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Abstract. Here we give a simple proof that many highly symmetric

configurations of vectors, such as the nth roots of unity in R2 and the
vertices of the platonic solids in R3, are tight frames.

§1. Introduction

Let V = Rd, Cd be d–dimensional real or complex Euclidean space.
Then

Definition 1.1. A finite subset Φ = {φj}n
j=1 of V is a tight frame for V

if there is a c > 0 with

‖f‖2 = c

n∑
j=1

|〈f, φj〉|2, ∀f ∈ V. (1)

This is equivalent (by the polarisation identity) to a representation of
the form

f = c

n∑
j=1

〈f, φj〉φj , ∀f ∈ V. (2)

In particular, Φ must be a spanning set for V .
By computing (1), it has been shown that many highly symmetric

configurations of vectors in Rd such as the nth roots of unity in R2, the
vertices of the platonic solids in R3, the vertices of the regular simplex, and
vertices of the ‘soccer ball’ (cf [1]) are tight frames. Here we use group
theory to give a unified way to show that all of these are tight frames.
This approach does not require (1) to be computed (in some coordinate
system), and explains precisely why such configurations are tight frames.
There is a short discussion of the history of this result.
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§2. The general theorem

The group G generated by rotation through 2π
3 in the plane maps any

nonzero vector in R2 to 3 equally spaced vectors. For these to be tight
frame they must span R2 (which clearly they do). This is in fact all that
is required.

Let U(V ) be the group of unitary transformations of V , i.e., the d×d
real orthogonal matrices for V real, and the d× d unitary matrices for V
complex. The group G above generalises to an irreducible group.

Definition 2.1. A finite subgroup G ⊂ U(V ) is irreducible if

Gφ := {gφ : g ∈ G}
spans V for every nonzero φ ∈ V . The set Gφ is called the G–orbit of φ.

Theorem 2.2. If G ⊂ U(V ) is a finite group of unitary transformations
which is irreducible, then every nonzero G–orbit is a tight frame for V .

Proof: Let φ ∈ V , φ 6= 0, and define a linear map Sφ : V → V by

Sφf :=
∑
g∈G

〈f, gφ〉gφ, ∀f ∈ V.

We will show that Sφ is a positive scalar multiple of the identity map
idV : V → V , thereby obtaining (2) for the G–orbit Φ = Gφ. This follows
as each element of Gφ occurs the same number of times in the list (gφ)g∈G.

Since 〈Sφf, f〉 > 0 for all nonzero f ∈ V , Sφ is positive definite, and
so has an eigenvalue λ > 0. Let v ∈ V be a corresponding eigenvector.
Then for h ∈ G, hv is also a λ–eigenvector, since

Sφ(hv) =
∑
g∈G

〈hv, gφ〉gφ =
∑
g∈G

〈v, h−1gφ〉hh−1gφ = hSφ(v) = λ hv.

Hence Sφf = λf for all f ∈ span{hv : h ∈ G}. But since G is
irreducible, span{hv : h ∈ G} = V , and so Sφ = λ idV as supposed. This
argument is essentially ‘Schurs Lemma’ for irreducible modules.

Clearly the converse holds: if every nonzero G–orbit is a tight frame,
then G is irreducible.

This result shows that the nth roots of unity (vertices of an n-sided
regular polygon) in R2 form a tight frame because they are an orbit of
the cyclic group of order n (generated by rotation through 2π

n ) which is
irreducible. By way of comparison, to calculate (1) directly in this case
would require the identities

n∑
j=1

(
cos

2πj

n

)2

=
n∑

j=1

(
sin

2πj

n

)2

=
n

2
,

n∑
j=1

cos
2πj

n
sin

2πj

n
= 0,

which can now be viewed as a consequence of Theorem 2.2.
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Fig. 1. The platonic solids (courtesy of Matthew Fickus).

Corollary 2.3. The vertices of each platonic solid is a tight frame for R3.

Proof: Let X be a platonic solid (tetrahedron, octahedron, dodecahedron,
icosahedron, cube) with centre of gravity at the origin. Then the set
of vertices of X is an orbit of the symmetry group G of X , which is
irreducible. (If the symmetry group was not irreducible, then there would
be a plane P ⊂ R3 that was G–invariant. The restriction of the action
of G to P would then be a faithful representation of G, so G would be
isomorphic to a finite subgroup of O(2). But this is impossible, since every
finite subgroup of O(2) is cyclic or dihedral. See [2]).

Similarly, the vertices of the truncated icosahedron (aka the ‘soccer
ball’, ‘bucky ball’) form a tight frame for R3, since they are an orbit of its
symmetry group, which is irreducible.

§3. History of the result

Let PW denote the orthogonal projection onto a subspace W of V .
If Vφ is the 1-dimensional subspace spanned by a nonzero φ ∈ V then the
conclusion that Gφ is a tight frame can be expressed as

f =
d

|G|
∑
g∈G

PgVφ
f, ∀f ∈ V. (3)

Now suppose W = W1 ⊕ · · · ⊕ Wm ⊂ V, m ≤ d is an orthogonal direct
sum of 1-dimensional subspaces, so that PW = PW1 + · · · + PWm

, and
average the above to obtain

f =
d

m

1
|G|

∑
g∈G

PgW f, ∀f ∈ V, (4)

for all m-dimensional subspaces W of V .
Results of this type go back at least to Schönhardt who showed that

if a vector v in the plane is projected onto the sides of a regular n-gon
then the arithmetic mean of these n projections is v/2. This and similar
results led Brauer and Coxeter [3] to prove that if G is an irreducible finite
group of real orthogonal transformations then (4) holds. Our Theorem 2.2
(obtained independently) shows that G being irreducible implies (3), from
which (4) follows. It also applies in the case where V is complex, which
was not considered in [3].
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