
Quaternionic MUBs in H2 and their
reflection symmetries

Zachary Buckley, Shayne Waldron

Department of Mathematics
University of Auckland

Private Bag 92019, Auckland, New Zealand
e–mail: waldron@math.auckland.ac.nz

September 2, 2025

Abstract

We consider the primitive quaternionic reflection groups of type P for H2 that
are obtained from Blichfeldt’s collineation groups for C4. These are seen to be
intimately related to the maximal set of five quaternionic mutually unbiased bases
(MUBs) in H2, for which they are symmetries. From these groups, we construct
other interesting sets of lines that they fix, including a new quaternionic spherical
3-design of 16 lines in H2 with angles {1

5 , 3
5}, which meets the special bound.

Some interesting consequences of this investigation include finding imprimitive
quaternionic reflection groups with several systems of imprimitivity, and finding a
nontrivial reducible subgroup which has a continuous family of eigenvectors.

Key Words: finite tight frames, quaternionic MUBs (mutually unbiased bases), quater-
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projective spherical t-designs, special and absolute bounds on lines,

AMS (MOS) Subject Classifications: primary 05B30, 15B33, 20C25, 20F55, 20G20,
51F15, secondary 51M20, 65D30.

1



1 Introduction
The (finite irreducible) quaternionic reflection groups, i.e., groups of matrices over the
quaternions generated by reflections, were classified by Cohen [Coh80]. There are six
rank two primitive quaternionic reflection groups with primitive complexifications, in
the families O and P, which were obtained from certain collineation groups for C4 of
Blichfeldt [Bli17]. Here we consider the three groups in the family P, and the small
sets of quaternionic lines that they stabilise, which includes the roots of the reflections
themselves.

A set of mutually unbiased bases (called MUBs) for Rd, Cd or Hd is a collection
of orthonormal bases B1, . . . ,Bm for which vectors v and w in different bases have a fixed
common angle, i.e.,

|〈v, w〉|2 = 1
d
, v ∈ Bj, w ∈ Bk, j 6= k.

Complex MUBs are of interest in quantum information theory as they provide unbiased
measurements [Iva81], [WF89]. They are closely related to SICs [ACFW18], [Wal18].
The maximal number of MUBs in C6 is conjectured to be three [MW24].

For d = 2, maximal collections of two and three real and complex MUBs are given
by {(1

0

)
,

(
0
1

)}
,
{ 1√

2

(
1
±1

)}
,

{(1
0

)
,

(
0
1

)}
,
{ 1√

2

(
1
±1

)}
,
{ 1√

2

(
1
±i

)}
. (1.1)

There is a maximal set of five quaternionic MUBs in H2 given by{(1
0

)
,

(
0
1

)}
,
{ 1√

2

(
1
±1

)}
,
{ 1√

2

(
1
±i

)}
,
{ 1√

2

(
1
±j

)}
,
{ 1√

2

(
1
±k

)}
. (1.2)

These first appeared in Example 3 of [Hog82] as a “tight 3-design attaining the absolute
bound”. The Example 4 then extends this to what one might call “nine octonionic MUBs
in O2”. We will not consider the general theory of (maximal) quaternionic MUBs, other
than remarking that it begins with (1.2), the Example 21 of [Hog82], which gives nine
quaternionic MUBs in H4, and various quaternionic MUB-like configurations [Hog82],
[Kan95], [CKM16], [BADL24].

The rest of the paper is set out as follows. We first consider Blichfeldt’s original
collineation groups for C4, and construct from them the primitive reflection groups of
the type P in [Coh80] (where details were not given). This leads to nice presentations
for the groups, which include as an imprimitive reflection group based on the five MUBs
extended by adding a single non-monomial reflection matrix.

Next, we observe that the P groups are symmetries of the MUB lines, and consider
the associated permutation action on these lines and the MUB pairs. We then consider
the roots of the reflections, and the sets of lines stabilised by these reflection groups. In
other words, we recognise the reflection groups of type P as symmetry groups of nice
(well spaced) configurations of quaternionic lines, such as the five quaternionic MUBs.
In particular, we construct a new spherical 3-design of 16 lines in H2 with angles {1

5 ,
3
5},

which meets the special bound, and give a nontrivial reducible subgroup which has a
continuous family of eigenvectors.
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2 The quaternionic reflection groups of type P
We assume some basic familiarity with finite irreducible complex reflection groups and
their classification into those which are primitive and imprimitive [ST54], [LT09], and
the quaternions H and matrices over them, see, e.g., [SS95], [Zha97], [CS03], [Voi21].

A quaternionic reflection on Hd is a nonidentity matrix g ∈ Md(H) of finite order
which fixes a hyperplane pointwise, equivalently, rank(I − g) = d − 1, and a finite
reflection group is a finite subgroup of Md(H) which is generated by reflections. Since
finite subgroups of Md(H) are conjugate to groups of unitary matrices, we suppose
henceforth that our reflection groups are unitary. Therefore, a (unitary) reflection g is
defined by a root vector a ∈ Hd, and a unit scalar ξ ∈ H, ξ 6= 1, for which

gx = x, ∀x ∈ a⊥, ga = aξ,

i.e., the fixed hyperplane is the orthogonal complement of a, and g has order n if and
only ξ is a primitive n-th root of unity. If a 6= 0 is a vector, then a formula for g is

ra,ξ := I − a(1− ξ)a∗
〈a, a〉

. (2.3)

Throughout, Hd is considered as a right vector space (H-module), so that linear maps
are applied on the left, and we denote the quaternion group by

Q8 := {1,−1, i,−i, j,−j, k,−k}.

Example 2.1 By (2.3), the reflection for the root

a = 1√
2

(
1
−b−1

)
∈ H2, |b| = 1,

is
ra,ξ = 1

2

(
1 + ξ (1− ξ)b

b−1(1− ξ) b−1(1 + ξ)b

)
,

which is monomial if and only if ξ = −1, which gives the reflection of order two

ra,−1 =
(

0 b
b−1 0

)
.

Therefore, the reflections of order two given by the ten MUB vectors of (1.2) are(
−1 0
0 1

)
,

(
1 0
0 −1

)
, ±

(
0 1
1 0

)
, ±

(
0 i
−i 0

)
, ±

(
0 j
−j 0

)
, ±

(
0 k
−k 0

)
. (2.4)

A reflection group G is said to be imprimitive if the space on which it acts can be
decomposed into proper subspaces which it permutes, a so called system of imprimitivity,
otherwise it is said to be primitive. For a reflection group (which is unitary) acting on
H2, we can assume the system of imprimitivity is given by the standard basis vectors

V1 = spanH e1, V2 = spanH e2,
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so that its elements have the (monomial) form(
a 0
0 d

)
,

(
0 b
c 0

)
, |a| = |b| = |c| = |d| = 1.

Blichfeldt [Bli17] (Chapter VII) classified the irreducible collineation groups for C4.
Collineation groups are groups of matrices defined up to a scalar multiple (in modern
terminology linear maps defined on projective spaces). The groups (A), (C), (K) of
[Bli17] have orders 60φ, 360φ, 720φ (here φ indicates the order of the subgroup of scalar
matrices, which is unimportant in the theory), and correspond to the groups of type O
in [Coh80] of orders 120, 720, 1440 (see [Wal24]).

Here we consider the groups 14◦, 16◦, 18◦ of orders 10 ·16φ, 60 ·16φ, 120 ·16φ, which
correspond to the groups of type P in [Coh80] of orders 320, 1920, 3840. The collineation
groups 13◦, . . . , 21◦ of [Bli17] (page 172) are primitive collineation groups generated by
an imprimitive group K of order 16φ, generated by

A1 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , A2 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ,

A3 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , A4 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,
the element T , which gives the primitive group 13◦, and various other elements given by

S = 1 + i√
2


i 0 0 0
0 i 0 0
0 0 1 0
0 0 0 1

 , T = 1 + i

2


−i 0 0 i
0 1 1 0
1 0 0 1
0 −i i 0

 ,

R = 1√
2


1 i 0 0
i 1 0 0
0 0 i −1
0 0 1 −i

 , A = 1 + i√
2


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

 , B = 1 + i√
2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
These groups, which have K as a normal subgroup, are generated as follows

13◦ : K,T, 14◦ : K,T,R2, 15◦ : K,T,R,

16◦ : K,T, SB, 17◦ : K,T,BR, 18◦ : K,T,A,

19◦ : K,T,B, 20◦ : K,T,AB, 21◦ : K,T, S. (2.5)

A group G of complex matrices in M2d(C) gives rise to a group of quaternionic
matrices in Md(H) if it is conjugate to a group of matrices of the symplectic form(

A −B
B A

)
∈M2d(C) ⇐⇒ A+Bj ∈Md(H). (2.6)
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The Frobenius-Schur indicator of a complex representation of a finite group G is

ιχ := 1
|G|

∑
g∈G

χ(g2) ∈ {−1, 0, 1},

where χ is the character of the representation. This takes the value −1 if and only if
the representation of G corresponds to a quaternionic representation via (2.6) [Gan11].
Blichfeldt’s collineation groups 13◦, . . . , 21◦ are given as matrix groups over C, with a
subgroup of scalar matrices (of order φ). Changing the subgroup of scalar matrices
(which gives the same collineation group), changes the Frobenius-Schur indicator, and
so some care must be taken. Indeed, in view of (2.6), the collineation group must be
presented so that its matrices have a real trace, and consequently ±I ∈M2d(C) are the
only allowable scalar matrices. It is still quite possible for the group of quaternionic
matrices to contain scalar matrices, e.g., iI, jI ∈ Md(H) correspond via (2.6) to the
nonscalar symplectic matrices(

iI 0
0 −iI

)
,

(
0 −I
I 0

)
∈M2d(C).

We first consider the group K, which is an imprimitive normal subgroup of all
the collineation groups, together with T . The group generated by A1, A2, A3, A4 has
small group identifier 〈32, 49〉 and has Frobenius-Schur indicator 1, and so does not
correspond to a group in M2(H). The trace of T is 1, but it is not in the symplectic
form (2.6). Conjugation of T (equivalently −T ) by the permutation matrices for the
permutations (1 4), (2 3), (1 3 4 2), (1 2 4 3) gives a matrix of the form (2.6). Calculations
show that whatever permutation is taken, the quaternionic groups obtained are identical
elementwise (just with different generators). We take

P = P(1 4) =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 ,
which conjugates A1, iA2, iA3, A4 to the symplectic form (2.6), i.e.,(

−1 0
0 1

)
,

(
i 0
0 −i

)
,

(
−k 0
0 −k

)
,

(
0 1
1 0

)
. (2.7)

The group generated by A1, iA2, iA3, A4 has identifier 〈32, 50〉, and Schur-Frobenius
indicator −1. Here A2, A3, which have zero trace, were multiplied by i to obtain the
symplectic form. The group K generated by the quaternionic matrices of (2.7) is the
imprimitive reflection group generated by the ten MUB reflections of (2.4), which are
all of its reflections. This is the group denoted by

K = GQ8(Q8, C2) = G({1, i, j, k}, {}), K/〈−I〉 = C2 × C2 × C2 × C2,

in [Wal25], which is generated by the reflections(
0 1
1 0

)
,

(
0 i
−i 0

)
,

(
0 j
−j 0

)
,

(
0 k
−k 0

)
. (2.8)
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The 32 elements of K are(
q 0
0 ±q

)
,

(
0 q
±q 0

)
, q ∈ Q8.

Despite four of the reflection pairs for the MUBs (2.4) being nondiagonal matrices,
with the other being diagonal, each pair plays an equivalent role. For example, the
orbits of the reflections under conjugation by K are of size two, giving the MUB pairs
of reflections, and the minimal generating sets of reflection for K are precisely any four
reflections, which come from different MUB pairs (orbits). It is also interesting to note
that each of the five MUBs of (1.2) are a system of imprimitivity for K. By way of
comparison (see [LT09] Theorem 2.16), the only complex reflection groups on R2 or
C2 which have more than one system of imprimitivity are G(2, 1, 2) ∼= G(4, 4, 2) and
G(4, 2, 2), which have three systems of imprimitivity given by the three complex MUBs
of (1.1).

The conjugate of T by P gives a symplectic matrix of order ten, i.e.,

t := 1
2

(
j − k 1− i
−j − k 1 + i

)
, (2.9)

which is not a reflection. It maps the lines given by the MUB vectors to themselves,
e.g., (

1
0

)
7→
(

1
−i

)
7→
(

1
k

)
7→
(

1
−1

)
7→
(

1
j

)
7→
(

1
0

)
.

The group of quaternionic matrices generated by K, i.e., the reflections (2.8), and t of
(2.9), contains no further reflections, and hence is not a reflection group.

The other generators from (2.5) which have real traces and conjugate under P to a
symplectic matrix are R2, R, SB, and those which do not have real traces are

trace(BR) = 2i, trace(A) = trace(S) = 2
√

2i, trace(B) =
√

2(1 + i).

After scaling to obtain a real trace, only iA conjugates under P to the symplectic form.
After conjugation with P , the matrices R2, R, SB, iA are in the symplectic form, giving(
−1 0
0 −k

)
,

1√
2

(
−i− j 0

0 1− k

)
,

(
−i 0
0 −1

)
,

1√
2

(
−1 + i 0

0 −1− i

)
. (2.10)

Hence there are primitive quaternionic groups of matrices in U2(H) corresponding to
Blichfeldt’s groups 13◦, . . . , 16◦, 18◦, which are generated by the corresponding matrices
from (2.8), (2.9), (2.10). A calculation in magma shows that three of these are reflection
groups, i.e.,

G14◦ = 〈K, t,
(
−1 0
0 −k

)
〉, G16◦ = 〈K, t,

(
−i 0
0 −1

)
〉, G18◦ = 〈K, t, 1√

2

(
−1 + i 0

0 −1− i

)
〉.

Since K is contained in these groups, adding the last generator is the same as adding
the reflections (

k 0
0 1

)
,

(
i 0
0 1

)
,

1√
2

(
0 −1 + i

−1− i 0

)
= r(1, 1+i√

2
),−1, (2.11)
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respectively, and since

t

(
k 0
0 1

)
= 1

2

(
1 + i 1− i
1− i 1 + i

)
= r(1,−1),i,

is a reflection (of order 4), we can conclude (by hand) that the above are reflection
groups, with

G14◦ = 〈K, r(1,0),k, r(1,1),i〉, (2.12)
since r(1,1),i ∈ G14◦ . The 30 reflections in G14◦ are given by the ξ, a pairs

〈i〉 :
(

1
±1

)
,

(
1
±k

)
, 〈j〉 :

(
1
±i

)
,

(
1
±j

)
, 〈k〉 :

(
1
0

)
,

(
0
1

)
, (2.13)

and the 70 reflections in G16◦ by

Q8 :
(

1
0

)
,

(
0
1

)
,

(
1
±1

)
,

(
1
±i

)
,

(
1
±j

)
,

(
1
±k

)
. (2.14)

We observe from above that G14◦ is a subgroup of G16◦ . A calculation shows that there
are six conjugates Gq1,q2 , q1 6= q2, q1, q2 ∈ {i, j, k}, of G14◦ in G16◦ , given by the reflections

〈q1〉 :
(

1
0

)
,

(
0
1

)
, 〈q2〉 :

(
1
±1

)
,

(
1
±q1

)
, 〈q1q2〉 :

(
1
±q2

)
,

(
1
±q1q2

)
. (2.15)

In view of (2.12), for Gq1,q2 we can take any generators for K, together with the reflections
r(1,0),q1 , r(1,1),q2 . It turns out these generators alone are sufficient, i.e.,

Gq1,q2 = 〈r(1,0),q1 , r(1,1),q2〉 = 〈
(
q1 0
0 1

)
,
1
2

(
1 + q2 −1 + q2
−1 + q2 1 + q2

)
〉. (2.16)

The scalar ξ for a reflection ra,ξ depends on the particular multiple of the root taken,
i.e.,

ra,ξ = raβ,β−1ξβ, β ∈ H∗.

In [Coh80], the group Ha of scalars associated with a root is taken to be the same for
all roots a. To change the scalars ξ = q2 to q1 and ξ = q1q2 to q1 in (2.15), we take
β = (1− q1q2) and β = (1− q2), to obtain

〈q1〉 :
(

1
0

)
,

(
0
1

)
,

(
1
±1

)
(1−q1q2),

(
1
±q1

)
(1−q1q2),

(
1
±q2

)
(1−q2),

(
1
±q1q2

)
(1−q2).

Taking q1 = j, q2 = k above gives the root system of [Coh80] (Table II), and so we
conclude the group given there is Gj,k, whereas the group given by (2.13) is Gk,i.

We now consider generators for the groups of type P . For the first G14◦ , (2.16) gives

P1 = H320 := Gi,j = 〈r(1,0),i, r(1,1),j〉 = 〈
(
i 0
0 1

)
,
1
2

(
1 + j −1 + j
−1 + j 1 + j

)
〉, (2.17)
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where |P1| = 320. The comment of (2.11) implies that the next group G16◦ is

P2 = H1920 := 〈P1, r(1,0),j〉 = 〈
(
i 0
0 1

)
,

(
j 0
0 1

)
,
1
2

(
1 + j −1 + j
−1 + j 1 + j

)
〉, (2.18)

where |P2| = 1920. Both of these groups have the five MUBs as the roots of their
reflections. Similar considerations give G18◦ as

G18◦ = 〈P2, r(1, 1+i√
2

),−1〉 = 〈P2,
1√
2

(
0 −1 + i

−1− i 0

)
〉.

It is easily verified that G18◦ contains the reflection given by the Fourier matrix, i.e.,

F := r(−1,1+
√

2),−1 = 1√
2

(
1 1
1 −1

)
∈ G18◦ , (2.19)

which leads to the generating reflections

P3 = H3840 := 〈
(
i 0
0 1

)
,

(
j 0
0 1

)
,

1√
2

(
1 1
1 −1

)
〉, (2.20)

where |P3| = 3840.

P3

P2

P1 P1 P1 P1 P1 P1

K

Figure 1: The P groups: K C P1, P2, P3 and P2 C P3. The group P1 occurs six times as
a subgroup of P2 (a single conjugacy class), i.e., as Gq1,q2 , q1 6= q2, q1, q2 ∈ {i, j, k}.

The reflection group P3 has a 110 reflections, consisting of the 70 reflections (2.14)
of P2, and 40 reflections of order two which are the orbit of F under the conjugation
action of P2. These are given by the root lines( √

2
p+ q

)
, p+ q 6= 0, {p, q} ⊂ Q8,

(
1 +
√

2
q

)
,

(
q

1 +
√

2

)
, q ∈ Q8. (2.21)

The first 24 of these give rise to monomial reflections, i.e.,(
0 b
b−1 0

)
, b = p+ q√

2
6= 0, {p, q} ⊂ Q8, (2.22)
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and the last 16 give rise to the non-monomial reflections
1√
2

(
−1 −q
−q 1

)
,

1√
2

(
1 −q
−q −1

)
, q ∈ Q8. (2.23)

Example 2.2 It is interesting to observe that P3 is generated by five of the 40 reflections
of order two given by (2.21), e.g.,(

0 b
b−1 0

)
,
√

2b ∈ {1 + i, 1− i, 1 + j, 1 + k}, 1√
2

(
1 1
1 −1

)
.

This is a consequence of P3 being given in [Coh80] via a root system based on (2.21).

Table 1: Generating reflections for K and the P groups. The group P3 is also generated
by five of the 40 reflections of order two given by (2.22) and (2.23) (see Example 2.2).

G generating reflections

K†
(
−1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 i
−i 0

)
,

(
0 j
−j 0

)
,

(
0 k
−k 0

)

P1

(
i 0
0 1

)
,
1
2

(
1 + j −1 + j
−1 + j 1 + j

)

P2

(
i 0
0 1

)
,

(
j 0
0 1

)
,
1
2

(
1 + j −1 + j
−1 + j 1 + j

)

P3

(
i 0
0 1

)
,

(
j 0
0 1

)
,

1√
2

(
1 1
1 −1

)
† K is generated by any four of these reflections.

Example 2.3 Consider the reflection group of order 64 given by

P0 = 〈
(

0 1
1 0

)
,

(
0 i
−i 0

)
,

(
0 j
−j 0

)
,

1√
2

(
1 1
1 −1

)
〉,

which is generated by K and the Fourier matrix F of (2.19). This was initially assumed
to be primitive, and hence a previously unknown such group, but conjugation by the
matrices

1√
2

(
1 i
i 1

)
,

1√
2

(
1 j
j 1

)
,

1√
2

(
1 k
k 1

)
∈ P3

gives a monomial, and hence imprimitive, reflection group, which has three systems of
imprimitivity. It is the imprimitive reflection group G(4, 1, 2, 2) in the family of [Wal25].

There are only four imprimitive complex reflection groups with more than one system
of imprimitivity (Theorem 2.16 [LT09]), i.e., two in C2 (three systems), one in C3 (four
systems), and one in C4 (three systems). Therefore, given the above example (three
systems) and K (five systems), it appears that the number of systems of imprimitivity
for quaternionic reflection groups is worthy of some study.
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3 The maximal imprimitive reflection subgroups
Our presentations (2.17), (2.18), (2.20) of the P reflection groups (see Table 1) involve
just a single non-monomial reflection. Therefore, we can view them as imprimitive
(monomial) reflection groups with a single non-monomial reflection added. We now
identify these imprimitive reflection groups.

The non-diagonal reflections in a reflection group of rank two have the form (2.22)
for a set L of b ∈ H, called a “reflection system” [Wal25], which satisfy the conditions

1. L generates a finite group K = 〈L〉.

2. L is closed under the binary operation (a, b) 7→ a ◦ b := ab−1a.

3. 1 ∈ L.

If L is the closure of X ⊂ H under (a, b) 7→ a ◦ b, then we say X generates the reflection
system L, and we write L = L(X). In view of (2.4), (2.22), the reflection systems for
the groups P1, P2 are Q8 = L({1, i, j, k}), and for P3 it is

L32 := L
({

1, 1 + i√
2
,
1 + j√

2
,
1 + k√

2
})

= Q8 ∪
{p+ q√

2
6= 0 : {p, q} ⊂ Q8

}
.

The 32-element reflection system L32 has K the binary octahedral group of order 48
given by

O = 〈1 + i√
2
,
1 + i+ j + k

2 〉 = 〈1 + i√
2
,
1 + j√

2
〉.

It is equivalent to that given in [Wal25], i.e.,

L32 = 1 + i√
2
LO32, LO32 := L

({
1, 1 + i√

2
,
1 + i+ j + k

2
})
.

The corresponding subreflection systems are

L20 = L
({

1, 1 + i√
2
,
1 + j√

2
, k
})
, L18 = L

({
1, 1 + i√

2
,
1 + j√

2
})
, L14 = L

({
1, i− j√

2
,
i− k√

2
,
j + k√

2
})
.

The imprimitive quaternionic reflection groups of rank two have a canonical form
G = GK(L,H), where L is a reflection system withK = 〈L〉, which gives the nondiagonal
reflections, and H is normal subgroup of K, which gives the diagonal reflections in G,
i.e., (

h 0
0 1

)
,

(
1 0
0 h

)
, h ∈ H, h 6= 1.

The monomial reflections of G = P1, P2, P3 generate the following imprimitive reflection
groups GM

GQ8(Q8, C4), GQ8(Q8, Q8), GO(LO32, Q8),
which have orders 64, 128, 768.

For a reflection group G, the reflections for a given root a together with the identity
form a subgroup Ra. The group G acts on the reflection subgroups Ra via conjugation.

10



We will refer to the orbits of this action as the reflection type or reflection orbits of
G. If the m reflection orbits are given by Ra1 , . . . , Ram , we will often write the reflection
type as n1Ra1 , . . . , nmRam , where nj is the orbit size, and Raj

is an abstract group.
We can now summarise the structure of the P groups.

Table 2: The P groups and their monomial reflection subgroup GM (each of these
appears five times, corresponding to the five sets of imprimitivity for K).

G |G| refs ref orbits GM |GM | refs ref orbits

P3 3840 110 10Q8, 40C2 GO(LO32, Q8) 768 46 2Q8, 8C2, 24C2
P2 1920 70 10Q8 GQ8(Q8, Q8) 128 22 2Q8, 8C2
P1 320 30 10C4 GQ8(Q8, C4) 64 14 2C4, 4C2, 4C2
K 32 10 GQ8(Q8, C2) 32 10 2C2, 2C2, 2C2, 2C2, 2C2

4 MUB symmetries
The P groups map the ten MUB lines of (1.2) to themselves, i.e., are symmetries for
them. This is easily seen by action of the generators (2.20) for P3 on the lines, e.g.,(

1 1
1 −1

)(
1
0

)
=
(

1
1

)
,

(
1 1
1 −1

)(
0
1

)
=
(

1
−1

)
,

(
1 1
1 −1

)(
1
q

)
=
(

1
−q

)
(1 + q).

Moreover, the columns of each matrix in P3 are a MUB pair. We expect that P3 ⊂ U2(H)
is the (full) symmetry group of the ten MUB lines.

We order the ten MUB lines as in (1.2) with the ± entries ordered +, −. With this
labelling, the generators in Table 1 correspond to the following permutations(

i 0
0 1

)
←→ (3 6 4 5)(7 9 8 10), 1

2

(
1 + j −1 + j
−1 + j 1 + j

)
←→ (1 7 2 8)(5 10 6 9),

(
j 0
0 1

)
←→ (3 8 4 7)(5 10 6 9), 1√

2

(
1 1
1 −1

)
←→ (1 3)(2 4)(5 6)(7 8)(9 10),

and the matrix t of (2.9) to

t = 1
2

(
j − k 1− i
−j − k 1 + i

)
←→ (1 6 9 4 7)(2 5 10 3 8).

The kernel of the action of P3 on the MUB lines is 〈−I〉, i.e., P3/〈−I〉 acts faithfully on
the ten lines. It is clear from the above permutations that P3 acts on the five MUB pairs.
With these ordered as in (1.2), the permutations corresponding to the above elements
are

(2 3)(4 5), (1 4)(3 5), (2 4)(3 5), (1 2),

11



respectively. The kernel of this action on the five MUB pairs is the imprimitive reflection
group K, and

P3/K ∼= S5,

i.e., any permutation of the five MUB pairs is possible. Similarly, we have

P2/K ∼= A5, P1/K ∼= D5 (dihedral group of order 10).

The quotients of Pj/K above are discussed in the proof of Theorem 4.2 in [Coh80], with
the representation for P1 dating back to Crowe [Cro59]. The groups of type P were
introduced in Proposition 4.1 of [Coh80] as

• G (of rank 2) is an extension of a subgroup of S6 by D2 ◦D4 (where D2 ◦D4 ∼= K).

The imprimitive reflection group P0 of Example 2.3 can be considered to be of type P,
as follows. Its generators (the first three are in K) permute the MUB pairs as follows(

0 b
b−1 0

)
, b ∈ {1, i, j} ←→ (), 1√

2

(
1 1
1 −1

)
←→ (1 2),

so that
P0/K ∼= 〈(1 2)〉 = C2,

i.e., P0 is of type P . The group P0 is not normal in P3, having five conjugates.

5 Spherical designs and small sets of invariant lines
We have seen that the orbit of the vector/line v = e1 (or any MUB line) under the action
of P3 (and its subgroups P1, P2) is the MUB lines of (1.2). These ten lines are the roots
of the reflection groups P1 and P2, but not P3 (which has 40 additional root lines).

These lines are well-spaced, in the sense that the set of angles |〈v, w〉|2 between
different lines given by unit vectors v, w ∈ H2 is the small set {0, 1

2}. We will give a
related notion of being well-spaced, that of being a “spherical design” [DGS77], which
corresponds to the lines being a cubature rule for the sphere. In this section, we will use
a general method, which does not require the groups G ⊂ Ud(H) involved be reflection
groups, to find small sets of G-invariant lines which provide good spherical designs. This
will give the ten MUB lines, and also other interesting configurations (see Table 3).

Let t ∈ {1, 2, . . .}. The set of lines given by n unit vectors (vj) in Hd is called a
spherical (t, t)-design for Hd if they give equality in the inequality

n∑
j=1

n∑
k=1
|〈vj, vk〉|2t ≥ ct(Hd)

( n∑
`=1
‖v`‖2t

)2
, ct(Hd) :=

t−1∏
j=0

2 + j

2d+ j
, (5.24)

i.e.,
n∑
j=1

n∑
k=1
|〈vj, vk〉|2t = ct(Hd)

( n∑
`=1
‖v`‖2t

)2
, (5.25)

12



see [Wal20] for details. These can be viewed as a cubature rule for the unit sphere in
Hd, and are equivalent to the quaternionic spherical t-designs of [Hog82]. Therefore,
we are interested in large values of t and small numbers of lines n. We note

c1(Hd) = 1
d
, c2(Hd) = 3

d(2d+ 1) , c3(Hd) = 6
d(2d+ 1)(d+ 1) .

It follows from (5.25) that the orbit (gx)g∈G of a nonzero vector x ∈ Hd under the
action of finite group of unitary matrices G ⊂ Ud(H) is a spherical (t, t)-design if and
only if

p
(t)
G (x) := 1

|G|
∑
g∈G
|〈x, gx〉|2t − ct(Hd)〈x, x〉2t = 0. (5.26)

Moreover (see [Wal20]), G is irreducible if and only if every orbit is a (1, 1)-design, i.e.,

1
|G|

∑
g∈G
|〈x, gx〉|2 − 1

d
〈x, x〉2 = 0. (5.27)

By direct calculation of (5.26) in magma, we obtain the following.

Proposition 5.1 Every orbit of a P group, i.e., P1, P2, P3, is a spherical (3, 3)-design.

Proof: We have p(3)
G = 0, for G = P1, P2, P3.

In particular, the ten MUB lines are a spherical (3, 3)-design for H2. This can be
verified directly by evaluating p(3)

G at a unit MUB vector, which gives

1
10

(
1 · 13 + 1 · 03 + 8 ·

(1
2
)3
)
− 6

2 · 5 · 3 · 1 = 1
5 −

1
5 = 0.

We observe that

• The ten MUB lines are a spherical (3, 3)-design by being the orbit of a P group.

• There is a small number of these vectors, as their stabiliser subgroups are large.

Since the stabiliser group of a line is, by definition, reducible, we can find small sets of
lines such as the MUB lines as follows:

• Find the large reducible subgroups of the P groups, and the lines they stabilise.

• The orbit of the stabilised line is then a (3, 3)-design with a small number of
vectors.

A line stabilised by a proper subgroup is called a fiducial vector (or line).
The condition (5.27) allows us to identify the reducible subgroups of the P groups.

These need not be reflection groups. The only other technical condition is determining
those v ∈ Hd which give a line stabilised by some g ∈ Ud(H), i.e.,

gv = vλ, for some λ ∈ H. (5.28)

13



Nominally, v appears to be an eigenvector for g, but the calculation

g(vα) = vλα = vα(α−1λα), α ∈ H,

shows that there is no natural associated eigenvalue when λ is not real (we will still
refer to v as eigenvector). Nevertheless, the condition (5.28) can be verified (without
calculating a λ), as the condition which gives equality in the Cauchy-Schwartz inequality,
i.e.,

|〈v, gv〉|2 = 〈v, v〉2, ∀g ∈ G, (5.29)
which gives a quartic polynomial in the 1, i, j, k parts of the coordinates of v ∈ Hd.

We now outline our computations in magma, as detailed above, for G = P1.

• We will take the “large” reducible subgroups of G, to be those which are maximal.

• The corresponding systems of lines will be of minimal size.

• The lines for the proper subgroups of the maximal reducible subgroups (which are
automatically reducible) will either be lines for the maximal reducible subgroup,
or a larger set of lines.

We observe that a vector v⊥ orthogonal to the line given by a v ∈ H2 with real first
component is given by the formula

v =
(
a
b

)
, a ∈ R, v⊥ =

(
−b
a

)
, (5.30)

e.g., the roots of (2.21) appear as orthogonal pairs, and the MUB pairs can be written(
1
0

)
,

(
0
1

)
,

(
1
1

)
,

(
−1
1

)
,

(
1
i

)
,

(
i
1

)
,

(
1
j

)
,

(
j
1

)
,

(
1
k

)
,

(
k
1

)
.

The subgroups of G ⊂ Md(H) can be computed in magma using the command
Subgroups(G), and the lattice by SubgroupLattice(G), the latter only working for
complex (symplectic) presentations of the group. For the group P1 of order 320, the
reducible subgroups and the lengths of their conjugacy classes and number of lines are

order number length lines
32 1 5 10
20 1 16 16
16 3 5 20

4 10 20
10 1 16 32
8 5 5 40

6 10 40

order number length lines
5 1 16 64
4 3 5 80

2 10 80
1 20 80

2 1 1 160
2 1 10 160
1 1 1 320
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Of these, there are four are maximal irreducible subgroups, i.e.,

H = 〈
(
i 0
0 1

)
,

(
i 0
0 i

)
,

(
j 0
0 j

)
〉, (Order 32, 10 lines), (5.31)

H = 〈
(
j 0
0 k

)
,
1
2

(
i− j i− j
i− j −i+ j

)
〉, (Order 20, 16 lines), (5.32)

H = 〈
(
j 0
0 k

)
,

(
0 j
j 0

)
〉, (Order 16, 20 lines), (5.33)

H = 〈
(
j 0
0 j

)
,
1
2

(
i− k 1− j
1 + j −i− k

)
〉, (Order 16, 20 lines). (5.34)

None of these are reflection groups. The first is diagonal, and it is easy to see that it
stabilises the lines given by standard basis vectors, and no others. The five conjugates
of this group in P1 stabilise the five MUB pairs, and no other lines. Thus the P1-orbit of
any line fixed by the reducible subgroup of order 32 is the ten MUB lines, i.e., we arrive
at the MUB lines without using the fact that P1 is a reflection group.

We now consider the irreducible subgroup of order 20, which gives 16 lines. Since
the line given by e2 is not fixed, we can suppose that a fiducial (stabilised) vector has
the form

v =
(

1
x1 + x2i+ x3j + x4k

)
, x1, x2, x3, x4 ∈ R, (5.35)

so that (5.30) gives

v⊥ =
(
−x1 + x2i+ x3j + x4k

1

)
.

Taking g in (5.29) to be the two generators of (5.32), gives the two quartic equations

(x1 − x2)2 + (x3 − x4)2 = 0, =⇒ x2 = x1, x4 = x3,

(x4
1 + x4

2 + x4
3 + x4

4 + 2x2
1x

2
2 + 2x2

1x
2
3 + 2x2

1x
2
4 + 2x2

2x
2
3 + 2x2

2x
2
4 + 2x2

3x
2
4)

+ (4x3
1 + 4x1x

2
2 + 4x1x

2
3 + 4x1x

2
4) + (2x2

1 + 2x2
2 + 2x2

3 − 2x2
4 − 8x2x3 − 4x1) + 1 = 0.

The Gröbner for these equations provided by GroebnerBasis(I) in magma is involved,
and we were unable to automate the calculation of fiducials. The set of equations (5.29)
given by all elements of H of (5.32), which are not ±I, consists of the first equation and
six of a similar complexity to the second. The Gröbner basis provided by magma for the
ideal given by taking these seven equations is nicer, with the following equation for x4

(4x2 + 2x− 1)3 = 0 =⇒ x4 = −1±
√

5
4 .

This leads to two fiducials, which are orthogonal, i.e.,

w =
(

1 +
√

5
1 + i+ j + k

)
, w⊥ =

(
−1 + i+ j + k

1 +
√

5

)
. (5.36)
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The orbits of w and w⊥ under P1 and P2 are 16 lines with angles {1
5 ,

3
5}, given by

w :
(

1 +
√

5
q(1 + i+ j + k)

)
,

(
q(1 + i+ j + k)

1 +
√

5

)
, q ∈ Q8, (5.37)

w⊥ :
(

1 +
√

5
q(−1 + i+ j + k)

)
,

(
q(−1 + i+ j + k)

1 +
√

5

)
, q ∈ Q8, (5.38)

and the orbit of w or w⊥ under P3 gives 32 lines, which are the union of the two sets,
having angles {0, 1

5 ,
2
5 ,

3
5 ,

4
5}.

The spherical 3-design of 16 lines constructed above meets the special bound of
[Hog78], [Hog82] for the number of lines in H2 with exactly two nonzero angles.

Example 5.1 (Special bound) Hoggar [Hog78] provides two bounds on the number n of
vector/lines in Hd with a finite angle set (indeed having a finite number of angles implies
a set of lines is finite). If there are two nonzero angles A = {α, β}, then there is a special
bound (depending on the angles), and an absolute bound (not depending on the angles),
given by

n ≤ d(2d+ 1)(1− α)(1− β)
3− (2d+ 1)(α + β) + d(2d+ 1)αβ , n ≤ 1

3d
2(4d2 − 1).

For A = {1
5 ,

3
5} (d = 2), the special bound gives n ≤ 16, i.e., 3-design of 16 lines in H2

given by (5.37) or (5.38) meets the special bound. The only other known cases where this
special bound is met is for a 2-design of 15 lines in H2 with angles {1

4 ,
5
8} obtained from

a reflection group of type O [Wal24], and for a 2-design of 64 lines in H4 with angles
{1

9 ,
1
3} obtained from a quaternionic polytope (Example 22, [Hog82]).
The examples from the O and P groups disprove the following conjecture of [Hog82]

(for the special bound):
Conjecture 1: Whenever a special or absolute bound is attained, each nonzero
α ∈ A has the form 1/p (p ∈ N), or is irrational.

This could still be true for the roots of a reflection group, which were the bulk of cases
considered in [Hog82].

Similar calculations for the maximal reducible subgroups H of P1, with order 16,
given by (5.33) and (5.34), yield a single fiducial vector for each, i.e.,( √

2
1 + i

)
,

( √
2

1 + j

)
,

with the corresponding P1-orbits of 20 lines, with angles {0, 1
4 ,

1
2 ,

3
4}, given by(√

2
imα

)
,

(
1 +
√

2
imj

)
,

(
imj

1 +
√

2

)
, α ∈ {1 + i, i+ j, i− j}, m = 0, 1, 2, 3, (5.39)(√

2
imα

)
,

(
1 +
√

2
im

)
,

(
im

1 +
√

2

)
, α ∈ {1 + j, 1− j, j − k}, m = 0, 1, 2, 3. (5.40)
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We observe that (5.39), (5.40) is a partition of the 40 root lines of P3 given by (2.21).
If s is the number of angles in a spherical t-design, and t ≥ s− 1, then it is a regular

scheme (see [Hog84]). Hence, the 3-designs of 10, 16, 20 vectors/lines that we have
constructed are regular schemes, since each satisfies s ≤ 4.

Example 5.2 The maximal reducible subgroups of P2 have orders 192, 120, 48, 24,
which correspond to systems of 10, 16, 40, 80 lines. The first two of these groups have
(5.31) and (5.32) as subgroups, respectively, and so give the sets 10 and 16 lines obtained
from P1. The third group has (5.33) and (5.34) as subgroups, and so fixes the line of both
w and w⊥ of (5.36), with either of them being a fiducial for the set of 40 lines consisting
of the union of their P1-orbits (5.37) and (5.38).

The irreducible subgroup of order 24, which gives 80 lines, is

H = 〈12

(
0 1− i− j + k

1 + i+ j + k 0

)
,
1
2

(
i+ j i− j
i− j i+ j

)
〉. (5.41)

This fixes the lines given by the orthogonal vectors( √
3

1 + i+ j

)
,

(
−1 + i+ j√

3

)
, (5.42)

and the P2-orbit of either of these fiducials is the same set of 80 lines at angles {0, 1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6}.

The P1-orbits of the fiducials of (5.42) give 40 lines (a partition of the 80) with the
same angles, i.e., {0, 1

6 ,
2
6 ,

3
6 ,

4
6 ,

5
6}. Since this set of 40 lines has not yet appeared, its

stabiliser in P1, which has order 8, must not be a maximal reducible subgroup of P1.
This implies that it fixes a line in one of the sets of 10, 16, 20 lines obtained from the
maximal reducible subgroups of P1. Our direct verification of this fact below, leads to
an intriguing example of a “continuous family” of eigenvectors for a matrix group (over
the quaternions).

Example 5.3 Let G be the stabiliser in P1 of the lines given by the fiducial vectors of
(5.42), i.e.,

G := H ∩ P1 = 〈
(

0 k
k 0

)
,
1
2

(
i+ k 1 + j
−1 + j i− k

)
〉, |G| = 8,

where H is given by (5.41). The Gröbner basis for the equations (5.29) for a fixed line
given by a v ∈ H2 of the form (5.35) include x3

4 = 0 and (x1 − x3)2 = 0, and reduce to

x3 = x1, x4 = 0, 2x2
1 + x2

2 − 1 = 0.

Given that x2
2 = 1− 2x2

1, we may solve these equations to get

x1 = x3 = t, t2 ≤ 1
2 , x2 = ±

√
1− 2t2, x4 = 0,
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and hence obtain a continuous family of fiducials (eigenvectors)

v =
(

1
t(1 + j)±

√
1− 2t2i

)
, t ∈ [− 1√

2 ,
1√
2 ].

We observe that for the special cases t = 0, 1√
2 ,

1√
3 , we obtain fiducial vectors for P1

giving 10, 16, 40 lines, i.e.,

t = 0 :
(

1
±i

)
, t = 1√

2 :
(

1
1√
2(1 + j)

)
, t = 1√

3 :
(

1
1√
3(1± i+ j)

)
.

Thus G is a proper subgroup of the maximal reducible subgroups of P1 given by

Stab(P1,

(
1
i

)
), Stab(P1,

( √
2

1 + j

)
).

Example 5.4 Of the 106 irreducible subgroups of P3, five are maximal, and one of these

H = 〈 1√
2

(
i+ j 0

0 i+ j

)
,
1
2

(
1 + i 1 + i
−1 + i 1− i

)
〉 |H| = 48,

fixes the orthogonol vectors(
3

1 + i+ j

)
,

(
−1 + i+ j

3

)
,

each of which is a fiducial vector for a set of 80 lines with angles {0, 1
8 ,

2
8 , . . . ,

7
8}.

The other four maximal reducible subgroups give sets of 10, 32, 40, 80 lines already
obtained (they have a larger symmetry group P3).

The behaviour uncovered in the Example 5.3, i.e., that a nonscalar 2 × 2 matrix
over the quaternions can have a continuous family of right eigenvectors, is completely
different from the complex case (the eigenvalues are uniquely defined and there are at
most two eigenvector lines in C2), and hence of some interest (see [Zha97], [FWZ11]).
We now give a variant which illustrates some of the mechanics of this phenomenon.

Example 5.5 The reducible subgroup of order 8 given by

H = 〈
(
i 0
0 i

)
,

(
0 j
j 0

)
〉,

has a continuous family of eigenvectors given by(
1

t±
√

1− t2i

)
, −1 ≤ t ≤ 1.

The corresponding eigenvalues can be determined by verifying this, e.g.,(
0 j
j 0

)(
1

t±
√

1− t2i

)
=
(
tj ±

√
1− t2ji
j

)
=
(
tj ∓

√
1− t2k
j

)

=
(

1
j(−tj ±

√
1− t2k)

)
(tj ∓

√
1− t2k) =

(
1

t±
√

1− t2i

)
(tj ∓

√
1− t2k).
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Table 3: The line systems given by the maximal reducible subgroups of the P groups

G |H| fiducial angles lines comment

P †1 , P
†
2 , P

†
3 32, 192, 384

(
1
0

)
0, 1

2 10 (1.2) MUBs

P †1 , P
†
2 20, 120

(
1 +
√

5
1 + i+ j + k

)
1
5 ,

3
5 16 (5.37)(

−1 + i+ j + k

1 +
√

5

)
1
5 ,

3
5 16 (5.38)

P †3 120
(

1 +
√

5
1 + i+ j + k

)
0, 1

5 ,
2
5 ,

3
5 ,

4
5 32 (5.37), (5.38)

P †1 16
( √

2
1 + i

)
0, 1

4 ,
1
2 ,

3
4 20 (5.39)

P †1 16
( √

2
1 + j

)
0, 1

4 ,
1
2 ,

3
4 20 (5.40)

P †2 , P
†
3 48, 96

( √
2

1 + i

)
0, 1

4 ,
1
2 ,

3
4 40 (5.39), (5.40)

P1 8
( √

3
1 + i+ j

)
0, 1

6 ,
1
3 ,

1
2 ,

2
3 ,

5
6 40 Example 5.3

P †2 , P
†
3 24, 48

( √
3

1 + i+ j

)
0, 1

6 ,
1
3 ,

1
2 ,

2
3 ,

5
6 80 Example 5.2

P1, P2, P
†
3 4, 24, 48

(
3

1 + i+ j

)
0, 1

8 ,
2
8 , . . . ,

7
8 80 Example 5.4

† The stabiliser H of the fiducial vector in Pj is a maximal reducible subgroup of G = Pj .

Thus the second matrix can be diagonalised in multiple ways, e.g.,

M−1
(

0 j
j 0

)
M =

(
j 0
0 k

)
,

(
j 0
0 j+k√

2

)
, M =

(
1 1
1 −i

)
,

(
1 1
1 1−i√

2

)
.

Related to the projective stabiliser group of a line, is the (pointwise) stabiliser group
of a vector (or set of vectors), which is reducible. It was shown in [BST23], [Sch23] that
for a quaternionic reflection group, these so called parabolic subgroups are reflection
groups (this is a classical result of Steinberg for complex reflection groups). For the
fiducial vectors of Table 3, we calculated the pointwise stabiliser group (a subgroup of
the projective stabiliser). These were all trivial, except for the cases

(
1
0

)P1

=
(

1 0
0 〈i〉

)
,

(
1
0

)P2

,

(
1
0

)P3

=
(

1 0
0 Q8

)
,

( √
2

1 + i

)P3

= 〈
(

0 1−i√
2

1+i√
2 0

)
〉.
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6 Concluding remarks
The spherical 3-designs with a small number of lines that we obtained as orbits of the P
groups are summarised in Table 3. The construction used is essentially that of “highly
symmetric tight frames” (see [BW13], [IJM20], [Gan25]). The key idea is to go from a
quaternionic representation of an abstract group to finitely many associated nice sets of
lines. In the spirit of Hoggar, we offer a conjecture informed by our calculations (see
Example 5.3 and Table 3).
Conjecture 1 For every quaternionic reflection group (or every finite irreducible group
of d× d matrices over H), the maximal reducible subgroups fix a finite number of lines.

If this holds, then for a given group, taking those lines given by the maximal reducible
subgroups gives a finite class of “highly symmetric tight frames for Hd”.

In Table 1, we gave nice generators for the P groups (none seem to appear in the
literature, see [Hog82] and [Coh91]). Here is sample magma code for their construction,
and the fiducial w of (5.36) which gives 16 lines.
F:=CyclotomicField(120);
PR<t>:=PolynomialRing(F);
rt2:=Roots(tˆ2-2)[1][1]; rt3:=Roots(tˆ2-3)[1][1]; rt5:=Roots(tˆ2-5)[1][1];

Q<i,j,k>:=QuaternionAlgebra<F|-1,-1>;

a:=Matrix(Q,2,2,[i,0,0,1]); b:=Matrix(Q,2,2,[j,0,0,1]);
c:=1/2*Matrix(Q,2,2,[1+j,-1+j,-1+j,1+j]);
d:=1/rt2*Matrix(Q,2,2,[1,1,1,-1]);

P1:=MatrixGroup<2,Q|a,c>;
P2:=MatrixGroup<2,Q|a,b,c>;
P3:=MatrixGroup<2,Q|a,b,d>;

w:=Matrix(Q,2,1,[1+rt5,1+i+j+k]);

Here is code for the Hermitian transpose (and hence the inner product and angles).
// This gives the 1,i,j,k parts of a matrix or polynomial over Q
HtoRparts := function(q);

x1:=1/4*(q-i*q*i-j*q*j-k*q*k); x2:=1/4/i*(q-i*q*i+j*q*j+k*q*k);
x3:=1/4/j*(q+i*q*i-j*q*j+k*q*k); x4:=1/4/k*(q+i*q*i+j*q*j-k*q*k);
return [x1,x2,x3,x4];

end function;

HermTranspose := function(A);
c:=HtoRparts(A);
B:=c[1]-c[2]*i-c[3]*j-c[4]*k;
return Transpose(B);

end function;
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[Wal20] Shayne Waldron. A variational characterisation of projective spherical de-
signs over the quaternions, 2020.

[Wal24] Shayne Waldron. The geometry of the six quaternionic equiangular lines in
H2, 2024.

[Wal25] Shayne Waldron. An elementary classification of the quaternionic reflection
groups of rank two, 2025.

22



[WF89] William K. Wootters and Brian D. Fields. Optimal state-determination by
mutually unbiased measurements. Ann. Physics, 191(2):363–381, 1989.

[Zha97] Fuzhen Zhang. Quaternions and matrices of quaternions. Linear Algebra
Appl., 251:21–57, 1997.

23


	Introduction
	The quaternionic reflection groups of type P
	The maximal imprimitive reflection subgroups
	MUB symmetries
	Spherical designs and small sets of invariant lines
	Concluding remarks

