is not needed, and that indeed the result is true
in IRN . This is not the case, in general, for non-symmetric convex bodies
as was shown in [3] via the example of the simplex in IR2.

§1. Definition of the pseudodistances and pseudometrics.

We begin our discussion with the definitions of pseudodistances and pseu-
dometrics; we refer the reader to section 4.3 of [7] for details and proofs
of Propositions 1.1-1.6. A word of warning: in [7], the field of scalars is
C. Let K = Ω ⊂ IRN where Ω is a domain.
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Definition 1.1. We call F : Ω × IRN → IR+ a pseudometric if

a. F (x; λ) is uppersemicontinuous (usc) as a function of (x, λ) ∈ Ω×IRN ;

b. F (x; λ) is positive definite in λ: F (x; λ) ≥ 0 and F (x; λ) = 0 if and
only if λ = 0;

c. F (x; λ) is positively homogeneous in λ: F (x; tλ) = |t|F (x; λ) for t ∈
IR.

Remark 1.1. It follows from a. and c. that

d. F (x; λ) is locally Lipschitz in λ: F (x; λ) ≤ c|λ| where c = c(x) de-
pends on x and is locally bounded above.

More precisely, we should call F an usc pseudometric; but we omit
the adjective usc. All of our pseudometrics will, in addition, satisfy a
bi-Lipschitz condition:

d′. c1|λ| ≤ F (x; λ) ≤ c2|λ| where ci = ci(x), i = 1, 2 depend on x with
c1 locally bounded below and c2 locally bounded above.

Definition 1.2. We call d : Ω × Ω → IR+ a pseudodistance if

A. d(a, b) = d(b, a) ≥ 0;

B. d(a, b) ≤ d(a, c) + d(c, b);

C. d is locally dominated by the Euclidean distance: for all c ∈ Ω there
exists M > 0, r > 0 with d(a, b) ≤ M |a− b| if a, b ∈ Ω with max{|a−
c|, |b − c|} < r.

All of our pseudodistances will locally dominate the Euclidean dis-
tance; hence:

D. for all c ∈ Ω there exist m, M > 0, r > 0 with m|a − b| ≤ d(a, b) ≤
M |a − b| if a, b ∈ Ω with max{|a − c|, |b − c|} < r.

If d(a, b) > 0 for a 6= b, we call d a distance; from D., all of our
pseudodistances will be distances.

We summarize four operations with d, F :

1. The operator d → di:

Given a pseudodistance d, let α : [0, 1] → Ω denote a continuous
curve. Define

Ld(α) := sup{
n∑

j=1

d(α(tj−1), α(tj)) : 0 = t0 < · · · < tn = 1},

the d−length of α. Define di : Ω × Ω → IR+ via

di(a, b) := inf{Ld(α) : α continuous curve in Ω joining a, b}.

We call di the inner pseudodistance associated to d.
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Proposition 1.1. di is a pseudodistance; d ≤ di; and Ldi = Ld.

2. The operator F →
∫

F :
Given a pseudometric F and α : [0, 1] → Ω a piecewise C1 curve,

define

LF (α) :=

∫ 1

0

F (α(t); α′(t))dt,

the F−length of α. Define, for a, b ∈ Ω,

(

∫
F )(a, b) := inf{LF (α) : α piecewise C1 curve in Ω joining a, b}.

Proposition 1.2.
∫

F is a pseudodistance; and L∫
F

≤ LF for each

piecewise C1 curve; hence (
∫

F )i =
∫

F .

3. The operator d → Dd:
Given a pseudodistance d, define, for x ∈ Ω and y ∈ IRN ,

Dd(x; y) := lim sup
t→0+, z→x

d(z, z + ty)

t
.

Proposition 1.3. Dd is a pseudometric;

(i) Dd(x; y) := lim sup
x1,x2→x,

x1−x2
|x1−x2|

→y
d(x1,x2)
|x1−x2|

, |y| = 1;

(ii) d ≤
∫
(Dd);

(iii) for any pseudometric F , D(
∫

F ) ≤ F .

4. The operator F → F̂ :
Given f : IRN → IR+ satisfying f(tx) = |t|f(x) for t ∈ IR and x ∈ IRN ,

and f(x) ≤ M |x|, define

Γ(f) := {y ∈ IRN : |y · z| = |
N∑

j=1

yjzj | ≤ f(z), for all z ∈ IRN}

= {y ∈ IRN : y · z ≤ f(z), for all z ∈ IRN}
= {y ∈ IRN : y · z ≤ 1, for all z ∈ IRN with |f(z)| = 1};

the first equality occurs since f(−x) = f(x), the second from f(tx) =
|t|f(x). The (filled-in) indicatrix of such an absolutely homogeneous f is
the set

E = {x ∈ IRN : f(x) ≤ 1};
and the polar of a set E ⊂ IRN is the set

E∗ := {y ∈ IRN : y · z ≤ 1, for all z ∈ E};
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thus Γ(f) is the polar of the “filled-in” indicatrix of f . Next, define

f̂(x) := sup{x · y : y ∈ Γ(f)};

this is the support function of Γ(f). Note that f ≤ g implies f̂ ≤ ĝ.
Recalling that an absolutely homogeneous f defines a seminorm if f(x +
y) ≤ f(x) + f(y), we have

a. f̂ ≤ f ;
b. f̂ is always a seminorm and f is a seminorm iff f̂ = f ;
c. Γ(f̂) = Γ(f);

d. {f̂ ≤ 1} is the closed convex hull of {f ≤ 1}.
(cf., Remark 4.3.4 in [7]). Now given a pseudometric F , define F̂ (x; y) :=
F (x; ·̂) (“hat” operation in second variable).

Proposition 1.4. F̂ is a pseudometric and
∫

F̂ =
∫

F . Moreover,

D(
∫

F ) ≤ F̂ ; for F satisfying d′ (of Remark 1.1), we have equality if
F is continuous in (x; y).

Proposition 1.5. We have the following relations between the opera-
tions di,

∫
, Dd, F̂ :

(i) D(
∫

F ) ≤ F̂ ;
(ii)

∫
(Dd) ≥ di;

(iii)
∫
(F̂ ) =

∫
F ;

(iv) D̂d = Dd.

For use in section 3, we define the notion of a C1 pseudodistance.
Below, B(x, r) denotes the Euclidean ball of radius r centered at x.

Definition 1.3 (C1 pseudodistance). A pseudodistance d on Ω is a C1

pseudodistance if for all E ⊂⊂ Ω, and all ǫ > 0, there exists η > 0 such
that

|d(x1, x2) − (Dd)(x; x1 − x2)| ≤ ǫ|x1 − x2|
for x ∈ E and x1, x2 ∈ B(x, η).

Proposition 1.6. Let d be a C1 pseudodistance. Then di =
∫
(Dd) and

di is a C1 pseudodistance.

We now define our natural pseudodistances and pseudometrics on a
bounded domain Ω ⊂ IRN . The applications we have in mind and some of
the fundamental notions we utilize deal with compact sets; thus we often
consider one or more of the six items below as associated to K = Ω.

Definition 1.4 (Dubiner pseudodistance and pseudometric).

dK
D (a, b) = dD(a, b) := sup

||p||K≤1, degp≥1

1

degp
| cos−1(p(a)) − cos−1(p(b))|
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is the Dubiner pseudodistance on K. Note that this is well-defined on
K × K for any compact set K. For x ∈ Ω and y ∈ IRN ,

δK
D (x; y) = δD(x; y) := DdD(x; y) := lim sup

t→0+, z→x

dD(z, z + ty)

t

is the Dubiner pseudometric for K.

Definition 1.5 (Markov pseudodistance and pseudometric).

δK
M (x; y) = δM (x; y) := sup

||p||K≤1, degp≥1

1

degp

|Dyp(x)|√
1 − p(x)2

,

(for x ∈ Ω and y ∈ IRN ) defined for compacta K for which it is usc, is the
Markov pseudometric for K and

dK
M = dM =

∫
δM

is the Markov pseudodistance for K. From the results of [2], δK
M is contin-

uous at x ∈ Ω = Ko if K is a centrally symmetric convex body (see Cor.
3.5).

Definition 1.6 (Baran pseudodistance and pseudometric).

δK
B (x; y) = δB(x; y) := lim sup

t→0+

VK(x + ity)

t
,

(for x ∈ Ω and y ∈ IRN ) defined for compacta K for which it is usc, is the
Baran pseudometric for K and

dK
B = dB =

∫
δB

is the Baran pseudodistance for K. From the results of [4], δK
B is continuous

for x ∈ Ko if K is an arbitrary convex body. Moreover, in this case, the
limit in the definition of δK

B exists.

Remark 1.2. When the set K is understood, we delete the superscript
K for our pseudodistances and pseudometrics.

Remark 1.3. For the unit cube C in IRN , one can explicitly compute

δC
M (x; y) = δC

B(x; y) = max
j=1,...,N

|yj |√
1 − x2

j



Pseudometrics, Distances and Multivariate Polynomial Inequalities 7

(see [3]). Since K1 ⊂ K2 clearly implies δK1

M (x; y) ≥ δK2

M (x; y) and

δK1

B (x; y) ≥ δK2

B (x; y) for x in the interior of K1, for any K = Ω in IRN we
see by taking a cube inside K and another containing K that δK

M and δK
B

are pseudometrics satisfying the bi-Lipschitz property d′. Proposition 1.2
shows that dK

M and dK
B are pseudodistances; i.e., they satisfy A.-C. of Def-

inition 1.2. The fact that δK
D is a pseudometric satisfying the bi-Lipschitz

property d′ will follow from Proposition 2.1 (equation (2.2)). Finally, the
verification of property C. of Definition 1.2 for dK

D – A. and B. are trivial –
will follow from Proposition 2.1 (equation (2.1)). To verify the other half
of property D. for dK

D , take r > 0 so that the Euclidean ball B(c, r) ⊂ Ω
and let p be the polynomial of degree one which is (normalized) linear
projection to the line joining a and b. Proposition 2.1 (equation (2.1))
will imply the same property for dK

M and dK
B .

Remark 1.4. We see from Proposition 1.2 that each of the Markov and
Baran pseudodistances are inner; i.e., di

M = dM and di
B = dB.

As concrete examples, we summarize the following calculations in [3]:

(i) For K = Ω = {x = (x1, ..., xN) ∈ IRN : |x|2 =
∑N

j=1 x2
j ≤ 1}

the closed unit ball, dD(a, b) = dB(a, b) = cos−1(ã · b̃) where ã =
(a,

√
1 − |a|2), b̃ = (b,

√
1 − |b|2) are the liftings of a, b to the sur-

rounding unit sphere SN ⊂ IRN+1. From Proposition 2.1 in the next
section, we conclude that dD(a, b) = dM (a, b) = dB(a, b).

(ii) For K = Ω = IN = {x = (x1, ..., xN) ∈ IRN : maxj=1,...,N |xj | ≤ 1}
the closed unit cube, dD(a, b) = dB(a, b) = maxj=1,...,N dI

D(aj, bj) =
maxj=1,...,N | cos−1 bj − cos−1 aj |. From Proposition 2.1 in the next
section, we conclude that dD(a, b) = dM (a, b) = dB(a, b).

(iii) For K = Ω = {x = (x1, ..., xN) ∈ IRN : xj ≥ 0,
∑N

j=1 xj ≤ 1} the

standard simplex, dB(a, b) = 2[cos−1(ã· b̃)]. Here, dD(a, b) 6≡ dB(a, b).

§2. Pseudodistances and pseudometrics: general K.

In this section, we let K = Ω ⊂ IRN where Ω is a bounded domain such
that δM and δB are usc, and we derive the following inequalities relating
the Dubiner, Markov and Baran pseudodistances and pseudometrics.

Proposition 2.1. For K = Ω ⊂ IRN we have

dD ≤ di
D ≤ dM ≤ dB (2.1)

and
δD = δM ≤ δB . (2.2)

Proof. First note that for any polynomial p with ||p||K ≤ 1, and any two
points a, b ∈ Ω, if α : [0, 1] → Ω is a C1 curve with α(0) = a and α(1) = b,
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then

| cos−1(p(b)) − cos−1(p(a))| = |
∫ 1

0

d

dt
[cos−1(p(α(t))]dt|

≤
∫ 1

0

∣∣(Dα′(t)p(α(t))
∣∣

√
1 − (p(α(t)))2

dt.

Taking the supremum over all such polynomials and the infimum over all
such C1 curves shows that dD ≤ dM . Moreover, we have

∫ 1

0

∣∣(Dα′(t)p(α(t))
∣∣

√
1 − (p(α(t)))2

dt ≤ degp

∫ 1

0

δB(α(t); α′(t))dt.

This last inequality is Baran’s inequality (Theorem 1.14 of [1]) and actually
holds with δB(x; y) replaced by

δ̃B(x; y) := lim inf
t→0+

VK(x + ity)

t
.

In particular, we get δM ≤ δB and hence, from the definitions of the
Markov and Baran pseudodistances, that dM ≤ dB . It follows that

dD ≤ dM ≤ dB. (2.3)

We also conclude that

DdD ≤ DdM ≤ DdB . (2.4)

Next we show that

δM ≤ DdD. (2.5)

For, by definition of dD, for any polynomial p with ||p||K ≤ 1,

1

degp

| cos−1(p(x + ty)) − cos−1(p(x))|
t

≤ dD(x + ty, x)

t
.

Thus

1

degp

|Dyp(x)|√
1 − (p(x))2

≤ lim sup
t→0+

dD(x + ty, x)

t
≤ (DdD)(x; y).

Hence δM ≤ DdD. Combining (2.4) and (2.5) we have

δM ≤ DdD ≤ DdM ≤ DdB . (2.6)
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Now from Proposition 1.5, D̂d = Dd (property (iv)), and D(
∫

F ) ≤ F̂
(property (i)); thus, taking “hats” of (2.6),

δ̂M ≤ D̂dD = DdD ≤ D̂dM = DdM ≤ δ̂M .

Thus equality holds throughout and, in particular,

DdM = δ̂M .

But δ̂M ≤ δM ≤ DdD = δ̂M so that

δD = DdD = DdM = δ̂M = δM . (2.7)

Together with (2.6) and the conclusion from Baran’s inequality that δM ≤
δB , this completes the proof of (2.2). Finally, integrating (2.7) to get a
relation among the pseudodistances, we have

di
D ≤

∫
DdD =

∫
DdM =

∫
δ̂M =

∫
δM = dM

using (ii) from Proposition 1.5. Together with (2.3), this completes the
proof of (2.1). ♣

Based on Remark 1.3 and property D. of Definition 1.2, we delete
the “pseudo” in referring henceforth to the Dubiner, Baran and Markov
distances. We make a few useful observations about the Dubiner distance
and pseudometric.

Lemma 2.2. For a, b ∈ K and a positive integer k, we have

dD(a, b) = d
(k)
D (a, b) := sup

||p||K≤1, degp≤k

1

degp
| cos−1(p(b)) − cos−1(p(a))|

for k ≥ π

d
(1)
D

(a,b)
.

Proof. If degp > k, then 1
degp | cos−1(p(a)) − cos−1(p(b))| ≤ π

degp < π
k ≤

d
(1)
D (a, b). ♣

Lemma 2.3. We have

δD(x; y) = lim
t→0+

dD(x, x + ty)

t
,

i.e., the limit in the definition of the Dubiner pseudometric exists.

Proof. Recall that

δK
D (x; y) = δD(x; y) := DdD(x; y) := lim sup

t→0+, z→x

dD(z, z + ty)

t
.
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By definition of dD, for any polynomial p with ||p||K ≤ 1,

1

degp

| cos−1(p(x + ty)) − cos−1(p(x))|
t

≤ dD(x + ty, x)

t
.

Thus

1

degp

|Dyp(x)|√
1 − (p(x))2

= lim inf
t→0+

1

degp

| cos−1(p(x + ty)) − cos−1(p(x))|
t

≤ lim inf
t→0+

dD(x + ty, x)

t
≤ lim sup

t→0+

dD(x + ty, x)

t
≤ δD(x; y).

By (2.2), δD(x; y) = δM (x; y); moreover the above inequality for any poly-
nomial p with ||p||K ≤ 1 implies that

δM (x; y) ≤ lim inf
t→0+

dD(x + ty, x)

t
;

combining these inequalities,

δM (x; y) ≤ lim inf
t→0+

dD(x + ty, x)

t
≤ lim sup

t→0+

dD(x + ty, x)

t
≤ δM (x; y)

so that the limit exists. ♣
Next we discuss invariance properties. We begin with the Dubiner

distance.

Lemma 2.4. For a polynomial map P = (p1, ..., pN) : IRN → IRN with
degP := max(degp1, ...,degpN) and a, b ∈ K,

dK
D (a, b) ≥ 1

degP
d

P (K)
D (P (a), P (b)).

For an invertible linear map T : IRN → IRN and a, b ∈ K,

dK
D (a, b) = d

T (K)
D (T (a), T (b)).

Proof. The inequality follows from the definition of dK
D and d

P (K)
D . In par-

ticular, this inequality holds for an invertible linear map T : IRN → IRN .
The reverse inequality in this case follows by applying the above inequality
with K, P (K) and the map P replaced by the sets T (K), T−1(T (K)) = K
and the map T−1. ♣

The Markov pseudometric is invariant under invertible linear maps.
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Lemma 2.5. For an invertible linear map T : IRN → IRN , δK
M (x; y) =

δ
T (K)
M (T (x); T (y)).

Proof. First of all, clearly δK
M is usc if and only if δ

T (K)
M is usc (the same

is true for δB ; this will be used in Corollary 2.7). From the definition,

δK
M (x; y) = sup

||Q||K≤1, degQ≥1

1

degQ

|DyQ(x)|√
1 − Q(x)2

.

Now if Q(x) = (p ◦ T )(x), and we call x′ = T (x), then

DyQ(x) = ∇xQ(x)·y = T t(∇x′p(x′))·y = ∇x′p(x′)·T (y) = DT (y)p(T (x)).

Note that if ||p||T (K) ≤ 1, then ||Q||K ≤ 1. We obtain

δ
T (K)
M (T (x); T (y)) = sup

||p||T(K)≤1, degp≥1

1

degp

|DT (y)p(T (x))|√
1 − [p(T (x))]2

≤ sup
||Q||K≤1, degQ≥1

1

degQ

|DyQ(x)|√
1 − Q(x)2

= δK
M (x; y).

Applying the above argument with T−1, we obtain

δK
M (x; y) = δ

T−1(T (K))
M ((T−1 ◦ T )(x); (T−1 ◦ T )y) ≤ δ

T (K)
M (T (x); T (y))

and equality holds. ♣
Finally we turn to the Baran distance and pseudometric. We recall

a result of Klimek [8, Thm. 5.3.1]: if P = (p1, ..., pN) : CN → CN is a
proper polynomial mapping of degree d, then VK(P (z)) = dVP−1(K)(z).

Lemma 2.6. Suppose P = (p1, ..., pN) : IRN → IRN is a polynomial
mapping satisfying the Klimek condition: d :=degp1 = ... =degpN and
P̂−1(0) = {0} where P̂ is the homogeneous part of P of degree d. Let
A, C ⊂ IRN with C = P (A) and suppose that if x ∈ A with detJP (x) = 0,
then P (x) ∈ ∂C. Then

δA
B(x; y) =

1

d
δC
B(P (x); JP (x) · y)

and hence

dA
B(a, b) =

1

d
dC

B(P (a), P (b)).

Proof. Using Klimek’s result, we have

δA
B(x; y) = lim sup

t→0+

VA(x + ity)

t
=

1

d
lim sup

t→0+

VC(P (x + ity))

t
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=
1

d
lim sup

t→0+

VC(P (x) + JP (x) · ity + 0(t2))

t
=

1

d
δC
B(P (x); JP (x) · y).

Here, the last equality follows from the considerations of Remark 1.3.
Hence, letting γ vary over curves in the interior Ao of A joining two

points a and b, and letting γ̃ vary over compositions P ◦ γ,

dA
B(a, b) = inf

γ

∫ 1

0

δA
B(γ(t); γ′(t))dt

=
1

d
inf
γ

∫ 1

0

δC
B(P (γ(t)); JP (γ(t)) · γ′(t))dt

=
1

d
inf
γ̃

∫ 1

0

δC
B(γ̃(t); γ̃′(t))dt

=
1

d
inf
Γ

∫ 1

0

δC
B(Γ(t); Γ′(t))dt =

1

d
dC

B(P (a), P (b)).

Here Γ varies over all curves joining P (a), P (b) and the first equality in
the last line follows from our hypothesis that detJP (x) 6= 0 if P (x) ∈ Co.
♣
Corollary 2.7. For an invertible linear map T : IRN → IRN ,

δK(x; y) = δT (K)(T (x); T (y)) (2.8)

for each of the pseudometrics δ = δD, δM , or δB ; and

dK(a, b) = dT (K)(T (a), T (b)) (2.9)

for each of the distances d = dD, dM , or dB .

Remark 2.1 For K1 ⊂ K2, dK2 ≤ dK1 on Ko
1 × Ko

1 for each of the
distances dD, dM , dB.

§3. K convex and centrally symmetric.

At the end of section 1 we noted that the three distances coincide on balls
and cubes. In this section, we study the connection between our three
pseudometrics and distances for K ⊂ IRN a centrally symmetric convex

body; i.e., K is compact and convex with Ω = Ko 6= ∅ and K = −K. Let
|||x|||K := inf{λ > 0 : x ∈ λK}. Then K is the closed unit ball in this
norm:

K = {x ∈ IRN : |||x|||K ≤ 1}.
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Motivated by some results due to Milev and Révész [10] in their inves-
tigation of the “inscribed ellipse” method of Sarantopoulos [12] (see also
Kroó and Révész [9]) for investigating Markov inequalities in convex bod-
ies, we obtain a geometric interpretation of the Markov pseudometric in
Lemma 3.2. This will be used to verify equality of the three pseudometrics
in Proposition 3.6. To begin, given x ∈ K and y ∈ IRN , let

Eb(x, y) := {r(t) = x cos t + yb sin t : 0 ≤ t ≤ 2π}. (3.1)

This is a centrally symmetric ellipse containing the points ±x,±yb. The
point of the “inscribed ellipse” method is to scale b to fit inside K.

Lemma 3.1. For b ≤
√

1−|||x|||2
K

|||y|||K
, Eb(x, y) ⊂ K.

Proof. We have

|||r(t)|||K ≤ |||x|||K| cos t| + |||y|||Kb| sin t|

≤ |||x|||K| cos t| +
√

1 − |||x|||2K| sin t| ≤ 1 ·
√

|||x|||2K + 1 − |||x|||2K = 1.

♣
Now let

b∗(x, y) := sup{b : Eb(x, y) ⊂ K}. (3.2)

By definition and Lemma 3.1,

b∗(x, y) ≥
√

1 − |||x|||2K
|||y|||K

.

Lemma 3.2. Let x ∈ Ko, y ∈ IRN . For p a polynomial with ||p||K ≤ 1
and |p(x)| 6= 1,

1

degp

|Dyp(x)|√
1 − (p(x))2

≤ 1

b∗(x, y)
. (3.3)

Moreover,

δM (x; y) =
1

b∗(x, y)
. (3.4)

Proof. Fix x ∈ Ko, y ∈ IRN , and b < b∗(x, y). For p a polynomial with
||p||K ≤ 1 and |p(x)| 6= 1, let T (t) := p(r(t)) where r(t) is as in (3.1). Then
T (t) is a trigonometric polynomial with degT =degp and ||T ||[0,2π] ≤ ||p||K
since Eb(x, y) ⊂ K. By Szegö’s inequality for trigonometric polynomials,

|T ′(t)|√
1 − T (t)2

≤ degT,
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so that, in particular,

1

degT

|T ′(0)|√
1 − T (0)2

≤ 1.

But T (0) = p(r(0)) = p(x), T ′(0) = ∇p(r(0)) · r′(0) = ∇p(x) · by =
bDyp(x), thus

1

degp

|Dyp(x)|√
1 − (p(x))2

≤ 1/b

which gives (3.3).
To show δM (x; y) ≥ 1

b∗(x,y)
, by definition of b∗(x, y), there exists

u ∈ ∂K ∩ Eb∗(x, y); by symmetry, −u ∈ ∂K ∩ Eb∗(x, y) as well. Let H
and −H be support hyperplanes to ∂K at u,−u and let n be a unit normal
vector for H (oriented “out” of K). Define the half-space

Hu := {z ∈ IRN : n · z ≤ n · u}.

Then K ⊂ Hu ∩−(Hu) and hence

Eb∗(x, y) ⊂ K ⊂ Hu ∩ −(Hu).

Let p(z) := n·z
n·u

. By construction, ||p||K ≤ 1 and p maps Eb∗(x, y) onto
[−1, 1]. Hence, with r(t) = x cos t + yb∗(x, y) sin t, we can write

p(r(t)) = A cos t + B sin t

for some A, B with A2+B2 = 1. For if A2+B2 > 1, p(Eb∗(x, y)) 6⊂ [−1, 1];
if A2 + B2 < 1, p(Eb∗(x, y)) ⊂ [−1, 1] but p(Eb∗(x, y)) 6= [−1, 1]. Using
the facts that degp = 1; r(0) = x; and r′(0) = yb∗(x, y), it follows that

δM (x; y) ≥ |Dyp(x)|√
1 − (p(x))2

=
1

b∗(x, y)

( | d
dt (p(r(t)))|√
1 − (p(r(t)))2

|
)
t=0

=
1

b∗(x, y)

( | d
dt

(A cos t + B sin t)|√
1 − (A cos t + B sin t))2

|
)
t=0

=
1

b∗(x, y)

|B|√
1 − A2

=
1

b∗(x, y)

|B|
|B| =

1

b∗(x, y)

provided A 6= 1. But A = p(x) 6= 1 since x ∈ Ko. ♣
In [4], it was shown that the equality

δB(x; y) =
1

b∗(x, y)

holds for general convex bodies in IRn, and, moreover, the function δB is
continuous.
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Corollary 3.3. Let K be centrally symmetric and convex. Then δM =

δ
(1)
M where

δ
(1)
M (x; y) := sup

||p||K≤1, degp=1

|Dyp(x)|√
1 − p(x)2

.

Proof. This follows since the proof of Lemma 3.2 shows that the supre-
mum in the definition of δM (x; y) is attained for linear polynomials. ♣

We next show that the Dubiner distance dD is a C1 pseudodistance
(recall Definition 1.3 and equation (2.2)).

Proposition 3.4. Let K be centrally symmetric and convex. For all
E ⊂⊂ Ko and all ǫ > 0, there exists η > 0 with

|dD(a, b) − δM (x; b − a)| ≤ ǫ|b − a|

for all a, b ∈ B(x, η) and x ∈ E.

Proof. Fix a positive integer n and a polynomial p of degree at most n
with ||p||K ≤ 1.
Claim: For all ǫ there exists η > 0 (depending on n, E but not p) with

∣∣ 1

degp
| cos−1(p(b)) − cos−1(p(a))| − 1

degp

|Db−a(p(x))|√
1 − p(x)2

∣∣ ≤ ǫ|b − a|

for all a, b ∈ B(x, η) and x ∈ E.
Proof of Claim: Let f(x) = cos−1(p(x)). It suffices to show that

∣∣ |f(b)− f(a)|
|b − a| − |D b−a

|b−a|
f(x)|

∣∣ ≤ ǫ

for all a, b ∈ B(x, η) and x ∈ E. To verify this, let g(t) := f(a + t(b− a)).
Then

|g(1)− g(0)| = |f(b)− f(a)| = |
∫ 1

0

g′(t)dt|

=
∣∣
∫ 1

0

D b−a

|b−a|
f(a + t(b − a))dt

∣∣|b − a|

so that

∣∣ |f(b) − f(a)|
|b − a| − |D b−a

|b−a|
f(x)|

∣∣ ≤
∫ 1

0

|D b−a

|b−a|
f(a+ t(b−a))−D b−a

|b−a|
f(x)|dt

≤ sup
z∈[a,b]

|D b−a

|b−a|
f(z) − D b−a

|b−a|
f(x)| ≤ sup

z∈B(x,η)

|D b−a

|b−a|
f(z) − D b−a

|b−a|
f(x)|.
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This last quantity is less than ǫ if η = η(n, E) is sufficiently small by
compactness of the family {p : degp ≤ n, ||p||K ≤ 1}. This proves the
claim.

From Corollary 3.3, δM = δ
(1)
M , thus for x ∈ E and a, b ∈ B(x, η)

we can take p with degp = 1 and ||p||K ≤ 1 such that
|Db−a(p(x))|√

1−p(x)2
>

δM (x; b − a) − ǫ|b − a|. Applying the Claim (with n = 1),

δM (x; b− a) < 2ǫ|b − a| + | cos−1(p(b)) − cos−1(p(a))|

≤ 2ǫ|b − a| + dD(a, b).

On the other hand, from Lemma 2.2, for a, b ∈ B(x, η) and x ∈ E we

can find an n with dD(a, b) = d
(n)
D (a, b). Choose p with degp ≤ n and

||p||K ≤ 1 such that 1
degp | cos−1(p(b))− cos−1(p(a))| > dD(a, b)− ǫ|b − a|.

Applying the Claim,

dD(a, b) < 2ǫ|b − a| + 1

degp

|Db−a(p(x))|√
1 − p(x)2

≤ 2ǫ|b − a| + δM (x; b − a).

♣
Corollary 3.5. Let K be centrally symmetric and convex. Then δM =
DdD is continuous and dD is C1.

Proof. We have δM = DdD by (2.2) for general K. Thus δM is usc.
By Corollary 3.3, δM is the supremum of a family of continuous func-
tions and hence is lowersemicontinuous (lsc). The fact that dD is a C1

pseudodistance now follows from Proposition 3.4 and Definition 1.3. ♣
From Baran’s work [1], for K centrally symmetric and convex,

δB(x; y) = sup{ |y · w|√
1 − (x · w)2

: w ∈ K∗} (3.5)

where recall

K∗ := {x ∈ IRN : x · y ≤ 1 for all y ∈ K}

is the polar of K. Note also that |||x|||K = sup{x · w : w ∈ K∗}.
Proposition 3.6. Let K be centrally symmetric and convex. Then

b∗(x; y) = inf{
√

1 − (x · w)2

|y · w| : w ∈ K∗}. (3.6)

Hence
δD = δM = δB . (3.7)
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Moreover,

di
D = dM = dB. (3.8)

Proof. From the definition of b∗(x; y) in (3.2) and K∗ we can write

b∗(x; y) = sup{b : sup
w∈K∗, t∈[0,2π]

|x cos t · w + yb sin t · w| = 1}

= sup{b : sup
w∈K∗

[(w · x)2 + b2(w · y)2] = 1}.

To see that this last supremum equals inf{
√

1−(x·w)2

|y·w|
: w ∈ K∗}, take

any b with supw∈K∗ [(w · x)2 + b2(w · y)2] = 1; then, for any w ∈ K∗,

(w · x)2 + b2(w · y)2 ≤ 1 so that b ≤
√

1−(x·w)2

|y·w|
which shows that b∗

is less than or equal to the right-hand-side of (3.6). Next, we observe
that the infimum in the right-hand-side of (3.6) is attained. Let b0 =

min{
√

1−(x·w)2

|y·w| : w ∈ K∗}. Then b0 ≤
√

1−(x·w)2

|y·w| for all w ∈ K∗ with

equality at some point(s); hence (w · x)2 + b2
0(w · y)2 ≤ 1 for all w ∈ K∗

with equality at some point(s); i.e., b0 ≤ b∗ and equality holds.

Equation (3.7) follows from (2.2), (3.4), (3.5) and (3.6). Using this,
Proposition 1.6 gives

di
D =

∫
δD =

∫
δM =

∫
δB

which is (3.8). ♣
As a concrete example, for K the closed unit ball in IRN , given x ∈ Ko

and y ∈ IRN , let

w̃ := y(1 − |x|2) + (y · x)x.

Then w := w̃/|w̃| maximizes |y·w|√
1−(x·w)2

and this maximal value is

((1 − |x|2)|y|2 + (x · y)2

1 − |x|2
)1/2

δB(x; y).

We conjecture that

dD(a, b) = dM (a, b) = dB(a, b) (3.9)

for K centrally symmetric and convex. We present some evidence sup-
porting the validity of the conjecture.
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Proposition 3.7. For a centrally symmetric E ⊂ IRN bounded by an

ellipsoid, d
(1)
D = dD = dM = dB .

Proof. We have equality of dD, d
(1)
D and dB for K = B, the unit ball, by

explicit calculation in [3]. Thus by inequality (2.1),

d
(1)
D = dD = dM = dB (3.10)

for K = B. Since E = T (K) for some invertible linear mapping T , equality

holds in (3.10) for E from (2.9) and the observation that d
(1)
D for K and

E coincide. ♣
We now specialize to centrally symmetric convex bodies in IR2.

Theorem 3.8. Let K ⊂ IR2 be centrally symmetric and convex. For two
points a, b ∈ K with the property that there exists a centrally symmetric
region E = E(a, b) ⊂ K bounded by an ellipse with a, b lying on the same
‘side’ of the ellipse ∂E (with ‘sides’ separated by an axis joining supporting

hyperplanes), we have d
(1)
D (a, b) = dD(a, b) = dM (a, b) = dB(a, b).

Proof. The idea is similar to that utilized in Lemma 3.2. We expand E
to construct a centrally symmetric region Ẽ ⊂ K bounded by an ellipse
with a, b ∈ ∂Ẽ with the property that there exists u ∈ ∂K ∩ ∂Ẽ, and
hence −u ∈ ∂K ∩ ∂Ẽ. (cf., Theorem 5.3 and its proof in [6]). Then,
letting H,−H be support hyperplanes to ∂K at u,−u and calling n the
unit normal vector for H (oriented “out” of K), the half-space Hu := {z :
n · z ≤ n · u} satisfies K ⊂ Hu ∩−(Hu) and hence

Ẽ ⊂ K ⊂ Hu ∩−(Hu).

Let p(z) := n·z
n·u

. By construction, ||p||K ≤ 1 and p maps Ẽ and K onto
[−1, 1]. Thus

dD(a, b) = dK
D(a, b) ≥ | cos−1(p(b)) − cos−1(p(a))|

= dẼ
D(a, b) = dẼ

M (a, b) = dẼ
B(a, b),

the last line coming from Proposition 3.7. But from Remark 2.1, (recall

that dẼ
D is well-definded on ∂Ẽ) we have dK(a, b) ≤ dẼ(a, b) on Ẽ × Ẽ for

each of our three distances and the result follows. ♣
From the proof of Theorem 3.8, we see that equality holds in (3.9)

at points (a, b) ∈ Eb∗(x, y)×Eb∗(x, y) for each centrally symmetric ellipse
Eb∗(x, y) contained in K with b∗(x; y) as in (3.6). Now recall from Remark
1.4 that the Markov and Baran distances are always inner; i.e., dM = di

M

and dB = di
B. Suppose we knew that the Dubiner distance dD on a
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centrally symmetric convex body was an inner distance. Then from (3.8)
of Proposition 3.6 we conclude that (3.9) holds. In this vein, we mention
the following definition. For a subset X of a vector space equipped with
a distance d, the pair (X, d) is called metrically convex if given a, b ∈ X ,
there exists c ∈ X with d(a, c) + d(c, b) = d(a, b). It is known [11] that if

(X, d) is metrically convex and complete, then through each pair of points

a, b in X there is a shortest curve; i.e. there exists α : [0, 1] → X a

continuous curve joining a and b with Ld(α) = di(a, b), and, indeed, d =
di. Thus we make the following observation.

Corollary 3.9. Let K ⊂ IR2 be centrally symmetric and convex with
the additional property that for any two points a, b ∈ K, there exists a
centrally symmetric region E = E(a, b) ⊂ K bounded by an ellipse with
a, b ∈ ∂E. Then dD = dM = dB .

Proof. The property that dD locally dominates the Euclidean distance in
the interior of K (see Remark 1.3) extends to K, implying completeness
of (K, dD). Therefore it suffices to show that dD = di

D which will follow
if dD is metrically convex. But this follows by the hypothesized property,
since we can take c to be any point on the (shorter) arc of the ellipse ∂Ẽ
joining a and b which was constructed in the proof of Theorem 3.8. ♣

The geometric property hypothesized in Corollary 3.9 does not hold
for every centrally symmetric convex body K ⊂ IR2. For example, take K
to be the square [−a, a]× [−a, a] (it can be shown, however, that a square
is, indeed, metrically convex). By rounding off the edges of the square,
we can even construct such a K which is strictly convex with smooth
boundary.
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